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CHAPTER 1 

  

INTRODUCTION 

 

1.1 Motivation 

 In many engineering systems, there are mechanical components that are subjected 

to cyclic loads which cause fatigue crack growth.  These components are often critical to 

the survival of the system as a whole, and a thorough understanding of their performance 

is crucial to facilitate risk assessment and management.  In 1978, Battelle Laboratories 

completed a study requested by the National Bureau of Standards that investigated the 

total cost associated with material fracture in the United States [1].  That study 

determined that over $88 billion dollars per year were being spent on material fracture at 

that time.  This expenditure represented almost 4% of the national gross domestic product 

during that year [2].  The results of the report led to a surge in research emphasizing on 

fracture mechanics, material properties, and improved inspection scheduling/techniques.  

These were the areas that were deemed critical toward the improvement of structural 

reliability, reduction of material usage, and minimization of the replacement of critical 

components.   

 Among the major industrial sectors where fatigue and fracture of structural 

components are of critical concern is the aeronautical and aerospace industry.  The 

aerospace community initially adopted a safe life approach in order to increase structural 

integrity throughout the design life of a component.  In this approach, components are 

designed to withstand a pre-determined life and the assumption is that the components 
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will remain free of flaws.  Under this philosophy, critical components are retired from 

service at the end of the pre-determined safe life period regardless of the current 

condition of the component.  There are several deficiencies in this type of approach to 

risk management.  The first of which is the over-design of the components and the waste 

of resources due to the removal of “good” components from service long before 

necessary.  Another less common, but highly critical, flaw is that unique situations may 

lead to a critical flaw being achieved in the component within the safe life of the 

component.   

 The limitations in the safe life philosophy led to the development of a damage 

tolerance approach.  Damage tolerance (DT) design is based on the assumption that initial 

flaws exist in any structure and such flaws will propagate under repeated cyclic loading 

conditions which are substantially less that the yield stress of the material.  The concepts 

of the damage tolerance approach are based on fracture mechanics principles and have 

been pursued for fixed-wing aircraft structures since the 1970s [3].  In order for a DT 

approach to be viable, a detailed understanding of relevant component service loads and 

stress spectrums, material properties, and crack growth mechanisms must be known.   

The goal of this thesis is to add to the collective knowledge used for proper 

implementation of a DT approach to risk management of a fatigue-critical mechanical 

component.  The first aspect necessary for proper use of the DT methodology is an 

accurate crack growth model that can be used to determine the life remaining before an 

inspection is necessary.  Since numerous studies have been performed to assess the 

uncertainty in three dimensional crack growth models [4, 5], this thesis will have a 

precise focus on numerical errors related to temporal and spatial discretization that have 
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not been previously investigated in much detail.   

Crack growth models employ the use of material parameters such as threshold 

stress intensity factor, fracture toughness and other parameters that are model specific 

like Paris law parameters � and �; the values of which are typically obtained via 

experimental testing.  The variability in the experimental data is typically attributed to 

either inherent variability in the material itself or some type of observation error.  In order 

to develop a firm understanding of the actual uncertainty in the material parameters, a 

calibration technique that considers all forms of uncertainty in the experimentation must 

be employed.  Such a technique is developed in this thesis. 

Once a detailed and robust crack growth model is achieved, the model is used to 

predict the amount of remaining life in the component before an inspection is necessary 

to evaluate the condition of the component.  The DT approach provides a means for 

determining a safe and efficient maintenance inspection interval, but there is no 

consistent methodology for making the decision of what type of inspection should be 

performed.  There are several different types of non-destructive testing that could be 

performed at a given maintenance event.  Some inspections are inexpensive and easy to 

perform but do not yield precise information regarding the current condition of the 

component.  Other inspection systems yield detailed insight into the current state of the 

component, but require highly trained technicians or costly specialized equipment.  

Another issue of concern with inspection fidelity choice is downtime.  Some inspection 

procedures require the component in question to be removed from the engineering system 

in order to be analyzed while other can be performed while the component is in-service.  

This thesis develops an inspection planning methodology that decides both the schedule 
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and the type of inspection technique by taking into account the various uncertainty in 

crack growth prediction – natural variability, data uncertainty and model uncertainty. 

  

1.2 Organization of the thesis 

 The primary objectives of this thesis are investigate modeling and experimental 

errors that affect growth life prediction and to extend DT risk assessment to include 

decision making with respect to the inspection scheduling and fidelity.  Each chapter in 

the thesis employs the use of one of two three dimensional crack growth models.  The 

first crack growth model is an equivalent planar approach to modeling non-planar crack 

growth and the second employs a non-parameterized representation of the crack fronts 

using principal component analysis.   

The thesis is organized into seven chapters.  Chapter I provides the motivation 

behind the presented research and outlines the organization of this thesis. Chapter II 

provides a brief discussion of the key underlying statistical and mathematical techniques 

used in this research, which includes Bayesian analysis and Gaussian process surrogate 

modeling.  Chapter II also presents a detailed description of the equivalent planar crack 

growth model.   

 Chapter III develops a methodology for quantification of the numerical errors 

incurred due to discretization in the modeling of 3D crack growth.  The non-

parameterized crack front representation is employed in this chapter to ease the training 

of surrogate models used to quantify the discretization errors.  The spatial discretization 

error caused by finite element meshing is investigated and although the methodology 

proposed is for a specific finite element solver, it could easily be extended to other finite 
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element software.  Temporal discretization is also investigated in this chapter.  Generally, 

loading in a crack growth simulation is applied in block form (collections of several load 

cycles of constant amplitude).  Crack growth is dependent on not only the applied load, 

but also on the previous crack state.  It is because of this dependency that the block 

loading leads to a discretization error.  With block loading, the crack increment for a 

single load cycle is simply multiplied by the length of the block to determine the crack 

growth increment over the total load block duration.  Ideally the crack growth would be 

calculated incrementally after each load cycle and the difference between the block 

approach and the cycle by cycle approach is referred to as the temporal discretization 

error.  The methodology proposed in Chapter III provides a technique for quantification 

of this type of numerical error.  For practical engineering problems, it is important to not 

only understand the individual contributions of temporal and spatial discretization, but 

also the combined effect.  The combined spatio-temporal discretization is also modeled in 

Chapter III of this thesis.    

 Chapter IV seeks to fulfill two goals.  The first goal is to investigate the types of 

uncertainty that are present in fatigue fracture experimentation.  Machine calibration and 

alignment, imaging errors, and other observation errors are investigated.  The second goal 

of the chapter is to account for these identified sources of error/uncertainty in calibrating 

material properties that are necessary for modeling of fatigue crack propagation.  

Bayesian model parameter calibration is employed for this purpose. 

 The results of the model parameter calibration, along with the discretization error 

quantification presented in Chapter III will then be used to correct the equivalent planar 

crack growth model.  The goal of Chapter V is to validate the equivalent planar crack 
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growth law model using experimental results obtained from Bell Helicopter Textron Inc. 

for a two radius hollow cylinder similar to a rotorcraft mast.  Chapter V demonstrates 

how multiple sources of data can be combined in a Bayes network to provide a robust 

validation scheme.  Bayesian hypothesis testing will be utilized to perform this task and a 

model confidence based on the validation will be presented. 

Chapter VI extends the DT approach to risk management in fatigue critical 

components to consider inspection scheduling and fidelity.  The effect of inspection 

fidelity and model prediction uncertainty on the length of the next inspection interval is 

studied.  The information gained from the analysis is then used for decision making 

regarding inspection schedule and fidelity. 

 A summary of the results of each chapter is provided in Chapter VI.  The potential 

future work that could be performed to expand on the current study is also presented in 

the chapter. 

 

 

 

 

 

 

 

 

 

 



7 
 

CHAPTER 2 

 

BACKGROUND INFORMATION 

 

This chapter provides a brief introduction to some the key underlying statistical 

and mathematical techniques that are essential to the formulation of the uncertainty 

quantification and risk management methodologies developed in this thesis.  The focus of 

the first section of this chapter will be on the development of Gaussian process models.  

Gaussian process regression models are used heavily in the second section of this chapter 

to introduce a crack growth model that will be utilized in Chapters V and VI and in 

Chapter III for the use of uncertainty quantification in another 3D crack growth model.  

The third section of this chapter will provide the reader with a basic introduction to 

Bayesian networks.  Bayesian networks will be utilized in Chapters IV, V and VI for the 

use in Bayesian model parameter calibration.   

 

2.1 Gaussian process surrogate modeling 

In many practical engineering problems, complicated finite element solvers or 

computationally taxing computer simulations must be employed to obtain numerical data 

for detailed analysis.  Reliability studies require a vast amount of numerical data which 

makes problems where the acquisition of said data is computationally difficult very cost 

prohibitive.  To overcome this hurdle, surrogate models are typically developed.  

Surrogate models, or as they are sometimes called approximation models, are designed to 

mimic the simulation model as closely as possible while being far more computationally 



8 
 

more efficient.  Different types of surrogate modeling techniques (conventional 

polynomial response surface, polynomial chaos expansion [6], support vector regression 

[7], relevance vector regression [8], and Gaussian process interpolation [9]) have been 

investigated in the literature.  This thesis employs the use of the Gaussian process (GP) 

surrogate modeling approach, which is a powerful technique based on spatial statistics for 

interpolating data and is increasingly being used to build surrogates to expensive 

computer simulations for the purposes of optimization and uncertainty quantification [9, 

10, 11].  There are three distinct advantages to the GP model over other surrogate 

modeling approaches: 1) it is not constrained by polynomial-type functional forms, 2) it 

is capable of representing highly nonlinear relationships in multiple dimensions, and 3) it 

produces an estimate of the prediction uncertainty dependent on the quantity and location 

of training data. 

To demonstrate how a GP is built, consider an illustrative example.  Let the 

underlying function �: Ω → ℜ,Ω ∈ ℜ
 be known at � training points.  The set � =

{� , �} represents the training data where � =	 {��, ��, … ��|�� ∈ Ω} is the set of 

measurement locations and  � =	 {��, ��, … ��|�� = �(��)} is the set of measured 

function values.  � =	 {��, ��, … ��|�� = �(��)} is the set of underlying function values.  

It is assumed that measurement noise, �� ∼ �(0, !"�).   

The information contained in data �, is then used to infer �#, the value of the 

underlying function � at points �# ∈ Ω, by computing the distribution $%�#&�'.  In 

general, a trend function is then applied and the residuals of the trend function are 

modeled by a Gaussian process.  A GP is fully defined with the specification of the mean 

function, �(�), and the covariance function, ((�, �)).  These functions must be selected 
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so as to reflect the assumptions (such as stationarity, periodicity, etc) about the 

underlying function describing the data [12, 13, 14].  The covariance function provides a 

flexible and realistic assessment of the prediction variance, and quantifies the effect of 

the distance between prediction and training points.  A detailed comparison of different 

covariance functions, both stationary[15] and non-stationary[16], can be found in the 

literature.   

 

2.2 Surrogate modeling of 3D crack growth 

The main goal of this thesis is to provide methodologies toward uncertainty 

quantification and risk management in a three-dimensional crack growth.  Toward this 

goal, two different crack growth models, both with the capability of capturing the non-

linear kinetics of non-planar crack growth in a mechanical component under multi-axial, 

variable amplitude loading, will be analyzed.  One approach will employ a non-

parameterized representation of the non-planar crack.  The basic idea behind this 

proposed method is that it allows for the user to monitor complex crack configurations 

and the generation of arbitrary crack front shapes.  A detailed discussion of this method 

will be presented in Chapter III along with the quantification of discretization errors 

related to simulated crack growth.   

In this section, a second approach to non-planar crack growth will be discussed.  

The second proposed method for crack propagation modeling employs a parameterized, 

equivalent-planar representation of the simulated crack fronts.  For each of these 

methods, the surrogate models implemented will be trained using finite element analysis 

results produced via FRANC3D[17].  FRANC3D is a finite element based solver 
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specifically designed to simulate non-planar crack growth of complex three dimensional 

structures.   

The primary advantage to the planar approximation is that the crack 

representation is limited to an idealized semi-elliptical shape (see Figure 2.1) that is 

characterized by two geometric quantities, * and +.  The stress intensity factor range and 

crack growth increment at each load increment need only be calculated at the semi-major 

A) and semi-minor (C) axis locations.  Equivalent planar crack growth projects the non-

planar cracks onto a single oriented plane, and therefore reduces the complexity involved 

in the crack representation, enabling the propagation to be modeled more efficiently.   

 

Figure 2.1: Equivalent-planar crack growth: , corresponds to crack edge along the major 
axis and � to the crack edge along the minor axis. 

 

 Equivalent planar approximation relies on an estimate of the overall crack 

orientation for its analysis [18]. Considering block loading in this application, each 

applied load scenario will consist of a different number of load blocks, a block-by-block 

relationship between crack characteristics, and the applied load considered: 

-./ 0 12 = 3(-./2, 4./2) 
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where 3 is a non-linear function that defines the relationship between the current crack 

shape, -./2, and the applied loading 4./2 at the /-th load block.  Crack shape is 

represented by the crack configuration (orientation and length), -./2 = (5./2, *./2), and 

the applied load.  This non-linear relationship is modeled as a GP: 

-./ 0 12 = 67(-./2, 4./2, Φ)	       (1) 

where Φ = .9, !#, !"2 represents the parameters of the squared exponential covariance 

function assumed for the GP.  The parameter !" represents the uncertainty in the training 

values of 5" and *" which results from variations in the FRANC3D mesh parameters set 

for each crack increment simulation.  The parameter !# represents the variability in the 

output variable.  The length scale parameters, 9, characterize the variation of the output 

variable with respect to the input variables and therefore quantify the importance of each 

input variable.  The training of the surrogate model consists of estimating the parameters 

Φ of the model using the training data acquired the finite element analyses.   

 The first surrogate model implemented in this equivalent planar crack growth 

prediction technique is utilized to predicted the orientation of the crack front while the 

second is used to estimate the stress intensity factor range at a given crack stage.  The 

stress intensity factor is a function of crack shape, component geometry and applied load.  

As described in [19], an efficient surrogate model can be constructed to replace the finite 

element simulation in the calculation of the stress intensity factors for crack growth on a 

plane.  For use here however, the plane is actually an equivalent plane meaning the 

surrogate model must be adapted to account for the crack orientation.  The surrogate 

model extended for 5 as an additional input is 

:;< = 67(*, +, =, 5,Φ)        (2) 
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 Once the two surrogate models for crack orientation and stress intensity factor 

calculation are completed, the crack prediction model can be assembled.  Since the main 

components to most crack growth laws are current crack shape, stress intensity factor 

range, and loading duration, this surrogate modeling methodology could be applied to 

any such crack growth model.  In this thesis however, Paris law is implemented due to its 

simplicity and accessibility.   

 

2.3 Bayesian networks 

In this thesis, Bayesian calibration will be used to determine the distributions of 

model parameters when experimental data is available.  The model’s prediction is 

compared against the experimental data and samples are taken of the parameters so that 

the likelihood of the model prediction matching the data is maximized.  To perform this, 

Bayesian networks are employed to gather all model parameters and sources of 

uncertainty.   

To understand how a Bayesian network is operated, one must first have a solid 

understanding of Bayes’ theorem [4] on which the approach is based.  First consider a 

group of mutually exclusive and collectively exhaustive events ,� (> = 1 to /) that 

together form a sample space.  Suppose then that ? is any other event from the sample 

space, as long as @(?) > 0, it can then be deduced that from the law of conditional 

probability 

@(,�|?) = 	 B(C|DE)B(DE)
∑ B%C&DG'B(DG)G

       (3) 

A physical interpretation of the above equation will follow.  In Bayesian 

terminology, the quantities @(,�) are known as prior probabilities and are the 
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probabilities of the events prior to any observed data.  If an event ? is then observed, the 

result of the equation can then be calculated and the result, @(,�|?), is known as the 

posterior probability.  It is by this methodology that Bayesian analysis updates a prior 

assumption about the distribution of a random variable based on observed instances of 

that variable or functions of that variable.   

A Bayesian network is a graphical representation of the relationship between 

various uncertain quantities in a system.  Bayesian networks are an example of a directed 

acyclic graph, which is to say that it is a collection of vertices and directed edges.  Since a 

Bayesian network is a mean by which the outputs of component and subsystem level tests 

can be related to the inputs of the overall system, the nodes or vertices of the Bayesian 

network represent each uncertain quantity in the system and the directed edges represent 

the nodes’ relationships in the terms of conditional probabilities.  Disconnected nodes 

imply independence between the corresponding random variables. An example of a 

conceptual Bayesian network that aids in uncertainty quantification across multiple levels 

of models and observed data is presented in Figure 2.2. The common presentation (used 

in Figure 2.2 also) in Bayesian network is to represent uncertain parameters with circular 

nodes and to represent observed data with square nodes.  The conditional probability 

links between variables are represented by solid edges in the diagram and if observable 

data is available for a particular variable then that relationship is illustrated with a dashed 

line in the figure.   
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Figure 2.2: Conceptual Bayesian Network 
 

The system presented in Figure 2.2 is composed of two subsystems.  The system 

output H is a function of the two subsystem outputs I� and I�.  Each subsystem has two 

distinct input variables: J� and J� for subsystem 1 and JK and JL for subsystem 2.  In this 

sample problem, two of the input variables, J� and JL, are to be considered as model 

parameters such as a material properties geometric constants.  For the sake of 

demonstration it is assumed that there is no observation data for the system level output, 

but observable data is available at the subsystem outputs and that data is represented in 

the figure as M� and M�.   

There are two methods of use for Bayesian networks: forward problems 

(uncertainty propagation along the the flow of the Bayesian network) and inverse 

problems (updating the uncertainty in the parent nodes based on the data on a dependent 

node using Bayesian inference [5]).  Since the inverse problem is the type necessary for 

the use of Bayesian networks in this thesis, that method will be presented.  For more 

details on the forward problem see [20].   
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In the inverse problem, the probability densities of the model parameters (J� and 

JL in Figure 2.2) can be updated based on the observed data (M� and M�) using Bayes 

theorem as: 

�(J�, JL|M�, M�) ∝ 	O(J�, JL)�)(J�)�)(JL)     (4) 

 

The joint posterior density is given by�(J�, JL|M�, M�).  The likelihood function, 

O%J�,JL', is calculated as the probability of observing the given data (M�, M�), conditioned 

on the parameters being updated, i.e. J� and JL.  The likelihood function accounts for the 

uncertainty in the inputs J� and JK.  For details of the likelihood function, refer to [21]. 

A prior distribution (�)(J�) and �)(JL)) is a representation of all of the 

knowledge known about a parameter before collecting any additional data.  Prior 

distributions of the random variables of interest can be either informative or non-

informative.  If a significant amount of information is known about the behavior of a 

variable, an informative prior can be used and will assist the analysis.  For instance, the 

parameters of common materials may have well known distributions, manufactured 

products may have specified nominal values and tolerance levels, or an expert may have 

a high level of confidence that a parameter falls in a certain interval range.  This concept 

of the prior distribution is heavily scrutinized by detractors of Bayesian statistical 

methods because the assumptions made about the prior distribution affect the result of the 

Bayesian analysis.  Poor assumptions of prior information will ineffectively bias the 

resulting posterior distributions.  However, the inclusion of useful information into a 

prior distribution increases the effectiveness of the analysis and eases the computational 

difficulty.  The prior distribution describes the subjective knowledge about the system 
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and the associated uncertainty.  This prior knowledge is updated in the Bayesian analysis 

process when new information becomes available in the form of testing or inspection 

data.  This leads to the reduction of uncertainty in the system-level prediction.  For more 

information about prior distributions, including non-informative priors, refer to [21]. 
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CHAPTER 3 

 

QUANTIFICATION OF DISCRETIZATION ERRORS USING SURROGATE 

MODELING TECHNIQUES 

 

3.1 Introduction 

 Surrogate modeling is typically used to replace an intensive computer simulation 

in order to save time and expense.  The surrogate model presented in this chapter 

represents non-planar crack growth in mechanical components under multi-axial, variable 

amplitude loading.  The approach presented here accounts for the effect of both spatial 

and temporal discretization in the 3-D finite element analysis of non-planar crack growth. 

The surrogate modeling technique that is presented here models the relationships 

between crack fronts obtained at different discretization levels.  The surrogate model can 

use these relationships to predict crack front shapes that are corrected for the effects of 

discretization error.  These corrected crack fronts are then used to develop another 

surrogate model that empirically captures the non-linear kinetics of the non-planar crack 

growth in a mechanical component under multi-axial, variable amplitude loading.  The 

objective is to develop a computationally affordable yet accurate model, which uses a 

small set of training data to model the evolution of crack growth in the component.  Once 

the model is trained, it can be used in a predictive manner to determine the next stage of 

crack growth given a current crack shape and loading scenario.    

Existing methods for the use of surrogate models for crack growth modeling 

reduce the complexity in crack representation by assuming a parameterized planar crack 
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representation and model the relationship between crack size, applied loading, and 

equivalent stress intensity factors [22, 23].   

While the parameterized crack representation enables rapid assessment of crack 

growth, a parameterized crack model also limits the possible shapes that the crack can 

take during the simulations.  The surrogate model presented here employs a non-

parameterized crack front curve thus allowing for a more realistic representation of non-

planar cracks.  By representing the cracks in this way, the analysis can consider complex 

crack front geometries.  The crack can be allowed to propagate naturally forming 

arbitrary configurations thereby allowing the relationship between crack fronts at varying 

degrees of discretization to be modeled accurately.  The proposed method is a three step 

approach which involves: 1) crack front representation, 2) estimation of corrected crack 

fronts (corrected for discretization errors), and 3) modeling of crack growth kinetics.  

First, a low dimensional non-parameterized representation of the crack front curves is 

sought.  This first step is necessary so that the kinetics of the crack growth can be 

modeled in this low dimensional space which eases one of the computational 

complexities associated with this type of problem.  In the low dimensional space, robust 

surrogate model training can occur with relatively little training data.   

Description of the modeling of the fatigue crack growth in a cylindrical 

mechanical component (similar to a rotorcraft mast) is presented in Section 3.2 below.  

The focus is on defining the representation of multi-axial, variable amplitude load blocks 

and histories.  A more elaborate discussion on the use of block loading in a fatigue crack 

growth application was presented in Chapter II.  The example presented in Section 3.2 
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will be carried forward in each subsequent section for ease of illustration of the methods 

developed along the way.   

Dimensionality reduction requires fixed dimension representation of the data 

space.  For the problem of fatigue crack growth analysis, a spline-based representation of 

the crack front is considered.  This type of representation reparameterizes the crack front 

curves such that all of the crack fronts associated with the analysis can be systematically 

represented in fixed dimension. 

The Gaussian process regression presented in Section 3.3 is used to estimate the 

corrected crack front after the application of some given load block.  This estimation is 

used to model the non-linear kinetics of crack growth under variable amplitude loading.  

In Section 3.4, a methodology is proposed to account for temporal, spatial, and combined 

spatio-temporal discretization errors. 

 

3.2 Simulation of non-planar crack growth 

 In general there are a few items that crack growth models need in order to 

perform their function of fatigue crack growth prediction.  An initial flaw size, shape and 

location is usually a prerequisite for fatigue crack growth analysis.  Most models utilize 

some form of material constants for the given specimen, although for many models these 

“material properties” are just fitting constants based on experimental testing [24.  

Another common variable in fatigue crack growth models is the stress intensity factor at 

the crack tip.  Since the stress intensity factor is dependent on the component’s geometry, 

applied load, and current crack size and shape, these properties are also crucial to most 

analyses.  
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 All of these factors are critical to the analysis in their own right, but their 

interaction with each other can also have important consequences in terms of 

implementation of full non-planar crack growth simulation.  A more detailed description 

of the options available for the full scale simulation has been discussed in Chapter II.  A 

brief discussion relevant to the non-parametric crack growth model is presented here.   

 For illustration purposes, a two-radius hollow cylindrical component like a 

rotorcraft mast is to be used throughout the remainder of this chapter.  Based on stress 

analysis under bending and torsion loads, the fillet region of the component (see Figure 

3.1) was identified as the region of highest stress concentration and therefore the most 

likely location for crack initiation to occur.  Consequently, all analyses in this chapter 

assume that an initial elliptical surface flaw is present in the fillet region of the 

component.  FRANC3D [17] is employed for automated crack representation and crack 

propagation.  FRANC3D utilizes ANSYS [25] for component stress analysis and 

implements a crack tunnel and singular elements to provide automated local remeshing at 

the crack location.  In order to ease computational effort a submodel of the fillet region 

was extracted from the full model.  A diagram of the extracted submodel and the crack 

tunnel (local mesh) are presented in Figure 3.2.  Within the software, the maximum shear 

stress criterion is used to determine the crack growth direction [25].  Paris law [26] is the 

crack growth model used to estimate the crack growth increment.  The deterministic 

values used for “material constants” � and � were 1E-9 and 2.7 respectively.  

Deterministic values for these variables were used in this chapter for the sake of 

simplicity as their uncertainty is not of primary concern; however, a more detailed 

analysis of proper representation of these parameters is presented in Chapter IV.  It 
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should also be noted that the methods of discretization error quantification presented here 

are not limited to the choice of aforementioned crack growth criteria.  These specifics 

were only chosen for the clarity of illustration. 

 

 

Figure 3.1: Plot of stress profile within rotorcraft mast component under bending and 
torsional loading 

 

Figure 3.2: Finite element meshes of the full model, submodel, and crack tube (local 
mesh) 

 

 A cycle-by-cycle approach, in which the crack growth analysis is performed for 

each load cycle, provides the most accurate estimate of crack growth. Since the growth 
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per cycle is on the order of 10P�Q − 10PS in/cycle for this high cycle fatigue problem, 

this high fidelity approach presents significant computational demands both in terms of 

the number of cycles and the number of nodes required in the Finite Element Analysis 

(FEA) mesh.  The complexity of the crack shape increases with each iteration of the 

simulation.  This increases the requirements for the remeshing stage because more 

complex crack front shapes demand a finer mesh for accurate representation.   

 Therefore an incremental block-type crack extension analysis is employed here.  

Since the FEA program creates discrete points along the crack front to represent the crack 

shape, these points are how the crack is propagated.  In the block loading approach, these 

specific points are extended by a multiple of the crack growth increment that was 

calculated by the FEA program for a single cycle: 

Δ* = UV ∗ XY
X�          (5) 

where Δ* is the total crack growth applied to the current location of the point on the 

crack front, UV is the user defined block duration, and 
XY
X� is the crack growth increment 

predicted by the FEA solver for a single cycle at the current crack state for that point 

along the crack front.  The advantage to this method is that it allows for crack extension 

without the requirement of constant crack updating and remeshing after every load cycle 

making predictions for long mission durations attainable.  There are some glaring 

weaknesses in this approach however.  The first of which is the dependence on the load 

history consisting of several sub-blocks with constant amplitude loading.  For some 

problems this assumption may not cause a large issue but for a component such as a 

rotorcraft mast it is highly unlikely that the load applied to the mast will be of constant 

amplitude for any sustained period of time.  The second and more general problem will 



23 
 

be the focus of one of the subsequent portions of this chapter.  Since the crack growth 

prediction is dependent on the previous crack state, it is erroneous to assume that the 

crack growth prediction for a single cycle will be correct for an entire block of cycles.  

The numerical error created by this assumption will be treated as the temporal 

discretization error from hence forward.   

 For this demonstration problem, each load history OV will consist of �V individual 

load blocks, {?V./2} �Z
"[�.  These load blocks represent different durations and bending 

and torsional load amplitudes, ?V./2 = {\V./2, ]V./2, UV./2}.  Because of constraints due 

to the FEA solver’s ability to model incredibly small crack growth increments, the 

bending and torsional load values were limited to four values each: 

\ = {1.75, 2.00, 2.25, 2.5} and ] = {0.5, 1.5, 2.5, 3.5}.  The durations for each of the 16 

possible load combinations were also chosen according to the previously mentioned FEA 

constraint.  All of load blocks used in the demonstration problem are presented in Table 

3.1. 

 Using the load blocks tabulated in Table 3.1, 28 load histories, each of 120,000 

cycles total duration, were randomly generated using a bucket-filling algorithm.  The 

algorithm begins by randomly selecting a load block.  The next block is then selected 

randomly only this time with the constraint that the total duration must be less than 

120,000 cycles.  The process of random block selection continues until a load history of 

120,000 total cycles is created.  Note that while each load history has a total of 120,000 

cycles, the number of blocks within each history varies.  Twelve samples of these load 

histories, along with the corresponding final crack orientation 5V, are listed in Table 3.2.  

As an example, the first load history O� is illustrated in Figure 3.3.  The corresponding 
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crack fronts are shown in Figure 3.4.  The change in orientation of the crack fronts as 

they evolve is noted. 

Table 3.1: Load block descriptions 

  b t d 

1 1.75 0.5 40 

2 1.75 1.5 38 

3 1.75 2.5 36 

4 1.75 3.5 34 

5 2 0.5 32 

6 2 1.5 30 

7 2 2.5 28 

8 2 3.5 26 

9 2.25 0.5 24 

10 2.25 1.5 22 

11 2.25 2.5 20 

12 2.25 3.5 18 

13 2.5 0.5 16 

14 2.5 1.5 14 

15 2.5 2.5 12 

16 2.5 3.5 10 

Table 3.2: Load histories descriptions 

  Bk[1] Bk[2] Bk[3] Bk[4] Bk[5] Bk[6] Bk[7] 

1 4 11 2 12 16 - - 

2 7 1 7 9 - - - 

3 12 13 10 6 15 15 16 

4 4 5 5 10 - - - 

5 7 14 16 6 7 16 - 

6 10 6 1 15 13 - - 

7 1 3 16 10 15 - - 

8 4 16 15 3 7 - - 

9 14 15 4 6 11 16 - 

10 5 4 11 16 15 15 - 

11 16 12 2 11 4 - - 

12 2 16 4 12 11 - - 
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Figure 3.3: Loading history 1: 120,000 cycles of 5 loading blocks. Each block consists of 
bending load \V./2, torsional load ]V./2, and load duration UV 

 

Figure 3.4: Crack configurations for load history 1: The five fronts after each of the five 
blocks in the load history has been applied. 

 

 

3.3 Crack representation 

 The crack fronts generated by the simulation described in the previous section 

may be represented as Qn = [Xn, Yn, Zn], where / is an index into the loading block, and 

Xn, Yn, and Zn are �" c 1 vectors of the respective Cartesian components of the /-th 
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crack front.  Due to the mesh refinement that occurs after the application of each load 

block, the crack fronts consist of a varying number of representative points.  As a 

consequence, no immediate correspondence can be established between the nodes 

belonging to two different crack fronts, and the development of a model that captures the 

relationship between the crack fronts is not possible.  A consistent parameterized 

representation of the crack fronts is therefore required. 

 The first step toward the generation of a consistently parameterized representation 

is to develop a spline representation of the crack fronts Cn(s) = {Xn(s), Yn(s), Zn(s)}, 

where d ∈ .0,12 is the spline parameter [27, 28].  This is achieved by parameterizing the 

elements corresponding to each component Cn with: 

e" =	 f0, �gh ,
�
gh
, … �hP�

gh
i , Δ" = �" − 1      (6) 

Thus the discrete points Qn are now represented by the spline curve Cn(e").  However, 

while the above representation provides a parameterization of all crack fronts in the 

interval [0,1], the correspondence between the crack fronts is not apparent since each 

crack front is still parameterized by a different set of �". 

 In order to represent all of the fronts by the same number of parameters the 

number of spline nodes, j, must be chosen and the spline node separation Δ	 ≜

(j − 1)P� must be set.  Then using the interpolation property of splines, each spline 

representation is reparameterized at e = {0, Δ, 2Δ,… (j − 1)Δ}.  The reparameterized 

representation of the /-th crack front corresponding to the load history, OV may then be 

written as: 

lV"(e) = {mV
"(d), nV"(d), oV"(d)}       (7) 
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where mV
"(d), nV"(d), and	oV"(d)are now of size j c 1.  sV

" is the n-th crack front of load 

history, OV, and is represented by lV", where the parameterization of the latter is implicitly 

understood.  The crack fronts due to load history O�, and their spline representations are 

shown in Figure 3.5 for illustration.  The fidelity of the re-sampled spline representation 

increases as M increases. 

 In general, crack fronts represent arbitrary curves with discontinuities and 

branching.  While the crack fronts generated by the FEA simulation described in the 

previous section do not possess these characteristics, the use of splines allows for the 

modeling of discontinuities in the crack shape.  In addition, an important consideration in 

this work is the ability to describe a crack of any arbitrary shape and analyze its 

propagation under a given load history.   

 

Figure 3.5: Spline representation of the crack front using M = 31 spline nodes per front: 
Mesh nodes are represented as lines and spline nodes as circles. 

 

 

Under the reparameterization described above, each crack front lV"./2 is represented by a 

3M – dimensional spline parameter vector: lV"./2 = {mV./2, nV./2, oV./2}.  This allows 

for the modeling of arbitrarily shaped curves crack fronts and the modeling of them as 
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freely deformable space curves.  While the fidelity of spline representation increases as M 

increases, so does the dimension of the data space, Ω.  The tradeoff of representation 

fidelity versus data space dimensionality limits the use of space filling designs which are 

necessary for accurate training of surrogate models and thus prohibits direct modeling of 

crack growth kinetics in the high dimensional data space.  Instead, a principal component 

analysis (PCA) based compact representation of the crack fronts, C, will be used.    

 Specifically, for each crack front Ck[n] a corresponding latent space 

representation must be found: 

tV./2 = u	.lV./2 −	lv        (8) 

where lv is the 1 c 3j vector of the means of the crack fronts due to the training loading 

histories, K, and  

� = 	∑ (�V 0 1)w
V[�          (9) 

which is the total number of crack fronts in the training set.  U is a 3j c x matrix 

containing the bases of the latent space and W is the x c � matrix of the latent variables 

corresponding to the N crack fronts C in the training set.  The dimension of the latent 

space is x ≤ j.   

 Based on the covariance matrix of a spline component S = CC
T, PCA is employed 

to extract 3M uncorrelated linear bases for this space.  These bases are ranked according 

to the amount of variance that they capture, with  the first component accounting for the 

most variance.  To achieve this ranking, PCA employs eigen-decomposition of the 

covariance matrix, S; eigenvectors provide the uncorrelated bases, and eigenvalues 

provide a measure of the variance by which the corresponding eigenvector can be ranked 

[29].  This transformation may be inverted from latent space to data space using:  
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lV./2 = utV./2 0	lv        (10) 

 The latent space of the crack fronts was estimated using the parameterized 

representations of each of the crack fronts available from the K = 28 simulations.  The 

contributions of the first 10 principal components (out of a possible M = 93 components) 

is tabulated in Table 3.3.  As is seen in the table, the first principal component captures 

97.38 percent of the variance.  In other words, 97.38 percent of the variation of the 3M – 

dimensional domain is located along a line, and 98.48 percent of the variation on a plane 

spanned by the first two principal components.  Thus the most important parts of the 

spline components are their projection on the subspaces spanned by these principal 

components.  The crack front which is represented by M – variables in the data space, 

collapses to a single point on a line or a plane in the latent space.   

 

Table 3.3: First ten principal components: Eigenvalues and percentage of variability 

explained by the principal component 

i li  % variance 

1 0.0205 97.38% 

2 0.0002 1.10% 

3 0.0002 0.85% 

4 0.0001 0.45% 

5 0.0000 0.08% 

6 0.0000 0.05% 

7 0.0000 0.04% 

8 0.0000 0.03% 

9 0.0000 0.01% 

10 0.0000 0.01% 

 

 The eigenvectors represent the principal modes of variation of the crack fronts 

about the mean shape z{.  The first principal component accounts for the directions of 
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major variation, which correspond to the direction in which the most active nodes move.  

For example, in the X spline component, most of the growth is in the middle nodes (see 

Figure 3.5) and the first principal component captures this variation.  The second 

component accounts for the variation unexplained by the first component.   

 

3.4 Surrogate modeling for non-linear kinetics of crack growth analysis 

 The previous section was concerned with the representation of the crack front.  In 

this section the focus will be on modeling the crack growth process under a prescribed 

loading by modeling the trajectory of each crack in the latent space.  Towards this, let wn 

be the latent space representation of the crack front at the beginning of the n-th loading 

cycle.  Application of a load un results in a new crack front represented by wn+1.  The 

general form of this p + 1-th order kinetics may be written as: 

-./ 0 12 = 3(-./2,-./ − 12, …-./ − $2, 4./2)     (11) 

where $ ≥ 0.  In this work, it is assumed that g is a non-linear function of previous crack 

shape and loading history.  By using previous crack shape and loading history as 

regressors, this non-linear function may be modeled by using a Gaussian Process 

Regression [14, 30, 31]: 

-}./ + 12 = 67(-./2,-./ − 12, …-./ − $2, 4./2)    (12) 

A brief introduction to Gaussian Process Regression was presented in Chapter II, for 

further details see [14].  For example, the first order Markov kinetics, in which the next 

crack shape depends only on the previous crack shape (p = 0), 

-./ + 12 = 3(-./2, 4./2), the training data would be of the form presented in Table 

3.4.  By considering sequences such as %-./2,-~/	– 	1�, … 	-~/	– 	$�, 4.(2' → -./ + 12, 
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the kinetics model may be extended with higher order ($ ≥ 1) dependencies in either the 

crack shape of the loading history.  This only increases the number of input variables and 

thus the size of the training matrix.  It should also be mentioned that only a single FEA 

simulation was used to illustrate the principals involved, but several such simulations 

may be incorporated.   

 

Table 3.4: Training data for first order Markov kinetics 

Input 1 Input 2 Output 

w[1] u[1] w[2] 

w[2] u[2] w[3] 

w[3] u[3] w[4] 
. . . 

. . . 

. . . 

w[L] u[L] w[L + 1] 

 

 Prediction for entire load histories may be obtained by considering an iterated GP 

model in which the crack front prediction from the previous stage is taken as input for the 

next stage: 

-}./ + 12 = 67(-}./2,-}./ − 12, …	-}.$2, 4./2)     (13) 

Given an intial crack w[0] and a load history OV of / loading blocks, the objective is to 

predict crack fronts -}.12,-}.22, …	-}./2.   

 For illustration, a small example will be considered.  The evolution of an initial 

crack front for load history O = {��, �K, ���, �K} will be predicted.  The load history consists 

of 4 load blocks (7,3,11,3) with a total load duration of 120,000 cycles.  Using a first 

order model and starting from an initial crack �Q, four crack fronts (��, ��, �K, �L) are to 

be predicted: 
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-}.12 = 67(-.02, ��)         (14) 

-}.22 = 67(-}.12, �K)         (15) 

-}.32 = 67(-}.22, ���)        (16) 

-}.42 = 67(-}.32, �K)         (17) 

 

where wi is the latent space representation of crack front ��. 

 The work presented in this section up to this point has focused on the 

development of surrogate models for non-linear crack growth kinetics. The load blocks 

have been applied at their coarsest temporal resolution and the simulations have been 

performed at the coarsest spatial mesh.  This methodology can now be extended to 

consider the effects of discretization by modeling the non-linear relationship between the 

corrected crack front, the applied load block, and the current crack shape: 

-}�./ + 12 = 3(-./2,-./ − 12, …-./ − $2, 4Q./2)    (18) 

where -}�./ + 12 represents the estimate of the crack front due to the n-th block at a 

temporal resolution of 1 cycle and infinite mesh resolution and 4Q./2 represents the load 

block at the coarsest temporal and spatial resolution.  In what follows, -} �.(2 represents 

the crack front due to the k-th block and a resolution level j.  The discretization level 

index j ranges from 0 to ∞, where a level 0 implies the coarsest resolution and a level ∞ 

implies the finest resolution.   

 In the same manner as was presented previously, the evolution of the corrected 

crack front can be modeled as a non-linear function of previous crack shape and loading 

history: 

-}�./ + 12 = 67(-./2,-./ − 12, …-./ − $2, 4Q./2)    (19) 
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 Given an initial crack w[0] and a load history OV of n load blocks, the objective is 

to predict the corrected crack fronts -}�.12, -}�.22, …	-}�./2.  Prediction for entire load 

histories may be obtained by considering an iterated GP model in which crack front 

prediction from the previous stage is taken as an input in the next stage: 

-}�./ + 12 = 67(-}�./2,-}./ − 12, …-}�./ − $2, 4Q./2)    (20) 

While the surrogate model prediction depends on the estimates of previous crack shapes 

at the highest level of discretization, its dependence on the load block is only at the 

coarsest level.   

 The evolution of an initial crack front, �Q	for load history O = {��, �K, ���, �K} may 

then be written as: 

-}�.12 = 67(-.02, ��)        (21) 

-}�.22 = 67(-}�.12, �K)        (22) 

-}�.32 = 67(-}�.22, ���)        (23) 

-}�.42 = 67(-}�.32, �K)        (24) 

 Thus the surrogate modeling technique for crack growth kinetics may be extended 

to account for the effects of spatial and temporal discretization.  However, the surrogate 

model for crack growth with discretization requires estimates of the corrected fronts for 

each block.  This contrast between the two models is shown in Table 3.5, where the 

training tables for first order uncorrected and corrected crack growth kinetics are shown.   
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Table 3.5: Training tables for surrogate modeling for crack growth analysis 

Without Correction With Correction 

Ck uk Ck+1 Ck uk Ck+1 

w[1] u[1] w[2] w[1] u[1] w
∞

[2] 

w[2] u[2] w[3] w
∞

[2] u[2] w
∞

[3] 

w[3] u[3] w[4] w
∞

[3] u[3] w
∞

[3] 

. . . 

. . . 

. . . 

. . . 

. . . 

. . . 

w[L] u[L] w[L + 1] w
∞

[L] u[L] w
∞

[L + 1] 

  

The non-linear evolution of crack front shapes as a function of discretization level 

must now be considered: 

-�.>2 = �(-Q.>2, -�.>2, -�.>2, … )       (25) 

where ��.>2 is the crack front for the i-th load block at the j-th level of resolution and can 

be modeled as a Gaussian process regression: 

-�.>2 = 67�(-Q.>2, -�.>2, -�.>2… )      (26) 

Thus for each load block, �� under consideration, a surrogate model is required to predict 

the corrected front, -�.> + 12 at the highest level of discretization.  The training data for 

such a surrogate model consists of crack fronts -�.> + 12 at various levels of resolution j 

and is presented in Table 3.6.  Note that while the crack shape at the highest resolution 

depends on the shape of the crack the coarsest resolution, for the construction of the 

model for corrected crack front of a given block, this remains constant for all the training 

points and may be thus be omitted from the regression. As a consequence, the corrected 

crack front for a given block is determined only as a function of the level of 

discretization. 
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Table 3.6: Surrogate model training at various resolutions 

Ck uk Ck+1 

w[i] u
0
[i] w

0
[i + 1] 

w[i] u
1
[i] w

1
[i + 1] 

w[i] u
2
[i] w

2
[i + 1] 

. . . 

. . . 

. . . 

w[i] u
d
[i] w

d
[i + 1] 

 For illustration, first the effect of temporal discretization will be considered.  To 

exhibit this, a sample load block of 36,000 cycles will be corrected for temporal 

discretization.  Four different levels of discretization were considered: 1) one block of 

36,000 cycles, 2) two blocks of 18,000 cycles, 3) four blocks of 9,000 cycles, and 4) eight 

blocks of 4,500 cycles.  For each test, the crack fronts were extracted using 3D FEA 

simulation.  The crack front after each mesh test was then transformed into a latent space 

representation in order to estimate the corrected crack front.  A surrogate model was 

constructed using crack representations to three levels of discretization (36000, 18000, 

and 9000) and the crack representation due to the eight blocks of 4500 cycles was 

retained as verification data.  The surrogate model and the predictions at discretization 

levels of 4500 cycles and 1 cycle are shown in Figure 3.6.  The predictions of the 

surrogate model are shown as red circles and the actual data points are shown as blue 

circles.  A fair agreement between the prediction at the 4500 cycles and the 

corresponding observed value is noted.   
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Figure 3.6: Estimation of corrected crack front with temporal discretization 
 

 

 The above discussion presents the estimation of corrected crack fronts for a given 

block; however, the kinetics of crack growth must be considered for entire load histories 

consisting of multiple load blocks.  Extension of per-block corrected crack fronts to entire 

load histories is illustrated in Figure 3.7 for a three block history (?�, ?�, ?K� and a given 

initial crack front �Q.  In the first step, the initial crack is independently subjected to the 

first load block at three different levels of discretization ?�Q, ?��, and ?��.  The crack fronts 

resulting from these FEA evaluations are then employed to construct the surrogate model 

67�, which is then used to predicted the corrected crack front at the highest level of 

discretization, ���.  This predicted crack front is then used as the input for the next step 

and is used to predict the corrected crack front due to load block ?�.   
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Figure 3.7: Estimation of discretization per block for a three block load history 
 

 

 Together, �Q, ���, ���, …	represent the evolution of the corrected crack front and 

may thus be employed for any given load history.  However, these estimates are based on 

expensive evaluations of crack shapes at various levels of resolution and are infeasible 

for direct use in a probabilistic analysis.  Instead, in the proposed approach, such 

estimates are evaluated for a few training load histories and then used to construct the 

surrogate model described previously.  This allows for efficient construction of a 

surrogate model that generalizes the non-linear relationship between the current crack 

shape and the effect of discretization due to a given load block.   
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3.5 Illustration of discretization error modeling  

 While the ultimate goal of discretization error analysis is to determine the 

combined effect of both temporal and spatial discretization, it is also important to 

understand the contributions that each type of discretization brings to the error in the final 

result of each FRANC3D simulation.  Consequently, the effect of each type of 

discretization error will first be used separately to correct the crack fronts and then their 

combined affects will be analyzed.  To this end, four load histories, each of 120,000 

cycles total duration, were considered: ��, �L, ��, ��; ��, ��, ��, ��L; ��, �K, ��, ��K; and 

�S, ���, �L, ���, ��Q.  For each load block of a given load history, the corresponding 

corrected crack front can be estimated using the approach outlined in Figure 3.7.  Three 

of the load histories were considered as training data, and one load history of four blocks 

was used for verification purposes. 

 Temporal discretization will be considered first.  For each block of the training 

load histories, the training data was obtained by considering three different discretization 

levels: d, d/2, and d/4 (where d is the duration of the training block).  The corrected crack 

front corresponds to duration d = 1.  The surrogate model was constructed using the 12 

data points from the training load histories as shown in Figure 3.8.  In addition to the 

surface of the surrogate model, the training points and prediction points are also 

presented in Figure 3.8.  In Figure 3.9, the response of the surrogate models at the 

verification blocks is converted to the original data space and compared with the 

corresponding block estimates of corrected fronts for the verification blocks which form 

the baseline values.  As seen in the figure, the uncorrected crack front which corresponds 
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to �Q.>2, underestimates crack growth due to the use of a conservative estimate of the 

equivalent stress.  The prediction of the surrogate model is similar to the estimates of the 

corrected crack fronts using expensive 3-D FEA simulations.   

 

Figure 3.8: Temporal discretization surrogate model 
 

 For illustration of the spatial discretization problem, a detailed description of the 

local mesh in the FEA simulations must be provided.  In order to accurately analyze the 

stress region along the crack front while maintaining computational efficiency, 

FRANC3D implements the use of a crack tube around the crack front.  The crack tube is 

utilized so that remeshing can be  
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Figure 3.9: Crack growth predictions considering temporal discretization 
 

performed quickly.  Therefore, refinement of the mesh is limited to a few parameters 

which control the size of the crack tube.  Since the number of circumferential elements 

around the crack tube is limited due to constraints related to the FEA solver, the number 

of rings around the crack front is chosen as the meshing parameter.  For each block of the 

training load histories, the training data was obtained by considering three different 

discretization levels: 5, 10, and 20 rings.  With this nomenclature, the corrected crack 

front corresponds to an infinite number of rings.  Since the using the surrogate model to 

predict at infinity is not feasible, the reciprocal of the number of rings was used for the 

training of the model so that the value corresponding to the corrected crack front is zero.  

The surrogate model was constructed using the same 12 training points from the temporal 

demonstration and is presented in Figure 3.10.  In Figure 3.11, it can be seen that the 

error in crack growth prediction caused by spatial discretization is less significant that the 

error due to temporal discretization.   
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Figure 3.10: Spatial discretization surrogate model 
 

 

Figure 3.11: Crack growth predictions considering spatial discretization 
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 Finally, the combined effect of both spatial and temporal discretization can be 

considered.  For each block of the training load histories, the training data was obtained 

by considering three different discretization levels: 1)5 rings and 1 block of d cycles, 

2)10 rings and 2 blocks of d/2 cycles, and 3)20 rings and 4 blocks of d/4 cycles.  The 

corrected crack front corresponds to a spatial resolution of infinite rings and a temporal 

resolution of d blocks of 1 cycle.  Similar to the previous two demonstrations, the 12 

training data points are used to construct the surrogate model which is presented in Figure 

3.12.  The corrected crack front curves are compared against the uncorrected predictions 

for the verification load history in Figure 3.13.   

 

Figure 3.12: Spatiotemporal  discretization surrogate model 
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Figure 3.13: Crack growth predictions considering combined spatiotemporal 
discretization 

 

 

3.6 Conclusion 

 An approach was proposed for the construction of surrogate models of non-planar 

cracks for use in crack growth analyses for life prediction and uncertainty quantification.  

Development of this methodology is necessitated by the demand for computationally 

cheap albeit reasonably accurate estimates of crack growth for failure prognosis. The 

proposed method is illustrated using a cylindrical component that is similar to rotorcraft 

masts.   

A non-parametric representation of the crack fronts is employed that allows for 

the development of surrogate models which model the non-planar crack growth kinetics 

as the kinetics of freely deformable space curves. The principal steps of the proposed 

method include representation of crack fronts in a fixed dimension, dimensionality 
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reduction, and modeling of non-linear kinetics. The non-parameterized crack 

representation is then employed to model the effects of spatial and temporal discretization 

in 3-D finite element analysis of non-planar crack growth by modeling both the block 

estimates of the corrected fronts and the kinetics of crack growth in the low dimensional 

crack representation space.  The proposed methods are illustrated using data from FEA 

simulations of non-planar crack growth under variable amplitude variable duration multi-

axial loading. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



45 
 

CHAPTER 4 

 

IDENTIFICATION OF ERRORS IN FATIGUE EXPERIMENTATION AND 

BAYESIAN MODEL PARAMETER CALIBRATION 

 

4.1 Introduction 

Several models have been developed to predict crack propagation in a given 

mechanical component.  Many of these models have already undergone treatments to 

understand how uncertainty from the input parameters can be passed through to 

determine a realistic distribution for the predicted crack growth increment [32].  Due to 

its simplicity and versatility, the Paris law crack growth model [26] is the focus of several 

such studies.  Paris law is an effective tool that can determine a crack growth rate (U* / 

U�) for a given material and stress intensity factor range.  The stress intensity factor 

range (Δ:) is determined based on the geometry of the component, the initial flaw size, 

and the applied loading.  The Paris law relates these parameters as: 

XY
X� = �	Δ:�         (27) 

where � and � are material constants that can be obtained from physical experiments.  

Typically when uncertainty is considered in the fatigue crack growth process, it is 

collected within the material properties � and �.   

 Basic guidelines for experimental error reduction and measurement are provided 

by the ASTM [33], but in general, experimental uncertainty is usually quantified using 

data from multiple specimens. Using that approach, the uncertainty in the measured 
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quantity, be it material properties or crack growth rates, is attributed to variability across 

the multiple tested specimens [34].   

 The methodology presented here proposes a technique using Bayesian model 

parameter calibration to quantify uncertainty in material properties as well as sources of 

error in the experimentation.  The Bayesian model parameter calibration technique 

utilized in this chapter is based on the Kennedy and O’Hagan (KOH) framework [35].  

The KOH framework was developed for the purpose of calibrating computer models 

under multiple sources of uncertainty.  The framework includes a discrepancy term in 

order to account for the difference between the model prediction and observed data.  The 

discrepancy is an important parameter in calibration because without its inclusion, the 

calibration may provide inaccurate distributions for the model parameters.  The need for a 

proper understanding of this “discrepancy term” is outlined in [36]. 

 By attributing the uncertainty to a variety of sources, a more realistic 

understanding of the uncertainty in the material parameters of intent can be achieved.  

Such an approach also yields some insight into what measures can be taken to reduce the 

uncertainty in the crack growth model’s prediction.  Some sources of uncertainty are 

irreducible, such as the natural variability in material properties such as C and m. The 

reducible uncertainty sources are various measurement errors and the errors in 

experimental load application.  The calibration can also be used to demonstrate which of 

these sources has the largest effect on the crack growth prediction uncertainty.   

 It is important to have a complete understanding of the experimental process 

before the sources of uncertainty can be identified.  Measurement technique and choice of 

measurement quantity affect the errors in test setup, measurement acquisition, and data 



47 
 

analysis [37].  In the literature, Beretta and Murakami [38] investigated the estimation of 

extreme defect size for suitable fatigue strength prediction.  Some known contributors to 

experimental uncertainty are defects in the material [39] and improper load and 

displacement measurement [40]. 

 In this chapter, compact tension fatigue experiments will be used to evaluate the 

material properties � and � to be used in a Paris law fatigue crack growth prediction.  

The individual sources of uncertainty in the fatigue experiments will be identified.  The 

Bayesian model parameter calibration will then be performed to estimate the posterior 

probability density functions of the model parameters.  

 

4.2 Experimental setup 

 The material used for the experimental testing presented here is Aluminum 7075 

due to its common application in the aircraft industry [41]. The compact tension 

specimens used for the testing are designed in accordance with ASTM E 647-08. The 

yield strength of Aluminum 7075 is 69,000 psi (475 MPa). A sample photo of one the 

specimens is shown in Figure 4.1.  A V-shaped notch is machined into the specimen 

which is further sharpened using a razor.  A thickness of ½” along with a length of 2.5” 

and a width of 2.4” are the geometric parameters used for these specimens. The diameter 

of 0.5” (with an acceptable pin-to-hole clearance) was used for the gripping holes. The 

pre-crack has a minimum length of 0.125” for each specimen as prescribed in ASTM E 

647-08. Twelve specimens are tested for the purpose of repeatability. Clevis grips are 

designed in accordance with ASTM E 647-08 and are used to mount the specimens. A 

schematic diagram of the test assembly showing the Clevis grips and the compact tension 
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specimen is shown in Figure 4.2. An MTS 810 test machine is used for the mechanical 

testing of the specimens. The experimental parameters which determine the fatigue crack 

growth rate include loading amplitude (as a percentage of yield strength of aluminum), 

nature of applied stress and choice of stress-time modes. The nature of the applied stress 

can be axial, flexural or torsional or a combination of these modes. This experiment 

considers only axial stresses. The commonly used time modes include reversed constant 

amplitude, repeated constant amplitude and random cycling. In order to reduce the 

number of sources of experimental uncertainty, a repeated constant amplitude stress-time 

mode is chosen over random cycling.  The load was applied in the form of displacements 

as it is easier to control than applying forces.  The specimen is subjected to fatigue 

loading until failure. In order to capture crack initiation, crack propagation and final 

failure, an imaging setup is used. The crack growth as a function of number of cycles is 

determined using the imaging setup.  

 

Figure 4.1: Compact tension specimen composed of 7075 aluminum 
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Figure 4.2: Schematic of experiment assembly: The clevis grips are shown holding the 
compact tension specimen. 

 

The imaging set-up consists of a digital single lens reflex (SLR) camera, two 

infrared (IR) light emitting diodes (LEDs) and a green screen to capture the images. The 

IR LEDs are used to remotely trigger the digital camera to capture images at regular 

intervals of time. This imaging is carried out until the failure of the compact tension 

specimen.  The crack growth is measured from the images using digital image 

processing. 

 

4.3 Sources of error in fatigue experiments 

The sources of error in fatigue experiments can be broadly categorized into two 

types: pre-test errors and measurement errors.  Pre-test errors are those that are inherently 
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present in the system such as material properties, geometry of the test specimen, load 

alignment, etc.  The measurement errors are those that affect the observation of the data 

such as imaging errors, machine calibration, etc.  The errors in the experimental outcome 

caused by material defects, specimen geometry and crack tip sharpness have been 

discussed in detail in [39] and are not considered in the work presented here.  Since no 

quantitative data from the experimentation was obtained for these parameters they have 

been excluded from the work presented here.  A more detailed experimentation procedure 

could be adopted to quantify these identified but unaccounted for sources of uncertainty. 

 One significant source of error that was identified during the experimental study 

was alignment error.  Alignment errors include errors due to specimen alignment, fixture 

to specimen contact friction and gripping pressure. Misalignment of the specimen to the 

fixture and/or fixture to the grips can lead to non-symmetric cracking especially close to 

the threshold values. The fixture and the specimen should be centered with respect to the 

loading grips in order to ensure accurate load transfer. The loading axis has to coincide 

with the central axis of the specimen in order to ensure that the load transferred to the 

specimen is indeed the load measured. In the case of fatigue experiments, the fixture must 

be designed to allow for smooth motion without friction. It is important to choose 

materials for the fixture that transfer load without undergoing fatigue damage themselves. 

A suitable gripping pressure (5000 psi) was chosen to prevent damage to the fixtures and 

to allow for smooth load transfer. The direct measurement of alignment errors poses a 

unique difficulty.   

 One method for quantification of the alignment error is to measure the variation in 

the position of specific points on the specimen during the testing.  The variation in the 
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position of a point on the specimen can be tracked using image processing. This variation 

should be vertical and there should be no horizontal motion. Any changes in the 

horizontal direction indicate the misalignment in the specimen. While this can be used to 

track misalignment, it will not be possible to control alignment using this technique. 

 Misalignment in the experimental specimen can cause increased load value due to 

the moments that are induced. Kandil and Dyson [42, 43] discuss the effect of 

misalignment on uniaxial low cycle fatigue specimens. Misalignment in the experimental 

fixture is calculated by studying the relative horizontal and vertical motion of the red dots 

in Figure 4.3. Images of the specimen along with the red dots are taken at various 

intervals of time. The red dots are then tracked to determine the center and radius of the 

circular region enclosed by them. While the vertical motion is due to the movement of the 

specimen, the horizontal motion is due to misalignment in the loading fixture. The 

boundaries of the circular dots are traced using MATLAB’s [44] image processing 

capabilities as shown in Figure 4.3.  The variation of the center of the circular dot in the 

X and Y direction and the variation of the radius of the red dot are measured as shown in 

Figure 4.3.  This graph demonstrates the relative variation of the center of the red dot at 

the top left of the specimen.   

 From Figure 4.4, it can be seen that the variation in the radius of the red dot 

obtained by the tracking procedure is negligible. Finite element analysis was 

implemented to evaluate the effect that the misalignment seen in the experimentation 

(variation in the X-direction) can have on the stress intensity factor at the crack tip.  The 

results from this analysis indicate that the misalignment can alter the stress intensity 

factor by up to 9%. 
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 Testing equipment calibration errors are quantified by comparing the load and 

displacement data produced by the equipment used for the current test vs. a standard set 

of data produced by the manufacturer.  It is common that with frequent use, most testing 

equipment loses calibration over time.  The comparison is performed in the case of the 

MTS 810 machine to quantify the error in the application of a prescribed load. The 

variation in calibration errors for axial load and axial displacement for the experiments 

considered in this chapter are shown in Figure 4.5.  The charts show the variation in error 

as a function of absolute displacements and loads. 

 

Figure 4.3: Procedure for tracking red alignment dots using MATLAB image processing 
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Figure 4.4: Dot tracking to measure position variation: Variation in the x and y directions 
as well as the dot radius dimension are presented. 

 

 

Figure 4.5: Calibration errors for MTS equipment: Error for both displacement-
prescribed loading (a) and force-prescribed loading (b) are shown. 

 

 The final significant experimental error considered in this work is 

imaging/observation error.  In this case, imaging errors are caused due to resolution 

concerns resulting from the use of digital imaging.  Since digital imaging is used to 
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measure the crack size for each specimen, errors are incurred due to the image quality of 

each photograph.  In general, this imaging error depends on the quality and proper 

utilization of the imaging equipment used and the software used to process the images.  

For the work presented here, an error of +/- 10 pixels is used for the imaging error in the 

digital photographs.  A second observation error is present due to the necessary 

synchronization of each image with a specific load cycle during the experimentation.  

Since there is obviously some lag between the imaging trigger and the MTS software, 

there is some error in this synchronization.  The frequency at which the load is applied is 

10 Hz; therefore, the error in the cycle count is +/- 10 cycles.   

 

4.4 Bayesian model parameter calibration 

 Consider a general model shown in Figure 4.6.  The model is a function of inputs 

(x) and model parameters (�).  The difference between � and x is often difficult to 

determine but in this framework the model inputs, x, will be considered to be observable 

quantities (either stochastic or deterministic) such as loading and model parameters, �, 

are not observable (such as crack growth parameters) and are therefore the objective of 

the calibration procedure.  The model output I� should be a quantity of the same 

meaning as	IX, observable physical quantity, so that a direct comparison can be made.  

The error in the observation of IX is often represented as a zero-mean Gaussian random 

variable ���� with a variance !���� .  The alignment error is actually an error that would 

typically affect the mean value of the observed quantity making the zero-mean Gaussian 

assumption incorrect, but for this analysis the alignment error was applied to the model 

prediction to maintain the assumption.   
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 The inputs, outputs, model parameters and various errors can be connected 

through a directed acyclic graph known as a Bayesian network.  The Bayesian network is 

a collection of nodes and directed edges where each node represents an uncertain 

parameter and the edges represent the conditional probability links between the nodes 

[45, 46].  Bayes theorem can be used to calibrate the unknown model parameters on the 

observation data, x, of I�. 

���, !���, !�|x� = 	 ���,����,���	����	�������	�����
� ���,����,���	����	�������	�����X�	X����X��    

 (28) 

 

���, !���, !�� 	∝ Pr	�x|�, !���, !��       

 (29) 

 

where: 

 

����, ��!����	and	��!�� = Prior PDFs of �, !���	and	!� respectively 

 

���, !���, !�|x� = Joint posterior PDF of �, !���	and	!� 

 

���, !���, !�� = Joint likelihood function of �, !���	and	!� 

 

Pr	�x|�, !���, !�� = Probability of observing the data given �, !���	and	!� 

 

 

Figure 4.6: Illustrative diagram for general model. 
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The observation data point D is a random realization of IX. The data realization can be 

represented then as: 

IX =	I� +	���� + ��        (30) 

 

In the simplest case, I� is deterministic for given values of � and x, and IX is 

deterministic for given values of I� and !���.  For this case of deterministic IX and I�, 

��I�|�, !���� = 1 if I� = ���; ��, and 0 elsewhere.  Also, ��IX = x|I�, ����� = 1 if 

I� +	���� = x, and 0 elsewhere.  ������|!���� is assumed to be �	~	�0, !���� and 

evaluated at ����.  Based on these observations, the joint likelihood function of � and 

!��� is derived to be: 

 

���, !���, !�� 	
∝ 	���IX = x|I�, ����, ���	��I�|�, �� ������|!��������|!��	����	UI�	U����	U��	U� 

                (31) 

 

Based on the assumptions mentioned above, the previous equation can be simplified to: 

 

���, !���, !�� 	∝ 	� ��IX = x|�, �, ����, ���	����	U�    

 (32) 

 

If observation data is available for multiple inputs,  ¡, the formulation can be modified 

to include these other observations by making ¢¡ a random vector with a multivariate 

Gaussian distribution and the observation D are random realizations of the ¢¡.   

In the simplest case where the observation error and the model discrepancy are 

combined, the likelihood calculation can be simplified using a FOSM (First order second 

moment) [4] approximation of £¤� and !¤�� .  Then, if normality is assumed, the variance 

caused by I� can be added to the !��� by 
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!�¥¦ =	§!¤�� +	!����         (33) 

 

The joint likelihood function of � and !��� can now be written to account for these two 

modifications: 

 

���, !�¥¦� 	∝
	� �%¢¡ = ¨&£¤�, ��¥¦'	�%£¤�&�,  ¡' ����¥¦|!�¥¦�	�� ¡�	U£¤�	U��¥¦	U ¡     (34) 

 

 

4.5 Implementation of Bayesian calibration 

The Bayesian network for the problem of concern in this chapter is presented in 

Figure 4.7.  The calibration parameters are !�, !� , !YQ, �,�, Δ@, and	© where !�ª is the 

model form error between the model output and the actual crack growth, !� is the error 

in the observation of the cycle count, !YQ is the observation error in the imaging process, 

� and � are the Paris law parameters, Δ@ (@�Y« − @��") is the applied load which 

includes variability caused by test machine calibration, and © is the error due to the 

alignment of the pins in the loading apparatus.  Observations of *X (the actual crack 

length) are available at multiple values of £YQ	�mean	initial	crack	length�	and	£� (mean 

duration of loading).  The prior distributions used in the framework for the calibrated 

parameters are assumed to be uninformed (uniform distributions based on general 

information gained during the testing process) for the purposes of demonstration.  For 

most of the parameters (!� , !YQ, �, �, Δ@, and	©) the uniform distributions are located 

simply between the bounds outlined in Section 4.2, but the sampling of the final 

parameter, !�ª, is only limited to being a positive value so that the likelihood calculation 
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can be performed. More informed priors will be used in a later demonstration to 

emphasize the importance of prior knowledge on the calibration technique.  The 

likelihood function, as discussed in the previous section and the relationship between 

*X	and	*� is based on the Paris law crack growth model. 

£Y� = *Q + �	Δ:� ∗ �        (35) 

 

*X =	£Y� +	��	         (36) 

 

where � is a normally distributed random variable with a mean, £�, and standard 

deviation, !�, *Q is also normally distributed with mean, £YQ, and standard deviation, 

!YQ, and ���� is normally distributed with a mean of 0 and a standard deviation of 

µ!���� + !Y�� , � and � are the Paris law parameters, £Y� is the mean model prediction, 

*X is an experimental observation, Δ: is the stress intensity factor range, and �� is the 

model form error. 

 

Figure 4.7: Bayes Network for CT specimen crack growth. 
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 In typical uncertainty analyses of fatigue crack growth experiments, a linear 

regression is performed on U* U�⁄  versus Δ: data and it is assumed that the parameters 

C and m are normally distributed.  In Gurney [47], it is shown that the natural logarithm 

of the parameter C is linearly related to parameter m and therefore the uncertainty can be 

tracked using only the m parameter.  While Cortie and Garrett [48] demonstrated that it is 

inappropriate to constrain the values of the � parameter in this manner, it remains a 

simple and effective means to monitor the two parameters and is therefore still 

occasionally used in practice.   

To demonstrate the effect that uninformed experimentation can have on the Paris 

parameters, distributions for Paris law parameters that are  assumed from literature values 

[49] are shown in Figure 4.9 and then compared to the calibrated values using the 

proposed methodology.  Figure 4.8 presents the U* / U� vs. Δ: data for six of the fatigue 

specimens that were tested and will subsequently be used for calibration.   

 

Figure 4.8: U* / U� vs U: plot for CT specimens. 
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Figure 4.9: Prior Distributions of � and � parameters  
 

 Figure 4.10 shows the posterior distributions for the � and � parameters when the 

simplest Bayesian calibration approach is employed.  A direct comparison of these two 

sets of distributions is useful.  This is because the distributions of the parameters found in 

Figure 4.10 are conditioned upon the results of the calibration of all of the other 

parameters that were calibrated during the analysis.  Even if the distributions are not 

directly comparable, it is still important to note the shape and location of the distributions 

in Figure 4.10 and how they differ from those in Figure 4.9.  One particular item of note 

is the posterior distribution of parameter � in Figure 4.10a and its seemingly lognormal 

form.   
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Figure 4.10: Posterior distributions of � and � parameters calibrated using the Bayesian 
model parameter calibration technique. 

 

The posterior distributions for the other parameters that were calibrated are 

displayed in Figure 4.11.  Some of these distributions do not possess a definitive shape 

which could be caused by two issues.  Once issue could be that the problem is under-

constrained (which is true in this instance) or the likelihood calculation is not particularly 

sensitive to the parameter in question meaning that as the parameter is sampled, the 

changes in its value do not significantly affect the likelihood calculation.  Since it is 

known that the problem is under-constrained in this case, that issue will be addressed 

now.  The first step towards a more constrained calibration is the use of more informed 

priors.   
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Figure 4.11: Posterior distributions for other calibrated parameters 

 

 To further illustrate this point, a more complete calibration analysis was 

performed.  This new analysis utilized more informed priors and a discrepancy term.  A 

normal distribution was used as the prior distribution for the parameters z and · which 

are the primary focus of this research.  The prior distributions shown in Figure 4.9 were 

used this time.  The discrepancy term, as discussed at great length in [35], is necessary to 

insure that the uncertainty in the posterior distributions of the parameters is not combined 

with the model form error incurred through the use of an imperfect model.  The results of 
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this refined model with more informed priors and the added discrepancy term are shown 

in Figures 4.12 and 4.13. 

 

 

Model Parameter C       Model Parameter m 

 
Figure 4.12: Posterior distributions of z and · parameters calibrated using the refined 

Bayesian model parameter calibration technique. 
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Figure 4.13: Posterior distributions for other calibrated parameters 

 

 

4.6 Conclusion  

 A framework was developed in this chapter to apply knowledge of uncertainty 

sources present in fatigue crack growth experimentation toward the quantification of the 

uncertainty in the parameters of a crack growth model.  Two material parameters, C and 

m, are used in the Paris law crack growth model to predict a crack growth rate given a 

stress intensity factor range.  Typically the values, and the uncertainty about said values, 

for these material constants are found using a linear regression analysis.  The results 

presented in this chapter show that this reported uncertainty in the material properties is 
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not justifiable considering that some of the uncertainty is actually coming from other 

sources than the material itself.  The methodology presented here used a Bayesian 

calibration technique to compare observation data against model prediction that is 

affected by several model parameters and error terms.  This technique attributes 

uncertainty to all of the calibrated model parameters rather than just C and m.  A 

comparison of the material property distributions found via linear regression and 

Bayesian calibration shows that not only is the uncertainty reduced but the distribution 

type and calibrated mean parameter values are different.  It was shown that error terms 

can be calibrated as well.  The information gained from the calibration of the error terms 

can be used to further improve the analysis by determining which parameters are 

contributing the most uncertainty to the experimentation results.  It can also be used to 

determine which variables have negligible effect on the likelihood function and therefore 

the experimentation as a whole.  This information can be used to refine the 

experimentation and to determine the most efficient means to distribute a budget aimed at 

minimizing the experimental uncertainty. 
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CHAPTER 5 

 

MODEL VALIDATION  

 

5.1 Introduction 

In Chapter II, a computationally efficient two-stage approach for planar 

approximation of non-planar crack growth was developed. The proposed methodology 

used a parameterized representation of the non-planar crack, and employed two surrogate 

models: the first surrogate model is trained using FRANC3D based simulations of non-

planar fatigue crack growth to capture the relationship between the applied load history 

and equivalent planar crack orientation. The second surrogate model is trained using 

planar crack growth simulation to calculate the stress intensity factor as a function of 

crack size, crack orientation, and load magnitude for use in planar crack growth analysis.  

Individual predictions of the two surrogate models, as well as their combined 

predictions were verified for accuracy using FRANC3D based finite element simulations 

of non-planar fatigue crack growth in the rotorcraft mast example that was discussed in 

Chapter III.  The verified two-stage approach was then used to conduct probabilistic 

analyses designed to quantify the effects of various sources of uncertainty in crack 

growth, including natural variability in loading, initial crack size, and model uncertainty 

during the crack growth analysis.  In Chapter III a methodology was presented to account 

for numerical errors caused by spatial and temporal discretizations.   The work presented 

in that chapter will be expanded in this chapter to be utilized for the equivalent planar 

model.  The same discretization variables that were used to control the resolution of the 
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temporal and spatial meshes in Chapter III will be used once again.  Chapter IV presented 

the calibration of fatigue crack growth model parameters using experimental data when 

experimental error is considered.  The work in that chapter was performed using 

aluminum samples and since the material for the rotorcraft mast problem is 4340 steel, 

this is the material used in the discussion presented here.   

In this chapter, the focus of the work presented will be on validation of the 

equivalent planar crack growth (EPCG) model using Bayesian hypothesis testing.  In this 

study, multiple sets of experimental data were available to be used in the model 

validation process.  This chapter strives to demonstrate how multiple sources of 

information can be linked via a Bayes network to provide complete model validation.  

The EPCG model employed in this work will be trained using data that has been 

corrected for discretization error and the model parameters will be calibrated using the 

Bayesian parameter calibration technique that was presented in Chapter IV. 

 

5.2 Discretization Error in EPCG Model 

A detailed discussion on discretization errors present in fatigue crack growth 

modeling is presented in Chapter III but a brief summary will be provided here for 

clarity.  Since most modern fatigue crack growth analyses rely on finite element models 

there is almost always some inherent spatial discretization error present in the results.  

This numerical error is proportional to the refinement of the spatial mesh used in the 

finite element solver.  In Chapter III, a Gaussian process model was used to estimate the 

spatial discretization error for entire crack fronts.  The model was trained by gathering 

crack growth results for varying levels of finite element mesh refinement.  The idea being 
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that an infinitely refined mesh will eliminate the spatial discretization error.  Since an 

infinite mesh is impossible, extrapolation was performed to predict the result at this 

infinite refinement.   

 The Gaussian process model is not the only means for quantification of 

discretization error however.  A much simpler technique was presented by Richards [50] 

using the Richardson extrapolation technique that is used to determine the converged 

solution of a sequence of refinements.  Using Richardson extrapolation, the discretization 

can be calculated as: 

�¸ =	¹ªºPª»¦¼P�½          (37) 

 

where �� and �� are the solutions for the coarsest mesh and next finest mesh respectively, 

¾ is the mesh refinement ratio, and $ is the order of convergence.  If the parameters ℎ� 

and ℎ� are used to denote the corresponding mesh sizes of �� and ��, then the mesh 

refinement ratio is simply ℎ� ℎ�⁄ .  The order of convergence can then be calculated as: 

 

$ = 	 À�Á¹
ÂÃÄÂ»
Â»ÄÂº½

ÅÆÇ	�¦�           (38) 

 

where �K is the result of the finest mesh test and the other variables are the sames as was 

defined above.   

 It should be noted that although the Richardson extrapolation technique for 

discretization error quantification is convenient, it is not without some serious drawbacks.  

The main drawback to the technique is the list of criteria required for its use.  The first 
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such criterion is the requirement of a uniform mesh refinement.  While this requirement 

may seem rather insignificant, the difficulty usually is increased because of the second 

requirement which is that the mesh tests need to be performed in the convergent region of 

the sequence.  Since it is difficult to determine where exactly the “convergent region” 

lies, the limit on the mesh tests is usually enforced by computational limits.  In the spatial 

discretization problem for example, the convergence point is infinity.  Since mesh tests 

cannot be performed at infinity, they are usually performed at a level that is near the 

computational limits of the finite element solver.  The third criterion for Richardson 

extrapolation is that the mesh test results be monotonically increasing or decreasing.  It 

was this requirement that led to the use of the Gaussian process model in the work 

presented in Chapter III.  Since the crack fronts in that chapter were represented in a 

latent space, the mesh tests did not necessarily lead to monotonic behavior in the results.  

The Gaussian process modeling technique is capable of handling these inconsistencies in 

the data but the Richardson extrapolation is not.   

The EPCG model presented in this chapter does not require the latent space 

representation of the crack fronts and is therefore a simpler case for the discretization 

error quantification.  Since the results of the mesh tests for the EPCG model abide by the 

Richardson criteria, the Richardson extrapolation technique will be employed for 

discretization error quantification in this chapter. 

 

5.3 Experimental Data from Bell Helicopter Textron Inc. 

 Bell Helicopter Textron Inc. provided three sources of experimental data for the 

use of model calibration and validation in this study.  Middle tension (MT) tests were 
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supplied for the purpose of model calibration.  Three sets of MT test data were supplied 

with were from 4340 steel specimens and a load ratio of 0.05.  Another set of material 

level experimental data, KB-bar tests, was also supplied and was originally to be used for 

model calibration as well.  The main difference between the KB-bar tests and the MT 

tests was that the Kb-bar tests possessed a surface crack rather than a through crack like 

the MT specimens.  The results of these tests were originally intended to calibrate the d 

parameter necessary for the :ÈÉ calculation which will be discussed in Section 5.4, but 

the :ÊÊ stress intensity factors were near zero which led to an insignificant d calculation.  

Since the rotorcraft masts were subjected to multi-axial loading, they provided good 

calibration results for the d parameter 

The rotorcraft mast specimens were tested under a constant amplitude load with 

the same load ratio of 0.05.  Four specimens were tested but only two yielded usable 

results. Of the two data sets, one was used for model calibration and the second was used 

for model validation.  Since such a small data set was available, the calibration/validation 

was performed twice.  Each time the procedure was performed a different mast specimen 

data set was held out for the validation purposes and the other one was used for 

calibration.  The results presented in Sections 5.4 and 5.5 will be the average of these two 

iterations.  

 

5.4 Experimental testing and model parameter calibration 

The equivalent stress intensity factors used to train the original surrogate models 

for the EPCG model were based on FRANC3D’s estimates, which compute the 

equivalent stress intensity factor as only a function of the maximum KI values, which is 
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not appropriate for use in applications that involve a multi-axial loading scenario. As seen 

in Figure 5.1, the surrogate model trained using FRANC3D’s estimate of the equivalent 

stress intensity factors is conservative in its estimate of crack growth when compared to 

the experimental data. 

 

Figure 5.1. Crack Length Validation Comparison  

 

In order to incorporate the characteristics of all three failure modes, a new 

methodology to compute the equivalent stress intensity factors has been adopted.  

Towards this, the three SIF values (KI, KII, and KIII) at each training location are obtained 

along each crack front using FRANC3D.  The equivalent stress intensity factor is 

calculated as: 

 

∆:ÈÉ = �
C§�∆(Ê�� + ¹∆VÌÌ� ½� + ¹∆VÌÌÌ� ½� + , ¹∆VÍ� ½�     (39) 
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where:  A,B, and s are material properties 

Î(Ê ,  Î(ÊÊ and Î(ÊÊÊ  are the SIFs transformed to the characteristic stress plane 

Î(¸ is the hydrostatic stress term 

 The derivation of this formula can be found in Liu and Mahadevan [51]. The 

method proposed by [51] requires estimation of a parameter s, which is the ratio of a 

particular material’s (4340 steel in this case) Mode I and Mode II threshold stress 

intensity factors, which are material properties and can be obtained experimentally.  

Since a wide range of values (1.09 – 2.50) for the d parameter are available in the 

literature [52, 53], the parameter must be calibrated in order to determine a usable value.  

To perform the calibration, the following equation is used [51]: 

 

�
C §(∆(�)� + ¹∆V»

� ½� + ,(∆(¸)� = :Ê,Ï¸      (40) 

 

The above equation is appropriate for use in a low crack growth rate situation.  

Certain simplifications, such as B = s and A = 9(s
2
 – 1), are made based on the 

assumption of the presence of tensile dominated loading.  The KI,th values for each 

material level experiment were acquired during the experiment by Bell Helicopter.  Using 

these KI,th values and the SIF values computed by FRANC3D from an FEA model of the 

rotorcraft mast, the “s” parameter can be determined.  The Bayesian model parameter 

calibration was once again employed for this calibration.     
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The procedure outlined for model parameter calibration in Chapter IV is 

employed once again here.  The goal once again is to obtain the parameters �and � in 

the Paris law crack growth equation plus the new parameter d is also calibrated. The 

values of parameters  � and � calculated here are different than those calibrated in 

chapter IV since their calibration is based on experimental testing of 4340 steel 

specimens instead of aluminum.   

 Another major difference in the calibration in this chapter versus the calibration 

presented in Chapter 4 is that multiple data sets from different sources are present.  

Experimental data from Bell Helicopter is available for material level (middle-tension-

MT) tests and for component level (rotorcraft mast) tests.  The MT data from Bell is used 

first for � and � parameter calibration.  The priors used for this initial calibration were 

based on literature values of � and � with distributions �(1ÐPÑ, 1ÐP�Q) and 

�(2.7, 0.27) respectively.  The posteriors from this calibration are then fed to the next 

stage of calibration which utilizes data from CT specimens in which experimental errors 

are also addressed.   

The next stage of the calibration comes from compact tension experimental data 

as was presented in Chapter IV for aluminum.  The experimental setup was the same for 

the 4340 steel specimens as was described in Chapter IV for the aluminum test 

specimens.  The posterior distributions for the � and � parameters are then past to the 

calibration using the mast data from Bell Helicopter Textron Inc. 

 Since the component level test involves bending and torsional loading, all three 

modes of fracture must be considered instead of only the first mode which is the case for 

most material level tests.  Since all three fracture modes are present, the component level 
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tests are the best source for calibration of the d parameter that is required for the :ÈÉ 

calculation that was discussed previously.  The EPCG model is a function of the d 

parameter as well as the Paris coefficients � and � and is therefore used for the 

calibration.  The prior distributions for the � and � parameters are the posterior 

distributions from the previous calibration and the prior for the d parameter is based on 

literature values [52] and is �(1.09. 0.1).  Similar to the previous step, the prior 

distributions for the � and � parameters are the posterior distributions resulting from the 

previously performed CT calibration.   

Figure 5.2 displays the Bayes network for incorporation of the multiple sources of 

data available for model validation in this project.  The actual implementation of this 

network was described above and is shown in Figure 5.3.  The order in which these 

calibrations are performed can be justified by investigating the likelihood calculation for 

the network presented in Figure 5.2: 

 

ℒ(�, �, d) = @(xÓ|�, �) @(xÓY�Ï|�, �, d) @(xÔ|�, �)    (41) 

 

The associative property allows that mathematically, it doesn’t matter in which order the 

calibrations are performed.  The implementation order chosen for this study was done so 

that the mast calibration was performed last due to its similarity to the validation data.  

The CT calibration was chosen to be performed after the MT tests due to its consideration 

of experimental errors. The posterior distributions for the calibrated parameters are 

presented in Figure 5.4.  Samples are then taken from these distributions to evaluate the 

EPCG model used in the model validation presented in the next section of this chapter. 
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Figure 5.2: Bayes network for calibration and validation when multiple information 

sources are available 

 

 
 

 

Figure 5.3: Implementation of calibration procedure 
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Figure 5.4: Posterior Distributions of Calibrated Parameters 

 

 

5.5 Bayesian Model Validation 

Bayesian hypothesis testing was the quantitative validation technique chosen to 

compare the model prediction with experimental results.  Bayesian hypothesis testing is 

used to compare multiple models so as to judge which model’s prediction most closely 

resembles the experimental results.  The data provided by Bell for the rotorcraft mast was 

deterministic but in order to provide a more realistic representation of real world data, an 

observation error of 0.025 inches was assumed.  

In the case of model validation, the posterior probabilities of the two hypotheses 

compared using the Bayesian method are @(ÕQ(The model is correct)|x) and 
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@(Õ�(The model is incorrect)|x).  The probabilities of observing the data are then 

@(x|ÕQ) and @(x|ÕQ) which can also be referred to as likelihoods O(ÕQ) and O(Õ�).  

The Bayes factor is simply the ratio of these two likelihoods.   

 Rebba [54] showed that this Bayes factor that comes from the hypothesis testing 

can be used to provide a measure of model confidence.  The confidence measure is 

calculated as: 

jÙUÐ� �Ù/�>UÐ/+Ð =  B(¨|ÚÛ)
B(¨|ÚÛ)Ü B(¨|Úº) =  CY¤;� ÝYÞÏ�¦

�ÜCY¤;� ÝYÞÏ�¦    (42) 

 

Another model validation technique will be presented in Chapter VI of this thesis that 

employs a reliability-based metric but that will be discussed later. 

A visual comparison of the physical experiment/predictive model results for one 

of the mast specimens is presented in Figures 5.5.  The figure provides two samples of 

model prediction results.  The first model prediction set is based on the EPCG model 

before any correction was provided for discretization error and before the Paris 

parameters were calibrated.  The second set of prediction results is based on a revised 

EPCG model which has been adjusted to compensate for discretization errors and which 

uses model parameters that were quantified using the Bayesian model parameter 

calibration technique.   
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Figure 5.5: Experimental Data vs. Model Prediction 

 

 

A more quantitative validation investigation using Bayesian Hypothesis testing is 

presented in Tables 5.1 and 5.2.   The tables show the validation results for both models 

and show that the model is improved by the addition of discretization error and the 

calibration of the Paris law parameters.   The values are an average of the validation 

results for the two specimens used, where in each case one mast was used for model 

calibration and the other was used for validation.      
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Table 5.1: Validation results for unadjusted prediction model 

Model Before Revision 

Cycles BF-Depth Confidence BF-Length Confidence 

11315 4.04 80.15% 6.90 87.34% 

16985 4.01 80.04% 6.28 86.26% 

24067 3.94 79.74% 5.57 84.78% 

24170 3.94 79.74% 5.56 84.75% 

30719 3.88 79.49% 4.83 82.85% 

34163 3.85 79.37% 4.37 81.38% 

36952 3.82 79.26% 3.99 79.97% 

42878 3.71 78.76% 3.93 79.71% 

43576 3.70 78.71% 3.79 79.12% 

48449 3.61 78.32% 2.80 73.66% 

51889 3.46 77.58% 2.65 72.57% 

53722 3.38 77.15% 2.58 72.04% 

58487 3.29 76.68% 2.43 70.83% 

 

Table 5.2: Validation results for prediction model after parameter calibration and 

discretization error  

Model After Revision 

Cycles BF-Depth Confidence BF-Length Confidence 

11315 4.86 82.95% 8.00 88.89% 

16985 4.85 82.89% 7.36 88.04% 

24067 4.82 82.83% 6.74 87.09% 

24170 4.82 82.83% 6.74 87.08% 

30719 4.80 82.77% 6.34 86.37% 

34163 4.79 82.74% 6.11 85.94% 

36952 4.79 82.72% 5.95 85.61% 

42878 4.77 82.67% 5.53 84.68% 

43576 4.77 82.67% 5.47 84.55% 

48449 4.76 82.63% 5.07 83.52% 

51889 4.75 82.60% 4.77 82.66% 

53722 4.74 82.58% 4.58 82.09% 

58487 4.72 82.52% 4.26 80.98% 
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5.6 Conclusion 

This chapter presented the validation of the equivalent planar crack growth model. 

The two surrogate models employed in equivalent planar analysis were trained using 

stress intensity factors acquired via FRANC3D and the crack propagation was performed 

by use of Paris law.  In the original approximation, the equivalent stress intensity factor 

was determined solely based on :Ê.   A new :ÈÉ calculation technique is then employed 

to account for all three modes of failure.  Since the :ÈÉ calculation required an additional 

material property, it along with the Paris law parameters, were calibrated using 

experimental data. The calibration methodology presented here provided a thorough 

means by which multiple sources of information can be utilized to provide a detailed and 

robust model parameter calibration and then a more relevant model validation.   

The effect of the discretization error and the model parameter calibration on the 

predictive model was also investigated.  The adjusted model provided more accurate 

results that are closer to the experimental rotorcraft specimen results provided by Bell 

Helicopter as can be witnessed in Figure 5.5 and Tables 5.1 and 5.2. 
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CHAPTER 6 

 

STRUCTURAL HEALTH MONITORING AND FATIGUE DAMAGE 

PROGNOSIS FOR CONDITION BASED MAINTENANCE INSPECTION 

SCHEDULING 

 

6.1 Introduction 

 The previous chapters of this thesis focused on the uncertainty quantification as it 

pertains to three dimensional crack growth modeling and experimentation.  The focus of 

this chapter is to use uncertainty quantification results towards risk management.  Until 

recently, most critical components in aircraft were operated on a rigid safe-life basis.  

That is, these components were immediately removed from service as soon as any type of 

fatigue damage was observed during routine in sections of the craft.  The reason for 

operating under this condition is due to the complexity and uncertainty in service 

environments for these components.  As more research is completed in understanding 

these uncertainties and as computational power increases, alleviating the modeling 

challenges of complex systems, the rigidity of the safe-life condition can begin to be 

relaxed.  If the models for these components are found to be more reliable, the 

components can continue to remain operational as long as certain structural health 

monitoring (SHM) and fatigue damage prognosis (FDP) techniques are followed.  It 

should be noted here that SHM and FDP are not inherently connected [55], but the 

integration of these two technologies has already been presented in the literature [56]; 

however, the goal of this chapter is to present a methodology for using these techniques 
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to determine an efficient and safe condition-based maintenance (CBM) schedule for an 

in-service rotorcraft mast. 

Condition-based maintenance is a method of optimally utilizing maintenance time 

and equipment so as to reduce costs while maintaining an adequate level of reliability of 

a component. The motivation behind the development of CBM techniques [57] was to 

reduce downtime and the unnecessary replacement of components that still have 

significant remaining life but may have been in service longer than the safe-life tolerance. 

Numerous tools and methodologies can be found in the literature for fatigue 

reliability analysis and inspection updating [58, 59, 60, 61].  Garbatov and Soares [62] 

proposed a method of optimized inspection planning for floating structures, in which 

inspection planning was treated as an optimization problem under reliability constraints. 

Zhang and Mahadevan [63] proposed a Bayesian approach for reliability updating and 

inspection decision-making with respect to corrosion fatigue incorporating the reliability 

of the NDI (non-destructive inspection) technique, inspection data, and model.  

McLemore [64] focused on using reliability-based inspection optimization (RBIO) to 

determine inspection fidelity based on the integration of uncertainty sources in a 

Bayesian network.  In that work, the decision of inspection fidelity was made with 

respect to the component’s entire life cycle.  One major deficiency in this methodology is 

that in a DT approach the final life of the component is not known when the component 

is initially placed in service.  This chapter extends McLemore’s work to expand the 

inspection fidelity choice to a mission-by-mission scheduling decision making process 

rather than a total component life methodology which was presented there.   
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In the first few sections of this chapter, the focus will be directed toward the 

estimation of a proper inspection interval that will lead to an efficient yet safe 

maintenance schedule for aircraft structures.  To that end, two alternative methods to 

determine an inspection interval on which to evaluate the fatigue damage present in a 

rotorcraft mast will be presented.  In order to perform either of these interval estimation 

techniques, it is necessary to have a model capable of predicting crack growth from a 

given initial flaw and loading scenario. In this chapter, the equivalent planar crack growth 

model that was discussed in detail in Chapter II will be utilized.  For clarity a brief 

summary of the methodology behind the equivalent planar crack growth model is 

presented in the following paragraph.   

The computationally efficient two-stage approach for planar approximation of 

non-planar crack growth uses a parameterized representation of the non-planar crack, and 

employs two surrogate models.  The first surrogate model is trained using FRANC3D 

[17] based simulations of non-planar fatigue crack growth to capture the relationship 

between the applied load history and equivalent planar crack orientation.  This model is 

used to estimate the final crack orientation so that a planar crack growth model can be 

utilized to approximate the actual non-planar crack.  The second surrogate model is 

trained using planar crack growth simulation to calculate the stress intensity factor as a 

function of crack size, crack orientation, and load magnitude for use in planar crack 

growth analysis.  The orientation and stress intensity factors that are calculated from 

these two models can then be passed through any simple crack growth equation such as 

Paris Law [26] to estimate the non-planar crack propagation for a given load amplitude 

and duration.  
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Since both methods for inspection interval estimation presented in this chapter 

involve the use of some reliability measure in the predictive model that is to be used, it is 

necessary to have some rotorcraft masts that are reserved strictly for the purpose of model 

validation.  A reliability-based model validation metric will be used in this chapter to 

determine the reliability of the crack growth model.  The reliability metric is a simple 

measure of the probability that the crack growth model prediction lies with a specified 

error interval around the actual crack size at a prescribed time step.  The first inspection 

interval estimation method is essentially just the time required for the model’s reliability 

to fall below a certain value.  The second method for determining a safe and efficient 

inspection interval is slightly more involved.  A damage-tolerance approach is utilized for 

the second method.  The damage tolerance approach employs the EPCG model to predict 

the point at which the predicted crack growth exceeds a predetermined critical value.  

Once this critical crack length barrier is passed the component should be inspected to see 

if a critical flaw has actually occurred.   

After the inspection takes place, it is important to utilize the data that is obtained 

during the inspection.  The data gathered from the inspection can be used to improve the 

model that is being used from the crack growth prediction.  Bayesian model updating 

[21] is an appropriate technique to be used for this task and will be also be presented.  A 

numerical example, as mentioned earlier, will also be provided for improved clarity of 

the techniques presented and to illustrate the overall framework for the procedure. 

The latter portion of this chapter is focused on an expansion to the inspection 

interval estimation to include the concept of inspection fidelity.  The determination of the 

inspection fidelity will be performed by implementing a detailed simulation model.  The 
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model will be used to emulate the actual crack growth that is occurring or going to occur 

in the actual component.  In this way, the model can be used to estimate the effect that 

different types of inspections can have on the remaining life of the component.  

The estimate of remaining life will vary depending on the amount, and quality, of 

information gained during the inspection.  In theory, a higher fidelity inspection will 

provide more information about the current state of the component and will therefore lead 

to the digital model predicting a longer component life after the inspection.  The 

knowledge gained from the model’s estimation will be used to add the inspection fidelity 

choice to the inspection schedule planning discussed earlier. 

 

6.2 Types of non-destructive testing 

 In the area of SHM of fatigue fracture, there are many options available for non-

destructive component inspection [65].  Two types of inspection are considered here: 

visual inspection and ultrasonic spectroscopy.    

The visual inspection is the easiest and most useful type of NDT to perform.  A 

visual inspection is simply a trained inspection technician simply visually analyzing the 

component to attempt to identify any fatigue damage.  While there are definite 

advantages (low cost, ease of use) to this inspection technique, it is also somewhat 

imprecise.  There is a large range of error associated with this inspection technique.  The 

visual inspection technique can also only be used to measure surface cracks.  If the crack 

depth is of concern then the usage of this technique is severely limited. 

The second inspection method to focus on is the ultrasonic spectroscopy [66].  Ultrasonic 

tests (UT) utilize the acoustic properties of the component in question to assess the 
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presence of some type of flaw.  The advantage of UT over visual inspection is that UT 

allows the user to see what is happening underneath the surface of the component.  This 

is a useful tool for determining the depth of known cracks or for the discovery of hidden 

cracks that may not be visible on the surface of the component.  Ultrasonic spectroscopy 

is also commonly used to assess corrosion damage.  The drawbacks to UT are that while 

the inspection equipment itself is not expensive, the user must be a highly trained 

technician to properly interpret the results and calibrate the machine.   

It is helpful to remember that the cost of a particular inspection is not only 

measured by the direct cost of the equipment used to perform the inspection.  For 

instance, a visual inspection can typically be performed while the component is not only 

still installed in the system, but many times while the system is in use.  Other more 

advanced systems may require the system to be temporarily removed from service so the 

component of interest can be removed and inspected.  The system downtime is often a 

greater cost than the actual inspection. 

 

6.3 Reliability-based model validation metric 

 The idea behind the reliability-based validation metric [54] is quite simple.  Given 

a desired error tolerance, what is the probability that the difference between the model 

prediction and the experimental data is within that interval.  One drawback to validation 

metrics is that they all possess some subjectivity, and this metric is no exception.  The 

subjectivity for a reliability-based validation metric is in the error tolerance that must be 

chosen.  In the case of fatigue crack propagation monitoring, it can be assumed that this 
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error interval is simply the detectability limit [67] of the inspection process.  By using 

this value the subjectivity in the model validation is minimized.   

The utility of the reliability-based validation metric is that a probability limit, c, 

can be added to the formulation (P(−� < D < �)	≥ c) to ensure that the model prediction 

is rejected below a specified reliability level.  The rejection of model prediction below a 

specified reliability (or model “confidence”) is useful in crack growth monitoring 

because the inspection interval can be easily determined from this confidence cut-off.  

Another benefit of the metric is the ability to consider noise in the experimental data as 

well as the uncertainty in the model prediction.  If normality is assumed, the model 

reliability can be calculated then as  

¾ = 	Φ ß à	P	%á	P	á�'
µ���»Ü�âã»�ä 	 − Φ ßPà	P	%á	P	á�'

µ���»Ü�âã»�ä      (43) 

 

where � is the acceptable error range (the detectability limit in this case), £ is the mean 

experimental observation, £� is the mean model prediction, !� is the standard deviation 

of the model prediction and !å
 is the observation noise.   

 Once the validation of a series of test specimens is performed, a quantitative 

measurement of the model reliability is known.  A series of predictions can be made with 

increasing duration length to establish a reliability curve for the model.  It stands to 

reason that an increase in the duration of the prediction will lead to a decrease in the 

model reliability.  If this is the case, the reliability will eventually reach a threshold value 

beyond which the model’s prediction is no longer trustworthy and should not be used for 

maintenance decision making. 

 



88 
 

6.4 Estimation of detectability limit 

 In the previous section, the detectability limit during inspection was mentioned 

and was utilized as the error interval for the validation process.  Since damage inspection 

is a critical aspect of aircraft component maintenance, it has led to the development of 

many different inspection techniques that are in use in the industry.  Obviously, the most 

useful of these techniques are non-destructive inspection (NDI) techniques since they do 

not damage the component that is still in service within a fleet but also provide useful 

information about the component’s airworthiness [68].  All NDI techniques have varying 

degrees of inspection fidelity characterized by probability of detection and detectability 

limit.  The probability of detection (POD) is the probability of a crack that is present 

being detected by the inspection technique.  The detectability limit is the minimum size 

of flaw that can be detected by the inspection technique.  In this chapter, a statistical 

approach is taken to determine the POD for a given detectability limit.  The probability of 

detecting a crack of size *" is then computed by: 

��*"� = 	Φ%æ + 	ç*"' = 	 �� è1 + erf	¹êÜëYh√� ½í     (44) 

 

erf(J) = 	 �
√�� ÐPÏ»U]«

Q         (45) 

 

where the symbol Φ represented the standard normal cumulative density function, Ð¾� is 

a Gaussian error function, æ and ç are model parameters based on the chosen inspection 

fidelity, and *" represents crack size.  Once the model parameters are determined, an 

acceptable POD can be selected.  Based on that POD value, the estimation of the 

detectability limit follows naturally [69] by determining what size crack *" can be 

detected consistently given the selected POD.   
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6.5 Damage tolerance methodology 

 Since the airworthiness of rotorcraft components is a crucial safety issue, model 

reliability alone is not enough to determine a proper inspection interval.  In order to 

maintain a safe inspection interval, a damage tolerance methodology should be used in 

conjunction with model reliability.   

One key component to the damage tolerance methodology is the selection of the 

critical and allowable flaw sizes that determine whether or not a component remains in 

service.  The critical flaw size is computed by considering the geometry and the material 

properties and preferably elastic-plastic fracture analysis so that brittle fracture, plastic 

collapse, and buckling can be considered.  Once the critical flaw size is known the 

allowable flaw size can be estimated based on uncertainties present in the predictive 

model being used and input parameters such as applied loading and material constants.  

Considering all of the previously mentioned quantities, the allowable flaw size should be 

relatively small when compared with  *Ô¦�Ï�ÞYÀ, so that it will take a reasonable amount of 

time for the crack to grow from *DÀÀ�î to  *Ô¦�Ï�ÞYÀ.  Following this provision is important 

to ensure that the safety of the component is maximized.  

Figures 6.1-6.3 demonstrate how a typical damage tolerant inspection interval 

estimation is performed.  First, the model is used to grow the crack starting with an initial 

flaw size equal to the detectability limit of the inspection technique to be used.  The crack 

is propagated to the point where it is equal to the allowable value.  The component is then 

inspected at �Ê"� < �DÀÀ�î.  At this point, if no flaw is detected then the procedure is 

repeated(Figures 6.1 & 6.2).  Once a flaw has been detected, the initial flaw size is 

adjusted to *ð��  and the inspection procedure is repeated as in Figure 6.3.  [70] 
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Figure 6.1: Determination of inspection interval prior to actual crack being observed 

 

Figure 6.2: Determination of inspection interval after first inspection 
 

 

Figure 6.3: Determination of inspection interval after flaw has been observed 
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The above approach did not consider the reliability of the model.  In order to provide a 

more reliable and efficient methodology, the model reliability estimate can be combined 

with the damage tolerance methodology for estimation of the inspection interval.  First, 

the detectability limit must be estimated using Eq. 40.  A POD that is reasonable for the 

component in question should be used for this estimation.  Once the detectability limit is 

known, the reliability-based validation metric can be used to determine the confidence in 

the predictive model being used.  In order to perform this validation, some components 

must be reserved from the fleet for strictly validation purposes.  A model confidence can 

be determined for each of the reserved specimens and then averaged to give an overall 

confidence in the model for the fleet.  Based on these results, the inspection interval 

based on the validation of the model can be determined give some confidence limit 

placed on the model.  As an example, if the confidence limit is said to be 95% and the 

model’s reliability drops below 95% at 32,000 load cycles, then that is the inspection 

interval at which the component should be evaluated.  However this value should only be 

used if it is below the value estimated by the damage tolerance methodology.   

  For actual implementation of this methodology, it should be combined with the 

technique proposed in Section 6.3 using the reliability validation metric.  A framework 

for this proposed methodology is presented in Figure 6.4.  As can be seen in the diagram, 

the procedure begins by determining whether a flaw is detected or not.  If a flaw is 

detected then the measured crack size is used as the initial crack for the prediction model, 

but if a flaw is not detected then the detectability limit of the inspection technique is used 

as the initial crack length in the prediction model.  The model is then used to determine 

when the flaw should reach a critical size and that duration is then used as the inspection 
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interval for the actual component unless that duration is longer than the reliability limit 

for the model.  If the crack size measured during the inspection is at or near the critical 

size, then the component should be retired; otherwise, the entire procedure will repeat. 

 

 

Figure 6.4: Framework for maintenance inspection scheduling 
 

6.6 Numerical example: inspection interval estimation 

 For this example, experimental crack growth data for six rotorcraft masts 

subjected bending and torsional loading were provided by Bell Helicopter for the 

purposes of model validation.  Since no in-service rotorcraft mast was available for 

maintenance scheduling, it will be assumed that five of the supplied data sets are 

withheld components used for model validation and the sixth component will serve as the 

in-service component for which the maintenance scheduling is being determined.   
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 Using the reliability metric described in Section 6.3, a measure of the model 

reliability is obtained from the five test specimens.  This is achieved by using the 

predictive model to estimate the crack growth at an increasing duration of load cycles.  

The model reliability is then tracked, as can be seen in Figure 6.5. The model reliability 

drops below 95% at a cycle duration of 30,704 cycles; therefore, 30,704 is the largest 

inspection interval for the remainder of this example.   

 

 

Figure 6.5: Model reliability curve. 
 

For the damage-tolerance approach to inspection interval estimation, inspection 

fidelity parameters were chosen so that the POD was 95% for a 0.1 inch crack.  The 

allowable crack length to be used in this method is 0.21 inch.  The EPCG model is used 

to grow the crack to the 0.21 inch threshold and the duration to arrive at this length is 
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found to be 57161 cycles.  Since the lower of the two values is 30704 cycles, an 

inspection is to be performed at that point.  The inspection found that there was a crack at 

30704 cycles and that the length was 0.1537 inch.  The model results and the actual crack 

growth are displayed in Figure 6.6. 

 

 

Figure 6.6: Actual crack growth and initial model prediction. 
  

 The initial crack is then set to be 0.1537 in. and the model is once again used to 

predict the duration required to reach the critical flaw length (22177 cycles).  The second 

inspection (performed 22177 cycles after the first inspection) observed a crack with a 

length of 0.2032 inch.  The model results and the actual crack growth between the first 

and second inspections are displayed in Figure 6.7.  

Following the same procedure outlined before, the inspection interval after the 

second inspection is found to be 5761 cycles.  The third inspection yields an observed 

actual crack length of 0.2173 inch.  The model results and the actual crack growth 
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between the second and third inspections are displayed in Figure 6.8.   Since the actual 

crack length has nearly reached the allowable crack length, the rotorcraft mast would 

most likely be retired from service at this point.  For completeness, Figure 6.9 shows the 

entire operation comparing the model results at each iteration with the actual crack 

growth. 

 

Figure 6.7: Actual crack growth compared against the model after the 1st inspection 
 

 

Figure 6.8: Actual crack growth compared against the model after the 2nd inspection 
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Figure 6.9: Maintenance inspection schedule for numerical example. 
 

  

6.7 Extension to include inspection fidelity 

 The method for determining the fidelity of the inspection that will occur at each 

maintenance interval will be based on the next mission length required of the aircraft.  

The fidelity of the inspection technique will determine the next inspection interval.  This 

value will then be compared with the length of time needed to perform the mission that is 

needed for the component to complete in that interval.  Depending on this mission length 

a decision will be made as to which inspection should be performed.  The equivalent 

planar crack growth model that was summarized in Section 6.1 and was discussed in 

detail in Chapter 2 will be used for model prediction.   
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 To further increase the accuracy of the digital model’s simulation results, a 

Bayesian network will be employed so that information gained from the maintenance 

inspections can be used to update the model parameters.  A schematic of the Bayesian 

network used in this scenario is presented in Figure 6.10.  The concept of Bayesian model 

parameter calibration was presented in great detail in Chapter IV and will be used here to 

once again calibrate the Paris law parameters � and �.  As discussed previously, the 

Bayesian framework lends itself quite well to this type of problem where there are several 

sources of uncertainty because it is capable of attributing the uncertainty to the 

appropriate causes.  Since there is inherent uncertainty in the observation of the data and 

error in the model that is being used, it would be inappropriate to lump all of that 

uncertainty in the parameters of the model.  By performing the calibration using the 

Bayesian network, the distributions of the model parameters can be properly updated as 

the information is gathered so as to increase the precision and accuracy of the model’s 

prediction. 

 

Figure 6.10: Bayes network for simulation model. 
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6.8 Framework for implementation with inspection fidelity considerations 

 The framework for implementation of inspection fidelity to the scheduling 

process begins with the determination of the first inspection interval using the method 

outlined in Section 6.5.  At this inspection time instance, a choice must be made as to 

which type of inspection should be performed, a low fidelity inspection (LFI) or a high 

fidelity inspection (HFI).  The decision variable will be the number of cycles required 

before the second inspection is needed and the prediction model is used to estimate the 

value of this variable.  The information gained at the first inspection will be used to 

update the initial flaw used in the prediction model.  A HFI will provide more 

information making the model’s prediction more accurate and the result will be a longer 

inspection interval before the second inspection is needed.   

The decision can then be made as to what type of inspection fidelity should be 

used at the next scheduled inspection depending on the mission that is needed to be 

performed.  Consider a case where the upcoming mission for a system will require the 

component of interest to undergo 7000 cycles of loading and two types of inspection are 

considered: a LFI (e.g. visual inspection) and a HFI (e.g. ultrasonic spectroscopy).  The 

model predicts that after the LFI another inspection will be needed in 5000 cycles but 

after the HFI, the next inspection shouldn’t be needed for another 10,000 cycles.  In this 

example, the HFI inspection should be performed so as to meet the needs of the 

upcoming mission.  The user should keep in mind however that this prediction is only an 

estimation from the crack growth model.  Once the inspection is physically performed the 

actual next inspection interval should be determined using the approached discussed in 
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Section 6.5 so as to insure the safety of the system.  A diagram illustrating each of the 

steps in the methodology is presented in Figure 6.11. 

 

 

Figure 6.11 Framework for inclusion of inspection fidelity 

 

6.9 Extension of numerical example to include inspection fidelity 

 The numerical example presented in Section 6.6 is continued here to include 

considerations for inspection fidelity.  The results found in that analysis will be used here.  

The reliability limit found in that section of 30, 704 cycles will be implemented in this 

example also.  Since this was the first inspection interval in that analysis, it will be used 

once again.  The crack growth model can now be used to determine the type of inspection 

that should be performed at this inspection event.  There are two different inspection 
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fidelities that can be chosen.  The high-fidelity inspection (HFI) has an observation error 

of 0.005 inches and the low-fidelity inspection (LFI) has an observation error of 0.04 

inches.  This information is used to update the initial flaw size used in the prediction 

model for the duration of the second inspection interval.  The results of inspection 

scheduling analysis are presented in Table 6.1.  

 

Table 6.1: Results of digital model simulation 

  Observation Error Next Inspection Needed 

HFI 0.005 inches 18,537 Cycles 

LFI 0.04 inches 11,105 Cycles 

 

 The decision of which inspection to implement is dependent on the type of 

mission that must be performed.  It is assumed that the duration of the upcoming mission 

is going to be 15,000 cycles.  Since this duration is longer than the 11,105 cycles 

predicted from the LFI simulation and shorter than the 18,537 cycles yielded from the 

HFI simulation, the HFI should be performed at the next inspection. 

Assuming the final specimen from the Bell Helicopter data as the component in 

service, the actual inspection data is taken as an interpolated result from the series of data 

points provided by Bell.  Per this procedure, the actual inspected flaw growth at the initial 

inspection (30,704 cycles) is taken as a uniform distribution between 0.1400 and 0.1500.  

The results of the inspection can then be used to update the Paris Law coefficients used in 

the prediction model.  The results of the Bayesian updating are presented in Table 6.2. 
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Table 6.2: Updated Paris Law parameters 

Parameter C Mean C Std. Dev. m Mean m Std. Dev. 

Prior 3.41E-10 3.41E-11 2.9976 0.29976 

Posterior 3.41E-10 3.40E-11 3.0018 0.3274 

 

 Using these updated parameters, the predictive model can be used to determine 

the actual inspection interval for the next mission.  The results of this analysis show that 

the digital model was quite accurate in its prediction of an inspection interval of 18,537 

cycles.  The inspection interval for the next mission is actually 20,065 cycles which 

means the digital model was slightly conservative.  The procedure can then be repeated 

until the predicted duration is less than the desired mission length.  Once this occurs the 

component should be retired.   

  

 

6.10 Conclusion 

 The methodology presented in this chapter demonstrates an efficient and safe 

method for the determination of maintenance inspection interval and fidelity level for 

mechanical components in an aircraft.  The procedure begins by evaluating the reliability 

of the predictive model that is used for the remainder of the analysis.  The model 

reliability limit is used as a ceiling for the inspection interval.  The ceiling insures safety 

of the component because it doesn’t allow the model prediction to affect the inspection 

procedure outside of its reliable range.  The damage tolerance approach to inspection 

interval determination limits the service range between inspections so that the component 

is not in service past the point where the model predicts that a flaw will have grown past 

some tolerable limit.  
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Once the initial inspection interval is determined, the prediction model was used 

to evaluate what type of inspection should be performed in order to maximize the use of 

the component.  Depending on the fidelity of the inspection that is chosen, the duration 

until the next inspection is estimated by the digital model.  That information can then be 

used to decide which mission can be performed and which inspection type should be 

chosen.   

Condition-based maintenance is a means to efficiently conserve component life 

and maximize their use.  The procedure outlined in this chapter demonstrates how this 

CBM approach can be implemented by including model reliability, fidelity and reliability 

of the inspection technique, and mission needs of the aircraft. 

  



103 
 

CHAPTER 7 

 

SUMMARY AND FUTURE WORK 

 

 Traditional DT approaches to fatigue critical components have assumed a 

deterministic damage accumulation process where deterministic crack growth curves, 

constant material properties and specific initial flaw sizes are used.  Since uncertainty is 

present at all levels of the crack growth simulation and data collection, this thesis 

develops systematic approaches to quantify and include these sources of uncertainty in 

DT risk assessment and management.     

Chapter III was focused on the modeling of discretization errors.  A non-

parameterized crack representation was employed to model the effects of spatial and 

temporal discretization in 3-D finite element analysis of non-planar crack growth by 

modeling both the block estimates of the corrected fronts and the kinetics of crack growth 

in the low dimensional crack representation space.  The principles involved and the 

solutions proposed are illustrated using data from FEA simulations of non-planar crack 

growth under variable amplitude variable duration multi-axial loading.  The surrogate 

models were trained using FEA simulations at varying levels of discretization.  The work 

presented in this chapter only considered one controlling spatial mesh control variable.  

An expansion of this methodology should focus on spatial meshes with multiple 

controlling parameters.    

In Chapter IV, a framework was provided to apply knowledge of uncertainty 

sources present in fatigue crack growth experimentation toward the quantification of the 
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uncertainty in the parameters of a crack growth model aimed at predicting the outcome of 

the experimentation.  Since Paris law was implemented throughout this thesis, the goal of 

the work in this chapter was to calibrate distributions for the material parameters � and 

�.  The typical distributions for these parameters used in most models include errors and 

uncertainties that should be attributed to other sources in the experimental process.  

Chapter IV provided a methodology to properly calibrate these values by including all 

known uncertainty sources in a Bayesian network.  Some obvious future work on this 

topic would be further investigation of the fatigue experimentation procedure to identify 

and quantify more sources of error or uncertainty.  While the techniques presented here 

addressed a visual imaging data acquisition system, the methodology is generic and 

applicable to other types of crack growth experiments.   

The error sources identified in chapters III and IV were used to correct the model 

prediction in Chapter V.  The equivalent planar crack growth model that was described in 

Chapter II was used to predict the crack growth in a rotorcraft mast under constant 

amplitude loading.  The model was adjusted to account for both spatial and temporal 

discretization error and the model parameter calibration technique outlined in Chapter IV 

was used to determine the appropriate values for the Paris Law coefficients.  These 

results were then compared against experimental data using a Bayesian hypothesis testing 

validation metric. 

Chapter VI of the thesis was concerned with risk management.  A methodology 

was presented in this chapter to determine maintenance inspection interval and fidelity 

level for a mechanical component in the aircraft.  A reliability based validation metric 

was proposed as the method for determining the reliability limit to be placed on the 



105 
 

inspection interval length.  A methodology was developed to use this reliability limit in 

conjunction with the DT methodology to determine safe and efficient 

inspection/maintenance scheduling for the demonstration component.  Two types of 

inspection, LFI and HFI, were assumed available, and the crack growth prediction model 

was used to estimate the length of the next inspection interval depending on which 

inspection type was chosen.  This information could be used in two ways: 1) select the 

inspection type with respect to the next individual mission duration, or 2) optimally 

schedule multiple missions.  An extension of this work can consider additional 

measurable quantities such as crack depth measurement rather than only length, extent of 

corrosion damage, etc.   
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