
DYNAMIC SOFTWARE RECONFIGURATION IN SENSOR NETWORKS

By

Sachin V. Kogekar

Thesis

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

in

Computer Science

December, 2004

Nashville, Tennessee

Approved:

Professor Xenofon Koutsoukos

Professor Aniruddha Gokhale

DEDICATION

Dedicated to my parents Radhika and Vijay Kogekar

 ii

ACKNOWLEDGMENTS

I would like to acknowledge the partial financial support of Xerox and PARC for

this research. I would like to thank my graduate advisor, Dr. Xenofon Koutsoukos, for

motivating me and for helping me focus on my research. I appreciate his constant

encouragement and guidance, which has made a significant contribution towards the

completion of this thesis. I am also very grateful to Dr. Sandeep Neema for his guidance

and help in resolving my queries.

I would also like to thank Mr. Brandon Eames and Dr. Aditya Agrawal for always

sparing their time to answer my endless queries.

 iii

TABLE OF CONTENTS

Page

DEDICATION.. ii

ACKNOWLEDGMENT.. iii

LIST OF TABLES.. vii

LIST OF FIGURES ... viii

Chapter

I. INTRODUCTION ... 1

1.1 Sensor Networks and their Application ... 2
1.2 Software Reconfiguration.. 4
1.3 Software Reconfiguration Problem ... 5
1.4 Thesis Organization ... 6

II. RELATED WORK .. 8

2.1 Wireless Sensor Networks .. 8
2.2 Model Integrated Computing... 17
2.3 Software Reconfiguration.. 19
2.4 Design Space Exploration Tool (DESERT) .. 26
2.5 Model of Computation... 32
2.6 Motion Detection/Tracking/Estimation ... 34

III. SENSOR NETWORK TESTBED... 39

3.1 Objective of Experimental Testbed .. 39
3.2 Hardware Infrastructure .. 40
3.3 Software Infrastructure .. 44

IV. RECONFIGURATION ARCHITECTURE .. 46

4.1 Software Reconfiguration Problem .. 46
4.2 Proposed Solution.. 47
4.3 Main Contribution ... 51

 iv

V. MODELING RECONFIGURABLE SENSOR NETWORK APPLICATIONS 52

5.1 Sensor Networks Reconfigurable Applications Modeling Language
(SNRAMoLa) ... 53
5.2 Modeling of Single Configuration... 60
5.3 Modeling of Multiple Configurations.. 63
5.4 Component Based Applications Architecture.. 65

VI. AISLEMONITOR SENSOR NETWORK APPLICATION................................... 67

6.1 Aislemonitor Application – Configuration 1 ... 69
6.2 Aislemonitor Application – Configuration 2 ... 70
6.3 Components of the Aislemonitor Application ... 71

VII. SOFTWARE INFRASTRUCTURE.. 86

7.1 Controller Program ... 88
7.2 SNRAMoLa to DESERT Interpreter .. 89
7.3 DESERT to Configurator Interpreter .. 92
7.4 Configuration Files ... 93
7.5 Packet Forwarder ... 94
7.6 Configurator... 95
7.7 Communicator ... 104
7.8 Monitor .. 108
7.9 Global Constraint Monitor... 108

VIII. EXPERIMENTS AND RESULTS.. 110

8.1 Test Case Design ... 110
8.2 Evaluation of Configuration 1 of Aislemonitor Application 111
8.3 Evaluation of Configuration 2 of Aislemonitor Application 112
8.4 Tests Demonstrating need for Software Reconfiguration.......................... 114
8.5 Evaluation of Software Reconfiguration Architecture 116
8.6 Summary.. 117

IX. DYNAMIC SOFTWARE RECONFIGURATION IN MOTES BASED SENSOR

NETWORKS .. 118

9.1 Platform Description.. 118
9.2 Architecture for Software Reconfiguration ... 119
9.3 Case Study ... 121
9.4 Performance Evaluation... 121

 v

X. CONCLUSION AND FUTURE WORK .. 123

10.1 Conclusion ... 123
10.2 Future Work... 124

Appendix

A. SOFTWARE RECONFIGURATION ARCHITECTURE SETUP 125

B. AISLEMONITOR APPLICATION SETUP ... 131

REFERENCES ... 134

 vi

LIST OF TABLES

Table Page

1. Time required for Software Reconfiguration11Error! Bookmark not defined.

 vii

LIST OF FIGURES

Figure Page

1. The MICA 2 Mote ..12

2. Stargate...13

3. Categorization of Ad-hoc Networks ..15

4. The Multigraph Architecture..18

5. DESERT Meta-Model..27

6. Typical Kalman Filter Application ..37

7. OpenBrick-E Device ..41

8. Logitech QuickCam Pro 400 web cam ..41

9. Network Setup..43

10. Reconfiguration Architecture ...49

11. SNRAMoLa Meta-Model ..55

12. SNRAMoLa Model of Aislemonitor with Single Configuration.............................60

13. Declaration of InPort and OutPort Objects in Estimator Component62

14. SNRAMoLa Model of Aislemonitor with Multiple Configurations........................63

15. Estimator1, Estimator2 and EstimatorCondition in EstimatorChoice Object..........64

16. Aislemonitor Setup...69

17. Aislemonitor Configuration 2 – Gap in the Range ..70

18. Aislemonitor Functional Graph..72

19. Difference Image..75

20. Aislemonitor Configuration 1 Results..112

21. “Gap” in Sensing Range...113

22. “Gap” in Sensing Range Filled by Prediction..114

 viii

23. Comparisn of Tracking Alogrithms ...115

24. Distribution of Errors in Aislemonitor #1 and Aislemonitor #2122

 ix

CHAPTER I

INTRODUCTION

Major advances in wireless communications and electronics technology have

resulted in the emergence of low cost, low-power micro-sensors, actuators, embedded

processors, and radio devices. Advances in VLSI technology have enabled the integration

of all these technologies on a single device with a very small form factor. As a result new

sets of computing devices with sensing, actuating, communicating, and processing

capability are being developed. Our ever increasing appetite to know more about and be

aware of relevant happenings in our surrounding environment is driving the use of these

devices in autonomous networks. Such networks are capable of reporting to us after

monitoring, sensing and even actuating their environment.

These devices, referred to as wireless sensor nodes, will eventually be deployed in

hundreds and thousands in wireless sensor networks. The emergence of such networks

has opened up a lot of avenues for research in different fields such as distributed

computing, sensor node design, communication technology, operating systems,

communication protocols, and software reconfiguration. This thesis addresses the

problem of carrying out dynamic software reconfiguration in sensor networks.

Applications deployed on sensor networks are composed of many software components

executing on individual sensor nodes. The objective is to perform software

reconfiguration on individual sensor nodes to alter their functionality without human

interference.

 1

1.1 Sensor Networks and their Applications

A wireless ad hoc sensor network consists of a number of nodes spread across a

geographical area [1]. The nodes are typically fitted with sensors (for example light,

temperature, pressure, and audio sensors) for monitoring their environment and have

wireless communication capability. The nodes also have some degree of intelligence for

processing the data gathered by their sensors and the capacity to do so. The network is

deployed over a geographical area in an ad hoc manner. Some nodes within the network

could be placed at known locations, but by and large, the nodes figure out their positions

themselves using various localization algorithms [43], [44], [45]. They can also be fitted

with actuators that perform some mechanical action. The nodes communicate with each

other using wireless technologies like radio. In typical deployments, not all nodes are

within wireless range of each other. For the sensor network application to work as a

whole, this poses a significant problem. This problem is addressed by the use of various

ad hoc routing protocols. These protocols enable two out of range nodes to communicate

with each other through some intermediate node.

The basic goals of a wireless ad hoc sensor network can be broadly defined as (1)

determining the value of some parameter at a given location, (for example - light,

humidity, pressure, temperature) (2) detecting the occurrence of events of interest and

estimating parameters of the detected event or events, (3) classifying a detected object,

and (4) tracking an object. All these tasks require the proper reporting of the data to the

end users. In some cases, there are fairly strict time requirements on this communication.

Major requirements that need to be addressed to facilitate the widespread use of

sensors are scalability (sensor networks with over 10,000 to 100,000 nodes are

 2

envisioned), low power consumption, network self-organization, collaborative signal

processing, and querying ability.

The sensor networks mentioned can be applied to a lot of problems, in both

military and commercial domains. Some of the applications that have been envisioned

and in some cases even implemented are:

• Habitat Monitoring: Sensor networks can be used in the study of sensitive

environmental zones and wildlife habitats. Studies have shown that such habitats

react unfavorably to human interference. Sensor nodes connected to various sensors

like light, temperature, humidity are spread out in the area of interest, like bird

colonies and nests and the data collected is used to study the environment and detect

any changes [2], [3], [4].

• Tracking: This involves the tracking of a mobile target using a number of sensor

nodes [5].

• Forecasting: Various sensors can be used to monitor the environment and structures

and predict trends related to weather, pollution, floods, earthquakes, bush-fires or

structural damages to buildings [6].

• Education: Sensor networks can be used to build interaction-based instruction

methods to educate children in kindergarten [9].

• Smart Home/Office: Sensor nodes equipped with actuators can be used in homes to

set the humidity and temperature in the room according to the individual’s

preferences [7]. Sensor networks are also widely used in security systems in homes,

offices and factories.

 3

• Shooter Localization: Sensor nodes deployed in an urban environment can be used

to calculate the location of an enemy sniper in real time. When a shot is fired, the

nodes sense the shockwave and muzzle-blast generated by the shot. Calculations are

performed on the data sent by the individual sensors and the origin of the shot is

determined. Counter-Sniper, Battleground Monitoring Systems and Urban-Warfare

are archetypal examples for application of such a system. Vanderbilt University has

developed a Shooter-Localization system for locating enemy snipers [8].

1.2 Software Reconfiguration

The sensor network applications that are being envisioned will be deployed over

large numbers (10,000 to 100,000) of sensor nodes. Often these networks will be

deployed in inhospitable and inaccessible terrain. A sensor network composed of many

autonomous nodes, exposed to the elements, communicating via unreliable wireless

technology is vulnerable to failure. Nodes may fail either from lack of energy or from

physical destruction, and new nodes may join the network. The communication between

the nodes may be disrupted by noise in parts of the network and environment. A sensor

network can be made robust enough to face these challenges if it is able to reconfigure

itself. Once the network has been deployed in the field, reconfiguration for the most part

applies to software reconfiguration. This involves reconfiguring the software

components executing on individual nodes or in parts of the network to alter their

behavior in response to the changing environment.

A major challenge to autonomous sensor networks is the limited availability of

power. Consider a sensor network composed of strategically placed sensors connected to

 4

cameras to monitor a particular street. Consider an application where a particular person

or vehicle is the object of interest. An application that requires all the sensors to be active

even when there was no one on the street would waste a lot of power. The application

could be designed to activate all sensors only when there was activity in the street. In

periods of no activity, only a few of the sensors would be active. Such an application can

be implemented if it were possible to reconfigure the components executing on the sensor

nodes. Such capability would also be required if some of the sensors were rendered

useless due to a mobile obstruction like a big van. The application executing on other

sensor nodes would be reconfigured to compensate for the loss of data from the

obstructed sensors. Similar examples demonstrating the utility of reconfiguration can be

found in almost all applications of sensor networks.

1.3 Software Reconfiguration Problem

Software reconfiguration is one of the major challenges facing sensor networks. It

is difficult to estimate all operating conditions for a particular sensor network deployed in

any dynamic environment and it is impossible to hardcode every response. This

accentuates the need for designing a software reconfiguration architecture for sensor

networks that is capable of changing the behavior of the system by switching components

executing on individual sensor nodes. The choice of the correct components cannot be

enumerated for every operating condition. This choice needs to be resolved during

runtime.

The collection of components that can be used in the application forms the design

space of the application. Dynamic software reconfiguration involves the resolution of the

 5

component choice during run-time by choosing the components from the design space

that satisfy the operating conditions defined in response to stimuli produced by a

changing environment to adapt the network’s behavior. Dedicated software components

called Monitors monitor the behavior of the environment and the sensor network. These

are either embedded in the application, or deployed in a stand-alone manner on individual

sensor nodes. The process of component choice resolution is dependent upon input from

various sensor nodes and is a very computation intensive process that cannot be

performed on individual sensor nodes. The implementation of the software

reconfiguration architecture requires the implementation of monitoring components that

monitor the state of the sensor network which is affected by the changing environment,

switching components that reconfigure application components on individual sensor

nodes, design space exploration tools that choose the proper components to deploy on

particular nodes, and a communication infrastructure that propagates changes to the

application configuration to individual sensor nodes.

1.4 Thesis Organization

In this thesis, I present an approach for performing dynamic software

reconfiguration on sensor networks. The next chapter presents a summary of related

work. Chapter 3 explains the sensor network test-bed. Chapter 4 gives an overview of the

software reconfiguration approach. Model Integrated Computing [10] (described in

Chapter 5) is used in this approach to capture the sensor network application in explicit

models, which can then be manipulated in a user-friendly manner. Chapter 5 describes

the modeling paradigm for reconfigurable sensor network applications. Chapter 6

 6

describes Aislemonitor, the sensor network application that performs one dimensional

tracking of people walking in an aisle. This application is utilized to demonstrate the

proposed software reconfiguration approach. Chapter 7 gives the implementation details

of the entire software reconfiguration architecture. Chapter 8 discusses the results of the

experiments performed over the sensor network testbed using the Aislemonitor

application. Chapter 9 describes the results obtained after evaluating the reconfiguration

architecture over a sensor network comprising Berkeley MICA motes [11] simulated in

TOSSIM [12]. Chapter 10 contains the conclusion and a discussion of the future work.

 7

CHAPTER II

RELATED WORK

The solution to the problem of dynamic software reconfiguration in sensor

networks is closely tied to research in other fields like sensor networks and routing

protocols. The first section in this chapter describes wireless sensor networks. The

approach proposed in this thesis is based on Model Integrated Computing (MIC). MIC is

described in the second section. The third section discusses reconfiguration approaches in

various domains. The reconfiguration approach proposed in this thesis utilizes a design

space exploration tool called DESERT to resolve the design choices during runtime [36]

[40]. This tool is described in the fourth section of this chapter. The proposed software

reconfiguration approach is based on the Asynchronous Data Flow model of computation

and this is described in the fifth section. The use of the Kalman Filter and tracking

mechanisms are discussed in the last section of this chapter.

2.1 Wireless Sensor Networks

Traditionally, sensor networks have been designed with relatively small number

of sensors, wired to a central processing unit. However, recent advances in technology

and the easy availability of low-power micro-sensors, actuators, embedded processors,

and radios are enabling the application of distributed wireless sensing to a wide range of

applications [13]. This section explores some of the work gone into the development of

wireless sensor networks and their potential applications.

 8

We have been using wired sensor networks for a long time. However, such

networks are costly in terms of installation and maintenance. Wired sensor networks are

not suitable to monitor large spaces such as factories, eco-systems and battlefields. Such

domains are too dynamic for specifically laid out wired networks. Some domains are

even dangerous and not suitable for human habitation. Often, the exact location of the

phenomenon of interest is unknown. In such environments, the use of distributed wireless

sensors with processing capability yields a higher signal to noise ratio (SNR), improves

the chances of line of sight, and reduces the effect of environmental obstructions. Such

sensors process data in the field and only transmit results of interest to the base station.

They do not impose any restrictions on the environment that they monitor and can

function without any infrastructure (electric wiring, wired communication channels,

power outlets). Conventional methods for monitoring do not scale to modern man-made

and natural environments. A different approach is required to monitor such environments.

2.1.1 Application Domains

Wireless sensor networks can be used in a wide variety of domains. Some of the

potential areas are physiological monitoring, environmental monitoring, condition based

maintenance, smart spaces, military, precision agriculture, transportation, factory

instrumentation, and inventory tracking [13].

The use of sensor networks for military operations in urban terrain is described in

[14]. An ad hoc sensor network comprising tiny sensor devices called “motes” [11] is

deployed in an urban environment. The goal of the sensor network is the surveillance and

tracking of friendly, hostile and non-combatant personnel in the urban environment. The

 9

system uses acoustic ranging to determine inter-mote distances and then uses multi-

lateration to compute the position of each specific mote. The tracking system starts with

the estimation of the position of each mote. Sensors in each mote estimate the distance to

a target; all the sensor estimates are then combined using a multi-lateration algorithm to

estimate the position of the target. Finally, the sequence of target position estimates is

smoothed using a Kalman Filter run on the base station. A Situational Awareness Human

Interface system on the base station collects all the target readings from each mote filed

into a common situational awareness operating picture that is made available through

map-based display systems run on a variety of display systems. This kind of an

application will typically involve a large number of sensors.

An application for monitoring the habitat of seabirds on the Great Duck Island in

Maine is described in [3]. It is often found that human interference even for the purpose

of research and monitoring causes an unfavorable impact on the subjects of interest.

Research in Maine suggests that even a 15 minute visit to a cormorant colony can result

in up to 20% mortality among eggs and chicks in a given breeding year. Repeated

interference can even lead to the abandonment of the habitat and a shift to an unsuitable

habitat. Sensor networks offer a viable alternative over traditional invasive methods of

monitoring. Sensors can be deployed during sensitive periods such as the onset of the

breeding season for studying animals or while plants are dormant or the ground is frozen

for carrying out botanical studies. The results of wireless sensor-based monitoring efforts

can be compared with previous studies that have traditionally ignored or discounted

disturbance effects. Sensor network deployment may even turn out cheaper for

conducting long-term studies than traditional personnel-rich methods. In the traditional

 10

approach a substantial proportion of logistics and infrastructure are devoted to the

maintenance of field studies, often at some discomfort and occasionally at some real risk.

A “deploy ’em and leave ’em” strategy of wireless sensor usage would limit logistical

needs to initial placement and occasional servicing. The use of wireless sensors could

also greatly increase access to a wider array of study sites, often limited by concerns

about frequent access and habitability.

The sensor network applications described in the previous paragraphs can be

made more efficient and tolerant to failure through the use of reconfigurable software

components. My work focuses on building a software reconfiguration infrastructure that

utilizes the modular nature of the applications to enhance their ability to adapt to

changing operating conditions.

2.1.2 Sensor Node Technology

One of the most widely used platforms for researching wireless sensor networks

with limited resources is the Berkeley MICA mote [11] (Figure 1), designed at the

University of California, Berkeley. The MICA mote has a 4MHz microcontroller, 4KB of

RAM, 128KB of flash memory and a 916 MHz wireless radio transceiver with a transfer

rate of 19.2 Kbps and range of 200 feet. It has a very small form factor (58mm X 32mm

X 7mm) and is powered by two AA batteries. Daughtercards with various sensors and

actuators are available, including photo, temperature, humidity, infrared and barometric

pressure sensors, accelerometers, magnetometers, microphones, and sounders.

The Berkeley MICA motes run the TinyOS operating system [11], an open

source, event driven and modular OS designed to be used with networked sensors. A

 11

TinyOS application is a statically compiled graph of components. Components have

memory frames to store their state, and communicate with each other through used and

provided interfaces that contain logically related commands and events [15]. Components

can post tasks to process longer running computations, which are executed in order by the

scheduler. TinyOS comes with a library of OS components that handle task scheduling,

radio communication, clocks and timers, ADC, I/O and EEPROM abstractions, and

power management. Application developers can select a subset of these modules, extend

or override them if necessary, and statically compile them into the final executable. A

typical MICA system consists of tens to hundreds of motes forming an ad hoc multi-hop

network and a base station that is typically a PC class computer.

Figure 1 - The MICA2 Mote

Stargate [41] is a powerful single board sensor with communications and sensor

signal processing capabilities. The Stargate uses Intel's® latest generation 400MHz X-

Scale® processor (PXA255). In addition to traditional single board computer

 12

applications, the Stargate directly supports applications designed around Intel's Open-

Source Robotics initiative as well as TinyOS-based wireless sensor networks.

Figure 2 – Stargate [41]

Another powerful, yet compact sensor node is the OpenBrick [32] device. It is

small (220 x 165 x 42 mm), light (about 1200 g), and includes three (3) RJ45 LAN

connectors. It has a fan-less 533 Mhz x86 compatible VIA C3 processor and 256 MB

SDRAM. Software can be installed on a Compact Flash or on a Hard Disk. It also has

USB 2.0 connectivity. The device supports the Linux operating system. OpenBrick E is

part of the sensor network testbed described in Chapter 3.

The sensor nodes do not have enough resources to evaluate the QoS parameters,

search for the next configuration and compute the necessary reconfiguration steps. They

can, however, communicate the measured parameters to the base-station where the

computationally intensive reconfiguration decisions are made and the necessary

elementary reconfiguration commands are sent back to the sensor nodes that execute

them [16].

 13

2.1.3 Routing Protocols

Wireless sensor networks can be broadly classified into two varieties based on

their wireless configuration. Wireless networks with fixed and wired gateways are called

Infrastructured networks. The bridges for these networks are known as base stations. A

node within these networks connects to, and communicates with, the nearest base station

that is within its communication radius. If a node travels out of range of one base station

and into the range of another, a “handoff” occurs from the old base station to the new,

and the node is able to continue communication seamlessly throughout the network. The

second type of mobile wireless network is the infrastructureless mobile network,

commonly known as an ad hoc network. Infrastructureless networks have no fixed

routers; all nodes are capable of movement and can be connected dynamically in an

arbitrary manner. Nodes of these networks function as routers which discover and

maintain routes to other nodes in the network.

In order to facilitate communication within ad hoc networks, a routing protocol is

used to discover routes between nodes. The primary goal of such an ad hoc network

routing protocol is correct and efficient route establishment between a pair of nodes so

that messages may be delivered in a timely manner. Route construction needs to be done

with a minimum of overhead and bandwidth consumption. Different existing ad hoc

routing protocols are discussed and compared in [17]. Existing routing protocols for ad

hoc networks can be categorized as (1) Table-driven and (2) Source-initiated (demand-

driven) as shown in Figure 3 [17].

 14

Ad hoc routing Protocols

Source-Initiated Table Driven
On-Demand

DSDV WRP AODV DSR LMR ABR

TORA SSR
CGSR

Figure 3 - Categorization of Ad hoc Networks [17]

National Institute of Standards and Technology’s (NIST) implementation of the

Ad hoc On-Demand Distance Vector (AODV) [18] routing protocol is deployed on our

sensor network testbed. When a source node desires to send a message to some

destination node and does not already have a valid route to that destination, it initiates a

path discovery process to locate the other node. It broadcasts a route request (RREQ)

packet to its neighbors, which then forward the request to their neighbors, and so on, until

either the destination or an intermediate node with a “fresh enough” route to the

destination is located. AODV utilizes destination sequence numbers to ensure all routes

are loop-free and contain the most recent route information. The source node includes in

the RREQ the most recent sequence number it has for the destination. Intermediate nodes

can reply to the RREQ only if they have a route to the destination whose corresponding

destination sequence number is greater than or equal to that contained in the RREQ.

 15

Once the RREQ reaches the destination or an intermediate node with a fresh

enough route, the destination/intermediate node responds by unicasting a route reply

(RREP) packet back to the neighbor from which it first received the RREQ. As the RREP

is routed back along the reverse path, nodes along this path set up forward route entries in

their route tables, which point to the node from which the RREP came. These forward

route entries indicate the active forward route. Associated with each route entry is a route

timer, which will cause the deletion of the entry if it is not used within the specified

lifetime. Because the RREP is forwarded along the path established by the RREQ,

AODV only supports the use of symmetric links.

If a source node moves, it is able to reinitiate the route discovery protocol to find

a new route to the destination. If a node along the route moves, its upstream neighbor

notices the move and propagates a link failure notification message (an RREP with

infinite metric) to each of its active upstream neighbors to inform them of the erasure of

that part of the route [18]. These nodes in turn propagate the link failure notification to

their upstream neighbors, and so on until the source node is reached. The source node

may then choose to reinitiate route discovery for that destination if a route is still desired.

An additional aspect of the protocol is the use of hello messages, periodic local

broadcasts by a node to inform each mobile node of other nodes in its neighborhood.

Hello messages can be used to maintain the local connectivity of a node. However, the

use of hello messages is not required. Nodes may listen for retransmission of data packets

to ensure that the next hop is still within reach.

The use of a routing protocol facilitates communication between sensors that are

not within wireless range of each other. The routing protocol is an essential part of the

 16

sensor network and enables the network to function as a whole. The AODV routing

protocol has been deployed on the experimental testbed to emulate real world sensor

networks. The OpenBrick devices communicate with each other using the AODV

protocol.

2.2 Model Integrated Computing

Model-Integrated Computing (MIC) [10] employs domain-specific models to

represent the software, its environment, and their relationship. Using Model-Integrated

Program Synthesis (MIPS) [46], these models are then used to automatically synthesize

the embedded applications and to generate inputs to commercial off the shelf (COTS)

analysis tools [19]. This approach speeds up the design cycle, facilitates the evolution of

the application and helps system maintenance, dramatically reducing costs during the

lifecycle of the system. We use MIC to model reconfigurable component based sensor

network applications.

The Multigraph Architecture (MGA) is a toolkit for creating domain-specific

MIPS environments. The MGA is illustrated in Figure 4. A metaprogramming interface

is used to specify the modeling paradigm of the application domain. The modeling

paradigm is the modeling language of the domain specifying the objects and their

relationships. In addition to syntactic rules, semantic information can also be described as

a set of constraints. The Unified Modeling Language (UML) and the Object Constraint

Language (OCL), respectively, are used for these purposes in the MGA. These

specifications, called metamodels, are used to automatically generate the MIPS

environment for the domain. An interesting aspect of this approach is that a MIPS

 17

environment itself is used to build the metamodels [20]. In this approach, the MGA is

used to design the metamodel for the reconfigurable applications modeling language

SNRAMoLa (described in Chapter 5).

Figure 4 - The Multigraph Architecture

The generated domain-specific MIPS environment is used to build domain models

that are stored in a model database. These models are used to automatically generate the

applications or to synthesize input to different COTS analysis tools. This translation

process is called model interpretation.

In the proposed approach, the sensor network application is modeled in terms of

its components and their interactions (explained in Chapter 5). Valid configurations,

which include only those components that actually execute in the application, are then

 18

generated. The models are used to express a design choice and produce a valid

configuration every time the software reconfiguration process is triggered during runtime.

2.3 Software Reconfiguration

This thesis proposes an architecture to carry out dynamic software reconfiguration

in wireless sensor networks. This section explores the work done on this problem in other

and related domains.

Software architectural models can be designed to monitor and guide dynamic

changes to an application. The work in [21] presents a generic architecture for adaptation

in pervasive networks using a client/server networking example. The centerpiece of this

approach is the use of stylized architectural models. The architectural model of a

pervasive network is represented as a graph of interacting components with nodes in the

graph termed as components and arcs termed as connectors, which represent interaction

between components. These software architectural models, originally created to support

design-time development tools, can be augmented with adaptation operations and repair

strategies that apply these operations to adapt the architecture during runtime. The

approach in [21] suggests a method to monitor the system using probes and gauges.

An architectural model can be built to represent component-based software

systems on graphs. Adaptation and repair of such systems poses a major challenge. Low

computational resources on sensor nodes do not allow extensive repair strategies being

embedded into application components. An approach for representing these strategies is

required.

 19

The work in [22] presents a lightweight infrastructure for managing dynamic

reconfiguration called Lira that applies and extends the concepts of network management

to component-based, distributed software systems. Two extreme approaches to carry out

reconfiguration can be identified as internal and external reconfiguration. Internal

reconfiguration relies on the programmer to build reconfiguration facilities directly into

components while external reconfiguration relies on some external entity to determine the

reconfiguration of the component. Lira is designed to perform both component-level

reconfigurations and scalable application-level reconfigurations through the use of agents

associated with individual components and a hierarchy of managers. Agents are

specifically programmed for individual components to respond to reconfiguration

requests appropriate for that component. A Management Information Base (MIB)

associated with each component captures its state variables. The agent then uses the MIB

to trigger reconfiguration. Managers embody the logic for monitoring the state of one or

more components, and for determining when and how to execute reconfiguration

activities. A protocol based on Simple Network Management Protocol (SNMP) is used

for communication among managers and agents.

In order to implement a reconfiguration approach, the structure and software

design of components needs to be developed. Once the structure of components is

standardized, various reconfiguration approaches can be tried on the components.

Application and reconfiguration components executing on resource limited sensor nodes

cannot contain too many complex computations. This thesis uses the term components in

relation to software processes, which are relegated to perform atomic tasks that really do

not require any internal reconfiguration. However, the application as a whole is

 20

composed of many components and reconfiguration means the execution of selected

components. The thesis proposes a reconfiguration agent, much like the Manager, which

executes on each individual sensor device. This agent performs the reconfiguration

activity on individual nodes by switching components according to the reconfiguration

script that it receives from the base station. The ‘real’ reconfiguration, the selection of

appropriate components for execution, in response to a change in the environment, occurs

at a central base station. This is necessary in distributed sensor networks because

individual sensors typically do not have the capability to perform intense computations,

which are needed for design space exploration.

An approach to carry out reconfiguration for fault tolerance by applying graph

grammars is suggested in [23]. The work suggests the use of Reconfiguration Graph

Grammars (RGG) to target the problem of carrying out dynamic reconfiguration in

processor arrays. The nodes of a graph are associated with individual processors of the

processor array and the edges are associated with those inter-processor connection lines

that are active. Production rules defined in the RGG carry out the reconfiguration in the

processor arrays. Consider an example of an array of processors connected to each other.

These can be represented in the form of a graph. Each row in the array contains some

additional (spare) processors that are not used. When one of the used processor fails, the

productions that define the graph grammar for the reconfiguration algorithm dynamically

reconfigure the arrays such that one of the spare processors is used in place of the faulty

one and the incoming edges (active communication lines) are transferred to the spare

processor along with the outgoing edges in the graph. RGG-based reconfiguration can be

implemented by using a program in the memory of each processor. A neighboring

 21

processor can carry out the detection of a failed processor. It can even be combined with

reconfiguration initiation by the neighboring processor.

The DJINN multimedia-programming framework is designed to support the

construction and dynamic reconfiguration of distributed multimedia applications [24].

The main requirements addressed by DJINN are to provide QoS and integrity guarantees

for complex multimedia applications, both in their steady state and during

reconfigurations. DJINN includes (1) Programming support for distributed multimedia

applications, (2) Dynamic reconfiguration, and (3) Support for QoS negotiation,

admission control and the specification of integrity constraints. DJINN applications are

made up of autonomous ‘active’ components that produce, consume and transform

multimedia data streams and are distributed with the multimedia hardware and ‘model’

components arranged in a tree-structured hierarchy where the leaves of the tree are

atomic model components each corresponding to a single active component. Application

programmers do all the development in the model layer. Atomic model components

model the QoS characteristics of their underlying active components as sets of linear

quadratic relations between attributes. Application integrity is modeled by sets of

predicates attached to Model components. The predicates are evaluated in leaf to root

order during integrity tests and all must be true for the application’s configuration to be

considered valid.

A reconfiguration manager is responsible for controlling and validating changes

to the application model. Application configuration – and reconfiguration –is expressed

in terms of paths: model layer end-to-end management constructs describing the media

data flow between a pair of endpoints chosen by the application. A path encapsulates an

 22

arbitrary sequence of ports and intervening components that carry its data. A

reconfiguration moves the application from one consistent state to another in an atomic

manner. Before new active components are created and started, the model must pass the

integrity tests and an admissions test. Each admission test utilizes the application’s OoS

model, and is performed in three stages: (1) to gather application imposed constraints, (2)

to determine constraints on resources, and (3) to generate a solution using a cost-benefit

analysis. The approach for solving constraint relations is borrowed from operations

research used in optimization problems. These techniques utilize a benefit function to

find optimum values for a set of variables given a set of constraints.

In my approach, sensor network applications are modeled as graphs where the

nodes represent the components and the arcs represent their interaction. Constraints

associated with the application are modeled using Object Constraint Language (OCL).

These constraints are then evaluated by using a design space exploration tool, which

utilizes Object Binary Decision Diagrams (OBDD) [39].

The use of reconfiguration to implement Automatic Target Recognition (ATR)

applications onto field programmable gate arrays (FPGAs) is described in [25]. Bit-level

operations that comprise much of the ATR computational burden map extremely

efficiently into FPGAs because the specificity of ATR target templates can be leveraged

via fast reconfiguration. ATR involves correlation of chips from the observed image with

the templates already stored in memory which often causes bottlenecks due to the excess

processing loand. FPGAs offer an attractive solution to the correlation problem. The

operations being performed occur directly at the bit level and are dominated by shifts and

add, making them easy to map into the hardware provided by the FPGA in the form of

 23

adder trees. The templates are hard-wired into the FPGA (in the form of adder trees)

while image pixels are clocked past it. Combining multiple templates on a single FPGA

can increase efficiency. To minimize the number of FPGA reconfigurations necessary to

correlate a given target image against the entire set of templates, it is necessary to

maximize the number of templates placed in every configuration of the FPGA. This can

be achieved by partitioning the set of templates into groups that can share computations

(adder trees) so that fewer resources are used per template. The reconfiguration is thus

the problem of choosing the right set of templates to group together on an FPGA. This

can be achieved by ensuring that any template added to an existing group is

approximately the same size as templates in the group. One of the heuristics used in

deciding whether or not to include a template into a newly formed partition is to

determine the number of new terms that adding the template would create in the

partition’s adder tree.

An efficient optimal algorithm for minimizing runtime reconfiguration delay is

presented in [26]. A major drawback of using runtime reconfiguration is the significant

delay of reprogramming the hardware. In many applications, only a small portion of the

design changes at a time and there is no need to reconfigure the entire hardware for

instantiating a new design. Partial reconfiguration allows the users to change only part of

the design that needs to be updated and hence decreases the reconfiguration time. A

provably optimal algorithm to minimize the total delay incurred by partial

reconfiguration is presented in [26]. The algorithm outputs an execution order of the

operations on hardware resources such that the total runtime reconfiguration is

minimized. This thesis does not look into optimizing the reconfiguration delay. However,

 24

the proposed approach does not affect the working of other components in the application

and only affects the components that are being acted upon by the reconfiguration agent.

A critical issue for complex component-based systems design is the modeling and

analysis of architecture, especially in systems whose architecture changes dynamically

(during run time). This is because dynamic changes to architectural structure may interact

in subtle ways with on-going computations of the system. It is valuable to provide a

modeling approach that accounts for the interactions between architectural

reconfiguration and non-reconfiguration systems functionality, while maintaining a

separation of concerns between these two aspects of the system [27]. The modeling tool,

Wright [27], addresses the problem of capturing dynamic architectures. The key is to use

a uniform notation and semantic base for both reconfiguration and steady-state behavior,

while at the same time providing syntactic separation between the two. This permits the

viewing of the architecture in terms of a set of possible architectural snapshots, each with

its own steady-state behavior. Transitions between these snapshots are accounted for by

special reconfiguration-triggering events. The proposed reconfiguration approach also

expresses reconfigurable and non-reconfigurable components on the same modeling

canvas. However, care is taken to separate the modeling of the two. This kind of

modeling enables the visualization of varied valid configurations of the applications

under changing conditions.

 25

2.4 Design Space Exploration Tool (DESERT)

As indicated in the previous sections, software reconfiguration is a computation

intensive process that cannot be typically performed on resource limited sensor nodes.

The proposed approach includes a design space exploration tool called DESERT in the

reconfiguration architecture. Design space exploration in DESERT [36] entails pruning

the design-space with the applied constraints. An intuitive user interface lets the user

perform the exploration interactively. The end result of the exploration is a pruned design

space that contains only a few design configurations that are valid with respect to the

applied constraints.

2.4.1 Design Space Exploration

The design space exploration tool, DESERT, has been developed using MIC.

Figure 5 shows the meta-model of the DESERT input modeling language. The core

concepts in the modeling language are Space-s, Element-s, Property-s, and Constraint-s.

An Element represents a hierarchically composed item in the space to be explored. A

value of true for Decomposition attribute implies inclusive AND-decomposition, which

means that all the children of the Element are included in all configurations. A value of

false, on the other hand, implies OR-decomposition, which means that the Element is

composed of exactly one of its children in any configuration. The children of an OR-

decomposed element represent alternatives, i.e. a choice has to be made among the

alternatives in the design space exploration based on constraints. An element with no

children represents a leaf in the hierarchy, regardless of the value of its Decomposition

attribute. A Space is simply a composition of Elements, and is equivalent to an Element

 26

with a Decomposition value of true. Several Spaces may be composed together to define

the aggregate design space for the system.

Figure 5 - DESERT Meta-Model

An Element can contain zero or more Properties. The general notion of Property

is a characterization of an element; however, the specification and its semantic

interpretation may differ based on the decomposition of the element and its placement in

the hierarchy. For leaf elements, property values are specified as an input to DESERT,

whereas for non-leaf elements, DESERT computes property values, while evaluating

constraints, based on the decomposition of the non-leaf element, as well as the

Composition policy of the property. Multiple values may be provided for a Property of a

leaf element, representing another dimension of choice with a kind of parameterization.

 27

For OR-decomposed elements, the composite property is an exclusive-OR of any one of

the child elements, while for AND-decomposed elements the property of the element is a

composition per the Composition policy. DESERT implements a number of Composition

policies, such as additive, multiplicative, maximum (or minimum). Custom Composition

policies are also supported; however, the user is required to provide the composition

algorithm. DESERT has well-defined interfaces for implementing custom composition

policies.

Constraints are the specification that the design space exploration evaluates over

the provided design space, and produces a “pruned” space that contains only such designs

that satisfy the constraint. To remain consistent with the selected meta-modeling

language (UML class diagrams and OCL), a variant of OCL is used for constraint

specification.

This mechanism of structuring design spaces can be summarized as hierarchically

layered parameterized alternatives. The following example demonstrates its scalability in

representing large design spaces: With alternative implementations per OR-

decomposed element, and OR-decomposed elements on each level of an -level deep

refinement hierarchy, this representation can define: design configurations, where

, and , using just

a

n m

mka

() nkk mm ×+= − 11 nk =1 ()mna× leaf elements. As an example, with 4=n ,

, and , a total of 1728 leaf elements can represent design configurations in

the space!

3=a 3=m 843

Formally, a design space is a set and its formulation is demonstrated in the

following expressions. A configuration is a particular selection of choices in the space.

Let be the set of all configurations that include an element , and ()dConfigs d ()dχ be the

 28

set of children of . Also let be the set of values of propertyd jD j , and let be the set

of properties in a leaf element . Then, the set of possible instantiations of the leaf

element l can be defined as:

()lP

l ()lPS

()
()

∏=
lP

j
jDlPS

(1)

The set of configurations can be constructed recursively, depending on element
decomposition, as follows:

()

()

()
()

()
()⎪

⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

=

∈

∈
∏

OR

AND

LEAF

U
dx

dx

xConfigs

xConfigs

dPS

dConfigs

χ

χ

(2)

Let, be the root element of the -th space, then kℜ k ()kConfigs ℜ is the set of all
configurations in the -th space. The aggregate design space can now be defined as: k

()∏ ℜ=
k

kConfigsDS (3)

2.4.2 Design Space Encoding and Pruning

Manipulation of design-spaces can be reduced to set operations: calculating

product spaces (composition of design spaces) and finding subspaces that satisfy various

(structural) constraints. Since the size of design-spaces is frequently huge, execution of

these set manipulation operations by enumerating all elements is hopeless. Therefore the

manipulation operations are performed symbolically. Two problems had to be solved: 1)

symbolic representation of design-spaces, and 2) symbolic representation of constraints.

If the parameters of model objects are restricted to finite domains, the design

space will be also finite. By introducing a binary encoding of the elements in a finite set,

all operations involving the set and its subsets can be represented as Boolean functions

 29

[39]. These can then be symbolically manipulated with Ordered Binary Decision

Diagrams (OBDD-s) [39], a powerful tool for representing, and performing operations

involving Boolean functions. The choice of encoding scheme has a strong impact on the

scalability of the symbolic manipulation algorithms, as it determines the number of

binary variables required for representing the sets. In addition to encoding the structure of

the design-space, the encoding scheme has also to encode the parameters of the

parameterized model components. Subsequent to encoding, and deciding the variable

ordering, the symbolic Boolean representation is mapped to an OBDD representation in a

straightforward manner. The details of this encoding scheme have been described in [40].

There are two basic categories of structural constraints that DESERT can compute

efficiently.

Compatibility and Inter-space constraints – These constraints specify relations among

subspaces in the overall design space, expressing semantic compatibility between

different elements. Symbolically, the constraints can be represented as a Boolean

expression over the Boolean representation of the elements of the design-space.

Property constraints – Property constraints specify bounds on the composite properties of

elements in the composed system. The important challenge for the property constraints

are that they are derived from structural characteristics of designs. As we mentioned

earlier different properties compose differently, e.g. cost can be composed additively,

latency can be composed as additively for pipelined components, and as maximum for

parallel components, etc. DESERT provides some built-in composition functions

(addition, maximum, minimum, etc.), and has a well-defined interface for creating

custom composition functions

 30

In addition to these basic categories of constraints, complex constraints may be

expressed by combining one or more of these constraints with first order logic

connectives. The symbolic representation of the complex constraints can be

accomplished simply by composing the symbolic representation of the basic constraints.

 OBDD based representations scale well for representing the structure of the

design space (nested AND/OR expressions). The critical challenge in scalability occurs

during the design-space pruning step. Automatic application of complex constraints to

large spaces may result in explosion of the OBDD-s therefore DESERT has an interactive

user interface to influence this process. Users can control the importance of constraints

and select the sequence order of their application [16].

The primary advantage of the symbolic design space pruning approach is that it is

exhaustive: the pruned space includes all of the designs, which meet the applied design

constraints. A significantly simpler, but still useful alternative approach to design space

pruning could be to find a single design configuration (not all), which satisfies the

selected design constraints. The controller at the base station selects the first amongst all

the valid configurations generated by DESERT.

 31

2.5 Model of Computation

In order to model component based sensor network applications, we need to base

our applications on a formal model of computation. A model of computation can be

defined as a formal, abstract definition of a computer. Using a model one can more easily

analyze the intrinsic execution time or memory space of an algorithm while ignoring

many implementation issues [48]. Sensor network applications are typically composed of

a number of components or processes that exchange data. We use the Asynchronous Data

Flow (ASDF) process network [42] as a base to model our applications.

Under the data flow paradigm, applications are described as directed graphs

where the nodes represent computations (or functions) and the arcs represent data paths.

The data flow principle is that any node can fire (perform its computation) whenever

input data is available on its incoming arcs. A node with no input arcs may fire at any

time. This implies that many nodes may fire simultaneously, hence the concurrency.

Because the program execution is controlled by the availability of data, data flow

programs are said to be data driven. The only influence one node has on another is the

data passing through the arcs.

In most graphical programming languages, the nodes of the graph can be viewed

as processes that run concurrently and exchange data over the arcs of the graph. Dataflow

process networks are shown to be a special case of the Kahn process networks in [42]. In

a process network, concurrent processes communicate with each other through one-way

first-in-first-out (FIFO) channels with unbounded capacity. Each data token is written to

the channel exactly once and read from the channel exactly once. Writes to the channel

are non-blocking (they always succeed) while reads are blocking. A process that attempts

 32

to read from a channel stalls if the channel is empty. This model of computation does not

actually require either multitasking or parallelism, but it is capable of exploiting both. It

also does not require infinite queues and can be implemented to use memory much more

efficiently. Unlike the Synchronous Data Flow (SDF) [28] model of computation which

requires static scheduling, ASDF process networks do not specify any timing information

or the rates at which data is generated and nodes fire and can be scheduled dynamically.

This approach proposed in this thesis uses the ASDF model of computation to

model and implement sensor network applications. The sensor network applications are

designed as a group of independent processes communicating with each other using inter-

process communication directives and constructs. This kind of software architecture

enables the dynamic switching of components executing in the application. The sensor

network application is mapped onto an ASDF graph such that each node in the graph

represents a process and the arcs connecting two nodes represent the inter-process

communication. Moreover, the processes in the application are data driven and fire only

when they receive data from another process. The processes that are not connected to any

other process may fire at any time as in the ASDF model.

 33

2.6 Motion Detection/Tracking/Estimation

I implemented a sensor network application called Aislemonitor for single

dimensional tracking of people walking in an aisle (described in Chapter 6). This

application was deployed on our sensor network testbed (described in Chapter 3) and

used to demonstrate our software reconfiguration approach. This section explores the

work gone into sensing and tracking objects of interest using sensor networks.

A methodology for planning and controlling the sensing, processing and

communication actions needed to accomplish a certain mission using sensor networks

while respecting the system resource constraints like power consumption, communication

range, bandwidth and susceptibility to noise limitations due to the wireless technologies

such as radio links commonly used in sensor devices is described in [29]. Emphasis is

laid on techniques to address real world high-level queries such as “who is the leader of

the people walking in the building” or “is friendly vehicle a surrounded by enemy

vehicles”. A mathematical framework on how high-level queries can be transformed into

low level sensing, computation and communication operations designed to produce the

desired answers, while minimizing the power and other resources expended in satisfying

the queries is proposed. Several of such queries refer to global, aggregate and relational

aspects of the environment. Though most sensing acquires data in the continuous domain,

the information most useful to the system’s clients is often of an aggregated or discreet

nature. By its nature sensor network is a hierarchical hybrid system where sampled

continuous signals transition to discreet symbolic information as we go up the task

hierarchy. The pushing of the interface between continuous and discrete to a very low

level in the system architecture is possible and can yield significant benefits in economy

 34

and speed. Emphasis is put on tracking spatial or temporal relations between objects and

local or global attributes of the environment than the detailed estimation of positions and

poses of individual objects. By focusing on relations and the logical structure of the

evidence with respect to the task at hand, it will be possible to allocate the sensor and

computation resources where they are most needed.

The tracking algorithm deployed on the sensor network testbed has some

constraints; it allows the tracking of only one person per sensor node at any given time.

Tracking of multiple people is a more complex problem. The ideas presented in [29] can

be used to estimate the number of people walking together in the range of an individual

sensor at the same time. A Kalman Filter is used to smooth out the positions of the center

of mass of the person walking in the aisle detected by the application.

The Kalman filter [30] [31] provides an efficient computational (recursive) means

to estimate the state of a process, in a way that minimizes the mean of the squared error.

The filter is very powerful in several aspects: it supports estimations of past, present, and

even future states, and it can do so even when the precise nature of the modeled system is

unknown [30]. In this approach, The Kalman Filter is used to estimate the position of a

person in an aisle. When a person is walking in the aisle, his/her observed position is fed

into the Kalman Filter. The filter then computes the person’s position and speed.

A Kalman filter is simply an optimal recursive data processing algorithm. One

aspect of this optimality is that it incorporates all information that can be provided to it. It

processes all available measurements, regardless of their precision, to estimate the current

value of the variables of interest, with use of (1) knowledge of the system and

measurement device dynamics, (2) the statistical description of the system noises,

 35

measurement errors and uncertainty in the dynamics models, and (3) any available

information about the initial conditions of the variables of interest. For example, to

determine the velocity of an aircraft, one could use a Doppler radar or the velocity

indications of an inertial navigation system, or the pilot and static pressure and relative

wind information in the air data system. Rather than ignore any of these outputs, a

Kalman filter could be built to combine all this data and knowledge of the various

systems’ dynamics to generate an overall best estimate velocity.

The word recursive means that, unlike certain data processing concepts, the

Kalman filter does not require all the previous data to be kept in the storage and

reprocessed every time a new measurement is taken. This is of vital importance to the

practicality of filter implementation.

The filter is actually a data processing algorithm. Despite the typical notation of a

filter as a black box containing electrical networks, the fact is that in most practical

applications, the filter is just a computer program in a central processor. As such, it

inherently incorporates discrete time measurement samples rather than continuous time

inputs. Figure 6 depicts a typical situation in which a Kalman filter could be used

advantageously. A system of some sort is driven by some known controls, and measuring

devices provide the value of certain pertinent quantities. Knowledge of these system

inputs and outputs is all that is explicitly available from the physical system for the

estimation process.

 36

Figure 6 - Typical Kalman Filter Application

Often the variables of interest, some finite number of quantities to describe the

“state” of the system, cannot be measured directly, and some means of inferring these

values from the available data must be generated. For instance, an air data system directly

provides static and pitot pressures, from which velocity must be inferred. This inference

is complicated by the facts that the system is typically driven by inputs other than our

known controls and that the relationships among the various “state” variables and

measured outputs are known only with some degree of uncertainty. Furthermore, any

measurement will be corrupted to some degree by noise, biases, and device inaccuracies,

and so a means of extracting valuable information from a noisy signal must be provided

as well. There may also be a number of different measuring devices, each with its own

particular dynamics and error characteristics that provide some information about a

particular variable, and it would be desirable to combine their outputs in a systematic and

System

Measuring
Devices

System Error
Sources

Controls

System State
(desired by not

known) Obeserved
Measurements

Optimal
Estimate of

System State

Measurement
Error Sources

Kalman
Filter

 37

optimal manner. A Kalman filter combines all the available measurement data, plus prior

knowledge about the system and measuring devices, to produce an estimate of the desired

variables in such a manner that the error is minimized statistically.

The filter performs conditional probability density propagation for problems in

which the system can be described through a linear model and in which the system and

measurement noises are white and Gaussian. Under these conditions, the mean, mode,

median and virtually any reasonable choice for an optimal estimate all coincide.

 38

CHAPTER III

SENSOR NETWORK TESTBED

The sensor network testbed comprising eight sensor nodes is used for tracking

people walking in an aisle using webcams connected to individual sensor nodes. The

objective of this testbed is to demonstrate the proposed approach for carrying out

dynamic software reconfiguration on sensor networks.

The first section of this chapter describes the objective of the testbed. The second

section describes the hardware infrastructure of the experimental testbed with details

about the sensor devices and the network configuration. The third section describes the

software infrastructure, which includes the operating system and various open source

software programs.

3.1 Objective of the Experimental Testbed

The purpose of the experimental testbed is to demonstrate the validity of the

proposed approach for carrying out dynamic software reconfiguration on sensor

networks. This work is based on utilizing an application deployed on the sensor network

that can be dynamically reconfigured to perform satisfactorily in a changing environment.

The Aislemonitor application (described in Chapter 6), which tracks people walking in an

aisle, is utilized for this purpose. The OpenBrick sensor devices (described in the next

section) form the sensor network. They are deployed along a straight line in an aisle.

Each OpenBrick device hosts the Aislemonitor application.

 39

The reconfiguration approach is tested by shutting down one of the OpenBrick

devices, thus requiring its neighbors to reconfigure their application components

dynamically to predict the position of the people in the range of the affected node. This

involves switching of some components, viz. the Estimator and the DataCollector

(described in Chapter 6), executing on the neighboring OpenBrick devices. The process

of choosing appropriate components to form a new configuration is very computation

intensive and cannot be typically performed on sensor nodes. This task is therefore

performed on a more powerful machine like a base-station. The whole reconfiguration

cycle involves monitoring the health of the network, communication with other sensor

devices and the base station, choosing new components, generating reconfiguration

scripts, communicating these to the individual sensors and actually switching the

components executing on the sensors with the ones selected in the new configuration.

I have implemented a software infrastructure to carry out all the mentioned tasks

necessary for enabling dynamic software reconfiguration on our sensor network testbed.

For the purpose of prototyping and validating the proposed software reconfiguration

approach, this testbed adequately replicates real world sensor networks and the

application for tracking people in the aisle provides adequate representation of real world

sensor network applications.

3.2 Hardware Infrastructure

The sensor network testbed consists of eight OpenBrick-E wireless sensor devices

and a base station [32]. The OpenBrick-E has a small form factor (220 x 165 x 42 mm)

and weighs only about 1200 g. It includes three RJ45 LAN connectors and built in USB-

 40

based 802.11b wireless LAN with a standard 2 dbi antenna. The default configuration has

a fan-less 533 MHz x86 compatible VIA C3 processor and 256 MB SDRAM. Software

can be installed on a Compact Flash or on an optional Hard Disk. The eight OpenBrick

devices used in the testbed are equipped with 256MB of RAM and a 20GB Hard Disk

each. In addition to WiFi support, each OpenBrick device includes three USB ports, PS/2

mouse and keyboard ports, a video port for the monitor, two Serial ports and a Parallel

port. An OpenBrick-E device is displayed in Figure 7.

Figure 7 - OpenBrick – E Device

Figure 8 - Logitech QuickCam Pro 4000 webcam

 41

Each Openbrick device is connected to a Logitech QuickCam Pro 4000 webcam

(Figure 8). The QuickCam is connected to the OpenBrick device through its USB port

and acts as the video capture device. The webcam supports images with resolution up to

640 x 480 pixels and includes an advanced VGA CCD sensor.

The base-station executes the Windows XP operating system. It is connected to

one OpenBrick device through a wired 802.3 LAN connection. The base station is used to

carry out computation intensive tasks in the reconfiguration process. It has an Intel

Pentium 4 2.53GHz Processor with 1 GB of RAM, a RJ45 LAN Connector and 100GB

of storage space.

The eight OpenBrick devices are configured to form a private ad hoc wireless

network. Each device is assigned a static IP address in the private wireless network. The

private network is maintained through the use of an ESSID. The network infrastructure

also includes a LINKSYS EF3124 24 port 10/100 Ethernet switch. The switch is part of

the private ‘wired’ LAN network, which connects the base station to the first OpenBrick

device. Devices connected to the wired network are also assigned static IP addresses. The

24-port switch is also used in development activities. The base station is assigned a static

IP and connected to the switch. One OpenBrick device is also connected to the switch.

The base station communicates with all other OpenBrick devices through this wired

connection. The detailed network configuration is displayed in Figure 9.

 42

Network Setup

Figure 9 - Network Setup

Although the OpenBrick devices used in our experimental testbed are very

powerful, equipped with a hard disk drive and powered by standard AC input, they can

be easily adapted to use a flash card instead of the hard disk and a battery for the power

supply. The device is portable and supports wireless communication. Any kind of sensor

devices can be connected to OpenBrick devices through their USB, serial and parallel

ports. The devices support Linux, which enables the use of all kinds of open source

software for sensing and other activities. These added hardware facilities coupled with

192.168.10.1

192.168.10.2 192.168.10.3 192.168.10.4 192.168.10.5

Base Station
OpenBrick 1

24 Port Switch
192.168.11.1

192.168.11.10

OpenBrick 2 OpenBrick 3 OpenBrick 4 OpenBrick 5

OpenBrick 8 OpenBrick 7 OpenBrick 6

Wired Network:
192.168.11.0
Wireless Network:
192.168.10.0

192.168.10.8 192.168.10.7 192.168.10.6

 43

the support for Linux make the OpenBrick device a very suitable match to test our

software reconfiguration approach.

3.3 Software Infrastructure

The OpenBrick devices use Red Hat Linux 9 operating system with 2.4.20 kernel

while the base station uses the Windows XP Professional operating system.

The communication between the OpenBrick devices occurs by exchanging data

packets through datagram sockets using the User Datagram Protocol (UDP). The

reconfiguration software and the applications generate UDP packets and route them to the

destination using the Internet Protocol (IP). However, simple UDP sockets are not

enough to carry out the communication over the entire wireless network. A node cannot

send a message to another one outside its wireless range. This problem can be resolved

by using a routing protocol that maintains route tables. The protocol refers to these tables

and relays the packets through intermediate nodes before they reach the destination.

An implementation of the Ad hoc On Demand Distance Vector (AODV) [18]

routing algorithm, a routing protocol for ad hoc mobile networks, provided by the

National Institute of Standards and Technology (NIST) [33] is installed on each

OpenBrick device. This enables the formation of a multi-hop ad hoc sensor network

comprising of the eight OpenBrick devices. AODV is a method of routing messages

between mobile computers. It allows these mobile computers, or nodes, to pass messages

through their neighbors to nodes with which they cannot directly communicate. AODV

does this by discovering the routes along which messages can be passed. AODV makes

sure these routes do not contain loops and tries to find the shortest route possible. AODV

 44

is also able to handle changes in routes and can create new routes if there is an error. The

AODV program is configured to work only on the wireless network. This keeps the

communication channel between the base station and the first OpenBrick device open

through the wired 802.3 Ethernet connection.

An open source program for detecting motion is also installed on each OpenBrick

device. This software, called Motion [34], captures frames from the webcams at a set

frequency using Video for Linux (v4l) drivers. Subsequent images are then subtracted

from each other and if the resultant frame contains non-zero values for some pixels, it

indicates motion. Our application uses a modified version of this software where the

frames captured every time cycle are compared to a background frame rather than the

previous frame. The images captured by using the v4l drivers from the Logitec Quickcam

webcam are in the YUV420P [35] format. For the purpose of detecting motion, the

software just uses the Y or the Brightness value of the image. Y ranges from 16 to 235 or

full brightness.

 45

CHAPTER IV

RECONFIGURATION ARCHITECTURE

Sensor networks, typically deployed in inaccessible environments, are vulnerable

to failure due to the dynamic nature of their target environments and their own resource

limitations. However, the composition of these networks, which includes numerous

collaborating sensors nodes, can be used to address these problems. If some sensor nodes

become disabled, their neighboring nodes can be made to take up their responsibilities.

Similarly, if too many nodes become redundant, some of them can be suspended, thus

adding to the saving of precious resources. This dynamic behavior of the sensor networks

can be achieved by reconfiguring the software components executing on each individual

sensors.

This chapter describes the proposed approach for performing dynamic software

reconfiguration in sensor networks. The first section of this chapter describes the problem

of software reconfiguration. The second section states the approach in detail for carrying

out software reconfiguration in sensor networks. The third section defines the scope of

the reconfiguration architecture.

4.1 Software Reconfiguration Problem

Sensor networks are often required to operate in inaccessible and dynamic

environments that impose varying functional and performance requirements. This

accentuates the need for software systems that can adapt to new conditions by

reconfiguring themselves by detecting internal and external changes to the system and

 46

reflecting on the event occurrences. Ad hoc wireless sensor networks, in particular, must

be designed with adaptation capabilities that enable them to handle a multitude of

operating conditions. However, reconfiguration in such systems presents significant

challenges because of the severe constraints in energy, computation, and communication

resources. Computation intensive processes like choosing new configurations of

components from a large design space cannot be performed on the individual sensors.

Runtime technologies that allow software to evolve as system requirements and/or its

environment change are critical to the development and deployment of such systems [16].

4.2 Proposed Solution

This thesis presents an approach for building self-adaptive sensor networks based

on Model-Integrated Computing [37]. This approach utilizes explicit models of the

design space of the embedded application. The design space is captured by formally

modeling all the software components and their interactions that together constitute an

application. The modeling of the application is based on the Asynchronous Data Flow

model of computation [28]. Components interact with each other only when exchanging

information through input and output ports. System requirements are expressed as formal

constraints on operational parameters such as power consumption, latency, accuracy, and

other QoS properties that are measured at runtime. These constraints are expressed in the

Object Constraint Language (OCL) [38]. The constraints and models are embedded in the

running application forming the operation space of the system. Reconfiguration is the

process of transitioning from one point of the operation space to another [16].

 47

Finding the components to be included in a new configuration can be considered a

search problem in the operation space. The exploration of the operation space is a

challenging problem since it must be performed within stringent time bounds and

resource constraints. An efficient approach for performing this search is based on (1)

parameterized constraints captured in the embedded models, and (2) online constraint

solving using a combination of symbolic constraint satisfaction and linear programming.

Once a new configuration that satisfies all the constraints is found, the reconfiguration

can be accomplished by online software synthesis targeting either an interpreted language

or a command interface.

Reconfiguration thus involves two major tasks – (1) finding the new configuration

and (2) switching or reconfiguring the components that are actually executing on the

individual sensors. The first task is performed by a controller that runs on the base station

while the second task is performed on individual sensors by specialized switching

components. The reconfiguration architecture is displayed in Figure 10.

During design time, the entire application is modeled in the Generic Modeling

Environment (GME). The Sensor Network Reconfigurable Applications Modeling

Language (SNRAMoLa) for component based sensor network applications supports the

modeling of alternate implementations of the same components and explicit

representation of constraints in OCL. A series of critical QoS parameters are also

modeled as attributes to individual components. Our models include the ‘power’

attribute. The constraints are resolved over these attributes by the DEsign Space

ExploRation Tool (DESERT) and valid configurations of the application are generated.

SNRAMoLa is described in detail in Chapter 5.

 48

Base Station
Design Space
Representation SNRAMoLa

Model

DESERT

Figure 10 - Reconfiguration Architecture

Conf File N

Configuration

File 1

Global Constraint
Monitor

OpenBrick N

OpenBrick 2
OpenBrick 1

Monitor

Configurator

Vector QoS
Parameters

Design
Configuration

Reconfiguration

Aislemonitor

 49

During run-time, upon detecting failure, the Global Constraint Monitor (GCM)

(located on the base station) updates the values of the critical QoS attributes in the

application models. A change in the values of the attributes invokes the reconfiguration

process.

During reconfiguration, the first task of finding a new configuration is performed

by a controller program executing on the base station. The SNRAMoLa models of the

application, which include all application components and associated constraints, form

the design space for selecting the valid configurations of the application. A valid

configuration includes all those components from the SNRAMoLa models that satisfy all

the constraints. The design space exploration tool, DESERT [36] (described in Chapter

2), evaluates the constraints and selects an appropriate configuration by pruning the

design space. DESERT performs this task by applying these constraints on specific QoS

attributes associated with the components. In our case, DESERT prunes the design space

based on the value of the power attribute in each component. This power attribute reflects

the power available on each node. The output of DESERT is used in the generation of a

set of configuration files, one for each sensor. The reconfiguration process then involves

sending the new configuration files to the individual OpenBrick devices over the ad hoc

wireless network.

The second task is performed by the Configurator component executing on

individual OpenBrick devices. It reads from the new configuration file sent by the base

station and, stops, rewires or starts active or dormant application components already

present on the sensor nodes. In addition to the Configurator, the Monitor components

executing on each device, monitor the health of the network. These communicate with

 50

the GCM component executing on the base station in case of failure in the network. The

GCM in turn updates the critical attributes like power in the application model, which

invokes the reconfiguration process. The Configurator, Monitor and GCM are described

in Chatper 7.

4.3 Main Contribution

The main contributions of this thesis include:

1. A modeling environment called SNRAMoLa developed in GME used for modeling

component based sensor network applications.

2. An interpreter that converts SNRAMoLa models to DESERT input.

3. An interpreter that generates configuration files using SNRAMoLa models and

DESERT output.

4. A software reconfiguration agent called Configurator that switches components

executing on the sensor nodes.

5. A program called Packet Forwarder that relays messages between the sensor nodes

and the base station.

6. Monitoring components that monitor the health of the sensor network and

communicate node failures to the base-station.

7. A program called the Global Constraint Monitor (GCM) that updates the QoS

parameters in the SNRAMoLa models upon receipt of node failure messages from

the Monitors on the sensor nodes.

8. The Aislemonitor application for tracking people walking in an aisle. The

application is used for evaluating the software reconfiguration architecture.

 51

CHAPTER V

MODELING RECONFIGURABLE SENSOR NETWORK APPLICATIONS

The representation of multiple software components that perform various tasks in

an application along with their interactions poses a significant challenge to software

engineers. Such a representation is vital for carrying out software reconfiguration to

understand the current status of the application executing on multiple sensor nodes.

Textual representation of such applications is error-prone and of little use in managing

the complexity of the application. Even in the simplest scenario a more expressive

representation of application components and the interconnections between them using

modeling tools can help users avoid errors and help others understand the application.

With more complex components this becomes an absolute requirement. Model Integrated

Computing [37] in general and the Generic Modeling Environment (GME) in particular

can meet these challenges [16].

This chapter presents a modeling paradigm for representing reconfigurable sensor

network applications in the Generic Modeling Environment. The first section of the

chapter describes this modeling paradigm in detail. The second section describes the

modeling of a simple sensor network configuration using the Aislemonitor application

described in Chapter 6. The third section describes the modeling of an application with

multiple configurations. It also includes example models of the Aislemonitor application

described in Chapter 6.

 52

5.1 Sensor Network Reconfigurable Applications Modeling Language (SNRAMoLa)

The paradigm for modeling component based reconfigurable software systems

has been developed in the Generic Modeling Environment (GME). Figure 11 shows the

meta-model for the Sensor Network Reconfigurable Applications Modeling Language

(SNRAMoLa). This modeling paradigm is based on the Asynchronous Data Flow

(ASDF) model of computation [28].

Component based software systems are comprised of a number of software

components interacting with each other. Such applications can be intuitively modeled as

graphs. Individual components are represented as nodes while their interactions as arcs in

the graph. Two nodes in the graph are connected if they interact with each other. The

components are connected through input-output objects called ports.

ASDF is a special case of data flow, a hardware and software methodology

popular for representing parallel computation. Under the data flow paradigm, algorithms

are described as directed graphs where the nodes represent computations (or functions)

and the arcs represent data paths. The data flow principle is that any node can fire

(perform its computation) whenever input data is available on its incoming arcs. A node

with no input arcs may fire at any time. This implies that many nodes may fire

simultaneously, and hence also represents concurrency.

In this thesis, Component based sensor network applications are designed as a

group of independent processes communicating with each other using inter-process

communication directives and constructs. This kind of software architecture enables the

dynamic switching of components executing in the application. Such applications can be

easily represented in the ASDF model of computation. The use of ASDF allows the

 53

mapping of the sensor network application onto an ASDF graph such that each node in

the graph represents a process and the arcs connecting two nodes represent the inter-

process communication. The processes in the application, like the nodes in the ASDF

model, are also data driven and fire only when they receive data from another process.

The processes that are not connected to any other process may fire at any time as in the

ASDF model.

SNRAMoLa enables the user to represent sensor network applications in the form

of a graph. This application graph is composed of components that exchange data through

ports. The core concepts in the modeling language are Component-s, InPort-s, OutPort-s,

DataFlow connections, Choice-s and Condition-s (described later in this section). The

Sensor and SensorFolder objects contain the application graph, which is composed of the

core objects. The ComponentsFolder object contains all the non-reconfigurable

Component objects. Non-reconfigurable Component objects cannot be replaced by any

other components in the application by DESERT during the reconfiguration process and

are always included in the application configuration.

 54

Figure 11 - SNRAMoLa Meta Model

5.1.1 SensorFolder

Each SNRAMoLa application model contains exactly one SensorFolder object.

The SensorFolder acts as a container for all the Sensor objects, which model sensor

devices, in our case, OpenBrick devices.

5.1.2 ComponentsFolder

Each SNRAMoLa application model contains exactly one ComponentsFolder

object. This object contains all the non-reconfigurable Component objects that are

included in the application. The components are then only referred in the actual

application graph built in the Sensor objects. Typically, in a sensor network application,

most sensors will have the same application components executing on them and not all

components will need to be replaced during reconfiguration. Many of the components

 55

included in the application configuration will be non-reconfigurable. This modeling

feature removes the duplicate declaration of common components, which are always

included in all the configurations on each Sensor.

5.1.3 Sensor

Separate Sensor objects for each sensor are declared inside the SensorFolder

object. Sensor objects represent the actual sensor nodes in the sensor network. In our

case, each Sensor object represents an OpenBrick device. This modeling feature enables

the user to model different applications (applications composed of different components)

for different sensors in the network. The graphs for the application executing on each

sensor are then built inside these Sensor objects. The application graph is composed of

the core Component, Choice and Condition objects.

5.1.4 Component

A Component object in SNRAMoLa represents a separate process in the

application executing on the sensor devices. Components may contain InPort(s) and

OutPort(s) objects if they exchange data with other Components in the application. These

ports are used to pass messages between components. A Component is reconfigurable if

it can be replaced by another Component in the application graph during the

reconfiguration process and is non-reconfigurable if it is irreplaceable in the application

graph. Non-reconfigurable components are declared in the ComponentsFolder folder

object and referenced in the application graph built on individual Sensor objects while

reconfigurable components are declared in the Choice objects, which form containers for

 56

alternative Components. Each Component object also has an attribute called ‘Path’ which

identifies the physical path of the executable that is invoked when starting the

Component. This attribute is used by the Configurator component on the individual

OpenBrick devices to execute the corresponding process represented by that Component.

5.1.5 InPort

An InPort object in SNRAMoLa represents an input port of a Component object.

It is declared inside a Component object and used to accept data from another Component

object. This functionality is implemented in the reconfiguration software infrastructure

using shared memory. A Component object can have any number of InPort objects but

each InPort object can be connected to at most one corresponding OutPort object

declared inside another Component or Choice object using the DataFlow connection

object.

5.1.6 OutPort

An Outport object in SNRAMoLa represents an output port of a Component

object. It is also declared inside a Component or Choice object and used to send data to

another Component object. This functionality is implemented by the reconfiguration

software infrastructure using shared memory. A component can have any number of

OutPort objects but each OutPort object can be connected to at most one corresponding

InPort object, declared inside another Component object, using the DataFlow connection

object.

 57

5.1.7 DataFlow

A DataFlow object is a connection object that links an output port of a

Component object represented by an OutPort object with an input port another

Component object represented by an InPort object. It models the Asynchronous flow of

data from one application component to another. The DataFlow object along with the

InPort and OutPort objects is implemented by reconfiguration software infrastructure

using shared memory.

5.1.8 Choice

As the name suggests, a Choice object facilitates the user to model reconfigurable

or mutually replaceable Component objects in the application graph. At any given

instance, only one process from the collection of processes represented by the

Component objects declared in a given Choice object actually executes in an application.

A Choice object also contains a Condition object, which specifies the condition expressed

in OCL in its Expression attribute. During the reconfiguration process, DESERT

evaluates all the constraints modeled as Condition objects over all the Component objects

declared in the respective Choice objects and selects only one Component object to be

included in the final application graph from each Choice object. DESERT does this

selection based on the value of the Power attribute of the Component objects.

5.1.9 Condition

Each Choice object contains at least one Condition object that specifies a

constraint expressed in OCL. During the reconfiguration process, this constraint is

 58

evaluated by DESERT over the collection of reconfigurable Component objects also

contained in the same Choice object and only those Component objects that satisfy the

constraints are selected for inclusion in the final application graph. The Condition object

has an attribute called Expression, which is used to express the constraint in OCL.

The SNRAMoLa paradigm enables the user to model complex component based

sensor network applications in a more intuitive manner. The communication links

between various components are clearly expressed using the InPort, OutPort and

DataFlow objects. The paradigm enables the user to model components that can be

replaced by others during runtime along with the constraints that govern the selection of

the appropriate components from the collection of alternatives. Using SNRAMoLa, the

user can visualize the applications executing on individual sensor nodes along with all the

active and passive components of the application and maintain different versions of the

application on individual sensors if needed.

 59

5.2 Modeling of Single Configuration

An application with only one valid configuration can be modeled in SNRAMoLa

using only Component(s) and DataFlow objects. Such a model does not contain any

Choice and reconfigurable Component objects. The application graph of such an

application contains all the Component objects declared in the model. The interactions

between Components are modeled as DataFlow objects connecting their OutPort objects

with their InPort object. All the Component objects are declared in the

ComponentsFolder and referred to in the application graph built in the Sensor objects. In

single configuration applications, there is no need for reconfiguration as only non-

reconfigurable components are actually used in the application.

W 2

W 1

W 3

W 4

Figure 12 - SNRAMoLa Model of Aislemonitor with Single Configuration

 60

Figure 12 shows the SNRAMoLa model of the Aislemonitor (described in chapter

6) application with a single configuration. As shown in the figure, the application graph

built in a Sensor object displayed in Window 1 (W1) consists of four Component objects

- Receiver, ImageSensor, Estimator and DataCollector. The Receiver and the

ImageSensor send data to the Estimator and the Estimator sends data to the DataCollector

through their respective OutPort objects (described in Chapter 6). The attributes of the

Estimator Component are shown in W4. The ‘Path’ attribute of the Estimator specifies

the physical location of the executable of the process represented by the Estimator

Component on the OpenBrick device. W2 displays all the modeled objects. The

ComponentsFolder object contains all the non-reconfigurable components, in this case,

all the three components. The SensorFolder object contains all the Sensor objects

identified by their IP addresses in the network. The components declared in the

ComponentsFolder object are referenced in the application graph, displayed in W1. W3

displays the modeling components that can be defined in W1. In this case, Choice and

Component_reference objects can be defined on the Sensor object, but since this a single

configuration application, only Component_reference objects are defined. The InPort and

OutPort objects are declared as shown in Figure 13.

 61

Figure 13 - Declaration of InPort and OutPort Objects in Estimator Component

 62

5.3 Modeling of Multiple Configurations

Applications with multiple configurations can be modeled in SNRAMoLa using

Choice, Condition and reconfigurable Component objects. Each Choice object contains

Component objects that can be replaced by other Components declared in it. The

Condition object, also present in the Choice object, governs the selection of the proper

Component based on the constraints expressed in its ‘Expression’ attribute. The rest of

the model is similar to that of an application with a single configuration. Reconfigurable

components are encapsulated into Choice objects, which are included in the application

graph.

Figure 14 - SNRAMoLa Model of Aislemonitor with Multiple Configurations

 63

Figure 14 shows the SNRAMoLa model of the Aislemonitor application. It shows

Choice objects EstimatorChoice and DataCollectorChoice in place of the Estimator and

DataCollector Component objects as shown in the model for a single configuration.

Figure 15 - Estimator1, Estimator2 and EstimatorCondition in EstimatorChoice Object

 64

The EstimatorChoice and DataCollectorChoice objects contain Estimator1 and

Estimator2 and DataCollector1, DataCollector2 Components, respectively, along with the

Condition objects EstimatorCondition and DataCollectorCondition as shown in Figure

15.

The OCL expression in the EstimatorCondition object, “self.Power()<4”, is

evaluated by DESERT during the reconfiguration process and the Component with the

‘Power’ property value less than 4 is chosen in the returned configuration. Thus in this

example Estimator 1 will be selected as its Power attribute value is 0. The attribute value

for Estimator 2 is 5. The choice of the Component objects to be included in the final

application graph can be governed by changing their ‘Power’ attribute values, which is

what the Global Constraint Monitor does.

5.4 Component Based Applications Architecture

The previous sections presented a modeling paradigm for representing

reconfigurable sensor network applications in the Generic Modeling Environment. It

utilizes the modeling constructs of Components and DataFlow connections to accurately

represent the components of an application along with their interactions. However, just

the representation of applications in user friendly models is of little consequence if these

models are not used to generate useful output. SNRAMoLa models are used to generate

configuration scripts. A configuration script indicates which components are actually

included in an application and which are not. It also includes the information about the

interaction between the included components. The software engineering architecture

enables the dynamic switching of processes according to the configuration script.

 65

The proposed approach suggests that software reconfiguration for adaptive

software systems should be a simple switch in the executing components. However, to

achieve this switch, one should be able to turn the required components ‘off’ and turn

their replacements ‘on’ during runtime. This can be achieved if the components do not

belong to the same compiled executable. This led to the implementation of each

component as a separate process.

Having mapped a component to a process, the next step was to build a software

reconfiguration architecture (explained in Chapter 7) to manipulate these processes.

SNRAMoLa models of the application represent inter-component communication

through input and output ports and DataFlow connections. These connections can be

implemented using inter-process communication constructs. Shared Memory is an

efficient means of passing data between programs. The software reconfiguration

architecture creates a memory block for each connection, and the source and the

destination processes just connect to it. The source and destination processes use pointers

to access the shared memory to read and write data. The names of these pointers directly

map to the names of the input and output ports in the SNRAMoLa models. After

considering the use of pipes, signals, and semaphores in the implementation, shared

memory was chosen as it was efficient, easier to manage and fit well with the modeling

language in the reconfiguration architecture.

Though the present implementation assumes offline installation of all the

components on each sensor node, it can be easily extended to accept installation of new

processes online, without affecting the executing application, and then reconfiguring the

application to include the new process.

 66

CHAPTER VI

AISLEMONITOR SENSOR NETWORK APPLICATION

Aislemonitor is a sensor network application developed to perform one-

dimensional tracking of people walking in an aisle. This application is deployed on the

sensor network testbed described in Chapter 3 and is used for evaluating our software

reconfiguration approach. A copy of the application is installed on each OpenBrick

devices. The application is composed of components for motion detection, tracking, data

recording, and communication. There are two implementations of the tracking and data

recording components. Though all the components are installed on each OpenBrick

device, not all of them execute at the same time. The components that execute together

form a configuration of the application.

One such configuration of the application includes components that just track the

people within the range of individual OpenBrick devices. Another configuration of the

application includes components that, in addition to tracking people within range, can

also predict the position of the people in the range of the neighboring OpenBrick device.

A change in the network configuration caused by disabling one OpenBrick device creates

a gap in the sensing range of the network. This gap can be filled by switching the

components executing on the neighboring OpenBrick device by those that can predict the

position of the people in the range of the disabled device. The functioning of the

proposed reconfiguration infrastructure is demonstrated by dynamically switching

components of the Aislemonitor application upon detecting failure in the neighboring

 67

OpenBrick device. The new configuration of the application facilitates the tracking of

people within range of the disabled device.

The first section of this chapter describes the configuration of the Aislemonitor

application which includes components that track people in the range of only their host

OpenBrick devices. The second section describes the configuration that includes

components, which in addition to tracking people in their own range, can also track

people in the range of neighboring OpenBrick devices. The third section describes all the

components of the Aislemonitor application.

 68

6.1 Aislemonitor Application – Configuration 1

Configuration 1 of the Aislemonitor application includes only those components

that can track people within the range of their host OpenBrick devices. This configuration

is executed on all the OpenBrick devices whose right neighbors are active. Figure 16

shows the operational setup for this application. The sensor network comprising the eight

OpenBrick devices is deployed in the aisle as shown in the Figure 16. The collective

range of the sensor network is 37 feet. The OpenBrick devices are kept equidistant from

each other along a straight line in the aisle so that the ranges of their webcams overlap.

Region of
Range Overlap

Figure 16 - Aislemonitor Setup

The application tracks people walking in an aisle by using the webcams and

estimating their position in the aisle. When a person moves from the range of one device

37 feet

OpenBrick DeviceAisle

Aislemonitor Setup

Individual
Sensor Range

 69

to another, or in the range of overlap (area within the range of two consecutive

webcams), the device communicates with its neighbor and hands over the tracking of that

person to the neighbor. The components included in this configuration of Aislemonitor

are Receiver, ImageSensor, Estimator1 and DataCollector1 (described in section 6.3).

6.2 Aislemonitor Application – Configuration 2

The second configuration of the Aislemonitor application is executed on the

OpenBrick device when its right neighbor shuts down. The failure of one OpenBrick

device causes a hole in the sensing range of the network. The components of the

neighboring OpenBrick devices then take over the prediction of the people in this range

by predicting their position.

Gap in Sensing Range

Disabled OpenBrick Device

Figure 17 Aislemonitor Configuration 2 – Gap in the range

37 feet

GAP

Individual
Sensor Range

 70

Figure 17 displays the hole caused in the sensing range of the network. When the

second OpenBrick device in the network shuts down, a gap is created between the first

and the third OpenBrick devices. This gap is reduced by reconfiguring the application

executing on the first OpenBrick device. The new configuration includes the same

Receiver and ImageSensor components also included in the first configuration. However,

during reconfiguration, the Estimator1 and DataCollector1 components are dynamically

replaced by the Estimator2 and DataCollector2 (explained in section 6.3) components.

The Receiver and the ImageSensor components continue to execute even during

reconfiguration. Only the Estimator1 and DataCollector1 components are stopped and

their alternatives are started. The second configuration of the Aislemonitor is able to

predict the position of people in the range of a disabled OpenBrick device if that device is

the right neighbor of the host device.

6.3 Components of the Aislemonitor Application

The Aislemonitor application is composed of six components called ImageSensor,

Receiver, Estimator1, Esitmator2, DataCollector and DataCollector2, which

communicate with each other through shared memory to exchange data. Estimator1 and

Estimator2 are reconfigurable components and only one of them executes on the

OpenBrick device at any given time. The same holds true for the DataCollector1 or

DataCollect2 components. The SNRAMoLa model of this application is shown in

Chapter 5. Though all the six components are installed on all the OpenBrick devices, at a

time, only four of them execute on the devices. Estimator1 and DataCollector1 execute

together and Estimator2 and DataCollector2 execute together. Figure 18 shows the

 71

functional graph of the Aislemonitor application. As shown in the figure, data flows from

the Receiver and ImageSensor components to the Estimator1 or Estimator2 components

and from there to the DataCollector1 or DataCollector2 components, respectively,

through the specified ports.

Figure 18 - Aislemonitor Functional Graph

Aislemonitor Functional Graph
OutPort

Receiver

6.3.1 ImageSensor

The ImageSensor component is an extension of the motion detection software –

Motion [34]. Motion compares images captured using the webcam with a background

image of the aisle at a set frequency and raises an event for ‘motion detected’ if the

difference between the two images is more than the set threshold. The ImageSensor

component then calculates the center of mass of the person in the image. The component

then sends this value to the Estimator component, which uses a Kalman filter to estimate

the correct position on the person in the aisle. The ImageSensor only works in situations

where there is only one person in the field view of its webcam at any given time. The

Estimator1/2

DataCollector1/2

 Data Flow InPort

ImageSensor

 72

Aislemonitor application assumes that only one person can be in the range of a particular

webcam at any given time. There could be more people in the range of the whole network

at the same time, but not within range of the same OpenBrick device.

6.3.1.1 Calibration

Before deploying the application, each webcam is calibrated offline. This involves

the mapping of each pixel in the image onto the actual aisle. As we are only interested in

the position of the person in the aisle in the horizontal direction and not in his/her height,

we only map the pixel at the x coordinate of the center of mass of the person in the image

to the aisle. If Mx is the x coordinate of the center of mass in the image (in pixels), then

the real x coordinate of the person in the aisle, Rx (in inches) is:

Rx = Mx * (right_range_limit – left_range_limit) / image_width;

The variables right_range_limit and left_range_limit are the ranges of the webcams in the

right and left directions respectively. Their units are in inches. The width of the image is

specified in image_width and its unit is pixels. We have set the width of the image to 160

pixels and the right_range_limit and left_range_limit vary from camera to camera. The

unit of the real x coordinate Rx is inches. For example, if the ImageSensor calculates the

x coordinate of the center of mass as 15, and the left range of the webcam is 0 inches,

while the right range is 75 inches, then the position of the person in the aisle can be

calculated as Rx = 15 * (75 – 0) / 160 = 7.03 inches.

 73

6.3.1.2 Initialization

During initialization, the ImageSensor starts the webcam and stores a background

image of the aisle in the variable background_image.

unsigned char *background_image;
background_image=malloc(image_size);

//Initialize video capture device – webcam
device = vid_start(image_width,image_height);

//Capture background image
background_image=vid_next(image_width,image_height);

All images are captured as unsigned character array frames using Video for Linux (v4l)

drivers. After initialization, the ImageSensor goes into an infinite loop and performs the

activities of (1) capturing new images, (2) calculating center of mass if motion is

detected, (3) performing the calibration mapping and (4) passing the value returned to the

Estimator at the set frequency.

6.3.1.3 Image Difference

After initialization, the ImageSensor captures images from the webcam at a set

frequency. We have set the frequency at four frames per second. This value was chosen

to minimize the energy lost in computations during iterations while maintaining the

tracking capability of the application. During every iteration, the ImageSensor subtracts

the new image from the background image, which is stored in the variable

background_image during initialization. The result obtained is stored in the variable

difference_image.

difference_Image = |background_image – new_image|;

 74

The images obtained from the webcams are in the YUV420P format. For the

purpose of detecting motion, only the Y values or brightness of the image are taken into

consideration. The subtraction of the new image from the background image causes only

the differences between the two images to be highlighted. The difference image displayed

in Figure 19 highlights the pixels that are different from those in the background image.

The image clearly shows a person walking in the aisle.

Difference Image

Center Of Mass MDifference Image

Figure 19 - Difference Image

Mx
X Axis

 0, 0

Y Axis

My

 75

6.3.1.4 Center of Mass Calculation

If the number of pixels that have changed in the new image is greater than the set

threshold, the ImageSensor generates an event for ‘motion detected’ and calculates the

center of mass of the image in terms of brightness.

;
),(

),(

1 1

1 1

∑

∑
=

= =

= =

∑

∑
imagewidth

x

timageheigh

y

imagewidth

x

timageheigh

y

yxM

yxMX
Mx

Mx is the x coordinate of the center of mass M in the image and M(x,y) is the

intensity of the pixel at coordinates (x, y) in the difference image.

6.3.1.5 Calibration mapping

The ImageSensor then maps the x coordinate of the center of mass Mx from the

difference image to the actual location on the aisle. The value Rx returned after the

mapping is the relative position of the person in the aisle in inches from the left range

limit of the webcam.

Rx = Mx * (right_range_limit – left_range_limit) / image_width;

6.3.1.6 Communication with Estimator

The ImageSensor component has one output port called ‘OutPort’. This port is

connected to the input port called ‘Sen’ of the Estimator component (shown in Chapter 5,

Figure 12). After the mapping of the center of mass in the image to the actual image, the

 76

value returned is passed to the Estimator component using shared memory where it is

used by the Kalman Filter [30] to estimate the correct position of the person in the aisle.

6.3.2 Receiver

The Receiver component receives data packets from neighboring OpenBrick

devices. If the data contains the position of the person entering the range of the host

OpenBrick device, the Receiver passes on the data to the Estimator component through

its ‘OutPort’ output port. The output port of the Receiver is connected to the ‘Rec’ input

port of the Estimator by shared memory (Chapter 5, Figure 12).

6.3.2.1 Initialization

During initialization, the Receiver component opens up a port which listens for

messages coming from the neighboring OpenBrick devices. The Receiver component

then goes into an infinite loop to continuously listen for new incoming messages. When it

receives a new message, it interprets it and then goes back to listening.

6.3.2.2 Runtime Operation

When a person enters the range of overlap between two OpenBrick devices, the

device whose range the person is about to exit, sends a message to its neighbor in whose

range the person is about to enter. This message contains the position and speed

(explained in the next section) of the person. When the Receiver component receives this

data from its neighbors, it passes the data to the Estimator (Estimator1 or Estimator 2)

component through its output port. This data is then used by the Estimator to initialize the

Kalman Filter (explained in the next section).

 77

6.3.3 Estimator1

The Estimator1 (referred to as Estimator in this section) component implements a

Kalman Filter [30], which takes the value passed by the ImageSensor component as input

to calculate the position of the person in the aisle. The Estimator component has two

input ports called ‘Rec’ and ‘Sen’. These ports are connected to the Receiver and

ImageSensor components respectively. The Kalman Filter implemented in this

component acts on the data passed by the Receiver and ImageSensor components.

6.3.3.1 Initialization of Kalman Filter

During runtime, the Kalman Filter is initialized every time a neighboring

OpenBrick device hands over the tracking of a person exiting from its range and entering

the range of the host OpenBrick or when a new person walks into the range of the host

OpenBrick and the Kalman Filter has not already been initialized. In the first case, the

Estimator1 uses the values of position and speed passed by the Receiver component to

initialize the Kalman Filter, while in the second case, the Estimator uses the position

value passed by the ImageSensor and a constant for the speed in the initialization of the

Kalman Filter. The default value for speed was measured and set at 16 inches per second.

if(Data received from ImageSensor)
{
 //Constant = 16 inches/second.

Kalman_Initialize(position,Constant);
}
else if(Data received from Receiver)
{

Kalman_Initialize(position-left_range_limit,speed);
//position indicates actual position in aisle relative to
//start of aisle.
//position and speed obtained from neighboring OpenBrick through
//Receiver component.

}

 78

6.3.3.2 Using the Kalman Filter

We consider the system dynamic equations for one dimensional tracking in the

aisle:

nn

nnn

xx
Txxx

&&

&

=
+=

+

+

1

1

In reality, the person will not move with a constant speed for all the time as indicated by

the above equations. To model the uncertainty in the person’s speed, the equations are

modified with the addition of a random noise to the person’s speed. This gives rise to

the following stochastic model:

nu

nnn

nnn

uxx
Txxx

+=
+=

+

+

&&

&

1

1

The observation equation links the actual data to the measured data : nx ny

 , where is the measurement noise. nnn vxy += nv

The same equations in matrix form are expressed as follows:

nnn UXX +Θ=+1

where is the state vector, nX Θ is the state transition matrix and is the system noise

vector.

nU

The observation equation in matrix form is:

nnn VMXY +=

where is the measurement vector, M is the observation matrix and is the

observation noise vector.

nY nV

 79

The system dynamic equations of the stochastic model along with the observation

equation give rise to the following matrices:

⎥
⎦

⎤
⎢
⎣

⎡
=

n

n
n x

x
X

&
 , , . ⎥

⎦

⎤
⎢
⎣

⎡
=Θ

10
1 T

⎥
⎦

⎤
⎢
⎣

⎡
=

n
n u

U
0

[]nn yY = , , []01=M []nn vV =

The Kalman gain is calculated using the equation: nK

[] 1
1,1,

−∗
−

∗
− += T

nnn
T

nnn MMSRMSK

where = and []nn UCOVQ = ⎥
⎦

⎤
⎢
⎣

⎡
20

00

uσ
[]nn VCOVR = = 2

vσ

The state transition or prediction equation becomes:

∗∗
+ Θ= nnnn XX ,,1

The track update or filtering equation becomes:

)(1,1,,
∗

−
∗

−
∗ −+= nnnnnnnn MXYKXX

If the Estimator receives initialization data from the Receiver, the state vector is

initialized using the position and speed values passed by the neighboring OpenBrick

device:

⎥
⎦

⎤
⎢
⎣

⎡
== ∗

− speed
position

XX 1,00

If the Estimator gets position value from the ImageSensor and the Kalman Filter has not

been initialized, then the state vector is initialized as:

⎥
⎦

⎤
⎢
⎣

⎡
== ∗

− C
position

XX 1,00

where C is a constant set to 16 inches per second.

 80

The Covariance matrix is initialized as: ∗
−1,nnS

⎥
⎦

⎤
⎢
⎣

⎡
== ∗

− 2

2

1,00 0
0

u

uSS
σ

σ

Given , M, , , n = 0,1,….., and , the Kalman Filter can be used

to calculate estimated position of the person along the aisle by repeating the following

steps for n = 0, 1, …. These steps are performed each time the Estimator receives the

position of the person in field of view of the host OpenBrick device from the

ImageSensor component. This value is nothing but the measured data .

Θ nR nQ ∗
−1,0X ∗

−1,0S

nY

(a) Compute Kalman Gain using the Formula:

 [] 1
1,1,

−∗
−

∗
− += T

nnn
T

nnn MMSRMSK

(b) Measure and update estimate using update equation: nY

)(1,1,,
∗

−
∗

−
∗ −+= nnnnnnnn MXYKXX

(c) Compute covariance of smoothed estimate:

[] ∗
−

∗ −= 1,, nnnnn SMKIS

(d) Predict using state transition equation:

∗∗
+ Θ= nnnn XX ,,1

(e) Compute Predictor Covariance

 1,,1 +
∗∗

+ +ΘΘ= n
T

nnnn QSS

The final estimated value is obtained from the vector . This value is taken as

the final position of the person in the aisle. Its unit is in inches. It is added to the left

range limit of the Estimator and passed on to the DataCollector1 component for further

∗
+ nnX ,1

 81

processing. The left range limit for a particular OpenBrick is specified in the

configuration file of application. Its value is dependent on the physical location of the

OpenBrick in the sensor network. Thus the Estimator Component passes the position of

the person relative to the start of the aisle to the DataCollector1 component.

6.3.4 DataCollector1

The DataCollector1 component receives the actual position of the person in the

aisle from the Estimator1 component through shared memory and either records the value

in a file as data or sends messages to the neighboring OpenBrick to hand over tracking of

that person to its Estimator1. The DataCollector has one input port called ‘Est’ through

which it receives this data (Chapter 5, Figure 12). The DataCollector component

performs the following tasks:

1. If the person is walking from left to right and his/her position is in the range of

overlap with its right neighbor, then the value is sent to the right neighboring

OpenBrick device through the wireless network to hand off the tracking of that

person to the right OpenBrick device.

2. If the person is walking from right to left and his/her position is in the range of

overlap with its left neighbor, then the value is sent to the left neighboring

OpenBrick device to hand off the tracking of that person to the left OpenBrick

device if it is not disabled.

3. If however, the person is in the range of the current Openbrick device, then the

value is saved in a file for reporting.

 82

6.3.5 Estimator2

 The Estimator2 component is similar to the Estimator1 component described in

section in 6.3.3. However, in addition to tracking people in its own range, Estimator2 also

predicts the positions of the people going from its range to the range of a neighboring

Openbrick device. The Estimator2 component implements the Kalman Filter in exactly

the same manner as Estimator1. However, in addition to the Kalman Filter, Estimator2

also implements a predictor function that is activated once the person enters the range of

the right neighboring OpenBrick device which is assumed to be disabled when

Estimator2 is executing. The predictor function continues to predict the position of the

person till the person remains in the range of the disabled device using the equation;

∗∗
+ Θ= nnnn XX ,,1

If(person in range of host OpenBrick)
{

Use Kalman Filter to estimate position;
Pass Value returned by Kalman Filter to DataCollector2;

}
else if(person entering range of disabled OpenBrick device)
{

Estimated_Position = Predictor(Estimated_Position);
If(Estimated_Position<(right_range_limit+(right_range_limit-

left_range_limit)))
 Pass Estimated_Position to DataCollector2;
Else
 Stop Estimating;

}

Function Predictor(float position)
{
 return (position + Sampling_Rate * Speed);
}

The values for Sampling_Rate and Speed used in the Predictor function are

obtained from the variables used by the Kalman filter. Estimator2 sends all its data to the

DataCollector2 component through shared memory. This data includes the estimations of

 83

the position calculated by the Kalman Filter as well as the position calculated by the

Predictor function.

6.3.6 DataCollector2

The DataCollector2 component is also similar to the DataCollector1 component.

The DataCollector2 component receives the actual position or the predicted position of

the person in the aisle from the Estimator2 component through shared memory and either

records the value in a file as data or sends messages to the neighboring OpenBrick to

hand over tracking of that person to its Estimator component. The DataCollector2 has one

input port called ‘Est’ through which it receives this data. The DataCollector2 component

performs the following activities:

1. If the person is walking from left to right and his/her position is in the range of

overlap with its right neighbor, which is disabled, or beyond its own right range

limit, the value is recorded by the DataCollector2 component in a file with the

suffix “ESTIMATE”.

2. If the person is walking from right to left and his/her position is in the range of

overlap with its left neighbor, then the value is sent to the left neighboring

OpenBrick device to hand off the tracking of that person to the left OpenBrick

device.

3. If however, the person is in the range of the current Openbrick device, then the

value is saved in the file for reporting.

 84

During experiments, the configuration of the Aislemonitor application executing

on nodes adjacent to the disabled OpenBrick device is dynamically changed from the first

to the second. Initially the ImageSensor, Receiver, Estimator1 and DataCollector1

components are made to execute on all the OpenBrick devices. One of the OpenBrick

devices is then shut down. This triggers reconfiguration of the OpenBrick device located

to the left of the device that has been disabled. Reconfiguration involves just switching

the Estimator1 and DataCollector1 components with the Estimator2 and DataCollector2

components and the ‘re-wiring’ of all the shared memory between all the components.

The ImageSensor and Receiver components are not affected by the reconfiguration. They

only reconnect their ports to the newly started components.

 85

CHAPTER VII

SOFTWARE INFRASTRUCTURE FOR RECONFIGURATION

The software reconfiguration process occurs at both the base station and the

sensor nodes. During the design phase, the applications are modeled in the SNRAMoLa

modeling paradigm on the base station. Once the application is deployed the tasks of

design space exploration, communication of the configuration to the sensors, monitoring

the sensors and updating QoS parameters in the models are performed in a cyclical

manner. The software infrastructure required to perform these tasks consists of

components that execute on the base station as well as on individual OpenBrick devices.

All applications using this infrastructure are based on the Asynchronous Data Flow

model of computation.

As shown in Figure 10 (Chapter 4) the reconfiguration architecture consists of the

modeling environment SNRAMoLa, which enables the user to model components along

with their alternatives and associated constraints in GME. During the reconfiguration

process, the application model is converted to a format acceptable to the design space

exploration tool DESERT by the SNRAMoLa to DESERT Interpreter. The converted

data is fed to DESERT as an XML file. DESERT reads from the file, applies the

constraints present in the model and generates another XML file. The DESERT to

Configurator interpreter then uses the output generated by DESERT and the SNRAMoLa

model of the application to generate a configuration file for each Sensor object present in

the SNRAMoLa model. Each Sensor object in SNRAMoLa represents an OpenBrick

 86

device in our example. The configuration files list out all the components that are to be

activated on the sensor and also the connections between the ports of the components.

Each configuration file is broken down into UDP packets and then sent to the

OpenBrick device connected to the base station by the controller application running on

the base station. A forwarding program called Packet Forwarder on that OpenBrick

device forwards the packets to the corresponding OpenBrick devices over the ad hoc

wireless network.

The Configurator program executing on each OpenBrick device receives the

configuration file and carries out the actual reconfiguration by stopping, starting and re-

wiring application components on the OpenBrick device.

During initialization, each process establishes a connection with the Configurator

using shared memory. This connection is used by the Configurator to send

reconfiguration commands to the processes. The connection with the Configurator is

established using the Communicator component, which is part of the software

infrastructure and invoked by each process during initialization.

Monitor components perform the task of monitoring the health of the sensor

network. The Monitor executes on each sensor and communicates with the Global

Constraint Monitor executing on the base station. The Global Constraint Monitor updates

the attribute values for critical QoS parameters such as power in the SNRAMoLa

Component models. A change in the value of these attributes drives the Controller

program which starts the reconfiguration process on the base station.

The next sections of the chapter explain the different components of the software

reconfiguration architecture. The first section explains the Controller program followed

 87

by the SNRAMoLa to DESERT interpreter. Section 7.3 explains the DESERT to

Configurator interpreter. Section 7.4 explains the layout of the Configuration files passed

by the Controller to the Configurator, Section 7.5 explains the Packet Forwarder and

Section 7.6 explains the Configurator. Section 7.7 explains the Communicator component

while Sections 7.8 and 7.9 explain the Monitor and the GCM components respectively.

7.1 Controller Program

The controller program performs the reconfiguration process on the base station.

It is invoked by the Global Constraint Monitor after it updates the values of the QoS

attributes in the SNRAMoLa application model.

The controller program first invokes the SNRAMoLa to DESERT interpreter

which converts the SNRAMoLa models into a format compatible with DESERT input

and saves the model as an XML file. The controller then invokes DESERT which takes

the XML file saved by the controller and evaluates the constraints on the model using

Ordered Binary Decision Diagrams [39]. Upon resolving the constraints, DESERT

generates another XML file which contains a binding of each OR-Decomposed node in

the AND/OR decision tree with one of its children. The controller then invokes the

DESERT to Configurator interpreter which takes the DESERT output along with the

SNRAMoLa model to produce a configuration file for each Sensor object declared in the

SNRAMoLa model.

The controller then sends all the configuration files as UDP packets to the Packet

Forwarder program, which executes on the OpenBrick device connected to the base

station by a wired connection. The Packet Forwarder relays the UDP packets to the

 88

respective OpenBricks over the ad hoc wireless network. After sending all the files, the

controller sends the “RECONFIGURE” control signal to the Packet Forwarder which

again relays it to the respective OpenBricks. The controller addresses the packets to the

Packet Forwarder using the IP address and Port number specified in the SenNet.conf

configuration file.

Each data packet sent to the Packet Forwarder contains a header, which includes

the destination IP Address and listening Port number. The listening Port number is

obtained from the SenNet.conf configuration file during initialization while the IP

address of the destination OpenBrick device is specified in the SNRAMoLa model as the

name of the Sensor object. Example control signals sent to the Packet Forwarder are

shown in the following window.

“192.168.10.2:4952:CONFNO 2
COMPONENT /usr/local/component1/component1
COMPONENT /usr/local/component2/component2
LINK /usr/local/component1/component1 OutPort
/usr/local/component2/component2 InPort”

“192.168.10.2:4952:RECONFIGURE”

“192.168.10.3:4952:STOP”

7.2 SNRAMoLa to DESERT Interpreter

The SNRAMoLa to DESERT Interpreter converts the SNRAMoLa application

model to a format compatible with DESERT by building an AND-OR tree whose node

elements map directly to the objects modeled in SNRAMoLa.

The design space for an application modeled in SNRAMoLa can be formally

defined as follows. A SNRAMoLa model is a tuple Ra ()CTg , , where is the set of

SNRAMoLa Conditions, and is a tree

C

gT ()EN , . The vertex set of is the set of N gT

 89

SNRAMoLa objects declared in the modeled application (i.e. SensorFolder, Sensors,

Components and Choices). The directed edge set E of represents containment

relation between the modeling elements.

gT

() () Evveiffvchildrenv
Nvv

∈=∃∈
∈∀

2112

21

,
,

(1)

where is the set of objects contained in an object n . SNRAMoLa objects are

defined as , , and as disjoint set of objects of type

SensorFolder, Components, Choices, and Sensors respectively. The SensorFolder set Sf is

a singular set and is always mapped as the root of the AND-OR tree. A Choice exhibits

OR-decomposition semantics, while a SensorFolder and Sensors exhibit AND-

decomposition semantics. SNRAMoLa Components are characterized with properties,

over which the constraints expressed in the Condition objects are evaluated. An example

of such a property is the power available to a particular Component.

)(nchildren

NSf ⊂ NCmp ⊂ NCh ⊂ NSen ⊂

A DESERT Constraint Cc∈ is a tuple ()ctxcons, , where is the constraint

expression, written in a variant of OCL, and

cons

Nctx∈ , is the context of the constraint

(referred to using the OCL keyword ‘self’ in the constraint expression) The SNRAMoLa

model is mapped onto a single DESERT Space. The bijection maps

from objects in to elements in DESERT, where S is the set of DESERT elements. The

following holds under this mapping:

SNDesRa ↔:2

Ra

() ()()2121

21

22)(
,

vDesRavDesRavchildrenv
Nvv

χ∈⇔∈
∈∀

(2)

 90

The decomposition attribute of a DESERT element is defined as follow:

⎪
⎩

⎪
⎨

⎧

∈
∈

∈
=

∈∀

−

−

−

ChdeDesRafalse
SendeDesRa
SfdeDesRa

true
true

deiondecomposit

Sde

)(2
)(2
)(2

)(
1

1

1

(3)

The mapping of SNRAMoLa Conditions to DESERT involves the mapping of the

SNRAMoLa Condition context onto its projection element under the bijection.

The properties of SNRAMoLa Components are mapped to properties in the

corresponding DESERT element, with the values appropriately associated. Once the

mapping from SNRAMoLa onto DESERT is complete for an application, DESERT

prunes and explores the design space.

DesRa2

The nodes of the Desert Space have a direct mapping to the Sensor, Choice and

Component objects from the application model. The root of the Space always maps to the

SensorFolder object in the SNRAMoLa model. The children of the root node in the Space

represent the Sensor objects from the SNRAMoLa model. The children of each of these

nodes represent non-reconfigurable Component objects and Choice objects. The nodes

representing the non-reconfigurable Components are leaf nodes and do not have any

children. The children of the nodes mapping to the Choice objects represent

reconfigurable Component objects declared in the Choice objects in the SNRAMoLa

application models. The Condition objects are included in the DESERT Space as

Constraints with their Context associated with the OR-decomposed nodes, which map to

the Choice objects. The SNRAMoLa to DESERT interpreter performs this mapping when

 91

invoked by the controller program and generates an XML file, which is fed to DESERT

as input.

7.3 DESERT to Configurator Interpreter

A DESERT output configuration contains a binding for each OR-decomposed

element in the DESERT Space to a direct child of that element. The binding represents

the resolution of the design choice represented by the OR-decomposition. The resulting

configuration file has all design decisions resolved. All the Choice objects in

SNRAMoLa which map onto the OR-decomposed elements in DESERT are resolved by

the DESERT pruning process and bound to reconfigurable Component objects declared

inside them, which map to the child elements of the OR-decomposed elements in

DESERT.

The DESERT to Configurator Interpreter reads from the SNRAMoLa model file

(an .mga file) and the DESERT output file (an .xml file) and creates individual

configuration files for each Sensor object declared in the SNRAMoLa model. These

configuration files are identified by the IP addresses assigned to the OpenBrick devices

which are also the names identifying the Sensor objects in the SNRAMoLa model.

For each Sensor object in the SNRAMoLa model, the interpreter first updates the

configuration number in the corresponding configuration file. If a file does not exist, then

a file is created with the configuration number value equated to 1. The interpreter then

writes to the file the paths of all the Components declared or referred to in the Sensor

objects. For each Choice object in the SNRAMoLa model, the interpreter refers to the

corresponding OR-decomposed element in the output file generated by DESERT and

 92

writes the path of the Component object, referred to by the child of the OR-decomposed

element bound to it, to the file.

After traversing through all the Component objects, the interpreter goes through

all the DataFlow connections declared in the SNRAMoLa model. Each DataFlow

connection connects the OutPort object of a Component with the InPort object of another

and signifies the asynchronous flow of data between the components. These connections

are written to the configuration file as Links along with their source and destination

Component object name and port information. These configuration files are then

physically transported to the respective OpenBrick devices over the wireless network by

the controller program.

7.4 Configuration Files

The DESERT to Configurator Interpreter generates a configuration file for each

Sensor object declared in the SNRAMoLa model of the application. An example

Configuration file is shown in the following window.

CONFNO 1
COMPONENT /root/sachin/aislemonitor/receiver/receiver
COMPONENT /usr/local/motion/estimator
COMPONENT /root/sachin/aislemonitor/application/datacollector
LINK /root/sachin/aislemonitor/receiver/receiver OutPort
/usr/local/motion/motion InPort
LINK /usr/local/motion/motion OutPort
/root/sachin/aislemonitor/application/datacollector InPort
END

The first line of the file always contains the configuration number which indicates

the number of times the OpenBrick device has been reconfigured. It is incremented each

time the file is updated. The file then contains the individual Components that are

included in the application graph after the resolution of the constraints by DESERT using

 93

the keyword ‘COMPONENT’. The Components are identified by the path of the

executable that is invoked to start them on the OpenBrick device. This information is

included in the Path attribute of the Component object in the SNRAMoLa model. The

lines beginning with the keyword ‘LINK’ represent the DataFlow connections from the

SNRAMoLa models. The LINKs are identified by the string composed of the Path in the

source Component object, the name of the OutPort object on the source Component

object, the Path in the destination Component object and the name of the InPort object on

the destination Component object.

7.5 Packet Forwarder

The Packet Forwarder component executes on the OpenBrick device connected to

the base station by a wired 802.3 Ethernet connection. The Packet Forwarder is just a

relaying program that receives messages coming from the base station and sends them

over to the destination OpenBrick devices over the ad-hoc wireless network. The

incoming messages include the destination IP address and the listening port number of

the destination OpenBrick devices. The Packet Forwarder obtains the destination IP

address and port from the incoming message and sends only the message text minus the

addressing information to the destination OpenBrick devices. The Packet Forwarder also

acts as a relaying program when messages are sent to the base station by the OpenBrick

devices. It performs the same activity, except sends the message in the opposite direction.

In our testbed, the base station was connected to one OpenBrick device through a wired

LAN connection. However, this is not a requirement of the software infrastructure. If a

wireless enabled base station is placed in the wireless range of one of the sensor nodes, it

 94

can directly communicate with each Sensor node over the ad hoc sensor network and will

not need the Packet Forwarder.

7.6 Configurator

The Configurator is the most important component of the software

reconfiguration infrastructure. A copy of the Configurator executes on all the sensor

devices. The Configurator implements the reconfiguration infrastructure by maintaining

two link-list data structures and a memory ID counter.

7.6.1 Process Data Structure

The Processes link-list stores information about all the processes that are currently

executing on the OpenBrick device and is composed of Process structures. When a new

component is added in the configuration file, the Configurator adds a new Process

structure to the Processes link-list before executing it. One Process structure element in

the Processes link-list represents one process running on the OpenBrick. The Process

structure is shown in the following window.

Struct Process
{
 int configuration_no;
 p_id process_id;
 char process_name[200];
 int shared_memory_id;
 char *shared_memory_pointer;

 struct Process *next;
};

Each element in the Processes link-list stores the configuration number of the

process, the process ID of the process, the name of the process which is read from the

configuration file, the memory ID of the shared memory used by the Configurator to

 95

communicate with the process and the pointer to this shared memory. The configuration

number just identifies the current configuration of the process.

The Configurator program uses shared memory to communicate with each

process. The information stored in the Processes link-list is used by the Configurator to

communicate reconfiguration commands to individual processes. When a Configurator

needs to send a message to a process, (1) it gets the record for that process from the

Processes link-list using the process name, (2) writes the message to the shared memory

using the memory pointer and (3) then signals the process to read the shared memory by

using the process ID in the UNIX kill command. The Configurator interrupts application

processes using the kill command by signaling them to interpret the reconfiguration

commands.

7.6.2 Link Data Structure

The Links link-list stores all the information about the shared memory that is used

to pass data between two processes. The Links link-list is composed of Link structure

elements. Each element in the Links link-list is identified by the memory name, which is

just a concatenation of the names of the two processes that it connects. In addition to the

name of the link, each element of the link-list stores the configuration number, memory

ID, a pointer to the shared memory, a pointer to the source process, a pointer to the

destination process, the name of the OutPort object and the name of the InPort object.

The Link structure is displayed on the following page.

 96

Struct Link
{
 char link_name[200];
 int configuration_no;
 int shared_memory_id;
 char * shared_memory_pointer;

 struct Process *source_process;
 char outport_name[100];

 struct Process *destination_process;
 char inport_name[100];

 struct Link *next;
}

The Configurator maintains a memory ID counter that is incremented every time

it allocates a new shared memory. This memory ID is passed as an argument to the

processes during initialization and reconfiguration using which the processes ‘rewire’ to

connect to the appropriate shared memory. The pointer to the shared memory points to

the allocated memory chunk that is used by both the source and destination processes to

exchange information. The pointer to the source process points to the Process structure

element in the Processes link-list which is the source of the Data Flow connection and the

pointer to the destination process points to the element in the Processes link-list which is

the destination of the Data Flow connection. Each Link structure also stores the names of

the OutPort and the InPort objects of the source and the destination process respectively.

The Configurator does not write to the shared memory pointed to by the Link structures

but creates and maintains it so that the source and destination processes can just connect

to it to exchange information.

 97

7.6.3 Flow of Control

During initialization, the Configurator opens a socket to listen for incoming

signals from the base station. After initialization, the Configurator goes in an infinite loop

where it continues to listen for new messages on the open port coming from the base

station. Upon receiving a message, it performs reconfiguration activities and then goes

back to listening for new messages. The Configurator once started, can be stopped only

by sending a STOPLISTENING signal to its listening port. The messages received by the

Configurator can be classified into four types – new configuration file, FILERECEIVED

command, STOPLISTENING command and RECONFIGURE command. The

Configurator follows the following algorithm:

1. Listen for incoming message;

2. IF data is received, copy it to the variable called message;

IF ((STOPLISTENING || FILERECEIVED || RECONFIGURE) NOT IN
message)
GO TO step 3;
ELSE GO TO step 4;

3. If Configurator receives a message which does not contain any of the three

commands, it assumes the message to be a new configuration file. If the

configuration file is too big, it is broken down and sent using multiple packets

by the Controller program at the base station.

IF(message == first packet received)
Create a new configurator.conf file and write the message to

the file;
ELSE
Open the existing configurator.conf file and append the

message to the file;

CLOSE(configurator.conf);
GOTO step 1;

 98

4. The command string FILERECEIVED indicates the end of the configuration

file. If the Configurator receives another message that does not match with

any of the commands, then it considers this as the beginning of a new

configuration file.

IF (message==FILERECEIVED) {
Set flags such that the next message which does not contain

the command words {FILERECEIVED, STOPLISTENING, RECONFIGURE)
is taken as the first packet of a new file;
GOTO step 1;
}
ELSE
 GOTO step 5;

5. Upon receipt of the STOPLISTENING command from the base station, the

Configurator sends a STOP control signal to all executing processes of the

application using the information stored in the Processes link-list, closes its

own listen port, frees all allocated memory for the link-lists and the shared

memories, exits out of the infinite loop and terminates.

IF (message == STOPLISTENING) {
 FOR EACH Process IN Processes Link-List {
 WRITE (“Stop”, Process shared_memory);
 Kill (Process process_ID, SIGUSR1);
 }
 FREE (Processes link-list);
 FREE (Links link-list);
 GOTO step ;
}
ELSE
 GOTO step 6;

6. The RECONFIGURE command triggers the reconfiguration process of the

Configurator. Upon receipt of this command, the Configurator reads from the

configuration file, configurator.conf, which is also received from the base

station. If the configuration number of the file is different than the one from

the previous file, the Configurator reads the file sequentially; else it goes back

 99

in the listening mode. The configuration number is identified by the CONFNO

attribute in the configuration file.

IF (new_configuration_filenumber ==
old_configuration_filenumber) {
CLOSE configuration.conf file;
GOTO step 1;

}
ELSE
GOTO step 7;

7. Read from the configuration.conf file and copy the data to the File_Word

variable.

int link_flag=0;
IF (File_Word==COMPONENT) GOTO step 8;
ELSE IF (File_Word==LINK) {
IF(link_flag==0) {
Link_flag=1;
GOTO step 9;

}
ELSE
GOTO step 10;

}
ELSE IF (File_Word==END) {
IF(link_flag==0) GOTO step 9;
ELSE
{
CLOSE (configurator.conf);
GOTO step 1;

}
}

8. For each COMPONENT keyword present in the file, the Configurator reads

the component path identifying the process into the variable ‘process_path’.

The Configurator then checks if the corresponding process is already

executing on the OpenBrick by looking it up in the Processes link-list. If the

process is found, the Configurator just updates its configuration number by the

CONFNO value. If the process is not found then the Configurator adds the

process name/path to a temporary string array ‘process_names’.

 100

Struct Process new_process IS NULL;
IF (new_process = PROCESS_EXISTS(process_path) {
new_process configuration_no = new_configuration_no;

ELSE {
 COPY(process_path, process_names);
GOTO Step 7;

9. On reading the first LINK keyword or the END keyword from the file, the

Configurator traverses through the Processes link-list and for each process

element whose configuration number is not equal to CONFNO, it sends the

control command STOP to the corresponding process using the shared

memory and the process ID and then deletes that element from the Processes

link-list. The receipt of the STOP command from the Configurator causes the

process to terminate. After switching off all the processes that are not included

in the new configuration file in this manner, the Configurator goes through the

temporary string array, which stores the names/paths of the new processes.

For each element in this array, the Configurator adds a new Process element to

the Processes link-list and executes the new process using the UNIX exec

command and the path obtained from the configuration file. The Configurator

passes the memory ID and the process name or path as command line

parameters to the new process, which it uses to connect to the shared memory

used by the Configurator to send control signals.

 101

FOR EACH Process IN Processes
{
 IF(Process configuration_no < new_configuration_no)
 {
 WRITE(“STOP”,Process shared_memory);
 Kill(Process process_ID,SIGUSR1);
 }
}
FOR EACH process_name IN process_names
{
 Struct Process *new_process=NULL;
 Allocate memory for new_process;
new_process.process_name=process_name;
//process_name obtained from configuration file
Allocate Shared memory;

 ADD_ELEMENT(Processes, new_process);
 execlp(new_process.process_name, new_process.process_name,
new_process.shared_memory_ID)
}
IF(link_flag==1)
 GOTO step 10;
ELSE {
 CLOSE(configurator.conf);
 GOTO step 1;
}

10. After switching on new processes, the Configurator traverses through the list

of links in the configuration file. For each LINK in the configuration file, the

Configurator reads its corresponding name in the ‘link_name’ variable and

then checks if it already exists in the Links link-list. If the record is found, the

Configurator just updates its configuration number. If no such link exists, the

Configurator adds a new Link element to the Links link-list, allocates

memory, points the shared memory pointer in the new Link structure to the

allocated memory, and initiates all the other fields in the Link structure. Each

Link element in the Links link-list is identified by a name, which is formed by

concatenating the names of the source and the destination processes. After

adding a new element to the link-list, the Configurator communicates with

both the source process and the destination process using the shared memory

 102

accessible through their respective records in the Processes link-list. The

Configurator sends message 1 to the source process over the shared memory

and sends message 2 to the destination process over the shared memory. The

messages are shown below.

1]
LINK:memoryID:OutPortName:SourceProcessID:DestinationProcessID

2]
LINK:memoryID:InPortName:SourceProcessID:DestinationProcessID

Struct Link *new_link IS NULL;
IF (new_link = LINK_EXISTS(link_name) {
new_link configuration_no = new_configuration_no;

ELSE {
 Allocate memory for new_link;
new_link.link_name=link_name;
//link_name obtained from configuration file
Allocate Shared memory;

 ADD_ELEMENT(Links, new_link);
 WRITE(new_link source_process shared_memory,”
LINK:memoryID:OutPortName:SourceProcessID:DestinationProcessI
D”);
 Kill(new_link source_process process_id,SIGUSR1);
 WRITE(new_link destination_process shared_memory,”
LINK:memoryID:InPortName:SourceProcessID:DestinationProcessID
”);
Kill(new_link destination_process process_id,SIGUSR1);

}
GOTO Step 7;

The processes use the Communicator component to interpret the control

commands received from the Configurator.

 103

7.7 Communicator

The Communicator component consists of a library of functions that enable

individual processes to communicate amongst themselves and with the Configurator. The

Communicator is included in every process executing on the OpenBrick.

The Configurator communicates with a process by writing the control message on

the shared memory and then by signaling the process using its process ID and the UNIX

kill command. The Configurator uses the SIGUSR1 signal to interrupt the receiving

process. Communication between two processes also occurs along similar lines. The

sending process writes the data to the shared memory and then signals the receiving

process using its process ID and the UNIX kill command. However, in inter-process

communication, the sending process uses the SIGUSR2 signal to interrupt the receiving

process. Communication between processes is modeled using Data Flow connections and

input and output ports represented by InPort and OutPort objects in the SNRAMoLa

model. The communication between the process and the Configurator is not modeled in

SNRAMoLa and is part of the software infrastructure.

7.7.1 Connection Data Structure

The Communicator implements the communication between the process and the

Configurator using shared memory. The Communicator component maintains a

Connection data structure which stores the name of the link connecting the process to the

Configurator, memory ID and a pointer to the shared memory which is used to actually

pass the data. This link is not modeled in SNRAMoLa as it is not a part of the

application.

 104

Struct Connection
{
 char connection_name[200];
 int configuration_no;
 int shared_memory_id;
 char * shared_memory_pointer;

 p_id source_process_id;
 p_id destination_process_id;

 struct Connection *next;
{

7.7.2 Communicator Initialization

During initialization, the main function of the process invokes the

Communicator_init method implemented in the Communicator component. This

initializes the Connection data structure. The name of the Connection data structure is set

to the name of the process and the memory ID is set to the memory ID, both passed as a

command line argument to the process by the Configurator. The Communicator uses this

memory ID to point the pointer to the correct shared memory which is already allocated

and maintained by the Configurator in its Processes link-list.

In addition to maintaining the Connection data structure, the Configurator also

implements a signal handler function to handle the SIGUSR1 signal. When the process is

interrupted by the Configurator using the SIGUSR1 signal, the signal handler function is

invoked and it interprets the data sent by the Configurator after reading it from the shared

memory. Upon receiving the STOP message from the Configurator, the signal handler

terminates the executing process by issuing the kill SIGKILL command.

 105

7.7.3 Connections link-list

In addition to the single Connection data structure, the Communicator also

maintains a link-list of the Connection data structure called the Connections link-list.

This list maintains information about all the ports of the process. These ports directly

map to the InPort and OutPort objects modeled in the SNRAMoLa model of the

corresponding Component object and are used by the processes to exchange information.

Each Connection element in the link-list stores the name of the port, memory ID, a

pointer to the shared memory, the process ID of the source process and the process ID of

the destination process. The name of the port is used as the unique identifier of the

element in the link-list. The port name is the same as the name of the corresponding

InPort or OutPort object in the SNRAMoLa model. The communication between two

processes is modeled using OutPort, InPort and Data Flow objects in the SNRAMoLa

model. It is implemented using shared memory and the Connection structures in the

actual processes.

7.7.4 Communicator Algorithm

The Communicator is not a separate process like the Configurator. It initializes

when the process is invoked by the configurator and then stays dormant. The

Communicator performs the following tasks when interrupted by the Configurator using

the SIGUSR1 signal.

Upon receiving the –

‘LINK:memoryID:PortName:SourceProcessID:DestinationProcessID’

message followed by the SIGUSR1 interrupt signal from the Configurator, the signal

handler function searches the Connections link-list for an element with its port name

 106

matching the PortName passed by the Configurator. If such an element is found, it

indicates a port by the same name already exists but is currently linked with some other

shared memory. The Communicator then disconnects the port from the shared memory

and connects it to the shared memory identified by the memoryID sent by the

Configurator. The Communicator also updates the source process ID and the destination

process ID fields of the element. If an element with same port name is not found in the

Connections link-list, the Communicator adds a new element to the link-list and updates

all its fields with the values sent by the Communicator.

Upon receiving the – ‘STOP’ message from the Configurator, the Communicator

terminates the current process by issuing the kill (my_process_id, SIGKILL)

UNIX command.

When a process wants to send a message to another process, it gets the required

Connection element from its Connections link-list using the port name. The port name

used by the Communicator is the same as the name of the corresponding OutPort object

in the SNRAMoLa model. The process utilizes the pointer stored in the Connection

element to write the data to the shared memory. The process then utilizes the destination

process ID stored in the Connection element along with the UNIX kill command and

SIGUSR2 signal to interrupt the destination process.

If a process has any InPorts objects, it should always implement a signal handler

function for the SIGUSR2 signal. This function is invoked upon receiving a SIGUSR2

interrupt from another process. The function should go through all the Connection

elements in the Connections link-list and for each matching InPort object of the process,

read the data from the shared memory.

 107

The Communicator thus implements all the Data Flow connections modeled in

the SNRAMoLa model and can change the connections dynamically upon receiving such

a command from the Configurator.

7.8 Monitor

The Monitor components execute on each OpenBrick device and monitor the

health of the sensor network. For the purpose of this experiment, the Monitor is

integrated with the application. Each Monitor monitors the health of its right neighboring

OpenBrick device. The left and right neighbors are specified in the aislemonitor.conf file.

The Monitor is implemented using a simple algorithm in which each OpenBrick device

sends a beacon message to its left neighbor every few seconds (10 seconds). If an

OpenBrick device does not receive a message from its right neighbor for a fixed amount

of time, it sends a message to the Packet Forwarder which relays it to the GCM on the

base station and informs it that the right neighbor has failed. The packet sent to the

Packet Forwarder contains the following message:

‘BaseIP:BasePort:DOWN:RightNodeIP:SelfIP’

The Packet Forwarder strips the message of the BaseIP and the BasePort and uses that

information to relay the remainder of the message to the GCM.

7.9 Global Constraint Monitor (GCM)

The GCM updates the QoS parameters like power in the SNRAMoLa models of

the application and then invokes the Controller program, which performs the

reconfiguration process on the base station. The GCM executes on the base station and

receives messages from the Packet Forwarder. If a particular OpenBrick device fails to

 108

send the beacon messages to its left neighbor, the left neighbor sends a message to the

GCM. The format of the message is described in the previous paragraph. The GCM then

toggles the values of the power attributes of the Components declared in the Choice

objects in the SNRAMoLa model of the application for the Sensor object identified by

the SelfIP part of the message or the sender OpenBrick device. After updating the

power attribute, the GCM invokes the Controller program which carries out the entire

reconfiguration process on the base station and then sends the new configuration files to

the OpenBrick devices where the actual reconfiguration takes place with the switching of

the executing processes.

 109

CHAPTER VIII

EXPERIMENTS AND RESULTS

A series of experiments were performed to evaluate the Aislemonitor application

(described in Chapter 6) and the software reconfiguration infrastructure (described in

Chapter 7). These tests were designed to highlight the need for software reconfiguration

and its application using our infrastructure.

This chapter describes all the experiments that were carried out. The first section

describes the test cases that were used in the evaluation. The next section analyzes the

results of the tests and the final section provides a summary of the results.

8.1 Test Case Design

Multiple tests involving people walking in the aisle in groups of one, two and

three were performed. The tests were designed to record the position and speed of the

people walking in the aisle along with the time. Data was recorded on all the OpenBrick

devices and was later integrated and plotted to generate graphs indicating the movement

of the people in the aisle.

The tests that involved more than one person walking in the aisle were designed

such that at any given time, more than one person was in the range of the sensor network

for some interval of time but never in the range of the same OpenBrick device. Care was

taken to keep only person in the range of an OpenBrick device at any given time.

In order to measure the time required for reconfiguration of components, the

timestamps at various instances in the reconfiguration process were recorded.

 110

8.2 Evaluation of Configuration 1 of Aislemonitor Application

The Tests 1 – 3 were used to evaluate the first configuration of the Aislemonitor

application. The first configuration of Aislemonitor (described in Chapter 6) was

deployed on all the OpenBrick devices. The first configuration includes components that

can only detect and track a person in the range of the host OpenBrick device.

8.2.1 Configuration 1 Tests

1. Test 1 involved two people with one person walking from left to right along the

entire length of the aisle followed by two people walking back.

2. Test 2 involved two people with two people walking from left to right followed

by one person walking from right to left.

3. Test 3 involved three people walking from left to right along the entire length of

the aisle and only two people coming back.

8.2.2 Configuration 1 Results

The results of the tests for evaluating the first configuration are plotted in the

graph shown in Figure 20. The x axis in the graph represents the time at which the

readings were taken. The y axis represents the position of people in inches from the start

of the aisle, where the first OpenBrick device is located. Figure 20 shows the positions

for the two people tracked by the application. P1-LR and P2-LR indicate persons 1 and 2

walking from left to right in the aisle one after the other. The second person enters the

range of the sensor network before the first person moves out of it. P1-RL indicates the

first person walking from the right to the left in the aisle. The graph indicates an almost

 111

linear curve for each person walking in the aisle. This indicates a near constant speed

used by the people while walking.

0
50

100
150
200
250
300
350
400
450
500

0.000 5.000 10.000 15.000 20.000 25.000 30.000 35.000

Time (seconds)

Di
st

an
ce

 (i
nc

he
s)

P1-LR P2-LR P1-RL

 Figure 20 – Aislemonitor Configuration 1 results

8.3 Evaluation of Configuration 2 of Aislemonitor Application

Tests 4 and 5 were designed to evaluate the second configuration of the

Aislemonitor application. After the third test, the fourth OpenBrick device was switched

off. This triggered software reconfiguration on the third OpenBrick device. The second

configuration includes components that in addition to tracking people in their own range,

can also track people in the range of the right neighboring OpenBrick device. These tests

were aimed at generating some ‘prediction’ data in the range of the disabled OpenBrick

device.

 112

8.3.1 Configuration 2 Tests

1. Test 4 involved one person walking from left to right and then coming back.

2. Test 5 involved two people walking from left to right and then coming back.

8.3.2 Configuration 2 Results

The results of the tests evaluating the second configuration are plotted in the

graphs shown in Figures 21 and 22. During the tests, the fourth OpenBrick device was

turned off. The second configuration of the Aislemonitor application was then

dynamically deployed on the third device to predict the position of the person in the

range of the fourth device. Figure 21 displays the graph generated by plotting the position

readings from the third and the fifth OpenBrick devices with no prediction capability in

the third device. The gap created in the sensing range as result of this is clearly seen.

0

50

100

150

200

250

300

350

0.000 1.000 2.000 3.000 4.000

Time (seconds)

Di
st

an
ce

 (i
nc

he
s)

OpenBrick3
OpenBrick5

Figure 21 – “Gap” in Sensing Range

 113

Figure 22 displays the same graph, but this graph also includes the prediction

readings from the third OpenBrick device. The figure shows the gap filled in by the

predicted values of the person in the gap by the third OpenBrick device.

0

50

100

150

200

250

300

350

0.000 1.000 2.000 3.000 4.000

Time (seconds)

D
is

ta
nc

e
(in

ch
es

)

OpenBrick3
OpenBrick5
Prediction

Figure 22 – “Gap” in Sensing Range Filled by Prediction

8.4 Tests Demonstrating need for Software Reconfiguration

Tests 6 and 7 were performed to demonstrate the need for performing software

reconfiguration. In these tests, the fourth OpenBrick devices was shut down and software

reconfiguration was not performed on the third OpenBrick. This created a sensing ‘gap’

in the network. All the devices executed the first configuration of the Aislemonitor

application.

 114

8.4.1 Tests

1. Test 6 involved one person walking from left to right and then coming back.

2. Test 7 involved two people walking from left to right along the aisle and then

coming back.

8.4.2 Results

Tests 6 and 7 were performed to demonstrate the usefulness of the reconfiguration

architecture. The gap created in the sensing range of the sensor network due to the failure

of one of the OpenBrick device can be reduced significantly by dynamically

reconfiguring the components executing on the neighboring OpenBrick devices. Figure

23 displays the comparisons of all the tests.

0
50

100
150
200
250
300
350
400
450
500

0.000 2.000 4.000 6.000 8.000 10.000 12.000 14.000

Time (seconds)

Di
st

an
ce

 (i
nc

he
s)

Configuration 1 Sensing Gap Configuration2

Figure 23 – Comparison of Tracking Algorithms

 115

The line representing ‘Configuration 1’ indicates a person walking from left to

right with all the devices working. The line representing ‘Sensing Gap’ highlights the

sensing gap generated when there is no reconfiguration. The line representing

‘Configuration 2’ indicates the person walking when the fourth OpenBrick device has

been disabled and the third OpenBrick device is executing the second configuration.

8.5 Evaluation of the Software Reconfiguration Architecture

The dynamic switching of components executing on the third OpenBrick device

after the disabling of the fourth OpenBrick was evaluated by recording the times at which

various reconfiguration activities took place. The time required for the whole

reconfiguration process was of particular interest. During the tests, time was recorded

when (1) the Monitor on the third node sent a message to the GCM, which triggered the

reconfiguration process, (2) new configuration files were sent by the base station to the

third OpenBrick device, (3) configuration files were received by the Configurator on the

third device, (4) reconfiguration commenced on the third device, and (5) reconfiguration

was completed.

The Configurator on the third OpenBrick device carried out dynamic software

reconfiguration. After the fourth OpenBrick device was disabled, the Monitor on the third

device waited for an interval of 10 seconds before sending a message to the GCM on the

base station. This waiting period was set during the initialization of the application. When

a message was received by the GCM, it updated the SNRAMoLa models of the

application and invoked the controller program. The Controller program performed

software reconfiguration on the base station and exited after sending the new

 116

configuration files to the OpenBrick devices. The reconfiguration process from the

receipt of message from the OpenBrick to the dispatch of a new configuration file to it

took 10 seconds. The Configurator upon receipt of a new configuration file performed the

actual software reconfiguration on the third OpenBrick device. This process took another

8 seconds. The total reconfiguration process took 28 seconds, if the time required for

fault detection is also considered. If it is not considered, then the actual reconfiguration

process took only 18 seconds. The results of the experiments are summarized in Table 1.

Table 1 – Time required for software reconfiguration

Reconfiguration
Component

Location Time
(seconds)

Monitor OpenBrick 10
GCM and Controller Base Station 10
Configurator OpenBrick 8
Total Time 28
Total Reconfiguration Time 18

8.6 Summary

The experiments carried out for evaluation of the software reconfiguration

architecture produced satisfactory results. They adequately demonstrated the need for

software reconfiguration in sensor network applications. Our software reconfiguration

architecture performed the dynamic software reconfiguration in just 28 seconds. Though

this number is dependent on the number of components that will be ultimately switched

and rewired, it is still a very small number when compared with the amount of effort and

time needed if this activity is performed manually. The software infrastructure allows the

selective switching of components. This feature of the infrastructure allows the dynamic

replacement of some components with others without affecting the entire application.

 117

CHAPTER IX

DYNAMIC SOFTWARE RECONFIGURATION IN MOTES BASED SENSOR

NETWORKS

This approach for dynamic reconfiguration in sensor networks was also

demonstrated using results obtained from simulations of Aislemonitor on the Berkeley

MICA motes platform using TOSSIM [12] [16]. Reconfiguration was performed by a

controller that was executed on a base station. The approach for software reconfiguration

was based on Model Integrated Computing. The authors in [16] presented a modeling

paradigm for TinyOS applications that supported the representation of alternative

implementations of the same components along with explicit representation of

constraints. The design space exploration tool (DESERT) was then used to evaluate the

constraints based on measurements of the power available at each node and select an

appropriate configuration. Once the next configuration was selected, the reconfiguration

process involved stopping, rewiring and restarting the application components at the

sensor nodes.

9.1 Platform Description

The work in [16] targeted wireless sensor networks that were based on energy and

resource constrained devices. One of the most widely used platforms for researching

wireless sensor networks with limited resources is the Berkeley MICA motes (described

in the chapter 2) [11]. The MICA mote has a 4 MHz microcontroller, 4 KB of RAM, 128

KB of flash memory, 916 MHz wireless radio transceiver (19.2 Kbps transfer rate, 200

 118

feet range) and is powered by two AA batteries and runs the TinyOS operating system, an

open source, event driven and modular OS designed to be used with networked sensors.

Daughtercards with various sensors and actuators are available, including photo,

temperature, humidity, infra-red and barometric pressure sensors, accelerometers,

magnetometers, and microphones, and sounders [3].

9.2 Architecture for Software Reconfiguration

The architecture for software reconfiguration proposed in this thesis was

prototyped in [16] during the work on Berkeley motes. The architecture included (1)

GRATIS [47] and (2) GRATISPlus [16], the modeling paradigms for representing

TinyOS based applications in the Generic Modeling Environment (GME), (3) the design

space exploration tool DESERT and (4) the Global Constraint Monitor (GCM). All these

programs were deployed on the base station. Individual motes executed the (6) Monitor

and (7) Reconfigurator components, in addition to the application components.

GRATIS is a modeling paradigm developed to model TinyOS applications. The

graphical representation provides a solid and intuitive interface for designing and

maintaining complex applications. GRATIS facilitates the visual modeling of interfaces

and modules in configurations of TinyOS applications, and generates the textual

representation of corresponding configuration files automatically. The environment also

includes a mapping from the existing large code base of the system components included

in the TinyOS distribution to the graphical environment. Using GRATIS, an application

developer is able to model a new TinyOS application visually and then produce

configuration files automatically using the GRATIS interpreter.

 119

Using GRATISPlus, the user is able to model more than one design (alternative

software components - modules) of the same TinyOS application, in a very compact and

scalable representation, along with the constraints that are evaluated to generate valid

configurations. In addition to the interfaces, modules and configurations represented in

GRATIS models, GRATISPlus introduces an additional component called group, to

allow modeling of alternative implementation of software components. A group typically

contains more than one module representing alternative implementations of logic or

algorithms. GRATISplus also allows the modeling of constraints using condition

modeling objects. These constraints are expressed in the ‘statement’ attribute of a

condition object in the Object Constraint Language (OCL). The design of SNRAMoLA is

similar to the design of GRATISPlus in terms of applicability. The modules modeled in

the group objects in GRATISPlus have an attribute for storing power values. These

values are updated by the GCM during reconfiguration and evaluated by DESERT to

generate valid configurations.

During reconfiguration, the GRATISPlus to DESERT interpreter converted the

GRATISPlus models of the TinyOS application into a format compatible with DESERT.

DESERT evaluated the constraints over the models and generated valid GRATIS

configurations. The DESERT to GRATIS interpreter converted DESERT output to valid

GRATIS models. The GRATIS interpreter converted the GRATIS models of the TinyOS

application to actual configuration files.

The Monitor component executing on individual motes was responsible for

measuring the local QoS parameters and communicating them to the base station. The

 120

Reconfigurator was responsible for performing the necessary local application changes

upon notification from the base station.

9.3 Case Study

The Aislemonitor application (explained in Chapter 6) was implemented on the

TinyOS platform. Its purpose was the same, to track people walking in an aisle. A sensor

network composed of eight motes was simulated in TOSSIM [12]. The application was

deployed on all the motes. The tracking application was used to demonstrate the

reconfiguration capabilities of the proposed architecture. The application was modeled in

GRATISPlus. Different versions of the application were executed on the simulated sensor

network and in TOSSIM. The data required for the simulation was generated using

Matlab and provided to each mote through a text file.

The initial configuration of the Aislemonitor application included components

that were able to detect the position of the person within range of the host motes. The

data generated using Matlab was fed to the application and readings were recorded. We

tested the reconfiguration architecture by switching off an intermediate mote, thus

requiring its neighbor to perform software reconfiguration to predict the position of the

people in the range of the disabled mote.

9.4 Performance Evaluation

The authors [16] tested the performance of the tracking application with and

without reconfiguration for four test cases. Each test case included data for three people

walking in one direction with varying speeds. The data was generated for 30 seconds

 121

over 65 feet of the aisle assuming eight uniformly spaced motes. One of the motes was

shut down between 8 to 9 seconds after the start of the simulation, thus simulating a low

power condition. Using Aislemonitor #1 it was not possible to detect any people in the

field of view of the affected mote and we had to switch to Aislemonitor #2. Two types of

errors were encountered: (i) People Missed: As one of the motes shut down, people

present in its field of view were not detected, and (ii) People double counted: The

tracking algorithm continued to estimate a person in the field of the affected mote even

after he/she had crossed to a neighboring mote.

Mote 2 was shut down in each of the test cases. Figure 24 shows the errors that

occurred computed by summing up “people missed” and “people double counted” over

the simulation interval. Aislemonitor #1 encountered 27 total errors and all of these were

due to missed detection of people. Aislemonitor #2 reduced the “people missed” errors to

10. However, it generated 4 errors due to “people double counted”. Overall, without

reconfiguration we had 7.5% errors while with reconfiguration 3.8% errors.

0

5

10

15

20

25

30

N o . o f
Errors

Without
Reconfigurat ion

With Reconfigurat ion

Errors Comparison Double Counting
People M issed

Figure 24 - Distribution of Errors in Aislemonitor #1 and Aislemonitor #2

 122

CHAPTER X

CONCLUSIONS AND FUTURE WORK

10.1 Conclusions

This thesis presented an approach for dynamic software reconfiguration in sensor

networks. Our approach requires monitoring the system requirements expressed as formal

constraints. These constraints apply over critical parameters expressed as attributes in

visual models of the application. The attributes are updated by dedicated monitoring

components, which gather data from the entire network. A change in the attribute values

beyond set thresholds drives the reconfiguration process that takes place at a base station

that can communicate to all the sensor nodes.

The proposed approach has been demonstrated using results obtained from a

simple one-dimensional tracking problem. All parts of the software reconfiguration

infrastructure have been evaluated. The need for a software reconfiguration architecture

for sensor network applications is apparent from the results of even a simple tracking

algorithm. The time required for a particular OpenBrick device to reconfigure its

components is around 18 to 28 seconds, which is very less when compared to the cost of

manually stopping and restarting the application with the correct components. In sensor

network applications running over a long duration, the ability to reconfigure the software

components, resulting in a change in the behavior of the application, in response to

external stimuli, in such a short time is of special significance. The automatic

reconfiguration of components expressed in a user friendly modeling environment on a

base station in response to changing operating conditions in the field, and the

 123

communication of the new configuration to the individual nodes to reconfigure their

application is a very attractive solution to the problem of managing a large sensor

network.

10.2 Future Work

While the modeling, design-space exploration and reconfiguration,

communication and the reconfiguration infrastructure tools are implemented and tested,

work needs to be done to construct methods to enumerate and capture more critical QoS

parameters that represent the communication and computation resources of the sensor

network (for example, bandwidth utilized, and number of executing processes).

Reconfiguration is triggered by a change in these values. The monitor components

responsible for monitoring the health of the system are integrated with the application

components in the current reconfiguration architecture. A more generic architecture for

the development and implementation of the monitor components will significantly

improve the capture of more QoS critical parameters from the field. A similar

improvement can be done with the GCM executing on the base station. A strong software

architecture for updating the parameters in the SNRAMoLa models will simplify the

design of the applications and standardize the reconfiguration process.

Reconfiguration is performed when the QoS attributes exceed a set threshold.

These thresholds may be different for different application domains. A standard method

for capturing the desired levels of QoS parameters will simplify the application of

software reconfiguration in various domains.

 124

APPENDIX

A. SOFTWARE RECONFIGURAITON ARCHITECTURE SETUP

This section contains setup details of the software reconfiguration architecture.

The software reconfiguration architecture can be divided into two parts based on the

location of the executing components: (1) Base Station and (2) OpenBrick device.

A.1 RECONFIGURATION COMPONENTS ON BASE STATION

The software reconfiguration infrastructure components on the base station are:

(1) SenNet.conf file (2) SNRAMoLa models of the application, (3) Controller Program

(4) SNRAMoLa to DESERT interpreter, (5) DESERT, (6) DESERT to Configurator

interpreter, and (7) Global Constraint Monitor (GCM).

A.1.1 SenNet.conf File

SenNet.conf is the configuration file of the reconfiguration architecture on the

base station. It contains (1) Packet Forwarder IP and Port information (used by

Controller), (2) SNRAMoLa model name and path information (used by Controller and

GCM), (2) DESERT executable path and directory information (used by Controller), (3)

SNRAMoLa to DESERT interpreter executable path and directory information (used by

Controller), (4) DESERT to Configurator interpreter executable path and directory

information (used by Controller), (5) Controller program executable path and directory

information (used by GCM), and (6) Host device IP address and listening Port (used by

GCM). This file is currently located in the ‘C:\Documents and

Settings\kogekasv\Thesis\MetaModel’ folder on the base station. This folder also

 125

contains the DesertInput, DesertOutput, GCM, and Talker folders, which contain the

SNRAMoLa to DESERT, DESERT to Configurator, GCM, and Controller programs

respectively. The directory structure for the base station components should be

maintained by keeping the ‘SenNet.conf’ file along with the other mentioned folders in

the one folder at the same level in the hierarchy.

A.1.2 SNRAMoLa Models of the application

SNRAMoLa models of the application are stored as ‘.mga’ files. The model of the

Aislemonitor application is stored in the ‘SenMetaData_test.mga’ file located in the

‘C:\SenMetaData\’ folder on the base station. These models are created in GME using the

SenMeta modeling paradigm. Before deploying the application on the sensor network,

the name of the model and its path is recorded in the ‘SenNet.conf’ configuration file.

A.1.3 Controller Program

The controller program is invoked by the GCM upon receipt of messages from the

Monitors executing on individual OpenBricks. Its path is specified in the ‘SenNet.conf’

configuration file. The controller program is located in the ‘C:\Documents and

Settings\kogekasv\Thesis\MetaModel\Talker\’ folder on the base station. The Controller

program reads from the ‘SenNet.conf’ configuration file and invokes SNRAMoLa to

DESERT, DESERT and DESERT to Configurator interpreters sequentially. It then sends

the newly created configuration files to individual OpenBrick devices via the Packet

Forwarder as UPD packets. The Controller uses the IP address and port data read from

the SenNet.conf file to address the packets.

 126

A.1.4 SNRAMoLa to DESERT Interpreter

The SNRAMoLa to DESERT interpreter converts the application models to a

format compatible with DESERT. The input to DESERT is stored in the

‘DesertInput.xml’ file. The Controller program invokes the interpreter and passes the

name of the model along with the target directory as command line parameters. The

output XML file stored in the target directory, which is the same folder

(‘C:\SenMetaData\’) as the application model (‘SenMeta_test.mga’). The SNRAMoLa to

DESERT Interpreter is stored in the ‘C:\Documents and

Settings\kogekasv\Thesis\MetaModel\DesertInput\’ folder on the base station.

A.1.5 DESERT

The Controller program invokes DESERT using the information in the

SenNet.conf file and passes the file ‘DesertInput.xml’ to it as a command line parameter.

This file contains the SNRAMoLa models of the application in a form compatible with

DESERT. DESERT performs design space exploration and stores its output in the

‘DesertInput_back.xml’ file in the same folder as ‘DesertInput.xml’. In the present

application, this file is stored in the ‘C:\SenMetaData\’ folder. DESERT is invoked using

the ‘DesertTool.exe’ executable stored in the ‘C:\Desert\’ folder on the base station.

A.1.6 DESERT to Configurator Interpreter

The Controller program invokes this interpreter using the information in the

SenNet.conf file and passes the files ‘DesertOutput.xml’ and ‘SenMeta_test.mga’ as

command line parameters. The interpreter uses these two files to generate the

 127

configuration files for each OpenBrick device. These configuration files are also stored in

the same folder as the application model (‘C:\SenMetaData’). The DESERT to

Configurator interpreter is stored in the ‘C:\Documents and

Settings\kogekasv\Thesis\MetaModel\DesertOutput\’ folder on the base station.

A.1.7 Global Constraint Monitor (GCM)

The GCM is stored in the ‘C:\Documents and

Settings\kogekasv\Thesis\MetaModel\GCM\’ folder on the base station. The GCM reads

from the SenNet.conf file and uses the IP address information stored in it to open a socket

for listening for incoming messages from OpenBrick devices. Upon receipt of a message,

it updates the critical QoS attributes in the SNRAMoLa models of the application and

then invokes the Controller program and triggers reconfiguration on the base station.

 128

A.2 RECONFIGURATION COMPONENTS ON OPENBRICK DEVICES

The software reconfiguration infrastructure components on individual OpenBrick

devices are: (1) Configurator, (2) Communicator, and (3) Monitor.

A.2.1 Configurator

The Configurator component is installed in the

‘/root/sachin/aislemonitor/configurator’ folder on all OpenBrick devices. Information

about Packet Forwarder IP addresses and ports, Configurator IP addresses and ports is

stored in the ‘receive.conf’ file in the same folder. The Configurator reads this file and

opens up a socket to listen for incoming reconfiguration commands from the base station.

If the host OpenBrick device is connected to the base station through a wired connection,

the Configurator also sets up the Packet Forwarder on the device. The configurator is

invoked by using the ‘/root/sachin/aislemonitor/configurator/configurator’ command.

A.2.2 Communicator

The Communicator component is stored in the

‘/root/sachin/aislemonitor/configurator’ folder on each OpenBrick device. The

‘communicator.h’ file, which implements the Communicator component, is required to

be included by each application process. Using the Communicator component, processes

establish shared memory connections with the Configurator to receive reconfiguration

commands. The Communicator is initialized by the process using the

‘communicator_init()’ method.

 129

A.2.3 Monitor

The Monitor used in our test-bed is integrated with the Aislemonitor application.

It has not been implemented as a separate component.

The reconfiguration architecture is deployed by:

1. Starting the Configurator components on all the OpenBrick devices

using the ‘/root/sachin/aislemonitor/configurator/configurator’

command.

2. Starting GCM on the Base Station.

3. Invoking the Talker Program manually to generate the first set of

configuration files.

Once started, the dynamic software reconfiguration architecture performs

software reconfiguration automatically as and when it receives failure notifications from

the Monitor components and continues to execute till it is stopped manually by sending

the “STOPLISTENING” message from the base station.

 130

B. AISLEMONITOR APPLICATION SETUP

This section describes the setup of the Aislemonitor Application deployed on each

OpenBrick device. The Aislemonitor application is composed of the (1) ImageSensor, (2)

Receiver, (3) Estimator1, (4) Estimator2, (5) DataCollector1, and (4) DataCollector2

components. Each component is implemented as a separate program.

B.1 ImageSensor

The ImageSensor component is installed in the ‘/usr/local/motion3/’ folder on

each OpenBrick device. The Configurator executes it using the command:

 ‘/usr/local/motion3/motion memoryId:memoryName’ (explained in Chapter 7). Various

control variables like the frame-rate are set in the ‘motion.conf’ file located in the same

folder. The ImageSensor reads from this file during initialization.

B.2 Receiver

The Receiver program is installed in the ‘/root/sachin/aislemonitor/receiver/’

folder on each OpenBrick device. The Configurator executes it using the command:

‘/root/sachin/aislemonitor/receiver/receiver memoryId:memoryName’ Information about

the IP addresses and ports of neighboring OpenBrick devices as well as listening ports on

the host OpenBrick device is stored in the receive.conf file located in the same folder.

The Receiver program reads this file during initialization.

 131

B.3 Estimator1

The Estimator1 program is installed in the ‘/root/sachin/aislemonitor/Estimator3/’

folder on each OpenBrick device. The Configurator executes it using the command:

‘/root/sachin/aislemonitor/Estimator3/estimator memoryId:memoryName.’

B.4 Estimator2

The Estimator2 program is installed in the ‘/root/sachin/aislemonitor/Estimator4/’

folder on each OpenBrick device. The Configurator executes it using the command:

‘/root/sachin/aislemonitor/Estimator4/estimator memoryId:memoryName.’

B.5 DataCollector1

The DataCollector1 program is installed in the

‘/root/sachin/aislemonitor/application3/’ folder on each OpenBrick device. Its executable

is called ‘application’. The program reads from the ‘aislemonitor.conf’ file stored in the

‘/root/sachin/aislemonitor/application/’ folder. This file stores information about the left

and right range limits of the host OpenBrick device and is used by the DataCollector,

ImageSensor and Estimator components.

B.5 DataCollector2

The DataCollector2 program is installed in the

‘/root/sachin/aislemonitor/application4/’ folder on each OpenBrick device. It is executed

using the command ‘/root/sachin/aislemonitor/application4/application

 132

memoryId:memoryName’ by the Configurator. The program reads from the

‘aislemonitor.conf’ file stored in the ‘/root/sachin/aislemonitor/application/’ folder.

All these programs include the ‘communicator.h’ file located in the

‘/root/sachin/aislemonitor/configurator/’ folder and invoke the ‘communicator_init()’

function during initialization.

 133

REFERENCES

[1] http://www.antd.nist.gov/wahn_ssn.shtml, Project: Wireless Ad hoc Networks,
Advanced Network Technologies Division, National Institute of Standards and
Technology, Gaithersburg, Maryland.

[2] Cerpa A., Elson J., Estrin D., Girod L., Hamilton M. and Zhao J., “Habitat
Monitoring: Application driver for wireless communications technology,”
Proceedings of the ACM SIGCOMM Workshop on Data Communications,
Latin America and the Caribbean, April 2001.

[3] Mainwaring A., Polastre J., Szewczyk R., Culler D. and Anderson J., “Wireless
Sensor Networks for Habitat Monitoring,” ACM International Workshop on
Wireless Sensor Networks and Applications (WSNA), Atlanta, GA, September
2002.

[4] Biagioni E., and Bridges K., “The Application of Remote Sensor Technology to
assist the recovery of rare and endangered species,” Special issue on Distributed
Sensor Networks for the International Journal of High Performance Computing
Applications, Vol. 16, N. 3, August 2002.

[5] Yang H. and Sikdar B., “A Protocol for Tracking Mobile Targets using Sensor
Networks,” Proceedings of IEEE Workshop on Sensor Network Protocols and
Applications, 2003.

[6] http://www.citris.berkeley.edu/applications/disaster_response/smartbuildings.ht
ml, Project: Smart Buildings, CITRIS, Berkeley, CA.

[7] http://www-white.media.mit.edu/vismod/demos/smartroom/, Project: Smart
Rooms, Massachusetts Institute of Technology.

[8] Simon G. et al., “Shooter Localization in Urban Environments,” Information
Processing in Sensor Networks (Submitted), April 2004.

[9] Srivastava M. B., Muntz R. R. and Potkonjak M., “Smart Kindergarten:
Sensorbased Wireless Networks for Smart Developmental Problem-solving
Enviroments,” Mobile Computing and Networking, pages 132.138, 2001.

[10] Sztipanovits J., Karsai G.: “Model-Integrated Computing,” IEEE Computer,
April 1997.

[11] Hill J. and Culler D., “Mica: A Wireless Platform for Deeply Embedded
Networks,” IEEE Micro, vol. 22(6), Nov/Dec 2002, pp 12-24.

 134

[12] Levis P., Lee N., Welsh M., Woo, and Culler D., “TOSSIM: Accurate and
Scalable Simulation of Entire TinyOS Applications,” ACM SensSys 2003, Nov.
2003.

[13] Estrin D., Girod L., Pottie G., Srivastava M., “Instrumenting the world with
Wireless Sensor Networks,” International Conference on Acoustics, Speech,
and Signal Processing (ICASSP 2001), Salt Lake City, Utah, May 2001

[14] Bachrach J., Laddaga R., Robertson P., Salib M., Shrobe H., “Sensor Nets for
Military Operations in Urban Terrain.”

[15] Hill J., Szewczyk R., Woo A., Hollar S., Culler D. and Pister K., “System
Architecture Direction for Networked Sensors,” ACM SIGPLAN Notices, vol.
35(11), Nov 2000, pp93-104.

[16] Kogekar S., Neema S., Eames B., Koutsoukos X., Ledeczi A., and Maroti M.:
“Constraint-Guided Dynamic Reconfiguration in Sensor Networks,” IPSN ’04,
April 26-27, 2004 Berkeley, California, USA.

[17] Royer E.M. and Toh C-K, “A Review of Current Routing Protocols for Ad hoc
mobile wireless networks,” IEEE Personal Communications, April 1999.

[18] Perkins C. E. and Royer E.M., “Ad-hoc On-Demand Distance Vector Routing,”
Proceedings from 2nd IEEE Workshop on Mobile Computing Systems And
Applications, Feb 1999, pp. 90-100.

[19] Davis J., Scott J., Sztipanovits J., Karsai G., Martinez M.: “Integrated Analysis
Environment for High Impact Systems,” Proceedings of the Engineering of
Computer Based Systems, Jerusalem, Israel, April 1998.

[20] Nordstrom G., Sztipanovits J., Karsai G., Ledeczi A.: Metamodeling – “Rapid
Design and Evolution of Domain-Specific modeling Environments,”
Proceedings of the IEEE Conference and Workshop on Engineering of
Computer Based Systems, April 1999.

[21] Cheng S-W, Garlan D., Schmerl B., Sousa J. P., Spitznagel B., Steenkiste P., Hu
N., “Software Architecture Based Adaptation for Pervasive Systems,”
International Conference on Architecture of Computing Systems Trends in
Network and Pervasive Computing, Karlsruhe, Germany, April 8-11, 2002

[22] Castaldi M., Carzaniga A., Inverardi P., Wolf A. L., “A Lightweight
Infrastructure for Reconfiguring Applications,” In Proceedings of 11th Software
Configuration Management Workshop, Portland, Oregon, USA, May, 2003

[23] Derk M.D., DeBrunner L. S., “Reconfiguration for Fault Tolerance using Graph
Grammars,” ACM Transactions on Computer Systems (TCOS) Volume 16,
Issue 1, February 1998, pp 41-54.

 135

[24] Mitchell D., Naguib H., Coulouris G., Kindberg T., “A QoS Support
Framework for Dynamically reconfigurable Multimedia Applications,”
Proceedings of the IFIP WG 6.1 International Working Conference on
Distrubted Applications and Interoperable Systems II, p.17-30, June 28-July 01,
1999

[25] Villasenor J., Schoner B., Chia K.N., Zapata C., Kim H.J., Jones C., Lansing S.,
and Mangione-Smith B., “Configurable Computing Solutions for Automatic
Target Recognition,” Proceedings of the IEEE Symposium of FPGAs for
Custom Computing Machines, pp. 70-79, Napa California, Apr. 17-19, 1996

[26] Ghiasi S., Sarrafzadeh M., “Optimal Reconfiguration Sequence Management,”
Asia South Pacific Design Automation Conference (ASPDAC), pp. 359-365,
January 2003.

[27] Allen R., Douence R. and Garlan D., “Specifying and Analyzing Dynamic
Software Architectures,” Proceedings of 1998 Conference on Fundamental
Approaches to Software Engineering, Lisbon, Portugal, March 1998.

[28] Lee E. A., Messerschmitt D.G., “Synchronous Data Flow”, Proceedings of the
IEEE Vol. 75, No. 9 September 1987.

[29] Guibas L., “Sensing, Tracking and Reasoning with Relations,” IEEE Signal
Processing Magazine, vol. 19, no. 2, pp. 73-85, March 2002.

[30] Welch G., Bishop G., “An Introduction to the Kalman Filter,” Report: TR95-
041, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA, 1995.

[31] Maybeck P. S., “Stochastic Models, Estimation, and Control,” Book: Chapter 1,
Academic Press.

[32] http://www.openbrick.org

[33] http://w3.antd.nist.gov/wctg/aodv_kernel/

[34] http://motion.sourceforge.net/

[35] http://www.thedirks.org/v4l2/v4l2fmt.htm

[36] Neema S., Sztipanovits J., Karsai G., Butts K.: “Constraint-Based Design-Space
Exploration and Model Synthesis.” LNCS 2855, pp 290-305, Sept 2003.

[37] Ledeczi A., Bakay A., Maroti M., Volgyesi P., Nordstrom G., Sprinkle J.,
Karsai G., “Composing Domain-Specific Design Environments,” Computer, pp.
44-51, November 2001.

[38] Warner J. B., Kleppe A. G.: “The Object Constraint Language: Precise
Modeling With Uml,” Addison-Wesley, 1999.

 136

[39] Bryant R.: “Symbolic Boolean manipulation with ordered binary-decision
diagrams,” ACM Computing Surveys, Volume 24, Issue 3, September 1992.

[40] Neema S.: “Design Space Representation and Management for Embedded
Systems Synthesis,” Technical Report, ISIS -01-203, February 2001.

[41] http://www.xbow.com/Products/productsdetails.aspx?sid=85

[42] Lee E.A. and Parks T.M., “Dataflow Process Networks”, Proceedings of IEEE,
83(5): 773-801, May 1995.

[43] Bulusu N., Heidemann J., Estrin D., “GPS-less Low Cost Outdoor Localization
for Very Small Devices. IEEE Personal Communications Magazine,” IEEE
Personal Communications Magazine, Vol. 7, No. 5, pp 28-34. October, 2000.

[44] Bulusu N., Bychkovskiy V., Estrin D., Heidemann J., “Scalable, Ad Hoc
Deployable RF-based Localization,” Proceedings of the Grace Hopper
Celebration of Women in Computing Conference 2002, Vancouver, British
Columbia, Canada. October 2002.

[45] Savarese C., Rabaey J. M., Beutel J., “Locationing in Distributed Ad-Hoc
Wireless Sensor Networks,” Proceedings of the ICASSP, May 2001.

[46] Sztipanovits J., Karsai G., Franke H., “Model-Integrated Program Synthesis
Environment,” ECBS, March 11-15, 1996, Friedrichshafen, Germany.

[47] Volgyesi P., Ledeczi A., “Component-Based Development of Networked
Embedded Applications,” EUROMICRO ‘02, September 4-6, 2002, Dortmund,
Germany.

[48] http://www.nist.gov/dads/HTML/modelOfComputation.html

 137

	6.3.1 ImageSensor
	6.3.5 Estimator2

