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CHAPTER I 

INTRODUCTION 

Major advances in wireless communications and electronics technology have 

resulted in the emergence of low cost, low-power micro-sensors, actuators, embedded 

processors, and radio devices. Advances in VLSI technology have enabled the integration 

of all these technologies on a single device with a very small form factor. As a result new 

sets of computing devices with sensing, actuating, communicating, and processing 

capability are being developed. Our ever increasing appetite to know more about and be 

aware of relevant happenings in our surrounding environment is driving the use of these 

devices in autonomous networks. Such networks are capable of reporting to us after 

monitoring, sensing and even actuating their environment. 

These devices, referred to as wireless sensor nodes, will eventually be deployed in 

hundreds and thousands in wireless sensor networks. The emergence of such networks 

has opened up a lot of avenues for research in different fields such as distributed 

computing, sensor node design, communication technology, operating systems, 

communication protocols, and software reconfiguration. This thesis addresses the 

problem of carrying out dynamic software reconfiguration in sensor networks. 

Applications deployed on sensor networks are composed of many software components 

executing on individual sensor nodes. The objective is to perform software 

reconfiguration on individual sensor nodes to alter their functionality without human 

interference. 

 1



1.1 Sensor Networks and their Applications 

A wireless ad hoc sensor network consists of a number of nodes spread across a 

geographical area [1]. The nodes are typically fitted with sensors (for example light, 

temperature, pressure, and audio sensors) for monitoring their environment and have 

wireless communication capability. The nodes also have some degree of intelligence for 

processing the data gathered by their sensors and the capacity to do so. The network is 

deployed over a geographical area in an ad hoc manner. Some nodes within the network 

could be placed at known locations, but by and large, the nodes figure out their positions 

themselves using various localization algorithms [43], [44], [45]. They can also be fitted 

with actuators that perform some mechanical action. The nodes communicate with each 

other using wireless technologies like radio. In typical deployments, not all nodes are 

within wireless range of each other. For the sensor network application to work as a 

whole, this poses a significant problem. This problem is addressed by the use of various 

ad hoc routing protocols. These protocols enable two out of range nodes to communicate 

with each other through some intermediate node.  

The basic goals of a wireless ad hoc sensor network can be broadly defined as (1) 

determining the value of some parameter at a given location, (for example - light, 

humidity, pressure, temperature) (2) detecting the occurrence of events of interest and 

estimating parameters of the detected event or events, (3) classifying a detected object, 

and (4) tracking an object. All these tasks require the proper reporting of the data to the 

end users. In some cases, there are fairly strict time requirements on this communication. 

Major requirements that need to be addressed to facilitate the widespread use of 

sensors are scalability (sensor networks with over 10,000 to 100,000 nodes are 
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envisioned), low power consumption, network self-organization, collaborative signal 

processing, and querying ability. 

The sensor networks mentioned can be applied to a lot of problems, in both 

military and commercial domains. Some of the applications that have been envisioned 

and in some cases even implemented are: 

• Habitat Monitoring: Sensor networks can be used in the study of sensitive 

environmental zones and wildlife habitats. Studies have shown that such habitats 

react unfavorably to human interference. Sensor nodes connected to various sensors 

like light, temperature, humidity are spread out in the area of interest, like bird 

colonies and nests and the data collected is used to study the environment and detect 

any changes [2], [3], [4].  

• Tracking: This involves the tracking of a mobile target using a number of sensor 

nodes [5]. 

• Forecasting: Various sensors can be used to monitor the environment and structures 

and predict trends related to weather, pollution, floods, earthquakes, bush-fires or 

structural damages to buildings [6]. 

• Education: Sensor networks can be used to build interaction-based instruction 

methods to educate children in kindergarten [9]. 

• Smart Home/Office: Sensor nodes equipped with actuators can be used in homes to 

set the humidity and temperature in the room according to the individual’s 

preferences [7]. Sensor networks are also widely used in security systems in homes, 

offices and factories. 
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• Shooter Localization: Sensor nodes deployed in an urban environment can be used 

to calculate the location of an enemy sniper in real time. When a shot is fired, the 

nodes sense the shockwave and muzzle-blast generated by the shot. Calculations are 

performed on the data sent by the individual sensors and the origin of the shot is 

determined. Counter-Sniper, Battleground Monitoring Systems and Urban-Warfare 

are archetypal examples for application of such a system. Vanderbilt University has 

developed a Shooter-Localization system for locating enemy snipers [8]. 

 

1.2 Software Reconfiguration 

The sensor network applications that are being envisioned will be deployed over 

large numbers (10,000 to 100,000) of sensor nodes. Often these networks will be 

deployed in inhospitable and inaccessible terrain. A sensor network composed of many 

autonomous nodes, exposed to the elements, communicating via unreliable wireless 

technology is vulnerable to failure. Nodes may fail either from lack of energy or from 

physical destruction, and new nodes may join the network. The communication between 

the nodes may be disrupted by noise in parts of the network and environment. A sensor 

network can be made robust enough to face these challenges if it is able to reconfigure 

itself. Once the network has been deployed in the field, reconfiguration for the most part 

applies to software reconfiguration.  This involves reconfiguring the software 

components executing on individual nodes or in parts of the network to alter their 

behavior in response to the changing environment. 

A major challenge to autonomous sensor networks is the limited availability of 

power. Consider a sensor network composed of strategically placed sensors connected to 
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cameras to monitor a particular street. Consider an application where a particular person 

or vehicle is the object of interest. An application that requires all the sensors to be active 

even when there was no one on the street would waste a lot of power. The application 

could be designed to activate all sensors only when there was activity in the street. In 

periods of no activity, only a few of the sensors would be active. Such an application can 

be implemented if it were possible to reconfigure the components executing on the sensor 

nodes. Such capability would also be required if some of the sensors were rendered 

useless due to a mobile obstruction like a big van. The application executing on other 

sensor nodes would be reconfigured to compensate for the loss of data from the 

obstructed sensors. Similar examples demonstrating the utility of reconfiguration can be 

found in almost all applications of sensor networks. 

 

1.3 Software Reconfiguration Problem 

Software reconfiguration is one of the major challenges facing sensor networks. It 

is difficult to estimate all operating conditions for a particular sensor network deployed in 

any dynamic environment and it is impossible to hardcode every response. This 

accentuates the need for designing a software reconfiguration architecture for sensor 

networks that is capable of changing the behavior of the system by switching components 

executing on individual sensor nodes. The choice of the correct components cannot be 

enumerated for every operating condition. This choice needs to be resolved during 

runtime.  

The collection of components that can be used in the application forms the design 

space of the application. Dynamic software reconfiguration involves the resolution of the 
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component choice during run-time by choosing the components from the design space 

that satisfy the operating conditions defined in response to stimuli produced by a 

changing environment to adapt the network’s behavior. Dedicated software components 

called Monitors monitor the behavior of the environment and the sensor network. These 

are either embedded in the application, or deployed in a stand-alone manner on individual 

sensor nodes. The process of component choice resolution is dependent upon input from 

various sensor nodes and is a very computation intensive process that cannot be 

performed on individual sensor nodes. The implementation of the software 

reconfiguration architecture requires the implementation of monitoring components that 

monitor the state of the sensor network which is affected by the changing environment, 

switching components that reconfigure application components on individual sensor 

nodes, design space exploration tools that choose the proper components to deploy on 

particular nodes, and a communication infrastructure that propagates changes to the 

application configuration to individual sensor nodes.  

 

1.4 Thesis Organization 

In this thesis, I present an approach for performing dynamic software 

reconfiguration on sensor networks. The next chapter presents a summary of related 

work. Chapter 3 explains the sensor network test-bed. Chapter 4 gives an overview of the 

software reconfiguration approach. Model Integrated Computing [10] (described in 

Chapter 5) is used in this approach to capture the sensor network application in explicit 

models, which can then be manipulated in a user-friendly manner. Chapter 5 describes 

the modeling paradigm for reconfigurable sensor network applications. Chapter 6 
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describes Aislemonitor, the sensor network application that performs one dimensional 

tracking of people walking in an aisle. This application is utilized to demonstrate the 

proposed software reconfiguration approach.  Chapter 7 gives the implementation details 

of the entire software reconfiguration architecture. Chapter 8 discusses the results of the 

experiments performed over the sensor network testbed using the Aislemonitor 

application. Chapter 9 describes the results obtained after evaluating the reconfiguration 

architecture over a sensor network comprising Berkeley MICA motes [11] simulated in 

TOSSIM [12]. Chapter 10 contains the conclusion and a discussion of the future work. 
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CHAPTER II 

RELATED WORK 

The solution to the problem of dynamic software reconfiguration in sensor 

networks is closely tied to research in other fields like sensor networks and routing 

protocols. The first section in this chapter describes wireless sensor networks. The 

approach proposed in this thesis is based on Model Integrated Computing (MIC). MIC is 

described in the second section. The third section discusses reconfiguration approaches in 

various domains. The reconfiguration approach proposed in this thesis utilizes a design 

space exploration tool called DESERT to resolve the design choices during runtime [36] 

[40]. This tool is described in the fourth section of this chapter. The proposed software 

reconfiguration approach is based on the Asynchronous Data Flow model of computation 

and this is described in the fifth section. The use of the Kalman Filter and tracking 

mechanisms are discussed in the last section of this chapter. 

 

2.1 Wireless Sensor Networks 

Traditionally, sensor networks have been designed with relatively small number 

of sensors, wired to a central processing unit. However, recent advances in technology 

and the easy availability of low-power micro-sensors, actuators, embedded processors, 

and radios are enabling the application of distributed wireless sensing to a wide range of 

applications [13]. This section explores some of the work gone into the development of 

wireless sensor networks and their potential applications. 
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We have been using wired sensor networks for a long time. However, such 

networks are costly in terms of installation and maintenance. Wired sensor networks are 

not suitable to monitor large spaces such as factories, eco-systems and battlefields. Such 

domains are too dynamic for specifically laid out wired networks. Some domains are 

even dangerous and not suitable for human habitation. Often, the exact location of the 

phenomenon of interest is unknown. In such environments, the use of distributed wireless 

sensors with processing capability yields a higher signal to noise ratio (SNR), improves 

the chances of line of sight, and reduces the effect of environmental obstructions. Such 

sensors process data in the field and only transmit results of interest to the base station. 

They do not impose any restrictions on the environment that they monitor and can 

function without any infrastructure (electric wiring, wired communication channels, 

power outlets). Conventional methods for monitoring do not scale to modern man-made 

and natural environments. A different approach is required to monitor such environments. 

 

2.1.1 Application Domains 

Wireless sensor networks can be used in a wide variety of domains. Some of the 

potential areas are physiological monitoring, environmental monitoring, condition based 

maintenance, smart spaces, military, precision agriculture, transportation, factory 

instrumentation, and inventory tracking [13]. 

The use of sensor networks for military operations in urban terrain is described in 

[14]. An ad hoc sensor network comprising tiny sensor devices called “motes” [11] is 

deployed in an urban environment. The goal of the sensor network is the surveillance and 

tracking of friendly, hostile and non-combatant personnel in the urban environment. The 
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system uses acoustic ranging to determine inter-mote distances and then uses multi-

lateration to compute the position of each specific mote. The tracking system starts with 

the estimation of the position of each mote. Sensors in each mote estimate the distance to 

a target; all the sensor estimates are then combined using a multi-lateration algorithm to 

estimate the position of the target. Finally, the sequence of target position estimates is 

smoothed using a Kalman Filter run on the base station. A Situational Awareness Human 

Interface system on the base station collects all the target readings from each mote filed 

into a common situational awareness operating picture that is made available through 

map-based display systems run on a variety of display systems. This kind of an 

application will typically involve a large number of sensors.  

An application for monitoring the habitat of seabirds on the Great Duck Island in 

Maine is described in [3]. It is often found that human interference even for the purpose 

of research and monitoring causes an unfavorable impact on the subjects of interest. 

Research in Maine suggests that even a 15 minute visit to a cormorant colony can result 

in up to 20% mortality among eggs and chicks in a given breeding year. Repeated 

interference can even lead to the abandonment of the habitat and a shift to an unsuitable 

habitat. Sensor networks offer a viable alternative over traditional invasive methods of 

monitoring. Sensors can be deployed during sensitive periods such as the onset of the 

breeding season for studying animals or while plants are dormant or the ground is frozen 

for carrying out botanical studies. The results of wireless sensor-based monitoring efforts 

can be compared with previous studies that have traditionally ignored or discounted 

disturbance effects. Sensor network deployment may even turn out cheaper for 

conducting long-term studies than traditional personnel-rich methods. In the traditional 
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approach a substantial proportion of logistics and infrastructure are devoted to the 

maintenance of field studies, often at some discomfort and occasionally at some real risk. 

A “deploy ’em and leave ’em” strategy of wireless sensor usage would limit logistical 

needs to initial placement and occasional servicing. The use of wireless sensors could 

also greatly increase access to a wider array of study sites, often limited by concerns 

about frequent access and habitability. 

The sensor network applications described in the previous paragraphs can be 

made more efficient and tolerant to failure through the use of reconfigurable software 

components. My work focuses on building a software reconfiguration infrastructure that 

utilizes the modular nature of the applications to enhance their ability to adapt to 

changing operating conditions. 

 

2.1.2 Sensor Node Technology 

One of the most widely used platforms for researching wireless sensor networks 

with limited resources is the Berkeley MICA mote [11] (Figure 1), designed at the 

University of California, Berkeley. The MICA mote has a 4MHz microcontroller, 4KB of 

RAM, 128KB of flash memory and a 916 MHz wireless radio transceiver with a transfer 

rate of 19.2 Kbps and range of 200 feet. It has a very small form factor (58mm X 32mm 

X 7mm) and is powered by two AA batteries. Daughtercards with various sensors and 

actuators are available, including photo, temperature, humidity, infrared and barometric 

pressure sensors, accelerometers, magnetometers, microphones, and sounders. 

The Berkeley MICA motes run the TinyOS operating system [11], an open 

source, event driven and modular OS designed to be used with networked sensors. A 
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TinyOS application is a statically compiled graph of components. Components have 

memory frames to store their state, and communicate with each other through used and 

provided interfaces that contain logically related commands and events [15]. Components 

can post tasks to process longer running computations, which are executed in order by the 

scheduler. TinyOS comes with a library of OS components that handle task scheduling, 

radio communication, clocks and timers, ADC, I/O and EEPROM abstractions, and 

power management. Application developers can select a subset of these modules, extend 

or override them if necessary, and statically compile them into the final executable. A 

typical MICA system consists of tens to hundreds of motes forming an ad hoc multi-hop 

network and a base station that is typically a PC class computer.  

 

 

Figure 1 - The MICA2 Mote 

Stargate [41] is a powerful single board sensor with communications and sensor 

signal processing capabilities. The Stargate uses Intel's® latest generation 400MHz X-

Scale® processor (PXA255). In addition to traditional single board computer 
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applications, the Stargate directly supports applications designed around Intel's Open-

Source Robotics initiative as well as TinyOS-based wireless sensor networks. 

 

 

Figure 2 – Stargate [41] 

Another powerful, yet compact sensor node is the OpenBrick [32] device. It is 

small ( 220 x 165 x 42 mm ), light (about 1200 g), and includes three (3) RJ45 LAN 

connectors. It has a fan-less 533 Mhz x86 compatible VIA C3 processor and 256 MB 

SDRAM. Software can be installed on a Compact Flash or on a Hard Disk. It also has 

USB 2.0 connectivity. The device supports the Linux operating system. OpenBrick E is 

part of the sensor network testbed described in Chapter 3. 

The sensor nodes do not have enough resources to evaluate the QoS parameters, 

search for the next configuration and compute the necessary reconfiguration steps. They 

can, however, communicate the measured parameters to the base-station where the 

computationally intensive reconfiguration decisions are made and the necessary 

elementary reconfiguration commands are sent back to the sensor nodes that execute 

them [16]. 
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2.1.3 Routing Protocols 

Wireless sensor networks can be broadly classified into two varieties based on 

their wireless configuration. Wireless networks with fixed and wired gateways are called 

Infrastructured networks. The bridges for these networks are known as base stations. A 

node within these networks connects to, and communicates with, the nearest base station 

that is within its communication radius. If a node travels out of range of one base station 

and into the range of another, a “handoff” occurs from the old base station to the new, 

and the node is able to continue communication seamlessly throughout the network. The 

second type of mobile wireless network is the infrastructureless mobile network, 

commonly known as an ad hoc network. Infrastructureless networks have no fixed 

routers; all nodes are capable of movement and can be connected dynamically in an 

arbitrary manner. Nodes of these networks function as routers which discover and 

maintain routes to other nodes in the network.  

In order to facilitate communication within ad hoc networks, a routing protocol is 

used to discover routes between nodes. The primary goal of such an ad hoc network 

routing protocol is correct and efficient route establishment between a pair of nodes so 

that messages may be delivered in a timely manner. Route construction needs to be done 

with a minimum of overhead and bandwidth consumption. Different existing ad hoc 

routing protocols are discussed and compared in [17]. Existing routing protocols for ad 

hoc networks can be categorized as (1) Table-driven and (2) Source-initiated (demand-

driven) as shown in Figure 3 [17]. 
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Ad hoc routing Protocols 

Source-Initiated Table Driven 
On-Demand 

DSDV WRP AODV DSR LMR ABR 

TORA SSR 
CGSR 

Figure 3 - Categorization of Ad hoc Networks [17] 

National Institute of Standards and Technology’s (NIST) implementation of the 

Ad hoc On-Demand Distance Vector (AODV) [18] routing protocol is deployed on our 

sensor network testbed. When a source node desires to send a message to some 

destination node and does not already have a valid route to that destination, it initiates a 

path discovery process to locate the other node. It broadcasts a route request (RREQ) 

packet to its neighbors, which then forward the request to their neighbors, and so on, until 

either the destination or an intermediate node with a “fresh enough” route to the 

destination is located. AODV utilizes destination sequence numbers to ensure all routes 

are loop-free and contain the most recent route information. The source node includes in 

the RREQ the most recent sequence number it has for the destination. Intermediate nodes 

can reply to the RREQ only if they have a route to the destination whose corresponding 

destination sequence number is greater than or equal to that contained in the RREQ.  
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Once the RREQ reaches the destination or an intermediate node with a fresh 

enough route, the destination/intermediate node responds by unicasting a route reply 

(RREP) packet back to the neighbor from which it first received the RREQ. As the RREP 

is routed back along the reverse path, nodes along this path set up forward route entries in 

their route tables, which point to the node from which the RREP came. These forward 

route entries indicate the active forward route. Associated with each route entry is a route 

timer, which will cause the deletion of the entry if it is not used within the specified 

lifetime. Because the RREP is forwarded along the path established by the RREQ, 

AODV only supports the use of symmetric links.  

If a source node moves, it is able to reinitiate the route discovery protocol to find 

a new route to the destination. If a node along the route moves, its upstream neighbor 

notices the move and propagates a link failure notification message (an RREP with 

infinite metric) to each of its active upstream neighbors to inform them of the erasure of 

that part of the route [18]. These nodes in turn propagate the link failure notification to 

their upstream neighbors, and so on until the source node is reached. The source node 

may then choose to reinitiate route discovery for that destination if a route is still desired. 

An additional aspect of the protocol is the use of hello messages, periodic local 

broadcasts by a node to inform each mobile node of other nodes in its neighborhood. 

Hello messages can be used to maintain the local connectivity of a node. However, the 

use of hello messages is not required. Nodes may listen for retransmission of data packets 

to ensure that the next hop is still within reach.  

The use of a routing protocol facilitates communication between sensors that are 

not within wireless range of each other. The routing protocol is an essential part of the 
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sensor network and enables the network to function as a whole. The AODV routing 

protocol has been deployed on the experimental testbed to emulate real world sensor 

networks. The OpenBrick devices communicate with each other using the AODV 

protocol. 

 

2.2 Model Integrated Computing 

Model-Integrated Computing (MIC) [10] employs domain-specific models to 

represent the software, its environment, and their relationship. Using Model-Integrated 

Program Synthesis (MIPS) [46], these models are then used to automatically synthesize 

the embedded applications and to generate inputs to commercial off the shelf (COTS) 

analysis tools [19]. This approach speeds up the design cycle, facilitates the evolution of 

the application and helps system maintenance, dramatically reducing costs during the 

lifecycle of the system. We use MIC to model reconfigurable component based sensor 

network applications.  

The Multigraph Architecture (MGA) is a toolkit for creating domain-specific 

MIPS environments. The MGA is illustrated in Figure 4.  A metaprogramming interface 

is used to specify the modeling paradigm of the application domain. The modeling 

paradigm is the modeling language of the domain specifying the objects and their 

relationships. In addition to syntactic rules, semantic information can also be described as 

a set of constraints. The Unified Modeling Language (UML) and the Object Constraint 

Language (OCL), respectively, are used for these purposes in the MGA. These 

specifications, called metamodels, are used to automatically generate the MIPS 

environment for the domain. An interesting aspect of this approach is that a MIPS 
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environment itself is used to build the metamodels [20]. In this approach, the MGA is 

used to design the metamodel for the reconfigurable applications modeling language 

SNRAMoLa (described in Chapter 5). 

 

 

Figure 4 - The Multigraph Architecture 

The generated domain-specific MIPS environment is used to build domain models 

that are stored in a model database. These models are used to automatically generate the 

applications or to synthesize input to different COTS analysis tools. This translation 

process is called model interpretation.  

In the proposed approach, the sensor network application is modeled in terms of 

its components and their interactions (explained in Chapter 5). Valid configurations, 

which include only those components that actually execute in the application, are then 

 18



generated. The models are used to express a design choice and produce a valid 

configuration every time the software reconfiguration process is triggered during runtime.  

 

2.3 Software Reconfiguration 

This thesis proposes an architecture to carry out dynamic software reconfiguration 

in wireless sensor networks. This section explores the work done on this problem in other 

and related domains.  

Software architectural models can be designed to monitor and guide dynamic 

changes to an application. The work in [21] presents a generic architecture for adaptation 

in pervasive networks using a client/server networking example. The centerpiece of this 

approach is the use of stylized architectural models. The architectural model of a 

pervasive network is represented as a graph of interacting components with nodes in the 

graph termed as components and arcs termed as connectors, which represent interaction 

between components. These software architectural models, originally created to support 

design-time development tools, can be augmented with adaptation operations and repair 

strategies that apply these operations to adapt the architecture during runtime. The 

approach in [21] suggests a method to monitor the system using probes and gauges. 

An architectural model can be built to represent component-based software 

systems on graphs. Adaptation and repair of such systems poses a major challenge. Low 

computational resources on sensor nodes do not allow extensive repair strategies being 

embedded into application components. An approach for representing these strategies is 

required.  
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The work in [22] presents a lightweight infrastructure for managing dynamic 

reconfiguration called Lira that applies and extends the concepts of network management 

to component-based, distributed software systems. Two extreme approaches to carry out 

reconfiguration can be identified as internal and external reconfiguration. Internal 

reconfiguration relies on the programmer to build reconfiguration facilities directly into 

components while external reconfiguration relies on some external entity to determine the 

reconfiguration of the component. Lira is designed to perform both component-level 

reconfigurations and scalable application-level reconfigurations through the use of agents 

associated with individual components and a hierarchy of managers. Agents are 

specifically programmed for individual components to respond to reconfiguration 

requests appropriate for that component. A Management Information Base (MIB) 

associated with each component captures its state variables. The agent then uses the MIB 

to trigger reconfiguration. Managers embody the logic for monitoring the state of one or 

more components, and for determining when and how to execute reconfiguration 

activities. A protocol based on Simple Network Management Protocol (SNMP) is used 

for communication among managers and agents.  

In order to implement a reconfiguration approach, the structure and software 

design of components needs to be developed. Once the structure of components is 

standardized, various reconfiguration approaches can be tried on the components. 

Application and reconfiguration components executing on resource limited sensor nodes 

cannot contain too many complex computations. This thesis uses the term components in 

relation to software processes, which are relegated to perform atomic tasks that really do 

not require any internal reconfiguration. However, the application as a whole is 
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composed of many components and reconfiguration means the execution of selected 

components. The thesis proposes a reconfiguration agent, much like the Manager, which 

executes on each individual sensor device. This agent performs the reconfiguration 

activity on individual nodes by switching components according to the reconfiguration 

script that it receives from the base station. The ‘real’ reconfiguration, the selection of 

appropriate components for execution, in response to a change in the environment, occurs 

at a central base station. This is necessary in distributed sensor networks because 

individual sensors typically do not have the capability to perform intense computations, 

which are needed for design space exploration. 

An approach to carry out reconfiguration for fault tolerance by applying graph 

grammars is suggested in [23]. The work suggests the use of Reconfiguration Graph 

Grammars (RGG) to target the problem of carrying out dynamic reconfiguration in 

processor arrays. The nodes of a graph are associated with individual processors of the 

processor array and the edges are associated with those inter-processor connection lines 

that are active.  Production rules defined in the RGG carry out the reconfiguration in the 

processor arrays. Consider an example of an array of processors connected to each other. 

These can be represented in the form of a graph. Each row in the array contains some 

additional (spare) processors that are not used. When one of the used processor fails, the 

productions that define the graph grammar for the reconfiguration algorithm dynamically 

reconfigure the arrays such that one of the spare processors is used in place of the faulty 

one and the incoming edges (active communication lines) are transferred to the spare 

processor along with the outgoing edges in the graph. RGG-based reconfiguration can be 

implemented by using a program in the memory of each processor. A neighboring 
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processor can carry out the detection of a failed processor. It can even be combined with 

reconfiguration initiation by the neighboring processor. 

The DJINN multimedia-programming framework is designed to support the 

construction and dynamic reconfiguration of distributed multimedia applications [24]. 

The main requirements addressed by DJINN are to provide QoS and integrity guarantees 

for complex multimedia applications, both in their steady state and during 

reconfigurations. DJINN includes (1) Programming support for distributed multimedia 

applications, (2) Dynamic reconfiguration, and (3) Support for QoS negotiation, 

admission control and the specification of integrity constraints. DJINN applications are 

made up of autonomous ‘active’ components that produce, consume and transform 

multimedia data streams and are distributed with the multimedia hardware and ‘model’ 

components arranged in a tree-structured hierarchy where the leaves of the tree are 

atomic model components each corresponding to a single active component. Application 

programmers do all the development in the model layer. Atomic model components 

model the QoS characteristics of their underlying active components as sets of linear 

quadratic relations between attributes. Application integrity is modeled by sets of 

predicates attached to Model components. The predicates are evaluated in leaf to root 

order during integrity tests and all must be true for the application’s configuration to be 

considered valid.  

A reconfiguration manager is responsible for controlling and validating changes 

to the application model. Application configuration – and reconfiguration –is expressed 

in terms of paths: model layer end-to-end management constructs describing the media 

data flow between a pair of endpoints chosen by the application. A path encapsulates an 
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arbitrary sequence of ports and intervening components that carry its data. A 

reconfiguration moves the application from one consistent state to another in an atomic 

manner. Before new active components are created and started, the model must pass the 

integrity tests and an admissions test. Each admission test utilizes the application’s OoS 

model, and is performed in three stages: (1) to gather application imposed constraints, (2) 

to determine constraints on resources, and (3) to generate a solution using a cost-benefit 

analysis. The approach for solving constraint relations is borrowed from operations 

research used in optimization problems. These techniques utilize a benefit function to 

find optimum values for a set of variables given a set of constraints.  

In my approach, sensor network applications are modeled as graphs where the 

nodes represent the components and the arcs represent their interaction. Constraints 

associated with the application are modeled using Object Constraint Language (OCL). 

These constraints are then evaluated by using a design space exploration tool, which 

utilizes Object Binary Decision Diagrams (OBDD) [39]. 

The use of reconfiguration to implement Automatic Target Recognition (ATR) 

applications onto field programmable gate arrays (FPGAs) is described in [25]. Bit-level 

operations that comprise much of the ATR computational burden map extremely 

efficiently into FPGAs because the specificity of ATR target templates can be leveraged 

via fast reconfiguration. ATR involves correlation of chips from the observed image with 

the templates already stored in memory which often causes bottlenecks due to the excess 

processing loand. FPGAs offer an attractive solution to the correlation problem. The 

operations being performed occur directly at the bit level and are dominated by shifts and 

add, making them easy to map into the hardware provided by the FPGA in the form of 
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adder trees. The templates are hard-wired into the FPGA (in the form of adder trees) 

while image pixels are clocked past it. Combining multiple templates on a single FPGA 

can increase efficiency. To minimize the number of FPGA reconfigurations necessary to 

correlate a given target image against the entire set of templates, it is necessary to 

maximize the number of templates placed in every configuration of the FPGA. This can 

be achieved by partitioning the set of templates into groups that can share computations 

(adder trees) so that fewer resources are used per template. The reconfiguration is thus 

the problem of choosing the right set of templates to group together on an FPGA. This 

can be achieved by ensuring that any template added to an existing group is 

approximately the same size as templates in the group. One of the heuristics used in 

deciding whether or not to include a template into a newly formed partition is to 

determine the number of new terms that adding the template would create in the 

partition’s adder tree. 

An efficient optimal algorithm for minimizing runtime reconfiguration delay is 

presented in [26]. A major drawback of using runtime reconfiguration is the significant 

delay of reprogramming the hardware.  In many applications, only a small portion of the 

design changes at a time and there is no need to reconfigure the entire hardware for 

instantiating a new design. Partial reconfiguration allows the users to change only part of 

the design that needs to be updated and hence decreases the reconfiguration time. A 

provably optimal algorithm to minimize the total delay incurred by partial 

reconfiguration is presented in [26]. The algorithm outputs an execution order of the 

operations on hardware resources such that the total runtime reconfiguration is 

minimized. This thesis does not look into optimizing the reconfiguration delay. However, 
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the proposed approach does not affect the working of other components in the application 

and only affects the components that are being acted upon by the reconfiguration agent. 

A critical issue for complex component-based systems design is the modeling and 

analysis of architecture, especially in systems whose architecture changes dynamically 

(during run time). This is because dynamic changes to architectural structure may interact 

in subtle ways with on-going computations of the system. It is valuable to provide a 

modeling approach that accounts for the interactions between architectural 

reconfiguration and non-reconfiguration systems functionality, while maintaining a 

separation of concerns between these two aspects of the system [27]. The modeling tool, 

Wright [27], addresses the problem of capturing dynamic architectures. The key is to use 

a uniform notation and semantic base for both reconfiguration and steady-state behavior, 

while at the same time providing syntactic separation between the two. This permits the 

viewing of the architecture in terms of a set of possible architectural snapshots, each with 

its own steady-state behavior. Transitions between these snapshots are accounted for by 

special reconfiguration-triggering events. The proposed reconfiguration approach also 

expresses reconfigurable and non-reconfigurable components on the same modeling 

canvas. However, care is taken to separate the modeling of the two. This kind of 

modeling enables the visualization of varied valid configurations of the applications 

under changing conditions. 
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2.4 Design Space Exploration Tool (DESERT)  

As indicated in the previous sections, software reconfiguration is a computation 

intensive process that cannot be typically performed on resource limited sensor nodes. 

The proposed approach includes a design space exploration tool called DESERT in the 

reconfiguration architecture. Design space exploration in DESERT [36] entails pruning 

the design-space with the applied constraints. An intuitive user interface lets the user 

perform the exploration interactively. The end result of the exploration is a pruned design 

space that contains only a few design configurations that are valid with respect to the 

applied constraints.  

 

2.4.1 Design Space Exploration 

The design space exploration tool, DESERT, has been developed using MIC. 

Figure 5 shows the meta-model of the DESERT input modeling language. The core 

concepts in the modeling language are Space-s, Element-s, Property-s, and Constraint-s. 

An Element represents a hierarchically composed item in the space to be explored. A 

value of true for Decomposition attribute implies inclusive AND-decomposition, which 

means that all the children of the Element are included in all configurations. A value of 

false, on the other hand, implies OR-decomposition, which means that the Element is 

composed of exactly one of its children in any configuration. The children of an OR-

decomposed element represent alternatives, i.e. a choice has to be made among the 

alternatives in the design space exploration based on constraints. An element with no 

children represents a leaf in the hierarchy, regardless of the value of its Decomposition 

attribute. A Space is simply a composition of Elements, and is equivalent to an Element 
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with a Decomposition value of true. Several Spaces may be composed together to define 

the aggregate design space for the system. 

 

 

Figure 5 - DESERT Meta-Model 

An Element can contain zero or more Properties. The general notion of Property 

is a characterization of an element; however, the specification and its semantic 

interpretation may differ based on the decomposition of the element and its placement in 

the hierarchy.  For leaf elements, property values are specified as an input to DESERT, 

whereas for non-leaf elements, DESERT computes property values, while evaluating 

constraints, based on the decomposition of the non-leaf element, as well as the 

Composition policy of the property.  Multiple values may be provided for a Property of a 

leaf element, representing another dimension of choice with a kind of parameterization. 
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For OR-decomposed elements, the composite property is an exclusive-OR of any one of 

the child elements, while for AND-decomposed elements the property of the element is a 

composition per the Composition policy. DESERT implements a number of Composition 

policies, such as additive, multiplicative, maximum (or minimum). Custom Composition 

policies are also supported; however, the user is required to provide the composition 

algorithm. DESERT has well-defined interfaces for implementing custom composition 

policies. 

Constraints are the specification that the design space exploration evaluates over 

the provided design space, and produces a “pruned” space that contains only such designs 

that satisfy the constraint. To remain consistent with the selected meta-modeling 

language (UML class diagrams and OCL), a variant of OCL is used for constraint 

specification. 

This mechanism of structuring design spaces can be summarized as hierarchically 

layered parameterized alternatives. The following example demonstrates its scalability in 

representing large design spaces: With  alternative implementations per OR-

decomposed element, and  OR-decomposed elements on each level of an -level deep 

refinement hierarchy, this representation can define:  design configurations, where 

, and , using just 

a

n m

mka

( ) nkk mm ×+= − 11 nk =1 ( )mna×  leaf elements. As an example, with 4=n , 

, and , a total of 1728 leaf elements can represent  design configurations in 

the space! 

3=a 3=m 843

Formally, a design space is a set and its formulation is demonstrated in the 

following expressions. A configuration is a particular selection of choices in the space. 

Let  be the set of all configurations that include an element , and ( )dConfigs d ( )dχ  be the 
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set of children of .  Also let  be the set of values of propertyd jD j , and let  be the set 

of properties in a leaf element . Then, the set of possible instantiations  of the leaf 

element l  can be defined as: 

( )lP

l ( )lPS

( )
( )

∏=
lP

j
jDlPS  

(1)

The set of configurations can be constructed recursively, depending on element 
decomposition, as follows: 

( )

( )

( )
( )

( )
( )⎪

⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

=

∈

∈
∏

OR

AND

LEAF

U
dx

dx

xConfigs

xConfigs

dPS

dConfigs

χ

χ

 

(2)

Let,  be the root element of the -th space, then kℜ k ( )kConfigs ℜ  is the set of all 
configurations in the -th space. The aggregate design space can now be defined as: k

( )∏ ℜ=
k

kConfigsDS  (3)

 

2.4.2 Design Space Encoding and Pruning 

Manipulation of design-spaces can be reduced to set operations: calculating 

product spaces (composition of design spaces) and finding subspaces that satisfy various 

(structural) constraints.  Since the size of design-spaces is frequently huge, execution of 

these set manipulation operations by enumerating all elements is hopeless. Therefore the 

manipulation operations are performed symbolically. Two problems had to be solved: 1) 

symbolic representation of design-spaces, and 2) symbolic representation of constraints.  

If the parameters of model objects are restricted to finite domains, the design 

space will be also finite. By introducing a binary encoding of the elements in a finite set, 

all operations involving the set and its subsets can be represented as Boolean functions 
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[39]. These can then be symbolically manipulated with Ordered Binary Decision 

Diagrams (OBDD-s) [39], a powerful tool for representing, and performing operations 

involving Boolean functions. The choice of encoding scheme has a strong impact on the 

scalability of the symbolic manipulation algorithms, as it determines the number of 

binary variables required for representing the sets. In addition to encoding the structure of 

the design-space, the encoding scheme has also to encode the parameters of the 

parameterized model components. Subsequent to encoding, and deciding the variable 

ordering, the symbolic Boolean representation is mapped to an OBDD representation in a 

straightforward manner. The details of this encoding scheme have been described in [40]. 

There are two basic categories of structural constraints that DESERT can compute 

efficiently.  

Compatibility and Inter-space constraints – These constraints specify relations among 

subspaces in the overall design space, expressing semantic compatibility between 

different elements.  Symbolically, the constraints can be represented as a Boolean 

expression over the Boolean representation of the elements of the design-space. 

Property constraints – Property constraints specify bounds on the composite properties of 

elements in the composed system. The important challenge for the property constraints 

are that they are derived from structural characteristics of designs. As we mentioned 

earlier different properties compose differently, e.g. cost can be composed additively, 

latency can be composed as additively for pipelined components, and as maximum for 

parallel components, etc. DESERT provides some built-in composition functions 

(addition, maximum, minimum, etc.), and has a well-defined interface for creating 

custom composition functions 
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In addition to these basic categories of constraints, complex constraints may be 

expressed by combining one or more of these constraints with first order logic 

connectives.  The symbolic representation of the complex constraints can be 

accomplished simply by composing the symbolic representation of the basic constraints. 

 OBDD based representations scale well for representing the structure of the 

design space (nested AND/OR expressions). The critical challenge in scalability occurs 

during the design-space pruning step. Automatic application of complex constraints to 

large spaces may result in explosion of the OBDD-s therefore DESERT has an interactive 

user interface to influence this process. Users can control the importance of constraints 

and select the sequence order of their application [16].  

The primary advantage of the symbolic design space pruning approach is that it is 

exhaustive: the pruned space includes all of the designs, which meet the applied design 

constraints. A significantly simpler, but still useful alternative approach to design space 

pruning could be to find a single design configuration (not all), which satisfies the 

selected design constraints. The controller at the base station selects the first amongst all 

the valid configurations generated by DESERT. 
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2.5 Model of Computation 

In order to model component based sensor network applications, we need to base 

our applications on a formal model of computation. A model of computation can be 

defined as a formal, abstract definition of a computer. Using a model one can more easily 

analyze the intrinsic execution time or memory space of an algorithm while ignoring 

many implementation issues [48]. Sensor network applications are typically composed of 

a number of components or processes that exchange data. We use the Asynchronous Data 

Flow (ASDF) process network [42] as a base to model our applications.  

Under the data flow paradigm, applications are described as directed graphs 

where the nodes represent computations (or functions) and the arcs represent data paths. 

The data flow principle is that any node can fire (perform its computation) whenever 

input data is available on its incoming arcs. A node with no input arcs may fire at any 

time. This implies that many nodes may fire simultaneously, hence the concurrency. 

Because the program execution is controlled by the availability of data, data flow 

programs are said to be data driven. The only influence one node has on another is the 

data passing through the arcs.  

In most graphical programming languages, the nodes of the graph can be viewed 

as processes that run concurrently and exchange data over the arcs of the graph. Dataflow 

process networks are shown to be a special case of the Kahn process networks in [42]. In 

a process network, concurrent processes communicate with each other through one-way 

first-in-first-out (FIFO) channels with unbounded capacity. Each data token is written to 

the channel exactly once and read from the channel exactly once. Writes to the channel 

are non-blocking (they always succeed) while reads are blocking. A process that attempts 
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to read from a channel stalls if the channel is empty. This model of computation does not 

actually require either multitasking or parallelism, but it is capable of exploiting both. It 

also does not require infinite queues and can be implemented to use memory much more 

efficiently. Unlike the Synchronous Data Flow (SDF) [28] model of computation which 

requires static scheduling, ASDF process networks do not specify any timing information 

or the rates at which data is generated and nodes fire and can be scheduled dynamically.  

This approach proposed in this thesis uses the ASDF model of computation to 

model and implement sensor network applications. The sensor network applications are 

designed as a group of independent processes communicating with each other using inter-

process communication directives and constructs. This kind of software architecture 

enables the dynamic switching of components executing in the application. The sensor 

network application is mapped onto an ASDF graph such that each node in the graph 

represents a process and the arcs connecting two nodes represent the inter-process 

communication. Moreover, the processes in the application are data driven and fire only 

when they receive data from another process. The processes that are not connected to any 

other process may fire at any time as in the ASDF model. 
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2.6 Motion Detection/Tracking/Estimation 

I implemented a sensor network application called Aislemonitor for single 

dimensional tracking of people walking in an aisle (described in Chapter 6). This 

application was deployed on our sensor network testbed (described in Chapter 3) and 

used to demonstrate our software reconfiguration approach. This section explores the 

work gone into sensing and tracking objects of interest using sensor networks. 

A methodology for planning and controlling the sensing, processing and 

communication actions needed to accomplish a certain mission using sensor networks 

while respecting the system resource constraints like power consumption, communication 

range, bandwidth and susceptibility to noise limitations due to the wireless technologies 

such as radio links commonly used in sensor devices is described in [29]. Emphasis is 

laid on techniques to address real world high-level queries such as “who is the leader of 

the people walking in the building” or “is friendly vehicle a surrounded by enemy 

vehicles”. A mathematical framework on how high-level queries can be transformed into 

low level sensing, computation and communication operations designed to produce the 

desired answers, while minimizing the power and other resources expended in satisfying 

the queries is proposed. Several of such queries refer to global, aggregate and relational 

aspects of the environment. Though most sensing acquires data in the continuous domain, 

the information most useful to the system’s clients is often of an aggregated or discreet 

nature. By its nature sensor network is a hierarchical hybrid system where sampled 

continuous signals transition to discreet symbolic information as we go up the task 

hierarchy. The pushing of the interface between continuous and discrete to a very low 

level in the system architecture is possible and can yield significant benefits in economy 
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and speed. Emphasis is put on tracking spatial or temporal relations between objects and 

local or global attributes of the environment than the detailed estimation of positions and 

poses of individual objects. By focusing on relations and the logical structure of the 

evidence with respect to the task at hand, it will be possible to allocate the sensor and 

computation resources where they are most needed.  

The tracking algorithm deployed on the sensor network testbed has some 

constraints; it allows the tracking of only one person per sensor node at any given time. 

Tracking of multiple people is a more complex problem. The ideas presented in [29] can 

be used to estimate the number of people walking together in the range of an individual 

sensor at the same time. A Kalman Filter is used to smooth out the positions of the center 

of mass of the person walking in the aisle detected by the application. 

The Kalman filter [30] [31] provides an efficient computational (recursive) means 

to estimate the state of a process, in a way that minimizes the mean of the squared error. 

The filter is very powerful in several aspects: it supports estimations of past, present, and 

even future states, and it can do so even when the precise nature of the modeled system is 

unknown [30]. In this approach, The Kalman Filter is used to estimate the position of a 

person in an aisle. When a person is walking in the aisle, his/her observed position is fed 

into the Kalman Filter. The filter then computes the person’s position and speed. 

A Kalman filter is simply an optimal recursive data processing algorithm. One 

aspect of this optimality is that it incorporates all information that can be provided to it. It 

processes all available measurements, regardless of their precision, to estimate the current 

value of the variables of interest, with use of (1) knowledge of the system and 

measurement device dynamics, (2) the statistical description of the system noises, 
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measurement errors and uncertainty in the dynamics models, and (3) any available 

information about the initial conditions of the variables of interest. For example, to 

determine the velocity of an aircraft, one could use a Doppler radar or the velocity 

indications of an inertial navigation system, or the pilot and static pressure and relative 

wind information in the air data system. Rather than ignore any of these outputs, a 

Kalman filter could be built to combine all this data and knowledge of the various 

systems’ dynamics to generate an overall best estimate velocity. 

The word recursive means that, unlike certain data processing concepts, the 

Kalman filter does not require all the previous data to be kept in the storage and 

reprocessed every time a new measurement is taken. This is of vital importance to the 

practicality of filter implementation. 

The filter is actually a data processing algorithm. Despite the typical notation of a 

filter as a black box containing electrical networks, the fact is that in most practical 

applications, the filter is just a computer program in a central processor. As such, it 

inherently incorporates discrete time measurement samples rather than continuous time 

inputs. Figure 6 depicts a typical situation in which a Kalman filter could be used 

advantageously. A system of some sort is driven by some known controls, and measuring 

devices provide the value of certain pertinent quantities. Knowledge of these system 

inputs and outputs is all that is explicitly available from the physical system for the 

estimation process.  
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Figure 6 - Typical Kalman Filter Application 

Often the variables of interest, some finite number of quantities to describe the 

“state” of the system, cannot be measured directly, and some means of inferring these 

values from the available data must be generated. For instance, an air data system directly 

provides static and pitot pressures, from which velocity must be inferred. This inference 

is complicated by the facts that the system is typically driven by inputs other than our 

known controls and that the relationships among the various “state” variables and 

measured outputs are known only with some degree of uncertainty. Furthermore, any 

measurement will be corrupted to some degree by noise, biases, and device inaccuracies, 

and so a means of extracting valuable information from a noisy signal must be provided 

as well. There may also be a number of different measuring devices, each with its own 

particular dynamics and error characteristics that provide some information about a 

particular variable, and it would be desirable to combine their outputs in a systematic and 
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optimal manner. A Kalman filter combines all the available measurement data, plus prior 

knowledge about the system and measuring devices, to produce an estimate of the desired 

variables in such a manner that the error is minimized statistically. 

The filter performs conditional probability density propagation for problems in 

which the system can be described through a linear model and in which the system and 

measurement noises are white and Gaussian. Under these conditions, the mean, mode, 

median and virtually any reasonable choice for an optimal estimate all coincide.  
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CHAPTER III 

SENSOR NETWORK TESTBED 

The sensor network testbed comprising eight sensor nodes is used for tracking 

people walking in an aisle using webcams connected to individual sensor nodes. The 

objective of this testbed is to demonstrate the proposed approach for carrying out 

dynamic software reconfiguration on sensor networks. 

The first section of this chapter describes the objective of the testbed. The second 

section describes the hardware infrastructure of the experimental testbed with details 

about the sensor devices and the network configuration. The third section describes the 

software infrastructure, which includes the operating system and various open source 

software programs. 

 

3.1 Objective of the Experimental Testbed 

The purpose of the experimental testbed is to demonstrate the validity of the 

proposed approach for carrying out dynamic software reconfiguration on sensor 

networks. This work is based on utilizing an application deployed on the sensor network 

that can be dynamically reconfigured to perform satisfactorily in a changing environment. 

The Aislemonitor application (described in Chapter 6), which tracks people walking in an 

aisle, is utilized for this purpose. The OpenBrick sensor devices (described in the next 

section) form the sensor network. They are deployed along a straight line in an aisle. 

Each OpenBrick device hosts the Aislemonitor application.  
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The reconfiguration approach is tested by shutting down one of the OpenBrick 

devices, thus requiring its neighbors to reconfigure their application components 

dynamically to predict the position of the people in the range of the affected node. This 

involves switching of some components, viz. the Estimator and the DataCollector 

(described in Chapter 6), executing on the neighboring OpenBrick devices. The process 

of choosing appropriate components to form a new configuration is very computation 

intensive and cannot be typically performed on sensor nodes. This task is therefore 

performed on a more powerful machine like a base-station. The whole reconfiguration 

cycle involves monitoring the health of the network, communication with other sensor 

devices and the base station, choosing new components, generating reconfiguration 

scripts, communicating these to the individual sensors and actually switching the 

components executing on the sensors with the ones selected in the new configuration.  

I have implemented a software infrastructure to carry out all the mentioned tasks 

necessary for enabling dynamic software reconfiguration on our sensor network testbed. 

For the purpose of prototyping and validating the proposed software reconfiguration 

approach, this testbed adequately replicates real world sensor networks and the 

application for tracking people in the aisle provides adequate representation of real world 

sensor network applications.  

 

3.2 Hardware Infrastructure 

The sensor network testbed consists of eight OpenBrick-E wireless sensor devices 

and a base station [32]. The OpenBrick-E has a small form factor ( 220 x 165 x 42 mm ) 

and weighs only about 1200 g. It includes three RJ45 LAN connectors and built in USB-
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based 802.11b wireless LAN with a standard 2 dbi antenna. The default configuration has 

a fan-less 533 MHz x86 compatible VIA C3 processor and 256 MB SDRAM. Software 

can be installed on a Compact Flash or on an optional Hard Disk. The eight OpenBrick 

devices used in the testbed are equipped with 256MB of RAM and a 20GB Hard Disk 

each. In addition to WiFi support, each OpenBrick device includes three USB ports, PS/2 

mouse and keyboard ports, a video port for the monitor, two Serial ports and a Parallel 

port. An OpenBrick-E device is displayed in Figure 7. 

 

 

Figure 7 - OpenBrick – E Device 

 
 
 

Figure 8 - Logitech QuickCam Pro 4000 webcam 
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Each Openbrick device is connected to a Logitech QuickCam Pro 4000 webcam 

(Figure 8).  The QuickCam is connected to the OpenBrick device through its USB port 

and acts as the video capture device. The webcam supports images with resolution up to 

640 x 480 pixels and includes an advanced VGA CCD sensor. 

The base-station executes the Windows XP operating system. It is connected to 

one OpenBrick device through a wired 802.3 LAN connection. The base station is used to 

carry out computation intensive tasks in the reconfiguration process. It has an Intel 

Pentium 4 2.53GHz Processor with 1 GB of RAM, a RJ45 LAN Connector and 100GB 

of storage space.  

The eight OpenBrick devices are configured to form a private ad hoc wireless 

network. Each device is assigned a static IP address in the private wireless network. The 

private network is maintained through the use of an ESSID. The network infrastructure 

also includes a LINKSYS EF3124 24 port 10/100 Ethernet switch. The switch is part of 

the private ‘wired’ LAN network, which connects the base station to the first OpenBrick 

device. Devices connected to the wired network are also assigned static IP addresses. The 

24-port switch is also used in development activities. The base station is assigned a static 

IP and connected to the switch. One OpenBrick device is also connected to the switch. 

The base station communicates with all other OpenBrick devices through this wired 

connection. The detailed network configuration is displayed in Figure 9.  
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Network Setup 

Figure 9 - Network Setup 

Although the OpenBrick devices used in our experimental testbed are very 

powerful, equipped with a hard disk drive and powered by standard AC input, they can 

be easily adapted to use a flash card instead of the hard disk and a battery for the power 

supply. The device is portable and supports wireless communication. Any kind of sensor 

devices can be connected to OpenBrick devices through their USB, serial and parallel 

ports. The devices support Linux, which enables the use of all kinds of open source 
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the support for Linux make the OpenBrick device a very suitable match to test our 

software reconfiguration approach.   

 

3.3 Software Infrastructure 

The OpenBrick devices use Red Hat Linux 9 operating system with 2.4.20 kernel 

while the base station uses the Windows XP Professional operating system.  

The communication between the OpenBrick devices occurs by exchanging data 

packets through datagram sockets using the User Datagram Protocol (UDP).  The 

reconfiguration software and the applications generate UDP packets and route them to the 

destination using the Internet Protocol (IP). However, simple UDP sockets are not 

enough to carry out the communication over the entire wireless network. A node cannot 

send a message to another one outside its wireless range. This problem can be resolved 

by using a routing protocol that maintains route tables. The protocol refers to these tables 

and relays the packets through intermediate nodes before they reach the destination. 

An implementation of the Ad hoc On Demand Distance Vector (AODV) [18] 

routing algorithm, a routing protocol for ad hoc mobile networks, provided by the 

National Institute of Standards and Technology (NIST) [33] is installed on each 

OpenBrick device. This enables the formation of a multi-hop ad hoc sensor network 

comprising of the eight OpenBrick devices. AODV is a method of routing messages 

between mobile computers. It allows these mobile computers, or nodes, to pass messages 

through their neighbors to nodes with which they cannot directly communicate. AODV 

does this by discovering the routes along which messages can be passed. AODV makes 

sure these routes do not contain loops and tries to find the shortest route possible. AODV 
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is also able to handle changes in routes and can create new routes if there is an error. The 

AODV program is configured to work only on the wireless network. This keeps the 

communication channel between the base station and the first OpenBrick device open 

through the wired 802.3 Ethernet connection.  

An open source program for detecting motion is also installed on each OpenBrick 

device. This software, called Motion [34], captures frames from the webcams at a set 

frequency using Video for Linux (v4l) drivers. Subsequent images are then subtracted 

from each other and if the resultant frame contains non-zero values for some pixels, it 

indicates motion. Our application uses a modified version of this software where the 

frames captured every time cycle are compared to a background frame rather than the 

previous frame. The images captured by using the v4l drivers from the Logitec Quickcam 

webcam are in the YUV420P [35] format. For the purpose of detecting motion, the 

software just uses the Y or the Brightness value of the image. Y ranges from 16 to 235 or 

full brightness. 
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CHAPTER IV 

RECONFIGURATION ARCHITECTURE 

Sensor networks, typically deployed in inaccessible environments, are vulnerable 

to failure due to the dynamic nature of their target environments and their own resource 

limitations. However, the composition of these networks, which includes numerous 

collaborating sensors nodes, can be used to address these problems. If some sensor nodes 

become disabled, their neighboring nodes can be made to take up their responsibilities. 

Similarly, if too many nodes become redundant, some of them can be suspended, thus 

adding to the saving of precious resources. This dynamic behavior of the sensor networks 

can be achieved by reconfiguring the software components executing on each individual 

sensors. 

This chapter describes the proposed approach for performing dynamic software 

reconfiguration in sensor networks. The first section of this chapter describes the problem 

of software reconfiguration. The second section states the approach in detail for carrying 

out software reconfiguration in sensor networks. The third section defines the scope of 

the reconfiguration architecture. 

 

4.1 Software Reconfiguration Problem 

Sensor networks are often required to operate in inaccessible and dynamic 

environments that impose varying functional and performance requirements. This 

accentuates the need for software systems that can adapt to new conditions by 

reconfiguring themselves by detecting internal and external changes to the system and 
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reflecting on the event occurrences. Ad hoc wireless sensor networks, in particular, must 

be designed with adaptation capabilities that enable them to handle a multitude of 

operating conditions. However, reconfiguration in such systems presents significant 

challenges because of the severe constraints in energy, computation, and communication 

resources. Computation intensive processes like choosing new configurations of 

components from a large design space cannot be performed on the individual sensors. 

Runtime technologies that allow software to evolve as system requirements and/or its 

environment change are critical to the development and deployment of such systems [16].  

 

4.2 Proposed Solution 

This thesis presents an approach for building self-adaptive sensor networks based 

on Model-Integrated Computing [37]. This approach utilizes explicit models of the 

design space of the embedded application. The design space is captured by formally 

modeling all the software components and their interactions that together constitute an 

application. The modeling of the application is based on the Asynchronous Data Flow 

model of computation [28]. Components interact with each other only when exchanging 

information through input and output ports. System requirements are expressed as formal 

constraints on operational parameters such as power consumption, latency, accuracy, and 

other QoS properties that are measured at runtime. These constraints are expressed in the 

Object Constraint Language (OCL) [38]. The constraints and models are embedded in the 

running application forming the operation space of the system. Reconfiguration is the 

process of transitioning from one point of the operation space to another [16].  
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Finding the components to be included in a new configuration can be considered a 

search problem in the operation space. The exploration of the operation space is a 

challenging problem since it must be performed within stringent time bounds and 

resource constraints. An efficient approach for performing this search is based on (1) 

parameterized constraints captured in the embedded models, and (2) online constraint 

solving using a combination of symbolic constraint satisfaction and linear programming. 

Once a new configuration that satisfies all the constraints is found, the reconfiguration 

can be accomplished by online software synthesis targeting either an interpreted language 

or a command interface.  

Reconfiguration thus involves two major tasks – (1) finding the new configuration 

and (2) switching or reconfiguring the components that are actually executing on the 

individual sensors. The first task is performed by a controller that runs on the base station 

while the second task is performed on individual sensors by specialized switching 

components. The reconfiguration architecture is displayed in Figure 10.  

During design time, the entire application is modeled in the Generic Modeling 

Environment (GME). The Sensor Network Reconfigurable Applications Modeling 

Language (SNRAMoLa) for component based sensor network applications supports the 

modeling of alternate implementations of the same components and explicit 

representation of constraints in OCL. A series of critical QoS parameters are also 

modeled as attributes to individual components. Our models include the ‘power’ 

attribute. The constraints are resolved over these attributes by the DEsign Space 

ExploRation Tool (DESERT) and valid configurations of the application are generated. 

SNRAMoLa is described in detail in Chapter 5. 
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During run-time, upon detecting failure, the Global Constraint Monitor (GCM) 

(located on the base station) updates the values of the critical QoS attributes in the 

application models. A change in the values of the attributes invokes the reconfiguration 

process.  

During reconfiguration, the first task of finding a new configuration is performed 

by a controller program executing on the base station. The SNRAMoLa models of the 

application, which include all application components and associated constraints, form 

the design space for selecting the valid configurations of the application. A valid 

configuration includes all those components from the SNRAMoLa models that satisfy all 

the constraints. The design space exploration tool, DESERT [36] (described in Chapter 

2), evaluates the constraints and selects an appropriate configuration by pruning the 

design space. DESERT performs this task by applying these constraints on specific QoS 

attributes associated with the components. In our case, DESERT prunes the design space 

based on the value of the power attribute in each component. This power attribute reflects 

the power available on each node. The output of DESERT is used in the generation of a 

set of configuration files, one for each sensor. The reconfiguration process then involves 

sending the new configuration files to the individual OpenBrick devices over the ad hoc 

wireless network.  

The second task is performed by the Configurator component executing on 

individual OpenBrick devices. It reads from the new configuration file sent by the base 

station and, stops, rewires or starts active or dormant application components already 

present on the sensor nodes. In addition to the Configurator, the Monitor components 

executing on each device, monitor the health of the network. These communicate with 
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the GCM component executing on the base station in case of failure in the network. The 

GCM in turn updates the critical attributes like power in the application model, which 

invokes the reconfiguration process. The Configurator, Monitor and GCM are described 

in Chatper 7. 

 

4.3 Main Contribution 

The main contributions of this thesis include: 

1. A modeling environment called SNRAMoLa developed in GME used for modeling 

component based sensor network applications. 

2. An interpreter that converts SNRAMoLa models to DESERT input. 

3. An interpreter that generates configuration files using SNRAMoLa models and 

DESERT output. 

4.  A software reconfiguration agent called Configurator that switches components 

executing on the sensor nodes. 

5. A program called Packet Forwarder that relays messages between the sensor nodes 

and the base station. 

6. Monitoring components that monitor the health of the sensor network and 

communicate node failures to the base-station. 

7. A program called the Global Constraint Monitor (GCM) that updates the QoS 

parameters in the SNRAMoLa models upon receipt of node failure messages from 

the Monitors on the sensor nodes. 

8. The Aislemonitor application for tracking people walking in an aisle. The 

application is used for evaluating the software reconfiguration architecture. 
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CHAPTER V 

MODELING RECONFIGURABLE SENSOR NETWORK APPLICATIONS 

The representation of multiple software components that perform various tasks in 

an application along with their interactions poses a significant challenge to software 

engineers. Such a representation is vital for carrying out software reconfiguration to 

understand the current status of the application executing on multiple sensor nodes. 

Textual representation of such applications is error-prone and of little use in managing 

the complexity of the application. Even in the simplest scenario a more expressive 

representation of application components and the interconnections between them using 

modeling tools can help users avoid errors and help others understand the application. 

With more complex components this becomes an absolute requirement. Model Integrated 

Computing [37] in general and the Generic Modeling Environment (GME) in particular 

can meet these challenges [16]. 

This chapter presents a modeling paradigm for representing reconfigurable sensor 

network applications in the Generic Modeling Environment. The first section of the 

chapter describes this modeling paradigm in detail. The second section describes the 

modeling of a simple sensor network configuration using the Aislemonitor application 

described in Chapter 6. The third section describes the modeling of an application with 

multiple configurations. It also includes example models of the Aislemonitor application 

described in Chapter 6. 
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5.1 Sensor Network Reconfigurable Applications Modeling Language (SNRAMoLa) 

The paradigm for modeling component based reconfigurable software systems 

has been developed in the Generic Modeling Environment (GME). Figure 11 shows the 

meta-model for the Sensor Network Reconfigurable Applications Modeling Language 

(SNRAMoLa). This modeling paradigm is based on the Asynchronous Data Flow 

(ASDF) model of computation [28]. 

Component based software systems are comprised of a number of software 

components interacting with each other. Such applications can be intuitively modeled as 

graphs. Individual components are represented as nodes while their interactions as arcs in 

the graph. Two nodes in the graph are connected if they interact with each other. The 

components are connected through input-output objects called ports. 

ASDF is a special case of data flow, a hardware and software methodology 

popular for representing parallel computation. Under the data flow paradigm, algorithms 

are described as directed graphs where the nodes represent computations (or functions) 

and the arcs represent data paths. The data flow principle is that any node can fire 

(perform its computation) whenever input data is available on its incoming arcs. A node 

with no input arcs may fire at any time. This implies that many nodes may fire 

simultaneously, and hence also represents concurrency.  

In this thesis, Component based sensor network applications are designed as a 

group of independent processes communicating with each other using inter-process 

communication directives and constructs. This kind of software architecture enables the 

dynamic switching of components executing in the application. Such applications can be 

easily represented in the ASDF model of computation. The use of ASDF allows the 
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mapping of the sensor network application onto an ASDF graph such that each node in 

the graph represents a process and the arcs connecting two nodes represent the inter-

process communication. The processes in the application, like the nodes in the ASDF 

model, are also data driven and fire only when they receive data from another process. 

The processes that are not connected to any other process may fire at any time as in the 

ASDF model.  

SNRAMoLa enables the user to represent sensor network applications in the form 

of a graph. This application graph is composed of components that exchange data through 

ports. The core concepts in the modeling language are Component-s, InPort-s, OutPort-s, 

DataFlow connections, Choice-s and Condition-s (described later in this section). The 

Sensor and SensorFolder objects contain the application graph, which is composed of the 

core objects. The ComponentsFolder object contains all the non-reconfigurable 

Component objects. Non-reconfigurable Component objects cannot be replaced by any 

other components in the application by DESERT during the reconfiguration process and 

are always included in the application configuration. 
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Figure 11 - SNRAMoLa Meta Model 

5.1.1 SensorFolder 

Each SNRAMoLa application model contains exactly one SensorFolder object. 

The SensorFolder acts as a container for all the Sensor objects, which model sensor 

devices, in our case, OpenBrick devices. 

 

5.1.2 ComponentsFolder 

Each SNRAMoLa application model contains exactly one ComponentsFolder 

object. This object contains all the non-reconfigurable Component objects that are 

included in the application. The components are then only referred in the actual 

application graph built in the Sensor objects. Typically, in a sensor network application, 

most sensors will have the same application components executing on them and not all 

components will need to be replaced during reconfiguration. Many of the components 
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included in the application configuration will be non-reconfigurable. This modeling 

feature removes the duplicate declaration of common components, which are always 

included in all the configurations on each Sensor.  

 

5.1.3 Sensor 

Separate Sensor objects for each sensor are declared inside the SensorFolder 

object. Sensor objects represent the actual sensor nodes in the sensor network. In our 

case, each Sensor object represents an OpenBrick device. This modeling feature enables 

the user to model different applications (applications composed of different components) 

for different sensors in the network. The graphs for the application executing on each 

sensor are then built inside these Sensor objects. The application graph is composed of 

the core Component, Choice and Condition objects.  

 

5.1.4 Component 

A Component object in SNRAMoLa represents a separate process in the 

application executing on the sensor devices. Components may contain InPort(s) and 

OutPort(s) objects if they exchange data with other Components in the application. These 

ports are used to pass messages between components. A Component is reconfigurable if 

it can be replaced by another Component in the application graph during the 

reconfiguration process and is non-reconfigurable if it is irreplaceable in the application 

graph. Non-reconfigurable components are declared in the ComponentsFolder folder 

object and referenced in the application graph built on individual Sensor objects while 

reconfigurable components are declared in the Choice objects, which form containers for 
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alternative Components. Each Component object also has an attribute called ‘Path’ which 

identifies the physical path of the executable that is invoked when starting the 

Component. This attribute is used by the Configurator component on the individual 

OpenBrick devices to execute the corresponding process represented by that Component. 

 

5.1.5 InPort  

An InPort object in SNRAMoLa represents an input port of a Component object. 

It is declared inside a Component object and used to accept data from another Component 

object. This functionality is implemented in the reconfiguration software infrastructure 

using shared memory. A Component object can have any number of InPort objects but 

each InPort object can be connected to at most one corresponding OutPort object 

declared inside another Component or Choice object using the DataFlow connection 

object. 

 

5.1.6 OutPort  

An Outport object in SNRAMoLa represents an output port of a Component 

object. It is also declared inside a Component or Choice object and used to send data to 

another Component object. This functionality is implemented by the reconfiguration 

software infrastructure using shared memory. A component can have any number of 

OutPort objects but each OutPort object can be connected to at most one corresponding 

InPort object, declared inside another Component object, using the DataFlow connection 

object. 
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5.1.7 DataFlow  

A DataFlow object is a connection object that links an output port of a 

Component object represented by an OutPort object with an input port another 

Component object represented by an InPort object. It models the Asynchronous flow of 

data from one application component to another. The DataFlow object along with the 

InPort and OutPort objects is implemented by reconfiguration software infrastructure 

using shared memory. 

 

5.1.8 Choice  

As the name suggests, a Choice object facilitates the user to model reconfigurable 

or mutually replaceable Component objects in the application graph. At any given 

instance, only one process from the collection of processes represented by the 

Component objects declared in a given Choice object actually executes in an application. 

A Choice object also contains a Condition object, which specifies the condition expressed 

in OCL in its Expression attribute. During the reconfiguration process, DESERT 

evaluates all the constraints modeled as Condition objects over all the Component objects 

declared in the respective Choice objects and selects only one Component object to be 

included in the final application graph from each Choice object. DESERT does this 

selection based on the value of the Power attribute of the Component objects.   

 

5.1.9 Condition 

Each Choice object contains at least one Condition object that specifies a 

constraint expressed in OCL. During the reconfiguration process, this constraint is 
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evaluated by DESERT over the collection of reconfigurable Component objects also 

contained in the same Choice object and only those Component objects that satisfy the 

constraints are selected for inclusion in the final application graph. The Condition object 

has an attribute called Expression, which is used to express the constraint in OCL. 

The SNRAMoLa paradigm enables the user to model complex component based 

sensor network applications in a more intuitive manner. The communication links 

between various components are clearly expressed using the InPort, OutPort and 

DataFlow objects. The paradigm enables the user to model components that can be 

replaced by others during runtime along with the constraints that govern the selection of 

the appropriate components from the collection of alternatives. Using SNRAMoLa, the 

user can visualize the applications executing on individual sensor nodes along with all the 

active and passive components of the application and maintain different versions of the 

application on individual sensors if needed. 
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5.2 Modeling of Single Configuration 

An application with only one valid configuration can be modeled in SNRAMoLa 

using only Component(s) and DataFlow objects. Such a model does not contain any 

Choice and reconfigurable Component objects. The application graph of such an 

application contains all the Component objects declared in the model. The interactions 

between Components are modeled as DataFlow objects connecting their OutPort objects 

with their InPort object. All the Component objects are declared in the 

ComponentsFolder and referred to in the application graph built in the Sensor objects. In 

single configuration applications, there is no need for reconfiguration as only non-

reconfigurable components are actually used in the application.  

 

W 2

W 1

W 3

W 4

 

Figure 12 - SNRAMoLa Model of Aislemonitor with Single Configuration 
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Figure 12 shows the SNRAMoLa model of the Aislemonitor (described in chapter 

6) application with a single configuration. As shown in the figure, the application graph 

built in a Sensor object displayed in Window 1 (W1) consists of four Component objects 

- Receiver, ImageSensor, Estimator and DataCollector. The Receiver and the 

ImageSensor send data to the Estimator and the Estimator sends data to the DataCollector 

through their respective OutPort objects (described in Chapter 6). The attributes of the 

Estimator Component are shown in W4. The ‘Path’ attribute of the Estimator specifies 

the physical location of the executable of the process represented by the Estimator 

Component on the OpenBrick device. W2 displays all the modeled objects. The 

ComponentsFolder object contains all the non-reconfigurable components, in this case, 

all the three components. The SensorFolder object contains all the Sensor objects 

identified by their IP addresses in the network. The components declared in the 

ComponentsFolder object are referenced in the application graph, displayed in W1. W3 

displays the modeling components that can be defined in W1. In this case, Choice and 

Component_reference objects can be defined on the Sensor object, but since this a single 

configuration application, only Component_reference objects are defined. The InPort and 

OutPort objects are declared as shown in Figure 13. 
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Figure 13 - Declaration of InPort and OutPort Objects in Estimator Component 
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5.3 Modeling of Multiple Configurations 

Applications with multiple configurations can be modeled in SNRAMoLa using 

Choice, Condition and reconfigurable Component objects. Each Choice object contains 

Component objects that can be replaced by other Components declared in it. The 

Condition object, also present in the Choice object, governs the selection of the proper 

Component based on the constraints expressed in its ‘Expression’ attribute. The rest of 

the model is similar to that of an application with a single configuration. Reconfigurable 

components are encapsulated into Choice objects, which are included in the application 

graph.  

 

 

Figure 14 - SNRAMoLa Model of Aislemonitor with Multiple Configurations 
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Figure 14 shows the SNRAMoLa model of the Aislemonitor application. It shows 

Choice objects EstimatorChoice and DataCollectorChoice in place of the Estimator and 

DataCollector Component objects as shown in the model for a single configuration.  

 

 

Figure 15 - Estimator1, Estimator2 and EstimatorCondition  in EstimatorChoice Object 
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The EstimatorChoice and DataCollectorChoice objects contain Estimator1 and 

Estimator2 and DataCollector1, DataCollector2 Components, respectively, along with the 

Condition objects EstimatorCondition and DataCollectorCondition as shown in Figure 

15. 

The OCL expression in the EstimatorCondition object, “self.Power()<4”, is 

evaluated by DESERT during the reconfiguration process and the Component with the 

‘Power’ property value less than 4 is chosen in the returned configuration. Thus in this 

example Estimator 1 will be selected as its Power attribute value is 0. The attribute value 

for Estimator 2 is 5. The choice of the Component objects to be included in the final 

application graph can be governed by changing their ‘Power’ attribute values, which is 

what the Global Constraint Monitor does.  

 

5.4 Component Based Applications Architecture

The previous sections presented a modeling paradigm for representing 

reconfigurable sensor network applications in the Generic Modeling Environment. It 

utilizes the modeling constructs of Components and DataFlow connections to accurately 

represent the components of an application along with their interactions. However, just 

the representation of applications in user friendly models is of little consequence if these 

models are not used to generate useful output. SNRAMoLa models are used to generate 

configuration scripts. A configuration script indicates which components are actually 

included in an application and which are not. It also includes the information about the 

interaction between the included components. The software engineering architecture 

enables the dynamic switching of processes according to the configuration script. 
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The proposed approach suggests that software reconfiguration for adaptive 

software systems should be a simple switch in the executing components. However, to 

achieve this switch, one should be able to turn the required components ‘off’ and turn 

their replacements ‘on’ during runtime. This can be achieved if the components do not 

belong to the same compiled executable. This led to the implementation of each 

component as a separate process.  

Having mapped a component to a process, the next step was to build a software 

reconfiguration architecture (explained in Chapter 7) to manipulate these processes. 

SNRAMoLa models of the application represent inter-component communication 

through input and output ports and DataFlow connections. These connections can be 

implemented using inter-process communication constructs. Shared Memory is an 

efficient means of passing data between programs. The software reconfiguration 

architecture creates a memory block for each connection, and the source and the 

destination processes just connect to it. The source and destination processes use pointers 

to access the shared memory to read and write data. The names of these pointers directly 

map to the names of the input and output ports in the SNRAMoLa models. After 

considering the use of pipes, signals, and semaphores in the implementation, shared 

memory was chosen as it was efficient, easier to manage and fit well with the modeling 

language in the reconfiguration architecture.  

Though the present implementation assumes offline installation of all the 

components on each sensor node, it can be easily extended to accept installation of new 

processes online, without affecting the executing application, and then reconfiguring the 

application to include the new process.  
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CHAPTER VI 

AISLEMONITOR SENSOR NETWORK APPLICATION 

Aislemonitor is a sensor network application developed to perform one-

dimensional tracking of people walking in an aisle. This application is deployed on the 

sensor network testbed described in Chapter 3 and is used for evaluating our software 

reconfiguration approach. A copy of the application is installed on each OpenBrick 

devices. The application is composed of components for motion detection, tracking, data 

recording, and communication. There are two implementations of the tracking and data 

recording components. Though all the components are installed on each OpenBrick 

device, not all of them execute at the same time. The components that execute together 

form a configuration of the application.  

One such configuration of the application includes components that just track the 

people within the range of individual OpenBrick devices. Another configuration of the 

application includes components that, in addition to tracking people within range, can 

also predict the position of the people in the range of the neighboring OpenBrick device. 

A change in the network configuration caused by disabling one OpenBrick device creates 

a gap in the sensing range of the network. This gap can be filled by switching the 

components executing on the neighboring OpenBrick device by those that can predict the 

position of the people in the range of the disabled device. The functioning of the 

proposed reconfiguration infrastructure is demonstrated by dynamically switching 

components of the Aislemonitor application upon detecting failure in the neighboring 
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OpenBrick device. The new configuration of the application facilitates the tracking of 

people within range of the disabled device. 

The first section of this chapter describes the configuration of the Aislemonitor 

application which includes components that track people in the range of only their host 

OpenBrick devices. The second section describes the configuration that includes 

components, which in addition to tracking people in their own range, can also track 

people in the range of neighboring OpenBrick devices. The third section describes all the 

components of the Aislemonitor application. 
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6.1 Aislemonitor Application – Configuration 1 

Configuration 1 of the Aislemonitor application includes only those components 

that can track people within the range of their host OpenBrick devices. This configuration 

is executed on all the OpenBrick devices whose right neighbors are active. Figure 16 

shows the operational setup for this application. The sensor network comprising the eight 

OpenBrick devices is deployed in the aisle as shown in the Figure 16. The collective 

range of the sensor network is 37 feet. The OpenBrick devices are kept equidistant from 

each other along a straight line in the aisle so that the ranges of their webcams overlap. 
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Figure 16 - Aislemonitor Setup 
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to another, or in the range of overlap (area within the range of two consecutive 

webcams), the device communicates with its neighbor and hands over the tracking of that 

person to the neighbor. The components included in this configuration of Aislemonitor 

are Receiver, ImageSensor, Estimator1 and DataCollector1 (described in section 6.3). 

 

6.2 Aislemonitor Application – Configuration 2 

The second configuration of the Aislemonitor application is executed on the 

OpenBrick device when its right neighbor shuts down. The failure of one OpenBrick 

device causes a hole in the sensing range of the network. The components of the 

neighboring OpenBrick devices then take over the prediction of the people in this range 

by predicting their position. 
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Figure 17 displays the hole caused in the sensing range of the network. When the 

second OpenBrick device in the network shuts down, a gap is created between the first 

and the third OpenBrick devices. This gap is reduced by reconfiguring the application 

executing on the first OpenBrick device. The new configuration includes the same 

Receiver and ImageSensor components also included in the first configuration. However, 

during reconfiguration, the Estimator1 and DataCollector1 components are dynamically 

replaced by the Estimator2 and DataCollector2 (explained in section 6.3) components. 

The Receiver and the ImageSensor components continue to execute even during 

reconfiguration. Only the Estimator1 and DataCollector1 components are stopped and 

their alternatives are started. The second configuration of the Aislemonitor is able to 

predict the position of people in the range of a disabled OpenBrick device if that device is 

the right neighbor of the host device. 

 

6.3 Components of the Aislemonitor Application 

The Aislemonitor application is composed of six components called ImageSensor, 

Receiver, Estimator1, Esitmator2, DataCollector and DataCollector2, which 

communicate with each other through shared memory to exchange data. Estimator1 and 

Estimator2 are reconfigurable components and only one of them executes on the 

OpenBrick device at any given time. The same holds true for the DataCollector1 or 

DataCollect2 components. The SNRAMoLa model of this application is shown in 

Chapter 5. Though all the six components are installed on all the OpenBrick devices, at a 

time, only four of them execute on the devices. Estimator1 and DataCollector1 execute 

together and Estimator2 and DataCollector2 execute together. Figure 18 shows the 
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functional graph of the Aislemonitor application. As shown in the figure, data flows from 

the Receiver and ImageSensor components to the Estimator1 or Estimator2 components 

and from there to the DataCollector1 or DataCollector2 components, respectively, 

through the specified ports. 

 

Figure 18 - Aislemonitor Functional Graph 
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6.3.1 ImageSensor 

The ImageSensor component is an extension of the motion detection software – 

Motion [34]. Motion compares images captured using the webcam with a background 

image of the aisle at a set frequency and raises an event for ‘motion detected’ if the 

difference between the two images is more than the set threshold. The ImageSensor 

component then calculates the center of mass of the person in the image. The component 

then sends this value to the Estimator component, which uses a Kalman filter to estimate 

the correct position on the person in the aisle. The ImageSensor only works in situations 

where there is only one person in the field view of its webcam at any given time. The 
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Aislemonitor application assumes that only one person can be in the range of a particular 

webcam at any given time. There could be more people in the range of the whole network 

at the same time, but not within range of the same OpenBrick device. 

 

6.3.1.1 Calibration 

Before deploying the application, each webcam is calibrated offline. This involves 

the mapping of each pixel in the image onto the actual aisle. As we are only interested in 

the position of the person in the aisle in the horizontal direction and not in his/her height, 

we only map the pixel at the x coordinate of the center of mass of the person in the image 

to the aisle. If Mx is the x coordinate of the center of mass in the image (in pixels), then 

the real x coordinate of the person in the aisle, Rx (in inches) is: 

 
Rx = Mx * (right_range_limit – left_range_limit) / image_width; 
 

 

The variables right_range_limit and left_range_limit are the ranges of the webcams in the 

right and left directions respectively. Their units are in inches. The width of the image is 

specified in image_width and its unit is pixels. We have set the width of the image to 160 

pixels and the right_range_limit and left_range_limit vary from camera to camera. The 

unit of the real x coordinate Rx is inches. For example, if the ImageSensor calculates the 

x coordinate of the center of mass as 15, and the left range of the webcam is 0 inches, 

while the right range is 75 inches, then the position of the person in the aisle can be 

calculated as Rx = 15 * (75 – 0) / 160 = 7.03 inches. 
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6.3.1.2 Initialization 

During initialization, the ImageSensor starts the webcam and stores a background 

image of the aisle in the variable background_image.  

 
unsigned char *background_image; 
background_image=malloc(image_size); 
 
//Initialize video capture device – webcam 
device = vid_start(image_width,image_height); 
 
//Capture background image 
background_image=vid_next(image_width,image_height); 
 
 

 

All images are captured as unsigned character array frames using Video for Linux (v4l) 

drivers. After initialization, the ImageSensor goes into an infinite loop and performs the 

activities of (1) capturing new images, (2) calculating center of mass if motion is 

detected, (3) performing the calibration mapping and (4) passing the value returned to the 

Estimator at the set frequency. 

 

6.3.1.3 Image Difference 

After initialization, the ImageSensor captures images from the webcam at a set 

frequency. We have set the frequency at four frames per second. This value was chosen 

to minimize the energy lost in computations during iterations while maintaining the 

tracking capability of the application. During every iteration, the ImageSensor subtracts 

the new image from the background image, which is stored in the variable 

background_image during initialization. The result obtained is stored in the variable 

difference_image.  

 
difference_Image = |background_image – new_image|;  
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The images obtained from the webcams are in the YUV420P format. For the 

purpose of detecting motion, only the Y values or brightness of the image are taken into 

consideration. The subtraction of the new image from the background image causes only 

the differences between the two images to be highlighted. The difference image displayed 

in Figure 19 highlights the pixels that are different from those in the background image. 

The image clearly shows a person walking in the aisle. 

 

 

Difference Image 

Center Of Mass MDifference Image

 
Figure 19 - Difference Image 
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6.3.1.4 Center of Mass Calculation 

If the number of pixels that have changed in the new image is greater than the set 

threshold, the ImageSensor generates an event for ‘motion detected’ and calculates the 

center of mass of the image in terms of brightness. 
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Mx is the x coordinate of the center of mass M in the image and M(x,y) is the 

intensity of the pixel at coordinates (x, y) in the difference image. 

 

6.3.1.5 Calibration mapping 

The ImageSensor then maps the x coordinate of the center of mass Mx from the 

difference image to the actual location on the aisle. The value Rx returned after the 

mapping is the relative position of the person in the aisle in inches from the left range 

limit of the webcam. 

 
Rx = Mx * (right_range_limit – left_range_limit) / image_width; 

 
 

 

6.3.1.6 Communication with Estimator 

The ImageSensor component has one output port called ‘OutPort’. This port is 

connected to the input port called ‘Sen’ of the Estimator component (shown in Chapter 5, 

Figure 12). After the mapping of the center of mass in the image to the actual image, the 
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value returned is passed to the Estimator component using shared memory where it is 

used by the Kalman Filter [30] to estimate the correct position of the person in the aisle.  

 

6.3.2 Receiver 

The Receiver component receives data packets from neighboring OpenBrick 

devices. If the data contains the position of the person entering the range of the host 

OpenBrick device, the Receiver passes on the data to the Estimator component through 

its ‘OutPort’ output port. The output port of the Receiver is connected to the ‘Rec’ input 

port of the Estimator by shared memory (Chapter 5, Figure 12). 

 

6.3.2.1 Initialization 

During initialization, the Receiver component opens up a port which listens for 

messages coming from the neighboring OpenBrick devices. The Receiver component 

then goes into an infinite loop to continuously listen for new incoming messages. When it 

receives a new message, it interprets it and then goes back to listening. 

 

6.3.2.2 Runtime Operation 

When a person enters the range of overlap between two OpenBrick devices, the 

device whose range the person is about to exit, sends a message to its neighbor in whose 

range the person is about to enter. This message contains the position and speed 

(explained in the next section) of the person. When the Receiver component receives this 

data from its neighbors, it passes the data to the Estimator (Estimator1 or Estimator 2) 

component through its output port. This data is then used by the Estimator to initialize the 

Kalman Filter (explained in the next section). 
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6.3.3 Estimator1 

The Estimator1 (referred to as Estimator in this section) component implements a 

Kalman Filter [30], which takes the value passed by the ImageSensor component as input 

to calculate the position of the person in the aisle. The Estimator component has two 

input ports called ‘Rec’ and ‘Sen’. These ports are connected to the Receiver and 

ImageSensor components respectively. The Kalman Filter implemented in this 

component acts on the data passed by the Receiver and ImageSensor components. 

 

6.3.3.1 Initialization of Kalman Filter 

During runtime, the Kalman Filter is initialized every time a neighboring 

OpenBrick device hands over the tracking of a person exiting from its range and entering 

the range of the host OpenBrick or when a new person walks into the range of the host 

OpenBrick and the Kalman Filter has not already been initialized. In the first case, the 

Estimator1 uses the values of position and speed passed by the Receiver component to 

initialize the Kalman Filter, while in the second case, the Estimator uses the position 

value passed by the ImageSensor and a constant for the speed in the initialization of the 

Kalman Filter. The default value for speed was measured and set at 16 inches per second.  

 

if(Data received from ImageSensor) 
{ 
 //Constant = 16 inches/second. 

Kalman_Initialize(position,Constant); 
} 
else if(Data received from Receiver) 
{ 

Kalman_Initialize(position-left_range_limit,speed); 
//position indicates actual position in aisle relative to 
//start of aisle. 
//position and speed obtained from neighboring OpenBrick through  
//Receiver component. 

} 
 

 78



6.3.3.2 Using the Kalman Filter 

We consider the system dynamic equations for one dimensional tracking in the 

aisle: 
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In reality, the person will not move with a constant speed for all the time as indicated by 

the above equations. To model the uncertainty in the person’s speed, the equations are 

modified with the addition of a random noise to the person’s speed. This gives rise to 

the following stochastic model: 
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The observation equation links the actual data to the measured data : nx ny

   , where  is the measurement noise.  nnn vxy += nv

The same equations in matrix form are expressed as follows: 

nnn UXX +Θ=+1  

where  is the state vector, nX Θ is the state transition matrix and  is the system noise 

vector.  

nU

The observation equation in matrix form is: 

nnn VMXY +=  

where  is the measurement vector, M is the observation matrix and is the 

observation noise vector. 

nY nV
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The system dynamic equations of the stochastic model along with the observation 

equation give rise to the following matrices: 
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The Kalman gain is calculated using the equation: nK
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The state transition or prediction equation becomes: 
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The track update or filtering equation becomes: 
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If the Estimator receives initialization data from the Receiver, the state vector is 

initialized using the position and speed values passed by the neighboring OpenBrick 

device: 
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If the Estimator gets position value from the ImageSensor and the Kalman Filter has not 

been initialized, then the state vector is initialized as: 
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where C is a constant set to 16 inches per second. 
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The Covariance matrix is initialized as: ∗
−1,nnS
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Given , M, , , n = 0,1,…..,  and , the Kalman Filter can be used 

to calculate estimated position of the person along the aisle by repeating the following 

steps for n = 0, 1, …. These steps are performed each time the Estimator receives the 

position of the person in field of view of the host OpenBrick device from the 

ImageSensor component. This value is nothing but the measured data . 
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(a) Compute Kalman Gain using the Formula: 
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(b) Measure and update estimate using update equation: nY
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(c) Compute covariance of smoothed estimate: 
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(d) Predict using state transition equation: 
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(e) Compute Predictor Covariance 
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The final estimated value is obtained from the vector . This value is taken as 

the final position of the person in the aisle. Its unit is in inches. It is added to the left 

range limit of the Estimator and passed on to the DataCollector1 component for further 

∗
+ nnX ,1
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processing. The left range limit for a particular OpenBrick is specified in the 

configuration file of application. Its value is dependent on the physical location of the 

OpenBrick in the sensor network. Thus the Estimator Component passes the position of 

the person relative to the start of the aisle to the DataCollector1 component. 

 

6.3.4 DataCollector1 

The DataCollector1 component receives the actual position of the person in the 

aisle from the Estimator1 component through shared memory and either records the value 

in a file as data or sends messages to the neighboring OpenBrick to hand over tracking of 

that person to its Estimator1. The DataCollector has one input port called ‘Est’ through 

which it receives this data (Chapter 5, Figure 12). The DataCollector component 

performs the following tasks: 

1. If the person is walking from left to right and his/her position is in the range of 

overlap with its right neighbor, then the value is sent to the right neighboring 

OpenBrick device through the wireless network to hand off the tracking of that 

person to the right OpenBrick device.  

2. If the person is walking from right to left and his/her position is in the range of 

overlap with its left neighbor, then the value is sent to the left neighboring 

OpenBrick device to hand off the tracking of that person to the left OpenBrick 

device if it is not disabled.  

3. If however, the person is in the range of the current Openbrick device, then the 

value is saved in a file for reporting.  
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6.3.5 Estimator2 

 The Estimator2 component is similar to the Estimator1 component described in 

section in 6.3.3. However, in addition to tracking people in its own range, Estimator2 also 

predicts the positions of the people going from its range to the range of a neighboring 

Openbrick device. The Estimator2 component implements the Kalman Filter in exactly 

the same manner as Estimator1. However, in addition to the Kalman Filter, Estimator2 

also implements a predictor function that is activated once the person enters the range of 

the right neighboring OpenBrick device which is assumed to be disabled when 

Estimator2 is executing. The predictor function continues to predict the position of the 

person till the person remains in the range of the disabled device using the equation; 

∗∗
+ Θ= nnnn XX ,,1  

 

If(person in range of host OpenBrick) 
{ 

Use Kalman Filter to estimate position; 
Pass Value returned by Kalman Filter to DataCollector2; 

} 
else if(person entering range of disabled OpenBrick device) 
{ 

Estimated_Position = Predictor(Estimated_Position); 
If(Estimated_Position<(right_range_limit+(right_range_limit-

left_range_limit))) 
      Pass Estimated_Position to DataCollector2;  
Else 
      Stop Estimating;  

} 
 
Function Predictor(float position) 
{ 
 return (position + Sampling_Rate * Speed); 
} 

The values for Sampling_Rate and Speed used in the Predictor function are 

obtained from the variables used by the Kalman filter. Estimator2 sends all its data to the 

DataCollector2 component through shared memory. This data includes the estimations of 
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the position calculated by the Kalman Filter as well as the position calculated by the 

Predictor function. 

 

6.3.6 DataCollector2 

The DataCollector2 component is also similar to the DataCollector1 component. 

The DataCollector2 component receives the actual position or the predicted position of 

the person in the aisle from the Estimator2 component through shared memory and either 

records the value in a file as data or sends messages to the neighboring OpenBrick to 

hand over tracking of that person to its Estimator component. The DataCollector2 has one 

input port called ‘Est’ through which it receives this data. The DataCollector2 component 

performs the following activities: 

1. If the person is walking from left to right and his/her position is in the range of 

overlap with its right neighbor, which is disabled, or beyond its own right range 

limit, the value is recorded by the DataCollector2 component in a file with the 

suffix “ESTIMATE”.  

2. If the person is walking from right to left and his/her position is in the range of 

overlap with its left neighbor, then the value is sent to the left neighboring 

OpenBrick device to hand off the tracking of that person to the left OpenBrick 

device. 

3. If however, the person is in the range of the current Openbrick device, then the 

value is saved in the file for reporting. 
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During experiments, the configuration of the Aislemonitor application executing 

on nodes adjacent to the disabled OpenBrick device is dynamically changed from the first 

to the second. Initially the ImageSensor, Receiver, Estimator1 and DataCollector1 

components are made to execute on all the OpenBrick devices. One of the OpenBrick 

devices is then shut down. This triggers reconfiguration of the OpenBrick device located 

to the left of the device that has been disabled. Reconfiguration involves just switching 

the Estimator1 and DataCollector1 components with the Estimator2 and DataCollector2 

components and the ‘re-wiring’ of all the shared memory between all the components. 

The ImageSensor and Receiver components are not affected by the reconfiguration. They 

only reconnect their ports to the newly started components. 
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CHAPTER VII 

SOFTWARE INFRASTRUCTURE FOR RECONFIGURATION 

The software reconfiguration process occurs at both the base station and the 

sensor nodes. During the design phase, the applications are modeled in the SNRAMoLa 

modeling paradigm on the base station. Once the application is deployed the tasks of 

design space exploration, communication of the configuration to the sensors, monitoring 

the sensors and updating QoS parameters in the models are performed in a cyclical 

manner. The software infrastructure required to perform these tasks consists of 

components that execute on the base station as well as on individual OpenBrick devices. 

All applications using this infrastructure are based on the Asynchronous Data Flow 

model of computation.  

As shown in Figure 10 (Chapter 4) the reconfiguration architecture consists of the 

modeling environment SNRAMoLa, which enables the user to model components along 

with their alternatives and associated constraints in GME. During the reconfiguration 

process, the application model is converted to a format acceptable to the design space 

exploration tool DESERT by the SNRAMoLa to DESERT Interpreter. The converted 

data is fed to DESERT as an XML file. DESERT reads from the file, applies the 

constraints present in the model and generates another XML file. The DESERT to 

Configurator interpreter then uses the output generated by DESERT and the SNRAMoLa 

model of the application to generate a configuration file for each Sensor object present in 

the SNRAMoLa model. Each Sensor object in SNRAMoLa represents an OpenBrick 
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device in our example. The configuration files list out all the components that are to be 

activated on the sensor and also the connections between the ports of the components.  

Each configuration file is broken down into UDP packets and then sent to the 

OpenBrick device connected to the base station by the controller application running on 

the base station. A forwarding program called Packet Forwarder on that OpenBrick 

device forwards the packets to the corresponding OpenBrick devices over the ad hoc 

wireless network.  

The Configurator program executing on each OpenBrick device receives the 

configuration file and carries out the actual reconfiguration by stopping, starting and re-

wiring application components on the OpenBrick device.  

During initialization, each process establishes a connection with the Configurator 

using shared memory. This connection is used by the Configurator to send 

reconfiguration commands to the processes. The connection with the Configurator is 

established using the Communicator component, which is part of the software 

infrastructure and invoked by each process during initialization.  

Monitor components perform the task of monitoring the health of the sensor 

network. The Monitor executes on each sensor and communicates with the Global 

Constraint Monitor executing on the base station. The Global Constraint Monitor updates 

the attribute values for critical QoS parameters such as power in the SNRAMoLa 

Component models. A change in the value of these attributes drives the Controller 

program which starts the reconfiguration process on the base station.  

The next sections of the chapter explain the different components of the software 

reconfiguration architecture. The first section explains the Controller program followed 
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by the SNRAMoLa to DESERT interpreter. Section 7.3 explains the DESERT to 

Configurator interpreter. Section 7.4 explains the layout of the Configuration files passed 

by the Controller to the Configurator, Section 7.5 explains the Packet Forwarder and 

Section 7.6 explains the Configurator. Section 7.7 explains the Communicator component 

while Sections 7.8 and 7.9 explain the Monitor and the GCM components respectively. 

 

7.1 Controller Program 

The controller program performs the reconfiguration process on the base station. 

It is invoked by the Global Constraint Monitor after it updates the values of the QoS 

attributes in the SNRAMoLa application model.  

The controller program first invokes the SNRAMoLa to DESERT interpreter 

which converts the SNRAMoLa models into a format compatible with DESERT input 

and saves the model as an XML file. The controller then invokes DESERT which takes 

the XML file saved by the controller and evaluates the constraints on the model using 

Ordered Binary Decision Diagrams [39]. Upon resolving the constraints, DESERT 

generates another XML file which contains a binding of each OR-Decomposed node in 

the AND/OR decision tree with one of its children. The controller then invokes the 

DESERT to Configurator interpreter which takes the DESERT output along with the 

SNRAMoLa model to produce a configuration file for each Sensor object declared in the 

SNRAMoLa model.  

The controller then sends all the configuration files as UDP packets to the Packet 

Forwarder program, which executes on the OpenBrick device connected to the base 

station by a wired connection. The Packet Forwarder relays the UDP packets to the 
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respective OpenBricks over the ad hoc wireless network. After sending all the files, the 

controller sends the “RECONFIGURE” control signal to the Packet Forwarder which 

again relays it to the respective OpenBricks. The controller addresses the packets to the 

Packet Forwarder using the IP address and Port number specified in the SenNet.conf 

configuration file.  

Each data packet sent to the Packet Forwarder contains a header, which includes 

the destination IP Address and listening Port number. The listening Port number is 

obtained from the SenNet.conf configuration file during initialization while the IP 

address of the destination OpenBrick device is specified in the SNRAMoLa model as the 

name of the Sensor object. Example control signals sent to the Packet Forwarder are 

shown in the following window.  

 

“192.168.10.2:4952:CONFNO 2 
COMPONENT /usr/local/component1/component1 
COMPONENT /usr/local/component2/component2 
LINK /usr/local/component1/component1 OutPort 
/usr/local/component2/component2 InPort” 
 
“192.168.10.2:4952:RECONFIGURE” 
 
“192.168.10.3:4952:STOP” 

 

7.2 SNRAMoLa to DESERT Interpreter 

The SNRAMoLa to DESERT Interpreter converts the SNRAMoLa application 

model to a format compatible with DESERT by building an AND-OR tree whose node 

elements map directly to the objects modeled in SNRAMoLa.  

The design space for an application modeled in SNRAMoLa can be formally 

defined as follows. A SNRAMoLa model  is a tuple Ra ( )CTg , , where is the set of 

SNRAMoLa Conditions, and  is a tree 

C

gT ( )EN , . The vertex set  of  is the set of N gT
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SNRAMoLa objects declared in the modeled application (i.e. SensorFolder, Sensors, 

Components and Choices). The directed edge set E  of  represents containment 

relation between the modeling elements.  

gT

( ) ( ) Evveiffvchildrenv
Nvv
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where  is the set of objects contained in an object n . SNRAMoLa objects are 

defined as , ,  and  as disjoint set of objects of type 

SensorFolder, Components, Choices, and Sensors respectively. The SensorFolder set Sf is 

a singular set and is always mapped as the root of the AND-OR tree. A Choice exhibits 

OR-decomposition semantics, while a SensorFolder and Sensors exhibit AND-

decomposition semantics. SNRAMoLa Components are characterized with properties, 

over which the constraints expressed in the Condition objects are evaluated.  An example 

of such a property is the power available to a particular Component.  
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NSf ⊂ NCmp ⊂ NCh ⊂ NSen ⊂

A DESERT Constraint Cc∈  is a tuple ( )ctxcons, , where  is the constraint 

expression, written in a variant of OCL, and 

cons

Nctx∈ , is the context of the constraint 

(referred to using the OCL keyword ‘self’ in the constraint expression) The SNRAMoLa 

model is mapped onto a single DESERT Space. The bijection maps 

from objects in to elements in DESERT, where S  is the set of DESERT elements. The 

following holds under this mapping: 
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The decomposition attribute of a DESERT element is defined as follow: 
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The mapping of SNRAMoLa Conditions to DESERT involves the mapping of the 

SNRAMoLa Condition context onto its projection element under the  bijection. 

The properties of SNRAMoLa Components are mapped to properties in the 

corresponding DESERT element, with the values appropriately associated. Once the 

mapping from SNRAMoLa onto DESERT is complete for an application, DESERT 

prunes and explores the design space.   

DesRa2

The nodes of the Desert Space have a direct mapping to the Sensor, Choice and 

Component objects from the application model. The root of the Space always maps to the 

SensorFolder object in the SNRAMoLa model. The children of the root node in the Space 

represent the Sensor objects from the SNRAMoLa model. The children of each of these 

nodes represent non-reconfigurable Component objects and Choice objects. The nodes 

representing the non-reconfigurable Components are leaf nodes and do not have any 

children. The children of the nodes mapping to the Choice objects represent 

reconfigurable Component objects declared in the Choice objects in the SNRAMoLa 

application models. The Condition objects are included in the DESERT Space as 

Constraints with their Context associated with the OR-decomposed nodes, which map to 

the Choice objects. The SNRAMoLa to DESERT interpreter performs this mapping when 
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invoked by the controller program and generates an XML file, which is fed to DESERT 

as input. 

 

7.3 DESERT to Configurator Interpreter 

A DESERT output configuration contains a binding for each OR-decomposed 

element in the DESERT Space to a direct child of that element. The binding represents 

the resolution of the design choice represented by the OR-decomposition.  The resulting 

configuration file has all design decisions resolved. All the Choice objects in 

SNRAMoLa which map onto the OR-decomposed elements in DESERT are resolved by 

the DESERT pruning process and bound to reconfigurable Component objects declared 

inside them, which map to the child elements of the OR-decomposed elements in 

DESERT.  

The DESERT to Configurator Interpreter reads from the SNRAMoLa model file 

(an .mga file) and the DESERT output file (an .xml file) and creates individual 

configuration files for each Sensor object declared in the SNRAMoLa model. These 

configuration files are identified by the IP addresses assigned to the OpenBrick devices 

which are also the names identifying the Sensor objects in the SNRAMoLa model.  

For each Sensor object in the SNRAMoLa model, the interpreter first updates the 

configuration number in the corresponding configuration file. If a file does not exist, then 

a file is created with the configuration number value equated to 1. The interpreter then 

writes to the file the paths of all the Components declared or referred to in the Sensor 

objects. For each Choice object in the SNRAMoLa model, the interpreter refers to the 

corresponding OR-decomposed element in the output file generated by DESERT and 
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writes the path of the Component object, referred to by the child of the OR-decomposed 

element bound to it, to the file.  

After traversing through all the Component objects, the interpreter goes through 

all the DataFlow connections declared in the SNRAMoLa model. Each DataFlow 

connection connects the OutPort object of a Component with the InPort object of another 

and signifies the asynchronous flow of data between the components. These connections 

are written to the configuration file as Links along with their source and destination 

Component object name and port information. These configuration files are then 

physically transported to the respective OpenBrick devices over the wireless network by 

the controller program. 

 

7.4 Configuration Files 

The DESERT to Configurator Interpreter generates a configuration file for each 

Sensor object declared in the SNRAMoLa model of the application. An example 

Configuration file is shown in the following window.  

  

 

CONFNO 1 
COMPONENT /root/sachin/aislemonitor/receiver/receiver 
COMPONENT /usr/local/motion/estimator 
COMPONENT /root/sachin/aislemonitor/application/datacollector 
LINK /root/sachin/aislemonitor/receiver/receiver OutPort 
/usr/local/motion/motion InPort 
LINK /usr/local/motion/motion OutPort 
/root/sachin/aislemonitor/application/datacollector InPort 
END 

The first line of the file always contains the configuration number which indicates 

the number of times the OpenBrick device has been reconfigured. It is incremented each 

time the file is updated. The file then contains the individual Components that are 

included in the application graph after the resolution of the constraints by DESERT using 
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the keyword ‘COMPONENT’. The Components are identified by the path of the 

executable that is invoked to start them on the OpenBrick device. This information is 

included in the Path attribute of the Component object in the SNRAMoLa model. The 

lines beginning with the keyword ‘LINK’ represent the DataFlow connections from the 

SNRAMoLa models. The LINKs are identified by the string composed of the Path in the 

source Component object, the name of the OutPort object on the source Component 

object, the Path in the destination Component object and the name of the InPort object on 

the destination Component object.  

 

7.5 Packet Forwarder 

The Packet Forwarder component executes on the OpenBrick device connected to 

the base station by a wired 802.3 Ethernet connection. The Packet Forwarder is just a 

relaying program that receives messages coming from the base station and sends them 

over to the destination OpenBrick devices over the ad-hoc wireless network. The 

incoming messages include the destination IP address and the listening port number of 

the destination OpenBrick devices. The Packet Forwarder obtains the destination IP 

address and port from the incoming message and sends only the message text minus the 

addressing information to the destination OpenBrick devices. The Packet Forwarder also 

acts as a relaying program when messages are sent to the base station by the OpenBrick 

devices. It performs the same activity, except sends the message in the opposite direction. 

In our testbed, the base station was connected to one OpenBrick device through a wired 

LAN connection. However, this is not a requirement of the software infrastructure. If a 

wireless enabled base station is placed in the wireless range of one of the sensor nodes, it 
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can directly communicate with each Sensor node over the ad hoc sensor network and will 

not need the Packet Forwarder.  

 

7.6 Configurator 

The Configurator is the most important component of the software 

reconfiguration infrastructure. A copy of the Configurator executes on all the sensor 

devices. The Configurator implements the reconfiguration infrastructure by maintaining 

two link-list data structures and a memory ID counter.  

 

7.6.1 Process Data Structure 

The Processes link-list stores information about all the processes that are currently 

executing on the OpenBrick device and is composed of Process structures. When a new 

component is added in the configuration file, the Configurator adds a new Process 

structure to the Processes link-list before executing it. One Process structure element in 

the Processes link-list represents one process running on the OpenBrick. The Process 

structure is shown in the following window. 

 

Struct Process  
{ 
 int configuration_no; 
 p_id process_id; 
 char process_name[200]; 
 int shared_memory_id; 
 char *shared_memory_pointer; 
  
 struct Process *next; 
}; 

Each element in the Processes link-list stores the configuration number of the 

process, the process ID of the process, the name of the process which is read from the 

configuration file, the memory ID of the shared memory used by the Configurator to 
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communicate with the process and the pointer to this shared memory. The configuration 

number just identifies the current configuration of the process.  

The Configurator program uses shared memory to communicate with each 

process. The information stored in the Processes link-list is used by the Configurator to 

communicate reconfiguration commands to individual processes. When a Configurator 

needs to send a message to a process, (1) it gets the record for that process from the 

Processes link-list using the process name, (2) writes the message to the shared memory 

using the memory pointer and (3) then signals the process to read the shared memory by 

using the process ID in the UNIX kill command. The Configurator interrupts application 

processes using the kill command by signaling them to interpret the reconfiguration 

commands.  

 

7.6.2 Link Data Structure 

The Links link-list stores all the information about the shared memory that is used 

to pass data between two processes. The Links link-list is composed of Link structure 

elements. Each element in the Links link-list is identified by the memory name, which is 

just a concatenation of the names of the two processes that it connects. In addition to the 

name of the link, each element of the link-list stores the configuration number, memory 

ID, a pointer to the shared memory, a pointer to the source process, a pointer to the 

destination process, the name of the OutPort object and the name of the InPort object. 

The Link structure is displayed on the following page. 
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Struct Link 
{ 
 char link_name[200]; 
 int configuration_no; 
 int shared_memory_id; 
 char * shared_memory_pointer; 
  
 struct Process *source_process; 
 char outport_name[100]; 
 
 struct Process *destination_process; 
 char inport_name[100]; 
 
 struct Link *next; 
} 

The Configurator maintains a memory ID counter that is incremented every time 

it allocates a new shared memory. This memory ID is passed as an argument to the 

processes during initialization and reconfiguration using which the processes ‘rewire’ to 

connect to the appropriate shared memory. The pointer to the shared memory points to 

the allocated memory chunk that is used by both the source and destination processes to 

exchange information. The pointer to the source process points to the Process structure 

element in the Processes link-list which is the source of the Data Flow connection and the 

pointer to the destination process points to the element in the Processes link-list which is 

the destination of the Data Flow connection. Each Link structure also stores the names of 

the OutPort and the InPort objects of the source and the destination process respectively. 

The Configurator does not write to the shared memory pointed to by the Link structures 

but creates and maintains it so that the source and destination processes can just connect 

to it to exchange information.  
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7.6.3 Flow of Control 

During initialization, the Configurator opens a socket to listen for incoming 

signals from the base station. After initialization, the Configurator goes in an infinite loop 

where it continues to listen for new messages on the open port coming from the base 

station. Upon receiving a message, it performs reconfiguration activities and then goes 

back to listening for new messages. The Configurator once started, can be stopped only 

by sending a STOPLISTENING signal to its listening port. The messages received by the 

Configurator can be classified into four types – new configuration file, FILERECEIVED 

command, STOPLISTENING command and RECONFIGURE command. The 

Configurator follows the following algorithm: 

1. Listen for incoming message;  

2. IF data is received, copy it to the variable called message; 

 

IF ((STOPLISTENING || FILERECEIVED || RECONFIGURE) NOT IN 
message)    
GO TO step 3; 
ELSE GO TO step 4; 

3. If Configurator receives a message which does not contain any of the three 

commands, it assumes the message to be a new configuration file. If the 

configuration file is too big, it is broken down and sent using multiple packets 

by the Controller program at the base station.  

 

IF(message == first packet received)  
Create a new configurator.conf file and write the message to 

the file;  
ELSE 
Open the existing configurator.conf file and append the 

message to the file;  
 

CLOSE(configurator.conf); 
GOTO step 1; 

 98



4. The command string FILERECEIVED indicates the end of the configuration 

file. If the Configurator receives another message that does not match with 

any of the commands, then it considers this as the beginning of a new 

configuration file. 

 

IF (message==FILERECEIVED) { 
Set flags such that the next message which does not contain 

the command words {FILERECEIVED, STOPLISTENING, RECONFIGURE) 
is taken as the first packet of a new file; 
GOTO step 1; 
} 
ELSE  
 GOTO step 5;    

5. Upon receipt of the STOPLISTENING command from the base station, the 

Configurator sends a STOP control signal to all executing processes of the 

application using the information stored in the Processes link-list, closes its 

own listen port, frees all allocated memory for the link-lists and the shared 

memories, exits out of the infinite loop and terminates.  

 

IF (message == STOPLISTENING) { 
 FOR EACH Process IN Processes Link-List { 
  WRITE (“Stop”, Process  shared_memory); 
  Kill (Process  process_ID, SIGUSR1); 
 } 
 FREE (Processes link-list); 
 FREE (Links link-list); 
 GOTO step ; 
} 
ELSE 
 GOTO step 6; 

6. The RECONFIGURE command triggers the reconfiguration process of the 

Configurator. Upon receipt of this command, the Configurator reads from the 

configuration file, configurator.conf, which is also received from the base 

station. If the configuration number of the file is different than the one from 

the previous file, the Configurator reads the file sequentially; else it goes back 
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in the listening mode. The configuration number is identified by the CONFNO 

attribute in the configuration file. 

 

IF (new_configuration_filenumber == 
old_configuration_filenumber) { 
CLOSE configuration.conf file; 
GOTO step 1; 

} 
ELSE 
GOTO step 7; 

7. Read from the configuration.conf file and copy the data to the File_Word 

variable. 

 

int link_flag=0; 
IF (File_Word==COMPONENT) GOTO step 8; 
ELSE IF (File_Word==LINK) {  
IF(link_flag==0) { 
Link_flag=1; 
GOTO step 9; 

} 
ELSE 
GOTO step 10; 

} 
ELSE IF (File_Word==END) {  
IF(link_flag==0) GOTO step 9; 
ELSE  
{ 
CLOSE (configurator.conf);  
GOTO step 1; 

} 
} 

8. For each COMPONENT keyword present in the file, the Configurator reads 

the component path identifying the process into the variable ‘process_path’. 

The Configurator then checks if the corresponding process is already 

executing on the OpenBrick by looking it up in the Processes link-list. If the 

process is found, the Configurator just updates its configuration number by the 

CONFNO value. If the process is not found then the Configurator adds the 

process name/path to a temporary string array ‘process_names’.  
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Struct Process new_process IS NULL; 
IF (new_process = PROCESS_EXISTS(process_path) { 
new_process  configuration_no = new_configuration_no; 

ELSE { 
 COPY(process_path, process_names); 
GOTO Step 7; 

 

9. On reading the first LINK keyword or the END keyword from the file, the 

Configurator traverses through the Processes link-list and for each process 

element whose configuration number is not equal to CONFNO, it sends the 

control command STOP to the corresponding process using the shared 

memory and the process ID and then deletes that element from the Processes 

link-list. The receipt of the STOP command from the Configurator causes the 

process to terminate. After switching off all the processes that are not included 

in the new configuration file in this manner, the Configurator goes through the 

temporary string array, which stores the names/paths of the new processes. 

For each element in this array, the Configurator adds a new Process element to 

the Processes link-list and executes the new process using the UNIX exec 

command and the path obtained from the configuration file.  The Configurator 

passes the memory ID and the process name or path as command line 

parameters to the new process, which it uses to connect to the shared memory 

used by the Configurator to send control signals.  
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FOR EACH Process IN Processes 
{ 
 IF(Process configuration_no < new_configuration_no) 
 { 
  WRITE(“STOP”,Process shared_memory); 
  Kill(Process process_ID,SIGUSR1);  
 } 
} 
FOR EACH process_name IN process_names 
{ 
 Struct Process *new_process=NULL; 
 Allocate memory for new_process; 
new_process.process_name=process_name;  
//process_name obtained from configuration file 
Allocate Shared memory; 

 ADD_ELEMENT(Processes, new_process); 
 execlp(new_process.process_name, new_process.process_name, 
new_process.shared_memory_ID) 
} 
IF(link_flag==1) 
 GOTO step 10; 
ELSE { 
 CLOSE(configurator.conf); 
 GOTO step 1; 
} 
 

 

10. After switching on new processes, the Configurator traverses through the list 

of links in the configuration file. For each LINK in the configuration file, the 

Configurator reads its corresponding name in the ‘link_name’ variable and 

then checks if it already exists in the Links link-list. If the record is found, the 

Configurator just updates its configuration number. If no such link exists, the 

Configurator adds a new Link element to the Links link-list, allocates 

memory, points the shared memory pointer in the new Link structure to the 

allocated memory, and initiates all the other fields in the Link structure. Each 

Link element in the Links link-list is identified by a name, which is formed by 

concatenating the names of the source and the destination processes. After 

adding a new element to the link-list, the Configurator communicates with 

both the source process and the destination process using the shared memory 
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accessible through their respective records in the Processes link-list. The 

Configurator sends message 1 to the source process over the shared memory 

and sends message 2 to the destination process over the shared memory. The 

messages are shown below.  

 

 

1] 
LINK:memoryID:OutPortName:SourceProcessID:DestinationProcessID 
  
2] 
LINK:memoryID:InPortName:SourceProcessID:DestinationProcessID 

Struct Link *new_link IS NULL; 
IF (new_link = LINK_EXISTS(link_name) { 
new_link  configuration_no = new_configuration_no; 
 

ELSE { 
 Allocate memory for new_link; 
new_link.link_name=link_name;  
//link_name obtained from configuration file 
Allocate Shared memory; 

 ADD_ELEMENT(Links, new_link); 
  WRITE(new_link source_process shared_memory,” 
LINK:memoryID:OutPortName:SourceProcessID:DestinationProcessI
D”); 
 Kill(new_link source_process process_id,SIGUSR1); 
 WRITE(new_link destination_process shared_memory,” 
LINK:memoryID:InPortName:SourceProcessID:DestinationProcessID
”); 
Kill(new_link destination_process process_id,SIGUSR1); 

} 
GOTO Step 7; 

The processes use the Communicator component to interpret the control 

commands received from the Configurator. 
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7.7 Communicator 

The Communicator component consists of a library of functions that enable 

individual processes to communicate amongst themselves and with the Configurator. The 

Communicator is included in every process executing on the OpenBrick. 

The Configurator communicates with a process by writing the control message on 

the shared memory and then by signaling the process using its process ID and the UNIX 

kill command. The Configurator uses the SIGUSR1 signal to interrupt the receiving 

process. Communication between two processes also occurs along similar lines. The 

sending process writes the data to the shared memory and then signals the receiving 

process using its process ID and the UNIX kill command. However, in inter-process 

communication, the sending process uses the SIGUSR2 signal to interrupt the receiving 

process. Communication between processes is modeled using Data Flow connections and 

input and output ports represented by InPort and OutPort objects in the SNRAMoLa 

model. The communication between the process and the Configurator is not modeled in 

SNRAMoLa and is part of the software infrastructure.  

 

7.7.1 Connection Data Structure 

The Communicator implements the communication between the process and the 

Configurator using shared memory. The Communicator component maintains a 

Connection data structure which stores the name of the link connecting the process to the 

Configurator, memory ID and a pointer to the shared memory which is used to actually 

pass the data. This link is not modeled in SNRAMoLa as it is not a part of the 

application.  
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Struct Connection 
{ 
 char connection_name[200]; 
 int configuration_no; 
 int shared_memory_id; 
 char * shared_memory_pointer; 
  
 p_id source_process_id; 
 p_id destination_process_id; 
 
 struct Connection *next; 
{ 

 

7.7.2 Communicator Initialization 

During initialization, the main function of the process invokes the 

Communicator_init method implemented in the Communicator component. This 

initializes the Connection data structure. The name of the Connection data structure is set 

to the name of the process and the memory ID is set to the memory ID, both passed as a 

command line argument to the process by the Configurator. The Communicator uses this 

memory ID to point the pointer to the correct shared memory which is already allocated 

and maintained by the Configurator in its Processes link-list.  

In addition to maintaining the Connection data structure, the Configurator also 

implements a signal handler function to handle the SIGUSR1 signal. When the process is 

interrupted by the Configurator using the SIGUSR1 signal, the signal handler function is 

invoked and it interprets the data sent by the Configurator after reading it from the shared 

memory. Upon receiving the STOP message from the Configurator, the signal handler 

terminates the executing process by issuing the kill SIGKILL command.  

 105



7.7.3 Connections link-list 

In addition to the single Connection data structure, the Communicator also 

maintains a link-list of the Connection data structure called the Connections link-list. 

This list maintains information about all the ports of the process. These ports directly 

map to the InPort and OutPort objects modeled in the SNRAMoLa model of the 

corresponding Component object and are used by the processes to exchange information. 

Each Connection element in the link-list stores the name of the port, memory ID, a 

pointer to the shared memory, the process ID of the source process and the process ID of 

the destination process. The name of the port is used as the unique identifier of the 

element in the link-list. The port name is the same as the name of the corresponding 

InPort or OutPort object in the SNRAMoLa model. The communication between two 

processes is modeled using OutPort, InPort and Data Flow objects in the SNRAMoLa 

model. It is implemented using shared memory and the Connection structures in the 

actual processes.   

 

7.7.4 Communicator Algorithm 

The Communicator is not a separate process like the Configurator. It initializes 

when the process is invoked by the configurator and then stays dormant. The 

Communicator performs the following tasks when interrupted  by the Configurator using 

the SIGUSR1 signal. 

Upon receiving the –  

‘LINK:memoryID:PortName:SourceProcessID:DestinationProcessID’  

message followed by the SIGUSR1 interrupt signal from the Configurator, the signal 

handler function searches the Connections link-list for an element with its port name 
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matching the PortName  passed by the Configurator. If such an element is found, it 

indicates a port by the same name already exists but is currently linked with some other 

shared memory. The Communicator then disconnects the port from the shared memory 

and connects it to the shared memory identified by the memoryID sent by the 

Configurator. The Communicator also updates the source process ID and the destination 

process ID fields of the element. If an element with same port name is not found in the 

Connections link-list, the Communicator adds a new element to the link-list and updates 

all its fields with the values sent by the Communicator.  

Upon receiving the – ‘STOP’ message from the Configurator, the Communicator 

terminates the current process by issuing the kill (my_process_id, SIGKILL) 

UNIX command. 

When a process wants to send a message to another process, it gets the required 

Connection element from its Connections link-list using the port name. The port name 

used by the Communicator is the same as the name of the corresponding OutPort object 

in the SNRAMoLa model. The process utilizes the pointer stored in the Connection 

element to write the data to the shared memory. The process then utilizes the destination 

process ID stored in the Connection element along with the UNIX kill command and 

SIGUSR2 signal to interrupt the destination process.  

If a process has any InPorts objects, it should always implement a signal handler 

function for the SIGUSR2 signal. This function is invoked upon receiving a SIGUSR2 

interrupt from another process. The function should go through all the Connection 

elements in the Connections link-list and for each matching InPort object of the process, 

read the data from the shared memory. 
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The Communicator thus implements all the Data Flow connections modeled in 

the SNRAMoLa model and can change the connections dynamically upon receiving such 

a command from the Configurator. 

 

7.8 Monitor 

The Monitor components execute on each OpenBrick device and monitor the 

health of the sensor network. For the purpose of this experiment, the Monitor is 

integrated with the application. Each Monitor monitors the health of its right neighboring 

OpenBrick device. The left and right neighbors are specified in the aislemonitor.conf file. 

The Monitor is implemented using a simple algorithm in which each OpenBrick device 

sends a beacon message to its left neighbor every few seconds (10 seconds). If an 

OpenBrick device does not receive a message from its right neighbor for a fixed amount 

of time, it sends a message to the Packet Forwarder which relays it to the GCM on the 

base station and informs it that the right neighbor has failed. The packet sent to the 

Packet Forwarder contains the following message: 

‘BaseIP:BasePort:DOWN:RightNodeIP:SelfIP’ 

The Packet Forwarder strips the message of the BaseIP and the BasePort and uses that 

information to relay the remainder of the message to the GCM. 

 

7.9 Global Constraint Monitor (GCM) 

The GCM updates the QoS parameters like power in the SNRAMoLa models of 

the application and then invokes the Controller program, which performs the 

reconfiguration process on the base station. The GCM executes on the base station and 

receives messages from the Packet Forwarder. If a particular OpenBrick device fails to 
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send the beacon messages to its left neighbor, the left neighbor sends a message to the 

GCM. The format of the message is described in the previous paragraph. The GCM then 

toggles the values of the power attributes of the Components declared in the Choice 

objects in the SNRAMoLa model of the application for the Sensor object identified by 

the SelfIP part of the message or the sender OpenBrick device. After updating the 

power attribute, the GCM invokes the Controller program which carries out the entire 

reconfiguration process on the base station and then sends the new configuration files to 

the OpenBrick devices where the actual reconfiguration takes place with the switching of 

the executing processes. 
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CHAPTER VIII 

EXPERIMENTS AND RESULTS 

A series of experiments were performed to evaluate the Aislemonitor application 

(described in Chapter 6) and the software reconfiguration infrastructure (described in 

Chapter 7). These tests were designed to highlight the need for software reconfiguration 

and its application using our infrastructure. 

This chapter describes all the experiments that were carried out. The first section 

describes the test cases that were used in the evaluation. The next section analyzes the 

results of the tests and the final section provides a summary of the results. 

 

8.1 Test Case Design 

Multiple tests involving people walking in the aisle in groups of one, two and 

three were performed. The tests were designed to record the position and speed of the 

people walking in the aisle along with the time. Data was recorded on all the OpenBrick 

devices and was later integrated and plotted to generate graphs indicating the movement 

of the people in the aisle.  

The tests that involved more than one person walking in the aisle were designed 

such that at any given time, more than one person was in the range of the sensor network 

for some interval of time but never in the range of the same OpenBrick device. Care was 

taken to keep only person in the range of an OpenBrick device at any given time.  

In order to measure the time required for reconfiguration of components, the 

timestamps at various instances in the reconfiguration process were recorded. 
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8.2 Evaluation of Configuration 1 of Aislemonitor Application 

The Tests 1 – 3 were used to evaluate the first configuration of the Aislemonitor 

application. The first configuration of Aislemonitor (described in Chapter 6) was 

deployed on all the OpenBrick devices. The first configuration includes components that 

can only detect and track a person in the range of the host OpenBrick device. 

 

8.2.1 Configuration 1 Tests 

1. Test 1 involved two people with one person walking from left to right along the 

entire length of the aisle followed by two people walking back. 

2. Test 2 involved two people with two people walking from left to right followed 

by one person walking from right to left. 

3. Test 3 involved three people walking from left to right along the entire length of 

the aisle and only two people coming back. 

 

8.2.2 Configuration 1 Results 

The results of the tests for evaluating the first configuration are plotted in the 

graph shown in Figure 20. The x axis in the graph represents the time at which the 

readings were taken. The y axis represents the position of people in inches from the start 

of the aisle, where the first OpenBrick device is located. Figure 20 shows the positions 

for the two people tracked by the application. P1-LR and P2-LR indicate persons 1 and 2 

walking from left to right in the aisle one after the other. The second person enters the 

range of the sensor network before the first person moves out of it. P1-RL indicates the 

first person walking from the right to the left in the aisle. The graph indicates an almost 
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linear curve for each person walking in the aisle. This indicates a near constant speed 

used by the people while walking. 
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 Figure 20 – Aislemonitor Configuration 1 results 

8.3 Evaluation of Configuration 2 of Aislemonitor Application 

Tests 4 and 5 were designed to evaluate the second configuration of the 

Aislemonitor application. After the third test, the fourth OpenBrick device was switched 

off. This triggered software reconfiguration on the third OpenBrick device. The second 

configuration includes components that in addition to tracking people in their own range, 

can also track people in the range of the right neighboring OpenBrick device. These tests 

were aimed at generating some ‘prediction’ data in the range of the disabled OpenBrick 

device. 
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8.3.1 Configuration 2 Tests 

1. Test 4 involved one person walking from left to right and then coming back. 

2. Test 5 involved two people walking from left to right and then coming back. 

 

8.3.2 Configuration 2 Results 

The results of the tests evaluating the second configuration are plotted in the 

graphs shown in Figures 21 and 22. During the tests, the fourth OpenBrick device was 

turned off. The second configuration of the Aislemonitor application was then 

dynamically deployed on the third device to predict the position of the person in the 

range of the fourth device. Figure 21 displays the graph generated by plotting the position 

readings from the third and the fifth OpenBrick devices with no prediction capability in 

the third device. The gap created in the sensing range as result of this is clearly seen. 
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Figure 21 – “Gap” in Sensing Range 
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Figure 22 displays the same graph, but this graph also includes the prediction 

readings from the third OpenBrick device. The figure shows the gap filled in by the 

predicted values of the person in the gap by the third OpenBrick device. 
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Figure 22 – “Gap” in Sensing Range Filled by Prediction 

8.4 Tests Demonstrating need for Software Reconfiguration 

Tests 6 and 7 were performed to demonstrate the need for performing software 

reconfiguration. In these tests, the fourth OpenBrick devices was shut down and software 

reconfiguration was not performed on the third OpenBrick. This created a sensing ‘gap’ 

in the network. All the devices executed the first configuration of the Aislemonitor 

application. 
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8.4.1 Tests 

1. Test 6 involved one person walking from left to right and then coming back. 

2. Test 7 involved two people walking from left to right along the aisle and then 

coming back. 

 

8.4.2 Results 

Tests 6 and 7 were performed to demonstrate the usefulness of the reconfiguration 

architecture. The gap created in the sensing range of the sensor network due to the failure 

of one of the OpenBrick device can be reduced significantly by dynamically 

reconfiguring the components executing on the neighboring OpenBrick devices. Figure 

23 displays the comparisons of all the tests.  
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Figure 23 – Comparison of Tracking Algorithms 
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The line representing ‘Configuration 1’ indicates a person walking from left to 

right with all the devices working. The line representing ‘Sensing Gap’ highlights the 

sensing gap generated when there is no reconfiguration. The line representing 

‘Configuration 2’ indicates the person walking when the fourth OpenBrick device has 

been disabled and the third OpenBrick device is executing the second configuration.  

 

8.5 Evaluation of the Software Reconfiguration Architecture 

The dynamic switching of components executing on the third OpenBrick device 

after the disabling of the fourth OpenBrick was evaluated by recording the times at which 

various reconfiguration activities took place. The time required for the whole 

reconfiguration process was of particular interest. During the tests, time was recorded 

when (1) the Monitor on the third node sent a message to the GCM, which triggered the 

reconfiguration process, (2) new configuration files were sent by the base station to the 

third OpenBrick device, (3) configuration files were received by the Configurator on the 

third device, (4) reconfiguration commenced on the third device, and (5) reconfiguration 

was completed. 

The Configurator on the third OpenBrick device carried out dynamic software 

reconfiguration. After the fourth OpenBrick device was disabled, the Monitor on the third 

device waited for an interval of 10 seconds before sending a message to the GCM on the 

base station. This waiting period was set during the initialization of the application. When 

a message was received by the GCM, it updated the SNRAMoLa models of the 

application and invoked the controller program. The Controller program performed 

software reconfiguration on the base station and exited after sending the new 
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configuration files to the OpenBrick devices. The reconfiguration process from the 

receipt of message from the OpenBrick to the dispatch of a new configuration file to it 

took 10 seconds. The Configurator upon receipt of a new configuration file performed the 

actual software reconfiguration on the third OpenBrick device. This process took another 

8 seconds. The total reconfiguration process took 28 seconds, if the time required for 

fault detection is also considered. If it is not considered, then the actual reconfiguration 

process took only 18 seconds. The results of the experiments are summarized in Table 1. 

Table 1 – Time required for software reconfiguration 

Reconfiguration 
Component 

Location Time 
(seconds) 

Monitor OpenBrick 10 
GCM and Controller Base Station 10 
Configurator OpenBrick 8 
Total Time 28 
Total Reconfiguration Time 18 

 

 

8.6 Summary 

The experiments carried out for evaluation of the software reconfiguration 

architecture produced satisfactory results. They adequately demonstrated the need for 

software reconfiguration in sensor network applications. Our software reconfiguration 

architecture performed the dynamic software reconfiguration in just 28 seconds. Though 

this number is dependent on the number of components that will be ultimately switched 

and rewired, it is still a very small number when compared with the amount of effort and 

time needed if this activity is performed manually. The software infrastructure allows the 

selective switching of components. This feature of the infrastructure allows the dynamic 

replacement of some components with others without affecting the entire application. 
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CHAPTER IX 

DYNAMIC SOFTWARE RECONFIGURATION IN MOTES BASED SENSOR 

NETWORKS 

This approach for dynamic reconfiguration in sensor networks was also 

demonstrated using results obtained from simulations of Aislemonitor on the Berkeley 

MICA motes platform using TOSSIM [12] [16]. Reconfiguration was performed by a 

controller that was executed on a base station. The approach for software reconfiguration 

was based on Model Integrated Computing. The authors in [16] presented a modeling 

paradigm for TinyOS applications that supported the representation of alternative 

implementations of the same components along with explicit representation of 

constraints. The design space exploration tool (DESERT) was then used to evaluate the 

constraints based on measurements of the power available at each node and select an 

appropriate configuration. Once the next configuration was selected, the reconfiguration 

process involved stopping, rewiring and restarting the application components at the 

sensor nodes. 

 

9.1 Platform Description 

The work in [16] targeted wireless sensor networks that were based on energy and 

resource constrained devices. One of the most widely used platforms for researching 

wireless sensor networks with limited resources is the Berkeley MICA motes (described 

in the chapter 2) [11]. The MICA mote has a 4 MHz microcontroller, 4 KB of RAM, 128 

KB of flash memory, 916 MHz wireless radio transceiver (19.2 Kbps transfer rate, 200 
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feet range) and is powered by two AA batteries and runs the TinyOS operating system, an 

open source, event driven and modular OS designed to be used with networked sensors. 

Daughtercards with various sensors and actuators are available, including photo, 

temperature, humidity, infra-red and barometric pressure sensors, accelerometers, 

magnetometers, and microphones, and sounders [3].  

 

9.2 Architecture for Software Reconfiguration 

The architecture for software reconfiguration proposed in this thesis was 

prototyped in [16] during the work on Berkeley motes. The architecture included (1) 

GRATIS [47] and (2) GRATISPlus [16], the modeling paradigms for representing 

TinyOS based applications in the Generic Modeling Environment (GME), (3) the design 

space exploration tool DESERT and (4) the Global Constraint Monitor (GCM). All these 

programs were deployed on the base station. Individual motes executed the (6) Monitor 

and (7) Reconfigurator components, in addition to the application components.  

GRATIS is a modeling paradigm developed to model TinyOS applications. The 

graphical representation provides a solid and intuitive interface for designing and 

maintaining complex applications. GRATIS facilitates the visual modeling of interfaces 

and modules in configurations of TinyOS applications, and generates the textual 

representation of corresponding configuration files automatically. The environment also 

includes a mapping from the existing large code base of the system components included 

in the TinyOS distribution to the graphical environment. Using GRATIS, an application 

developer is able to model a new TinyOS application visually and then produce 

configuration files automatically using the GRATIS interpreter. 
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Using GRATISPlus, the user is able to model more than one design (alternative 

software components - modules) of the same TinyOS application, in a very compact and 

scalable representation, along with the constraints that are evaluated to generate valid 

configurations. In addition to the interfaces, modules and configurations represented in 

GRATIS models, GRATISPlus introduces an additional component called group, to 

allow modeling of alternative implementation of software components. A group typically 

contains more than one module representing alternative implementations of logic or 

algorithms. GRATISplus also allows the modeling of constraints using condition 

modeling objects. These constraints are expressed in the ‘statement’ attribute of a 

condition object in the Object Constraint Language (OCL). The design of SNRAMoLA is 

similar to the design of GRATISPlus in terms of applicability. The modules modeled in 

the group objects in GRATISPlus have an attribute for storing power values. These 

values are updated by the GCM during reconfiguration and evaluated by DESERT to 

generate valid configurations.  

During reconfiguration, the GRATISPlus to DESERT interpreter converted the 

GRATISPlus models of the TinyOS application into a format compatible with DESERT. 

DESERT evaluated the constraints over the models and generated valid GRATIS 

configurations. The DESERT to GRATIS interpreter converted DESERT output to valid 

GRATIS models. The GRATIS interpreter converted the GRATIS models of the TinyOS 

application to actual configuration files.  

The Monitor component executing on individual motes was responsible for 

measuring the local QoS parameters and communicating them to the base station. The 
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Reconfigurator was responsible for performing the necessary local application changes 

upon notification from the base station. 

 

9.3 Case Study 

The Aislemonitor application (explained in Chapter 6) was implemented on the 

TinyOS platform. Its purpose was the same, to track people walking in an aisle. A sensor 

network composed of eight motes was simulated in TOSSIM [12]. The application was 

deployed on all the motes. The tracking application was used to demonstrate the 

reconfiguration capabilities of the proposed architecture. The application was modeled in 

GRATISPlus. Different versions of the application were executed on the simulated sensor 

network and in TOSSIM. The data required for the simulation was generated using 

Matlab and provided to each mote through a text file.  

The initial configuration of the Aislemonitor application included components 

that were able to detect the position of the person within range of the host motes. The 

data generated using Matlab was fed to the application and readings were recorded. We 

tested the reconfiguration architecture by switching off an intermediate mote, thus 

requiring its neighbor to perform software reconfiguration to predict the position of the 

people in the range of the disabled mote. 

 

9.4 Performance Evaluation 

The authors [16] tested the performance of the tracking application with and 

without reconfiguration for four test cases. Each test case included data for three people 

walking in one direction with varying speeds. The data was generated for 30 seconds 
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over 65 feet of the aisle assuming eight uniformly spaced motes. One of the motes was 

shut down between 8 to 9 seconds after the start of the simulation, thus simulating a low 

power condition. Using Aislemonitor #1 it was not possible to detect any people in the 

field of view of the affected mote and we had to switch to Aislemonitor #2. Two types of 

errors were encountered: (i) People Missed: As one of the motes shut down, people 

present in its field of view were not detected, and (ii) People double counted: The 

tracking algorithm continued to estimate a person in the field of the affected mote even 

after he/she had crossed to a neighboring mote. 

Mote 2 was shut down in each of the test cases. Figure 24 shows the errors that 

occurred computed by summing up “people missed” and “people double counted” over 

the simulation interval. Aislemonitor #1 encountered 27 total errors and all of these were 

due to missed detection of people. Aislemonitor #2 reduced the “people missed” errors to 

10. However, it generated 4 errors due to “people double counted”. Overall, without 

reconfiguration we had 7.5% errors while with reconfiguration 3.8% errors.  
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Figure 24 - Distribution of Errors in Aislemonitor  #1 and Aislemonitor #2 
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CHAPTER X 

CONCLUSIONS AND FUTURE WORK 

10.1 Conclusions 

This thesis presented an approach for dynamic software reconfiguration in sensor 

networks. Our approach requires monitoring the system requirements expressed as formal 

constraints. These constraints apply over critical parameters expressed as attributes in 

visual models of the application. The attributes are updated by dedicated monitoring 

components, which gather data from the entire network. A change in the attribute values 

beyond set thresholds drives the reconfiguration process that takes place at a base station 

that can communicate to all the sensor nodes.  

The proposed approach has been demonstrated using results obtained from a 

simple one-dimensional tracking problem. All parts of the software reconfiguration 

infrastructure have been evaluated. The need for a software reconfiguration architecture 

for sensor network applications is apparent from the results of even a simple tracking 

algorithm. The time required for a particular OpenBrick device to reconfigure its 

components is around 18 to 28 seconds, which is very less when compared to the cost of 

manually stopping and restarting the application with the correct components. In sensor 

network applications running over a long duration, the ability to reconfigure the software 

components, resulting in a change in the behavior of the application, in response to 

external stimuli, in such a short time is of special significance. The automatic 

reconfiguration of components expressed in a user friendly modeling environment on a 

base station in response to changing operating conditions in the field, and the 
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communication of the new configuration to the individual nodes to reconfigure their 

application is a very attractive solution to the problem of managing a large sensor 

network. 

 
 
10.2 Future Work 

While the modeling, design-space exploration and reconfiguration, 

communication and the reconfiguration infrastructure tools are implemented and tested, 

work needs to be done to construct methods to enumerate and capture more critical QoS 

parameters that represent the communication and computation resources of the sensor 

network (for example, bandwidth utilized, and number of executing processes). 

Reconfiguration is triggered by a change in these values. The monitor components 

responsible for monitoring the health of the system are integrated with the application 

components in the current reconfiguration architecture. A more generic architecture for 

the development and implementation of the monitor components will significantly 

improve the capture of more QoS critical parameters from the field. A similar 

improvement can be done with the GCM executing on the base station. A strong software 

architecture for updating the parameters in the SNRAMoLa models will simplify the 

design of the applications and standardize the reconfiguration process.  

Reconfiguration is performed when the QoS attributes exceed a set threshold. 

These thresholds may be different for different application domains. A standard method 

for capturing the desired levels of QoS parameters will simplify the application of 

software reconfiguration in various domains. 
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APPENDIX 

A. SOFTWARE RECONFIGURAITON ARCHITECTURE SETUP 

This section contains setup details of the software reconfiguration architecture. 

The software reconfiguration architecture can be divided into two parts based on the 

location of the executing components: (1) Base Station and (2) OpenBrick device.  

 

A.1 RECONFIGURATION COMPONENTS ON BASE STATION 

The software reconfiguration infrastructure components on the base station are: 

(1) SenNet.conf file (2) SNRAMoLa models of the application, (3) Controller Program 

(4) SNRAMoLa to DESERT interpreter, (5) DESERT, (6) DESERT to Configurator 

interpreter, and (7) Global Constraint Monitor (GCM). 

 

A.1.1 SenNet.conf File 

SenNet.conf is the configuration file of the reconfiguration architecture on the 

base station. It contains (1) Packet Forwarder IP and Port information (used by 

Controller), (2) SNRAMoLa model name and path information (used by Controller and 

GCM), (2) DESERT executable path and directory information (used by Controller), (3) 

SNRAMoLa to DESERT interpreter executable path and directory information (used by 

Controller), (4) DESERT to Configurator interpreter executable path and directory 

information (used by Controller), (5) Controller program executable path and directory 

information (used by GCM), and (6) Host device IP address and listening Port (used by 

GCM). This file is currently located in the ‘C:\Documents and 

Settings\kogekasv\Thesis\MetaModel’ folder on the base station. This folder also 
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contains the DesertInput, DesertOutput, GCM, and Talker folders, which contain the 

SNRAMoLa to DESERT, DESERT to Configurator, GCM, and Controller programs 

respectively. The directory structure for the base station components should be 

maintained by keeping the ‘SenNet.conf’ file along with the other mentioned folders in 

the one folder at the same level in the hierarchy. 

 

A.1.2 SNRAMoLa Models of the application 

SNRAMoLa models of the application are stored as ‘.mga’ files. The model of the 

Aislemonitor application is stored in the ‘SenMetaData_test.mga’ file located in the 

‘C:\SenMetaData\’ folder on the base station. These models are created in GME using the 

SenMeta modeling paradigm. Before deploying the application on the sensor network, 

the name of the model and its path is recorded in the ‘SenNet.conf’ configuration file. 

 

A.1.3 Controller Program 

The controller program is invoked by the GCM upon receipt of messages from the 

Monitors executing on individual OpenBricks. Its path is specified in the ‘SenNet.conf’ 

configuration file. The controller program is located in the ‘C:\Documents and 

Settings\kogekasv\Thesis\MetaModel\Talker\’ folder on the base station. The Controller 

program reads from the ‘SenNet.conf’ configuration file and invokes SNRAMoLa to 

DESERT, DESERT and DESERT to Configurator interpreters sequentially. It then sends 

the newly created configuration files to individual OpenBrick devices via the Packet 

Forwarder as UPD packets. The Controller uses the IP address and port data read from 

the SenNet.conf file to address the packets.  
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A.1.4 SNRAMoLa to DESERT Interpreter 

The SNRAMoLa to DESERT interpreter converts the application models to a 

format compatible with DESERT. The input to DESERT is stored in the 

‘DesertInput.xml’ file. The Controller program invokes the interpreter and passes the 

name of the model along with the target directory as command line parameters. The 

output XML file stored in the target directory, which is the same folder 

(‘C:\SenMetaData\’) as the application model (‘SenMeta_test.mga’). The SNRAMoLa to 

DESERT Interpreter is stored in the ‘C:\Documents and 

Settings\kogekasv\Thesis\MetaModel\DesertInput\’ folder on the base station. 

 

A.1.5 DESERT 

The Controller program invokes DESERT using the information in the 

SenNet.conf file and passes the file ‘DesertInput.xml’ to it as a command line parameter. 

This file contains the SNRAMoLa models of the application in a form compatible with 

DESERT. DESERT performs design space exploration and stores its output in the 

‘DesertInput_back.xml’ file in the same folder as ‘DesertInput.xml’. In the present 

application, this file is stored in the ‘C:\SenMetaData\’ folder. DESERT is invoked using 

the ‘DesertTool.exe’ executable stored in the ‘C:\Desert\’ folder on the base station. 

 

A.1.6 DESERT to Configurator Interpreter 

The Controller program invokes this interpreter using the information in the 

SenNet.conf file and passes the files ‘DesertOutput.xml’ and ‘SenMeta_test.mga’ as 

command line parameters. The interpreter uses these two files to generate the 
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configuration files for each OpenBrick device. These configuration files are also stored in 

the same folder as the application model (‘C:\SenMetaData’). The DESERT to 

Configurator interpreter is stored in the ‘C:\Documents and 

Settings\kogekasv\Thesis\MetaModel\DesertOutput\’ folder on the base station. 

 

A.1.7 Global Constraint Monitor (GCM) 

The GCM is stored in the ‘C:\Documents and 

Settings\kogekasv\Thesis\MetaModel\GCM\’ folder on the base station. The GCM reads 

from the SenNet.conf file and uses the IP address information stored in it to open a socket 

for listening for incoming messages from OpenBrick devices. Upon receipt of a message, 

it updates the critical QoS attributes in the SNRAMoLa models of the application and 

then invokes the Controller program and triggers reconfiguration on the base station. 
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A.2 RECONFIGURATION COMPONENTS ON OPENBRICK DEVICES 

The software reconfiguration infrastructure components on individual OpenBrick 

devices are: (1) Configurator, (2) Communicator, and (3) Monitor. 

 

A.2.1 Configurator 

The Configurator component is installed in the 

‘/root/sachin/aislemonitor/configurator’ folder on all OpenBrick devices. Information 

about Packet Forwarder IP addresses and ports, Configurator IP addresses and ports is 

stored in the ‘receive.conf’ file in the same folder. The Configurator reads this file and 

opens up a socket to listen for incoming reconfiguration commands from the base station. 

If the host OpenBrick device is connected to the base station through a wired connection, 

the Configurator also sets up the Packet Forwarder on the device. The configurator is 

invoked by using the ‘/root/sachin/aislemonitor/configurator/configurator’ command. 

 

A.2.2 Communicator 

The Communicator component is stored in the 

‘/root/sachin/aislemonitor/configurator’ folder on each OpenBrick device. The 

‘communicator.h’ file, which implements the Communicator component, is required to 

be included by each application process. Using the Communicator component, processes 

establish shared memory connections with the Configurator to receive reconfiguration 

commands. The Communicator is initialized by the process using the 

‘communicator_init()’ method. 
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A.2.3 Monitor 

The Monitor used in our test-bed is integrated with the Aislemonitor application. 

It has not been implemented as a separate component. 

The reconfiguration architecture is deployed by: 

1. Starting the Configurator components on all the OpenBrick devices 

using the ‘/root/sachin/aislemonitor/configurator/configurator’ 

command. 

2. Starting GCM on the Base Station. 

3. Invoking the Talker Program manually to generate the first set of 

configuration files. 

Once started, the dynamic software reconfiguration architecture performs 

software reconfiguration automatically as and when it receives failure notifications from 

the Monitor components and continues to execute till it is stopped manually by sending 

the “STOPLISTENING” message from the base station. 
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B. AISLEMONITOR APPLICATION SETUP 

This section describes the setup of the Aislemonitor Application deployed on each 

OpenBrick device. The Aislemonitor application is composed of the (1) ImageSensor, (2) 

Receiver, (3) Estimator1, (4) Estimator2, (5) DataCollector1, and (4) DataCollector2 

components. Each component is implemented as a separate program. 

 

B.1 ImageSensor 

The ImageSensor component is installed in the ‘/usr/local/motion3/’ folder on 

each OpenBrick device. The Configurator executes it using the command: 

 ‘/usr/local/motion3/motion memoryId:memoryName’ (explained in Chapter 7). Various 

control variables like the frame-rate are set in the ‘motion.conf’ file located in the same 

folder. The ImageSensor reads from this file during initialization. 

 

B.2 Receiver 

The Receiver program is installed in the ‘/root/sachin/aislemonitor/receiver/’ 

folder on each OpenBrick device. The Configurator executes it using the command:  

‘/root/sachin/aislemonitor/receiver/receiver memoryId:memoryName’ Information about 

the IP addresses and ports of neighboring OpenBrick devices as well as listening ports on 

the host OpenBrick device is stored in the receive.conf file located in the same folder. 

The Receiver program reads this file during initialization. 
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B.3 Estimator1 

The Estimator1 program is installed in the ‘/root/sachin/aislemonitor/Estimator3/’ 

folder on each OpenBrick device. The Configurator executes it using the command:  

‘/root/sachin/aislemonitor/Estimator3/estimator memoryId:memoryName.’ 

 

B.4 Estimator2 

The Estimator2 program is installed in the ‘/root/sachin/aislemonitor/Estimator4/’ 

folder on each OpenBrick device. The Configurator executes it using the command:  

‘/root/sachin/aislemonitor/Estimator4/estimator memoryId:memoryName.’ 

 

B.5 DataCollector1 

The DataCollector1 program is installed in the 

‘/root/sachin/aislemonitor/application3/’ folder on each OpenBrick device. Its executable 

is called ‘application’. The program reads from the ‘aislemonitor.conf’ file stored in the 

‘/root/sachin/aislemonitor/application/’ folder. This file stores information about the left 

and right range limits of the host OpenBrick device and is used by the DataCollector, 

ImageSensor and Estimator components.  

 

B.5 DataCollector2 

The DataCollector2 program is installed in the 

‘/root/sachin/aislemonitor/application4/’ folder on each OpenBrick device. It is executed 

using the command ‘/root/sachin/aislemonitor/application4/application 
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memoryId:memoryName’ by the Configurator. The program reads from the 

‘aislemonitor.conf’ file stored in the ‘/root/sachin/aislemonitor/application/’ folder. 

All these programs include the ‘communicator.h’ file located in the 

‘/root/sachin/aislemonitor/configurator/’ folder and invoke the ‘communicator_init()’ 

function during initialization. 
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