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INTRODUCTION AND OVERVIEW 

 

Epithelial tissue makes up the largest organ in the human body, our skin.  Indeed, 

it lines all of our surfaces which come into contact with the environment.  Epithelia is a 

sheet-like structure composed of interconnected cells.  These apical-basal polarized cells 

sit atop a basement membrane (BM) and can form stratified layers or remain as a single 

sheet.  This tissue has many important functions.  For example, epithelial tissues regulate 

and exchange nutrients and chemicals with underlying tissues, secrete hormones into the 

vascular system, and secrete mucus and sweat1,2.  A particularly important function of 

epithelial tissue is to serve as a physical barrier between the organism and the 

environment2,3.  Cell-cell adhesions and other structural components pull cells together to 

create an impermeable wall.  The wall is sealed by tight junctions which form close 

adhesions between adjacent cells and serve as highly selective gates between the 

extracellular environment and underlying tissue4.  Despite how it sounds, this is not a 

passive job and epithelia are not inert tissues.  Penetrating pathogens, sharp objects, 

burns, radiation, desiccation, and harsh chemicals are just a few external threats can that 

compromise the epithelial barrier and reduce the fitness of an organism5.  To mitigate 

further damage and prevent microorganism entry, a normally quiescent epithelia must 

quickly and dynamically respond to these threats.   

The fastest response to an epithelial wound is the calcium wave6.  A calcium wave 

forms when cells in an epithelia increase cytosolic levels of calcium in a sequential, wave-

like fashion7.  Around wounds, calcium increases in the cells within seconds of wounding8-

10.  Calcium ions are potent signaling molecules, and their concentration in cells is heavily 

regulated11.  In the cytosol, calcium concentrations are very low (~10-7 M).  In contrast, 

calcium concentrations can be high in the extracellular space (~10-3 M) and organelles, 

including the endoplasmic reticulum (ER), mitochondria, and Golgi1,11.  Calcium can enter 

the cytosol through gap junctions, ion channels in the plasma or ER membrane, and 

directly through membrane tears.   

Once inside the cell, the calcium wave is a master regulator of wound healing.  At 

wounds, calcium drives the production and release of paracrine signals including ROS12 

and eicosanoids13,14 to upregulate the immune response.  Seconds to minutes after 

wounding, calcium dynamics are spatially and temporally correlated with cytoskeletal 

dynamics and drive rapid actomyosin remodeling by activating actin-filament severing 
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enzymes and actin nucleators8,15.  Calcium activates RhoA and Cdc42 at wound sites 

which are necessary for actomyosin purse-string based wound closure10,16-20.  

Furthermore, calcium influx has been observed to activate downstream transcriptional 

responses21,22.  Blocking the calcium wave at wounds results in excessive apoptosis23, 

reduces rates of re-epithelization22,24-27, inhibits wound healing28,29, and can result in death 

of the organism20.   

So, what regulates a master regulator?  What are the upstream factors driving and 

mediating calcium dynamics around wounds?  There is not a consensus within the wound 

healing field regarding calcium wave initiation and propagation.  In fact, there is extensive 

variability and some findings even seem to be mutually exclusive.  Unfortunately, these 

contradictions and the lack of clarity may undermine the field’s efforts to understand the 

calcium wave.  Some studies report the calcium wave is initiated by ER stores of 

calcium20,30-32, other studies report initiation requires extracellular calcium9,21,23,24,33, and 

still others report that both extracellular and intracellular calcium play a role in wave 

initiation12,34,35.  Calcium wave propagation can occur intracellularly, by which calcium or 

IP3 diffuses through gap junctions12,21,31,34,36,37, or extracellularly, by which a diffusible 

ligand activates receptors on the cell surface as it spreads25,30,32,34,37,38.  There is variability 

in the literature about whether the calcium wave oscillates9,12,31,36 or not23,24,34,35.  Some 

studies also suggest a role for tissue mechanics in wave initiation and 

propagation8,10,20,31,38-42.  All of these studies are informative and add to our understanding 

of wound-induced calcium dynamics.  Despite this, only one complete mechanism for 

calcium influx and propagation has surfaced; in cell culture models ATP is released from 

damaged cells and activates receptors on the cell surface as it diffuses away from the 

wound30,32,38,42.  Interestingly, this has still not brought a consensus to the field as it is not 

fully validated by other cell culture experiments34,35 and is not consistent with data from in 

vivo models8,12,20,21,43.  If not ATP, what initiates and propagates the calcium wave in vivo? 

We decided to approach this question by analyzing calcium wave initiation and 

propagation kinetics at wounds in the Drosophila notum.  We chose the Drosophila notum 

as an in vivo wounding model for three important reasons.  First, the genetic tractability of 

the organism is well established and allowed us to perform complex manipulations of the 

tissue.  Second, the epithelial architecture in the notum is simple, yet conserved.  The 

diploid, cuboidal cell monolayer sits atop a basement membrane and exhibits apical-basal 

polarity44.  Finally, and perhaps most importantly, this tissue is easily accessible and can 
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be live imaged over long periods of time because the animal remains still during 

pupariation.  A collaboration with the Hutson Lab (Department of Physics, Vanderbilt 

University) allowed us to administer wounds using laser ablation techniques.  True laser 

ablation occurs over a nanosecond time scale.  A custom light path added to a scanning 

confocal microscope allowed us to wound without interrupting our imaging scans.  This 

was a significant advantage to our studies because we could begin analyzing calcium 

expansion kinetics milliseconds after wounding.    

With this tool kit, we made novel observations.  We found that calcium increases in 

cells within the first 2 milliseconds of wounding.  Our studies reveal this immediate calcium 

influx is a result of single cell damage, or micro-tears, on the plasma membrane.  This 

micro-tear induced calcium influx expands to neighboring cells via gap junctions.  

Approximately 45 seconds after wounding, a second, wound-induced calcium expansion 

event occurs.  This expansion event is distinct from the micro-tear induced expansion as it 

correlates with damage on a tissue-wide level and does not require gap junctions.  By 

applying computational methods to the second expansion in collaboration with the Hutson 

lab, we found that an unknown signal induces calcium influx as it diffuses away from the 

wound with a diffusion constant between 7 and 30 μm2/s.  Our results indicate this 

unknown signal is a ligand that drives IP3 mediated calcium influx through a Gαq-bound 

GPCR.  The parameters we have identified here allow us to significantly narrow down the 

potential mechanisms for calcium wave initiation and propagation.   

Ultimately, our results can be used to make sense of the variability found in the 

literature and show these various findings are not mutually exclusive.  We demonstrate 

that multiple types of damage occur at the same epithelial wound.  Pulsed laser ablation is 

a common wounding method, but many biologists are not aware that an associated 

cavitation bubble can create a more complex damage profile than simple ablation.  We 

report that the distinct types of damage associated with this complex wound profile result 

in multiple mechanisms of calcium influx and propagation.  Micro-tears drive direct calcium 

entry from outside of the cell and direct calcium diffusion through gap junctions.  At the 

same wound, we propose that a ligand found in cell lysate diffuses extracellularly and 

activates receptors on neighboring cell surfaces.  This results in a gap-junction-

independent wave propagation and release from either ER stores (if the ligand binds a 

GPCR) or extracellular space (if the ligand binds an ion channel).  In light of our 

observations, the variability of mechanisms driving calcium dynamics in previous literature 
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seems to stem from the fact wound healing models are well suited to study one type of 

damage and therefore only one aspect of the calcium wave.  When the models do not 

recapitulate the same type of damage, they observe different mechanisms of calcium 

entry and report contradictory results.   For example, cell culture scratch assays generate 

cell lysate but, beyond the row of cells touching the scratch, do not generate micro-

tears34,35.  In vivo models which study calcium wave upon the addition of cell lysate do not 

generate any micro-tears either.  These models are ideal for investigating a lysate-driven, 

wound-induced wave but will not provide information on calcium dynamics as a result of 

single cell damage.  In vivo models typically use laser ablation to study calcium dynamics 

around wounds and laser ablation results in extensive microtearing.  If investigators do not 

create large enough ablation wounds, they may not generate a wound-induced wave and 

will only report on micro-tear induced calcium expansions.   

  We have developed a comprehensive wounding system in an accessible model 

organism.  Importantly, our wounding system creates a complex damage profile that 

allows us to study multiple mechanisms of calcium influx at the same wound.  Our 

observations unite and make sense of previous findings from other models.  Moreover, 

because this model more fully captures the extent of calcium dynamics at wounds, it can 

be used to study how cells regulate, integrate, and interpret this potent wound response.   

 

The first chapter of this dissertation will discuss the state of the wound healing field 

in more detail.  It will explore other early wound signals aside from calcium and potential 

mechanisms driving calcium dynamics at wounds.  The second chapter maps out the 

mechanism for micro-tear induced influx at wounds and presents a computational analysis 

of both of the calcium expansion events we describe.  The mechanism behind the second, 

wound-induced expansion of calcium is explored in the third chapter.  Our findings add 

value to the wound healing field and inspire new questions, all of which will be discussed 

in the Summary and Implications and the Future Directions.  Finally, the end of the 

document contains appendices with data and information supplemental to the dissertation.   
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CHAPTER 1 

 
A REVIEW OF EARLY DAMAGE SIGNALS AND WOUND RESPONSES WITH 

AN EMPHASIS ON CALCIUM DYNAMICS AT WOUNDS 

 

General wound healing 

If a breach occurs, cells within the epithelium are rallied to migrate and proliferate 

in order to rapidly repair the barrier.  In mammals, a cut on differentiated skin initiates a 

complex wound healing cascade.  When blood vessels are broken, fibrin and extracellular 

matrix (ECM) proteins form a clot which plugs the breach.  This clot occludes extracellular 

microorganisms and provides an essential framework for migrating inflammatory cells45-48.  

The inflammatory cells – neutrophils, monocytes, lymphocytes – defend against 

contamination and phagocytose debris at the wound site.  Neutrophils detect EGF, PDGF, 

TGF-β, and other molecules released by the clot and arrive within minutes of damage49-52.  

In addition to combating bacterial infection they transcriptionally upregulate the release of 

pro-inflammatory cytokines such as IL-α, IL-β, and TNF-α which recruit more inflammatory 

cells and activate local fibroblasts and keratinocytes53.  Hours after wounding, epithelial 

cells receive a plethora of environmental cues which transform their transcriptional profile 

from a quiescent state to a highly dynamic, mobile state.  For example, JNK signaling in 

keratinocytes on the leading edge of the wound leads to transcriptional upregulation of 

Matrix Metalloproteases (MMPs), which remodel the BM and enable cell migration into the 

wound bed54,55.  Cell proliferation also begins hours after wounding and is an important 

feature of the wound response56-59.  Surviving hair follicles contribute to the proliferating 

pool of cells that support re-epithelialization59-62.  After the breach is covered, fibroblasts 

secrete BM components and the tissue undergoes a period of remodeling for days after 

wounding54,63,64.   

In differentiated tissue, a clot provides a temporary barrier during the hours 

between wounding and the onset of re-epithelization.  Interestingly, there is no lag time in 

embryonic tissue; re-epithelization begins right away48,65-68.  Instead of invading the wound 

via slow lamellipodial crawling, re-epithelialization in embryos occurs much faster as it is 

driven by cell shape changes, intercalation, and the formation of an actomyosin purse-

string65,68-70.  An exception to this is the mouse cornea, which has also been observed to 

form an actin purse-string71.  This is not the only key fundamental difference between 
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embryonic and adult wound healing.  Researchers have also found that there are 

significantly fewer inflammatory cues present in embryonic wounds, and as a result, there 

is little to no scar formation48,68,72,73.  Understanding the finer mechanisms of wound 

healing has already led to important clinical advancements74.   Wound healing research 

encompasses the fields of migration, differentiation, development, and cell-signaling.  It is 

not surprising that information learned in wound healing studies can also contribute to 

cancer science and our general understanding of cell biology75-82.  

Early damage signals and wound responses 

Changes in cell behavior driven by gene expression do not occur immediately after 

wounding, some changes may take hours or days54,63,83.  So while cells are redirecting 

their transcriptional profile they must also be adapting to their immediate environment.  

Studies showing epithelial wound responses within minutes of damage have been 

important in identifying early, non-transcriptional damage signals and wound responses.   

DAMPs and ATP 

Cells within a tissue can respond to lysis of their neighbors by using a myriad of 

cell surface receptors to detect Damage Associated Molecular Patterns, known as 

DAMPs13,84,85.  DAMPs can be metabolites, RNA’s and DNA’s, peptides, and even whole 

proteins and can come from invading pathogens or be endogenous in nature84,86-88.  They 

can result from revealed cryptic sites or can be intercellular molecules released into the 

extracellular space89-93.  Both High-mobility group box protein-1 (HMGB1), a chromatin 

binding protein, and Heat Shock Proteins are well characterized DAMPs.   HMGB1 is 

passively released from dying cells and actively secreted from immune cells94,95.  In 

addition to activating the immune system89,90,96, HMGB1 can induce cytoskeletal re-

arrangements and chemotaxis94.  Heat Shock Proteins (HSPs) activate NF-ĸB 

transcription factors in macrophages84,97 and induce migration in cell culture models98.   

ATP is a well-studied DAMP that plays an important role in some wound healing 

models.  The release of ATP from cells around a wound can be visualized with a 

biochemical, luciferase-based assay38.  It can be actively released99-102, or passively 

released during necrosis85,89,100.  Once outside the cell, ATP binds and activates purinergic 

(P2) receptors: P2X (ionotropic, ligand-gated channels) and P2Y (metabotropic, G-Protein 

Coupled Receptors)101,103,104.  Calcium release is a downstream result of P2 receptor 

activation, and will be discussed in following sections.  ATP signaling through P2X7 
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channels has been shown to induce an immune response in macrophage cell culture by 

stimulating the direct release of the IL-6 cytokine105.  Potentiated ATP release at wound 

sites in zebrafish led to potentiated epithelial cell migration106.  In vitro studies have made 

great progress in mapping out the mechanism of ATP induced cell motility.  In cornea cell 

culture, activation of the P2Y2 receptor is important for wound closure32,107.  P2Y receptor 

activation results leads to proteolytic shedding of HB-EGF and EGFR activation108.  This 

process is mediated via DUOX, a NADPH Oxidase homologue that produces H2O2, which 

oxidizes extracellular proteases in an ATP-dependent manner109-111
.  In parallel, ATP 

activates EGFR through phospholipase D2112. 

Hydrogen Peroxide (H2O2) 

 Waves of H2O2
 have been observed within seconds of wounding in zebrafish tail fin 

wounding assays113.  As a small molecule, H2O2 can readily diffuse away from a wound 

and directly into nearby cells without the assistance of a membrane channel.  H2O2 and 

other ROS can be produced by oxidative stress in damaged and dying cells114,115.  It can 

also be produced in the leading edge of migrating cells115,116.  Work in Drosophila embryos 

has shown that H2O2 is produced in a field of cells by DUOX, a calcium sensitive 

transmembrane protein12.  H2O2 can drive platelet aggregation by stimulating platelet 

activation117,118.  It can also stimulate inflammation by recruiting immune cells and 

activating signal transduction cascades12,113,119-121.  In both zebrafish and Drosophila, H2O2 

gradients serve as a chemotaxis signal for immune cells12,113.  H2O2 can facilitate the 

release of immune factors, like the DAMP, HMGB1122.   Furthermore, H2O2 plays a role in 

cell migration and therefore promotes re-epithelialization123-125.  Through different post-

translational modifications, H2O2 regulates proteins upstream of Rho activity126.  ROS can 

also regulate the activity of MMPs127,128, which are important for re-epithelialization83.   

Calcium 

 Intercellular calcium transients in cells around wounds were first observed in cell 

culture scratch assays 20 years ago34.  When these calcium transients spread uniformly 

across a tissue, they are termed a calcium wave.  Cell culture scratch assays have since 

been a useful tool in characterizing wound-induced calcium waves.  Typically, a fast 

calcium wave that lasts a few minutes after wounding is observed in cell culture scratch 

assays23,24,34,35,129.  The speed of wave propagation ranges from 4.6 to 49.3 μm/s25,34,35.  A 

second, slower calcium wave has been observed to propagate through the tissue an hour 
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after wounding only in bovine epithelial cells24.  Investigators have shown that calcium 

waves depend on extracellular calcium21,23-25,30,34 and intracellular stores30,34, depending on 

which cell culture line used.  In cases where extracellular calcium is important, dye influx 

assays show that the cell membranes, at least in cells not immediately adjacent to the 

scratch, are intact24,34,35,130.  This suggests calcium is not entering through membrane 

damage and a transmembrane receptor or channel is important for wave formation.  The 

propagation of these waves seems to be dependent on extracellular diffusion of a ligand, 

as the wave expansion was biased by directional flow and/or could spread across breaks 

in the cell monolayer34,35,131.  

The development of genetically encoded calcium indicators, like GCaMP, has 

allowed these studies to advance in vivo.  A strong advantage of in vivo research is that 

experiments can be performed in the context of development and in the full scope of 

tissue architecture.  Calcium waves in vivo also occur within seconds of 

wounding6,8,10,12,20,29,113,132.  In vivo calcium waves propagate much more slowly, at rates 

ranging from 0.4 to 6.9 μm/s12,31,43.  Wave oscillations, where the calcium wave fades and 

re-appears, have also been observed in different wounding models9,12,133.  Certain in vivo 

model systems allow investigators to apply chemical inhibitors and other drugs to the 

tissue.  By quenching extracellular calcium stores with cell-impermeable EDTA and 

depleting internal stores with Thapsagargin, investigators have found extracellular calcium 

and intracellular calcium stores are important for the calcium wave9,12,33.    

Both studies in culture and in vivo have established calcium as a master regulator 

of wound healing.  Intracellular calcium is a ubiquitous second messenger1,11,134,135.  Aside 

from initiating transcriptional activators that drive delayed responses21,22, the calcium wave 

results in immediate changes in cell behavior.  Inhibiting this wound-induced calcium wave 

has negative effects on wound closure8,20,22,24,28,29.  Work in the Drosophila embryo 

indicated that calcium can recruit inflammatory cells by activating redox signaling via 

DUOX12.  Pro-inflammatory calcium signaling seems to be mediated through 

phospholipase A2 activation in zebrafish14 and through mitochondrial ROS in worms136.  

Calcium may also be contributing to the inflammatory response by inducing the secretion 

of paracrine signals137,138.  The calcium wave also has a direct protective effect on 

epithelial cells around a wound; cell-culture assays have shown that calcium transients 

inhibit apoptosis while inducing proliferation23.  However, proliferation is not always 

beneficial.  In stab wounds of the rat brain calcium activated JNK signaling and 
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downstream transcriptional responses to drive abnormal astrocyte proliferation, 

astrogliosis, and scarring21.  In epithelia, JNK signaling is required for efficient wound 

healing64,75,83,139,140.  If calcium also activates JNK signaling in epithelia, it would likely have 

positive effects.  Lastly, the regulation of cytoskeleton at wounds by calcium influx is 

conserved across the model organisms8,20,33,40.  In the Xenopus embryo, intracellular 

calcium levels drive Rho and Cdc42 activity at wounds, which are important in re-

epithelization10.  These actin dynamics are essential for wound healing.  Upon wounding 

the cytoskeleton must adopt a dynamic, migratory structure.  It is possible that calcium is a 

key factor in this switch.  Indeed, investigators have recently described a phenomenon 

they term Calcium Activated Reset (CaAR) where an influx of calcium leads to the 

disassembly of cortical actin and the formation of dynamic actin filaments15.  Consistent 

with these findings, other research proposes that intracellular calcium activates a calcium 

sensitive actin severing protein, Gelsoin, and permits actomyosin flow towards the wound 

bed8.   

Mechanisms of calcium release and propagation at wounds 

A particularly high priority within the field is understanding the details regarding the 

initiation and propagation of calcium at wounds6,85.  Calcium is regularly used in cells as a 

ubiquitous second messenger and has important functions outside of the context of wound 

healing11,134,135,141,142.  Abnormal calcium signaling can have pathological effects143-146.  

How do cells regulate this potent second messenger? How do cells determine whether 

calcium-influx is a result of a wound or other normal cellular process? To answer these 

questions, we need to explore mechanisms of calcium wave initiation and propagation.  

Despite years of research, there is not a common consensus among the field.   

ATP 

ATP is a ligand for P2X and P2Y receptors.  The P2X receptor is a ligand gated 

calcium channel that permits direct calcium entry into the cytoplasm101-104.  The P2Y 

receptor is a GPCR which initiates a signaling cascade and results in calcium release from 

intercellular stores32,101.  In cell culture scratch assays, ATP is known to be an initiator of 

the wound-induced calcium wave30,32,34,35,38,129,147-149.  Assays used to demonstrate ATPs 

role in calcium influx at wounds includes over-expression of ATP degrading 

enzymes30,32,38, addition of purified ATP homologues to induce calcium influx or sensitize 

cells30,32,150, and treatment with P2 receptor antagonists32,38.   Once calcium is inside the 
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cell, ATP can stimulate gap junction opening and allow calcium to diffuse to neighboring 

cells151.  It has been suggested that ATP diffusion also accounts for the propagation of the 

calcium wave away from the wound margin42.  Extracellular enzymes degrade ATP and 

limit its diffusion; it functions mainly in a paracrine manner101,106,152-154.  Therefore, it is 

unlikely that ATP diffusion alone can account for the long range propagation of calcium 

waves observed at wounds13.  However, intracellular calcium has been shown to stimulate 

release of ATP100,155,156.  If calcium and ATP are involved in a positive feedback loop, it is 

feasible for ATP to participate in the propagation of a long distance calcium wave.   

Tissue mechanics and mechanically gated channels 

 Changes in tissue mechanics have been shown to regulate cell behaviors, such as 

migration, gene expression, and differentiation157-159.  The distribution of mechanical forces 

across a tissue changes upon wounding160.  This has led many investigators to ask, do 

changes in tissue mechanics upon wounding drive wound healing programs?  Generally, 

changes in tension are transduced by mechanosensitive proteins which undergo 

conformational changes in response to the changes in their environment.  These proteins 

could be stretch activated ion channels that open when the tension in the lipid membrane 

changes161-163.  Or they could be cytoskeleton-associated proteins that activate in 

response to relaxation or contraction of the cytoskeleton164-168.   

There is growing evidence in the literature that tissue mechanics can drive calcium 

influx, especially in the context of wounding.  When cells in culture are grown on a flexible 

membrane and that membrane is stretched, ATP is released from cells and activates 

purinergic calcium channels38,42,169.  This mechanism has also been observed in Xenopus 

oocytes170.  Other cell culture models find that stretch induced calcium waves are a direct 

function of stretch activated calcium channels41,162,171.  Experiments in vivo have followed 

up on this mechanism.  When a putative mechanosensitive channel in the worm is 

knocked down, a wound-induced calcium wave no longer occurs20.  In flies, TRPM 

knockdown doesn’t completely impair the wave or alter wave kinetics, but it reduces the 

intensity GCaMP fluorescence upon calcium influx8,12.  There are other indications that 

tissue mechanics are necessary for wave propagation.  In Xenopus oocytes the calcium 

wave propagates asymmetrically and seems to favor cell borders40.  The authors postulate 

that the mechanical properties of cell edges creates favorable conditions for calcium influx 

or propagation.  A cortical actin ring is usually associated with cell edges172.  When cortical 

actomyosin components are knocked down or inhibited, the calcium wave is also 
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perturbed8.  Recently, direct mechanical manipulations of the tissue have allowed the field 

to draw stronger conclusions regarding the role of mechanics in calcium wave 

propagation.  Calcium waves occur when in vivo and ex vivo wing discs are mechanically 

prodded31.  These findings were confirmed when wing discs were mechanically 

compressed in a highly reproducible manner using an engineered microfluidics device39.  

Interestingly, the precision of this device allowed the investigators to conclude that calcium 

waves were initiated upon the release of compression.  Both labs that performed 

mechanical manipulations of tissue found that cell lysate was required for wave activity.   

Direct calcium entry through membrane damage 

 Concentrations of calcium are low in the cytosol (~10-7 M) and very high in the 

extracellular environment (~10-3 M)1.  A breach in the plasma membrane allows these 

high concentrations of calcium to flood into the cell173,174.  Pathogens, shear stresses, and 

heat are just a few things that can compromise lipid membranes175-181.  Calcium influx is 

well studied in the context of single cell wound healing.  In fact, intracellular calcium is 

important for plasma membrane resealing182-186.  Plasma membrane damage (we term this 

damage “micro-tears”) occurs in cells surrounding puncture wounds187,188.  Micro-tears 

also occur around laser ablation wounds.  True laser ablation events are associated with a 

cavitation bubble, which is a hot gas bubble that expands and contracts around the 

wound189.  This bubble imparts shear stresses on cells which damage the plasma 

membrane and permit calcium influx190-193.  Shear stresses between 0.035 Pa s and 0.1 

Pa s have been shown to permeabilize cells in culture while shear stresses over 0.1 Pa s 

result in cell necrosis176.  Investigators have used the cavitation bubble as a tool when 

intentionally permeabilizing cells to drive the influx of ions, therapeutics, or other 

molecules194-199.   

IP3 and calcium induced calcium release  

Research outside of the context of wounding can also be helpful to understanding 

calcium wave initiation and propagation.  Calcium concentrations are highly regulated in 

cells because calcium is a potent second messenger1,11,134.  One way a cell can keep 

calcium concentrations low is by actively pumping calcium into the ER200.  Once calcium is 

in the ER the cell can regulate its release through ER ion channels.  Common channels 

are the IP3 Receptor (IP3R) and the Ryanodine Receptor (RyR)201.  The IP3R opens 

when inositol tri-phospate (IP3) binds the IP3 binding domain on the cytosolic surface202.  
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High cytosolic calcium levels can lower the threshold for IP3R activation203,204, but IP3 is 

still required to open the channel205,206.  Unlike the IPR3, calcium alone can activate RyRs 

resulting in mobilization of ER stores207,208.  Both IP3 and calcium can diffuse through gap 

junctions and trigger additional IP3 calcium release in neighboring cells, propagating a 

calcium wave209.  Interestingly, some reports show that calcium can activate 

phospholipase C to trigger the production of IP3210,211, which would further enable wave 

propagation.  When the ER is depleted of calcium, a calcium sensitive protein embedded 

in the ER membrane, STIM1, couples with a plasma membrane ion channel, Orai1, to 

induce sustained extracellular calcium influx212.  The added extracellular calcium influx 

further increases calcium concentrations inside the cell.   
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CHAPTER 2 
 
 

MULTIPLE MECHANISMS DRIVE CALCIUM  
DYNAMICS AROUND LASER-INDUCED EPITHELIAL WOUNDS 

 
 

This chapter has been adapted from Shannon, E., Stevens, A., Edrington, W., Yunhua, Z., 
Jayasinghe, A. K., Page-McCaw, A., Hutson, M. S. Multiple mechanisms drive calcium dynamics 

around laser-induced epithelial wounds. Biophysical journal (in press).  
 

Introduction 

Epithelial wound healing is a multi-stage process.  Cells must detect the presence 

of a wound, migrate and proliferate in a coordinated fashion to close the defect, and then 

successfully re-establish tissue-wide epithelial architecture13,63,83,213,214.  An important early 

feature of the wound response is a rapid rise in cytosolic calcium.  This rise initially occurs 

in cells near the wound margin and then spreads to more distant cells8,12,20,23,34,35 to act as 

a potent signal that regulates several cellular responses around wounds:  JNK signaling 

21; Rho GTPase activity 33; and remodeling of the actin cytoskeleton8,15,20,33.  Nonetheless, 

it is not yet clear how wound-induced calcium signals are initiated in vivo.  In cell-culture 

wounding models, calcium signals are generated downstream of a diffusible ligand 

released by damaged cells into the extracellular space24,30,32.  In vivo studies suggest 

another model, in which wound-induced changes in tissue tension open stretch-activated 

calcium channels or activate other mechanosensitive proteins6.  In support of this 

hypothesis, calcium waves can be generated in Drosophila wing discs by applying 

mechanical pressure31 and are perturbed in both C. elegans and Drosophila wounding 

models after knocking out the putative stretch-activated calcium channel TRPM8,12,20.  

Importantly, the diffusible-ligand and altered-mechanics hypotheses are not mutually 

exclusive: both could be upstream initiators of wound-induced calcium signals in vivo, 

each acting through specific regulated receptors or channels. 

Here, we use pulsed laser ablation to create repeatable and controllable wounds in 

epithelial tissues in Drosophila larvae and pupae, and carefully measure the dynamics of 

the induced calcium response in surrounding cells over time scales from milliseconds to 

hundreds of seconds.  We observe a complex spatiotemporal response with multiple 

phases: initial calcium influx beginning within milliseconds at discrete loci as far as 70 µm 

from the wound site; a rapid, intercellular expansion of calcium away from these loci; and 
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a second, slower expansion of high cytosolic calcium to additional cells as far as 150 µm 

from the wound.  We show that the initial influx and subsequent expansion phases can be 

described by different diffusive processes – suggesting different expansion mechanisms – 

and can be linked to different aspects of cellular damage around laser-induced wounds. 

Although laser energy can be precisely focused to remove single cells or even 

sub-cellular elements215,216, additional cells near and far from the primary wound are 

affected through several mechanisms.  The lasers typically used to investigate the 

mechanics of morphogenesis and wound healing in vivo are pulsed160,217-219, with 

femtosecond to nanosecond pulsewidths, and ablate tissue via plasma formation178,189,220.  

The plasma directly destroys macromolecules within the laser focus (radius < 1 µm), but 

recombination of the plasma leaves the targeted location extremely hot, leading to the 

vaporization of water and expansion of a cavitation bubble189.  The bubbles associated 

with laser ablation vary with pulsewidth and fluence178,189,220; those measured for near-

threshold in vivo ablation using ns-pulse lasers have lifetimes on the order of 

microseconds and inferred maximum radii of 10 to 100 µm178,221.  In cell-culture studies, 

the rapid expansion and collapse of cavitation bubbles generates shear stresses that can 

lyse cells close to the ablation site, creating a primary wound, and can transiently 

permeabilize cells farther away176,177,222 – a process known as optoporation.   

Here, we show that two mechanisms of laser-induced damage, a tissue-level 

primary wound and cellular micro-tears, each drive distinct calcium signaling dynamics.  

By imaging calcium dynamics with unprecedented time resolution, we show that calcium 

directly enters permeabilized cells 20-100 µm from the ablation site within milliseconds.  

This influx initiates a first calcium wave.  In some cases, a second wave further expands 

the region of high cytosolic calcium, but the second wave is delayed by 30-60 s and its 

occurrence depends on the size of the primary wound.  Through kinematic modeling of the 

calcium influx and expansion waves, we have identified parameters of the wave spread 

that narrow and inform the search for upstream mechanisms.  Our findings have 

implications both specific to laser ablation and applicable to more general types of 

wounding.  First, the precision lysis of laser ablation may be accompanied by cavitation 

bubble effects akin to a wider crush injury.  Second, our general finding of two-phase 

initiation of calcium signaling is likely to be important for tissues sensing a wide range of 

traumatic damage. 
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Materials and Methods 

Fly Lines  

pnr-Gal4 (Fly Base ID: FBst0025758) was used to drive expression of UAS-

GCaMP3 (Fly Base ID: FBst0032236), UAS-GCaMP6m (Fly Base ID: FBst0042748), 

UAS-Arclight (Fly Base ID: FBst0051056), UAS-Inx2 RNAi #1 (Fly Base ID: 

FBst0029306), UAS-Inx2 RNAi #2 (Fly Base ID: FBst0474063), and UAS-Inx3 RNAi (Fly 

Base ID: FBst0060112) in the notum.  tubP-Gal4 (Fly Base ID: FBst0005138) was used to 

drive expression of GCaMP6m in the wing disc.  shg-tdTomato (Fly Base ID: 

FBst0058789) and Ubi-p63E-shg.GFP (Fly Base ID: FBst0307577) were used to visualize 

cell borders.  Vkg-GFP454 (Fly Base ID: FBti0153267) was used to visualize cell 

architecture in wing disc experiments with propidium iodide.  w1118 was used as wild type.   

Mounting pupae  

White prepupae expressing pnr-Gal4 and UAS-GCaMP3, UAS-GCaMP6m or 

UAS-Arclight were identified and aged for 12-18 hours After Puparium Formation (APF).  

For imaging, a pupa was placed on a piece of double-sided tape (Scotch brand, catalog 

#665), ventral side down, and its anterior pupal case was removed with fine tipped forceps 

to reveal the notum epithelium.  The entire piece of double-sided tape was gently lifted 

from the dissecting stage with the pupae still attached and adhered to a 45 mm x 50 mm 

coverslip (no. 1.5, Fisherbrand, 12-544F) so that the pupal nota were laid against the 

coverslip, with the pupae between the coverslip and the tape layer.  It was not necessary 

to adhere all edges of the double-sided tape to the coverslip, only the edge at the anterior 

of the pupae.  Then, an oxygen permeable membrane (YSI, standard membrane kit, cat# 

1329882) was applied over the pupae and secured to the coverslip with additional double-

sided tape so pupae would not become dehydrated. 

Mounting wing discs  

For wounding experiments in the wing disc, tubP-Gal4 was used to drive the 

expression of UAS-GCaMP6m.  Wing discs were dissected from 3rd instar larvae in a 

drop of PBS (137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 2 mM KH2PO4, pH 7.4) and 

immediately mounted on coverslips for imaging and ablation.  Cell-Tak Adhesive (Corning, 

catalog #354240) was used to adhere wing discs to 45 mm x 50 mm coverslips (no. 1.5, 

Fisherbrand, 12-544F).  7 ug of Cell-Tak was used to coat a surface area of 20 mm x 20 

mm using the manufacturer’s protocol.  Because Cell-Tak was used, external forces were 

not applied to wing discs through mounting and imaging.  A pap pen (RPI, catalog #50-
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550-221) was used to trace a hydrophobic barrier around the wing discs on the coverslip. 

Two wing discs were mounted on one coverslip.  For calcium-free conditions, wing discs 

were mounted in a drop of PBS.  For 2 mM calcium conditions, wing discs were mounted 

in a solution for which 200 mM CaCl2 at pH 7.0, was diluted to 2 mM in PBS.  

Laser ablation and live imaging 

 Laser ablation and live imaging were performed using a Zeiss LSM410 raster-

scanning inverted confocal microscope with a 40X 1.3 NA oil-immersion objective.  Scans 

were performed either every 2.14 seconds or every 3.0 seconds.  Laser ablation used 

single pulses of the 3rd harmonic (355 nm) of a Q-switched Nd:YAG laser (5 ns 

pulsewidth, Continuum Minilite II, Santa Clara, CA).  Laser pulse energies ranged from 0.5 

μJ to 10 μJ, depending on the experiment.  A separate computer-controlled mirror and 

custom ImageJ plug-in were used to aim and operate the ablation laser so that ablation 

could be performed without any interruption to live imaging.  For kymograph experiments, 

line scans with a scan rate of 2.09 ms were taken at the wound site.  Line scan data was 

assembled into kymographs using ImageJ.   

Cavitation experiments 

Pupae were selected and pupal cases were removed as described above.  PBS 

was used to release pupae from double-sided tape.  Fly glue, made of double-sided tape 

(Scotch brand, catalog #665) dissolved with heptane, was used to adhere each pupa to 

the coverslip so its entire dorsal side was touching the glass.  A pap pen (RPI, catalog 

#50-550-221) was used to trace a hydrophobic barrier around the pupae on the coverslip.  

Immediately prior to imaging, approximately 500 μl of distilled water was slowly dropped 

on top of the pupae on the coverslip so that the pupae were under a bubble of water.  For 

wing disc cavitation experiments, discs were mounted as described above, in 

approximately 500 µl PBS or PBS with 2 mM calcium.   

 A small hydrophone (Onda, 0.5 mm aperture, <20 ns rise time, 2.24 V/MPa 

sensitivity), was mounted to the confocal stage and lowered into the bubble of water 

approximately 1 mm away from the focus of the laser.  Hydrophone data were displayed 

on an oscilloscope.  Samples were imaged and wounded as described above while the 

hydrophone measured the expansion and collapse of each cavitation bubble via their 

associated acoustic transients.  Each cavitation bubble’s maximum radius was calculated 

from its lifetime221.  
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Cavitation bubble imaging 

 Drosophila embryos were collected approximately 2 hours after egg laying and 

aged at 18°C until germ band retraction.  Prior to mounting, the chorion was removed 

using a 50% bleach solution.  Fly glue, made as described above, was used to adhere 

each embryo to the coverslip.  Embryos were immersed under a bubble of distilled water 

and the needle hydrophone was lowered into the solution as described above.   

  A second optical path was added to the Zeiss LSM410 microscope to image 

cavitation bubbles formed during ablation.  This high-speed bright-field imaging system is 

built around a high-sensitivity CCD camera (Photometrics CoolSNAP EZ, Tucson, AZ; 

1392×1040-pixel 12-bit sensor, >60% quantum efficiency in the range 450 to 650 nm) and 

a pulsed diode laser (Coherent Cube, Santa Clara, CA; λ = 660 nm, maximum average 

power = 61 mW).  The diode laser serves as a flash illumination source with a controllable 

pulse duration.  The camera is triggered before ablation, and the illumination laser is used 

as a strobe light with an accurately adjustable delay.  Signals for triggering the camera, 

the ablation laser’s Q-switch, and the diode laser pulse (rise and fall) are controlled by a 

digital delay generator (Stanford Research Systems DG645, Sunny Vale, CA) using the 

ablation laser’s flash-lamp sync as the master timing signal.  The accuracy of the 

illumination pulse delay is limited by the approximately 2-ns jitter inherent to the 

electronics controlling the ablation laser.  This system can image cavitation bubbles in 

liquid with illumination pulse durations as short as 7 ns.  For imaging in fly embryos, longer 

pulses (~0.5 µs) are needed to obtain sufficient contrast.  Note that images formed by the 

bright-field imaging system lack all depth information.  Each is essentially a picture of the 

shadows cast by structures in the ~200-µm thick embryo. 

To protect the photomultiplier tubes in the confocal system from inadvertent 

exposure to the illumination laser, the dichroic normally used to reflect collected 

fluorescence is removed during high-speed imaging.  It can be reinserted to take confocal 

images of the embryos within a few seconds of ablation. 

FM 1-43 and Propidium Iodide (PI) dye analysis in wing discs 

 Wing discs were mounted as described above and FM 1-43 dye (ThermoFisher 

catalog# T35356), diluted in PBS to a final concentration of 5 µg/ml, was added 

immediately prior to imaging.  To limit pre-wounding dye internalization via endocytosis, 

wounding experiments were performed and completed within 10 minutes of adding FM 1-

43 dye.  Since the kinetics of dye influx via micro-tears and its associated increase in dye-
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labeled membrane fluorescence are slower than GCaMP6m kinetics, measurements of 

the region of dye influx were taken from images collected 60 seconds after ablation.  

Despite this delay, we did not observe any spreading of increased dye fluorescence to 

neighboring cells.  Simultaneous cavitation measurements were performed as described 

above.  

PI (ThermoFisher #P3566) was diluted in PBS to a final concentration of 20 µg/ml.  

Wing discs were mounted as described above and dye was added immediately prior to 

imaging.  Because PI does not fluoresce until after wounding, a fluorescent marker was 

needed to identify the correct focal plane for laser ablation.  Therefore, we used wing 

discs expressing Vkg-GFP454 in a wild type background to fluorescently label the 

basement membrane.  Measurements of the region of dye influx were taken from images 

collected approximately 5 minutes after ablation.   

Image processing and analysis 

Quantitative data was extracted from images and kymographs of GCaMP 

fluorescence via routines implemented in Mathematica (Wolfram Inc., Champaign, IL).  

To identify the initial Ca2+-influx sites in kymographs, the signal front was first 

defined as the earliest time at which the GCaMP signal exceeded the mean pre-wounding 

signal plus two standard deviations.  Each signal front was then smoothed using a 3rd-

degree 17-point Savitzky-Golay filter to remove noise and the positions of its local minima 

were identified as the initial sites of Ca2+ influx.  

To analyze the diffusion of calcium from these influx sites, all available 

kymographs were examined to identify sites whose kymograph peaks were symmetric, 

remained below saturation, and were spatially isolated for some time.  These criteria 

identified 25 individual peaks that were separated from other regions of calcium influx for 

at least 43 ms and remained below saturation for at least 21 ms (all 25 peaks are shown 

in Supplemental Fig. S3).  These peaks were cropped in ImageJ to widths on the order of 

10 µm and lengths on the order of 50 ms and then fit to a diffusion model for t > 0:  

  Eqn. S1 

where  is the incomplete gamma function.  The model assumes a 

single point source where calcium enters the cytosol at a constant rate q and diffuses with 

a diffusion constant α from a location that is at position x0 along the kymograph line and a 

distance y0 from this line.  Therefore,  is the squared distance from a 
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position x on the kymograph line to the source location.  Equation S1 was obtained by 

integrating the equation of diffusion from an initial point source 

concentration, , over time from 0 to t, followed by a variable 

substitution .  Due to the spatial symmetry of this model, there is no loss in 

generality in assuming the point source and the kymograph line are in the x-y plane and 

along the x-axis respectively.  

This model further assumes that image intensity values are a linear function of 

calcium concentration, allowing for a constant non-zero intensity baseline φ0, until image 

intensity saturates at a relative intensity value of 1.  The fitted parameters were  q, x0, y0, 

and φ0 as defined above.  Note that on the time scales analyzed, the calcium signals have 

not yet spread completely through individual epithelial cells; therefore, three-dimensional 

diffusion was considered instead of two-dimensional diffusion.  

 To analyze longer term spread of calcium signals from full-frame time-lapse 

images, the ImageJ Radial Profile Angle Plot plug-in was used on each image to 

determine the average GCaMP intensity profile as a function of distance from the center of 

the wound.  A custom MATLAB script was then used to determine the distance from the 

wound at which the intensity dropped to half its maximum.  This distance corresponds to 

the radius of the radially-averaged calcium wave and plotting it for each video frame yields 

a graph of calcium signal expansion over time.  Sections of these signal expansion curves 

were fit to 2D diffusion models (Eqn 1 in Results) using nonlinear regression in 

Mathematica.  

Results 

Fast Ca2+ signal dynamics from 2 ms to 2 s. 

To investigate mechanisms of calcium release upon wounding, we analyzed 

calcium dynamics in the Drosophila pupal notum (following procedures in Antunes et. al.8).  

At 12-18 h APF, the notum is a continuous epithelial monolayer of diploid cuboidal cells 

which exhibit apicobasal polarity and sit atop a basement membrane44.  Pupae were 

wounded via laser ablation while imaged live simultaneously.  Half of wounded pupae 

survive laser ablation and later eclose (data not shown and Antunes et. al.8).  Wound-

induced calcium waves were visualized with a genetically encoded, intracellular GCaMP3 

reporter223.  
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Prior to ablation, cytosolic calcium remained at low basal levels (Figure 1A, t = -2 

s), with single cells occasionally exhibiting transient calcium increases.  In the first frame 

(< 2 s) after ablation, a dramatic increase in cytosolic calcium was observed as bright 

GCaMP fluorescence both in cells along the wound margin and in surrounding cells up to 

seven cell diameters away (~ 50 µm) (Figure 1A).  To analyze this initial response with 

improved temporal resolution, we performed line scans passing through the wound to 

increase our sampling rate to 2.1 ms/scan.  For these experiments, we also employed a 

GCaMP6m calcium indicator since it has faster kinetics with an increased signal-to-noise 

ratio224,225.  These line scans were assembled into kymographs, an example of which is 

shown in Figure 1B (additional examples shown in Figure 2).  Within milliseconds after 

ablation, calcium entered the cytoplasm and increased GCaMP6m fluorescence in 

multiple cells up to ~50 µm away from the ablated region.  We call this rapid increase of 

intracellular calcium the “initial response”.    

Few biological signals could propagate away from the wound site quickly enough 

to drive this spatially-distributed initial Ca2+ response.  For example, the kymograph in 

Figure 1B and Figure 2 shows rises in intracellular Ca2+ that begin within 5 ms for cells up 

to 50 µm from the wound.  To reach this far this fast, any ablation-induced diffusible signal 

would need a diffusion constant ~1.3 x 105 µm2/s, estimated from (x)2/4t.  This 

estimated diffusion constant is 2-3 orders of magnitude faster than that of a small 

molecule like ATP (3.5 x 102 µm2/s), or of small ions (0.8 to 2.0 x 103 µm2/s), or of even 

the self-diffusion of water (2.3 x 103 µm2/s).  Thus, a diffusible signal cannot trigger the 

initial rapid response. 

The initial Ca2+ response is driven by cavitation. 

Pulsed laser ablation generates a plasma that completely destroys 

macromolecules in a nearly diffraction limited region (< 1 µm diameter) and generates a 

rapidly expanding cavitation bubble with high shear stresses that lyse cells in a variably 

broader region.  Importantly, the region of macromolecular destruction and region of lysis 

are both much smaller than the initial GCaMP response region we observe.  The 

cavitation bubble is short-lived but it can expand hundreds of microns beyond the region 

of lysed cells176,177,221.  To investigate whether the initial Ca2+ response could be driven by 

cavitation, we simultaneously measured initial Ca2+ response radii and cavitation bubble 

radii.  
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Figure 1:  The initial calcium influx matches the radius of the cavitation bubble. 
A) Confocal images of the calcium reporter GCaMP3 in the pupal notum. Basal levels of 
cytosolic calcium are low before wounding (i), but rise rapidly after laser-ablation (ii).  The 
rapid rise occurs in cells within 5-7 rows from the ablation site (crosshairs in i, central dark 
area in ii).  Scale bar is 50 μm.  B) Confocal kymograph of GCaMP6m.  Fluorescence is 
low before wounding (kymograph lines above t = 0 ms), but rises within milliseconds of 
laser ablation in cells distant from the wound site (central dark area for t > 0 ms). Scale 
bar is 50 μm.  C) The radius of the Ca2+ signal (RS,0) corresponds to the maximum radius 
of the laser-induced cavitation bubble (RB,max).  Linear regression yields a best fit with a 
slope of 0.99 (solid line; equation; R2 = 0.87).  Each data point corresponds to a single 
wound with initial Ca2+ signal radii measured from full frame confocal images (< 3 s after 
ablation) and bubble radii calculated from bubble lifetimes (tB) measured via hydrophone 
(inset).  Horizontal error bars represent estimated uncertainty in identifying the bubble 
collapse peak; vertical error bars are standard deviations of four radius measurements.   
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Figure 2:  Kymographs show that increases in cytosolic calcium begin milliseconds 
after ablation, even tens of microns from the wound site.  
GCaMP6m was expressed in the pnr domain using the Gal4-UAS system.  Three 
separate samples are shown.  Line scans were taken over the point of ablation and 
assembled into kymographs using ImageJ.  A) Kymographs show that intracellular 
calcium levels rise within a few ms at distances at least 50 microns away from the wound. 
B) Identification of the initiation of calcium fluorescence in each pixel column (see 
Methods).  Yellow arrowheads indicate calcium influx loci, or peaks.  Scale bar is 50 μm. 

 

 We estimated cavitation bubble radii using a hydrophone to detect the acoustic 

transients associated with bubble expansion and collapse.  For water at standard 

temperature and pressure, maximum bubble radii (RB,max) are theoretically related to 

cavitation bubble lifetimes (tB) according to RB,max  (5.46 µm/µs) tB 221.  Validation of 

hydrophone measurements based on this relationship is provided by direct flash imaging 

of bubbles in Drosophila embryos as shown in Figure 3.  For each experiment in pupae, 

we also collected full-frame confocal images of GCaMP6m fluorescence to record the 

initial Ca2+ response radius.  With laser pulse energy intentionally varied to create both 

large and small cavitation bubbles, we found that cavitation radius matched the radius of 

initial response radius (RS,0) with a slope very close to one: the best linear fit to the 

relationship was RS,0 = (0.99 ± 0.08)RB,max + (6.5 ± 6.0 µm) (Figure 1C).  Our initial 

response measurements are an overestimate as the calcium region can expand by as 

much as 17.6 ± 7.0 µm (mean radius ± s.d.) between the time of ablation and the capture 

of images used to determine the radius of calcium influx (<2 s).  Correcting for this 

overestimate would reveal a trend line that runs very close to the origin.  We conclude that 

the cavitation bubble is tightly linked to the extent of the initial calcium response, and we 

explore the mechanism below.  
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Figure 3:  Acoustic data from a hydrophone can be used to measure cavitation 
bubble radii.   
We validate the use of acoustic hydrophone data to measure laser-induced cavitation 
bubble radii in Drosophila embryos by comparison with direct bubble imaging.  Three 
separate examples (i-iii) are shown in panels A-D: i-ii are from ablation of amnioserosa, a 
squamous epithelial tissue; iii is from ablation of columnar epithelial cells in the germband.  
A) Cell borders are visualized before laser wounding via confocal images of embryos 
expressing Ubi-p63E-shg.GFP.  B) The cavitation bubble formed upon laser wounding 
(delineated by green arrowheads) is imaged by high-speed bright-field imaging.  C) Recoil 
of the cells observed in post-ablation confocal images indicates that a wound has been 
made that is much smaller than the cavitation bubble.  D) Acoustic traces from a 
hydrophone, overlaid with the ablation laser’s Q-switch sync signal, show peaks 
corresponding to the initial rapid expansion and later rapid collapse of the cavitation 
bubble.  The time between these peaks is used to calculate the maximum size of the 
bubble.  All scale bars for A-D are 20 μm.  E) Comparison of cavitation bubble radii 
calculated from hydrophone measurements with those observed by direct imaging.  Root-
mean-square deviation from an exact match (brown dashed line) is ~12% even when 
considering multiple laser ablation patterns: single points, two points, lines, or circles. 
When cavitation bubbles were ellipsoidal, e.g., for two-point and line ablations, the 
reported radius is the geometric mean of the bubble’s semi-major and semi-minor axes. 
The shape of the bubble did not affect our ability to assess cavitation radius with the 
hydrophone.  Horizontal error bars represent propagation of uncertainly from our 
determination of bubble collapse times.  Vertical error bars are the standard deviation 
among four radius measurements (for circular bubbles) or propagation of uncertainty in 
the ellipse parameters used to estimate the equivalent radius (for ellipsoidal bubbles).  F) 
Control experiments for hydrophone measurements: (i) when the hydrophone is located 
~2.5 mm from the point of ablation, the first acoustic transient associated with bubble 
expansion is detected ~1.6 µs after the laser pulse, an appropriate time given the speed of 
sound in water (1,480 m/s); (ii) moving the hydrophone tip to 3.5 mm from the point of 
ablation appropriately delays the arrival of the first acoustic transient to 2.4 µs after 
ablation; (iii) allowing the laser to fire, but blocking the light from reaching the sample 
eliminates the acoustic transients associated with cavitation.  In all cases, a small signal is 
present immediately after the laser fires and is likely attributable to electromagnetic 
interference from the capacitors that discharge in the ablation laser as its Q-switch is 
triggered. 

 

The initial response begins at discrete loci. 

Within milliseconds of ablation, kymographs of GCaMP6m fluorescence show the 

contemporaneous appearance of multiple high-Ca2+ loci (Figure 4A, arrowheads).  This 

pattern cannot be due to Ca2+ flow from the wound margin through neighboring cells but 

instead indicates Ca2+ entering the cytosol at multiple distinct locations around the wound.  

To quantify the spatial distribution of these Ca2+-influx loci, we first identified each 

kymograph’s signal front – i.e., the time points when the fluorescence signal in each 

kymograph column first exceeded the unwounded background by two standard deviations 

(Figure 4A, solid white line).  Considering this signal front as a function tfront(x), we 
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identified influx loci as its local minima, which appear as peaks because of the inverted 

time axis of our kymographs (Figure 4A, arrowheads).  Although Ca2+-influx loci far from 

the wound appear as spatially distinct peaks, those close to the wound blend together into 

a wide band of high fluorescence.  For this wide band of unresolved fluorescence near the 

wound, each pixel was counted as a Ca2+-influx site.   

 

Figure 4:  Early calcium influx appears at discrete loci.  
A) Confocal kymograph of GCaMP6m showing discrete sites of cytosolic calcium entry in 
cells distant from the wound.  These sites are marked by yellow arrowheads and were 
identified as local maxima along the signal front (outline in lower panel).  Scale bar is 50 
μm.  B) Density of Ca2+-signal initiation sites as a function of relative distance from the 
wound center.  Data were compiled from 25 kymographs with distances normalized to 
each kymograph’s maximum signal radius (Rmax).  Broad regions near the wound with 
rapid Ca2+ rise, but no discernable peaks, were treated as having one initiation site per 
kymograph pixel.  Brackets above the plot demarcate different zones of initiation site 
density. 

 

We plotted the radial density of influx sites around primary wounds by compiling 

data from 25 kymographs and normalizing peak locations to each kymograph’s maximum 

signal radius (Rmax).  Figure 4B shows the primary wound plus two distinct zones of Ca2+-

influx site density: a high-density zone corresponding to the fast, unresolved band of high 

signal (0.1 Rmax < r < 0.4 Rmax); and a zone of lower density corresponding to the region of 
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distinct kymograph peaks (0.4 Rmax < r < Rmax). Although the density in this latter region is 

~ 1 site per 10 µm, which is close to one per cell, the Ca2+-influx sites do not fall in a 

regular pattern with respect to cell borders.  

 
Figure 5:  Ca2+ entry points appear randomly spaced with respect to cell borders. 

The top panel shows an XY scan of shg-tdTomato (E-cadherin) used to label cell borders 
before ablation. The middle panel shows a kymograph of cell borders scanned along the 
yellow line before ablation.  Because shg-tdTomato is present both at cell borders and in 
intracellular punctae, the determination of true cell borders (marked with green lines) 
required both the kymograph and the XY scan, registered for alignment. The bottom panel 
shows a kymograph of GCaMP6m upon wounding, with the cell borders shown as green 
lines from the top panel.  Local maxima in the kymograph correspond to calcium entry 
points.  The calcium entry points do not align with cell borders in any regular pattern. 

 

The spatially distinct kymograph peaks show that Ca2+ enters the cytoplasm of 

cells around the wound at discrete loci and then spreads rapidly (Figure 6A).  To quantify 

this spread, we individually fit 25 peaks to a three-dimensional diffusion model – i.e., the 

expected time-dependent signal along a sampled line due to diffusion from a point source 

of constant Ca2+ influx.  An example fit for one peak is shown in Figure 6B, with selected 

temporal and spatial slices used to show overlays of the data and fit (Figure 6C and 

Figure 6D).  The complete set of kymograph peak fits is available as Appendix A.  From 

this complete set of fits, the interquartile range of estimated diffusion constants was 76 to 

220 µm2/s, with a median of 120 µm2/s (Figure 6E).  This range lies between the diffusion 

constants of cytosolically buffered Ca2+ (13 µm2/s) and free Ca2+ (220 µm2/s)226.  The 

breadth of the fitted diffusion-constant distribution can be attributed to a combination of 

expected random error, systematic errors based on using an infinitesimal point source 

equation that would slightly overestimate the diffusion constants from finite-sized influx 

sites, and cell-to-cell variations in the degree to which Ca2+-influx levels saturate 

cytoplasmic and GCaMP6 buffering capacity.  
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Figure 6:  Intracellular calcium diffuses from discrete loci at rates that appear to 
overcome cytosolic buffering capacity.  
A) Kymograph of GCaMP6m fluorescence upon wounding.  A single peak (yellow 
arrowhead) is examined in more detail in B-D.  Scale bar is 50 µm.  B) End view of an 
isolated kymograph peak (left) and the best fit of that peak to a diffusion model (right; see 
main text for details).  Scale bar is 2 μm horizontal and 10 ms vertical.  C) Intensity versus 
time for two marked columns cutting through the selected kymograph section (at 0 and 2.5 
µm from the center of the peak).  D) Intensity versus position for two marked rows cutting 
through the selected kymograph section (at 20.9 and 41.8 ms after laser ablation).  E) Box 
and whiskers plot of the diffusion constants from best fits of 25 isolated peaks.  Bars show 
median and interquartile range.  Arrowheads indicate diffusion constants of free calcium 
(black, 220 μm2/s) and cytosolically buffered calcium (white, 13 μm2/s) as measured by 
Allbritton et. al.226.  

 

The cavitation bubble creates plasma membrane micro-tears. 

 Our results thus far show that Ca2+ enters the cytoplasm from discrete loci spread 

throughout the maximum extent of the cavitation bubble.  Previous reports show that 

cavitation bubbles induce cellular damage227,228 and this cellular damage is associated 

with rises in intracellular calcium190-193.  Plasma membrane micro-tears would provide a 

simple direct mechanism for the inflow of calcium into the cytoplasm from its high 

concentration in the extracellular space (~10-3 M extracellularly vs ~10-7 M in cytoplasm).  

We thus tested for ablation-induced micro-tears in three types of assays described below: 

depolarization, dye internalization, and altered extracellular calcium. 
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Figure 7:  The cavitation bubble creates micro-tears in plasma membrane. 
A) Arclight fluorescence in the notum is high before wounding (i) and decreases around 
the wound afterwards, indicating depolarization (ii).  The margin of depolarization is 
marked by red arrows.  B) The radius of depolarization (RVolt) corresponds to the 
maximum radius of the laser-induced cavitation bubble (RB,max) with a best fit slope of 
nearly 1 (solid line; equation; R2 = 0.91).  RVolt was measured from confocal images taken 
on the first frame (< 3 s) after ablation.  C) Fluorescent labeling of an ex vivo wing disc 
with FM 1-43 is modest before wounding (i), and increases around the wound afterwards, 
indicating a region of increased cell permeability and dye influx (ii).  The outer margin of 
dye influx is marked by yellow arrows.  Scale bar = 50 μm.  D) The radius of dye influx 
(RDye) also corresponds to RB,max with a best fit slope of nearly 1 (solid line; equation; R2 = 
0.98).  The radius of dye influx was measured from confocal images taken 60 seconds 
after ablation.  E) Again, the radius of dye influx (RPI) corresponds to RB,max with a best fit 
slope of nearly 1 (solid line; equation; R2 = 0.92).  The radius of dye influx was measured 
from confocal images taken approximately 5 minutes after ablation.  F) Wing discs 
expressing GCaMP6m were ablated ex vivo in calcium-free media.  Fluorescence is low 
before wounding (i) and only increases afterwards in cells close to the wound (ii).  Scale 
bar is 50 μm.  G) The radius of the initial wound-induced calcium rise in calcium-free 
media (R0 mM) is significantly smaller than RB,max, with a best fit slope of 0.25 (red, open 
triangles; R2 = 0.60).  In contrast, when wing discs are wounded in 2 mM calcium, the 
initial wound-induced calcium radius (R2 mM) corresponds to RB,max with a best fit slope of 
nearly 1 (blue, closed circles; R2 = 0.90).  Best-fit equations shown above graph.  
Horizontal error bars represent estimated uncertainty in identifying the collapse peak; 
vertical error bars are standard deviations of four radius measurements.   
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First, we measured electrical depolarization.  Epithelial cells maintain an electrical 

potential or voltage difference across their plasma membranes and micro-tears would 

allow the free movement of Na+, Cl- and K+ ions to eliminate this membrane potential and 

thus depolarize the cells. Ca2+ would also cross the plasma membrane, but Ca2+ ions do 

not contribute significantly to establishing or depolarizing the electrical potential229.  We 

visualized cavitation-induced changes in membrane potential using a genetically encoded 

voltage indicator, Arclight, whose fluorescence decreases upon depolarization230,231.   

Although Arclight kinetics are slower than those of GCaMP6m, we observed a slight 

decrease in fluorescence in the first frame upon wounding in a region centered around the 

wound, and this decrease became more pronounced over the next 30 to 60 s (Figure 7A).  

As shown above for the initial Ca2+ signal, the radius of the depolarized region also 

matched the radius of cavitation (Figure 7B) – linking both to the maximum extent of the 

cavitation bubble.  Over the course of ten minutes, damaged but un-lysed cells within the 

cavitation footprint repolarized, indicating that cells survive micro-tear damage (Figure 8).   

Next, we used two robust and well characterized micro-tear assays based on two 

cell-impermeable fluorophores, the lipophilic dye, FM 1-43173,184,232-237, and the DNA 

intercalating agent, propidium iodide (PI)238-241.  FM 1-43 fluoresces only when bound to 

lipid membranes.  Prior to wounding, dye binds only the outer leaflet of the cells’ plasma 

membranes.  If wounding generates micro-tears, dye can then enter cells and label the 

inner leaflet of the plasma membrane, increasing its fluorescence intensity.  We could not 

conduct these experiments in Drosophila pupae because they have an impermeable waxy 

cuticle that prevents dye from accessing notum cells and membranes.  We thus used 

Drosophila wing discs, larval precursors of the pupal notum and wing that can be cultured 

ex vivo.  We laser-wounded wing discs submerged in FM 1-43 while simultaneously 

imaging fluorescence and tracking cavitation with a hydrophone.  After laser ablation, 

plasma membrane fluorescence increased, indicating inner-leaflet labeling and the 

presence of micro-tears in a circular region around the wound (Figure 7C).  The radius of 

increased fluorescence matched the maximum radius of the cavitation bubble (Figure 7D) 

and did not expand with time.  High-magnification imaging shows FM 1-43 preferentially 

labeling the plasma membrane with little labeling of endocytic vesicles, suggesting a route 

of entry that bypasses endocytosis (Figure 9).  This route could be micro-tears, but since 

FM 1-43 has been observed to pass through some plasma membrane channels242,243, we 

performed a similar experiment using the fluorophore PI. Upon laser ablation, the radius of 
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PI positive cells also matched the radius of cavitation (Figure 7E).  These results showing 

the internalization of two different fluorophores suggests a non-specific route of dye entry. 

 

 
 
Figure 8:  Cells in the cavitation footprint repolarize after wounding.  
Panels show confocal images of electrical depolarization and repolarization over time after 
laser wounding of epithelial cells of the Drosophila notum.  Cells express pnr>Arclight as a 
reporter of membrane electrical polarization.  A) Fluorescence intensity is high 10 seconds 
before wounding.  B) Fluorescence decreases after ablation, indicating depolarization in a 
region corresponding to the cavitation bubble footprint.  C) Approximately 10 minutes after 
wounding, cells in the affected area repolarize (Arclight), indicating their ability to survive 
micro-tear damage.  The only area that remains dark is the primary wound itself, as 
indicated by the lack of nuclear-mCherry staining (nuclear mCherry panel and merge). 
Scale bar is 50 μm.  
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Figure 9:  Micro-tear induced dye influx labels plasma membranes. 
FM 1-43 fluoresces upon binding lipid membranes.  Prior to wounding, FM 1-43 cannot 
enter cells and labels the outer leaflet of the plasma membrane only.  When micro-tears 
occur, FM 1-43 will enter cells and is expected to label the inner leaflet of the plasma 
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membrane, increasing its fluorescent intensity for cells with micro-tears.  A) A high-
resolution image of the apical cell surface of a wounded, wild-type wing disc taken within 
10 minutes of dye application shows that FM 1-43 fluorescent intensity does increase for 
plasma membranes within the cavitation footprint.  No dye-labeled endocytic vesicles are 
observed, confirming dye entry via micro-tears rather than endocytosis.  Scale bar is 5 
μm.  The primary wound is out of frame, up and to the left of the image. B) Three example 
images of dye uptake by endocytosis in an unwounded wing discs in two wild-type flies. 
Tissue was incubated in FM 1-43 for 30 minutes to allow normal endocytic processes to 
internalize dye in endocytic vesicles (red arrowheads).  Such puncta are not observed in 
the cavitation footprint after wounding in (A). Scale bar is 5 μm.  

 

Third, we removed extracellular Ca2+ and measured the effects on wound-induced 

Ca2+ signals.  We could not alter extracellular calcium concentrations in vivo in the notum, 

so we ablated wing discs ex vivo as above, but in media with or without calcium. 

Wounding in the presence of physiological [Ca2+] (2 mM) resulted in a calcium influx 

radius that matched the cavitation radius (Figure 7F).  Wounding in calcium-free media did 

not eliminate cytosolic calcium influx, but the radius of this influx was just ~ 1/4 the 

cavitation radius (Figure 7E and Figure 7F).  We conclude that in vivo, most of the 

cavitation-induced calcium influx is derived from an extracellular pool.  Interestingly, the 

small region of calcium influx observed in calcium-free media has similar dimensions to 

the zone of high influx-site density identified in kymographs in vivo in the notum (Figure 

4B).  We discuss this connection and possible explanations in the Discussion. 

Nonetheless, the strongly reduced extent of initial calcium signals in calcium-free media, 

in concert with the cavitation-linked changes in membrane potential and dye permeability 

shown above, combine to strongly support the hypothesis that most of the initial calcium 

influx comes through cavitation-induced micro-tears in the cells’ plasma membranes.   

Additional wound-induced Ca2+ signaling on timescales of seconds to minutes. 

After the initial influx, the region of high intracellular Ca2+ around the wound 

typically undergoes two stages of radially symmetric expansion.  The first stage follows 

directly from the micro-tears generated in the footprint of the cavitation bubble and 

expands the high-Ca2+ region radially outward ~20 µm over a period of 15-20 seconds 

(Figure 10A, i-ii).  This first expansion is eliminated by expressing RNAi against the 

Drosophila gap junction proteins Inx2 or Inx3 (Figure 10C and D), demonstrating signal 

propagation via gap junctions, consistent with some previous findings on other calcium 

waves12,31.  The signal diffusing through gap junctions could simply be the leakage of Ca2+ 

from damaged to undamaged cells; alternatively, the first expansion could be mediated by 
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IP3, similar to calcium waves in wing discs and in other wounding systems20,31,36.  

Cytoplasmic calcium buffering makes direct Ca2+ transport through gap junctions less 

common than IP3 transport244, but the estimated diffusion constants in Figure 6E suggests 

the presence of saturating concentrations of Ca2+ that could overcome cytoplasmic 

buffering and thus flow directly through gap junctions.  After the brief expansion, this high-

Ca2+ region then shrinks modestly before a second expansion becomes evident 40 to 200 

s after ablation (Figure 10A, iii-iv). The second expansion is typically larger than the first 

and does not rely on gap junctions (Figure 10C and Figure 10D).  After the second 

expansion, the high-Ca2+ region begins to shrink radially while sending off localized flares 

(Figure 10A, v-viii). 

To further analyze the expansion of Ca2+ signals over time, we condensed each 

movie to a graph representing the expansion of the calcium wave with respect to time. 

This condensation involves radial averaging to identify the average edge of the calcium 

wave, and is thus most appropriate for analyzing time periods in which the high-Ca2+ 

region is radially symmetric – e.g., during the first and second expansions, but not once 

flaring commences.  A collection of Ca2+ signal radius graphs for 24 laser ablation 

experiments is shown in Figure 10B.  All of these experiments have a first signal 

expansion, but the presence of a second expansion depends on the presence and size of 

the primary wound.  Large wounds (> 35-μm diameter, blue) always exhibited a second 

expansion, and intermediate wounds (15-35 µm, green) sometimes did, but small wounds 

(< 15-μm diameter, magenta) either had no second expansion or an atypical weak one.  

Furthermore, some samples exhibited a first expansion but no visible wound, likely due to 

slight mistargeting of the laser pulse, and never exhibited a second expansion.  Thus, 

while the first expansion is tightly linked to cavitation-induced micro-tears, the second 

requires some cells to be damaged beyond repair and becomes more likely as the primary 

wound size increases.  



 

34  

 

Figure 10:  Two wound-induced calcium signal expansions occur on different 
timescales via different mechanisms. 
A) Stills of in vivo live imaging of GCaMP6m in the notum.  In the first frame after laser 
ablation, an increase of cytosolic calcium is observed in a ~5-7 cell radius around the 
wound (i).  Seconds after wounding, the region of increased fluorescence expands to 
adjacent cells (ii) before contracting slightly (iii).  The region of increased fluorescence 
then expands concentrically again (iv) before breaking into propagating, anisotropic 
calcium flares (v- viii).  The flares continue initiating for >30 min after wounding while the 
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central region cyclically expands and contracts.  Scale bar is 50 μm.  B) The radial 
expansion of calcium signaling is plotted over time for 24 samples: each line represents a 
different sample with radii reported from the wound center.  The initial region expands 
briefly in all samples before contracting.  A second expansion may then occur and does so 
more frequently in larger wounds.  No second expansion occurs when no wound is 
present.  C) The radial expansion of calcium signaling over time for samples expressing 
either Inx2 or Inx3 RNAi in the pnr domain.  A similar pattern was seen with a second Inx2 
RNAi construct (data shown in Figure 16).  Knocking down gap junctions blocks the first 
expansion but not the second.  D) Kymographs showing the expansion of calcium signals 
over time for control (i) and Inx3 knockdown samples (ii).  The curved and straight yellow 
lines in controls indicate the normal shape of the first and second expansion.  In Inx3 
knockdowns, the first expansion is absent; the second is perturbed but still occurs.  
Wound location and time are indicated by X, horizontal scale bar is 50 µm and vertical 
scale bar is 15 s.   

 

We fit each expansion of the Ca2+ signal radius to a two-dimensional diffusion 

model to assess the kinematics and to begin to elucidate the signals driving each stage.  

This model assumes that some unknown signal X is released at a specific time (t0) over a 

distributed area, given by an axisymmetric 2D Gaussian with 1/e2 radius  and total 

signal amount M.  This signal diffuses with diffusion constant  and triggers a Ca2+ influx 

wherever the local concentration exceeds a threshold Cth.  We acknowledge that the 

source likely is more complicated than a 2D Gaussian, but details of the distribution shape 

beyond its root-mean-square radius (√2) have no discernable effects over the time 

scales of our measurements.  With this model, the time-dependent radius of the high-Ca2+ 

region (RS) is thus given by 

    with   Eqn 1. 

We fit models of this form to each expansion independently.  The intervening and final 

shrinkage phases were not fit to this model because they involve additional mechanisms 

and timescales governing the return to baseline Ca2+ levels.  The model fit the first 

expansion well with t0 set to the time of laser ablation.  This left three fit parameters: ,  

and Cth/M.  The second expansion could not be fit well with t0 = 0, so we instead set t0 

equal to the time at which each second expansion became apparent.  Example fits are 

shown in Figure 11A, with the first expansions highlighted in red and the second in blue. 

The complete set of fits is shown in Appendix A, Figure 22.  Note that the fitted equation 

has a degeneracy with respect to  and t0, i.e., broadly distributed sources releasing a 
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signal at late times would be equivalent to narrowly distributed sources releasing the same 

signal earlier.  This becomes a particular issue when fitting the second expansion because 

choosing earlier values for t0 would lead to equivalent fits with smaller values for .  

Considering this degeneracy, fits to the second expansion have been back propagated 

(dashed lines in Figure 11A) to indicate that the driving signal could have been released 

before the second expansion became apparent.  Notably, the back propagations do not go 

all the way back to t = 0.  They instead intersect the time axis at a median time of 47 s 

(interquartile range of 29 to 61 s), strongly suggesting that the unknown signal driving the 

second expansion is either released tens of seconds after ablation or has a delay 

introduced by cellular signal transduction. 

The best fit parameters for both expansions are compiled in the box-and-whiskers 

plots of Figure 11B.  The 1/e2 radii of the initial signal distributions are comparable (24 

versus 22 µm, assuming the second expansion starts when it first becomes apparent).  On 

the other hand, the second expansion yields significantly smaller values for both the 

diffusion constant of the signal – median values for  of 53 versus 20 µm2/s  

(P = 1.5 x 10-5; Mann-Whitney U test) – as well as for the relative signal threshold – 

median values for Cth/M of 2 x 10-5 µm-2 versus 6 x 10-6 µm-2 (P = 7 x 10-8).  These results 

suggest that each expansion is driven by a different diffusive signal.  

Interestingly, the diffusion constants for both the first and second expansion 

increase with wound size (Figure 11C). In fact, for large wounds, the diffusion constant of 

the first expansion approaches the value for free diffusion of calcium.  These observations 

suggest a model in which larger wounds release more of both signals and thus yield larger 

effective diffusion constants by overcoming more of the buffering or binding capacity of the 

environment.  
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Figure 11:  Parameterization shows distinct characteristics for each expansion.     
A) Four examples showing the expansion of calcium over time.  The initial and secondary 
expansions are highlighted in red and blue respectively.  The solid lines show diffusional 
fits to each expansion; the dashed blue lines show back-projections of fits to the second 
expansion.  The inset shows an expanded view of the fit to the data from the outlined 
region.  The complete set of analyzed curves (N = 28) is shown in Appendix A, Figure 22.  
As a measure of goodness-of-fit, the standard errors of the regression for the four fitted 
first expansions were (from top to bottom) 0.19 µm, 0.18 µm, 0.95 µm, 1.04 µm and for the 
four fitted second expansions were (from top to bottom) 1.62 µm, 1.76 µm, 1.21 µm, 1.30 
µm.  B) Box-and-whiskers plots of the best-fit parameters for all first and second 

expansions:  is the diffusion constant; C/M is the ratio of the signal threshold to the 

amount released; and  is the 1/e2 radius of initial signal distribution.  Median and 
interquartile range are displayed.  C) Variability among the fitted diffusion constants for 
each expansion is partially explained by a dependence on the wound diameter.   

 

Discussion 

 When a pulsed laser creates wounds in the epithelium of the Drosophila pupal 

notum, these wounds trigger a complex series of calcium signaling dynamics: a rapid 

influx into nearby surviving cells that matches the footprint of the laser-induced cavitation 

bubble; followed by a spreading of the high-cytosolic-calcium region via two sequential 

and concentric waves.  These dynamics and a model that explains them are summarized 

in Figure 12. 

The initial calcium influx occurs at hundreds of distinct loci and spreads throughout 

the affected cells in < 0.1 s.  It spreads intracellularly with diffusion constants near that of 

free calcium, suggesting that high concentrations of calcium are flooding the cells and 

overcoming cytosolic buffering capacity.  We propose that each locus corresponds to a 

cavitation-induced, plasma membrane micro-tear that allows calcium influx from the 

extracellular environment.  In support of this model, cells in the cavitation footprint also 

become electrically depolarized and permeable to dye entry.  Further, wounding in 

calcium-free media strongly reduces the extent of the initial rise in cytosolic calcium.  

These results could also be explained by cavitation-induced shear stresses opening 

mechanosensitive channels rather than micro-tears; however, the variety of observed 

effects implies a non-specific route of entry.  We thus consider micro-tears more likely.  
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Figure 12:  Summary of calcium signal dynamics after laser wounding. 
Plasma formation and cavitation: Pulsed laser ablation generates a localized plasma at 
the laser focus (X), which then recombines and leads to expansion of a cavitation bubble 
(dashed black outline denotes maximum bubble radius).   

Cavitation induced calcium entry: The cavitation bubble expands, damaging cells as it 
spreads.  Close to the point of ablation, cavitation-induced shear stresses lyse cells, 
creating the primary wound (black).  Cells close to the primary wound undergo extensive 
damage (dark orange).  Micro-tears on the plasma membrane and in organelle 
membranes result in calcium influx from the extracellular space and internal stores 
milliseconds after wounding (black arrows).  The shear forces applied to cells are 
attenuated as the cavitation bubble expands and slows.  Cells far from the wound (light 
orange) exhibit plasma membrane micro-tear damage which allows calcium entry from the 
extracellular space (black arrows).  Cells that were not lysed to create the primary wound 
survive cavitation damage.  

First expansion: Seconds after wounding high concentrations of calcium that just entered 
the cells spreads intracellularly through gap junctions (black arrows) to neighbors (yellow).   

Second expansion: After wounding a delayed second expansion of calcium spreads to 
cells distant from the wound (blue).  This expansion is driven by extracellular ligand 
diffusion (blue arrows) but gap junctions may still have some role in generating a smooth 
wave front.  Modeling of the second expansion shows it is characteristically different from 
the first expansion. 

 

 



 

40  

Membrane permeabilization is known to occur when laser-induced cavitation 

bubbles are used to get DNA, drugs or micro-particles into cultured cells via a process 

known as optoporation194-199. The shear stress associated with cavitation-bubble 

expansion and collapse can induce zones of acute cell lysis, cell necrosis, and membrane 

disruption176,177.  We note similar zones of damage in our studies, observed as a primary 

wound surrounded by regions with a high and then low density of calcium influx sites 

(Figure 4B).  This suggests more severe cellular damage close to the wound, which may 

be linked to the limited region of cytosolic calcium influx observed after wounding in 

calcium-free media.  In fact, the radius of this limited region and the radius of high-density 

damage identified in kymographs represent similar fractions of the cavitation bubble radius 

(0.25 and 0.3 respectively).  In this region proximal to the wound, the cavitation bubble 

and its shear stresses may generate additional micro-tears in organelle membranes that 

release calcium from the ER, mitochondria and Golgi or may trigger mechanosensitive 

GPCR-induced release of calcium from these same intracellular stores245.  

After the initial influx, the high-calcium region expands via two sequential waves.  

The first wave spreads with a diffusion constant of 32 to 87 µm2/s.  These rates still 

exceed that of cytosolically buffered calcium and suggest a simple model for the first wave 

based on the diffusion of excess calcium into neighboring cells through gap junctions.  

Indeed, variations in how well the excess calcium is buffered could explain this wave’s 

wide range of fitted diffusion constants.  Furthermore, this expansion is short-lived and 

short-ranged, which would be predicted as the calcium concentration decreases as it 

spreads and would thus be well buffered further from the wound.  Although we favor this 

model in which the first expansion is caused by the direct diffusion of calcium to 

neighboring cells, the diffusion of IP3 has been identified as important for signal expansion 

in other wounding systems20,31,36 and remains an alternative possibility. 

The second wave begins ~45 seconds after wounding, but is not always present. 

The second wave occurs more frequently following larger wounds, suggesting its critical 

dependence on the extent of primary wound-induced damage.  Interestingly, the second 

wave has a delayed start (at least 29 to 61 s after ablation) which may represent a 

delayed release of signal or time required for cells to transduce the signal into a calcium 

response.  The second wave spreads with a diffusion constant of 7 to 30 µm2/s, much 

slower than the first wave.  This suggests distinct signals driving the two expansions, but 

further experiments are needed to identify the second wave’s time delay and spread 
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mechanism.  After the second expansion, the high-calcium region begins sending off 

asymmetric directional flares, likely representing waves of calcium-induced calcium 

release moving throughout the tissue.  Each flare lasts tens of seconds, but new ones 

continue starting for more than 30 minutes after wounding.  These flares are similar to 

calcium oscillations reported after epithelial wounds in zebrafish9,133 and fly embryos12.   

Previous studies have identified two models for wound-induced calcium wave 

initiation: mechanosensitive calcium channels8,12,20,31,133,245 and extracellular diffusible 

ligands30,32,35,129,132,246.  In cell culture models, the driving signal for the calcium wave 

propagates extracellularly and very fast, with speeds ranging from 4.6 to 49.3 μm/s25,35.  

This is much faster than the speeds of calcium signal spread in our in vivo experiments: 

the median speeds were 2.9 and 1.7 μm/s for the initial portions of the first and second 

expansions, and these slowed in a diffusive manner.  These rates are more similar to 

other in vivo wound healing models in which calcium signals propagate via gap junctions 

and spread at rates of 0.4 to 6.9 μm/s12,31.  Signal propagation via extracellular ligand 

diffusion may occur in the Drosophila notum during the second wave, as this expansion is 

not dependent on gap junctions, but the ligand would have to diffuse much more slowly 

than those identified in cell culture models. 

Once calcium enters a cell, regardless of how, it is a master regulator of wound 

healing.  Calcium regulates Rho16,33,40 and the actin cytoskeleton8,15, activates JNK 

signaling21, prevents apoptosis23, and increases hydrogen peroxide and inflammation 

around wounds12.  Calcium waves alert cells to the presence of a wound and permit the 

activation of healing programs133.  Given the variety of types of wounds that may need to 

be healed, multiple mechanisms may have evolved to initiate calcium signaling cascades.  

Our study of laser wounding has identified at least three different mechanisms.  The first 

calcium response is extracellular calcium entering the cytosol through plasma membrane 

micro-tears.  Although this effect is driven here by laser-induced cavitation bubbles, similar 

cellular and tissue damage are inflicted simultaneously during puncture wounds187,188.  In 

fact, pulsed-laser ablation is similar to a localized puncture accompanied by a wider crush 

injury.  In either case, the calcium influx through micro-tears is in effect a single-cell 

response to cell-level damage; it becomes a tissue-level response as high cytosolic 

calcium spreads to neighboring cells by diffusion through gap junctions.  This so-called 

first wave thus involves a second distinct mechanism by which surrounding undamaged 

cells experience a rise in cytosolic calcium.  Importantly, this expansion of a single-cell 
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wound signal to neighboring cells suggests a continuum between single-cell and tissue-

level wound responses.   

Finally, if the region of ablated cells is large enough, a delayed signal initiates 

another wave of cytosolic calcium increases, which we term the second expansion.  The 

unknown signal driving this wave represents a third mechanism governing calcium 

increases after wounding.  Because this third mechanism occurs only after a discontinuity 

or hole appears in the epithelium, and not simply after cellular micro-tear damage, this 

signal may arise from cell mechanics or cell lysate or dying cells around the primary 

wound margin.  It is noteworthy that separate, but overlapping calcium signals emanate 

from the wounded region due to both cell-level damage and tissue-level damage, albeit by 

different mechanisms.  Our results suggest the interesting possibility that signaling from 

many types of damage may converge on increasing cytosolic calcium levels to regulate 

both single-cell and multicellular wound-healing programs. 

Conclusions 

 Wounds created via laser ablation contain single-cell damage and tissue damage, 

similar to naturally occurring puncture or crush wounds.  Each damage mechanism drives 

its own calcium signal dynamics.  Single-cell damage arises from cavitation-induced, 

plasma membrane micro-tears and results in direct calcium influx from the extracellular 

environment followed by diffusive expansion into neighboring cells.  Tissue damage in the 

form of a primary wound at the ablation site results in a delayed calcium wave that 

expands well beyond the cavitation bubble footprint.  This second wave occurs more 

frequently following larger wounds.  Our kinematic analysis narrows and informs the 

search for calcium wave initiation and propagation mechanisms by showing that both 

expansion events fit diffusive models that are consistent with previously observed rates of 

calcium wave propagation in vivo, but are driven by different signals.  Finally, this laser 

wounding model exhibits exaggerated, but controllable single cell damage and may be 

useful for future investigations at the intersection of single-cell wound healing and tissue 

wound healing.  
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CHAPTER 3 

 
AN UNKNOWN LIGAND MEDIATES INFLUX AND PROPAGATION OF CALCIUM  

VIA THE GΑQ SIGNALING CASCADE 

 

Introduction 

Throughout re-epithelialization, cells distant from the wound contribute to wound 

closure8,64,75,83,247,248.  Furthermore, these cells can be observed to participate in wound 

closure within minutes of wounding8.  In the Drosophila notum, calcium dynamics have 

been shown to correspond with these early wound responses8.  Our goal is to build a 

more complete understanding of early wound healing by determining how these calcium 

waves are initiated and propagated.  In the previous chapter we demonstrated that 

cavitation-induced micro-tears permit direct calcium entry into cells.  In this chapter we 

aim to identify the mechanisms of initiation and propagation for the larger, second calcium 

expansion by providing additional analysis and characterization.  This second expansion 

seems to be a tissue-level wound response as it only occurs when a true wound, or break 

in the cell monolayer, is present (Figure 10B).  We term the large, second expansion a 

wound-induced calcium wave.   

  Mechanisms of wound-induced calcium wave initiation and propagation are highly 

variable in the literature.  Often, these mechanisms seem mutually exclusive.  For 

example, gap junctions are required in some models – usually in vivo models12,21,31,36 but 

also in cell culture models34,37 – and not in others25,30,32,34,37,38.  When gap junctions are not 

required, investigators usually find a diffusible ligand initiates the calcium wave.  This 

diffusible ligand may, or may not, be ATP30,32,38,42.  Tissue mechanics are often implicated 

in calcium wave initiation, but the mechanism of action is unclear8,10,20,31,38-42.  Mechanical 

perturbations of the tissue may induce ATP release which induces the calcium 

influx30,32,38,42 or mechanical perturbations may somehow promote calcium release from 

ER stores31,39.  We aim to characterize the calcium wave in the notum to determine 

similarities and differences between the calcium wave we observe and those reported in 

the literature.  We observe common features, and a few differences, from both in vivo and 

in culture calcium waves around a single wound in the Drosophila notum. 

Like other wound-induced waves in vivo, the calcium wave in the notum 

propagates slowly: compare 0.4 to 6.9 μm/s in other models12,31 vs 1.7 μm/s in the notum.  
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In this chapter, we show the wound-induced wave in the notum exhibits similar qualitative 

characteristics to other in vivo waves, such as oscillations and flares.  We also observe 

some differences between our model and previous in vivo work.  Research in worms and 

flies has implicated TRPM, a putative mechano-sensitive calcium channel, in wound-

induced calcium influx8,12,20.  Other research in the fly wing disc has shown that prodding 

the tissue is sufficient for wave formation31,39.  Results presented in this chapter 

demonstrate that a wave occurs when the tissue is broken by a stab wound, but not when 

the tissue is mechanically distorted by prodding.  Instead, we provide additional analysis 

suggesting formation of the wound-induced calcium wave is driven by extracellular 

diffusion.  In this way, the expanding wave we describe is also similar to the fast 

propagating waves characterized in cell culture models23,24,34,35,129.  While calcium in the 

notum propagates much slower than 4.6 to 49.3 μm/s as observed in culture25,34,35, both 

waves seem to be driven by ligand diffusion25,30,32,34,37,38 (see also Figure 10C and D).  The 

estimated diffusion constant for this propagating signal (7 to 30 μm2/s, Figure 11) indicates 

a triggering molecule the size of insulin (~6 kD) or larger could be responsible for wave 

initiation.  There is precedence for molecules of various sizes serving as such ligands.  

DAMPs are ligands that diffuse from damaged cells and activate signal transduction 

cascades in the surrounding tissue and can be small molecules, metabolites, or even 

proteins84,86-88.  Their release from cells can occur through exocytosis or necrosis94,95,100.  

Well characterized DAMPs include ATP, HMGB1 (~25 kD), and HSPs (~70+ kD)84,94,100.  

The observed diffusion constant calculated in Figure 11 could also indicate buffered 

diffusion of a smaller triggering molecule, as seen with ATP diffusion100,152-156.   

To understand the signaling cascade mediating the wound-induced calcium wave, 

we first targeted potential downstream effectors of the unknown ligand.  There are a few 

canonical routes by which a ligand can induce calcium influx.  The ligand could bind a 

ligand-gated ion channel and allow calcium entry directly from the extracellular space or it 

can induce calcium influx from the ER by activating GPCR or Receptor Tyrosine Kinase 

(RTK) signaling cascades249.  In both of these signaling cascades, receptor activation 

leads to activation of Phospholipase C (GPCR signaling cascade summarized in Figure 

13).  The RTK pathway activates PLCγ while the GPCR pathway activates PLCβ through 

the Gαq G-Protein1.  Phospholipase C (PLC) generates IP3 which binds IP3 receptors 

(IP3R) on the ER membrane and allows calcium release.  Data from a C. elegans single 

cell wounding model describes wave induction which occurs through Gαq signaling20, 
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therefore we chose to target GPCR signaling cascades first.  Drosophila have significantly 

fewer GPCRs than vertebrates (flies only have 111 GPCRs while humans have over 800) 

and only one Gαq G-protein.  This one Gαq G-protein is a bottleneck for GPCR activity.  

By specifically targeting the Gαq G-Protein, we can distinguish GPCR signaling from RTK 

signaling without yet identifying the specific ligand or receptor.   

In this chapter we use a novel, internally controlled, split-expression system to 

reveal both nuanced and dramatic changes that occur in wave expansion as a result of 

inhibiting Gαq signaling cascades.  Our data suggests a ligand diffuses from the wound 

area, binds a GPCR, and induces calcium release from internal ER stores.  

 

 

Figure 13:  Simplified schematic of canonical, GPCR-activated calcium release. 
A ligand diffuses extracellularly and binds a GPCR.  This binding causes a conformational 
change in the GPCR which activates the Gαq.  Gαq then dissociates from the GPCR and 
stimulates the activity of PLCβ.  PLCβ hydrolyses PIP2 to create IP3.  IP3 diffuses through 
the cytosol and binds IP3 receptors located on the ER membrane.  These receptors are 
calcium channels, and when bound to IP3, allow the passage of calcium from inside the 
ER to the cytosol.   

 

Materials and Methods 

Fly lines 

pnr-Gal4,tub-Gal80ts was used to regulate the spatial and temporal expression of 

UAS transgenes.  UAS-Inx2 RNAi #1 (Fly Base ID: FBst0029306), UAS-Inx2 RNAi #2 (Fly 
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Base ID: FBst0474063), UAS-Inx3 RNAi (Fly Base ID: FBst0060112), UAS-Gαq RNAi (Fly 

Base ID: FBst0033765), UAS-PLCβ #1 RNAi (Fly Base ID: FBst0031270), UAS-PLCβ #2 

RNAi (Fly Base ID: FBst0033719), UAS-IP3sponge-M49#1 (gift from Baehrecke Lab), 

UAS-IP3R RNAi #1 (NIG stock number 1063R-1),  UAS-IP3R RNAi #2 (Fly Base ID: 

FBst0025937), and UAS-nucmCherry (Fly Base ID: FBst0038424) were expressed in the 

notum.  Actin-GCaMP6m, containing the complete 4 kB promoter, was used to express 

GCaMP6m in the dorsal epithelial tissue of the fly.  For stabbing and poking experiments, 

pnr-Gal4 (Fly Base ID: FBst0025758) was used to drive expression of UAS-GCaMP6m 

(Fly Base ID: FBst0042748).  w1118 was used as wild type.   

Mounting pupae, laser ablation, and live imaging 

 Pupae were mounted, ablated, and imaged using the protocols described in 

Chapter 2.  For internal control split-expression experiments, the experimental region was 

identified prior to wounding using UAS-nucmCherry.  Without moving the stage, laser 

ablation and live imaging were commenced within one minute after an image of the 

experimental region was saved.  We targeted a point on the edge of the experimental 

domain for laser ablation.   

Stabbing and poking pupae 

 Pupae were dissected from their pupal case as described in Chapter 2.  A piece of 

double sided tape was placed on a microscope slide and pupae were mounted on the 

tape with their ventral side down, touching the tape.  The pupae were aligned so their 

apical/posterior axis’s pointed in the same direction.  The slide was mounted on the stage 

of a Zeiss Axio M2 epifluorescent microscope and imaged with a 5x objective.  Pupae 

were stabbed or poked by hand in the GCaMP6m expressing region during imaging with a 

chemically sharpened tungsten needle or a blunt probe (Fisher, cat. #08965A), 

respectively.  Scans were taken every 1 second or every 2 seconds. 

Image processing and analysis 

Image processing and analysis was performed as described in Chapter 2.  To analyze the 
spread of calcium over time in the internal control split-expression experiments, we used 
the angle feature of the ImageJ Radial Profile Angle Plot plugin.  This tool allowed us to 
specifically select and analyze the control region only and the experimental region only.  

Data from this plug in was processed via the custom MATLAB script as described above. 
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Results 

The wound-induced calcium wave expands and fades multiple times over an 
extended period.   

From the second chapter, we know waves in the notum and waves in other in vivo 

models propagate with comparable speeds: 1.7 μm/s vs 0.4 to 6.9 μm/s12,31, respectively.  

We sought to determine what other similarities the wound-induced wave in the notum has 

with other in vivo models.  Other wounding models show calcium oscillates (exhibits re-

occurring expansions) and flares around the wound.  Waves in the Drosophila embryo 

expand and fade up to three times within twenty minutes of wounding12.  Time lapse 

imaging of zebrafish tail wounds shows transient increases in cytosolic calcium levels in 

cells following the propagation of the wave front9, resembling flares.  Flares and 

oscillations also spontaneously occur in tissue that has not experienced a break in the 

epithelial cell layer31,36,39.   

 

 

Figure 14:  The wound-induced calcium wave oscillates multiple times for up to an 
hour after wounding. 
Graph shows the expansion of calcium over time in a sample wounded using a pulsed 
laser.  The orange bracket indicates the wound-induced second expansion described in 
Chapter 2 and in previous figures.  The blue brackets indicate periods of oscillation that 
occur minutes after wounding.   

 
To further understand the characteristics of the wound-induced calcium wave, we 

performed extended imaging time courses.  These time courses have revealed that the 

wound-induced expansion propagates around the wave for approximately five minutes 

before fading (orange bracket in Figure 14).  The wave reappears minutes later and 

oscillates multiple times over the course of 30 minutes (blue brackets in Figure 14).  Our 

quantification methods use radial averaging.  Therefore, the graphs accurately depict 

symmetrically expanding waves but not asymmetric flares.  Examples of the asymmetrical 
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flares can be observed in the stills in Figure 10Av-vii.  Notably, oscillations and flares are 

not reported in cell culture models of wounding.    

A wound-induced expansion occurs when the tissue is punctured but not 
mechanically perturbed.   

  Other in vivo work suggests mechanically depressing tissue with a blunt tool can 

drive the formation of the calcium wave31,39.  When wing discs are cultured ex vivo, fly 

lysate must be present to generate a mechanically-induced calcium wave.  Furthermore, 

while mechanical prodding alone is not sufficient to generate a calcium wave in an ex vivo 

disc, adding fly lysate to the culture media is sufficient31,39.  Fly lysate is the supernatant of 

ground up flies.  It will contain all of the ligands and wound signals that can be found in 

cell lysate released upon wounding.  It is not clear if the mechanically-induced waves 

require the presence of an additional wound signal to generate a calcium wave or if they 

simply need paracrine or endocrine factors found in vivo.  Mechanically-induced calcium 

waves can be generated in vivo, by punching intact wing discs inside of living larvae.  Cell 

lysate, and accompanying wound-induced signals, are not expected to be present in this 

system as no cells are actually damaged.  We wanted to determine if cell lysate was 

required for calcium wave formation or if mechanical prodding in an in vivo environment 

was sufficient.  To generate cell lysate we stabbed the notum with a fine needle and to 

mechanically perturb the tissue we prodded the notum with a blunt tool.  Figure 15 shows 

the results of this analysis.  When the tissue is stabbed a calcium wave expands around 

the wound (Figure 15A).  This wave is qualitatively similar to waves generated via laser 

ablation and even exhibits stochastic flares on the wave margin.  A future kinematic 

analysis of these waves is discussed in Appendix C.  No wave appears when the tissue is 

vigorously poked, even after multiple attempts (Figure 15B).  If the same notum is 

stabbed, a calcium wave does appear (Figure 15Bix and x).  This data shows that 

mechanical perturbations alone in our in vivo system are not sufficient to induce a calcium 

wave.  We have begun to expand on this work by genetically modifying tissue tension at 

laser ablation wounds, which generate cell lysate.  Preliminary findings from these 

experiments can be found in Appendix B.   
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Figure 15:  Calcium waves occur when the tissue is stabbed but not mechanically 
prodded.   
A) Stills showing a stab wound over time.  The general form of the pupae and the pnr 
domain, where GCaMP6m is expressed, is outlined (i).  Basal fluorescence of GCaMP6m 
is observed in the pnr domain prior to wounding (ii).  Upon stabbing (iii) a calcium wave 
expands from the wound (iv, v, vi).  The calcium wave is large and spreads across the 
entire pnr domain.  While it is difficult to appreciate from the stills, the edge of the calcium 
wave exhibits stochastic flares like those seen in laser ablation wounds.  B) Stills from 
mechanical prodding over time.  The general form of the pupae and the pnr domain, 
where GCaMP6m is expressed, is outlined (i).  Basal fluorescence of GCaMP6m is 
observed in the pnr domain prior to wounding (ii).  Upon poking with a blunt tool (iii), no 
calcium wave occurs (iv, v).  The pupae is poked again (vi) but still no calcium wave 
occurs (vii, viii).  To ensure the pupae was viable and capable of a calcium response the 
pupae was stabbed (ix).  A calcium wave was observed immediately upon wounding (x).  
Red X’s indicate the location of the poke.  The needle and blunt probe are visible as black 
objects in the panels.   

The wound-induced expansion occurs when gap junctions are knocked down, but 
appears qualitatively different than controls.   

 In Chapter 2 we reported that gap junctions are required for the first expansion of 

calcium but not the second, wound-induced expansion (Figure 10B).  We concluded from 

this data that an extracellular ligand drives the wound-induced expansion.  In this chapter 

we further characterize and discuss gap junction knockdowns and the resulting expansion 

patterns.  Even though the wound-induced expansion occurs in gap junction knockdowns, 

we show they still have a role in calcium dynamics around wounds.   

  Gap junctions form channels between neighboring cells and allow the passage of 

molecules and small peptides (approx. 1 kD or smaller) from one cell to another250.  

Drosophila’s gap junctions are comprised of innexin proteins, which are homologous to 

vertebrate connexins.  Three gap junction proteins are expected to be expressed in this 

epithelial tissue: Inx2, Inx3, and Ogre.  These proteins form heteromeric structures so by 

knocking down one of these genes we expected to abolish the activity of the entire gap 

junction251.  Unlike controls, unwounded gap junction RNAi samples had frequent, 

transient single cell calcium increases (Figure 16Bi).  As expected, the micro-tear induced 

release of calcium occurred but did not expand to neighboring cells upon wounding 

(Figure 16Bii-iii).  The lack of micro-tear induced expansion confirms that gap junctions 

have been successfully knocked down in the experiment.  The wound-induced expansion 

spreads to distant neighboring cells over time (Figure 16Bv and vi).  This expansion 

appears “spotty” and uneven because the calcium wave front frequently skips over cells 

as it expands.  We expand on the “spotty” appearance of this wave in the discussion.    
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Figure 16:  Gap junctions are not required for the wound-induced expansion.  
A) Stills of a calcium wave visualized by GCaMP6m in wild-type tissue.  There is no 
significant basal calcium activity prior to wounding (i).  Upon wounding, cavitation-induced 
micro-tears allow calcium entry in the footprint of cavitation (ii) which expands to 
neighboring cells (iii) before fading (iv).  A larger, wound-induced concentric expansion 
occurs (v) before breaking into calcium flares along the leading edge of the wave (vi).  
Scale bar is 50 μm.  B) Stills of a calcium wave visualized by GCaMP6m in tissue 
expressing Inx2 RNAi #2.  Prior to wounding we observe single cell calcium flickers 
throughout the tissue (i).  Upon wounding, cavitation-induced micro-tears allow calcium 
entry in the footprint of cavitation (ii) which does not expand to neighboring cells as gap 
junctions are not functional (iii).  A larger, wound-induced concentric expansion occurs (iv, 
v).  Instead of propagating flares, single cells on the edge of the calcium wave flicker on 
and off (vi).  Scale bar is 50 μm.  C) Traces show the expansion of calcium over time for 
Inx2 RNAi #2 samples.  One line represents one sample.  Samples in magenta have 
wound diameters smaller than 15 μm, samples in green have wound diameters between 
15-35 μm, and samples in blue have wound diameters larger than 35 μm.  Note that the 
first expansion does not occur when gap junctions are knocked down.  

 

As in Figure 10B, the occurrence of robust wound-induced calcium waves are 

predicted by wound size (Figure 16C).  Small wounds, less than 15 μm in diameter, have 

small, atypical expansions while wounds larger than 15 μm in diameter have robust 

expansions.  One interpretation of the stab vs. poke data in Figure 15 is that cell lysate is 

required for the wound-induced calcium expansion.  When that interpretation is applied to 

these results, it suggests smaller wounds release less cell lysate, which results in low 

concentrations of ligand that cannot sustain a large expansion.   

A custom built, genetic split-expression system can be used to compare 
experimental conditions directly to internal controls in the same wound.    

 Our goal is to explore the mechanism of initiation and propagation of the wound-

induced calcium wave.  To improve our experimental platform, we designed a split-

expression system in the fly notum that enabled us to perform genetic experiments with an 

internal control at the same wound.  Our split-expression platform allowed us to drive the 

expression of a gene of interest in one half of the tissue while the other half remained wild 

type.  By wounding on the margin of the RNAi expression domain we observed how the 

calcium wave expanded differently into the experimental region versus the wild-type 

control region.  With this system we can directly compare and quantify differences 

resulting from changing the experimental variable, which is highly advantageous.  Even 

laser wounds can be subtlety different from sample to sample so without an internal 

control, it can be difficult to identify small, nuanced changes between experimental 

conditions.  
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To create this platform, we took advantage of the natural hourglass shape of the 

pnr expression domain in the notum which covers approximately one third of the dorsal 

epithelium.  We used the Gal4-UAS system to drive expression of our gene of interest 

(GOI) and a nuclear mCherry reporter (to precisely outline domain edges) in the pnr 

domain using pnr-Gal4.  Tub-Gal80ts is a temperature sensitive construct that prevents 

Gal4 from binding UAS at the permissive temperature and thus confers temporal control of 

our GOI expression.  We added this construct to our system so that we could turn on GOI 

expression after critical periods of development and before experimentation.   

 

 

 
Figure 17:  Diagram of internally controlled split-expression system 
The panels above represent the epithelial tissue of the pupae notum.  The checkered, 
hourglass-shaped region is the pnr expression domain, where nuclear mCherry reporter 
and GOI are expressed.  In the internally controlled, split-expression system GCaMP6m is 
expressed throughout the tissue.  Wounding on the margin of the pnr domain (red X) will 
result in calcium expansion into both the control region (left of X) and the experimental 
GOI region (right of X).  In contrast, using a standard expression system, the GCaMP6m 
is expressed only in the pnr region.  A wound is made in the center of the domain and all 
surrounding tissue expresses the GOI.   

 

Because we were using the UAS-Gal4 system to generate spatial expression of 

our GOI, we could no longer use UAS-GCaMP6m to visualize the calcium wave.  It was 

necessary to drive GCaMP6m in the entire epithelia so that we could reliably compare 

calcium wave expansion in control and experimental regions.  After unsuccessful attempts 

to use an alternative driver-promoter system (the QF-QUAS system), we decided to 

directly drive GCaMP6m expression with an actin promoter.  A key feature of this 

construct is that it contains the full 4.4 Kb genomic enhancer sequence of actin, and 

therefore contains regulatory elements that drive ubiquitous expression, instead of a 
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commonly used but less reliable 2.6 Kb sequence252,253.  Despite the fact that actin is a 

strong promoter, it does not express GCaMP6m as strongly as the Gal4-UAS system, 

which has an amplification step.  As a consequence, our Actin-GCaMP6m construct does 

not fluoresce as strongly as UAS-GCaMP6m constructs we have used.   

The pnr domain we are using for this system splits the same epithelial tissue into a 

control domain (non-pnr) and an experimental (pnr) domain.  The pnr domain is 

genetically distinct from neighboring tissue so we performed controls to determine whether 

this difference had any effect on calcium wave initiation and propagation.  When both 

domains are functionally wild type, calcium wave initiation and propagation is symmetrical 

around the wound (Figure 18A).  As a proof of principle, we used Inx2 RNAi to validate 

this system because of the clear “spotty” phenotype Inx2 RNAi produces.  When Inx2 

RNAi is driven in the pnr domain of the split-expression system, the calcium wave around 

the wound appears “spotty” in that region only (Figure 18B).  As expected, calcium 

dynamics in the non-pnr region are consistent with a wild-type wave.   

Using the Radial Angle Profile Plot Plug-in from ImageJ and custom MATLAB 

code, we can specifically quantify the calcium wave expansion in the experimental pnr 

domain and in the control region.  We can plot the average calcium wave expansion from 

each domain over time on the same graph to assess how symmetrical the expansions are.  

Figure 18C shows that in wild-type controls, the expansions largely overlay each other in 

most samples.  Even when atypical expansions occur, as in the bottom two traces of 

Figure 18C where the second expansion occurs late, the waves in each domain mirror 

each other.  Rarely, we observe asymmetry when comparing wild type to wild type in each 

section (middle sample in Figure 18C).   

As expected, quantification of Inx2 RNAi samples expressed in the split-expression 

system recapitulates observations from Figure 10C and Figure 16C.  In the half of the 

tissue where gap junctions are knocked down, the micro-tear induced expansion does not 

occur.  This analysis also reveals that the wound-induced expansion begins at the same 

time in gap junction knockdown conditions as in control conditions.  The uneven wave 

front observed in the gap junction knockdown tissue results in the underestimation of the 

calcium radius by the MATLAB program because of its discontinuous wave front.  Overall, 

these data demonstrates the wound-induced expansion is not mediated via calcium 

induced calcium release, nor any other mechanism that requires gap-junction 

communication.   
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Figure 18:  The internally controlled split-expression system can be used to reliably 
compare experimental conditions with controls at the same wound.   
A) Stills comparing wild-type tissue to wild-type tissue in the split-expression system.  The 
pnr domain is detected by the expression of nuclear mCherry and outlined with a dashed 
red line (i).  Prior to wounding the basal activity of GCaMP6m is low (ii).  The micro-tear 
induced expansion and the wound-induced wave are symmetrical around the wound (iii-
vi).  Scale bar = 50 μm.  B) Stills comparing Inx2 RNAi #1 to an internal wild-type control 
in the split-expression system.  A red dashed line outlines the expression of the nuclear 
mCherry reporter and the gap junction RNAi in the pnr domain (i).  Single cell calcium 
transients occur prior to wounding only where gap junctions are knocked down.  Micro-
tear induced calcium influx expands in the wild-type region, but not where gap junctions 
are knocked down (iii).  The wound-induced calcium expansion appears “spotty” in the 
experimental region and has a smooth wave front in the control region (iv-vi).  Scale bar = 
50 μm.  C) Quantification of representative samples comparing wild type to wild type in the 
split-expression system.  Each graph represents one sample.  Data for the first three 
samples was provided by James O’Connor.  D) Quantification of representative samples 
from our internally controlled split-expression system comparing the calcium radius over 
time for Inx2 RNAi #2 with its internal control. Note that the larger, wound-induced 
expansion begins at the same time for both samples.   

 

The unknown extracellular ligand drives the wound-induced expansion of calcium 
via Gαq signaling cascades. 

The diffusion of an extracellular ligand can promote the influx of calcium into the 

cytosol directly, through ligand-gated calcium channels, or indirectly, through ligand-gated 

G-Protein Coupled Receptor (GPCR) signaling.  Figure 13 shows a common mechanism 

for GPCR induced calcium release where a ligand binds a GPCR, activates Gαq which 

then upregulates production of IP3 from PLCβ.  IP3 then diffuses to the ER to bind an IP3 

receptor and induce the release of calcium from the ER into the cytosol.  To test whether 

GPCR signaling was responsible for this calcium expansion we knocked down Gαq and 

then PLCβ, as both are necessary for canonical GPCR induced calcium release. Using 

our split-expression system we found that knockdown of either Gαq or PLCβ attenuated 

the large expansion of calcium (Figure 19).  Nuclear mCherry and the dashed red outline 

marks the expression domain of Gaq RNAi (Figure 19 Ai) and PLCβ RNAi #1 (Figure 

19Bi).  Prior to wounding, there is no basal calcium activity in the tissue (Figure 19Aii and 

Bii).  While the micro-tear induced first expansion appears symmetrical in both samples 

(Figure 19A and B), the wound-induced expansion is attenuated in the experimental 

expression domain for both RNAis (Figure 19Aiv-vi and Bv, vi).  The quantitative analysis 

of the calcium radius over time for additional samples shows the variation and extent of 

the RNAi attenuation of the second expansion (Figure 19C-E).  It is possible that the Gαq 

RNAi line tested does not provide efficient knockdown or that Gβγ acts redundantly with 
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Gαq.  A second RNAi line is needed to confirm these results.  This data informs us that 

the expansion of calcium is mediated by GPCR signaling.   

To further validate this mechanism, we used our internally controlled split-

expression system to express an IP3 Sponge and two functional IP3 receptor (IP3R) RNAi 

lines to block calcium release from the ER.  An IP3 Sponge is a peptide designed to 

sequester IP3 inside the cell.  The peptide has been engineered to bind IP3 with high 

affinity (4.5 x 10-11 Kd) and competes with IP3R254.  This construct was used by the 

Chisholm lab to show that epidermal wounds in C. elegans lead to IP3 mediated calcium 

release from ER stores20.  Figure 20Ai shows the IP3 Sponge-expressing domain labeled 

with nuclear mCherry.  No basal calcium activity is detected prior to wounding (Figure 

20Aii).  The micro-tear induced calcium expansion is largely symmetrical, as expected 

(Figure 20Aiii).  The expansion of the wound-induced wave is asymmetric though.  The 

calcium wave begins first in the wild-type tissue (Figure 20Aiv) and expands normally.  

The wave in the IP3 Sponge-expressing tissue expands at a slower rate than wild type 

(Figure 20Aiv and v) and is still expanding even when the control wave has faded (Figure 

20Avi).  It is likely that the IP3 sponge does not fully sequester all IP3 within cells prior to 

and upon wounding and therefore does not fully block the calcium wave.  

Knocking down IP3R, however, does block the wound-induced expansion of 

calcium.  Figure 20Biv-vi show a severely attenuated second expansion in the IP3R RNAi 

expression domain compared to a normal expansion in the control region.  Quantification 

of the calcium radius over time using an IP3 Sponge and two different RNAi constructs 

supports the qualitative observations (Figure 20C-E).  Together, this data reveals that an 

unknown ligand diffuses through extracellular space and likely binds an unknown GPCR, 

which then signals through canonical Gαq pathways to initiate calcium release from the 

ER.   
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Figure 19:  Gαq and PLCβ are important for the expansion of the wound-induced 
calcium wave.  
Data gathered by James O’Connor of the Page-McCaw lab.  A) Using our internal control 
split-expression system we expressed Gαq RNAi in the pnr domain of the Drosophila 
notum, indicated by nuclear mCherry and outlined by the red dashed line (i). Prior to 
wounding there is no basal calcium activity (ii).  The microtear-induced calcium expansion 
appears similar to the wild-type control (iii).  However, as the wound-induced expansion 
spreads, the rate of expansion is much slower in the IP3 Sponge tissue when compared to 
controls (iv-vi).  Scale bar is 50 μm.  B) Shows a representative sample from PLCβ RNAi 
knockdowns.  Nuclear mCherry and the red dashed outline mark the PLCβ RNAi #1 
expression domain (i).  Prior to wounding there is no basal calcium activity (ii) and upon 
wounding the microtear-induced calcium expansion appears similar in both domains (iii).  
The wound-induced expansion is limited where PLCβ has been knocked down (iv-vi) but 
is normal in the control region (iv-vi). Scale bar is 50 μm.  C), D), and E) show 
quantification of the calcium expansion over time for representative samples of Gαq RNAi, 
PLCβ RNAi #1, and PLCβ RNAi #2 genotypes, respectively.  Each graph represents one 
sample.   
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Figure 20:  IP3 and the IP3R are required for the wound-induced expansion of 
calcium.   
A) Using our internal control split-expression system we expressed an IP3 Sponge in the 
pnr domain of the Drosophila notum, indicated by nuclear mCherry and outlined by the red 
dashed line (i). Prior to wounding there is no basal calcium activity (ii).  The microtear-
induced calcium expansion appears similar in the IP3 Sponge domain as compared to the 
wild-type control (iii).  However, as the wound-induced expansion spreads, the rate of 
expansion is much slower in the IP3 Sponge tissue when compared to controls (iv, v).  By 
the time the expansion in the IP3 Sponge tissue reaches its maximum radius, the 
expansion in control tissue is flaring and fading (vi). Scale bar is 50 μm.  B) Shows a 
representative sample from IP3R RNAi knockdowns using our internal control split-
expression system.  Nuclear mCherry and the red dashed outline mark the IP3R RNAi #1 
expression domain (i).  Prior to wounding there is no basal calcium activity (ii) and upon 
wounding the microtear-induced calcium expansion appears similar in both domains (iii).  
The wound-induced expansion does not occur in tissue where the IP3 Receptor has been 
knocked down (iv-vi).  The expansion appears normal in control tissue (iv-vi). Scale bar is 
50 μm.  C), D), and E) show quantification of the calcium expansion over time for 
representative samples of IP3 Sponge, IP3R RNAi #1, and IP3R RNAi #2 genotypes, 
respectively.  Each graph represents one sample.   

 

Discussion and conclusions 

We observe two calcium waves around wounds.  The first wave is a result of 

micro-tears on the membrane that permeabilize cells and permit direct calcium influx.  

This influx of calcium spreads to neighboring cells via gap junctions and this expansion is 

not affected by an IP3 Sponge or IP3R RNAi.  These experiments support our 

computational analysis from Chapter 2 and we expect that high concentrations of calcium 

itself is likely diffusing to neighboring cells.   

 Even though calcium spreads to unwounded neighbors, micro-tears are single cell 

wounds that cells can repair.  Micro-tears alone cannot generate the second, large wave 

(Figure 10B, see “no wound” samples).  When more catastrophic damage occurs to the 

tissue, a larger expansion occurs.  Previous in vivo work has suggested that this wound-

induced expansion is associated with changes in tissue mechanics.  Indeed, it has been 

reported that mechanically prodding wing discs resulted in a calcium wave very similar to 

those observed here: both expand at comparable rates, both exhibit re-occurring waves 

(Figure 14), and both require IP3 stores (Figure 20) 31,39.  Unlike the wing disc, we find 

mechanical prodding is not sufficient to induce a calcium wave in notum epithelia (Figure 

15).  A wound-induced calcium expansion does occur when the tissue is punctured 

(Figure 15).  The wave may be triggered by catastrophic damage caused by a stab 

wound.  It may also be caused by cell lysate released during the course of wounding.  
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When added to cultured wing discs, fly lysate triggers long distant calcium waves in the 

tissue36.   

 When considered along with our observations that the calcium wave is driven by 

extracellular diffusion (Figure 16), it seems likely that a component from cell lysate initiates 

and propagates the calcium wave.  A diffusible signal can result in intercellular calcium 

influx by binding and activating receptors on the cell membrane.  These receptors can be 

ligand gated ion channels, GPCRs, or RTKs.  To identify the diffusible ligand and its 

receptor, we have targeted downstream effectors of receptor signaling.  Both GPCRs and 

RTKs can induce calcium release from the ER via phospholipase activity249.  However, 

only GPCRs require Gαq to activate this signaling cascade.  Our data shows that knocking 

down Gαq attenuates the wound-induced expansion (Figure 19).  This knockdown does 

not completely abolish the calcium wave, and a second RNAi has recently confirmed the 

observed effect (James O’Connor, unpublished data).  These data suggests a GPCR 

mediates the initiation and propagation of the calcium wave.  We further confirmed the 

role of this signaling cascade by knocking down PLCβ, IP3R, and expressing an IP3 

Sponge (Figure 19 and Figure 20).  These experiments were made possible with the use 

of our internally controlled split-expression system, which allows us to quantify subtle 

differences between conditions.   

 DAMPs are diffusible proteins, peptides, or metabolites which initiate wound 

responses and are found in cell lysates84.  Our kinematic analysis of the second 

expansion indicates we are looking for a signal with a diffusion constant between 7 to 30 

µm2/s.  The observed diffusion constant could suggest we are looking for a molecule 

about >6 kD.  Large proteins have been shown to regulate calcium dynamics in previous 

studies84,86-88.  In fact, data from wing disc indicates the extracellular factor driving calcium 

dynamics is sensitive to proteases36.   

The observed diffusion constant could also suggest the diffusing signal is a small 

molecule that does not freely diffuse.  ATP is a DAMP that initiates calcium influx in cell 

culture wounding models by binding P2X and P2Y receptors.  A recent cell culture study 

has shown that manipulating the activity of extracellular ATP degrading enzymes does not 

significantly alter the spread of extracellular-ATP induced calcium waves255.  The 

investigators argue that ATP is released from wound sites in high concentrations and 

simply diffuses across the tissue to induce long distance calcium waves.  ATP diffuses in 

water with a diffusion constant of 350 µm2/s, which is much faster than the diffusion of the 
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signal measured in Chapter 2.  Due to this significant difference, the calcium wave in our 

system is probably not driven by the free diffusion of a ligand the size of ATP.  However, 

other investigators argue that ATP would have buffered diffusion in the extracellular space 

as it is readily degraded by extracellular enzymes152-154.  If a small ligand like ATP is 

driving calcium influx and is buffered, then the diffusion of the ligand would appear much 

slower than the known diffusion of ATP in water and could potentially match our observed 

diffusion constant.  Studies have also shown that ATP and calcium can participate in a 

positive feedback loop, where IP3-mediated calcium influx drives extracellular ATP 

release.  Outside the cell, the cycle continues; ATP diffuses to neighboring cells and binds 

a GPCR to promote IP3 mediated calcium release.  In this way, ATP signaling can 

participate in long distance wave propagation100,155,156.  A positive feedback loop such as 

this one would also result in wave propagation much slower than the diffusion of ATP in 

water.   

This potential mechanism could also explain how an IP3 sponge is capable of 

changing the rate of propagation (Figure 20C).  If a positive feedback loop is propagation 

the wave, IP3-mediated calcium release would feedback into further ligand release.  An 

IP3 sponge would not only delay the transduction of the extracellular signal into calcium 

(shifting the onset of expansion in the graphs to the right), it would delay the release and 

propagation of the extracellular signal (changing the rate of expansion and slope of the 

curve in the graphs).  However, it is unclear if a positive feedback loop like the one 

described can result in a pattern of expansion that is capable of being fit to a diffusion 

equation.  Typically a positive feedback loop would result in a linear expansion that would 

not fit a diffusion equation.  Kinematic analysis is necessary to confirm or rule out this 

possibility.  Another possible, but less exciting, explanation for the altered expansion 

kinetics upon IP3 Sponge expression is that the IP3 Sponge releases IP3 molecules back 

into the cytosol and creates artificial calcium dynamics.  While we do not expect this to 

happen based on previous characterization of the IP3 Sponge, we have not characterized 

its function in the notum and cannot readily rule out this explanation.  

Drosophila only have one confirmed ATP receptor, AdoR, which is a Gαq bound 

GPCR256.  Future studies need to examine the role of AdoR in calcium dynamics of the 

notum.  Future studies should also use computational methods to examine the onset and 

rate of expansion in different conditions in an attempt to determine if buffered diffusion of a 

positive feedback loop are viable mechanisms of expansion.   
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 As ligands diffuse away from the wound site they propagate calcium expansion.  

The source of the re-occurring oscillations is unclear.  If ligands also drive these 

oscillations then perhaps they are released multiple times during the course of wound 

healing.  Alternatively, ligands could be released constantly after wounding and the 

refractory period between oscillations could reflect sensitization to the constant signals.  It 

is quite possible that these oscillations are not initiated by ligands at all, and there is yet 

another mechanism of calcium wave initiation in this system.   

 When an expansion event occurs, the wave front is smooth (Figure 16A).  

Homogenous diffusion of an extracellular diffusion should result in an even wave front.  

However, when we knockdown gap junctions – which should not affect extracellular 

diffusion – the wave front changes from even to “spotty” (Figure 16B).  We hypothesize 

that this is a result of altered IP3 distribution prior to wounding.  Genetically identical cells 

within a tissue can produce heterogeneous levels of IP3257.  When gap junctions are open, 

small molecules such as IP3 can diffuse to neighboring cells and establish a homogenous 

distribution through the epithelia.  We predict that this homogenous distribution results in a 

smooth wave front as all cells are equally primed to respond to Gαq signaling.  When gap 

junctions are blocked, we hypothesize that basal IP3 levels remain heterogeneous.  As 

the Gαq signaling cascade is initiated in cells, we predict some cells do not have sufficient 

basal levels of IP3 to overcome the threshold needed to activate IP3 receptors while other 

cells do.  This could result in the “spotty” appearance of calcium expansion observed.  

Furthermore, we would expect that when gap junctions are blocked the basal levels of IP3 

in some cells would spontaneously overcome the threshold of IP3R activation and result in 

single cell calcium release.  Indeed, we observe this in gap junction knockdowns in 

unwounded tissue.   

 Overall, our characterization of the wound-induced calcium wave expansion 

emphasizes many similarities with waves in previously characterized models.  Our data 

recapitulates findings in vivo while also supporting the ligand-diffusion hypothesis favored 

by cell culture research.   
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CHAPTER 4 

 

SUMMARY AND IMPLICATIONS 

 

 
 When a tissue is wounded via laser ablation, matter at the site of ablation is 

recombined into hot plasma220.  The temperatures and pressures associated with this 

event create a cavitation bubble, a hot gas bubble, which expands away from the point of 

ablation189.  The initial expansion and final collapse of this bubble are both so rapid that 

they break the sound barrier and make a popping noise that we can detect with a 

hydrophone221.  The shear stresses of this rapid expansion are great enough to 

completely lyse cells near the point of ablation, resulting in a hole in an epithelial 

monolayer.  The expansion rate of the bubble slows as it progresses and the cells 

underneath the bubble experience less shear stress176.  While the cells adjacent to the 

wound aren’t completely lysed, our data suggests that the cavitation bubble still rips the 

outer and organelle membranes.  Using calcium, voltage, and dye influx assays, we 

showed that plasma membranes within the entire footprint of the cavitation bubble exhibit 

damage in the form of micro-tears (Figure 7).  Based on our kinematic analysis of calcium 

influx into cells through micro-tears, we argue that high concentrations of calcium are 

pouring into these cells (Figure 6).  Once inside the damaged cells, the high 

concentrations of calcium diffuse through gap junctions to neighboring, undamaged cells 

(Figure 16).  Our internally controlled split-expression analysis of an IP3 Sponge and IP3R 

RNAi lines demonstrate that IP3 is not involved in this diffusion event (Figure 20).  In the 

context of our studies, we have termed this micro-tear driven expansion event the “first 

expansion”.    

 Laser ablation is increasingly common as a wounding model and has many 

advantages: it can be paired with live imaging, used to create reproducible wounds, and 

used to target specific sub-cellular regions215,216.  One criticism of this model is that it does 

not replicate the extent of damage seen in naturally occurring wounds.  Our data begins to 

address this concern by showing ablation wounds also exhibit complex damage profiles 

as a result of micro-tears.  We argue that ablation wounds might be more similar to crush 

or puncture wounds than previously thought.  Knowing this, investigators might find laser 

ablation to be an even more useful wounding tool.  For example, we can take advantage 
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of the exaggerated micro-tearing caused by cavitation and use it to create a new single 

cell damage research model.  This will be discussed further in the Future Directions 

section.   

Depending on the laser used and the context of the study, investigators may 

introduce artifacts into their experiments if they are not aware of the cavitation-induced 

effects.  We show that the cavitation bubble results in micro-tear mediated calcium influx 

up to 50 μm away from the wound.  For those studying calcium dynamics, it is important to 

recognize that early events are a result of direct influx into cells and not a calcium wave 

propagating long distances.  Our findings are also important outside of the context of 

calcium dynamics since calcium is a potent second messenger and can dramatically alter 

cell behavior.  For example, sub-cellular ablation of an organelle or structure might also 

generate micro-tears on the cell surface and permit the entry of calcium and solutes from 

the extracellular environment.  It will be important for investigators to control for the influx 

in calcium and other ions when reporting changes in cell behaviors due to the removal of a 

structure or organelle.   

After the first expansion a larger, second expansion occurs.  We term the second 

expansion a wound-induced expansion because it requires the presence of a primary 

wound.  Fly lysate is required for calcium wave formation in ex vivo wing discs31,36,39 and 

we believe a primary wound is required because it is associated with cell lysate.  A 

wound-induced calcium wave also occurs when the tissue is mechanically stabbed or 

decayed with a continuous laser (Figure 15 and Appendix B).  Further characterization 

comparing the expansion kinetics between each of these methods is required.  We know 

that the wound-induced expansion observed at ablation wounds is driven by extracellular 

diffusion because it still occurs when gap junctions are blocked (Figure 16).  Along with 

the requirement for cell lysate, this data argues for a ligand-mediated mechanism of 

initiation and propagation.  Our quantitative analysis of ablation wounds indicates that this 

expansion does not initiate at the time of wounding, but is delayed (Figure 11).  It may 

take time for nearby cells to transduce extracellular ligand binding into calcium release, 

causing the delay.   This is especially true for metabotropic GPCRs, which are not ligand 

gated ion channels and initiate calcium influx through an IP3-dependent signaling 

cascade.  The mechanism of this delay will be discussed further in the Future Directions.   

The identity of this ligand is unknown but our computational analysis had defined 

parameters that describe the ligand.  The signal driving the calcium wave propagates with 
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a diffusion constant of 7 to 30 um2/s.  This diffusion constant indicates 1) the signal is a 

molecule about the size of insulin or larger (>6 kD) and/or 2) the signal does not freely 

diffuse.  Examples of signals which do not freely diffuse can be found in cell culture 

studies, where ATP is degraded152-154 or ATP and calcium participate in a positive 

feedback loop to drive wave propagation100,155,156.  These models are inconsistent with 

studies in the wing disc, which suggest the ligand is a protein36.  Experiments proposed in 

the Future Directions section could help distinguish between diffusion and a feedback loop 

mechanism of propagation.   

We wanted to understand the signaling cascade downstream of the ligand 

diffusion.  Knocking down components of a GPCR/Gαq signaling cascade – Gαq, PLCβ, 

IP3, and IP3R – attenuates the calcium wave.  We conclude from this data that the ligand 

driving the wound-induced expansion diffuses through the extracellular space and 

activates a Gαq-bound GPCR.  Further analysis is needed to determine the identity of the 

GPCR and ligand (see Future Directions).   

 We know IP3 is required for the expansion of this calcium wave because 

sequestering IP3 with an IP3 Sponge and knocking down the IP3R attenuates the wave.  

Interestingly, expressing an IP3 Sponge changes the rate of wave spread.  From our 

current data, it is not clear how this could be happening.  We would expect IP3 to change 

the diffusion rate of the extracellular ligand if IP3 was upstream of that ligand.  Previous 

literature indicates IP3 can be upstream of a ligand.  IP3 mediated calcium release can 

promote ATP release in a bucket-brigade positive feedback loop.  However, it is not clear 

whether a positive feedback loop could result in an expansion pattern characteristic of free 

diffusion, as we observe in wildtype conditions.  Further analysis is needed to explore 

these results and possibilities.  

We have also observed that the quality of the expansion is notably different when 

we express a gap junction RNAi.  When gap junctions are knocked down, the wave front 

is no longer smooth, it is “spotty” and appears to skip cells as it advances.  Prior to 

wounding gap-junction knockdown tissue, we also observe transient, cytosolic calcium 

increases within single cells.  We have developed a hypothesis driven by these 

observations.  We hypothesize that IP3 is heterogeneously produced across cells within 

this tissue.  Such heterogeneity has also been observed in HeLa cells257.  When gap 

junctions are blocked, IP3 cannot diffuse to neighboring cells and IP3 concentrations 

remain heterogeneous throughout the tissue.  In some cells, the basal concentrations of 
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IP3 could be so high that they spontaneously trigger calcium release from the ER prior to 

wounding, as we have observed.  Other cells might have such low basal concentrations of 

IP3 that even when the signaling cascade is initiated, the cells never produce enough IP3 

to overcome the threshold for IP3R activation, as we have observed.  We find this 

hypothesis very interesting because it suggests mechanisms by which tissue architecture 

can shape the wound response.  Furthermore, heterogeneous calcium signaling can lead 

to heterogeneous cell behaviors in platelets and immune cells258,259.  In the Future 

Directions, I discuss how gap junction knockdowns and other IP3 perturbations could be 

used to investigate IP3’s role in wave expansion and tissue heterogeneity.   

 

There is extensive variability in the literature regarding calcium wave initiation and 

propagation.  The previous studies have contributed to the field, but the variability 

between them seems to generate contradictions and undermines each study’s relevance 

and significance.  Our research validates many findings from other labs in an in vivo, 

accessible, genetically tractable, and conserved wounding model.  Like previous research, 

we find that calcium can come from the extracellular space and intracellular stores.  The 

wave propagates via gap junctions and diffusion of an extracellular ligand.  Also, we find 

that tissue mechanics may indeed play a role in wave dynamics.  Importantly, our 

research takes these findings one step further by clearly demonstrating that all of these 

things happen at one wound.  We show that different mechanisms of damage correspond 

to different calcium wave characteristics.  This new understanding can help make sense of 

the contradictory findings in the wound healing field.  When a pulsed laser is used to 

wound tissue, the cavitation bubble will create micro-tears.  Using this wounding method, 

calcium influx will be at least partially derived from extracellular calcium and will likely 

spread through gap junctions.  If the pulsed laser does not create a large enough wound, 

an obvious wound-induced expansion may not occur and investigators may not report a 

role for extracellular diffusion or ER stores (which are released upon ligand binding).  

These expectations could explain observations from Narciso et. al. 201543 and perhaps 

Razzel et. al. 201312.  Adding cell lysate to a tissue will mimic a tissue wound and ligand 

diffusion.  Under these conditions investigators should expect to see a calcium wave 

expand even when gap junctions are somehow inhibited.  If the ligand in their lysate binds 

a metabotropic receptor (as in our system) they will observe calcium release from ER 

stores and if it binds an ionotropic receptor they will observe calcium influx from 
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extracellular space.  We find these expectations to be accurate for cell culture scratch 

assays25,30,32,34,37,38, which generate cell lysate and but not extensive microtearing24,34,35,130.  

The expectation that the calcium wave should expand upon addition of lysate even when 

gap junctions are somehow inhibited could be accurate for in vivo studies as well, 

depending on how one interprets their data.  Investigators report that gap junction 

knockdowns (or pharmacological inhibition of gap junctions) stops the expansion of a 

calcium wave31,36,39.  However, this is not the only interpretation of their data.  When we 

examine their images closely, it appears that calcium still spreads into tissues where gap 

junctions have been knocked down, but this wave front is no longer continuous.  It is 

possible that the calcium wave still propagates through this region but appears “spotty”, 

similar to our observations in Figure 16.  Another interpretation of the data they present is 

that a calcium wave is still propagating but the gap junction perturbation creates tissue 

heterogeneity, so the calcium wave loses its characteristically smooth wave front.  This 

interpretation would be consistent with the expectation we describe above.  

The shear diversity of wound cues and wound healing responses tells us that 

wound detection is a nuanced process.  Our Drosophila pupae laser wounding model 

exhibits many mechanisms of calcium wave initiation.  To advance the field, future wound 

healing studies should focus on how the tissue integrates calcium signaling.  How do cells 

regulate calcium and other signals?  Is the concentration of calcium or wave speed and 

frequency important for signal integration?  Must two separate wound cues be present to 

drive the wound healing response?  Over the last twenty years growth factors have been 

shown to drive wound healing but have had less satisfactory clinical outcomes.  Do growth 

factors require certain in vivo calcium dynamics that are not being met in clinical 

applications?  Laser ablation in the Drosophila notum is a multi-dimensional model well-

suited to study a multi-dimensional phenomenon.  Furthermore, this model is in vivo, ideal 

for live imaging, genetically tractable, and accessible.  The work presented here has 

contributed important findings to the wound healing field, has established the Drosophila 

notum as a strong model, and lays the foundation for future studies. 

Future studies may benefit research outside of the wound healing field as well.  

Calcium waves propagate through epithelia during normal development.  When imaging 

living and intact larvae, calcium waves propagate through unperturbed wing discs31.  

During Drosophila oogenesis, calcium waves in the follicle cell epithelia is important for 

fate-specification of neighboring border cells260.  Rhythmic calcium waves have also been 
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suggested to drive pattern formation in zebrafish gastrulation135,261.  But that’s not all: 

calcium influx can occur in disease contexts too.  Calcium influx occurs upon epithelial- 

mesenchymal transition in human breast cancer cells and blocking the calcium influx 

blocks the induction of EMT markers262,263.  As calcium is important for migration142,264-266, 

it is also important for migration-dependent cancer hallmarks including invasion and 

vascularization141,267-269.  Characterizing the calcium wave and understanding its regulation 

and integration can reveal fundamental information about cell biology.  Specifically, these 

studies may contribute to our textbook understanding of wound healing, development, 

migration, and cancer.  
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CHAPTER 5 

 

FUTURE DIRECTIONS 

 

  

Future studies should focus on early wound signals that function in parallel to the 

calcium wave and how multiple wound signals are regulated and integrated.  Before 

exploring these options, I’d like to discuss other assays that should be performed to 

complete a comprehensive characterization of this wounding model.  Validating our 

current findings will forge a strong foundation for future endeavors.   

Further exploration and validation of the Drosophila notum wounding model 

Permeabilization of the notum 

First and foremost, expanding our methods and protocols to incorporate 

pharmacological assays in the Drosophila notum would be highly advantageous.  The 

notum has a thin waxy cuticle overlaying the epithelial tissue270.  While this cuticle does 

not impair imaging, it does make the tissue impermeable to exogenous reagents.  The 

Drosophila embryo also has a waxy membrane.  Protocols have been developed to 

permeabilize the waxy embryonic membrane while leaving the cells intact for live 

imaging271,272.  If the lab can apply this protocol to Drosophila pupae, then we could soak 

pupae in pharmacological reagents prior to mounting and wounding.  In situations where 

the genetic tools have not been developed in flies, we could turn to pharmacological tools.  

With the combination of genetics and drug perturbations, few experiments would be 

technically limiting. If this is not achievable, then the wing disc can be used instead of the 

notum as it is permeable to drugs and can be cultured ex vivo.   

Release and propagation of the ligand 

A diffusible ligand drives the expansion of the wound-induced calcium wave.  We 

have mathematically determined this calcium wave does not begin at the time of 

wounding; it seems propagation of the wave is slightly delayed.  We also know that the 

ligand driving wave propagation is acting through a Gαq signaling cascade.  Transducing 

the extracellular signal into a calcium wave by this signaling cascade takes time, which 

could account for the delay.  We may be able to test this hypothesis by comparing data we 

already have to computation models of this signal transduction pathway.  Perturbing the 
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signal transduction cascade should result in a delayed expansion because it will take 

longer for the cell to initiate calcium release.  Indeed, when the signal transduction 

cascade is inhibited and the wave is not completely attenuated, a visual inspection reveals 

the wave appears to begin later when compared to internal controls (Figure 19 and Figure 

20, the experimental traces in the graphs are shifted to the right when compared to 

controls).  A kinematic analysis, like the one performed in Figure 11, is required for each 

of the samples in Figure 19 and Figure 20 to determine if the expansion actually did begin 

later.  If a delay is occurring, it may be very slight.  The data may need to be compared to 

a computation model of this perturbation to assess whether the slight delay is expected or 

whether a larger delay would be expected.   

We predict the ligand is released at the time of wounding.  Is the release a result of 

exocytosis or cell necrosis/lysis?  To determine if active exocytosis of a ligand is required, 

the Gal4/UAS system can be used to knockdown exocytosis genes expressed in 

epidermis.  If no second expansion occurs in a tissue where exocytosis genes have been 

knocked down, then we may conclude active exocytosis of a ligand is required.   

If exocytosis is required, this experiment can also be used to determine if the 

ligand is only released from cells on the wound margin or if the ligand is released from 

cells distant from the wound too.  Cells distant from the wound might release ligand in a 

situation similar to the one described by Gruenhagen et. al. 2004156, where ATP and 

calcium participate in a positive feedback loop to propagate long distance calcium waves.  

Our internally controlled split-expression system could be used to knockdown exocytosis 

genes in one part of the tissue.  A wound would then be made fully inside the wild-type 

region.  If the calcium wave does not spread symmetrically into the region of inhibited 

endocytosis, the data would support a positive feedback loop mechanism of expansion.  In 

this situation, a small molecule the size of ATP could still account for the relatively slow 

expansion of the calcium wave.  However, we do not expect the expansion dynamics of a 

positive feedback loop to be fit to a diffusion equation.  This possibility seems unlikely, but 

should be tested with a kinematic analysis or the experiments described above.     

 If cells are not actively releasing the ligand, then the ligand must be released as 

cells decay and must propagate long distances via diffusion.  There are many technical 

challenges to quantifying when cells release their lysate and how much lysate they are 

releasing.  Dye and luciferase assays which measure cell lysis do exist38,170 but are 

optimized for assaying cells in media.  When the notum is wounded it is laid flush against 
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a coverslip for imaging and does not have access to media.  If the lab could determine 

how to quantify lysis, it would be advantageous to compare the extent of lysis in pulsed 

laser wounds, continuous laser wounds, and stab wounds.  These wounds exhibit slightly 

different calcium dynamics and it is worth investigating whether this is a result of more or 

less lysate/ligand release around each type of wound.    

We also want to understand how the ligand propagates after it is released.  In 

Chapter 2 we determined the signal initiating the calcium wave spreads in a diffusive 

manner.  It is unclear why expressing an IP3 Sponge would change the rate of expansion 

in such a way that causes the expansion rate to appear linear (by qualitative, visual 

inspection), which is not consistent with diffusion.  There could be an uninteresting 

explanation to this – the IP3 Sponge releases IP3 back into the cytosol, creating artificial 

calcium dynamics.  For this reason, weak IP3R RNAi constructs, which still permit 

attenuated IP3-mediated calcium release, may serve as better experimental tools moving 

forward.  There is another, more exciting explanation for the change in expansion rate.  

The IP3 Sponge could be modulating a positive-feedback loop between a ligand and 

calcium, as described in the discussion of Chapter 3.  One way to test this mechanism of 

diffusion has been described above.  If the IP3 Sponge is modulating this feedback loop 

we would also expect the IP3R RNAi #2 to have the same effect (IP3R RNAi #2 does not 

completely block calcium release so a small wave can be seen).  By eye, it is difficult to 

determine the extent of similarity between the expansion events for the IP3 Sponge and 

the IP3R RNAi #2.  Indeed, we cannot accurately assess the characteristics of expansion 

(ex: linear vs diffusive, diffusion constant of signal) by eye.  Therefore, a kinematic 

analysis should be performed on the data in Chapter 3 to determine which conditions 

could represent diffusion or a positive feedback mechanism of expansion.   

Identifying the receptor and ligand 

 Before moving forward to identify the GPCR it is crucial to confirm the role of Gαq 

in calcium wave initiation.  Our current RNAi data shows a slight attenuation of the calcium 

wave compared to the internal control.  It is possible that Gβγ acts redundantly with Gαq 

to activate PLCβ and promote calcium release.  Since Drosophila only have one Gαq G-

Protein, if we can show that Gαq is fully knocked down with the RNAi then it would support 

a role for Gβγ.  RTKs can also induce calcium release from the ER, but they do so through 

PLCγ activity and not PLCβ.  Because we observe complete knockdown of the calcium 

wave with a PLCβ RNAi we are confident that a GPCR mediates this signaling cascade.   
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We can perform an RNAi screen to identify the GPCR mediating calcium wave 

expansion.  Drosophila have 111 GPCRs according to FlyBase, a public database.  

Literature searches may suggest which GPCRs do not bind Gαq, and these GPCRs will 

be excluded from the screen or de-prioritized.  We will determine which genes are likely 

expressed in the epithelia by searching for expression in the “adult carcass” using 

FlyAtlas, a public gene expression database.  The RNAi lines for those genes will be 

prioritized in the screen.  Assuming we can screen 2 RNAi lines per day, we expect this 

screen will take at most 3 months.  AdoR, a Gαq-bound GPCR and the only ATP receptor 

in Drosophila256, should be prioritized in this screen.  Even though the diffusion constants 

calculated in Chapter 2 do not match known rates of ATP diffusion, previous cell culture 

studies show ATP is the ligand that drives calcium expansion.  Wound healing is a 

complex and essential process and redundancy is possible.  If two different ligands induce 

calcium influx we still may be able to detect their receptors in this screen if the ligands 

have different diffusion constants.  We can quantify the rate of expansion in each 

experiment and identify RNAi lines that alter the expansion rates.  If the rate of expansion 

is altered then it could indicate that we knocked out the receptor for the faster diffusing 

ligand, but there is a slower, redundant ligand present.  A secondary screen, with the 

receptor for the fast diffusing ligand knocked down in the background, should identify the 

receptor for the slow diffusing ligand.   

 To identify the ligand, it is essential to start with a list of justifiable candidate 

molecules.  Identifying the receptor may immediately suggest the identity of the ligand (ex: 

AdoR receptor and ATP).  It is also possible that the receptor will not be well characterized 

or have no known ligand.  In this situation, there are only a few practical options for 

moving forward.  First, we may consider screening other known DAMPs and molecules 

that can activate Gαq-bound GPCRs.  Unfortunately, we could not knockdown or deplete 

those molecules from the cells because most are required for viability.  Instead, we could 

perhaps biochemically purify each molecule and add it to unwounded tissue (where no 

waxy cuticle is present) and determine if a calcium wave occurs.  To confirm that a 

purified component is working through the pathway we have already identified, any effect 

of the molecule would be blocked when the GPCR or PLCβ is knocked down.  Second, if 

we find that the ligand is secreted via active exocytosis, we could isolate exosomes using 

standard protocols and attempt to identify candidate molecules in exosomes via mass 

spec.  We may wish to collaborate with a biochemist, who has experience fractionating, 
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identifying, and purifying compounds.  

Identifying other early wound signals 

Gβγ Activity 

The development of GCaMP reporters has permitted the in vivo assessment of 

calcium around wounds.  While calcium seems to play a dominant role in the wound 

healing response, other early wound signals exist.  There may be signaling cascades 

occurring in parallel to calcium activation in the Drosophila notum.  One obvious candidate 

is Gβγ signaling.  Gβγ binds GPCRs as a heterotrimer with Gαq.  When a GPCR 

undergoes a conformational change upon activation, Gαq and Gβγ are released from the 

GPCR in an active state.  For many years, it was thought that Gβγ simply functioned to 

inactivate Gαq.  However, Gβγ is actually quite active and has many downstream 

effectors273.  For example, Gβγ can activate other ion channels274-276 and regulate 

cytoskeletal associated proteins277-279. If a GPCR mediates calcium influx then we can be 

sure that Gβγ is activated.  Does Gβγ have a functional role in the early wound response? 

To answer this question the lab should perform a double knockout of Gβ and Gγ as well 

as individual knockouts of both subunits and monitor migration and wound closure.  This 

experiment should be performed in our internally controlled split-expression system in 

addition to the standard whole tissue expression.  The internally controlled split-

expression system might allow us to detect nuanced changes in wound healing, like 

impaired migration.  However, if half of the tissue is still completely functional, the wild-

type half might still be able to close the wound.  This will not be a concern if the RNAi’s 

are expressed in the whole tissue.   

Tissue mechanics 

 Previous studies and our own observations hint at a role for tissue mechanics in 

wound healing8,10,20,31,39 (Appendix B).  Could mechanotransduction somehow regulate or 

modulate calcium dynamics?  Our internally controlled split-expression system is ideal for 

these studies.  We can genetically perturb cell architecture to create conditions with 

different tissue mechanics and then observe how calcium expansion is altered as a result.  

Our current observations are suggestive but not conclusive.  Most of the constructs we 

have expressed so far will relax actomyosin networks.  However, at this time in 

development the notum is not under much tension280, so the constructs may not 

significantly change tissue tension.  Through a collaboration with the Hutson lab, we are 
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building a fly that will allow us to quantify tissue tension using CellFIT.  CellFIT can map 

relative tissue tensions based on cell shapes281.  With existing genetic tools, we cannot 

visualize cell borders and the calcium wave in the same samples.  By quantifying changes 

in tissue tension as a result of expressing different genetic constructs, we can identify 

effective constructs to use in future tension experiments.   

 Our IP3R RNAi data shows that calcium expansion is completely blocked upon 

IP3R knockdown.  This tells us that a stretch activated ion channel does not directly allow 

calcium entry from outside the cell.  If mechanics modulate calcium, they must be effecting 

the IP3 cascade.  It is possible that a mechanosensitive GPCR acts synergistically with 

ligand diffusion to contribute to the production of IP3.  If we are able to identify the GPCR 

which binds the diffusible ligand, we could knock it down and then modulate tissue tension 

in a way that would attenuate the calcium wave.  We would expect this to synergistically 

attenuate the calcium wave compared to GPCR knockdown or tissue tension modulation 

alone.   

 TRPM is a putative mechanosensitive ion channel in Drosophila and has not been 

well characterized.  Its mechanosensitive classification is based on weak sequence 

homology with the mammalian TRP channels.  Other work in Drosophila has found that 

knocking down TRPM attenuates the intensity of GCaMP fluorescence upon wounding, 

suggesting lower concentrations of calcium influx, but it does not alter the propagation of 

the wave.  We find that the wound-induced calcium wave is mediated solely through IP3R 

so it is unclear how an ion channel contributes to calcium levels.  It is possible that the 

TRPM ion channel is not mechanosensitive, but is itself activated by intercellular calcium 

and serves to increase the concentration of calcium in the cell282.  If this occurs, then 

knocking down TRPM should have no effect on mechanically induced calcium dynamics, 

like those described in Appendix B.  Furthermore, IP3R knockdown should suppress any 

GCaMP6m intensity increase observed upon TRPM overexpression.   

Understanding the regulation and integration of wound signals 

Intersection of single cell wound healing and tissue wound healing 

 The notum wounding model presents unique opportunities to explore single-cell 

wound healing in the context of a tissue.  By mis-targeting the laser we can generate 

single cell wounds without a primary, tissue wound.  Calcium influx in the single cell 

wounds can spread to unwounded neighboring cells.  Using this single-cell wounding 

method, we can determine if the calcium influx derived from single cells wounds is 



 

77  

sufficient to generate a wound response in neighboring unwounded tissue (visualized by 

JNK activity).   

 We can also determine if the single cell wounds prime the tissue for responding to 

subsequent multicellular wounds.  By mis-targeting the laser we can generate single cell 

wounds to prime one population of cells.  Next we would refocus the laser on a nearby 

population of cells to create a primary, tissue wound and observe wound response 

parameters in the primed cell population.  Wound response parameters that we could 

measure are calcium level intensity and propagation rate, cytoskeleton 

reorganization/migration, and JNK activity.   

 The experiment above tests the sequential intersection of single cell and tissue 

level wounds.  A naturally occurring puncture wound is complex; both types of damage 

occur at the same time.  Teasing apart the interactions between single cell wounds and 

tissue wounds at the same wound event requires finesse.  We cannot simply block the 

closure of single cell wounds because that would lead to cell death and would not be 

informative.  A better approach may be to prevent the propagation of micro-tear damage 

signals to neighboring cells by knocking down gap junctions only in the region of cavitation 

damage.  This could be achieved with careful laser targeting within our split-expression 

system.  Examining calcium wave propagation, cell behavior, and JNK activity in tissue 

adjacent to single cells wounds 1) with blocked gap junctions and 2) without blocked gap 

junctions will help identify functional intersections of single cell and multicellular wound 

healing.   

Integration and interpretation of wound signals 

Here we show that different types of damage drive calcium influx with different 

mechanisms.  Single cells wounds experience direct calcium influx from the extracellular 

environment while tissue surrounding primary wounds experience calcium release from 

the ER.  Furthermore, many different types of signals can drive calcium dynamics around 

wounds.  Can cells interpret the type of damage based on the source of calcium?  How do 

cells distinguish developmentally induced calcium waves from damage induced calcium 

waves?  Can the same wound response – the calcium wave – result in different cellular 

outcomes in different contexts?  Does the calcium wave intersect with other early wound 

signals?  These are all critically important questions that are at the forefront of the wound 

healing field.   

Wound healing is very complex and must be highly regulated.  When a wound 
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occurs the cells must re-activate quiescent developmental programs to drive re-

epithelialization.  They must only migrate and proliferate just enough to close the wound.  

Losing control of these programs could result in serious consequences, like cancer.  The 

calcium wave is a master regulator of wound healing, but it is just one signal.  We do not 

expect that binary control, calcium on vs. calcium off, can provide the necessary 

regulation of such powerful cellular behaviors.  We expect the calcium wave is actually 

multi-dimensional, and cells interpret and integrate the multi-dimensional information in 

different ways.  Perhaps cells can sense calcium concentration or propagation patterns.  

Or perhaps cells use a signaling circuit, where certain combinations of wound signals (for 

example, calcium influx and mechanical changes) result in different outcomes.  

Understanding how the calcium wave is integrated and interpreted by cells will advance 

our fundamental knowledge of wound healing and may have important clinical 

applications.  For example, perhaps mapping out potential signaling circuits will reveal 

why the clinical use of growth factors in wound healing has not been overwhelmingly 

successful283.  These studies may also have clinical applications in cardiac development 

and repair.  Cardiac tissue has normal, frequent calcium oscillations.  Heart failure can 

occur if cells do not appropriately regulate their response to calcium dynamics284.   

There is precedence for such complex interpretation and integration of calcium 

dynamics during wound healing.  Investigators have found that platelets will aggregate, 

release coagulation-protein containing granules, or signal to other cells by changing the 

composition of their plasma membrane based on the concentration of calcium in their 

cytosol259.  In T-cells, specific spatiotemporal patterns of calcium dynamics can activate 

specific transcription factors258.  For example, NFAT is activated by frequent calcium 

transients and its sustained presence in the nucleus requires a constant level of low basal 

calcium.  NFĸB, however, can be activated with short, infrequent calcium transients.   

To study the multi-dimensional interpretation and integration of the calcium wave in 

epithelial tissue we can take advantage of the naturally occurring cellular heterogeneity or 

intentionally create extreme heterogeneity.  Naturally occurring heterogeneity in epithelial 

cells arises are a result of heterogeneous PLC isoforms and heterogeneous IP3 

activity257,285.  We can experimentally manipulate calcium dynamics around wounds using 

our IP3 Sponge and IP3R RNAi lines.  If we develop an optogenetic gene expression 

system, we could regulate the activity of these constructs in very specific cell populations 

creating a highly controllable heterogeneous population.  Otherwise we can use mitotic 
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clones or our internally controlled split-expression system.  It may be possible to study 

heterogeneity and calcium wave integration in wild-type samples, without any 

manipulation at all.  In wild-type samples, we observe flares propagating asymmetrically 

around the wound.  This asymmetry may result in extensive heterogeneity in cells in the 

regions of flares.  It may also cause cells in the flaring regions to integrate the calcium 

signal very differently than those which experience more sustained calcium influx closer to 

the wound.  We can measure calcium intensity, propagation rates, calcium transient 

duration and oscillation frequency and observe cytoskeletal reorganization and 

transcription factor activity.  These assays will require intensive quantification and 

mathematical modeling.   

 
 Our lab is uniquely suited to address these future directions.  With our model we 

can dissect different mechanisms driving calcium dynamics in an in vivo context.  Using 

Drosophila as a model organism allows us to assay calcium dynamics with a range of 

advanced genetic tools, like our internally controlled split-expression system.  Perhaps we 

will soon add pharmacological tools to our repertoire.  Furthermore, our established 

collaboration with the Hutson lab enables us to approach data analysis with robust and 

quantitative methods.  These methods will be essential for teasing apart precise 

mechanisms of ligand-induced calcium release.  They will also be important for 

determining how cells integrate and interpret calcium influx around wounds.  The 

complementary perspectives and tool sets between our labs gives our team a powerful 

advantage moving forward in the wound healing field.   
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APPENDIX A 
 
 

COMPLETE SET OF FITS FROM FIGURE 6 AND FIGURE 11 
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Figure 21:  Complete set of kymograph peak fits from Figure 6.  
The complete set of 25 cropped kymograph peaks (or rockets) from Figure 6 and their 
diffusion model fits is sorted from smallest to largest diffusion constant.  Data was fit to the 
diffusion of calcium continuously being released from a point source fixed in space.  For 
the intensity vs position and intensity vs time plots, solid lines and dashed lines 
correspond to the data and fits respectively.  The intensity vs position plots show data and 
fits at 2.1 ms after ablation (green), at the time half-way between the start and end of the 
image (blue), and at the time 4.2 ms before the end of the image (purple).  The intensity 
vs time plots show data and fits along the midline of the image (red), and at a point half-
way between the midline and the right edge of the image (orange, only shown if the image 
is wider than 13 pixels or 8.06 μm).  Reported uncertainty for each diffusion is the 
standard error from the regression.  
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Figure 22:  Fitting calcium wave expansions from Figure 11 to diffusion models.  
Graphs show calcium signal expansion over time for 28 individual wounds, including the 
four shown in Figure 11A.  The first and second expansions are highlighted in red and 
blue respectively.  The solid lines show nonlinear regression fits to each expansion using 
Eqn. 1 in the main text; the dashed blue lines show back-projections of fits to the second 
expansion.  As a measure of goodness-of-fit, standard errors of the regressions for the 
first expansions range from 0.1 to 1.3 µm, with a median of 0.4 µm.  Those for the second 
expansions range from 0.3 to 6.7 µm, with a median of 1.3 µm. 
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APPENDIX B 

 
A PRELIMINARY REPORT ON THE ROLE OF TISSUE MECHANICS  

IN CALCIUM WAVE INITIATION AND PROPAGATION 

  

The role of tissue mechanics is of growing interest in cell biology as it has been 

shown to play a role in migration, gene expression, and differentiation157-159.  Investigators 

have begun to ask, what is the role of mechanotransduction at wounds?  See the section 

titled “Tissue mechanics and mechanically gated channels” in the introduction for a review 

of previous work done in this area.   

Through the course of our studies we have observed hints that differences in 

mechanical tensions throughout the tissue may somehow modulate calcium dynamics.  

Occasionally, we observe asymmetrically propagating waves.  Regions where the calcium 

wave does not propagate and/or propagates slower correspond to regions with decreased 

mechanical tension and vice versa.  For example, calcium wave propagation through the 

thoracic midline is attenuated around notum wounds (Figure 23A).  During this stage of 

development, the midline is known to be under little-to-no tension, as indicated by cell 

morphology and ablation-recoil experiments280.  As seen in Figure 23Aii and iii, the micro-

tear induced release expands symmetrically.  The wound-induced expansion, however, 

does not expand evenly around the midline (Figure 23Aiv-vi).  We observe this trend in 

both wild-type tissue and under various experimental conditions.  Figure 23B shows tissue 

where Inx3 has been knocked down.  Again, wave propagation seems to be attenuated at 

the midline.  We find it interesting that the calcium wave propagation is centered on the 

midline, and not the wound, which was made left of the midline.   

The wave propagates faster when the notum is under tension.  Occasionally the 

flies are mounted in such a way that creates folds in the tissue.  We believe these folds 

indicate the tissue is under strain, as when a piece of fabric folds when one side is pulled 

or when matrix creases as cells apply force during migration (Ramos-Lewis, unpublished 

data).  Figure 23C and D show examples of this.  Unlike the thoracic midline, these folds 

are randomly generated across the tissue.  The faster propagation across these randomly 

located folds suggests there is something intrinsic to the properties of the fold, such as 

actomyosin contractility, that cause this effect.   
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Figure 23:  Asymmetric calcium wave expansion and propagation around wounds 
A) Basal calcium activity is low in unwounded tissue of a fly expressing GCaMP3.  Green 
dashed line marks the thoracic midline (i).  The micro-tear induced expansion is 
symmetrical around the wound (ii, iii).  The wound-induced expansion’s propagation is 
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inhibited in the region of the thoracic midline creating an asymmetrical expansion (iv-vi).  
Scale bar is 50 μm.  B) Asymmetrical expansion occurs in flies expressing GCaMP6m and 
Inx3 RNAi.  The wound-induced calcium wave does not propagate symmetrically across 
the midline (green dashed line).  However, the wave does appear to center on the midline 
and not the wound, which is located just left to the midline.   Scale bar is 50 μm.  C and D) 
A fold or crease is present in the wild-type regions of an internally controlled split-
expression system flies.  The region expressing IP3R RNAi is not shown.  On the right of 
the images in C. the tissue is outside of the optically sectioned focal plane, and appears 
black.  The fold is marked by red arrowheads.  Auto-fluorescence of the thin, waxy pupae 
cuticle allow us to visualize the fold (i).  The micro-tear induced expansion is relatively 
symmetric (ii and iii).  In both C and D, the wound-induced expansion propagates faster 
along the fold than in other regions (marked by green arrowhead) (iv). Scale bar is 50 μm.   

 
 

Because the first expansion event is not also affected by the midline, we conclude 

that our observations are not a result of altered tissue architecture along this region.  As 

randomly located tissue folds can also effect wave propagation, this effect is not likely a 

result of developmental differences, like gene expression profile.  We observe 

asymmetrical expansion even when gap junctions are blocked and the ligand driving the 

wound-induced expansion diffuses extracellularly.  Changes in tissue tension would not 

affect the extracellular diffusion of a ligand; the ligand would still diffuse radially.  Based on 

this, there are two logical explanations for these observations.  First, increased tissue 

tension could somehow make the cell more sensitive to the ligand so the ligand’s signal is 

translated into calcium faster.  The second explanation applies to a model where calcium 

and the ligand participate in a feedback loop, where calcium induced the release of more 

ligand.  Perhaps high tension and intracellular calcium are both required for the release of 

the ligand.  Assessing the role of tissue tension is a direct, controlled manner may help us 

distinguish between these two possibilities.   

We next aimed to directly manipulate tissue tension in a controlled fashion using 

our internally controlled split-expression system.  Using this system, we expressed 

constructs that would either increase or decrease tissue tension as a result of increasing 

or decreasing actomyosin contraction.  We found subtle differences between the time the 

wound-induced expansion appears in experimental and control regions.  The stills in 

Figure 24A show the calcium wave begins earlier for the wound-induced expansion when 

compared to controls.  This can also be seen in the graph of expansion over time in Figure 

24B.  By subtracting the time of expansion initiation for the experimental condition (texp) 

with the time of expansion initiation for the control condition (tcon), we can assess trends 

occurring over many samples.   
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Figure 24:  Calcium wave asymmetry occurs as a result of genetic perturbations to 
tissue tension.   
A) Stills comparing wave propagation into SqhEE and wild-type regions using our 
internally controlled split-expression system.  UAS-nucmCherry was used to identify the 
experimental domain, outlined in dashed red lines (i).  Prior to wounding, basal calcium 
levels are low (ii).  The micro-tear induced expansion is symmetrical (iii) but the wound-
induced expansion is not (iv).  The green circle is centered on the wound, overlays the 
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symmetrical expansion in (iii), and can be used to more easily distinguish the asymmetry 
in (vi and v).  The wound-induced expansion begins earlier in the SqhEE region.  Over 
time, the wave fronts even out (v).  B) Shows the expansion over time for both domains in 
the stills from (A).   The wound-induced calcium wave begins expanding sooner in the 
SqhEE region (blue line) when compared to controls (red line).  Other characterisics of the 
calcium wave appear similar between the regions.  The difference in time between the two 
is calculated by subtracting the experimental (texp) from control (tcon).  C) James O’Connor 
contributed ~70% of the samples and performed the original analysis for panel C.  The 
graph plots the time difference between the start of the wave in experimental and control 
regions, calculated as shown in (B).  The calcium wave starts first in the experimental 
region if points are in the blue half of the graph and starts first in the control region if the 
points fall into the red half.  Each point represents one wounded sample.  Multiple 
genotypes were compared.  SqhEE and RokCAT are expected to increase tissue tension 

while the Rok RNAi lines are expected to decrease tissue tension.  *p value is 0.0402.  **p 

value is 0.0031. 

  
Figure 24C compares the time difference between the start of the visible 

expansion for experimental and control regions.  The graph shows data from multiple 

samples and multiple genotypes.  SqhEE and RokCAT are expected to increase tissue 

tension by contracting the actomyosin cytoskeleton.  SqhEE is a partial phospho-mimetic 

for myosin regulatory light chain and RokCAT is a constitutively active kinase which 

phosphorylates myosin regulatory light chain286.  RokRNAi is expected to decrease tissue 

tension by preventing actomyosin contraction.  Like data from Figure 23, this data shows a 

subtle trend indicating that the calcium wave propagates earlier and/or more quickly into 

regions of high tension.  The opposite is true for regions of low tension.  This set of 

preliminary data suggests that the onset of expansion is altered, which is consistent with 

the hypothesis that the tension tunes the cell’s sensitivity to a ligand.  Because our data 

does not show the rate of expansion changes, it seems unlikely that tension plays a role in 

any potential calcium/ligand feedback loop mechanism of expansion.   

One limitation of this analysis is that we have not confirmed how the tissue 

mechanics of the notum have actually changed as a result of expressing these constructs.  

These constructs were chosen because they all function as described in other tissues.  

However, this does not guarantee they will have the same effect in the notum. We can 

determine the effect of each construct on tissue tension using CellFIT analysis, which 

maps relative tissue tensions based on cell shapes and cell morphology.  Our lab is 

currently building a fly that would allow us to visualize cell shapes and the pnr domain at 

the same time so that we can use CellFIT and strengthen these results.   
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APPENDIX C 

 
ALTERNATIVE WOUNDING MECHANISMS 

 

 

This appendix presents preliminary data for continuous-laser wounds and stab wounds. 

 

Calcium influx occurs in cells around continuous laser ablation wounds as well.  

Figure 25 shows two examples of this.  Continuous lasers do not generate a cavitation 

bubble and therefore are not expected to create the same extent of micro-tear damage 

observed around the pulsed laser ablation wounds we have previously described.  

Continuous lasers damage tissue with heat by decaying molecules over seconds.  We 

observe one calcium expansion event at continuous laser wounds.  When we imaged a 

continuous laser wound over a long time frame we found that calcium persisted in the 

cells near the wound margin for approximately an hour (data not shown, experiment 

performed by James O’Connor).  Flaring is observed, but the flares propagate around the 

wound for seconds rather than minutes.  We did not observe oscillation events as shown 

in Figure 14.  Further analysis is required to determine if differences we observe between 

continuous-laser wounds and pulsed-laser wounds are a result of the different damage 

profiles each method creates.  The different lasers could result in different amounts of 

lysate generated at the wound site.  See the Future Directions for discussion regarding the 

role of lysate in calcium dynamics.   

This data is quite preliminary, and without fully understanding the damage profile 

of continuous laser wounds it is difficult to interpret the results.  Theoretically, a continuous 

laser wound should be quite similar to a pulsed laser wound, without cavitation.  This 

would suggest that signals integrated by single cell wounds play a role in the tissue level 

wound response.  If the lab chooses to build a more comprehensive understanding of the 

damage profile and calcium dynamics of continuous wounds we can perform similar 

experiments to those described in Figure 7A, Figure 10B, Figure 11, Figure 16, Figure 19, 

and Figure 20.   
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Figure 25:  Calcium influx and propagation occurs around continuous laser 
wounds. 
A) Before wounding GCaMP6m fluorescence is low in the notum (i).  A wound is made by 
decaying the tissue with a continuous laser for ~2 seconds.  We refer to the first image 
taken after exposure as 0 seconds.  The small circle inside of the wounded region is 
photo-damaged, auto-fluorescent cuticle.  Cytosolic calcium concentrations rise in cells 
near the wound over the time frame of wounding (ii).  Calcium is present in neighboring 
cells further from the wound (iii).  The calcium wave slowly fades over the course of 
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minutes (iv-vi).  We observe some asymmetrical flaring (not shown) but not to the extent 
observed in pulsed laser ablation waves.  Scale bar = 50 μm. B) A continuous laser 
wound was made in another sample to show normal variability.  Calcium dynamics in 
panels Bi-vi are similar to those described in Ai-vi.  Scale bar = 50 μm. 

 
 As seen in Figure 15, calcium waves also occur around stab wounds.  Figure 26 

shows traces for the calcium expansion over time at these wounds.  The expansion 

events are much larger than laser ablation wounds, likely because the wound size is also 

much larger.  Visually, it appears that only one expansion event occurs around these 

wounds.  Based on our understanding of pulsed-laser ablation wounds, we would predict 

that the expansion we observe in stab wounds is similar to the wound-induced expansion.  

Because pulsed-laser ablation wound generate exaggerated amounts of micro-tearing, the 

micro-tear induced expansion is very obvious and easy to study.  We wound not expect 

stab wounds to have exaggerated micro-tearing and therefore we do not expect to see a 

micro-tear induced expansion.  However, in the traces we can identify inflection points in 

the curve.  These inflection points could indicate the presence of a second expansion 

merging with the first.     

 To learn more about this expansion, we can perform a kinematic analysis as 

shown in Figure 11.  In the analysis, we could chose to assume there are two expansion 

events, as in our pulsed laser wounds, and use the inflection points to break apart the first 

and second expansions.  We could also perform the analysis where we assume there is 

only one expansion event.  We can then compare the diffusion constants calculated from 

both of these scenarios to the diffusion constant calculated for the second expansion in 

Figure 11.  If the diffusion constant for the “one wave” analysis matches the diffusion 

constant that we have identified for the second, wound-induced expansion, then it is likely 

that the calcium wave we observe at stab wounds is mechanistically similar to the wound-

induced expansion at pulsed-laser ablation wounds.   

We could further test the similarities between stab wounds and ablation wounds by 

knocking down Gαq, PLCβ, and IP3R in the pnr domain before stab wounding.  Each of 

these RNAi constructs yielded significant differences from controls, therefore it should be 

easy to assess whether or not the calcium wave in stab wounds is attenuated without the 

internally controlled split-expression system.   
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Figure 26:  Calcium expansion over time in stab wounds 
Graphs show the average calcium radius over time for stab wounds.  Each graph 
represents one sample.  When the notum is stabbed, hemolymph bubbles out of the 
wound and can obscure the wound margin.  As a result, occasionally it is not possible to 
measure the radius of calcium until it expands away from the hemolymph bubble.  We do 
observe calcium flares around stab wounds.  However, the asymmetrical flares are not 
represented in this analysis due to radial averaging.   
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APPENDIX D 

 
LIGHT INDUCED CALCIUM WAVES 

 

 

 There is at least one previous report in the literature that light can induce calcium 

waves in non-stimulatory cells.  When chondrocytes containing a fluorescent calcium dye 

were exposed to intense light they exhibited spontaneous calcium transients287.  The 

calcium transients were attenuated when ROS was quenched or when exposed to less 

intense light.  These results suggest photo-bleaching of the cell was capable of producing 

sufficient ROS to stimulate calcium influx.  This is not entirely surprising as oxidative 

stress is known to alter calcium metabolism288-290.    

 We have observed that light induces calcium dynamics in the Drosophila notum.  

When a notum expressing GCaMP is exposed to epifluorescent light at the maximum 

intensity setting on our M2 Zeiss microscope for 40-60 seconds spontaneous calcium 

waves appear and propagate through the tissue (data not shown).  This does not occur 

when we expose the tissue to the lowest setting of epifluorescent light, even over long 

periods of time.  We have also confirmed that this does not occur when the tissue is 

exposed to the light from the scanning confocal (data not shown).  We suspect photo-

degradation releases sufficient ROS to activate a calcium wave.  This light induced wave 

could also be a response to heat.  However, after heat shocking the tissue in a water bath, 

we did not observe a calcium wave (data not shown).   

 It would be interesting to see if these calcium dynamics still occur when the tissue 

is soaked in a ROS quencher, such as catalase.  It would also be interesting to determine 

whether these calcium dynamics are acting through the Gαq pathway we have identified in 

Chapter 3.   
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