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Chapter I. Introduction 

1.1 Autism Spectrum Disorder and Technology 

Autism spectrum disorder (ASD) is a common disorder associated with enormous individual, familial, 

and social cost across the lifespan [1]. Its core deficits include impairments in social communication as 

well as repetitive and atypical patterns of behavior [2]. According to the Centers for Disease Control and 

Prevention (CDC), an estimated 1 in 68 children in the United States have ASD [3]. The cumulative ASD 

literature suggests earlier and more intensive behavioral interventions are efficacious for many children 

[4]. However, many families and service systems struggle to provide intensive and comprehensive 

evidence-based early intervention due to extreme resource limitations [5, 6]. The average lifetime cost of 

care for individuals with autism is estimated to be around $3.2 million [1] with associated annual care 

costs estimated to exceed $35 billion in the United States [7]. In conjunction with the individual, familial, 

and societal impact associated with ASD, these alarming figures underscore that effective identification 

and treatment of ASD is a public health emergency [8]. As such, there is an urgent need for more 

efficacious and less expensive treatments whose realistic application will yield more substantial impact on 

the neurodevelopmental trajectories of young children with ASD within resource strained environments. 

It is within this context, we propose the design and development of machine-assisted intervention 

technologies for three core impairments of ASD. 

The first core impairment that we have attempted to address is the imitation skill. Imitation involves 

translating from the perspective of another individual to oneself, and creating representation of this 

individual’s primary representation of the world [9]. Although the exact reasons of the imitation 

impairment associated with ASD are still unclear, evidence suggests that this imitation impairment may 

be related with the basic capability to map actions of others onto an imitative match by oneself [10]. 

Imitation is a critically important social communication skill that emerges early in life and it is recognized 

to play an important role in the development of cognitive, language, and social skills [11]. Children with 

ASD show powerful impairments in imitation and such deficits have been tied to a host of associated 

neurodevelopmental and learning challenges over time [12]. 

The second core impairment that we have looked at is the social orienting skill. Among multiple 

aspects of social communication development, social orienting is one of the most fundamental and critical 

skills that naturally develops in children [13]. Social orienting indicates spontaneous orientation to 

naturally occurring social stimuli in one’s environment [14], which is closely related to other important 

social communication skills such as joint attention. Unfortunately, children with ASD usually show 

powerful deficits in this development. My research focuses on Response to Name (RTN), which is an 
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important social orienting skill. RTN, as the name suggests, is a task that assesses how a child responds 

when his name is called. A decreased tendency to RTN is one of the most sensitive and specific predictors 

of whether an infant will later be diagnosed with ASD when he is old enough for a definitive diagnosis 

(typically 24 months or later) [15, 16]. RTN is also a key measurement of the standard ASD diagnostic 

assessment such as the Autism Diagnostic Observation Schedule (ADOS) [17].  

The third impairment that we have investigated is the joint attention skill. Joint attention skills are 

thought to be fundamental, or pivotal, social communication building blocks that are central to the 

etiology and treatment of ASD [18, 19]. At a basic level, joint attention refers to the development of 

specific skills that involve sharing attention with others (e.g., pointing, showing objects, and coordinating 

gaze). These exchanges enable young children to socially coordinate their attention with other people to 

more effectively learn from their environments. Fundamental differences in early joint attention skills 

have been demonstrated to underlie the deleterious neurodevelopmental cascade of the disorder and 

successful treatment of these deficits has been demonstrated to substantially improve numerous 

developmental skills across settings [19-21].   

 In recent years, researchers have proposed advanced technologies, including robotic systems [22, 23], 

virtual reality environments [24, 25], interaction games [26, 27], etc., as potential solutions for addressing 

these limits of ASD intervention. Despite hypothesized theoretical benefits of such applications, major 

challenges exist regarding implementing such systems. They must be (1) capable of robust autonomous 

functioning, (2) relevant and important to the core features of ASD at appropriate points in development, 

and (3) potentially realistic as cost-effective intervention systems outside of highly specialized research 

environments. In an effort to address these challenges, my research mainly focuses on robot-mediated and 

computer-assisted interventions for children with ASD.  

Researchers have concluded that adaptive autonomous technology has the potential for improving 

social communication abilities for children with ASD [23, 28]. However, only a few studies of adaptive 

technological and robotic interaction with children with ASD have appeared in the literature: proximity-

based closed-loop robotic interaction [29, 30], haptic interaction [31], adaptive robot-assisted play [32], 

video-game responses to physiological signals [27], and turn-taking imitation interactions in school-aged 

children [30]. Although all of these works described robust systems for adaptive interaction, the 

paradigms explored had limited direct relevance to the core deficits of ASD at young ages and instead 

focused on proof-of-concept task and game performance or school-aged children. In this chapter, we 

introduce the background and development status of robot-mediated and computer-assisted intervention 

for children with ASD and a summary of my research.  
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1.2 Human-machine Interaction for Children with ASD 

Human-machine interaction is the interaction and communication between a human user and a machine 

via a human-machine interface. The “machine” usually indicates a system with a certain level of ability 

which provides the user with proper feedback. These systems can be built with a robot [33], a computer 

[34], or a smart phone [35]. This work mainly focused on robot-mediated and computer-assisted 

intervention. The background of these two research topics are introduced below. 

1.2.1 Robot-mediated intervention for children with ASD 

Robotic technology is gaining momentum as an intervention platform for children with ASD. Since 

1976, when Weir and Emanuel [36] found that robots could improve social interaction for children with 

ASD, a plethora of works have been published that demonstrated the potential and promise of 

intervention based on systems for children with ASD. Such work includes exploring the response of 

children with ASD to robot-like characteristics; eliciting specific behaviors; modeling, teaching, and 

practicing skills; as well as providing feedback and encouragement during interactions [22, 37]. Robots 

have several advantages over traditional human-led interactions, including precise control of intervention 

modality, robust consistency, simplified features, autonomous operation, and potential cost effectiveness. 

Initial results obtained from applying robotic technology to ASD intervention have consistently shown a 

unique potential to elicit interest and attention in young children with ASD [23, 38, 39]. The emerging 

robotic and technological literature has demonstrated that many individuals with ASD show a preference 

for robot-like characters over non-robotic toys [40, 41] and in some circumstances even responded faster 

when cued by robotic movement rather than human movement [42, 43]. Although most of these 

researches have focused on school-aged children and adults, the downward extension of this preference 

for robotic and technological stimuli is promising. Many very young children with and at-risk for ASD 

often preferentially orient to nonsocial contingencies, videos, and arrays rather than biological motion or 

video [44, 45]. Further, a number of studies have indicated the advantages of robotic systems over 

animated computer characters for skill learning and optimal engagement. This is likely due to the 

capability of robotic systems to utilize physical motion in a manner not possible in screen-based 

technologies [46, 47].   

There is significant heterogeneity in studies conducted to date regarding sample size, interaction type, 

and ages of participants that creates challenges when summarizing the literature. The age of participants 

spreads  from preschoolers [48] to teenagers [42]. The user group ranges in size from one [49] to dozens 

[50, 51], and to hundreds [52]. The interaction patterns mainly include free interactions [30] as well as 

task specific interactions [29, 53]. There were both longitudinal, multi-session studies [49] and short term, 
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single session studies. The results in many multi-session studies showed that the children’s performance 

and attention on the robot progressed across sessions [49, 54]. Because ASD is four times more prevalent 

in males than females, the majority of participants were males, with some exceptions that included equal 

numbers of both sexes [42]. Although most studies conclude that their findings need more extensive 

testing in the future, this did not often happen, as testing beyond a pilot study is a time, cost and labor 

intensive process. 

1.2.1.1 Robotic platform development 

There are three main categories of robots that have been utilized to interact with children with ASD. 

The first category is a traditional machine-like robot. Costa et al. [49] used a LEGO robot to help a child 

with ASD learn how to share objects and fulfill orders. Pierno et al. [42] used a robot arm to study the 

imitation behavior of children with ASD. Liu et al. [55] developed an interactive basketball playing robot, 

which could adapt its behavior based on the participant’s emotional state. However, none of these robots 

resembled living creatures.  

 The second category is an animal-like robot. Several studies have found that robots with animal 

features can elicit social behaviors from children with ASD. For example, Stanton et al. [56] tested the 

interaction between a robotic dog AIBO and children with ASD. The results showed that the participants 

were engaged and showed fewer autism symptoms such as verbal engagement and reciprocal interaction. 

Dickstein-Fischer et al.[57] built a robotic penguin for the same purpose. Kim et al.[58] studied how a 

robotic dinosaur Pleo could elicit social behaviors form children with ASD. Even though the outward 

appearances were very different, each of these different animalistic designs showed promise for social 

intervention purposes.  

The third category is a humanoid robot, which currently is the most widely used robot for ASD related 

studies with robots. Even though the appearances of most of the humanoid robots are kept relatively 

simpler than a real person, their functionalities have been dramatically improved in recent years.  Pioggia 

et al. [59] developed a robotic face (called FACE) to interact with participants based on their facial 

expressions, body gestures and psychophysical signals. Goodrich et al. [60] developed a robot with two 

arms and a flat screen face, which presented different facial expressions. Kozima et al. [61] developed an 

upper body humanoid robot, Infanoid, to investigate its ability to affect social intentionality, identification 

and communication as part of ASD intervention. Some researchers created full body robots, as well. 

Fujimoto et al. [62] used a full body humanoid robot to teach children with ASD to imitate arm gestural 

skills. Amirabdollahian et al. [31], Wainer et al. [63], and Dautenhahn et, al. [64] developed a full body 

child-like robot, KASPAR, which is capable of eliciting different social communication behaviors such as 
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joint attention, imitation, tactile exploring, and collaborative game playing. Still other researchers have 

used full body robots within modifiable environments, such as Feil-Seifer et al. [30] who set a humanoid 

robot on top of a mobile robot and used it to measure children’s interaction pattern with respect to 

distance-based features. 

Each of these robots was developed within research labs. However, there are also commercial robotic 

platforms that have been broadly applied to work with children with ASD, such as the full body 

humanoid robots NAO [29, 65] and Zeno [66, 67]. An advantage of using commercial robots is that a 

design based on them can be easily reproduced and improved by different groups. However, a general 

robot platform may not be as flexible and cost effective as a task-customized robot developed as part of 

research.  

During a robot-mediated intervention, the robot usually serves as a game mediator and promoter [49], 

and many functionalities are targeted as such. For example, a primary parameter when designing a robot 

for ASD intervention is the motion flexibility, which depends on the intervention needs (and the robot’s 

role). A simple robot with only a few degrees of freedom such as “Keepon” [68] is enough to catch 

children’s attention, while a more complex robot like NAO [54] is necessary for explicit imitation 

intervention. Another parameter is the need to include other peripheral sensing technologies to track the 

participant’s behavior. For example, Boccanfuso et al. developed a doll-like robot CHARLIE [69] with 

computer vision-based hand and face tracking functions. Chuah et al. developed a robot LILI [70] that 

had embedded functionalities including gesture recognition and speech recognition. Finally, Ravindra et 

al. [71] developed a robot with gaze tracking function for teaching joint attention skills for children with 

ASD.  

As seen from the above discussion, given the wide range of designs, functions, and capabilities, it is 

very important to consider a robot’s role within an intervention when deciding on its ability to move, 

catch and direct a child’s attention, and gather data about the children with ASD they are helping to treat. 

It may be more appropriate for certain features to be important in some intervention designs (e.g., the 

prominence of robot FACE for promoting facial expressions) than others (e.g., the hand-tracking abilities 

of robot CHARLIE). Although all of these technologies have their own limitations in terms of detection 

accuracy, robustness, and detection range, they represent the general movement of the field toward ideal 

robotic platforms for different environments and treatment goals. 

1.2.1.2 Patterns of robot-children interactions 

A primary question raised regarding using robotic technology for children with ASD is whether the 

children will accept the robots and interact with them as opposed to humans, due to the differences in the 
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robots’ physical appearance, voice, and behavior. In 2005, Robins et al. [72] conducted a study where the 

same person interacted with children with ASD in two ways, first while dressing and acting like a robot 

and then while dressing and acting normally. Similar to other works [40, 54, 58], their results showed that 

children with ASD interacted more with the person when he had a simplified robotic appearance. Indeed, 

children with ASD are interested in robots with a simple appearance. For example, a very simple small 

yellow snowman-like robot “Keepon”, developed by Kozima et al. [68] was successful in eliciting 

positive responses from children with ASD. The most obvious appearance features of Keepon are simply 

an elastic body, two eyes and one nose. However, the robot successfully elicited positive responses from 

children with ASD such as playful behaviors with Keepon and induced relaxed mood. Even today, the 

design principle for robot appearance in many studies still follows the principle of simplicity [73].  

Currently, data collection on social interactions for robot-mediated intervention is performed using a 

combination of manual video coding as well as by autonomous methods within the system. In the early 

days of robotic intervention work, most studies were forced to utilize manual video coding to analyze data, 

most of which consisted of gaze pattern, tactile pattern, gestures, speech and other interaction specific 

behaviors [31, 42, 49, 56]. Later on, as autonomous technologies have improved dramatically, more and 

more children’s behaviors and responses can be tracked and recorded automatically. This laid the 

groundwork for the development of closed-loop, adaptive interaction systems using increasingly complex, 

integrated technologies. This includes tracking participants’ movements within the test environment. For 

example, in Pierno et al. [42], the participant’s arm motion was recorded in 3D space by using infrared 

cameras that tracked passive markers put on the participants’ arms. Bekele et al. [65] applied a camera 

based head tracking system to approximate children’s gaze direction. Greczek et al. [29] used Microsoft 

Kinect to track the motion of the participants.  

Both manual and automated data recording methods have their own advantages and disadvantages. The 

manual video coding method can be used for any visually measurable parameter that cannot be effectively 

and automatically detected by current technology. However, video coding is impacted by the personal 

bias of the coder, and it is also labor and time intensive. Technology based data recording methods reduce 

labor time and costs, and avoid personal biases, such as the coder’s attention and habits. However, the 

signals that can be detected automatically are still limited. For instance, camera based methods are 

sensitive to illumination and occlusion. Limited tracking rules may not be flexible enough to 

accommodate different types of participants and for complex interaction recognition. Even so, the 

development of these technologies represents a primary push for future research trends. Based upon 

recent advancement, we are optimistic that more and more methods will be developed to ameliorate these 

current limitations. 
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Despite this hypothesized advantage, there have actually been relatively few systematic and adequately 

controlled applications of robotic technology to investigate the impact of directed intervention and 

feedback approaches [58, 74-76]. There is a need for robotic systems in terms of application to 

intervention settings necessitating extended and meaningful adaptive interactions. We believe that 

adaptive interaction, operationalized as within system changes in response to measured behaviors, is 

important for individualization of intervention and ultimately addressing core deficits of ASD [77]. Only 

a few adaptive robotic interaction works with children with ASD have appeared in the literature: 

proximity-based closed-loop robotic interaction [30], haptic interaction [78], and closed-loop adaptive 

interaction work based on affective cues inferred from physiological signals [79]. While all of these 

works were able to put forth robust systems for adaptive interaction, the paradigms explored had very 

little direct relevance to the core deficits of ASD in that they are focused on simple task and game 

performance. Recent work has suggested that robotic intervention systems designed to operate in “closed-

loop” form [80] and targeted to early pivotal skills for children with ASD [81] may represent more 

promising paradigms for extended and meaningful interaction. The development of adaptive interaction 

realizing within-system changes in response to detected and measured behaviors is extremely important 

for individualization of meaningful technological interventions, as effective treatment of young children 

with ASD often requires extended and meaningful adaptive interactions [82].   

Therefore, developing autonomous closed-loop robotic systems that can adaptively adjust their 

behavior based on the children’s response in a core-deficit related intervention is one of the most 

important goals in my research. The robotic systems built in my research are based on principles inspired 

by Scassellati et al. [23] that a robot applied in interventions should possess three important features: 1) 

the robot must be either controlled remotely or programmed to autonomously observe physical behavior; 

2) the robot must know when to begin and sense the child’s response with sufficient accuracy, and 3) the 

robot must be able to map those response to its own, potentially limited, effectors in order to replicate the 

behavior as closely as possible, in a recognizable fashion.  

The content of this section in inherited from a book chapter I composed with my advisors and collogues 

[83]. 

1.2.2 Extended computer-assisted intervention for children with ASD 

Besides robots, computer-assisted intervention is another important type of technological application on 

children with ASD. In general, this application includes any intervention conveyed by one or more 

computers. Human-computer interaction has been widely applied as an assistive technology for 

neurobehavioral studies, especially for reinforcing desirable behaviors [84-87]. Children with ASD 
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usually show impairments in sensory perception, which may lead to difficulties in discriminating and 

screening out unnecessary information from overall meaning [88-90]. Computer-assisted technology has 

the advantage to be designed in a way that only primary information is presented to the children. 

Furthermore, studies have shown that when stimuli are more predictable, the responsiveness of children 

with ASD increases accordingly [91]. Similar to robotic technology, computer-assisted technology is 

capable of providing high controllability, precision, consistency, and robustness. This advantage is one of 

the main reasons why computer-assisted intervention is attractive in ASD research. Computer-assisted 

intervention for children with ASD can be traced back to decades ago. A representative work was 

conducted in 1973 by Colby [92], where computer programs were used to stimulate language 

development in children with ASD. In this work, the participants pressed letters on a keyboard, and then 

audio as well as animations associated with the letter would show up to mimic spontaneous language 

acquisition. Since then, a great number of works have explored computer-assisted intervention for 

children with ASD. Most of these designs took the form of games or educational tools to enhance the 

engagement of participants. 

1.2.2.1 Conventional computer-assisted intervention  

Early works mainly emphasized on multimedia when it became popular in computer applications. 

Williams et al. [88] compared computer-assisted reading (reading material presented on computer screen) 

with traditional book reading by children with ASD. Eight children aged 3-5 years participated in an 

experiment for 10 weeks, where they were randomly allocated to the computer or book condition. The 

results showed that the participants were less resistant to reading and spent more time on the reading task 

in the computer condition than that in the book condition. Heimann et al. [93] studied the effect of using 

Alpha, which was an interactive and child-initiated computer program, on helping children with ASD 

with reading and communication skills. This computer program was used by the students as 

supplementary materials to their regular reading and writing activities. This program was used to practice 

individual words, create sentences, attest words and test sentences. A user study with 11 children with 

ASD showed that using Alpha significantly improved their word reading and phonological awareness. 

Hagiwara and Myles [94] investigated the effects of a computer-based story intervention on youth with 

ASD. The author claimed that this was the first attempt to implement a multimedia social story 

intervention. The multimedia social story computer programs contained text of social stories, movies of 

the participants’ actions corresponding to social story sentences, audio that read aloud sentences using a 

synthesized computer voice, and a navigational clickable button. Even though these computer programs 

and interaction activities looked fairly simple, these pioneering works indicated great potential of using 

computer as an effective intervention tool.  
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Along with the development of computer technology, computer was increasingly accepted by people 

both as part of their daily life and a potential tool for neural rehabilitation. New technologies also offered 

more possibility and complex functionality for ASD intervention. For example, Hetzroni and Tannous [95] 

investigated a computer-assisted intervention for enhancing communication skills in children with ASD. 

This work applied a software that provided conversational interaction simulation regarding play, food, 

and hygiene. Each of the tree topics included short animations as well as question asking and answering. 

Five school-aged children with ASD tried the software.  The user study results showed that the practice in 

this controlled and structured interaction provided by the software had a great potential to teach new 

knowledge to children with ASD. Most importantly, they could transfer this knowledge to the natural 

classroom environment. Passerino et al. [96] conducted a 3.5 years multi-case longitudinal user study on 

the impact of a digital learning environment, named Eduquito, for students with ASD.  Eduquito were 

used for mail, chat, bulletin board, forum, collaborative stories, etc. The results showed that, after the 

longitudinal usage of the digital learning environment, the participants improved in their communication 

levels of autonomy, self-regulation, indirect self-control, and social interaction. The author claimed that 

the controllable levels of complexity which allowed the system to be adjusted based on the need of each 

subject contributed primarily to this positive result. Silver and Oakes [97] introduced a computer program 

for teaching children with ASD recognizing and predicting emotional responses in others. Twenty-two 

children participated in a user study where they practiced recognizing, correlating, and predicting pictures 

of facial expressions, verbal description and pictures correlated to different emotions on a computer 

screen. Results showed improvement in task performance.  

1.2.2.2  Computer-assisted intervention based on virtual reality techniques  

In recent years, virtual reality (VR) based intervention emerged as a particularly promising new 

technology for children with ASD, where interactive environment and peers are created to help children 

with ASD build communication skills. VR (or virtual environment) is a computer generated 3D 

simulation of real or imaginary environment [98]. A major part of VR based studies for children with 

ASD put emphasis on simulating real-life scenarios. For instance, Wallace et al. [99] investigated whether 

an immersive VR environment could simulate ecologically valid situation. Ten children with ASD and 14 

typically developing (TD) adolescents participated in a user study, where each of the participant 

experienced a virtual residential street, a school playground, and school corridor scenes. Each of these 

scenes was embedded with realistic acoustical background and avatars. Results showed that the children 

with ASD had similar levels of presence compared with TD peers and did not have negative sensory 

experiences. The immersive VR environment was realistic enough to simulate authentic social situation. 

Mineo et al. [100] studied the engagement potential of animated video, video of self, video of a familiar 
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person engaged with an immersive VR, and immersion of self in the VR game. Fourty-two participants’ 

engagement was measured by gaze duration and vocalization. In general, results showed that all of these 

stimuli held students’ visual attention well, at least for a short period of time. In some cases, seeing 

oneself in the stimuli generated greater gaze duration as compared to seeing another person. Besides, the 

VR stimulated more vocalization than the traditional video sessions.  

A few studies applied avatar as interaction cues. Tartaro and Cassell [101] developed a 3D life size 

animated virtual peer for children with ASD which was language enabled and could share toys with the 

children and respond to children’s input. This virtual figure, ‘Sam’, interacted with children by using eye-

gaze, body and head postures, and speech to negotiate turns. The behavior of Sam was controlled by a 

system operator or the child who interacted with him. Improved engagement and social communication 

behaviors were stimulated during the interaction. Bernardini et al. [102] developed ECHOES, which was 

an intelligent serious game for practicing social communication skills in children with ASD. ECHOES 

used a 3D intelligent virtual character as an interaction agent. In different computer simulated social 

situations, the avatar acted as a peer or a tutor and interacted with the children with the help a 2D sensory 

garden. Twenty-nine children with ASD tried ECHOES, and the results showed that ECHOES has a 

potential to be applied in real-world and school environment for teaching communication skills to 

children with ASD.  

There were also other VR studies oriented toward particular skills. Moore et al. [103] and Bekele et al. 

[25] developed VR-based program to evaluate how children with ASD identify and make inferences from 

different facial expressions. In these two works, different facial expressions of emotions were displayed 

by avatars, such as happiness, sadness, and anger. The participant was required to identify the 

corresponding emotion based on the facial expressions. Patterns of the participants gaze were analyzed 

and compared with TD peers. The results provided quantitative description of the difference between the 

two groups. Wade et al. [104] developed VR driving simulations to help adolescences with ASD learn 

how to drive a car and analyze their driving behaviors. In this work, the participants operated a physical 

steering wheel, gas and brake pedals navigated through a virtual city. The participant’s affective status 

and gaze information were monitored during the whole interaction. Results showed that the driving 

performance of the participants improved after multi-session interaction.  

1.2.2.3 Discussion on computer-assisted intervention  

As we can see from the examples listed above, the key interaction cues affiliated with computer-

assisted technology for children with ASD include verbal communication, eye gaze, body gesture, 

emotion recognition, etc. A review article by Grynszpan et al. [105] evaluated innovative technology-
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based interventions of ASD. This article systematically summarized research that used pre-post design to 

assess the effect of computer programs, virtual reality, and robotics on children with ASD. The author 

concluded that in general, technology-based interventions significantly improved the participants’ 

performance compared with that before intervention, and the mean effect size was medium. This 

summary revealed the importance of investigating machine-assisted interventions for children with ASD. 

Although the works reviewed indicate successful application of computer-based intervention, these 

systems have several limitations, which led to our goal of designing an enhanced human-computer 

interaction method for young children with ASD to address the following isssues:  

1) Many of the previous studies used Wizard of Oz method (for example, an experimenter controlled 

the behavior of avatars), where a human operator was needed during interaction. However, one of the 

ultimate goals of applying technology in ASD intervention is to reduce human labor and the 

corresponding cost. Thus developing autonomous closed-loop system which does not require Wizard of 

Oz operation is critical. The system developed shall be able to adapt its behavior based on the 

participant’s performance in real-time. 

2) Most of the existing studies are oriented towards school-age and/or older children. However, 

evidence suggests that early detection and intervention is critical to optimal treatment for ASD [106, 107], 

when brain is still malleable. Therefore, developing technology with proper functionality and interaction 

protocol for toddlers with ASD and even younger infants at risk of ASD will be of great benefit. 

Traditional computer-assisted intervention uses conventional interfaces such as a keyboard and a mouse. 

However, toddlers and infants are too young to operate these hardware. Besides, operating computer 

accessories is not typical in daily communication, either. Some VR-based interaction applied projected 

immersive environment which could over stimulate toddlers and infants, and some other studies used the 

head mounted display (HMD) which is usually too heavy and too big to be worn by young children. Thus 

extending interaction interface that is not limited to keyboard, mouse, over stimulated projection, and 

HMD is necessary. 

3) Similar as robotic intervention systems, computer-assisted intervention systems provide objective 

quantitative measurements regarding the participants’ behavior and performance. Compared with 

traditional methods (e.g. human observation and manual video coding), objective measures do not include 

personal bias introduced by human examiners, and thus are more reliable in many cases.  
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1.3 Summary of the Dissertation Research 

This dissertation focuses on the intervention of three core deficits of ASD: 1) imitation skill; 2) social 

orienting skill; and 3) joint attention skill. This research addresses a few challenges in this field that 

prevent the development of fully autonomous intervention systems. These challenges are: 1) how to target 

the core deficits of ASD using machine-assisted technologies; 2) how to make the system adaptive based 

on children’s real-time response; 3) how to detect interaction cues non-invasively; and 4) how to validate 

skill generalization from machine-assisted intervention to human-human interaction. Each of these studies 

is briefly introduced in this chapter, while the details of each study are discussed in Chapter II to Chapter 

VII.   

1.3.1 Autonomous robot-mediated imitation intervention 

As literature has demonstrated that many individuals with ASD show a preference for robot-like 

characteristics over non-robotic toys [40, 41] and in some circumstances even respond faster when cued 

by robotic movement rather than human movement [42, 108], we were interested in developing a fully 

autonomous robotic system to help teach children with ASD motor imitation skills. Specifically, we 

studied how children with ASD imitated a humanoid robot’s arm gestures.  

1.3.1.1 Single gesture imitation intervention 

Chapter II is a comprehensive assemblage of two published papers [53, 109]. This chapter describes the 

development and initial application of a non-invasive intelligent robotic intervention system, Robot-

mediated Imitation Skill Intervention Architecture 1 (RISIA1), which was capable of dynamic and 

individualized interaction with potential relevance to improve imitation skills for young children with 

ASD. RISIA1 was embedded within the robot NAO and a Microsoft Kinect [110]. The Kinect was placed 

in front of the participant to track his/her body movement, and the tracked data were sent to a newly 

designed FSM-based gesture recognition module for computing imitation performance in real time. Based 

on the performance of the participant, the robot could even recognize partially finished gestures and give 

feedback to the child accordingly. 

Eight children with ASD and 8 typically developing (TD) children participated in a user study. Each 

participant had two human administered sub-sessions and two robot administered sub-sessions under an 

adaptive interactive protocol. Four different gestures, one gesture per session, were exhaustively tested in 

a randomized order. We compared participants’ imitation performance and attention towards the 

robot/human administrator between the robot sessions and the human sessions. 
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 In general, the group with ASD looked at the robot longer compared with that of the human therapist, 

while TD group paid similar attention to robot and human therapist. The group with ASD required a 

similar amount of time to complete the tasks in both robot and human sessions, while the TD group spent 

more time to complete the robot session. Given that impairments in imitation representing a core 

symptom of ASD, the TD group were more successful than the group with ASD across both conditions 

and did not demonstrate much difference in performance between the robot and human sessions. Within 

the group with ASD, children were far more successful imitating the target gestures in the robot session 

than that in the human session. 

1.3.1.2 Mixed gesture imitation intervention 

In children’s daily life, activities such as playing a game, playing a musical instrument, and dancing 

require combination of simple gestures to accomplish a task. Mixed gesture was defined as simultaneous 

execution of multiple simple gestures from a participant. Chapter III is based on a published article [111] 

on mixed gesture detection. This chapter describes a new system, Robot-mediated Imitation Skill 

Intervention Architecture 2 (RISIA2), which extended RISIA1 by introducing a new Mixed Gesture 

Recognition and Spotting (MGRS) algorithm. MGRS is capable of detecting mixed gestures, as well as 

identifying (“spotting”) the start and the end of each detected gesture. A new intervention protocol was 

also designed to test this algorithm. Under this protocol, a preliminary user study was conducted with 

children with ASD and their typically developing (TD) peers to show the feasibility and potential 

usefulness of RISIA2. 

Four children with ASD and 2 TD children with different imitation abilities tested the accuracy of 

MGRS algorithm and the extended interaction design. The MGRS algorithm was validated by the gesture 

data collected from the participants. The gesture recognition and spotting results computed from MGRS 

was compared with human coded result on the same experimental data. The comparison showed that 

MGRS was accurate in both recognizing the type of the gestures performed and spotting the start and end 

time point of the performed gestures.  

1.3.2 Autonomous computer-assisted social orienting intervention 

Chapter IV was based on one published article [28] and one accepted article [112]. The primary 

objective of this chapter is to present a novel autonomous social orienting intervention system (ASOTS) 

with potential for aiding in both screening whether a child has such a deficit and improving his/her skill 

when needed. ASOTS was designed for social orienting skill intervention that can be adapted for various 

paradigms. In this chapter, we focus on an important social orienting skill, Response to Name (RTN), to 
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demonstrate the usefulness of this novel system. RTN, as the name suggests, is a task that assesses how a 

child responds when his/her name is called. 

ASOTS enables computer-based name calling from a wide range of angles around a participant by 

providing a distributed display mechanism, allows real-time attention inference of the participant through 

gaze tracking using a distributed array of cameras and offers an adaptive attention guiding mechanism to 

shape his/her response. The ultimate goal of the RTN intervention is to have the child successfully 

respond to caregivers’ attempts to garner attention by calling his/her name from a variety of locations 

within the learning environment. This new system was tested via a set of experiments with 10 typically 

developing (TD) infants as well as 10 toddlers with ASD. 

Experimental results showed that the gaze tracking method applied in ASOTS was accurate and 

successfully detected the attentional preference of the participant. The participants showed great 

engagement during the interaction and spent the majority of the session focusing on the interaction 

environment. The participants also successfully responded to the name calling in almost all the sessions, 

with the help of the attention attractor.  

1.3.3 Semi-autonomous robot-mediated joint attention intervention 

Bekele et al. [65] proposed an adaptive and individualized robot-mediated system, ARIA, for teaching 

joint attention skills to children with ASD. The system was composed of the humanoid robot NAO, with 

its vision augmented by a network of cameras for real-time head pose tracking. Based on the child’s head 

movement, the robot intelligently adapted itself to generate prompts and reinforcements to promote joint 

attention skills. Results showed that the participant achieved a high target hit rate in robot administrated 

session. The participants with ASD also had a statistically significant preferential orientation towards the 

robot as compared to the human therapist. While ARIA was an autonomous system, only 60% of the 

participants with ASD could finish the user study. 75% of the participants who could not complete the 

study refused to wear a sensory hat which was necessary for head pose estimation. Furthermore, this 

study was a single session study and as such did not provide any indication on whether the children would 

respond similarly over multiple sessions. 

Therefore, in order to further investigate the impact of robot-mediated joint attention intervention, we 

modified the ARIA architecture in Chapter V. The content of this chapter is based on a published article 

[54]. In this study, an eye tracker was embedded in the robotic system to monitor the gaze of the child on 

the robot non-invasively. A human therapist was involved in the loop to replace the hat and the camera 

system that determined when and how the child responded to robotic prompts. A longitudinal user study 

was conducted with 6 children with ASD. Each participant had 4 sessions on different dates. In each 



15 
 

session, a similar interaction protocol to that in the work of ARIA was applied, where repeated trials were 

provided to the participant. 

This small user study indicated that the children with ASD documented sustained interest with the 

humanoid robot NAO over several sessions and demonstrated improved performance within system 

regarding joint attention skills. From session 1 to session 4, the participants needed lower prompt levels to 

hit the target. Meanwhile, there was no significant difference on the time they spent on looking at the 

robot administrator.  

1.3.4 Autonomous robot-mediated joint attention intervention 

The small scale longitudinal user study discussed in Chapter V encouraged us to improve the system 

into a fully autonomous robot-mediated joint attention intervention system and conduct a larger scale 

longitudinal user study. The composition of Chapter VI is based on a submitted journal manuscript [113]. 

In this study, we developed a new non-invasive autonomous robot-mediated joint attention intervention 

system, named Norris. Norris inherited the advantages and eliminated the disadvantages of our previous 

works. Norris was embedded with a new non-invasive gaze-tracking method to form a close-loop 

interaction, and thus no invasive physical sensors or human operations were needed. The new system also 

worked autonomously following the Least-to-Most (LTM) interaction protocol. LTM is a widely applied 

methodology and is not limited to joint attention intervention. However, how to formally model LTM so 

that it can be easily implemented in a robotic system was still unanswered. Such a model, as a general 

guideline, will benefit the design and implementation of other robotic systems, regardless of which 

particular skill a system is designed for. Therefore, we proposed a LTM-based robot-mediated interaction 

(LTM-RI) model to solve this problem. In this chapter, LTM-RI is used to describe the interaction logic 

of Norris.  

We tested Norris and LTM-RI in a pilot longitudinal user study with 14 young children with ASD. As 

the study discussed in Chapter V, each participant in the current study experienced 4 intervention sessions. 

The completion rate was 100%. We also found that the participants’ initial interest on the robot held over 

the sessions, and their within-system joint attention skills improved significantly. The results also proved 

the effectiveness of the LTM-RI model: i.e., the higher the joint attention prompt level, the higher the 

probability that the participants hit the target; and the participants could hit the target eventually in almost 

all the trials, given the designed LTM-RI prompt hierarchy. 
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1.3.5 Exploration of the Generalization from Robot-mediated Joint Attention Intervention to 

Human-Human Interaction 

Although the initial results in Chapter VI are promising, it is unclear whether the robot-mediated 

intervention has a positive impact on children with ASD in their daily interactions with humans. This is a 

fundamental question that needs to be answered, because their potential for generalization to human-

human interactions reflects the ultimate value of robot-mediated interventions. In Chapter VII, we 

explored whether the robot-mediated intervention provided by Norris could help improve the performance 

of children with ASD in human-human interaction. In other words, we investigated whether the joint 

attention skills learnt by children with ASD within the Norris system were generalized to social 

communication with humans.  

We conducted a more rigorous pilot randomized control study with 11 children with ASD. Children 

were randomized into an immediate participation group or a waitlist control group and experienced 

strictly scheduled robot-mediated interventions. Their performance in both human-robot interaction and 

human-human interaction was assessed. This group of participants had a lower baseline within-system 

performance compared to the participants in Chapter VI. The results showed that participants who 

received the robot-mediated intervention improved more in human-human interaction, compared with the 

participants who did not receive the intervention. In addition, the participants who improved in human-

robot interaction gained more improvement in human-human interaction, compared with the participants 

who did not improve in human-robot interaction. Even though we did not observe significant change 

regarding the HRI performance for this particular participant group, these data are promising enough for 

us to continue with the study to observe what happens as sample size increases. Ultimately, by conducting 

longitudinal user studies with fine-tuned machine-assisted intervention systems and reliable psychological 

evaluations, it will be clearer how HRI impacts children with ASD in their daily interactions. 
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Chapter II. Robot-mediated Single Gesture Imitation Intervention 

2.1 Abstract 

In this chapter we present a novel robot-mediated intervention system for imitation skill learning, 

which is considered a core deficit area for children with ASD. The Robot-mediated Imitation Skill 

Intervention Architecture 1 (RISIA1) is designed in such a manner that it can operate either completely 

autonomously or in coordination with a human therapist depending on the intervention need. A finite state 

machine based gesture recognition algorithm was proposed to recognize both partially and fully 

completed gestures. The recognition results were used by the robot to provide individualized feedback to 

the participants regarding their imitation performance. Preliminary results show that this novel robotic 

system draws more attention from the children with ASD and teaches gestures more effectively as 

compared to a human therapist. While no broad generalized conclusions can be made about the 

effectiveness of RISIA1 based on our small user studies, initial results are encouraging and justify further 

exploration in the future.  

Keywords—Autism Spectrum Disorder, Imitation Skill Intervention, Robot and Autism, Robot-

mediated Intervention. 

2.2 Introduction 

In the current work, we describe the development and initial application of a non-invasive intelligent 

robotic intervention system capable of dynamic and individualized interaction with potential relevance to 

improving imitation skills for young children with ASD. Imitation involves translating from the 

perspective of another individual to oneself, and creating representation of this individual’s primary 

representation of the world [1]. Although the exact reasons of the imitation impairment associated with 

ASD is still unclear, evidence suggests that this imitation impairment may be related with the basic ability 

to map actions of others onto an imitative match by oneself [2]. Imitation is a critically important social 

communication skill that emerges early in life and it is theorized to play an important role in the 

development of cognitive, language, and social skills [3]. Children with ASD show powerful impairments 

in imitation and such deficits have been tied to a host of associated neurodevelopmental and learning 

challenges over time[4].  

There are only a few preliminary robotic studies reported on imitation learning for children with ASD. 

Duquette et al. [5] compared the impact of a mobile robot Tito with a human therapist on the imitation 

behavior of children with ASD. The participants paired with the robot demonstrated more shared attention 

and imitated more facial expression, while the participants paired with the human imitated more body 



24 
 

movement. Bugnariu et al. [6] developed a method to quantify imitation using a robot, kinematic data and 

a Dynamic Time Warping algorithm. Cabibihan et al. [7] claimed that imitation skills taught with the aid 

of humanoid robots had potential to be generalized with people. Robins et al. [8] conducted a longitudinal 

study where children freely interacted with a humanoid robot Robota where the participants exhibited 

diverse imitation behaviors after repeated exposure. Srinivasan et al. [9] conducted a interaction study 

with a small humanoid robot Isobot. Results showed that the task-specific imitation and generalized 

praxis performance improved for a group of typically developing children and one child with ASD. 

 The imitation intervention literature suggests that intervention approaches are most effective when 

children show sustained engagement with a variety of objects, can be utilized within intrinsically 

motivating settings, and when careful adaptation to small gains and shifts can be incorporated and utilized 

over longer intervals of time [4]. 

The contribution of this work is two-fold: first, we present a novel autonomous Robot-mediated 

Imitation Skill Intervention Architecture or RISIA1 specifically designed for children with ASD 

including a new gesture recognition algorithm that can assess imitated gestures in real-time and provide 

dynamic feedback. Second, we present a preliminary user study to demonstrate the tolerability and 

usefulness of robotic interaction using RISIA1 with a group of both typically developing children and 

children with ASD. Our initial concepts and results were presented in [10].  

In what follows, we first introduce the robot-mediated imitation skill intervention system architecture in 

Section 2.3. Section 2.4 describes the gesture representation method used in this study. Section 2.5 

discusses the gesture recognition algorithm embedded in the system. The experiments and results are 

described in Section 2.6. Finally, Section 2.7 discusses the potential and limitations of the current study.  

2.3 Robot-Mediated Imitation Skill Intervention Architecture 1 (RISIA1) 

The RISIA1 for children with ASD that we present in this chapter has a humanoid robot as a task 

administrator, a camera for gesture recognition, a gesture recognition algorithm to assess the imitated 

gesture, and a feedback mechanism to encourage interaction (Fig. II.1). Existing literature [11, 12] 

suggests, at least in preliminary form, the ability of humanoid robotic interaction systems to capture 

interest of some children with ASD in a manner that could potentially be leveraged into meaningful 

intervention approaches. RISIA1 is designed to teach imitation skills via the robot by first making the 

robot demonstrate a target gesture and asking the child to imitate it, assessing the imitated gesture, and 

finally providing relevant feedback – all autonomously and in a closed-loop manner. An interesting 

feature of this system is that the robot can be replaced by a human therapist within the architecture when 
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needed without altering the rest of the system components, such as the gesture recognition and feedback 

modules, allowing the system to be used for co-robotic intervention.  

The RISIA1 architecture is illustrated in Fig. II.1. There are four important modules in RISIA1. The 

robotic gesture demonstration (RGD) module is meant for demonstrating a gesture by the robot and is 

implemented on the humanoid robot NAO [13]. NAO has 25 degrees of freedom, 2 flashing LED “eyes”, 

2 speakers, and a synthetic childlike voice. The imitated gesture sensing (IGS) module is used to sense the 

imitated gesture by the child and is implemented using Microsoft Kinect [14], which can track a person’s 

skeleton with an average of accuracy of 5.6 mm in 3D space [15, 16]. The supervisory controller (SC) is 

the primary control mechanism for RISIA1 and is designed based on a timed automata model [17]. We 

use a timed automata model for SC because it fits well with the Finite State Machine (FSM) based gesture 

recognition method that we use for gesture recognition and the state-based predesigned robot behavior 

libraries that we utilize for robot gestures. The SC manages the component communications, handles the 

experimental logic and is embedded with a gesture recognition algorithm that can recognize a partial or 

completed gesture. It instructs the robot to show a target gesture to the child and once the target gesture is 

completed, the child is asked by the robot to imitate the gesture. The SC continuously monitors the IGS 

and evaluates the child’s imitative performance for feedback. Based on this performance, the SC may 

instruct the robot either to give rewards or aid the child with reinforcement components and 

approximations of the gestures within their motor movements. The feedback provided by the robot were 

predefined by autism clinicians for every state in the FSMs and stored in the system software library. The 

SC continues this procedure in a closed-loop manner for a specified duration of time and collects data to 

evaluate the efficacy of the trials.  

The Graphical User Interface (GUI) is designed in a manner that it is easily operated by an 

experimenter, e.g., a therapist, who may not be technologically savvy. The head pose estimation, skeleton 

tracking and the participant’s real time video are displayed for observation.   

In the trial, the NAO provides imitation prompts in the form of recorded verbal scripts, mirroring 

movements, and gestural movements for imitation. Given the gesture prompts, the participant’s response 

is sensed by a Microsoft Kinect at 30 frames per second (fps). Skeleton data from Kinect are processed 

using a Holt double exponential smoothing filter to avoid glitch and jitter. The Kinect SDK face tracking 

functions fit a 3D convex mesh on the participant’s head and provide 3D position and orientation of the 

participant’s head within the Kinect frame. The head pose is then used for estimating a participant’s 

attention on the robot or on the human therapist. If the participant moved out of the Kinect tracking zone 

during interaction, a signal would be triggered to suspend the robotic action and RISIA1 would not 
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proceed with the interaction until the child returned to the appropriate region and the Kinect resumed its 

tracking. 

In this work we chose a set of arm gestural movements for imitation skill learning, which were: 1) 

raising one hand, 2) waving, 3) raising two hands, and 4) reaching arms out to the side. These four 

gestures were intentionally selected due to the low motor skill requirements they presented to 

participating children. These gestures were also selected to avoid motor limitations of the humanoid robot 

(e.g., challenges crossing midline and adequately positioning fingers/digits). However, the capabilities of 

RISIA1 are not limited to these gestures alone. Rather, they represent the kinds of gestures that a therapist 

might use for imitation skill learning intervention. 

 

 

Fig. II.1 RISTA1 system architecture 

 

2.4 Gesture Representation 

2.4.1 Gesture representation for the human 

We first defined a set of variables that could mathematically capture each of the four chosen gestures as 

described above. The gesture variables are shown in Table II.1. Fig. II.2 shows some of these gesture 

variables with respect to the Kinect frame. Each gesture was broken down into several salient parts where 

each part was represented as a state (Fig. II.3). Note that this decomposition is not unique and was 

designed based on common sense and with several autism clinicians’ input.  

2.4.2 Gesture representation for the robot 

In order to implement the same gestures on the robot so that the robot can demonstrate these gestures, 

each gesture was carefully designed by specifying its joint angle trajectories. Finally, each gesture was 
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stored in a library that the supervisory controller could select from and play. A part of our imitation skill 

intervention paradigm included gesture mirroring by the robot. In other words, sometimes the robot was 

also required to copy a participant’s gesture. The skeleton tracking module of Kinect was used to acquire 

a participant’s arm joint angles, which were then mapped to the corresponding joint angles of the robot. If 

the participant’s joint angles were outside the robot’s workspace, then the robot angles were set for their 

maximum attainable values.  

 

 

Fig. II.2 Gesture variables demonstration in Kinect frame 

 

2.5 Gesture Recognition by the Robot 

An interactive robot-mediated imitation skill intervention system must be able to dynamically provide 

feedback to the participants similar to the way a therapist does during intervention. The robot’s feedback 

depended on the accuracy and speed of the gesture recognition algorithm. In addition, given the target 

population it was quite likely that the participants would not be able to completely imitate all the gestures. 

In order to scaffold participant skills, the robot needed to recognize partially completed gestures, detect 

what components of a gesture require attention, and provide specific feedback to improve the detected 

deficiency.  

In order to achieve these goals, we designed a rule-based finite state machine (FSM) method to 

recognize gestures. While there are several powerful probabilistic methods for gesture recognition such as 
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Hidden Markov Model [18] and particle filtering [19], we chose a rule-based method to avoid the 

complexity of computation and the difficulty of generating a training data set due to the young age of our 

participants. It is difficult for a young child to repeat a standard gesture multiple times accurately to create 

training data. The recognition accuracy was of utmost importance in this task since the robot should not 

provide erroneous feedback to the children, which might confuse or frustrate them.  

 

Table II.1 Gesture Variables of Gesture Representation and Recognition 

Symbol Definition 

sw


 Vector pointing from shoulder to wrist 

ew


 Vector pointing from elbow to wrist 

yw  y coordinate of the wrist joint 

ye  y coordinate of the elbow joint 

ys  y coordinate of the shoulder joint 

1a  Angle between sw


and negative y axis 

2a  Angle between sw


 and yz plane, when sw


 in negative z direction (arm pointing forward) 

3a  Angle between ew


 and xy plane 

4a  Angle between sw


and positive x axis for right arm, angle between sw


and negative x axis for left arm. 

5a  Angle between sw


and xy plane, sw


with positive x direction for right arm, and with negative x direction 
for left arm. 

wes  Angle between the upper arm and the forearm 

D  x direction movement 

H  y direction raised height 

itemT  Threshold for distances or angles 

 

FSM has been widely used to model and recognize gestures [20]. We chose a FSM method because we 

can break down each gesture into a number of intermediate states, such that the recognition algorithm can 

precisely detect a partial gesture and thus allow the robot to provide more targeted feedback. We designed 

a FSM representation for each gesture and defined a region of interest (ROI) in which each FSM would 

be activated. These ROIs are defined in Eqn. (II-2)-(II-4). For example, a wave gesture FSM was only 
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activated when the participant’s arm was raised in front of the torso, the wrist was higher than the 

shoulder and the forearm was pointing upwards. The input variables to the gesture recognition FSM are 

computed from skeleton coordinates. Five sliding windows (1-5 seconds) were used to chop the FSM 

input data. Those windows were updated in every frame. In this way, we set up the maximum completion 

time for a gesture to be 5 seconds. Although usually a gesture lasts for 2-3 seconds, we introduce 

additional time for flexibility.  

 

 

Fig. II.3 Gesture states of the four gestures in this study 

 

 
Fig. II.4 FSM model for gesture recognition 
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1 2 3{ 1 , 2 , , 3 }W ave ang ang y y angRO I a T a T w s a T        .                                       (II-1) 

                                                 
( ) 3 2{ 1 , 2 }RaiseHand s ang angROI a T a T     .                                                      (II-2) 

    Re 3 3 2{ 1 , 4 , 5 , 0,( 0 (right arm) or 0 (left arm))}y x xachArmsOut ang ang angROI a T a T a T sw sw sw         
  

.   (II-3) 

We briefly discuss how the FSM works for each gesture. 

2.5.1 Raising one hand  

This gesture includes a) start raising a hand until the wrist is higher than the elbow; b) continue raising 

the hand and stretching the arm until the elbow is higher than the shoulder; and c) stretch the arm slightly 

further until it becomes straight (Fig. II.3(a)). Fig. II.4(a) shows its FSM representation. 

L1 to L3 in Fig. II.4(a) are the corresponding states that describe the 3 stages for the left arm, and R1 to 

R3 are for the right arm. 1LC to 4 LC are the guard conditions for the left arm and 1RC to 4 RC are for the 

right arm. The guard condition for the same level of state is in the same form for both arms since a 

participant can perform this gesture with either arm. The definitions below are not repeated for two arms 

separately. Using the variables in Table II.1, 1C to 3C are defined as: 

11 y y h e ig h tC  w e  fo r  n  c o n tin o u s  fr a m e s   H  >  T   ,                              (II-4)                

12 y y y angC e s wes T for n continous frames     ,                                  (II-5)                           

2 33 | 1 |ang angC wes T a T  for n continous frames       .                           (II-6) 

A gesture is considered successful if it is done within an appropriate time period. At the end of the time 

window, the guard condition “time out” (TO) is provided to terminate the recognition process if the arm 

has not reached the next state. 

This gesture is graded in a 5-point scale according to the following rule: raising one hand should be 

done with only one arm. So if only one arm is raised to state 3 and the other arm is kept below state 2, it 

gets a score 4. If this raised hand is held still in state 3 for a certain amount of time, it is scored 5. 

However, there are scores for partial completion as well. If one or both arms are raised to state 1 but no 

further, it is scored 1. If one or both arms are raised to state 2, the score is 2, and if one arm is in state 3 

and the other arm is in state 2 or 3, the score is 3. 
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2.5.2 Waving one hand 

This gesture includes (Fig. II.3(b)): a) start raising a hand; b) further move the hand higher than the 

shoulder; c) wave the raised hand to one side; and d) wave the same hand to the other side. Fig. II.4(b) 

shows its FSM representation. 

1C to 4C are defined as follows, 

21 y y h e ig h tC  w e  fo r  n  c o n t in o u s  fr a m e s   H  >  T   ,                                     (II-7) 

2 y yC e s fo r  n  c o n t in o u s  f r a m e s  ,                                                (II-8)                           

3 disC D  > T  in one direction ,                                                     (II-9)                           

4 disC D > T  in the other direction .                                               (II-10)                          

In this case, if one or both arms are raised to state 1, the gesture gets a score 1. Both arms reaching state 

2 leads to a score 2. Waving should also be done with only one arm, so if one arm gets to state 2 to 4 

while the other is below state 2, this performance gets a score between 3 and 5.  

2.5.3 Raising two hands 

This gesture is similar to raising one hand (Fig. II.3(c)), so the FSM graph is the same as Fig. II.4(a). 

However, it requires the raising of both hands. For either arm, if it reaches state 1 to 3, it gets a score from 

1 to 3, respectively. If the hand is held still in state 3, it gets a score 4. Since this gesture should be done 

with both arms, the final score is the average score of the left and right arms. For example, if only one 

arm is fully raised and the other is not raised at all, the final score is 2. 

2.5.4 Reaching arms out 

 Reaching arms out follows these steps (Fig. II.3(d)): a) raise arms up to shoulder level; b) get the 

raised arms sideways; and c) stretch them sideways.  

Its FSM graph looks exactly as that in Fig. II.4(a), except the guard conditions, which are: 

4 31 1|
2 ang heightC | a T for n continous frames H > T


    ,                           (II-11) 

52 | 4 | angC a T for n continous frames   ,                                         (II-12)  

63 angC wes T  for n continous frames   .                                        (II-13) 

The score for either arm equals to the states it reaches. Similar to raising two hands, the final score in 

this case is the average score of the left and the right arms.  
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We can see that all the gestures use similar FSM structure but with different guard conditions. All the 

parameters are adjustable for different application environments and user groups. We used the following 

values: 10n ; 1 20heightT cm ; 2 20heightT cm ; 3 10heightT cm ; 20disT cm ; 1 / 2angT  , 2 3 / 4angT  ; 

3 / 6angT  ; 4 / 6angT  ; 5 / 6angT  , 6 / 4angT   for the user study. These values were chosen by the 

clinicians and engineers involved in this project based on the ability of the participant group. It is 

important that the gesture recognition algorithm runs in parallel with the robot’s gesture demonstration 

task. In this way, even if a participant finishes a gesture before the robot finishes its own gesture prompt, 

a reward will be given and the robot will stop prompting. If the robot were to continue prompting the 

child (even though the child might have completed the required gesture) and only give rewards after the 

prompting was over, the child might feel frustrated.  

2.6 Experimental Setup 

We conducted a user study to assess user acceptance and performance of RISIA1. The study was 

approved by the Vanderbilt Institutional Review Board (IRB). The experiment room is shown in Fig. II.5. 

The participant was seated about 120cm from the Kinect and 150cm from the administrator.  

 

 

Fig. II.5 Schematic of the Experiment Room 

 

2.6.1 Participants for the user study 

Twelve children with ASD and 10 typically developing (TD) children were originally recruited to 

participate in this experiment. However, 4 children with ASD and 2 TD children did not complete the 

study. Two ASD children refused to sit in the experiment chair and thus did not start the experiment. Two 

other ASD children and the two TD children exhibited mild distress in the protocol and were withdrawn 
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from the study. Group characteristics of the participants who completed the study are shown in Table II.2. 

The ASD group had received a clinical diagnosis of ASD based on DSM-IV-TR [21] criteria from a 

licensed psychologist, met the spectrum cut-off of the Autism Diagnostic Observation Schedule 

Comparison Score (ADOS CS) [22], and had existing data regarding cognitive abilities from the Mullen 

Scales of Early Learning, Early Learning Composite (MSEL) [23] in the registry. Parents of participants 

in both groups completed the Social Responsiveness Scale– Second Edition (SRS-2) [24], and Social 

Communication Questionnaire Lifetime Total Score (SCQ) [25] to index current ASD symptoms. 

 

Table II.2 Characteristics of Participants  

Mean (SD) ADOS CS MSEL SRS-2 SCQ Age (Year) 

ASD 7.63 (1.69) 64.75 (22.11) 75.29 (12.62) 17.88 (6.58) 3.83 (0.54) 

TD NA NA 42.75 (10.08) 3.88 (2.95) 3.61 (0.64) 

 

2.6.2 Task and protocol 

We wanted to assess how a RISIA1-based robotic system compares with human therapist-based 

imitation intervention. We hypothesized that the robotic system would elicit imitation performance and 

garner interest from children with ASD as well as a human therapist. To test this hypothesis, we 

conducted 2 human-administered sessions and 2 robot-administered sessions for each participant. In each 

group, one-half of the participants followed the order: robot session 1, human session 1, robot session 2, 

and human session 2 while the other half had human session 1, robot session 1, human session 2, and 

robot session 2. The human administrator was not present in robot sessions and the robot was not present 

in human administered sessions. Each session tested 2 gestures, and each gesture was tested in 2 trials. 

All 4 gestures were exhaustively tested in a randomized order. We compared participants’ performance 

between the robot-administered sessions and the human-administered sessions for 1) gesture imitation 

performance and 2) attention towards the administrators (robot or human).  

In the robot sessions, as shown in Fig. II.6, prior to the practice of each gesture, the robot initiated a 

mirroring interaction segment for 15 seconds with the verbal prompt, “Let’s play! I will copy you!”. In 

this segment, the robot copied a participant’s arm gesture to the best of its motor capability. This was 

designed to maintain interest of the children on the robot and provided a break between the imitation 

intervention of different gestures. Following that, the child was asked to imitate the gestures of the robot 

in two trials. 
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Fig. II.6 Flow of the Imitation Training Procedure for Each Gesture   

 

In Trial 1, the robot said, “Okay! Now you copy me. Look at what I am doing!” and demonstrated the 

gesture twice, and prompted “You do it!”. The proposed gesture recognition was initiated immediately 

upon the first demonstration and ended 5 seconds following the second demonstration. As soon as the 

participant imitated the gesture correctly, the trial was terminated with a verbal praise, “Good job!”. The 

system recorded the performance score. Otherwise, the system provided feedback on the approximation if 

applicable, and recorded the best score the participant got. Consider the gesture “raising one arm” as an 

example. If the participant did not raise his/her arm high enough within the given time limit, the robot 

would take its (i.e., the robot’s) arm at the participant’s best raised position and gave a verbal response, 

“you were here”, and then would raise its (i.e., the robot’s) arm further until the desired height with the 

verbal response, “higher!”.  

Trial 2 included Stage A and Stage B (Fig. II.6). If the participant succeeded in Trial 1, then the Trial 2 

executed Stage A in Normal mode, which was the repeated procedure from Trial 1. Otherwise, Trial 2 

executed Stage A in Mirroring mode, where the robot mirrored the participant’s motion after gesture 

demonstration. For instance, if the participant was waving, the robot would wave its arm to follow the 

child. This mirroring helped the children check on their own performance. If the child imitated the gesture 

successfully in Stage A, a verbal reward was given and Stage B was omitted. Otherwise, after the robot 

told the child where he/she was wrong, Stage B was presented. It provided the final two gesture 

demonstrations and another 2 seconds following the gesture demonstration as the final response time. 

Without Stage B, the child would be frustrated since no chance was left to try the gesture again. However, 
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this procedure should not be repeated too many times since the child would lose interest in doing one 

gesture continuously.  

In human-administered sessions, the supervisory controller computed all of the information needed for 

the human administrator as it would for the robot in the robot-administrated session, which included the 

grading of imitation performance of the participant and what to respond to the participant. These 

messages were projected on the wall behind the participant, and thus the human administrator could read 

and follow those instructions while still looking in the participant’s direction. The human administrator 

did not make any personal judgment. 

Eye gaze approximation via head pose was a coarse indicator of a person’s attention. It was estimated 

by the Kinect tracking module. We assumed that the participant’s attention was on the administrator if 

his/her head pose was oriented towards the attention box discussed in section VI.A.  

2.7 Experimental Results   

2.7.1 System validation results 

In order to validate the accuracy of the proposed gesture recognition algorithm, 7 adults and 3 typically 

developing (TD) children were recruited. Each participant performed each of the 4 gestures 10 times 

under the experimental conditions. Each participant was also instructed to perform some non-specific 

movements during testing, and slightly shift their front facing postures between gesturing to create a 

naturalistic condition. The gesture recognition algorithm classified the performed gestures into one of the 

4 categories or a “not recognized” category. These recognition results were compared with the subjective 

ratings of a therapist and got the overall accuracy of 98% (1.5% false positive and 0.5% false negative) 

[10]. In the few cases where it failed, it was mainly due to the tracking failure of the Kinect when the 

subjects quickly shifted their postures. 

The system also inferred a participant’s attention to the task administrator (i.e., either the robot or a 

human therapist) based on where he was looking. The robot height is similar to the human therapist’s 

upper body height. A box of 85.77 cm×102.42 cm around the robot and the upper body of human 

therapist was set as the target attention regions. The gaze was approximated based on head pose 

estimation. To test the attention inference method, those same participants were asked to first look at the 

bounding box covering the region where an administrator would stand with their natural head pose. These 

head poses were reordered as the baseline data. Then the participants were asked to look away and back 

to the region for 10 times. Their raw head poses were normalized by their baseline values and those 

rectified poses were computed to see if they were oriented towards the administrator region. The results 
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show that for 91% (2% false positive, 7% false negative) of the times, their head pose indicated the gaze 

towards the administrator region. In the user study, all participants’ natural head poses were also 

calibrated in the same way. 

2.7.2 Preferential attention towards the administrator 

Attention to the administrator is a marker for eventual learning within intervention paradigms. On 

average, the ASD group paid attention to the robot and the human therapist for 55.01 (SD: 28.42) seconds 

and 43.32 (SD: 25.47) seconds per session, respectively. The TD group paid attention to the robot and 

human therapist for 61.35 (SD 28.89) seconds and 47.02 (SD: 17.30) seconds per session, respectively. 

The duration of a session depended on the participant’s performance in that session, and each participant 

had different imitation abilities. The ASD group required similar amounts of time to complete the tasks 

across robot sessions (Avg = 105.52, SD = 24.47 seconds) and human sessions (Avg = 104.35, SD = 

23.51 seconds), while the TD group required more time to complete the robot sessions (Avg = 99.69, SD 

= 29.76 seconds) than the human sessions (Avg = 86.67, SD = 28.64 seconds). Therefore, the ratios of the 

duration of attention on the administrator to the total session length was used as a normalized 

representation of how much attention the participants paid to the administrator, which are shown in Table 

II.3 for both groups.  

We can see that participants in the ASD group spent 11% more time attending to the robot than the 

human therapist, while participants in the TD group paid similar attention to the robot and the human 

therapist across sessions. However, Wilcoxon signed rank test shows that the differences were not 

statistically significant for either group with p = 0.0663 for the ASD group and p = 0.7367 for the TD 

group. These results, although only approaching significant, support a part of our hypothesis in that the 

children with ASD paid more attention to the robot administrator than the human administrator, which 

indicate the potential for such a system to garner interest in imitation intervention. 

 

Table II.3 The Ratio of the Duration of Attention on the Administrator to the Total Session Time (%) 

Mean(SD) Robot session Human session 

ASD 52.38% (24.23%) 41.38% (21.27%) 

TD 63.50% (23.53%) 61.59% (29.34%) 

 

2.7.3 Gesture imitation performance 
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Fig. II.7 Group performance of individual gestures 

 

Next we analyzed the demonstrated imitation skills of both groups in human and robot administered 

sessions. The score of each gesture in each trial was normalized to [0,10]. Table II.4(a) lists the group 

performance between ASD and TD across sessions. For each participant, their imitation scores for all 4 

gestures in both Trial1 and Trial2 for both robot-administered and human-administered sessions were 

added together and presented in Table II.4(a) to show the overall performance. Further trial by trial 

analysis is presented in Table II.4(b). The average scores of all the robot-administrated Trial1 (R1) and 

Trial2 (R2) as well as human administrated Trial1 (H1) and Trial2 (H2) were computed for each group. 

Fig. II.7 shows the group performance on each gesture. G1 to G4 represent raising one hand, raising two 

hands, wave, and reaching arms out, respectively. 

Consistent with previously demonstrated imitation deficits in individuals with ASD, results show that 

the ASD group was less successful than the TD group in general. Participants in the ASD group 

performed better in robot-administered sessions than in human-administered sessions, especially in Trial1 

for G1 to G3. Among the 4 gestures, we can see that wave got the lowest scores in both group due to its 

complexity. Participants in the TD group did not demonstrate much difference across trials in all the 

sessions.  

Table II.4(c) give the statistical p values of the imitation performance for each group. We can see that 

the ASD group’s performance in the robot sessions was not statistically significantly different between 

Trial1 and Trial2, while that of human sessions it was significant. The result of robot-administered Trial1 

was significantly better than that of human-administered Trial1, while the two Trial2s’ performance were 

not significantly different. The TD group’s performance was similar across all the trials. However, putting 

Trial1 together with Trial2, the statistical analysis of robot-administered session vs. human-administered 
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session showed non-significant results for both ASD (p=0.5781) and TD (p=0.6406) groups. Table II.4(d) 

lists the ASD vs. TD group comparison across different trials. We can see that the main differences were 

on Trial1 for both robot-administered sessions and human-administered sessions.  

 

Table II.4 Imitation Performance Results—Gesture Scores 

(a). General Session Performance Results 

Mean (SD) Robot session scores Human session scores 

ASD 27.31 (32.07) 19.75 (13.64) 

TD 43.75 (28.26) 44.79 (31.98) 
 

(b). Performance Results in Trials 

Mean (SD) R1 scores R2 scores H1 scores H2 scores

ASD 3.17 (4.43) 3.66 (4.31) 1.46 (2.55) 3.47 (3.67)

TD 5.49 (4.32) 5.45 (4.37) 5.70 (4.50) 5.50 (4.73)
 

(c). Wilcoxon Signed-Rank p Values on Trial vs. Trial Performance within Group 

Trial vs. Trial ASD TD Trial vs. Trial ASD TD 

R1 vs. R2 0.2793 0.9893 H1 vs. H2 0.0006 0.6318

R1 vs. H1 0.0494 0.6946 H2 vs. R2 0.8669 0.9811
 

(d). Mann-Whitney U Test p Values on ASD vs. TD Trial Performance 

Group vs. Group R1 R2 H1 H2 

ASD vs. TD 0.0277 0.0905 0.0003 0.1473

 

These results show that in robot-administrated sessions, children with ASD showed better imitation 

skills more quickly than they did with human mediated sessions. Initial interactions with the human 

therapist yielded significantly lower imitation scores than interactions with the robot in Trial1. In Trial2, 

the difference between human and robot-administrated session scores decreased, but the average scores 

for human sessions were still lower. There was no significant difference for the TD group across either 

condition throughout the whole experiment. 

2.8 Discussion and Conclusion 

In this chapter, we presented the design and development of a novel robot-mediated imitation skill 

intervention system, RISIA1, with potential relevance to core areas of deficit in young children with ASD. 
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RISIA1 was suitable for both a robot and a human therapist administrator. It detected the participant’s 

imitation performance in real-time and fed this back to the administrator for adaptive intervention. Within 

this proof of concept experiment we also replicated previous findings demonstrating that young children 

with ASD paid more attention to the robot administrator and performed better in robot facilitated 

imitation tasks than in human-administered sessions under the same experimental protocol.  

A particular strength of the RISIA1 is its use of a non-invasive configuration that does not require the 

participants to wear any physical sensors. This is extremely important for young children with ASD, as 

they can find wearable sensors uncomfortable and distracting. Another important contribution of this 

work relates our modeling method affording for closed-loop interaction. The FSM-based gesture 

recognition method that we designed allowed us to obtain real-time evaluation of participant performance 

and provide adaptive and individualized feedback on different levels of imitation completion. Such 

extension is bolstered by the fact that the FSM recognition method does not require specific training data 

from children to be gathered prior to participation. 

In terms of performance within the system, most children with ASD and TD children were able to 

respond with some degree of accuracy to prompts delivered by a humanoid robot and a human 

administrator within the standardized protocol. Children with ASD paid more attention to the robot than 

the human administrator, a finding replicating previous work suggesting attentional preferences for 

robotic interactions over brief intervals of time. Further, some young children with ASD seemed to 

demonstrate enhanced performance in response to robotic prompts than those delivered by human 

counterparts. This suggests that robotic systems endowed with enhancements for successfully capitalizing 

on baseline enhancements in non-social attention preference might be utilized to meaningfully enhance 

skills related to core symptoms of ASD. Although this work does not demonstrate generalization beyond 

the experimental sessions, this documented preferential attention could potentially be harnessed to drive 

towards such an outcome. Future work examining more in-depth prompt and reinforcement strategies, 

upgrading and accommodating the system into a formal clinical study, including more gestures, and 

combining gesture imitation with other meaningful daily tasks would likely enhance future applications of 

this system.  

There are several methodological limitations of the current study that are important to highlight. The 

small sample size examined and the limited time frame of interaction restricted our ability to realistically 

comment on the value and ultimate clinical utility of this system as applied to young children with ASD. 

Further, the brief exposure of the current paradigm, in combination with unclear baseline skills of 

participating children, ultimately cannot answer questions as to whether heightened attention paid to the 

robotic system or performance differences in conditions displayed during the study are simply the artifact 
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of novelty or of a more characteristic pattern of preference that could be harnessed over time. We also did 

not explore test-retest reliability in this preliminary study. Regarding gesture recognition, Kinect has a 

limited range and thus puts constraints on the set of gestures that can be used for imitation tasks. 

Therefore, extending the range of Kinect is to be explored to improve the system capabilities. In addition, 

developing an optimization algorithm for autonomous selection of the parameters of the FSM based will 

further enhance the system. Another important technical limitation was the approximation of attention 

with head pose. It must be emphasized that head orientation approximating gaze or attention does not 

necessarily equate to actual eye gaze or by extension, attention. However, such data does provide a coarse 

proxy for documenting feasibility. In terms of the robot, Nao was not suitable for very fast paced motion 

due to its limited motor ability. It was programmed to provide intermittent verbal prompts and rewards 

but did not engage the participants in continuous verbal communication. There could be some benefits in 

engaging the children continuously through verbal communication, however, in this study we thought that 

continuous verbal communication might distract the participants from imitating gestures.  

Despite limitations, this work is the first to our knowledge to design and empirically evaluate the 

usability, feasibility, and preliminary efficacy of a non-invasive closed-loop interactive robotic 

technology capable of modifying response based on within system measurements of performance on 

imitation tasks with young children. Movement in this direction introduces the possibility of realized 

technological intervention tools that are not simple response systems, but systems that are capable of 

necessary and more sophisticated adaptations. Our platform represents a move toward realistic 

deployment of technology capable of accelerating and priming a child for learning in key areas of deficit.  
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Chapter III. Robot-mediated Mixed Gestures Imitation Intervention 

3.1 Abstract 

In this chapter, we propose another robotic platform that mediates imitation skill intervention for young 

children with ASD. While a few previous works (e.g., RISIA1) have provided methods for single gesture 

imitation intervention, the current chapter extends the intervention to incorporate mixed gestures 

consisting of multiple single gestures during intervention. A preliminary user study showed that the 

proposed robotic system, named RISIA2, was able to stimulate mixed gesture imitation in young children 

with ASD with promising gesture recognition accuracy. 

Keywords— robot assisted intervention; autism spectrum disorder; gesture recognition; imitation 

3.2 Introduction  

Several studies have shown that teaching imitation skills to children with ASD through the use of 

robotic technologies is feasible and has great potential [1, 2]. Dautenhahn et al. developed a humanoid 

robot KASPAR, which was able to interact with children with ASD using imitation games [3]. Fujimoto 

et al. designed techniques using wearable sensors for mimicking and evaluating human motion in real 

time to improve imitation skills of children with ASD [4]. Greczek et al. proposed a graded cuing 

mechanism to encourage the imitation behavior of children with ASD in a closed-loop “copy-cat” game 

[2]. Zheng et al. created a robotic system (i.e., RASIA1 discussed in Chapter II) that provided imitation 

intervention for children with ASD with online feedback regarding the quality of gesture accomplished 

[5]. While the above-mentioned studies were important in establishing the feasibility and usefulness of 

robot-mediated systems for imitation skills intervention, they focus on simple, single-gesture based 

imitation skills. In reality, a child is expected to learn more complex gestures that can be combinations of 

a set of simple gestures. In this chapter, we present a framework for robot-mediated imitation skill 

intervention for complex mixed gestures. Moreover, this current work utilizes a non-invasive setup that 

did not require the children to wear any physical sensors, since many children with ASD tend to reject 

body-attached hardware[6]. 

This chapter presents a new gesture recognition method capable of detecting mixed gestures, which are 

defined as simultaneous execution of multiple simple gestures from a participant, as well as identifying 

(“spotting”) the start and the end of each detected gesture. A new intervention protocol was designed to 

test this algorithm and a preliminary user study with children with ASD and their typically developing 

(TD) peers was conducted to show the feasibility and potential of this robotic system. 
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The rest of this article is organized as follows. Section 3.3 describes the development of the robot-

mediated intervention system. Section 3.4 features the experimental setup. Section 3.5 presents the 

experimental results, followed by the authors’ conclusions of this work in Section 3.6.  

3.3 System Development 

3.3.1 System architecture 

The proposed robot-mediated imitation skill intervention architecture 2 (RISIA2) consists of a robot 

module and a gesture tracking module that were operated based on the commands sent from a supervisory 

controller. The robot module utilized the humanoid robot NAO [7]. NAO is about 58cm high and has a 

childlike appearance. It is built with 25 degrees of freedom, flashing LED “eyes”, speakers, multiple 

sensors, and a well maintained software development kit (SDK). We chose this robot due to its attractive 

appearance to the children, simplified but adequate motion range and patterns, as well as the stability and 

flexibility of its software development environment. NAO communicated with the participants using both 

speech and motion. Its default text-to-speech functions and voice were used to provide verbal instructions. 

The physical motions needed in the experiments were preprogrammed and stored in a software library, 

and were called whenever needed.  

 

 

Fig. III.1  RISIA2 system picture  

 

The gesture tracking module used Microsoft Kinect [8]. Its SDK provides robust functions for real time 

skeleton tracking and head pose estimation. Skeleton data were used for imitation performance evaluation, 

and the head pose was treated as a coarse attention indicator which revealed how much attention the 

participant paid to the robot. The supervisory controller was in charge of the system execution logic, 
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communication, and data logging. The robot module and the gesture tracking module were distributed and 

they communicated with the supervisory controller using different threads to achieve parallel operation. 

In this way, the system was able to both monitor the performance of the participant and provide different 

prompts to the child. The collected data were logged for offline analysis. 

The participants were seated facing the robot about 2m away, and the Kinect was placed between the 

participant’s chair and the robot. Fig. III.1 shows the implemented system. 

3.3.2 Single gesture recognition 

 

Table III.1 Gesture Variables 

Symbol Definition 

SW


, EW


 Vector from shoulder to wrist, Vector from elbow to wrist 

yW , yE , yS  Y coordinates of wrist, elbow, and shoulder joint 

1A  Angle between SW


and negative Y axis 

2A  Angle between SW


 and YZ plane, when arm pointing forward 

3A  Angle between EW


 and XY plane 

4A  
Angle between SW


and positive X axis (right arm) or negative X axis (left 

arm). 

5A  Angle between SW


and XY plane, 

WES  Angle between upper arm and forearm 

H  Wrist raised height in Y direction 

D  Wrist movement in X direction 

itemT  Threshold for distances or angles 

( )nfR  Condition R in the parentheses should be held for n consecutive frames 

 

The single gesture recognition method (SGR) proposed by Zheng et al. [5] (i.e., RASIA1 in Chapter II) 

was used as a basic component of the proposed mixed gesture recognition and spotting algorithm. In the 

SGR, the input is a temporal sequence of gesture variables (as listed in Table III.1), which are computed 

from the subject’s arm skeleton tracking data. Fig. III.2 (b-d) shows some of gesture variables of the right 

arm as examples. 
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Fig. III.2  Kinect frame and participant’s gesture view 

 

A correct gesture is defined by trajectory constraints (TC) under preconditions (PC). PC describes the 

basic regional and positional constraints of a gesture. Since a participant was instructed to follow the 

robot’s gesture, the TC was defined as multiple gesture stages in accordance with the order in which the 

robot presented a gesture. The recognition of a stage is triggered by the completion of the previous 

stage(s). The output of SGR is the gesture stage computed based on the input data. 

Four gestures were studied in the original work: raising one hand (Gesture 1), raising two hands 

(Gesture 2), waving (Gesture 3) and reaching arms out (Gesture 4). Gesture 1 and Gesture 3 can be 

accomplished by either the right or the left hand/arm. If the imitation data satisfy the first n TCs, the 

performance is graded as 10/number of n TC . Gesture 2 and Gesture 4 need to be accomplished by both 

hands to receive a full score. The grades for two hands were averaged for the final score. The PCs and 

TCs for each gesture applied in the current study are shown Eqn. (III-1) – (III-6). These rules together 

with the gesture variables were preselected by experienced psychologists and engineers based on the 

analysis of 16 children’s gesture performing data in the repository (8 children with ASD and 8 typically 
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developing children, ages 2-5 years). This method utilizes the most important features of the selected 

gestures while keeping a low computational complexity of the gesture recognition module. 

                         1 2 3{ 1 2 3 }Wave ang ang y y angPC A T A T W S A T                                  (III-1) 

                                          
{( ) H>T , (W ) , (Only one hand) , 

               D>T in one direction, D>T in both directions }

Wave y y nf up y y nf nf

dis dis

TC W E S   
                            (III-2) 

WavePC  Implies the gesture shall be started from raising an arm in front of the body. The first 3 

constraints of WaveTC  requires that only one wrist shall be raised until higher than the shoulder. The last 2 

constraints of WaveTC indicate that the raised hand should be waved from side to side. 

                                                           
( ) 3 2{ 1 2 }RaiseHand s ang angPC A T A T                                                      (III-3) 

     
( ) 4 5 6{( )  H> ,(W ) ,( ( 1) ) ,

                       (Only One Hand (raising one hand gesture)) ,(D<T ) }

RaiseHand s y y nf up y y ang nf ang ang nf

nf dis nf

TC W E T S WES T WES T A T          
    (III-4) 

These conditions represent that the hand(s) shall be raised from low to high in front of the body 

(
( )RaiseHand sPC ) until they are gradually stretched straight and held still for a while (

( )RaiseHand sTC ). 

        Re 3 3 2{ 1 4 5 0 ( 0 (right arm) or 

                         0 (left arm))}

y xachArmsOut ang ang ang

x

PC A T A T A T SW SW

SW

          



 

         (III-5) 

                   Re 7 8 9{| 2 1 | ) ,  (| 4 | ) , ( ) }achArmsOut ang nf ang nf ang nfTC A T A T WES T                                (III-6) 

These rules imply that the arms shall be raised from a low position at the side of the body 

( Re achArmsOutPC ), and then stretched out evenly on each side ( Re achArmsOutTC ).   

In this work n rL , where 0.8r and L is the length of the sliding time window. This indicates that the 

continuous constraint has to satisfy as least 80% of the sliding time window. This is important for gesture 

spotting discussed later. In the experimental study, psychologists and engineers found that the threshold 

values listed in Table III.2 were suitable for the participants. Note that those values may need to be 

adjusted for other user studies with different participant groups. 

A mixed gesture recognition algorithm is introduced within the following context. The robot 

demonstrates a continuous sequence of the four previously mentioned single gestures, and asks the child 

to imitate. The child might start and stop at any time and may or may not imitate all the demonstrated 

gestures. The task for the robot was to recognize when and what gestures were imitated as well as the 

quality of the imitation.   
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3.3.3 Mixed gesture recognition and spotting (MGRS) 

The newly proposed MGRS solves two problems in the mixed gesture prompting environment: a) how 

to recognize different gestures in parallel from the same input data sequence; and b) how to spot the start 

and the end points of each detected gesture. MGRS embeds the SGR as its components in a novel 

framework to address these two challenges. The four gestures described previously are presented as 

examples here; the proposed MGRS is not limited to those 4 gestures alone.  

 

Table III.2 Gesture Thresholds 

Variable value Variable value 

upT  10cm disT  [10,15] cm 

1angT ,
2angT    3angT  2  

4angT  
[ 4, 3]*   

2**  
5angT  

[ 5, 3]*   

[ 5, 4]**   

6angT  
[ 6, 4]*   

[ 4, 2]**   
7angT  4  

8angT  [ 5, 4]   9angT  [ 4, 3]   

                            * Raising one hand           ** Raising two hands 

 

 

Fig. III.3  Mixed gesture recognition data flow 

 

An initial imitation stage can evolve into different gestures. For example, both raising one hand and 

waving start with raising a hand from low to high. Therefore, the data subsequence extracted by a sliding 

time window is sent to all four SGRs for computing their stages. SGR1 to SGR4 represent the single 

gesture recognition algorithm for Gesture1 to Gesture4 in Fig. III.3. 
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A gesture is detected if a data subsequence matches with its SGR’s detecting stages. The hypothesis is 

that the more a data subsequence matches with a gesture’s stages, the better it represents the 

corresponding gesture. This idea is similar to correlation based template matching in computer vision [9]. 

The start and end of this subsequence are the start and end of the corresponding gesture, respectively. 

This is formally defined as searching for startT and endT that satisfies 

                                                               
,

arg max ( ( , ))
start end

start end
T T

stage SGR Data T T .     ( III-7 ) 

Given a gesture’s SGR, we would like to find a data subsequence ( , )start endData T T  which starts from startT

and ends at endT  that reaches a stage higher than the stage reached by any other subsequences overlapped 

with or adjacent to ( , )start endData T T . This local optimum can be computed by updating the sliding window’s 

position and length to refresh the stages detected by the SGR accordingly.  

 

 

Fig. III.4  MGRS algorithm demonstration 

 

Consider the gesture of “raising one hand” as an example. It contains five stages in its TCs. In Fig. III.4, 

blue blocks represent gesture imitation subsequences. The “raising one hand” gesture imitation 

subsequence starts from stage 1 (S1) and ends with stage 5 (S5). The yellow blocks are non-imitation data, 

which can be unpurposive movements, resting postures, and so on. The sliding time window is updated in 

two nested loops: i) shifting its start point; and ii) with the same start point, adjusting its length from 1s to 

5s. A gesture can be imitated within 1s to 5s. Ta to Th represent time points along the data sequence, and 

Wx-y means that the sliding window’s start and end time points are x and y, respectively. 
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The following example illustrates how the algorithm computes the correct result as “the imitation 

reaches S5” and “the start and end point is Tc and Tf.” The sliding time window updates from right 

(earlier) to left (later).  

1) At Wa-e, the non-imitation data is over 20% of the window, and thus the subsequence violates the 

continuous constrains in the TCs. As a result, the current stage is set as 0; 

2) The sliding window in then moved and at Wb-e, the window satisfies some of the TCs as only a 

small amount of non-imitation data is included. However, the window only contains data up to S3. So S3 

is recorded as the current gesture stage, and the start and end time are noted as Tb and Te. 

3) When the window length is extended to Wb-f, the window includes S5. In this case S5 is recorded as 

the current gesture stage, and the start and the end points are Tb and Tf. 

4) When the window is moved at Wc-f, the window tightly cuts the data from S1 to S5, so the recorded 

state is still S5, but the start and the end points are refreshed to Tc and Tf. 

5) At Wc-h, although the window includes the data from S1 to S5, but a large amount of non-imitation 

data after S5 prevents satisfaction of the continuous constraints. So the results of step 4 are kept. 

6) At Wd-g, S1 and S2 are excluded. Because SRG does not jump previous gesture stages to reach later 

stages, the results of step 4 will not be refreshed. 

Therefore, the final result is a gesture reaching stage 5 (S5) with a start point of Tc and end point of Tf. 

This updating procedure can be executed using Algorithm1. Here m and k are time variables refreshed 

at each frame in the data sequence. GestStage(m) records the highest gesture stage that the subsequence 

reaches at time m. startT (m) and endT  (m) mark the start and end time points of the whole gesture period 

where GestStage(m) belongs. Starting from the first frame of the data sequence, a 1 second length ( LB, 

short for lower bound) data subsequence is used to compute an initial result using SGR. Then by 

appending frames onto the current sequence, 1 frame per update, SGR refreshes the results. If a higher 

stage is reached, it is recorded and its startT  and endT  are refreshed. This procedure is executed until the 

subsequence’s length reaches the 5 second upper bound (UB). At that point, the sliding time window’s 

start point is pushed forward by 1 frame and the above procedure is repeated. The iterations are executed 

until the end of the recognition period. Every gesture’s iteration is updated in parallel as a new frame’s 

data becomes available, and its results are recorded individually. 
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Algorithm1 
GestStage(1:DataLength) = 0; 

startT (1:DataLength) = 0; 

endT  (1:DataLength) = 0; 
for k = 1 : DataLength 

[Stage1] = InitializeSGR(Data(k : k + LB)); 
GestStage(k : k + LB) = Stage1; 

     startT ( k : k + LB) = k; 

  for m = k+ LB+1 : k+UB  
[Stage2] = UpdateSGR(Data(m), Stage1); 
if Stage2 >= Stage1 

  GestStage(m) = Stage2; 
startT (m) = k; 

  endT  (m) = m; 
         end 
        Stage1 = Stage2; 

  end 
end 
Return (GestStage, startT , endT ); 

 

Note that this algorithm is an example of how to program the MGRS, but MGRS is not limited by it. 

Any computation procedure that reflects the goal in Eqn. (III-7) can be applied. 

3.4 Experimental Setup 

3.4.1 Participants 

The MGRS algorithm should be able to successfully detect performed gestures as well as avoid giving 

false positive results when no targeted gestures are performed. Therefore, in this pilot study we selected 

participants with different imitation baseline levels, which helped us to collect imitation data ranging 

from good completion to non-completion.  Two TD children (1 male and 1 female) and 4 children with 

ASD (3 males and 1 female) participated in this experiment. This group size is small due to the limited 

participant pool. 

Table III.3 lists the characteristics of the participants. Those in the ASD had received a clinical 

diagnosis of ASD based on DSM-IV-TR [10] criteria. They met the spectrum cut-off of the Autism 

Diagnostic Observation Schedule Comparison Score (ADOS CS) [11], and had existing data regarding 

cognitive abilities from the Mullen Scales of Early Learning (MSEL) [12] in the clinical registry. Parents 

of participants in both groups completed the Social Responsiveness Scale– Second Edition (SRS-2) [13], 

and Social Communication Questionnaire Lifetime Total Score (SCQ) [14] to index current ASD 

symptoms.  
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Table III.3 Participant Characteristics 

Mean (SD) ADOS CS MSEL SRS-2 SCQ Age (Years) 

ASD 8.50 (1.73) 51.00 (4.00) 76.50 (16.60) 20.50 (7.77) 4.61(0.60) 

TD  NA NA 42.50 (3.54) 1.50 (0.71) 4.63 (0.01) 

 

3.4.2 Task and protocol 

This study was approved by the Vanderbilt Institutional Review Board (IRB). All the experiments were 

supervised by qualified clinicians and engineers. Videos of the experimental procedures were recorded for 

algorithm validation. The experiment had two steps: 

Step1. Participant warmed up with the robot-administrated single gesture session “TrialA” of the 

previous work [5], for all 4 gestures. In this step, the robot first showed the participant a gesture, and then 

asked the participant to copy it. If the participant imitated the gesture correctly, the robot verbally praised 

the child. Otherwise, the robot provided a verbal explanation of what was wrong. This was intended to 

inform the participant that he/she was expected to copy the robot’s gesture. 

Step2. This was the mixed gesture imitation intervention part, consisting of 4 trials. Before each trial, 

the robot first mirrored the participant’s physical motions for 15s to help the participant feel he/she was 

playing with the robot as a peer. Then, the robot asked the participant to now copy its gestures. The robot 

showed all 4 gestures twice in random order, all accompanied by background music. The “wave” gesture 

lasted for 4.4 seconds and the other 3 gestures lasted for 3.2 seconds. Two adjacent gestures were 

separated by a short transitional motion. In total, each trial lasted for about 49 seconds.  

From the logged data we analyzed: 1) the accuracy of the MGRS algorithm; 2) the participant’s 

attention on the robot; and 3) the participant’s imitation performance. 

3.5 Experimental Results 

3.5.1 Gesture recognition and spotting results 

For gestures that were successfully detected by the MGRS algorithm, the deviation between the human 

detected and MGRS detected start and end time was calculated. From Table III.5, we can see that the 

average deviation of the start and end time in all cases were smaller than 1s.   
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Table III.4 Comparison between MGRS Recognition and Human Coding Results 

Gesture Human coded Algorithm detected False Miss 

Gesture1 17 14 0 3 

Gesture2 19 24 5 0 

Gesture3 19 23 6 2 

Gesture4 23 26 3 0 

Total 78 87 14 5 

 

Table III.5 Start and End Time Deviation for Correctly Detected Gestures in Table III.4 

Mean (SD) Start time deviation (s) End time deviation (s) 

Gesture1 0.25 (0.18) 0.50 (0.47) 

Gesture2 0.46 (0.32) 0.48 (0.46) 

Gesture3 0.88 (0.65) 0.97 (0.64) 

Gesture4 0.33 (0.28) 0.54 (0.45) 

 

To validate the accuracy of the MGRS algorithm, the results obtained from the MGRS were compared 

with an experienced therapist’s ratings on the participants’ imitation. From the videos recorded during the 

experiments, the therapist manually marked each gesture’s start and end time as the ground truth. It is 

difficult for a therapist to identify and log different gesture stages similar to what a computer can do. 

Therefore, only gesture stages that were intuitively recognizable were marked. Accordingly, those marked 

stages were compared with those recognized by the MGRS. 

We assessed two aspects of the MGRS: 1) could the algorithm identify a gesture correctly? 2) if the 

identification was correct, did the algorithm spot the start and end time of this gesture correctly? Table 

III.4 lists the number of gestures detected by the human therapist and the MGRS algorithm in the 

experiment. Seventy-three (5 detection misses) out of 78 human coded gestures (93.59%) were correctly 

detected by the MGRS, while 14 out of 87 MGRS detected gestures (16.09%) were false detections. 

3.5.2 System tolerance, participants’ attention on the robot, and imitation performance 

All participants completed the experiments except one child with ASD who did not complete 2 trials. 

Thus we had data for 14 trials from the children with ASD, and 8 trials from the TD children. The small 

sample was not sufficient for statistical significance testing. As a result, only the mean and standard 

deviation values are presented here. 
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The attention that the children paid on the robot was closely connected to his/her imitation performance. 

Attention can be coarsely estimated by head pose [15]. In this study, we utilized head pose estimation to 

infer the degree to which a participant was attending to the robot.  A box of 85.77 cm × 102.42 cm around 

the robot (which covered the robot’s full range of motion with a small margin) was set as the attention 

reference region. We assumed that a participant paid attention to the robot if his/her head faced toward 

this defined region. Table III.4 lists the total time that each group paid attention to the robot. The ratios 

are the percentage of the time spent facing the robot within a trial.  

 

Table III.6 Participant’s Attention Spent on the Robot 

Mean (SD) Time on Robot(s) Ratio (%) 

ASD 19.6 (9.98) 39.97 (20.27) 

TD 39.34 (3.31) 80.41 (6.76) 

 

Due to the deficit of social communication, children with ASD usually pay significantly less attention 

to the social cues compared to the TD children. However, children with ASD still spent an average of 

39.97% of trials facing the robot. This was less time compared to the single gesture sessions (60% in 

robot session, 42% in human session) as found in our previous study [5]. However, considering the 

increased task complexity, this result was not surprising. TD children spent a majority of trials looking at 

the robot since they were interested in the robot as reported by their parents and experiment supervisors.  

The participants’ imitation performance was analyzed based on the MGRS algorithm. The scores of 

each gesture were normalized to [0, 10]. On average, children with ASD got a score of 8.71 (SD: 1.59) 

out of 10, while TD children got 9.58 (SD: 0.93). Children with ASD took 3.79s (SD: 1.91s) to finish one 

gesture on average, while their TD peers took 2.8s (SD: 1.37s). The results confirmed expected results 

that children with ASD would have a lower gesture imitation ability compared to that of TD children of 

similar ages.  

3.6 Discussion and Conclusion 

We proposed a robotic system with the RISIA2 architecture that aims to teach imitation skills to young 

children with ASD. This work utilized a humanoid robot for gesture prompting and a non-invasive setup 

for effectively evaluating the participants’ performance. This system extends the previous robot-mediated 

intervention from single gesture to mixed, multiple gestures. Naturally, the participant was allowed to 

imitate different gestures in any order, and at any time during the intervention. In order to achieve mixed 



54 
 

gesture imitation recognition, we developed a novel algorithm, the MGRS algorithm, which not only 

detects the imitated gestures, but also spots the start and end times of the performed gestures.    

A preliminary user study showed that the MGRS algorithm achieved high accuracy in both gesture 

recognition and spotting. The RISIA2 system was well tolerated by the young children, attracted their 

attention, and showed great potential for extending the intervention of imitation skills for children with 

ASD. 

There were some limitations in this study. The proposed MGRS algorithm was tested with only 4 

gestures. Extensive tests with more gesture categories are necessary in the future to examine MGRS’s 

scalability and robustness. Although the SGRs embedded in the MGRS are rule-based, the framework of 

MGRS is not limited to rule-based components. In fact, any single gesture detection algorithm can be 

embedded in this framework. If a large number of gestures are needed to be detected in parallel, then the 

correlation and similarity between those gestures can be used for pruning to avoid repeated computation. 

Finally, since the user group was small, any conclusion drawn based on this study requires further 

validation with larger samples and more pervasive analyses. Yet the current work may provide a 

beneficial preliminary framework for developing and evaluating multi-gesture imitation intervention for 

young children with ASD.   
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Chapter IV. Computer-Mediated Autonomous Social Orienting 
Intervention 

4.1 Abstract 

Social communication is among the core areas of impairment for children with Autism Spectrum 

Disorders (ASD). The training of social orientation is believed to be important for improving social 

communication of children with ASD. In this chapter, we propose a fully closed-loop autonomous 

computer system, named ASOTS, for training social orientation skills to very young children with ASD. 

A fast large range non-invasive gaze tracking algorithm was designed to detect and track a child’s 

attention in response to social orientation bids. An intelligent attention tracking and prompting 

mechanism was developed to help the child towards appropriate social orientation when needed. 

Response to name, an important social orientation skill, was used to demonstrate the functionality of the 

proposed system. Ten toddlers with ASD participated in a pilot user study to show whether the system 

could be used on young children who have been diagnosed with ASD. Another pilot user study with 10 

TD infants tested whether this system has a potential to be applied for early detection for infants who 

were younger than the age when ASD diagnoses can be done. This was done intentionally to separately 

demonstrate utility and functionality for the clinical population of interest and to demonstrate 

functionality beyond current clinical identification capacity (i.e., infants). The results showed that the 

proposed system and the protocol were well tolerated by both groups, successfully captured young 

children’s attention, and elicited the desired behavior.  

Keywords—computer-assisted system for young children with ASD, social skill training system, 

response to name, toddlers with ASD, TD infants 

4.2 Introduction 

The primary objective of this chapter is to present a novel autonomous social orienting training system 

(ASOTS) that could be useful in ASD intervention in the future. Among multiple aspects of social 

communication development, social orienting is one the most fundamental and critical skills that naturally 

develops in children [1]. Social orienting indicates spontaneous orientation to naturally occurring social 

stimuli in one’s environment [2], which is closely related to other important social communication skills 

such as joint attention. Unfortunately, children with ASD usually show powerful deficits in this 

development. While ASOTS is designed for social orientation skill training that can be adapted for 

various paradigms, in this chapter, we focus on an important social orientation skill, Response to Name 

(RTN), to demonstrate the usefulness of this novel system. RTN, as the name suggests, is a task that 

assesses how a child responds when his (since the ratio of individuals with ASD is estimated at 4-5 to 1 in 
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terms of male to female, we consistently utilize male pronouns for individual specific description in this 

chapter) name is called. A decreased tendency to RTN is one of the most sensitive and specific predictors 

of whether an infant will later be diagnosed with ASD when he is old enough for a definitive diagnosis 

(typically 24 months or later) [3]. RTN is also a key measurement of the standard ASD diagnostic 

assessment such as the Autism Diagnostic Observation Schedule (ADOS) [4]. As a result, RTN 

intervention during a period when the brain is still highly malleable and prior to the full manifestation of 

behavioral impairments of the disorder is extremely important. The ultimate goal of the RTN training is to 

have the child successfully respond to caregivers’ attempts to garner attention by calling his/her name 

from a variety of locations within the learning environment. 

Although several machine-assisted interventions have been designed for children with ASD, few 

technologies have been reported to assess and train the RTN skill. In a RTN training, a child needs to shift 

his attention and turn his head to respond to the name call. Previous studies illustrated that visual and 

audio attention attractors are capable of drawing subjects’ attention and shifting it from one position to 

another [5, 6]. Leblanc et al. [7] pointed out that voluntary shifts of attention were usually driven by the 

goals of the individual, whereas involuntary shifts occurred in response to the characteristics of the 

stimuli of which the most salient stimuli attracting attention were the exogenous ones. In this study, we 

designed salient visual and audio name prompts and attention attractors to help children learn RTN skills. 

In an autonomous RTN training system where name prompts occur from different directions, it is 

important to investigate how to detect the response from children autonomously. A recent work by 

Bidwell et al. [8] used computer vision algorithms to achieve large range head pose estimation and used 

this information to infer the visual attention of the participant in a human-administrated RTN training. 

While this work was an important step towards RTN training, it was not an autonomous system that 

provided autonomous name prompting or an attention guiding mechanism.  

In this chapter, we present the ASOTS, which enables computer-based name calling from a wide range 

of angles around a participant by providing a distributed display mechanism, allows real-time attention 

inference of the participant through gaze tracking using a distributed array of cameras and offers an 

adaptive attention guiding mechanism to shape his response. This new system was first tested via a user 

study with toddlers with ASD to show whether ASOTS has potential for helping a young child with ASD 

learn RTN skills. Another user study with typically developing (TD) infants tested whether ASOTS could 

elicit and access the RTN behaviors of an infant before he is old enough for ASD diagnosis. Early 

concepts of ASOTS was presented in [9]. The current chapter significantly expands our preliminary work 

in terms of details of technical development, system validation results, comprehensive user study analysis, 

and a thorough discussion.  

The remainder of this chapter is organized as follows. Section 4.3 presents the design and development 
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of the ASOTS. Section 4.4 describes the validation of ASOTS. The user study design and the results are 

discussed in Sections 4.5 and 4.6, respectively. Finally, Section 4.7 summarizes the contributions of the 

chapter and highlights future research directions. 

4.3 System Development 

4.3.1 Task Definition 

We created a system as shown in Fig. IV.1(a), where a child sat on a chair, and was surrounded by a 

few computer monitors in different locations. A video of a person could be displayed from any of these 

monitors who would call the child’s name. We named this monitor as the target. If the child looked at the 

target within a limited time, a reward would be given. Otherwise, an attention attractor would be shown to 

catch and guide the child’s attention towards the target. To detect the attention of the child, an array of 

cameras were used for real-time gaze tracking. In Fig. IV.1(a), the target monitor was Monitor N. 

However, the child initially looked at Monitor 2. Thus an attention attractor was activated to shift the 

child’s attention from Monitor 2 to Monitor N. 

A task is formally defined as a 4-tuple ( P , A , ,  ), where: 

P : The name prompt, which represents the name calling displayed on one of the monitors of the set {

Monitor 1, Monitor 2, …, Monitor N} .  

A : The attention attractor, which guides the attention of the participant towards the target monitor. 

This is a continuous process activated by discrete events generated in . 

 : Tracking the participant’s gaze using Camera 1 to Camera M.  

 : The autonomous closed-loop RTN interaction protocol, which coordinates P , A , and  . 

Let us now introduce the ASOTS system architecture as an overall view of the whole design. 

4.3.2 ASOTS Architecture 

As shown in Fig. IV.1(b), the main components of the ASOTS architecture are: 1) The display 

subsystem (implemented by P and A in Section II. C); 2) The gaze tracking subsystem (implemented by 

 in Section II. D); 3) The centralized controller (CC), which managed the RTN interaction protocol 

(implemented by   in Section III. C); and 4) A Graphical User Interface (GUI). 
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(a). RTN training system illustration 

       

                           (b). ASOTS components                                              (c). ASOTS Statechart model 

Fig. IV.1 RTN training system—ASOTS 

 

In order to realize a smooth real-time interaction, the ASOTS was modeled and built as a concurrent 

system. As shown in Fig. IV.1(c), its execution was modeled using the Harel Statechart model [10], 

which is an extended state machine capable of modeling hierarchical and concurrent system states. In a 

Harel Statechart, rounded rectangles denotes system states, S. E represents a set of events that trigger the 

system state transitions. When an event happens, a state transition takes place indicated by a directed 

arrow. The solid rectangle marks exclusive-or (XOR) states, and the dotted line marks AND states. 

Encapsulation represents the states hierarchy. In the same hierarchy (encapsulated by the same rectangle), 

the system can only be in one XOR state, while it must be in all of its AND states. In Fig. 1(c), the large 
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rectangle Execution encapsulates 3 smaller dotted rectangles GUI, Display, and Tracking. Therefore, 

when the system was in the Execution state, it concurrently ran the GUI, Display, and Tracking sub-states. 

The GUI rectangle contains 2 solid rectangles, System control and System status illustration. As a result, 

when the system was in the state GUI, it must be in one of its sub-states, System control or System status 

illustration. 

The lowest level XOR states S1 and events E1 are: 

S1 = { System Initialization, Execution, Stop}                                           (VI-1) 

E1 = { Ready, Reset, Experiment finished}                                             (VI-2) 

In the System Initialization state, the hardware and software were initialized and the system component 

communication were set up. Then the event Ready was generated to transfer the state of the system to 

Execution, where an experimental protocol was run. At any time during the execution, if a Reset was 

needed (such as the participant needed to restart), the system was reinitialized. After the protocol was 

completed, an Experiment finished event was generated to stop the system. During the execution, the 

centralized controller ran in the background to control the interaction logics, generated state transition 

events, controlled the communication between different system components, and logged the data. 

The S1 state Execution encapsulates 3 AND sub-states in set S2 that described the three main 

concurrent processes of the system. Each of the AND states also contained its own XOR sub-states in the 

next hierarchy.  

S2 = { GUI, Display, Tracking}                                                      (VI-3) 

The events E2 that triggered the state transitions were 

E2 = { GUI control interrupt, Illustration, Display command, Target hit} .                  (VI-4) 

The default sub-state of the GUI state was system control, where the buttons for starting the RTN 

interaction, pausing the execution, and reset were shown. Once the experimenter pressed the start button, 

the event Illustration was generated to make the GUI show the system status that included the real-time 

gaze direction, target location, and attention attractor location. If the pause button had been clicked, event 

GUI control interrupt was generated to suspend the system until the start button was clicked again to 

retrieve. If the reset button was clicked, the system would leave the Execution state and go back to the 

System Initialization state. 
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(a). ASOTS global frame and variables 

 

 

(b). Different cameras viewing the head of a participant 

Fig. IV.2 ASOTS variables, global and local frames 

 

The default sub-state in Display was Display coordinating, where the display coordinator computed the 

target monitor index, the label of video or audio that was going to be shown, and the trajectory and effect 

of the attention attractor. Then, a Display command event was generated to trigger the display on 

monitors accordingly in the Monitor Display sub-state. The Tracking state only had a default transition to 
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its unique sub-state Gaze tracking. When the participant looked at the target monitor, a Target hit event 

was generated, and thus the system went back to Display coordinating state to re-compute the parameters 

based on the experimental protocol. 

Fig. IV.2(a) shows the details of the display subsystem and the gaze tracking subsystem as discussed in 

the following sections. The global frame of ASOTS was a Cartesian coordinate system, with the X-axis 

pointed forward, the Y-axis pointed to the left, and the Z-axis pointed upwards. The monitors and the 

cameras were placed on two concentric arcs. The center of the arcs was the origin of the global frame, 

which was the participant’s head position (head frame origin in Fig. IV.2(b)) when he was seated. 

4.3.3 Display Subsystem 

As shown in Fig. IV.1(b) and Fig. IV.2(a), the display subsystem consisted of N  monitors to cover a 

wide range around the Z-axis ( N= 4, and each monitor was 70cm 43cm in size in the user studies). The 

display coordinator (DC) worked as a server and controlled the N monitors as clients using asynchronous 

socket communication. The monitor clients were embedded with a library of video/audio clips and 

attention attractor animations. The display subsystem was developed in C# using the Unity Game Engine 

[11] and a 5.1 surround sound system. Each monitor had a speaker to create sound localization consistent 

with the video display. Based on an RTN interaction protocol, the CC sent information to the DC (Fig. 

IV.1(b)), such as the interaction stages, trial numbers, and prompt levels. The DC then computed when 

and which video/audio clip to display and the effect and trajectory of the attention attractor. These pieces 

of information were sent to the monitor clients for appropriate display. 

Name prompts 

The name prompts were implemented as P  in the 4-tuple described in Section 4.3.1. An experienced 

therapist recorded name calling video/audio clips with a soft neutral tone for each participant. When 

needed, a video/audio clip was displayed on the target monitor for the participant to look at. 

Attention Attractor 

The attention attractor was implemented as A in the 4-tuple described in Section 4.3.1. When the 

participant did not attend to a name call, the attention attractor was introduced to help the participant shift 

attention towards the target monitor. It was a red ball embedded with a bouncing sound that bounced from 

the current attention location of the participant to the target monitor through the intermediate monitors. 

The attention attractor bounced in a periodic parabolic path, which approximated a natural bouncing 

motion of a ball. In Fig. IV.2(a), g
denotes the projection of the participant’s gaze direction on the XY-
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plane when the attractor was started.  is the angle between g
  and X-axis, and is the angle between g

  

and the target direction (center of the target monitor). ( )t is the angular velocity of the attractor with 

respect to Z-axis. h,  , and c are parameters that adjust the shape of the parabola. T is the period of the 

repeated parabolic path, and r is the radius of the monitor arc. The trajectory of the attention attractor 

was: 

2

( ) cos( ( ))

( ) sin( ( )) 0 | ( ) |.

( ) ( ( mod ) )

x t t

y t t                ,  t  t

z t h r t T c  

 
   

 

  
    
   

                                      (VI-5) 

We set ( ) 20 / st      (+: counter-clockwise; -: clockwise), 30h  cm, 110r cm, 385c cm, 41.35 

cm-1. Intuitively, the attractor bounced between 10cm to 30cm in height on the monitors. 

4.3.4 Gaze Tracking Subsystem 

The gaze tracking subsystem was implemented by  in the 4-tuple described in Section 4.3.1. The 

gaze tracking algorithm was implemented with MATLAB and OpenCV. In the user study, we applied 4 

Logitech C930e webcams with a resolution of 720p. The head frame was a Cartesian coordinate system 

as shown in Fig. IV.2(b). By modeling the head as an ellipsoid, the origin of the head frame was set as the 

center of this ellipsoid. The origin of the head frame coincided with the origin of the global frame when a 

participant was seated. The xdirection pointed from the frontal face, and the unit vector along the positive 

x-axis, facev


, indicated the frontal face orientation. In what follows, we discuss the steps required to 

compute gaze direction gazev


 from facev


. 

Step 1. Estimate the head orientation from the cameras. The head orientation was represented by 3 

Euler angles (roll, pitch, yaw) as shown in Fig. IV.2(b). The head orientation estimation can be treated as 

solving a nonlinear least squares problem: 

2

2
min ( , )

e
P e M I ,                                                                 (VI-6) 

where 3 nM   is a 3D face model. 2 nI  is the projection of Mon an image. eis a vector of head 

orientation Euler angles viewed in the camera frame. P is the projection function which projects Mon 

the image given e resulting in I . Here we applied the inverse supervised descent method (SDM) [12, 13] 

to solve this problem. While there are other methods [14, 15] on head orientation estimation from a 

single camera, we chose SDM due to its robustness, high precision and real-time computational ability. 
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A software tool IntraFace [12, 13], which implemented SDM, was used in our system. Based on the 3 

Euler angles estimated, facev


can be computed in the camera frame, denoted as camera
facev


.  

In our application, a participant was expected to turn his head by a large yaw angle to respond to name 

prompts, and thus might exceed the range of a single camera to capture the frontal face image. Therefore, 

multiple cameras were combined to extend the detection range. By arranging the cameras along a circular 

arc (Fig. IV.2(a)), a participant’s frontal face could be captured by at least one of the cameras when he 

faced to any part of the display subsystem. Similar strategies have been used by a few other studies in 

different contexts [16-18]. We attached each camera with its own reference frame (Cartesian coordinate 

system) as illustrated in Fig. IV.2(b). The optical axes of the cameras were calibrated to intersect at the 

origin of the global frame. All the cameras ran in parallel. In this way, each camera could see the 

participant’s head in the center of its view concurrently.  

In Fig. IV.2(a), h

denotes the projection of facev


on XY-plane, and i represents the angle between the 

optical axis of Camera i and h

. In our preliminary testing with children aged 1-2 years, we found that the 

SDM head orientation estimation was reliable when 40   under our experiment room illumination. 

Smaller  resulted more accurate estimation. In some cased the head orientation could be estimated by 

more than one camera. For example, in Fig. IV.2(a), if both 1 and 2 were smaller than 40 , then both 

Camera 1 and Camera 2 could estimate the head orientation. In this case, ,
camera
face iv


 computed from a camera 

with the smaller i was likely to produce the better estimation.  

Step 2. Transform the head orientation from a camera’s frame to the global frame. Based on the 

geometric distribution of the system discussed in Section 4.3.2 and 4.3.3, the transformation matrix 

global
cam eraR  from each camera frame to the global frame was precomputed by camera calibration. If Camera i

was chosen in step 1, then its transformation matrix, 
,

global
camera iR , was used to computed , ,

global camera
face camera i face iv R v


. 

Step 3. Compute gazev


from facev


. We conducted a small experiment where three adults were seated in 

the participant chair to look at a marker (indicated ground truth value of gazev


) moving back and forth 

between their left side (= 107° ) and right side (= -107°). At the same time, the values of facev


computed by the gaze tracking subsystem were recorded and compared with the values of gazev


. 3000 

data pairs were collected and the comparison showed that while y and z components were approximately 
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the same, the x component of facev


 needed to be amplified by 120% to obtain the x component of gazev


(gaze in horizontal), i.e., (1.2 , , )
face

gaze v
v x y z 


. 

4.4 System Validation 

4.4.1 Experimental system setup 

 

 

Fig. IV.3 Experimental system setup 

 

The experiment room was arranged as shown in Fig. VI.3, where (a) shows the picture of the room, and 

(b) is the top view. The five monitors were 110 cm away from the origin of the global frame. The angle 

between the two adjacent cameras’ optical axes was 45°, and the angle between Camera 1 and the 

positive Y-axis was 22.5°. The bottom of each monitor was at a height of 120 cm from the floor, which 

was also the height of the cameras. For each monitor, there was a range of gaze yaw angles (, as marked 

on Fig. 2(c)) that indicated the participant was looking at that monitor. The ranges offor Monitor 1 to 

Monitor 5 were [107°, 73°], [62°, 28°], [17°, -17°], [-28°, -62°], and [-73°, -107°], respectively. Based on 
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our experience, when the participant looked at the monitors, their gaze pitch angle (approximated by head 

pose pitch angle) was in the range of [-30°, 21°]. Therefore, even when the participant’s gaze yaw angle 

was within the range of a monitor but his gaze pitch angle was out of this threshold, this was not 

considered looking at that monitor. This system setup was validated for its precision and real-time 

execution. We used the same setup to conduct two pilot user studies that are discussed in section 4.5 and 

section 4.6. 

4.4.2 Head Orientation Estimation 

Since the gaze detection was approximated from head pose estimation, we recruited three adults and 

one 18 month-old child to test the accuracy of the head orientation estimation. The InertiaCube4 by 

InterSense [19] was mounted on top of the participant’s head to provide the ground truth of the head 

orientation with respect to the global frame in roll, pitch, and yaw Euler angles. The IneriaCube4 offers 

full 360° angular range with the accuracy of 1° in yaw, and 0.25° in pitch and roll angles. The participant 

was seated in the chair as shown in Fig. IV.3. At the start of the testing, the results from the InertiaCube4 

and the camera array were calibrated as 0. During the test, the readings of the InertiaCube4 and the 

camera array were synchronized and recorded as time sequences ( )IC n  and ( )CA n , respectively. The 

accuracy of the head orientation estimation by using the camera array was defined as  

1

( ) ( )
n N

n

CA n IC n N




 ( N = the length of CA).                                     (VI-7) 

During the test, the adult participants were asked to perform 3 types of head rotation: i) free head 

rotation as fast as they could; ii) slow head rotation such as that might occur while viewing pictures in a 

museum; and iii) normal head rotation that might happen when looking at a monitor and then switching to 

another randomly similar to what the participants would do in the user studies. 6581 data points were 

collected from the adult participants and the average accuracy was 6.47°, 3.42°, 4.53° in yaw, pitch, and 

roll angles, respectively. The child participant was too young to perform these types of head rotation, and 

therefore his head rotation was stimulated by displaying videos randomly on the five monitors. There 

were 1101 data points recorded from the child, and the accuracy computed was 6.74°, 4.68°, 2.68° in yaw, 

pitch, and roll angles, respectively. These results were acceptable for the user studies since we were 

interested in locating a participant’s gaze on the large computer monitors without needing to isolate a 

precise point location. A typical data plot is shown in Fig. IV.4.  
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Fig. IV.4 Head orientation estimation validation result example 

 

4.4.3 Target Hit Recognition  

Given the head orientation estimation, the gaze direction was approximated as stated in Section 4.3.3 in 

Steps 2 and 3. The accuracy of this approximation was validated by 3 adults and 7 TD children aged 1-2 

years. They were guided to look at a video or an image displayed on each of the monitors randomly for 10 

times. 95% target hits were correctly recognized, 4% of them were false negative (i.e., the participants 

looked at the target monitor but the system did not recognize it) and 1% was false positive (i.e., the 

participant did not look at the target monitor but the system recognized this as looking at the correct 

monitor). While 95% accuracy was deemed sufficient for our tasks, we further investigated the cause for 

this 5% error. We found that this was mainly due to activities that occluded part of the participant’s face 

such as finger sucking and drinking with a sippy cup. 

4.4.4 Real-time Execution 

A high communication speed between the gaze tracing subsystem and the display subsystem was 

essential to guarantee that the system responded to the participant in real-time. In order to test the 

communication speed, a sequence of signals were sent from the gaze tracking subsystem through the CC 

to the display subsystem, and vice versa. Results showed that the signal transmission between these two 

subsystems took 25 ms on average. The gaze tracking subsystem was refreshed at a rate of 15 fps (67 
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ms/frame), and the display subsystem ran at a rate of 50 fps (20ms/frame). When there was no 

communication needed between the two subsystems, they run in parallel independently, which was the 

most common case. The most time consuming scenario was when the gaze direction detected by the gaze 

tracking subsystem had to be sent to the display subsystem through CC to generate a visual/audio 

stimulus. In this case, it took about 112 milliseconds on average. However, this procedure was only 

needed a few times (e.g., response to a target hit event and initialization of the attention attractor’s starting 

position) per trial. Since human visual system takes about 150ms to process a familiar object and scene 

[20], and takes about 330ms for gaze fixation and saccade in a scene perception [21], ASOTS was fast 

enough for real-time interaction. 

4.5 Experimental Setup 

4.5.1 Purposes and Participants 

Two pilot user studies were conducted to validate the impact of ASOTS. Note that the user studies were 

not designed as formal psychological/clinical empirical experiments, but only for validating young 

children’s tolerance of and response to ASOTS. Participants were recruited from a research registry of the 

Vanderbilt Kennedy Center, and this study was approved created by the Vanderbilt University 

Institutional Review Board.  

The first user study tested whether ASOTS could engage young children with ASD and elicit RTN 

behaviors from them. This user study included 10 toddlers with ASD (Age: Avg = 2.29; SD = 0.32 years). 

They had confirmed diagnoses given by a clinician based on DSM-IV-TR [22] criteria. They met the 

spectrum cut-off on the Autism Diagnostic Observation Schedule [4] (Raw score: Avg = 22.40; SD = 

3.24. Imagination/Creativity score: Avg = 2.80; SD = 0.35. ), and had existing Intelligence Quotient data 

(Avg = 55.60; SD = 11.50) regarding cognitive abilities in the registry. Parents of toddlers with ASD also 

completed the Social Responsiveness Scale–Second Edition [23] (Raw score: Avg = 80.50; SD = 25.73. T 

score: Avg = 66.70; SD = 10.01) to index current ASD symptoms.  

Although usually a definitive diagnosis of ASD cannot be made before 24 months [3], RTN is also 

important for predicting potential risks of ASD for younger infants [2]. Therefore, we conducted another 

user study with 10 TD infants (Age: Avg = 1.35; SD = 0.40 years.). These children tested whether 

ASOTS can be accepted by infants, and whether this system could elicit RTN behaviors from them. Thus 

this user study suggested whether ASOSTS has the potential to be used for early screening and training 

for infants.   
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Note that the TD infants were not the control group for the toddlers with ASD, since the two user 

studies were designed for different purposes and the two groups of children were not in the same age 

range.    

4.5.2 Task and Protocol 

The experimental protocol was the implementation of  in the 4-tuple described in Section 4.3.1. Each 

participant took part in two sessions, one video-based session and one audio-based session. In the video-

based session, a prerecorded video clip showing a therapist calling the participant’s name was displayed 

on one of the monitors, which simulated the condition where the caller was both visible and audible. In 

our initial proof of concept study [9], we found that this was an easy setup to quickly get children 

involved in the interaction, and generate good RTN performance. Thus we further designed the audio-

based session, where visual display was omitted and only the audio portion extracted from the name 

calling video was emitted from one of the monitors. The audio-based session simulated scenarios such as 

the parents calling a child from another room, or playing hide-and-seek games. By comparing the results 

between the audio- and the video-based sessions, we were able to assess how much of a difference 

eliminating visual information made in RTN performance. 

At the beginning of each session, a prerecorded welcome video from the therapist was displayed on 

Monitor 3. Then a Sesame Street video clip was displayed on each monitor for 8.6 seconds in the 

following order: Monitor 3, 4, 2, 5, 1, 5, 2, 4, and 3, respectively, for a total of 77 seconds to help the 

participant get familiarized with the environment.  

For both the video- and audio-based sessions, participants completed 10 RTN trials. From trial 1 to trial 

5, the target monitor was Monitor 5, 1, 4, 2, and 3, respectively. With this setup, the participant needed to 

turn his head from a target monitor on one side to another target monitor on the other side three times, and 

then went back to the central monitor. In each trial, a participant’s name was called from the target 

monitor repeatedly. Each name call lasted approximately 2 seconds. A 4 level name call prompt hierarchy 

is shown in Table IV.1. If the participant did not look at the target monitor in one prompt level, a higher 

level of prompt would be presented. 

Prompt 1 was the baseline prompt of 2 name calls from the target monitor. For Prompt 2, the attention 

attractor was activated on the monitor closest to the participant’s gaze direction. This attractor then moved 

across all monitors and towards the target monitor in an attempt to guide the participant’s gaze while, at 

the same time, the name call prompt was repeated. In Prompt 3, the ball first bounced in the gaze 

direction for 2 seconds to help the participant notice it, and then bounced toward the target monitor. Both 

Prompt 2 and Prompt 3 were enhanced with additional audio that resembled a Tennis ball hitting a 
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wooden floor (normal bouncing sound). In Prompt 4, the motion of the ball was the same as that in 

Prompt 3, but the sound of the ball was enhanced to resemble a rubber ball hitting a gong (special 

bouncing sound). At any time during the prompts, once the participant looked at the target monitor, the 

prompting was terminated and a reward video clip was displayed on the target monitor where the therapist 

praised the participant (pre-recorded) by saying “Good Job! You found me!” followed by a firework 

animation. 

 

Table IV.1 Prompt Levels 

Prompt level Prompting element list 

Prompt 1 1 

Prompt 2 Repeated 1 in parallel with 3 and 4 

Prompt 3 Repeated 1in parallel with 2, 3, and 4 

Prompt 4 Repeated 1 in parallel with 2, 3, and 5 

Prompt Element: 1. Name calling video/audio displayed on the target monitor; 2. Attractor bouncing in the 

gaze direction for 2 seconds; 3. Attractor bouncing from the gaze direction to the target monitor; 4. Normal 

bouncing sound; 5. Special bouncing sound. 

 

After the first 5 RTN trials, another Sesame Street video clip of 76 seconds was displayed to give 

participants a short break. This clip was displayed in a similar way as the first “fun” video clip, except 

that the display on each monitor lasted for about 8.4 seconds and the display switching followed the order 

of Monitor 3, 2, 4, 1, 5, 1, 4, 2, and 3, respectively. Another 5 RTN trials followed the break. The target 

monitor for trial 6 to trial 10 was Monitor 1, 5, 2, 4, and 3, respectively. This reversed display order of the 

2 funny video clips and the two sets of RTN trials helped reduce the chance of participant habituation. 

The very last part of the interaction was a “Good-bye” video displayed on Monitor 3. All of the videos 

except the Sesame Street video clips were recorded with the same therapist to provide a homogeneous and 

comparable environment for all the participants across all sessions and trials. 

4.5.3 Measurements 

For each group, we compared the participants’ attention and performance in the video- and audio-based 

sessions to investigate the differences produced by increasing the task difficulty. Since we used a large 

scale interaction environment, we calculated the attention and performance including the whole 

environment in a global evaluation. We then computed the attention and performance associated with 

each monitor to determine whether the direction of a target influenced the interaction. 
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First, we evaluated the participant’s attention towards the interaction environment, which reflected their 

engagement. We hypothesized that the more time they spent looking at the display region, the higher their 

engagement was during the interaction, which was related to the RTN performance and important for 

eventual learning and success within the interaction paradigms. Since Sesame Street videos are popular 

for young children in general, we can use their gaze on the display region during the “fun video” display 

as a baseline to assess their engagement in the RTN. We calculated the duration for which they were 

looking at the display region, which included the 5 monitors and the gaps between the monitors. We also 

calculated the duration of time spent on looking at each monitor. We hypothesized that the larger the 

target yaw angle was from the participants’ frontal head orientation, the less attention the participant 

would pay to this target. 

Second, we evaluated the participants’ RTN performance, which reflected whether the interaction 

protocol was within an appropriate difficulty range to elicit the RTN behavior of young children. We 

computed: i) the number of trials where the participants hit the target eventually; ii) in each trial, the 

prompt levels they needed and how much time they spent trying to hit the target; and iii) the distribution 

of ii) on each monitor. Similar measurements have been widely used in psychological studies regarding 

RTN skills [24]. In general, we anticipated that the participant would need lower level of prompts to hit a 

target in the video-based session, since the name caller was visible. In other words, participants in the 

audio-based session would need more help from the attention attractor.  

4.6 Experimental Results 

Since the toddlers with ASD and the TD infants were recruited for different purposes in two separate 

user studies as discussed in section 4.5.1, the results of each group are analyzed separately as follows. 

4.6.1 Results of Toddlers with ASD 

Eleven toddlers with ASD were recruited initially, and 10 of them completed both video- and audio-

based sessions. One child did not participate in the audio-based session. Fig. IV.5(a) shows the percentage 

of time during the whole session that the toddlers with ASD spent looking at the display region, for both 

video- and audio-based sessions. Fig. IV.5 (b) shows the average duration the toddlers with ASD spent 

looking at each monitor (M1 to M5 represent Monitor 1 to Monitor 5). The “Fun video” indicates the 

Sesame Street video clips display periods, and the “RTN” represents the 10 RTN trials. We can see that in 

both cases the toddlers with ASD looked at the display region for most of the sessions (>82.77%). Their 

attention towards the display region was even higher in the RTN trials in both the video- and audio-based 

sessions. This indicated their interest towards the RTN interaction. In general, the toddlers with ASD 

looked at the frontal monitor the most, and the farthest side monitors (Monitor 1 and Monitor 5) the least. 
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This result was consistent with our hypothesis that the farther the monitor was angled from 0° (frontal 

direction of the participant), the less attention was paid to that monitor. 

Fig. IV.5(c) presents the prompt level distribution of the toddlers with ASD. 100% and 97% trials 

ended up with a target hit in the video- and audio-based sessions, respectively. In the video-based session, 

the toddlers hit the target on Prompt 1 (no attention attractor) for 81% of trials, and needed the attention 

attractor (Prompt 2 to Prompt 4) for 19% of trials. In the audio-based session, they hit the target on 

Prompt 1 for 38% of trials, and on Prompt 2 to Prompt 4 for 59% of trials. On average, the toddlers with 

ASD hit the target at prompt level 1.24 (SD = 0.55) and 1.78 (SD = 0.75) in the video- and audio-based 

sessions, respectively. Fig. IV.5(d) shows the participants’ average performance on each monitor when it 

was the target. We found that there was no apparent change on the average target hit prompt levels across 

different monitors in the video-based session. However, in the audio-based sessions, the farther away a 

target was, the worse the RTN performance was, which was consistent with the attention preference of 

toddlers with ASD on different monitors. 

The toddlers with ASD needed, on average, 3.09 (SD = 3.23) seconds and 6.25 (SD = 4.15) seconds to 

hit the target in the video- and audio-based sessions, respectively. Since each name call lasted for about 2 

seconds, the result showed that toddlers with ASD turned to their names at the second and third name 

calls in the video- and audio-based sessions, respectively. Similar to Fig. IV.5(d), Fig. IV.5(e) shows the 

average time that these participants needed to hit a target on each monitor. We can see that the pattern on 

Fig. IV.5(e) was consistent with that of Fig. IV.5(d). This was expected since the longer a participant 

needed to hit a target, the higher the target prompt level would be.  

In summary, these results showed that the system was well tolerated by toddlers with ASD, and 

successfully elicited RTN behaviors from them. The attention attractor was helpful in both sessions, 

especially in the audio-based session with a more difficult RTN task. Thus, we believe that ASOTS has a 

great potential to be used for teaching RTN skills to young children who are diagnosed with ASD. 

4.6.2 Results of TD infants 

All 10 TD infants recruited completed the study. Fig. IV.6(a) shows that although they were only 16 

months old on average, they still paid considerable attention on the monitors in both fun video display 

periods and RTN trials (>88.50%). In general, the TD infants spent comparable time on looking at the 

display region in both the RTN trials and the “fun video” display periods in video- and audio-based 

sessions. This suggested that the RTN trials were as attractive as the Sesame Street video clips to the TD 

infants. Fig. IV.6 (b) shows the average duration the TD infants spent on looking at each monitor. They 
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looked at the frontal monitor (Monitor 3) mostly, and looked at the side monitors (Monitor 1, 2, 4 and 

Monitor 5) relatively evenly.  

 

 
(a). Mean attention duration on the targets for toddlers with ASD (entire session) 

 
(b). Mean attention duration on each monitor for toddlers with ASD (entire session) 

 
(c). Prompt level distribution of toddlers with ASD 

(d). Mean target hit prompt level on each 
monitor for toddlers with ASD

 
(e). Time (s) needed to hit each target 

monitor for toddlers with ASD 

Fig. IV.5 Pilot user study results of toddlers with ASD 
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(a). Mean attention duration on the targets for TD infants (entire session) 

 

 
(b). Mean attention duration on each monitor for TD infants (entire session) 

 

 
(c). Prompt level distribution of TD infants 

(d). Mean target hit prompt level on each 
monitor for TD infants 

 
(e). Time needed to hit each target monitor 

of TD infants 

Fig. IV.6 Pilot user study results of TD infants 
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TD infants hit the target in 98% and 93% trials in the video- and audio-based sessions, respectively. 

Fig. IV.6(c) presents the prompt level distribution. In the video-based session, they hit the target on 

Prompt 1 for 81.00% of trials, and on Prompt 2 to Prompt 4 for 17% of trials. In the audio-based session, 

they hit the target on Prompt 1 for 46% of trials, and on Prompt 2 to Prompt 4 for 47% of trials. On 

average, the TD infants hit the target at prompt level 1.17 (SD = 0.38) and 1.72 (SD = 0.86), as well as 

required 2.77 (SD = 2.28) seconds and 5.81 (SD = 4.97) seconds before the target hit in the video-and 

audio-based sessions, respectively. Fig. IV.6(d) shows the TD infants’ average performance associated 

with each target monitor. We found that the lowest target hit prompt level happened on Monitor 2, and the 

highest one happened on Monitor 5 in the video-based session. In the audio-base session, the lowest 

target hit prompt level happened on Monitor 5, and the highest one happened on Monitor 4. In general, in 

both sessions, the frontal monitors were still slightly easier to hit than the side monitors. The values in 

Fig. IV.6(d) are consistent with the duration these TD infants needed to hit a target, as shown in Fig. 

IV6(e).  

In summary, ASOTS was well tolerated by these TD infants and elicited their RTN behaviors 

successfully. Therefore, in the future, ASOTS has a potential to be upgraded to conduct early screening 

for at risk infants (e.g., siblings of children with ASD) who are too young to be diagnosed with ASD. 

4.6.3 Effect of the attention attractor 

Fig. IV.7 shows a typical trial in the experiment, where the gaze of a participant was guided by the 

attention attractor. In this trial, the target monitor was Monitor 5. Fig. IV.7 (a) shows the path of the 

participant’s gaze and the attractor. The horizontal axis represents the distance along the monitors, with 

the origin at the center of Monitor 3. M1 to M5 mark the regions of Monitor 1 to Monitor 5. The 

participant’s gaze was at first on M2, and then shifted to M3. When the name call was finished, the 

participant’s gaze was around the upper edge of M3, therefore, the ball showed up in M3 and bounced 

towards M5. The participant’s gaze followed the attractor and was guided to M5 eventually. Fig. IV.7 (b) 

and (c) show the trajectory of the participant’s gaze in horizontal and vertical directions, respectively. We 

can see that since second 4 (end of Prompt 1), the gaze of the participant was shifted along with the 

position of the attractor. At around second 9, the attractor and the gaze reached the center of M5, which 

meant the participant hit the target. Then the attention attractor disappeared and a reward was displayed 

on M5. The participant’s attention was on M5 until the end of the reward (also the end of the trial). 
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Fig. IV.7 Demonstration of attention attractor 

 

4.7 Discussion and Conclusion 

In this chapter, we have presented an autonomous system, ASOTS, to help young children with ASD 

learn social orientation skills. Our selected response to name (RTN) skill was targeted in that it is seen as 

an early red-flag of ASD. As such RTN provides a specific example to demonstrate the potential effect of 

the proposed system and the interaction protocol. ASOTS consisted of a distributed display subsystem 

which provided a wide range of name prompts. Accordingly, a distributed gaze tracking subsystem was 

designed to monitor the response of the participant. ASOTS is an adaptive closed-loop autonomous 

system, where the behaviors of the system adapts in real-time depending on the performance of the 

participant. The implementation and the validation of ASOTS system was discussed in detail. The 

validation results showed that the gaze tracking was accurate, and the system was fast enough for real-

time RTN interaction. 

An interaction protocol was proposed to assess the functionality of ASOTS. If a participant could not 

attend to a target monitor within a given time period of a prompt, a higher level of prompt was provided 

with the aid of an attention attractor. The attention attractor was effective in guiding the participant’s 

attention towards the target. Two pilot user studies were conducted to test the system. Ten toddlers with 
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ASD tested the feasibility of ASOTS for affected children (ASD). Ten TD infants validated the potential 

future use of ASOTS in a much younger prodromic sample. The results demonstrated that ASOTS were 

well tolerated by both groups, and successfully elicited expected RTN behaviors. However, these two 

pilot user studies were not designed as clinical efficacy studies of ASOTS, which is beyond the scope of 

the current work, and thus the results of this current work should be seen as feasibility and tolerability 

result that indicate promise of ASOTS in future intervention. 

In this context, it is important to highlight several limitations of the current study. First, ASOTS needs 

to be further upgraded to fit in formal clinical empirical studies in the future. The pilot user studies only 

involved a few participants within a limited time frame of interaction. Therefore, recruiting larger user 

groups and conducting longitudinal experiments will be needed in the future to answer the ultimate value 

of ASOTS in formal clinical empirical studies. For the toddlers with ASD, a TD control group would be 

needed to access the difference between toddler with ASD and their TD peers. For TD infants, a group of 

at risk infants (e.g., siblings of children with ASD) will be needed to test whether the RTN behaviors 

detected by ASOTS can contribute to the prediction of ASD in a longitudinal empirical study. While we 

did assess promising attentional response within system, we did not systematically compare such 

improvements in other methods nor did we see if such training generalized to other interactions.  

Despite these limitations, this work is the first to our knowledge to design and empirically evaluate the 

usability and feasibility of an autonomous closed-loop social orientation training system capable of 

modifying prompts based on within system measurements of attention. The preliminary results for RTN 

presented in the chapter are promising. Note that this system is not limited to RTN protocol alone. The 

ASOTS architecture and system components can be adapted to address other core deficits in social 

orientation (e.g., joint attention skills). Importantly, we do not propose this technology as a replacement 

for existing necessary comprehensive behavioral intervention and care for young children with ASD. 

Instead, this platform represents a move toward realistic deployment of technology capable of 

accelerating and priming a child for learning in key areas of deficit. 
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Chapter V. Semi-Autonomous Robot-Mediated Joint Attention 
Intervention 

5.1 Abstract 

This chapter describes development and application of a novel semi-autonomous adaptive robot-

mediated interaction technology for teaching early joint attention skills to children with ASD. The system 

is composed of a humanoid robot endowed with a prompt decision hierarchy to alter behavior in concert 

with reinforcing stimuli within an intervention environment to promote joint attention skills.  Results of 

implementation of this system over time, including specific analyses of attentional bias and performance 

enhancement, with 6 young children with ASD are presented. 

Keywords—Robot-mediated intervention system, children with autism, joint attention 

5.2 Introduction 

This research is motivated by this highlighted potential of robotic technology and designs and tests a 

potentially transformative co-robotic technological paradigm for future ASD intervention. In particular, it 

focuses on developing a co-robotic intervention platform and environment specifically designed to 

accelerate improvements in early joint attention skills [1, 2].  Joint attention skills are thought to be 

fundamental, or pivotal, social communication building blocks that are central to etiology and treatment 

of ASD [3, 4]. At a basic level, joint attention refers to the development of specific skills that involve 

sharing attention with others (e.g., pointing, showing objects, and coordinating gaze).  These exchanges 

enable young children to socially coordinate their attention with other people to more effectively learn 

from their environments. Fundamental differences in early joint attention skills have been demonstrated to 

underlie the deleterious neurodevelopmental cascade of the disorder and successful treatment of these 

deficits has been demonstrated to substantially improve numerous developmental skills across settings [1, 

2, 4].   

The present work is built upon a previous work [5, 6] where the authors developed and piloted a robot-

mediated autism intervention architecture called ARIA (Adaptive Robot-mediated Intervention 

Architecture) and demonstrated three significant findings (refer II. B for details): i) children with ASD 

demonstrated an attentional bias toward the robot as opposed to a human therapist; ii) it was possible to 

develop a closed-loop autonomous robot-mediated joint-attention intervention system that could 

dynamically adapt interaction based on the performance of the child; and iii) this system performed as 

well as a therapist on a small sample of children with ASD over a very limited time course (1 session). In 

this present work, we expand upon our previous work to test two important questions: i) whether repeated 
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interactions with the robotic system would impact performance regarding early joint attention skills and ii) 

whether the initial attentional bias and preference to the robot would hold over time. These questions are 

extremely important to test the ultimate value of robotic interactions in children with ASD, as if the initial 

attentional bias quickly habituates or if repeated exposure is unable to utilize initial attentional 

preferences to promote skills robotic interactions may be of more limited value. 

The rest of the chapter is organized as follows. In Section 5.3 we first discuss relevant literature and our 

own previous work that provides the motivation for the current work. We present the system architecture 

in Section 5.4. The experimental investigation is discussed in Section 5.5 and 5.6. Finally we summarize 

our contributions and discuss its impact and future directions in Section 5.7. 

5.3 An Earlier Work on Robot-mediated Joint Attention 

This work explicitly focuses on realizing a co-robotic interaction architecture capable of measuring 

behavior and adapting performance in a way that addresses a fundamental early impairment of ASD (i.e., 

joint attention skills).   

 

 

Fig. V.1 Robot-mediated joint attention study (with permission) 

 

In order to determine the feasibility and potential value of adaptive robotic intervention system for 

younger children, Bekele et al. developed the prototype ARIA system capable of administering joint 

attention tasks to young children with ASD (Fig. V.1) [5-8]. In this work, the authors developed a test-bed 

that consisted of a humanoid robot NAO, 3 Infrared (IR) cameras mounted in the test room, and a series 

of 23 inch networked computer monitors capable of displaying relevant recorded task stimuli. This work 

also instrumented a baseball hat with arrays of IR LEDS and designed a gaze inference algorithm based 
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on real-time image processing of the camera images obtained from LEDS arrays.   The algorithm could 

detect gaze with both head pitch and yaw angles with validation detection data with a laser pointer 

yielding an error bounding box to be within 2.6 cm X 1.5 cm from 1.2 meters distance.[7] This study 

performed an initial feasibility  study comparing performance and gaze detection for a sample of 6 

typically developing children and  children with clinically confirmed ASD diagnosis (ages 3-5; IQ range 

= 49-102)  and variable baseline skills regarding response to joint attention (ADOS RJA Item range: 0-3, 

mean = 1.2 (1.1)). Within the system a series of joint attention prompts were administered via either a 

human administrator (x2) or the humanoid robot (x2) with randomized presentation to control order effect.  

The child sat in a chair across from the robot or interventionist for the trial block and was instructed 

through a hierarchy of prompts (i.e., head/gaze shifts, pointing, target activation) to look to a target.   

The system registered gaze across all trials and provided reinforcement for looking through a simple 

reinforcement protocol (e.g., praise and target activation).  Available data suggest that children with ASD 

spent approximately 27% more time looking toward the robot administrator than the human administrator, 

that they did not fixate on either robot or target, and ultimately directed gaze correctly to the target for 

95.83% of the total 48 trials, a rate equal to TD success.  Further, children successfully oriented to robotic 

prompting, meaning they responded to robot prompts prior to target activation, at very high levels (i.e., 

ASD = 77.08% success; TD = 93.75%).  However, note that this study was a single session study and as 

such did not provide any indication whether the children will respond similarly over multiple sessions. In 

terms of tolerability, we anticipated a fairly large fail rate across both the ASD and TD samples in terms 

of willingness to wear the LED cap.  Out of 10 ASD and 8 TD children, 6 ASD and 6 TD children 

completed the study. The completion rates of 60% (ASD) and 80% (TD) were promising, but ultimately 

specifically highlighted the need for the development of a non-invasive system for realistic extension to a 

young ASD population commonly demonstrating sensory vulnerabilities. 

5.4 System architecture 

In this chapter we wanted to investigate the impact of such a robot-mediated joint attention intervention 

on attention and performance. As a result, we have modified the ARIA architecture described above in 

two important ways. First, we wanted to monitor the eye gaze of a child with ASD on the robot. We 

hypothesized that if the child gets bored with repeated exposure to the robot then he/she will look less at 

the robot over multiple trials. In order to capture the eye gaze we introduce an eye tracker into the 

architecture (Fig. V.2 and Fig. V.3) that monitored the gaze of the child on and around the robot. Second, 

in order to address the previously observed sensory vulnerabilities due to the wearing of the hat, we 
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included a human therapist in the loop to replace the hat and the camera system who determined when 

and how the child responded to robotic prompts (Fig. V.3).  

The robot-mediated intervention system (Fig. V.2) is developed around the robot NAO (Fig. V.1). The 

child with ASD is seated in a booster chair. The robot NAO [9], which is a humanoid robot produced by 

Aldebaran Robotics, stands on a raised platform in front of the child. NAO is the size of a young child 

(height = 58 cm, weight = approximately 4.3 kg) and is suitable to a robot-child interaction study. Its 

body is made of plastic and it has 25 degrees of freedom which allow the user to control its head, fingers 

and feet independently. Its software modules provide convenient programming and encourage distributed 

processing. NAO is capable of displaying complex social communication behaviors that are often missing 

or under-developed in children with ASD. An Eye Tracker, Tobii X120 [10], is calibrated around NAO 

such that it can capture the child’s gaze when he looks at the robot. The calibration for the eye tracker is 

done by projecting the calibration image on a screen at the robot’s position. Small cartoon characters were 

displayed in each calibration point to attract participant’s eye gaze. After calibration, the screen is 

removed and the robot is placed at that position. In order to display where the participant is looking on or 

around the robot in real-time, we use a camera to record the robot motion and then superimpose this video 

with gaze data. This video is displayed in the monitoring station in another room for parents and other 

researchers to intuitively understand the participant’s attention on robot.  

 

 

Fig. V.2 Experiment Room Sketch 

 

There are two computer display monitors, one at the left and one at the right of the child, where joint 

attention stimuli are presented. The robot presents joint attention bids, which are discussed in Section 5.5, 
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and a therapist observing the child’s response indicates correct or incorrect response by pressing a button 

that is connected to the robot controller. Based on the child’s response the robot either presents a new 

joint attention task if the previous task was successful, or increases the prompt level to get the child to 

look at the stimuli. The trial continues for a specified duration. The system interconnection is shown in 

Fig. V.3. The robot action and the stimuli presentation are coordinated by the Centralized Controller (CC), 

which performs the following tasks: i) initiate a session by sending messages to the eye tracker to initiate 

calibration and record time-stamped eye gaze data; ii) send message to the robot to initiate joint attention 

bid; iii) activate the display monitor with appropriate stimuli; iv) continuously monitor signals from the 

human therapist to determine whether a trial has been successful; v) based on performance continue with 

the trial as discussed above; and vi) end the session by sending messages to the robot, eye tracker and the 

display monitors. The CC is designed as an event-based system and communication between the CC and 

the different modules of the system has been implemented using socket communication. 
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Video Audio
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Fig. V.3 System Architecture 

 

5.5 Experimental Setup 

5.5.1 Participants 

A total of 6 boys completed the tasks with their parents’ consent. The details of the participants are 

given in Table V.1.  It is a well-documented finding that males are more commonly affected with ASD 

than girls at a rate of almost 5:1.  As such, this predominantly male sample was not atypical for this 

population.   There was no drop-out in this study. Given the primary aims of the study regarding 
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documenting attention/habituation and performance change over time within ASD group we did not 

include a comparison sample of typically developing controls. 

Tables V.1 shows the specific age, baseline cognitive skills, and ratings of autism symptoms for 

participating children.  All participants with ASD were recruited through existing clinical research 

programs at Vanderbilt University and had an established clinical diagnosis of ASD. The study was 

approved by the Vanderbilt Institutional Review Board (IRB). To be eligible for the study, participants 

had to be between 2–4 years of age and had to have an established diagnosis of ASD based on the gold 

standard in autism assessment, the Autism Diagnostic Observation Schedule (ADOS) [11]. The parents 

completed ASD screening/symptom measurements: the Social Responsiveness Scale (SRS)  [12] and the 

Social Communication Questionnaire (SCQ) [13]. 

 

Table V.1 Diagnoses of the Participants with ASD 

 

ADOS Raw 
Score 

ADOS Severity 
Score 

SRS-2 Raw 
Score 

SRS-2 T 
score 

SCQ Lifetime 
Total Score 

IQ Age 

P1 20 9 132 85 24 81 4.38 

P2 14 5 65 59 11 69 2.52 

P3 24 9 107 75 16 107 2.75 

P4 18 10 92 69 18 78 3.48 

P5 20 9 106 75 24 58 3.48 

P6 29 10 75 63 9 49 4.13 

Mean 20.83 8.67 96.17 71.00 17.00 73.67 3.46 

Std 5.15 1.86 24.23 9.38 6.32 20.29 0.73 

 

5.5.2 Joint attention stimuli, robot prompts, and experimental procedures 

The stimuli presented via the monitors were pictures of interest (e.g., characters/objects, pictures of 

caregivers/children/animals), videos of similar content, and discrete audio and visual events relevant to 

the pictures. These stimuli were adaptively changed in form or content based on participant’s response in 

order to provide additional levels of prompts toward target and to ensure that they function as reinforcing 

objects of interest.   To give an example, the pictures, audio, and video clips were carefully selected from 

children’s TV programs (e.g., Bob the Builder, Dora the Explorer, etc.). Segmented clips of these shows 

were selected wherein a dance, performance, or other actions were carried out by the character such that 

the clip could be easily initiated and ended without abrupt start or end.  The clips were also selected based 
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on consultant review that the particular segments were developmentally appropriate and potentially 

reinforcing to our ASD population. Within the study, these clips were selected to be both part of the 

prompt and feedback structure, utilized to draw attention as needed and reinforce correct looking.   

During joint attention tasks, a hierarchy of prompts was presented by the robot. We choose a least-to-

most prompt (LTM) hierarchy [14], a common convention in ASD intervention, which essentially 

provides support to the learner only when needed. The method allows for independence at the outset of 

the task, ensures opportunities for successful performance and reinforcement at baseline, and only 

provides increasing support when the child has been given an opportunity to display independent skills. 

Table V.2 explicitly demarcates the prompt hierarchy utilized in our preliminary studies of robot assisted 

joint attention platforms which emphasizes utilizing the least level of prompting to achieve success as a 

methodology for shaping and improving performance over time.  

 

Table V.2 Prompt Hierarchy for Child Named Jim 

Prompt Level Robot  Speech Robot Motion Target Display 

1 “Jim, look!” Turn head Static picture 

2 “Jim, look!” Turn head Static picture 

3 “Jim, look over there!” Turn head and point Static picture 

4 “Jim, look over there!” Turn head and point Static picture 

5 “Jim, look over there!” Turn head and point Audio display (3 sec) 

6 “Jim, look over there!” Turn head and point Video display (10sec) 

 

Each participant attended 4 sessions, scheduled on different days to assess the cumulative effect of the 

experimental sessions on participants’ attention and performance. During each session, participants were 

told they would be “playing with Mr. Robot Nao.” Instructions were, “If you follow Mr. Robot’s words, 

he will reward you!” To heighten children’s engagement across sessions, we used different video sets as 

rewards but kept the main procedure in every session identical. Each session included 8 trials, described 

below for a total of 32 trials across all sessions. 

In each trial, there are 6 potential prompt levels. After prompt 2, the robot NAO engages in 

successively more attention-directing Robot Speech or Robot Motion. The Target Display also becomes 

more attention-getting as more prompts are required. For each of the 8 trials, the system randomly put the 

target on the left or right monitor. The target direction remained the same within each trial. The robot 

turned its head or turned while pointing to the corresponding target. After the start of each prompt, a 7 
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second response time window was set. “Target hit” was defined as the participant responding to, i.e., 

turning to look at the correct target within this 7 seconds. Regardless of the participant response, the robot 

turned back to the starting neutral posture. If the participant failed to hit the target, the robot proceeded to 

the next prompt level. If the participant hit the target, the reward video was shown and then next trial 

started. Note that during the first 4 prompts, only one static cartoon picture is presented on both left and 

right targets. If the participant failed to hit the target in the first 4 prompts, audio and then video were 

provided to further draw the participant’s attention to the target. If the participant successfully hit the 

target before prompts 6 they were rewarded with a 10s video on the target display immediately (for 

prompt 6, the video was incorporated into the prompt.)  After each successful hit, NAO also gave the 

verbal reward. 

5.6 Experimental Results 

To evaluate the system’s effect on participants’ responses to the robot, we analyzed 1) target hit 

response rates and 2) eye gaze data. The former evaluated whether participants followed the robot’s 

prompt and looked at the target. The latter evaluated participants’ attention toward the robot during the 

interaction.   

5.6.1 Target hit response performance  

Across all sessions and participants, 99.48% of the 32 trials ended with a target hit. This illustrates that 

our robot-mediated joint attention intervention system successfully caught and transferred the attention of 

children with ASD. The average prompt level before participants looked at the target is shown in Fig. V.4. 

Fig. V.4 displays how participants’ performance, as measured by number of prompts until target hit, 

improved from session 1 to session 4. In session 1, the average target hit prompt level is 2.17. As children 

completed sessions and became more familiar with the “game”, the target hit prompt level went lower, 

falling to 1.44 by session 4. A two-sided Wilcoxon rank-sum test indicated that the median difference 

between session 1 and session 4 is statistically significant (p = .0029). In other words, with more exposure, 

the performance improvement was found to be statistically significant. For prompt1 to prompt4, the target 

was only a static picture (no sound or animation). Therefore, if the participant hit the target, one can 

assume it was because the participant understood the robot’s instruction and accompanying look/gesture. 

Fig. V.5 shows the average percentage of target hits at prompt1 and with prompt 1-4. The trends for the 

two cases are all increasing. In the first session, 52.8% of trials ended with a target hit on the first prompt, 

while in session 4 participants achieved 81.25% of target hits on the first prompt. Participants hit the 

target within the first 4 prompts 87.5% of the time in session 1, and that increased to 95.83% in session 4. 
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Therefore, by session 4, the participants hit the target by following the robot’s gesture and instruction 

alone, without additional attraction from target itself. 

 

 

Fig. V.4 Average prompt level needed for target hit 

 

 

Fig. V.5 Average target hit at prompt level1 (solid) and below prompt level 5 (chessboard pattern) 

 

 

Fig. V.6 Individual performance of the 6 participants 
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Fig. V.6 shows the individual performance for each of the 6 participants, with the average number of 

prompts needed for each trial depicted on the y-axis. From Fig. V.6, we can see that four out of the six 

participants’ performance improved, one fluctuated and one decreased. 

5.6.2 Eye gaze analysis  

We defined the robot attention gaze region as a box of 76cm  58 cm which covered the body and arm 

movement of NAO. Given the distance from the participant to the calibration screen/robot, the accuracy 

of gaze detection if the participant moved his or her head was about 5cm in both the horizontal and 

vertical directions. The following analysis explains participants’ attention to the robot in terms of their 

eye gaze pattern. 

The gaze pattern is analyzed in two ways: 1) The whole session (from the start of the first prompt to the 

end of the session) and 2) Within the 7 second response time window for each prompt in a trial. For 

example, if the participant hit the target on the 5th prompt in a trial, then the total time looking at the 

robot region for that trial is the sum of looking time across all five 7 second time windows. Examining 

looking times across all participants and sessions, the average time that participants looked at the robot 

was 14.75% of total experiment time. Within the 7 second window across all participants and sessions, 

the average time that the participants looked at the robot was 24.80% (Fig. V.7). From session 1 to 

session 4, participants’ average time looking at the robot were 14.88%, 15.17%, 17.94%, and 11.02% for 

the whole session, and 22.15%, 26.52%, 28.14%, and 22.41% for the 7 second response window.  

 

 

Fig. V.7 Average looking at robot time for whole session and 7 second respond window 
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A two-sided Wilcoxon rank-sum test showed that the median difference in looking time between all 

sessions was not statistically significant, with p-values range from 0.8850 to 0.1797 between different 

sessions. This indicates that the looking patterns of participants did not change statistically significantly 

across sessions. In other words, the initial interest that the participants showed towards the robot did not 

statistically significantly change with repeated exposure. 

Qualitatively from the therapist’s analysis we found that children’s attention in session 1 was initially 

described as focused on the robot itself. At first, they were described as attracted to this unusual 

“playmate’s” special appearance, accent and flashing LED eyes. Sometimes they were described as 

seemingly distracted by these aspects and ignored the robot’s instructions.  Beginning in session 2, 

participants were described as focusing on the robot’s instructions with increasingly better performance, 

as previously discussed. In session 4, the participants were quite familiar with the “game”. They stared at 

the robot less and responded to the target quickly once the robot gave out the instruction, waiting for the 

reward. Because of this, the average robot looking time was lower in session 4.  

Statistical analyses showed that participants looked at the robot more in the response window than after, 

which explains why the percentage of looking time for the response window is larger than the one for 

whole session. We also found that in the video task (prompt 6 and video reward), the children usually 

looked at the monitor instead of the robot. This suggests that the video effectively captured children’s 

attention for the final prompt as well as the reward condition.  

5.7 Discussion and Conclusions 

In this work, we studied the development and application of an innovative adaptive robotic system with 

potential relevance to core areas of deficit in young children with ASD.  The ultimate objective of this 

study was to empirically test the attention and performance of a robotic system capable of administering 

and altering a joint attention hierarchy based on performance.   

Children with ASD documented sustained interest with the humanoid robot over several sessions and 

demonstrated improved performance within system regarding joint attention skills.  These findings 

together are promising in both supporting system capabilities and potential relevance of application.  

Robotic systems endowed with enhancements for successfully pushing toward correct orientation to target 

either, with systematically faded prompting or potentially embedding coordinated action with human-

partners, might be further capable of taking advantage of baseline enhancements in non-social attention 

preference [15, 16] in order to meaningfully enhance skills related to coordinated attention.   
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There are several methodological limitations of the current study that are important to highlight.  The 

small sample size examined is the most powerful limits of the current study.  As such, while we are left 

with data suggesting the potential of the application, the utilized methodology, potently restricts our 

ability to realistically comment on the value and ultimate clinical utility of this system as applied to young 

children with ASD.   

Another important technical limitation was the utilization of a human confederate within the robotic 

system loop. While this modification from our original closed-loop system resulted in dramatic 

improvement in terms of tolerability (all children completed the protocol), such wizard-of-oz paradigms 

carry additional human resource burdens to accomplish.  This highlights the need to develop a non-

contact remote eye gaze tracker capable of integration into a closed-loop system. 

Despite limitations, this work was the first to our knowledge to design and empirically evaluate the 

usability, feasibility, and preliminary efficacy of an adaptive interactive robotic technology capable of 

modifying performance regarding joint attention skills for young children with ASD.  Few other existing 

robotic systems [17, 18] for other tasks have specifically addressed how to detect and flexibly respond to 

individually derived, socially and disorder relevant behavioral cues within an intelligent adaptive robotic 

paradigm for young children with ASD.  Movement in this direction introduces the possibility of realized 

technological intervention tools that are not simple response systems, but systems that are capable of 

necessary and more sophisticated adaptations. Systems capable of such adaptation may ultimately be 

utilized to promote meaningful change related to the complex and important social communication 

impairments of the disorder itself. 

Ultimately, questions of generalization of skills remain perhaps the most important ones to answer for 

the expanding field of robotic applications for ASD.  While we are hopeful that future sophisticated 

clinical applications of adaptive robotic technologies may demonstrate meaningful improvements for 

young children with ASD, it is important to note that it is both unrealistic and unlikely that such 

technology will constitute a sufficient intervention paradigm addressing all areas of impairment for all 

individuals with the disorder.  However, if we are able to discern measurable and modifiable aspects of 

adaptive robotic intervention with meaningful effects on skills seen as tremendously important to 

neurodevelopment, or tremendously important to caregivers, we may realize transformative accelerant 

robotic technologies with pragmatic real-world application of import. 
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Chapter VI. Autonomous robot-mediated joint attention intervention 

6.1 Abstract 

In this chapter, we propose a novel joint attention intervention system for children with ASD that 

overcomes several existing limitations in this domain such as the need to use body-worn sensors, non-

autonomous robot operation requiring human involvement and lack of a formal model for robot-mediated 

joint attention interaction. We present a fully autonomous robotic system, called Norris, that can infer 

attention through a distributed non-contact gaze inference mechanism with an embedded Least-to-Most 

(LTM) robot-mediated interaction model to address the current limitations. The system was tested in a 

longitudinal user study with 14 young children with ASD. The results showed that participants’ joint 

attention skills improved significantly, their interest in the robot remained consistent throughout the 

sessions, and the LTM interaction model was effective in promoting the children’s performance. 

keywords—Robot-mediated intervention, joint attention, children with ASD 

6.2 Introduction 

Primarily animal-like robots [1, 2] and  small humanoid robots [3, 4] have been used for studies with 

children with ASD. Kozima et al.[5] designed a small creature-like robot called “Keepon”, which 

successfully elicited positive social interaction behaviors in children with ASD. A humanoid robot called 

“KASPER” [6, 7], has been successfully used to facilitate collaborative play and tactile interaction with 

children with ASD. Feil-Seifer and Mataric [8] found that contingent activation of a robot during 

interactions yielded immediate short-term improvement in social interactions. While important to 

demonstrate the potential of HRI in ASD intervention, most of these earlier studies chose free play as the 

mode of interaction instead of focusing on the core deficits of ASD. However, studies in ASD 

intervention have shown that interventions are  most effective when the intervention is focused on the 

core deficits of ASD [9]. In addition, most of these previous HRI systems were open-loop systems and 

thus were not responsive to the dynamic interaction cues from the participants to be able to adapt and 

individualize intervention.  The primary goal of the current work is to design a fully autonomous closed-

loop robotic system that can target core deficits of ASD.   

We introduce a new closed-loop autonomous robotic system, named Norris (short for Non-contact 

Responsive Robot-mediated Intervention System), to help children with ASD learn joint attention skills. 

Joint attention is the process of sharing attention and socially coordinating attention with others to 

effectively learn from the environment [10]. Joint attention skills underlie the neurodevelopmental 
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cascade of ASD, and successful intervention targeted on joint attention is essential to improve numerous 

developmental skills in children with ASD [11].  

 The current work improved previous work [12, 13] in a number of important ways. While [12] 

presented a novel HRI architecture for ASD intervention, ARIA, and developed an effective Least-to-

Most (LTM) protocol for joint attention intervention with promising results, it required participants to 

wear an instrumented hat for gaze inference. Since many young children with ASD are sensitive to 

unfamiliar touch [14], close to 40% children did not want to wear the hat and thus could not take part in 

the intervention. In order to solve this problem, Zheng et al. [13] developed another robotic system that 

inherited the LTM protocol from ARIA but used a Wizard of Oz [15] strategy for gaze detection to 

eliminate the need for the instrumented hat. While it enabled 100% participation, the system became 

semi-autonomous and needed human involvement for gaze inference. Additionally, both [12] and [13] 

used LTM protocol for joint attention but did not provide a generalizable mathematical model for LTM 

interaction. In LTM, the teacher allows the learner an opportunity to respond independently on each 

training stage and delivers the least intrusive prompt first. If necessary, more intrusive prompts, usually 

upgraded based on the previous prompts, are then delivered to the learner to complete each training 

procedure [16]. Essentially, LTM provides support to the learner only when needed. LTM has been 

widely applied in diagnostic and screening tools for children with ASD [17, 18]. However, to our 

knowledge, no mathematical model of LTM has been presented in the literature such that LTM based 

interaction can be generalized for multiple skill training. 

The contributions of the current study are two-fold: 1) development of a new fully autonomous closed-

loop robot-mediated intervention system that can infer gaze non-invasively and is capable of 

administering LTM protocol based on a general mathematical model; and 2) results from a feasibility 

joint attention intervention user study that tested the newly developed system in a multi-session 

longitudinal study.   

The remainder of this chapter is organized as follows: Section II describes the architecture and 

components of Norris. Section III introduces the mathematical model for LTM as the interaction logic 

which is followed by the design of the feasibility longitudinal user study to validate the Norris system in 

Section IV. Sections V and VI present the results of this user study and the summary of contributions and 

limitations of the chapter, respectively.   
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6.3 Norris System Architecture and Components 

6.3.1 System Architecture 

 

 

Fig. VI.1 Norris system Architecture 

 

HRI using Norris is designed to work as follows. A child with ASD will be seated in a room in front of 

a humanoid robot. The room will be equipped with a set of spatially distributed computer monitors or 

TVs where audio-visual stimuli will be presented. The robot will administer a LTM based joint attention 

prompting protocol to the child and the child’s response in terms of gaze direction will be inferred by a 

set of distributed cameras. Based on whether the child shares attention or not the robot will provide 

appropriate feedback and move on to the next prompt.   As shown in Fig. VI.1, the Norris has 4 main 

components: 1) the robot module controls robot actions; 2) the target module controls environmental 

factors; 3) the gaze tracking module provides interaction cue sensing; and 4) the supervisory controller 

controls the interaction logic. The supervisory controller is the “brain” of Norris that sends commands to 

the robot and the target module to present directional prompts to the participant. For example, the robot 

can turn its head to a monitor displaying a picture, and ask the participant to look at that monitor. The 

participant may or may not look at the monitor, and this looking behavior is sensed by the gaze tracking 

module. The tracking module further computes whether the direction of the participant’s gaze falls on the 

monitor, and sends this message back to the supervisory controller. Then the supervisory controller sends 

commands to the robot and target module again telling what to show next, based on an interaction 

protocol. Therefore, Norris provides a fully autonomous closed-loop interaction between the system and 

the participant. 

6.3.2 System Components 

Robot module 

A humanoid robot NAO by Aldebaran Robotics [19] was embedded in Norris. NAO has been widely 

applied for children with ASD [3, 12] due to its attractive childlike appearance and high controllability. 
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We designed a new controller for NAO that communicates with the supervisory controller. The robot 

controller was embedded with a built-in library storing all the necessary motions (e.g., turning its head to 

a monitor) and speeches (e.g., asking the participant to look in a direction) needed for the interaction. The 

robot’s actions are detailed in Section III.B along with the interaction protocol.  

Target module 

Two flat TVs (width: 70cm; height: 43 cm), one to the right and one to the left of the participant, were 

used as attentional targets. The robot would point to one of the monitors at a time and ask the participant 

to look at what was being shown in that monitor. The two TVs were controlled individually by two target 

controllers that received commands from the supervisory controller. A library of pictures, audios, and 

videos were embedded in the target controller. Based on the commands sent from the supervisory 

controller, static pictures, audios, or videos of children’s interest were displayed. The set of target actions 

are detailed in the interaction protocol (Section III.B). 

Gaze tracking module 

 

 

 

Fig. VI.2 Top view of Norris and the global frame 

 

The gaze tracking module detected the participants’ looking behavior. The direction of a participant’s 

gaze was computed based on the orientation of his/her head as detected by a set of cameras as shown in 

Fig. VI.2 and Fig. VI.3. Fig. VI.2 illustrates the top view of Norris in the global reference frame. The 

center of the participant’s head was the origin of the global frame. The X-axis and the Y-axis pointed 

forward and to the left of the participant, respectively, and the Z-axis pointed upwards out of the plane. 



97 
 

Fig. VI.3 shows both the body-attached head frame of the participant and the global reference frame that 

share the same origin. If the participant did not perform yaw (around the Z-axis), pitch (around the Y-axis), 

or roll rotations (around the X-axis), the head frame was aligned with the global frame. The unit vector 

along the positive x-axis of the head frame, fV


, represents the frontal head orientation, and was used to 

derive the gaze direction. Four cameras were employed for gaze detection, each with its own coordinate 

system. The gaze tracking method has 3 steps as discussed below. It is to be noted that while Step1 and 

Step2 were inherited from our previous work [20], Step3 was newly developed in the current study. 

  

 

Fig. VI.3 Coordinate systems for gaze tracking 

 

Step1: Detect head orientation from a camera. The SDM [21] method was applied to each camera to 

achieve fast and robust head orientation estimation with respect to the camera’s frame. The image of the 

participant’s frontal face is needed for this estimation, and thus a given camera can only detect head 

orientation when the frontal face is visible to it. The detected head orientation is represented by fV


in the 

camera’s frame. However, in the current joint attention study, we wanted to detect a larger head yaw 

angle (about 180°) than what can be detected by one camera (about 80°) for realistic tasks. Therefore, we 

developed a distributed head orientation estimation algorithm for an array of 4 cameras (as shown in Fig. 

VI.2) around the participant with partially overlapping views to extend the detection range. This design 

guaranteed that no matter which part of the interaction environment the participant was looking at, at least 

one camera could capture his/her frontal face in order to conduct head orientation estimation. 

Step2: Transform the head orientation estimation from a camera’s frame to the global frame. Each 

camera was calibrated to get the transformation matrix, cam
worldR , between the camera’s frame and the global 
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frame. As shown in Fig. VI.3, cam
worldR  transform fV


 from the camera’s frame to the global frame. 

In order to correlate head orientation with gaze direction we  conducted a small study with 10 adults 

where the volunteers were asked to look at a marker in front of them that was moved from left to right 5 

times followed by a right to left marker movement for another 5 times.   

In the horizontal direction, we trained a mapping function to derive
g from 

f . was identified as 

the angle of the moving marker (between  -90° (left) and 90° (right)). Simultaneously, the volunteers’ 

horizontal head orientation, , was estimated by the camera array. A total of 22,236 data pairs were 

collected. We used polynomial fitting to reflect the relation between  and . In Fig. VI.4(b), the blue 

points indicate the pairs ( , ). The red curve with a sigmoid shape is the curve that maps . The 

equation of the red curve is 

5 3 4 25.88 8.94 0.97 1.50g f f f        .                                            (VI-1) 

The mean distance from the data points to the red curve is 9.12°. We can see that, in general, a larger 

f leads to a larger 
g f  . Intuitively, the more the participant’s head turned to the side, the larger the 

deviation between the gaze direction and the frontal head orientation in the horizontal direction.  

The vertical gaze direction was approximated by
g f baseline    . Here baseline is an offset angle which was 

calibrated for each participant. During the calibration, the participant was prompted to look along the X-axis, and
f

at this moment was recorded as . In the user study presented in Section IV, baseline ranges from -11.57° to 

8.14°. 

The range of both monitors can be represented by the values
g  and 

g . The 
g range of the left and 

the right monitors were [-70°, -50°] and [50°, 70°], respectively. However, in order to accommodate for 

mapping error as well as encouraging young children with ASD to continue with the intervention, we 

relaxed the range by 15° on each side. Similarly, the range of 
g was [-26.3°, 12.5°] from top to bottom, 

which covered an additional 43 cm (the height of the monitor) beyond the monitor’s top and bottom edges. 

Therefore, if [ 85 , 35 ]g      , and [ 26.3 ,12.5 ]g     , the system would infer that the participant 

responded to the left monitor. Similar ranges were applied for the right monitor. On average, the whole 

gaze tracking module refreshed at a speed of 15 fps. 

Supervisory controller 

The supervisory controller communicated with different system components and controlled the global 

g

f

g f

f g f

baseline
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logic of the interaction. The communication was implemented with TCP/IP Socket Communication 

method. The average communication time from sending a message to receiving the message between the 

supervisory controller and a system component was about 25ms, which guaranteed real-time closed-loop 

interaction. The global interaction logic, which we call the interaction protocol, is discussed in detail in 

Section III. 

 

 

(a). Illustration of fV


,
XY

fV


, f , f , gV


, 
XY

gV


, g , and g  
 

 

(b). Mapping from horizontal head orientation to horizontal gaze direction 
Fig. VI.4 Gaze direction computation in the global frame 

 

6.4 LTM Interaction Protocol 

The Least-to-Most (LTM) hierarchy was applied in Norris to form the interaction protocol. LTM has 

been widely applied in diagnostic and screening tools for children with ASD [17, 18]. In LTM, the 

teacher allows the learner an opportunity to respond independently on each training stage and delivers the 
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least intrusive prompt first. If necessary, more intrusive prompts, usually upgraded based on the previous 

prompts, are then delivered to the learner to complete each training procedure [16]. Essentially, LTM 

provides support to the learner only when needed.  

LTM has been applied in a few important robot-mediated intervention systems for children with ASD. 

Feil-Seifer et al. [22] and Greczek et al. [3] introduced the graded cueing feedback mechanism to teach 

imitation skills to children with ASD. In this mechanism, higher prompts were upgraded based on the 

initial prompt by adding additional verbal and gestural hints to help children copy gestures. Huskens et al. 

[23] used a robot to prompt question-asking behaviors in children with ASD. The robot used open-

question prompt initially. If the participants did not respond correctly, the robot would add more hints 

(e.g., adding part of the correct response) in the following prompts. Zheng et al. [24] designed a robot-

mediated imitation learning system using a prompting protocol to help address an incorrect imitation. The 

robot first showed a gesture to the participant and asked him/her to copy it. If the child could not do it 

correctly, the robot would point out where to improve in the following prompts. Bekele et al. [12] 

developed the ARIA system to teach joint attention skills to children with ASD. If the participants did not 

respond to simple directional prompts given by a robot, higher levels of prompts with additional visual 

and verbal directional hints were provided. Kim et al. [25] designed a robot-assisted pivotal response 

training platform, where the higher levels of prompts were built by adding target responses hints on lower 

level of prompts. 

From these examples, we can see that LTM is not limited to a specific skill, but can be used as a 

general guidance mechanism for robot-mediated intervention. However, to our knowledge, no 

mathematical model has been proposed to create a general LTM framework. In this work, we attempt to 

develop a general LTM-based Robot-mediated Intervention (LTM-RI) model. Such a model can be used 

to teach different skills to children with ASD as well as adapt the prompts for a specific skill. We expand 

the model for joint attention intervention, which is used for the user study.  

6.4.1 LTM-RI model 

An intervention system uses prompts to teach a skill to children with ASD. These prompts may consist 

of robot actions (e.g., motions and speeches), and may also include environmental factors that coordinate 

with the robot’s actions (e.g., the attentional target that the robot may refer to). Suppose we have libraries 

of different robot actions { }RA  and environmental factors{ }EF , then we can combine different iR A and 

jE F  to form different prompts. These combinations may have different strength in eliciting the expected 

response (e.g., child looking at the target monitor), ExpResp , from a child. For example, in the current joint 

attention study, the robot turning its head (RA) to a static picture display on the TV (EF) might have a 
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weaker impact on the children than pointing (RA) to a cartoon video displayed on the monitor (RA). Here 

we arrange the order of the elements in { }iRA and { }jEF as follows: aR A is stronger (includes more 

instructive information) than bRA  if a>b ; and cE F is stronger than dE F if c>d . These orders can be 

determined based on common sense and clinical experiences. 

LTM-RI starts from presenting the weakest combination of RA and EF to form the least intrusive 

prompt. If this cannot elicit ExpResp , stronger RAs and EFs will be provided iteratively to form more 

instructive prompts, until the end of an intervention trial. We formally define this iterative procedure as 

follows. 

 
LTM-RI Model 
Step 1: Initial prompt (prompt level = 1). 

 Behavior(1)= BF RobAction(1),EnviFactor(1)  

 Resp(1)=IC D Behavior(1)  

 If Resp(1)=ExpResp  

Reward 
Go to Step 3 

Step 2: Iterative prompting loop.  
For prompt level n =2: IN 
   RobAction(n),EnviFactor(n) =PF Resp(n-1)   

 Behavior(n)= BF RobAction(n),EnviFactor(n)  

 Resp(n)=IC D Behavior(n)  

  If Resp(n)=ExpResp  

Reward 
Break 
1n n   

Step 3: Termination.  
Robot naturally stops the interaction  

 
Here B F is an implicit function that describes the participant’s behavior (e.g., participant’s gaze 

direction) given RA (RobAction) and EF (EnviFactor). This behavior is sensed by the interactive cue 

detection function (ICD) to determine whether the behavior is ExpResp.  In the current study, ICD is the 

gaze tracking module). In the simplest scenario, we can categorize ( )Perf n ExpResp  and

( )Perf n ExpResp . PF is the prompting function which decides what RA and EF to present, if

( )Perf n ExpResp . Therefore, PF is a sorted list of prompt levels following the LTM heirarchy. We want 

to identify the lowest level of support needed by the participant to perform ExpResp . If ( )Perf n ExpPerf , 

given iRobAction(n-1) RA , and 
jEnviFactor(n-1) EF , we choose lRobAction(n)=RA ( l i ) from  

and kEnviFactor(n)=EF ( k j ) from , so the the next prompt repeats the last prompt or provides a more 

instructive prompt. LTM-RI steps works are as follows: 

{ }RA

{ }EF
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In Step 1, the participant’s baseline behavior (1)Perf  is evaluated by prompt level 1, which consists of 

the weakest RA ( (1)RobAction ) and EF ( (1)EnviFactor ). If the participant’s response, (1)Resp , is ExpResp , 

then higher prompts are not needed. The system gives rewards and then excutes Step 3 to terminate the 

intervention. Otherwise, Step 2 is executed. 

In Step 2, prompt level 2 is given first. If the participant cannot perform ExpResp , the higher prompts 

are presented one by one until level IN. During this iteration, the next level of prompt ( ( )RobAction n  and 

( )EnviFactor n ) is formed based on the current performance of the participant ( 1)Perf n  , according to 

the PF. If ( )Perf n ExpResp , the system gives a reward to the participant and goes to Step 3.  

We can see  that if ExpPerf happened on prompt level n, it means that level 1 to n-1 have been executed 

but failed to elicit ExpResp . Suppose nE R  means Resp(n)=ExpResp , and xP T  represents prompt level x 

had been executed but was not successful. Then  1 1| , ...,n nP ER P T P T 
 represents the probability that

ExpResp happens on prompt level n. In order to measure the impact of LTM-RI, we define an intensity 

function nI  as: 

     1 2 1 1 1| ... | , ...n n nI P ER P ER PT P ER PT PT    .                              (VI-2) 

nI  represents the probability of ExpResp  at or before prompt level n. LTM-RI procedure has two goals: 

Goal 1: m nI I , given m n . This means adding prompt levels increases the probability of ExpResp . 

Goal 2: 1INI   , 0  or   is a small positive number. This means that eventually, at the highest 

prompt level, the system can elicit ExpResp  with high probability. 

We can see that the LTM-RI is a general model that is not limited to one particular skill. What 

behaviors of the participants that the model tracks depends on the design of ICD. The number of prompt 

levels and the content of the prompts can be easily adjusted within this framework by changing the detail 

of PF. In the current work, LTM-RI is itemized for joint attention intervention. 

6.4.2 LTM-RI trial in the current study 

We designed the intervention trial of Norris based on LTM-RI. The RAs and EFs applied are shown in 

Table VI.1, which is the PF in LTM-RI. Apparently, the larger the subscript, the stronger the directional 

information was provided. 

 In Step 1 of LTM-RI (prompt level 1), the robot turned its head to the target monitor, saying “Look!” 
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( 1R A ). At the same time, the monitor displayed a static picture ( 1E F ). 

 

Table VI.1 Prompt Levels 

Prompt level Prompting element list 

1 and 2 1RA  + 1EF  

3 and 4 2RA  + 1EF  

5 2RA  + 2EF  

6 2RA  + 3EF  

Prompt Elements (TR means Target Monitor): 

1RA : Robot turned its head to the TM, saying “Look!”; 

2RA : Robot turned its head and pointed its arm to the TM, saying 

“Look over there!”; 

1EF : TM displayed a static picture; 

2EF : TM displayed an audio clip; 

3EF : TM displayed a video clip. 

 
 

In Step 2 of LTM-RI, IN = 6. Prompt level 2 was the same as prompt level 1. In prompt level 3 and 4, 

the robot not only turned its head, but also pointed its arm to the target monitor, saying “Look over there!” 

( 2RA ). At the same time, the monitor still displayed a static picture ( 1E F ). In prompt level 5 and 6, the 

robot action was kept as 2RA , but the monitor displayed an audio clip ( 2EF ) and an video clip ( 3E F ), 

respectively. At any time during a trial, if the participant looked at the target (ExpResp happened), the 

robot would say “Good job!” and the target monitor would display cartoon video for 10 seconds as 

rewards. Otherwise, the prompt level would be presented one by one until prompt level 6 was completed. 

Finally, Step 3 of LTM-RI was executed, where the robot returned to its standing position, thanked the 

participant, and said Goodbye. 

In order to implement LTM-RI within Norris, we interpreted the LTM-RI trial with the standard Harel 

Statechart model [26], which is an extended state machine capable of modeling hierarchical and 

concurrent system states. As shown in Fig. VI.5, rectangles denote states. When an event happens, a state 

transition takes place, which is indicated by a directed arrow. Solid rectangles mark exclusive-or (XOR) 

states, and the dotted lines mark AND states. Encapsulation represents the hierarchy of the states. In the 

same hierarchy (encapsulated by the same rectangle), the system must be in only one of its XOR states, 
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while in all of its AND states. Therefore, the AND states represent parallel processes in the system. 

 
Variable: p: { 1,…,7}  

Input: TO, Target hit: event 

 

Fig. VI.5 The Harel Statechart model of the NorrisI LTM-RI trial 

 

The first hierarchy includes 4 XOR states: 

S1={Initialization, Execution, Reward, Termination}  

At the beginning of a trial, the system is in the Initialization state, where the robot stands straight facing 

the participant. Then, the system transits to the Execution state and initializes variable p=1. 

The Execution state is the second hierarchy, which includes 3 AND states, showing target, robot, and 

gaze tracking modules running in parallel. 

Execution={Target, Robot, Gaze tracking}                                               (VI-3) 

The third hierarchy controls the prompts:  

Target={Static Picture, Audio, Video}                                                        (VI-4) 

Robot={Head turn+"Look!", Head turn+Arm pointing+"Look over there!"}                    (VI-5) 

The Target state includes 3 EFs, and the Robot state includes 2 RAs. p is used to select RAs and EFs to 

form different prompts. The Gaze tracking state controls the Tracking function only, which represents the 

gaze tracking module. 

Two pure signals “Time out (TO)” and “Target hit” are used to change the prompts and terminate the 
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LTM-RI trial. A pure signal either absents (no event), or presents (an event happens) any time t   [27]. 

If the gaze tracking module detects gaze direction towards the target monitor within 7 seconds from the 

beginning of each prompt, a “Target hit” event is generated, which triggers the state transition to Reward. 

If no target hit is detected, TO event is generated. TO is combined with p to guide the transition in the 

AND substates of Execution. Once the state transition is done, p is increased by 1 to mark the next level 

of prompt. If prompt level 6 is completed without “Target hit”, the system transits to Termination.  

6.5 Experimental User Study 

Fig. VI.6 shows the experiment room. The participant was seated in a wooden chair. The robot was 

placed in front of the participant, standing on a platform 32cm above the floor. When the participant was 

seated, his/her eyes were approximately as high as the robot’s face. The two monitors and the robot were 

all 2 meters away from the participant.  

 

 

Fig. VI.6 Experiment room configuration 

 

6.5.1 Participants 

The Norris was tested by 14 children (12 males, 2 females) with ASD. They were recruited from a 

research registry of the Vanderbilt Kennedy Center, and this study was approved by the Vanderbilt 

University Institutional Review Board. The characteristics of the participants are shown in Table VI.2. 

They had confirmed diagnoses by a clinician based on the DSM [28] criteria. They met the spectrum cut-

off on the Autism Diagnostic Observation Schedule [17], and had existing Intelligent Quotient data 

regarding cognitive abilities in the registry. Parents of these children also completed the Social 

Responsiveness Scale–Second Edition [29] and Social Communication Questionnaire Lifetime Total 

Score (SCQ) [30] to index current ASD symptoms.  
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Table VI.2 Participant Characteristics 

 
ADOS Raw Score IQ SCQ SRS-2 T score Age (Years) 

Avg 21.29 54.71 14.86 63.36 2.78 

SD 4.61 8.17 5.56 8.63 0.65 

 
 

6.5.2 Experimental procedure and measurements 

Four sessions were arranged on different dates for each participant. Each session involved 8 repeated 

LTM-RI trials as introduced in section III.B. The left or the right monitor was randomly assigned as the 

target for each trial. 

Preferential attention 

First, we evaluated the participants’ attention on the robot and the monitors, a measure which reflected 

their engagement. A region of interest was defined for each object that covered this object with a margin 

of 20cm around it. We analyzed how their attention was distributed among the robot and the 2 monitors. 

We anticipated that participants would: 1) pay significant attention to the robot because the robot was the 

main interactive agent; and 2) pay more attention to the target monitor than the non-target monitor, 

because the target monitor was referred to by the robot and displayed visual stimuli. We also tracked the 

change in the participants’ attention on the robot over the 4 sessions. We anticipated that if the 

participants’ interest in the robot was sustained over the sessions, then their time spent looking at the 

robot would not change significantly. 

Joint attention performance 

Second, we evaluated the participants’ joint attention performance, which reflected the effectiveness of 

the system. For each session, we computed: i) the number of trials in which the participants hit the target 

successfully; and ii) the average prompt levels the participants needed in order to hit the target. We 

anticipated that the participant’s performance would improve significantly if the robotic intervention was 

effective. In addition, we computed the intensity (defined in equation (2)) of each prompt level within the 

sessions. If the participants’ joint attention skill improved, we would see higher intensity values in low 

prompt levels than in high prompt levels.  
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6.5.3 User Study Results 

All 14 participants completed the 4 sessions, and thus the completion rate was 100%. This result is very 

promising when compared with other technology-assisted studies [12, 31]. We used the Wilcoxon-signed 

rank test for statistical analysis. 

Preferential attention 

On average, in sessions 1 through 4,the participants spent 54.84%, 52.93%, 47.97%, and 51.58% of the 

session duration looking at the main objects (i.e., the robot, the target monitor, and the non-target 

monitor), respectively. Fig. VI.7 shows the percentage of session durations that the participants spent 

looking at each of the main objects across the sessions. On average, in sessions 1 to 4,the participants 

spent 28.76%, 29.17%, 28.23%, and 23.69% of the session duration looking at the robot, respectively. In 

sessions 1 to 4, they spent 19.04%, 18.85%, 14.91%, and 21.31% of the session duration looking at the 

target monitor, respectively. We can see that the participants looked at the robot more than the monitors 

in every session. As expected, the participants looked at the target monitor much more than the non-target 

monitor. The main reasons were: 1) the target monitor was referred to by the robot, and the participants 

responded more to the referred direction; 2) the target monitor displayed visual stimuli during prompts 

and rewards, which caught and held the participants’ attention. Results showed that the participants spent 

very small portions of the session duration looking at the non-target monitor (7.05%, 4.92%, 4.83%, and 

6.58% in sessions 1 to 4, respectively).  

We compared the time that the participants spent looking at the robot across all sessions, and found no 

significant change (p = .9515 to .1937). This result suggests that the participants’ interest in the robot held 

over the course of the sessions. The change in attention duration on the target monitor was not significant, 

except between sessions 2 and 3 (p = .0203), and between sessions 3 and 4 (p = .0009). In each session, 

different sets of static pictures, audio clips and video clips were presented in the prompts. We noticed that 

the participants had different preferences for certain stimuli (e.g., one participant liked “Scooby Doo” 

more than “Dora”). Therefore, the fluctuation in attention time on the target monitor might be attributable 

to the change of stimuli. In addition, the attention time on the target monitor was significantly higher than 

the non-target monitor (p ranges from .0001 to .0006) in all 4 sessions. In summary, these results 

indicated: 1) among the three main objects, the participants paid most of their attention to the robot; 2) 

The participants’ initial interest in the robot were maintained across the sessions; 3) They paid 

significantly more attention to the target monitor than the non-target monitor. Due to the heterogeneous 

development trajectory and behavior pattern of children with ASD, the participants had quite different 

attention patterns and joint attention capabilities. Therefore, Fig. VI.7 shows large standard deviations in 

all cases. The standard deviation of the looking time on the robot decreased from session 1 to session 4, 
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which showed that the participants’ looking towards the robot tended to be stable after a few sessions’ 

intervention. However, this pattern was not shown for the two monitors. 

 

 

Fig. VI.7 Percentage of the session time participants spent looking at the robot, target monitor, and the non-
target monitor 

 

Joint attention performance 

Fig. VI.8 shows the average prompt levels participants needed to hit the target. Note that the lower the 

prompt level needed by participants, the better their performance was. We observe that from session 1 to 

session 4, the average target hit prompt level decreased from 2.31 to 1.71 monotonously. A Wilcoxon-

signed rank test showed that the decrease in prompt level from session 1 to session 4 was significant (p = 

0.0115). This indicated that the participants’ performance improved significantly. 

 

 

Fig. VI.8 Average target hit prompt levels in all sessions 

 

We further evaluated how the incremented LTM prompt levels elicited target hit behavior, i.e., whether 

the two goals discussed in section III.A were achieved. The computation can be performed as follows:  
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 1 1| ,...n n                         P ER PT PT

number  of trials ended with target hit on prompt level n

total  number  of trials

 
 .                           (VI-6) 

Then the intensity of prompt level n can be computed according to equation (2). Here we mark the 

intensity of prompt level n in session x as x
nI . Fig. VI.9 shows the values of I  in sessions 1 to 4. 

 

 

Fig.VI.9 Intensity of prompt levels across 4 sessions 

 

We observe that, x x
a bI I  (given a b ) in all 4 sessions. This indicated that the adding more instructive 

prompt levels on top of low prompt level elicited more target hits. Therefore, Goal 1 was achieved. Fig. 

VI.9 also shows that for the same prompt level, x y
a aI I or x y

a aI I  (given x y ) in most of the cases. The 

only exception is that 2
1I is apparently higher than 3

1I . This means that, in general, as the participants had 

received more interventions in later sessions, their chances of a target hit on the same prompt level 

increased with occasional fluctuations.  

1
6I  to 4

6I were 0.97, 0.98, 0.96, and 0.97, respectively. This leads us to conclude that the LTM-RI trial 

could eventually help participants hit the target in almost all of the trials. Thus the prompt level content 

and the number of the levels (IN = 6) were properly designed. Therefore, Goal 2 was also achieved.  

6.6 Discussion and Conclusion 

In this chapter, we introduced a new non-invasive autonomous robot-mediated joint attention 

intervention system, Norris. A humanoid robot was embedded as the intervention administrator. The 

looking behavior of the participants in response to robot prompts was detected using a new non-contact 

gaze tracking method, which could track the participants’ real-time gaze direction in a large range. The 

prompts were designed and implemented based on the presented Least-to-Most Robot-mediated 
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Intervention prompting hierarchy, LTM-RI, which is a general model of robot-mediated intervention for 

children with ASD. 

Norris was validated through a 4-session longitudinal study. Fourteen children with ASD were 

recruited and all of them successfully participated in all the sessions. We measured their preferential 

attention towards the robot, target monitor, and the non-target monitor. Results showed that the 

participants looked at the robot longer than other objects and this interest did not change significantly 

over the sessions. As expected, the participants paid significantly more attention towards the target 

monitor than the non-target monitor in all the sessions. We also evaluated their joint attention 

performance. Results showed that the participants’ performance improved significantly after the 4 

intervention sessions. The results also proved the effectiveness of the LTM-RI model: i.e., the higher the 

prompt level, the higher the probability that target hit was achieved by the participants, and the 

participants could hit the target eventually in almost all the trails. 

Therefore, we conclude that this study has three major contributions: 1) the design and development of 

a new joint attention intervention system; 2) the introduction of the LTM-RI model and a successful 

instantiation of LTM-RI in a joint attention study; and 3) a longitudinal user study which validated the 

effectiveness of Norris and LTM-RI.  

However, it is important to notice that the current study also had limitations that need to be addressed 

in the future. First, Norris was only validated by a small group of children with ASD. In order to 

thoroughly evaluate the efficacy of Norris, it needs to be tested in formal clinical studies in the future. 

Second, while we did assess promising joint attention skills within the system, we did not systematically 

compare such improvements with other methods nor did we see if such training can be generalized to 

other interactions (e.g., human-human interaction). Third, the current study repeated a straightforward 

LTM-RI procedure in a limited number of sessions. However, using the same interaction content 

repeatedly will eventually cause the ceiling effect (e.g., participants hit the target on the first prompt in 

most of the trials) and/or loss of interest (e.g., participants feeling tired of doing the same intervention 

again and again) after a large number of sessions. Therefore, once these issues are detected, new 

interaction content under the same interaction protocol or a completely new interaction protocol need to 

be adapted by the system to update and reinforce the training procedure. Finally, LTM-RI was proposed 

as a general interaction model to implement robot-mediated intervention for children with ASD. Although 

the current study successfully validated LTM-RI for joint attention, we did not test it thoroughly in other 

types of training. Therefore, the eventual value of LTM-RI will need to be verified through other 

interventions. 
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Despite these limitations, this work is the first to our knowledge to design and empirically evaluate the 

longitudinal usability and feasibility of a non-invasive autonomous robot-mediated joint attention 

intervention system. The preliminary results of this work are promising. Note that the Norris system 

architecture, components, and the LTM-RI protocol can be adapted to address other core deficits in ASD 

(e.g., social orienting, response to name). Thus this work provided an example of how to design and 

implement an effective robot-mediated intervention system in general. It is important to note that we do 

not propose this technology as a replacement for existing necessary comprehensive behavioral 

intervention and care for young children with ASD. Instead, this platform represents a meaningful step 

towards realistic deployment of technology capable of accelerating and priming a child for learning in key 

areas of deficits. 
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Chapter VII. Exploration of the Generalization from Robot-mediated 
Joint Attention Intervention to Human-Human Interaction 

7.1 Abstract 

The initial results in Chapter VI are promising. However, based on the methods employed it remains 

unclear whether the robot-mediated intervention has a meaningful positive impact on children’s 

interactions with important social partners in their daily life (e.g., parents, interventionists, etc.). 

Ultimately, this is a fundamental question that needs to be answered in order to assess the true value of 

intelligent robot-mediated interventions. In this chapter, we explored whether the robot-mediated 

intervention provided by the Norris system could help improve the performance of children with ASD in 

human-human interaction. In other words, we investigated whether the joint attention skills targeted 

within the Norris system would generalized to other social communication skills with human partners. 

We conducted a pilot randomized control study with 11 children with ASD. They were randomized into 

an immediate participation group or a waitlist control group. Their performance in both human-robot 

interaction and human-human interaction was assessed. Our data suggest that participants demonstrated 

an increased ability to display important social communication skills in human-human interaction after 

participating in the brief robot-mediated joint attention intervention.  In addition, participants who 

improved in human-robot interaction gained more improvement in human-human interaction, compared 

with the participants who demonstrated limited progress within the human-robot interaction.  

keywords—Human-robot interaction, human-human interaction, joint attention, skill generalization 

7.2 Introduction 

The robot-mediated interventions discussed in Chapter VI achieved promising results. One of the most 

important findings was that the robotic system could hold the participants’ attention across multiple 

sessions. This result provides the foundation for conducting a more rigorously controlled longitudinal 

study to further investigate the broad impact of an autonomous robot-mediated joint attention intervention 

system. The previous pilot studies had three important insufficiencies that needed to be addressed in this 

chapter:  

1) The performance of the participants who experienced the robot-mediated intervention was not 

compared to a control group (i.e., all participants received intervention). 

2) We did not examine whether the robot-mediated intervention had an impact outside the 

technological environment. In particular, it was not clear whether the within-system training could help 

the participants in real-world social communication skills with human partners. 
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3) The same interaction procedure was repeated in each of the 4 sessions, and thus it was not clear 

whether the participants would tolerate a more complex interaction protocol (i.e., a more complex 

interaction logic in later sessions after they were exposed to a simpler skill in in earlier sessions).  

In order to address these limitations, we designed a small randomized controlled pilot study. The 

participants were randomized into an immediate participation (IP) group or a waitlist control (WLC) 

group. The participants in the IP group were assessed before and after 4 sessions of robot-mediated 

interventions with Norris, while the participants in the WLC group were assessed immediately before and 

after a waiting period. The assessments evaluated participant performance in both human-robot 

interaction (HRI) and in human-human interaction (HHI). After the waiting period, participants in the 

WLC group also had 4 sessions of robot-mediated intervention, followed by another assessment. This 

allowed us to conduct additional analyses in a larger sample combining the performance of all 

participants in the intervention procedures.  

Initial results from 11 young children with ASD showed that the participants who experienced the 

robot-mediated intervention performed better in HHI than those who did not experience the robot-

mediated intervention. Specifically, data suggest that participants demonstrated an increased ability to 

display important social communication skills in human-human interaction after participating in our brief 

robot-mediated joint attention intervention, with the robot-mediated intervention potentially improving 

interactive engagement across settings. In support of this idea was the finding that more than half of the 

participants’ HRI performance improved after the robot-mediated intervention, with these children 

demonstrating improvement in HHI than those whose HRI performance did not improve. 

The remainder of this chapter is organized as follows: Section 7.3 describes the experimental setup of 

the longitudinal user study; Section 7.4 presents the results of this user study; and finally, Section 7.5 

concluded this chapter and highlights future research directions. 

7.3 Experimental Setup 

7.3.1 Participants  

Initially 13 children with ASD under 36 months of age were recruited from a repository of Vanderbilt 

Kennedy Center. This study was approved by the Vanderbilt University Institutional Review Board. All 

participants had confirmed diagnoses of ASD by a clinician based on DSM-5 [1] criteria. They met the 

spectrum cut-off on the Autism Diagnostic Observation Schedule [2], and had existing Intelligence 

Quotient (IQ) data regarding cognitive abilities in the registry. Parents of these children also completed 

the Social Responsiveness Scale–Second Edition (SRS-2) [3] and Social Communication Questionnaire 
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Lifetime Total Score (SCQ) [4] to index current ASD symptoms.  As opposed to previous work where 

children participated several months on average from their initial diagnosis, in this study we specifically 

attempted to target children soon after their initial medical diagnosis to mimic real-world use of this 

intervention as a ‘priming’ or ‘accelerant’ technology deployed while children wait for other services.  

This study used a randomized waitlist control design, where participants were randomized to a waitlist 

control (WLC) group or immediate participation (IP) group. Among the 13 participants, 7 were 

randomized to the IP group, and 6 were randomized to the WLC group. Two children in the WLC group 

dropped out. The characteristics of these children are listed in Table VII.1.  

 

Table VII.1 Characteristics of Participants 

 ADOS total raw 

score 

SRS-2 total 

raw score 

SRS-2 

Tscore 

SCQ Current 

Total Score 
IQ Age 

IP Mean 19.50 105.43 74.43 19.43 65.00 2.56 

SD 6.50 22.97 8.85 3.95 17.29 0.53 

WLP Mean 20.67 110.75 76.75 20.50 57.17 2.72 

SD 3.08 17.54 6.65 2.52 7.70 0.30 

All Mean 20.08 107.36 75.27 19.82 61.08 2.63 

SD 4.89 20.40 7.85 3.40 13.40 0.43 

 

7.3.2 Interactions 

Both human-robot interaction (HRI) and human-human interactions (HHI) were involved in this study, 

the structures these two interactions are as follows:  

Human-Robot Interaction (HRI) 

The HRI was provided using the Norris system introduced in Chapter VI. Here we adopted the original 

LTM intervention protocol discussed in Chapter VI as the single-target human-robot interaction (ST-HRI), 

where the robotic system prompted to one target per trial. There were 8 trials arranged in this procedure. 

 In addition, we introduced a double-target human-robot interaction (DT-HRI) to provide a new 

interaction experience for the participants with good performance in the ST-HRI procedure. The DT-HRI 

was added to help prevent potential ceiling effects or loss of participant interest in the longitudinal 
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repeated robot-mediated interventions. In a DT-HRI trial, the robot spent approximately 5 minutes 

instructing participants to look at two targets in different directions. Trials were repeated until the total 

duration of the interaction reached about 5 mins. This strategy avoided a sudden termination of the 

intervention that might surprise the participants. Each trial had 2 levels of prompts. Starting with Prompt 

1, the robot first turned its head to one target monitor and said, “First look at that!”, and then turned to the 

opposite monitor and said, “Then look over there!” If the participant did not succeed, Prompt 2 was given. 

In Prompt 2, the robot turned its head to the target, pointed at the target with its arm, and said, “First look 

at that!” Then the target monitor displayed a short video for 2 seconds to help attract the participant’s 

attention. Following that, the robot prompted to the opposite target with the same type of motion, saying, 

“Then look over there!” Finally, the second target monitor displayed 2 seconds of video. Prompts 1 and 2 

had response windows of 8 and 10 seconds starting from the beginning of the prompt, respectively.  On 

any prompt level, if the participant looked at both the targets within the response window following the 

robot’s instruction, the robot would say, “Good job!”, and the second target would display a short reward 

video. This DT-HRI procedure was initially tested by 6 children with ASD for its feasibility [5] and the 

results showed that it was well tolerated by them. 

Human-Human Interaction (HHI) 

The HHI represents the administration and scoring of the Screening Tool for Autism in Toddlers and 

Young Children (STAT) [6, 7]. STAT is a level-2 screening instrument normed on children aged 24–35 

months with extended scoring systems for 3-years-olds and children as young as 14 months [8]. This 

interactive assessment takes 15-20 min, where an examiner interacts with the participant to test specific 

social communication skills. The examiner rates the participant’s performance during the interaction with 

formal domain scores related to key social communication skills, i.e., play, requesting, direction attention, 

and imitation. This assessment examines the participants’ capability of interacting with the examiner, 

being able to imitate and respond to what they are doing, and to direct and initiate joint attention. These 

domains are considered core social communication skill domains overlapping and related to the robot-

mediated interaction, but not the exact same skill taught within the procedure (i.e., test of generalization 

of skills to person, context, and task). The sum of domain scores in STAT ranges from 0-4 with lower 

scores indicating more social communication skills within the HHI. 

7.3.3 Experimental protocol 

The experiment in this study consisted of repeated assessments across the intervention period. Each 

assessment session (marked by A) included the ST-HRI and the STAT to evaluate the participants’ 

performance in HRI and HHI. The robot-mediated intervention sessions (marked by S) included both ST-

HRI and DR-HRI.  
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As shown in Fig. VII.1, children in the IP group received assessments before (A1) and after (A2) 4 

robot-mediated intervention sessions (S1 to S4). S1 and S2 only included the ST-HRI. S3 and S4 

consisted of part A and part B. Part A was the ST-HRI, and if the performance of the participant in part A 

satisfied one of the following criteria, this participant went on to the DT-HRI as part B: 

 1) The participant hit the target on prompt levels 1 to 2 in 4 or more than 4 trials in a row; 

 2) The participant hit the target on prompt levels 1 to 4 in all 8 trials. 

Otherwise, the participant continued with another ST-HRI as part B. The duration allowed between A1 

and A2 was 3-9 weeks.  

 The WLC group received their first assessment, marked as A0, before a waiting period of 3-9 weeks. 

After this waiting period, the participants were assessed for the second time, marked as A1. Following A1, 

the WLC group experienced 4 sessions of robot-mediated interventions as the IP group. Then, they also 

had the final assessment A2. 

 

 

Fig. VII.1 Experiment procedure 

 

7.3.4 Measurements 

In this study, we evaluated the participant’s performance in both HRI and HHI. The HRI performance 

was measured by 3 variables:  

1) Average prompt level that the participants needed to hit a target: the lower the prompt level needed, 

the higher the performance;  

2) Target hit rate: the percentage of trials where participants eventually hit a target, regardless of which 

prompt level was needed for the target hit. Higher values mean better performance; 

3) Trial length: once a target hit happened, the interaction trial was terminated, and thus the shorter a 

trial, the better the performance.  
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In addition, we measured the attention of the participants on the robot. We defined “attention” as the 

percentage of the session duration that the participants spent looking at the robot. We used percentage 

instead of the actual duration because the length of the trials depended on the participants’ performance 

and was not consistent. 

The participants’ HHI performance was evaluated by two variables: 

1) In some cases, children with severe ASD symptoms were not able to sit in the assessment room and 

interact with the STAT examiner. Therefore, we first calculated the percentage of the participants who 

could participate in the STAT interaction. 

2) The STAT score of the participants. The participants who could participate in STAT received rated 

scores from the examiner. The lower the STAT score, the lower the level of ASD symptoms shown and 

the better the HHI performance indicated. For the participants who could not do the STAT, we created the 

pseudo total score of 4 (the maximum STAT score, indicating the highest level of ASD symptoms), to 

facilitate numerical evaluation of the results, indicating all failed in the test protocol.  

Given the aforementioned measurements, we conducted two comparisons: 

First, we compared the participants who experienced the robot-mediated intervention (the IP group) and 

those who did not (the WLC group before they received the intervention). Here we compared the IP 

group’s performance in A1 and A2 with the WLC group’s performance in A0 and A1. The former set 

reflects the change in performance due to the robot-mediated intervention, and the later set reflects the 

changed in performance after a waiting period of similar duration as the robot-mediated intervention. This 

helped us differentiate the effects of the intervention (IP) from the effects of simple maturation as time 

passed (WLC). 

Second, we compared the participants’ performance before and after the robot-mediated intervention. 

Since the WLC group also experienced the same amount of robot-mediated intervention after the waiting 

period, we combined the IP and WLC groups here, and compared their performance between A1 and A2. 

In this way, we had a larger sample size than that of the IP group alone.  

We anticipated that if the robot-mediated intervention could help the participants learn social 

communication skills, then their HHI performance would improve after the intervention, and this 

improvement should be larger than those on the waitlist who did not receive the intervention. In addition, 

since we introduced the DT-HRI as a more complex layer of HRI, we examined the participants’ 

tolerance and performance with this new protocol, which may provide an option for a future update of the 

robot-mediated intervention. Due to the heterogeneous behavioral pattern and large individual differences 
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among children with ASD, we also investigated the difference between the participants whose HRI 

performance improved and those whose did not improve after the robot-mediated intervention. This helps 

reveal the features of the participants who may benefit from the robot-mediated intervention more than 

others (i.e., we hypothesized some children would tolerate and benefit more from system than others). 

7.4 Experimental Results 

Two out of 6 participants in the WLC group dropped out. One child could not tolerate the HRI. Another 

child tolerated both the HRI and the HHI well in A0, but the family could not attend the following 

experiments due to time conflicts. Therefore, the overall participation rate was 84.62%. 

7.4.1 Robot-mediated intervention vs No robot-mediated intervention 

For this comparison we examined the performance of the IP group before (A1) and after (A2) the robot-

mediated intervention with the performance of the WLC group before (A0) and after (A1) the waiting 

period.  

As shown in Table VII.2, the HRI performance of the IP group decreased slightly (decreased hit rate, 

increased prompt level) from A1 and A2. Between A0 and A1, the WLC group improved in prompt level 

while also decreasing in target hit rate. Both groups showed increased trial lengths as well as more 

attention on the robot.  

One of the 7 participants in the IP group could not tolerate HHI in A1, with all tolerating the HHI in A2. 

In addition, 85.71% of the participants in this group had better HHI performance in A2 than in A1. As 

shown in Table VII.2, their HHI performance improved 0.5 points. STAT is scored from 0-4 in 

increments of 0.25-.5, depending upon the domain. Therefore, this improvement showed that the HHI 

performance of the IP group improved by a clinically meaningful level on the STAT metric.  In both A0 

and A1, 50% of the participants in the WLC group could not tolerate HHI, and only one child’s (25% of 

the group) HHI performance improved from A0 to A1. Overall, the WLC group’s HHI performance 

improved by 0.25 (See Table VII.2). 

 In summary, the HRI performance of both groups decreased slightly. However, compared with the 

WLC group, the IP group achieved greater improvement in HHI. This result suggests that the robot-

mediated intervention increased the ability of children to display important social communication skills in 

human-human interactions. We also ran 2-way ANOVA analyses with the factors of assessment time and 

group. Given the small sample size, we did not observe any statistically significant differences on the 

results listed in Table VII.2. 
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Table VII.2 The IP group’s performance before and after the robot-mediated intervention vs the WLC groups’ 
performance before and after the waiting period 

Group IP WLC 

Assessments A1 A2 A0 A1 

HRI performance Prompt level Mean 2.38 2.83 2.41 2.14 

std 1.00 1.15 0.58 0.54 

Target hit rate Mean 88% 86% 97% 88% 

std 14% 13% 6% 14% 

Trial length (s) Mean 36.35 38.28 32.97 34.96 

std 7.14 8.33 4.98 6.19 

Attention on robot Mean 0.25 0.27 0.13 0.18 

Std 0.12 0.12 0.05 0.10 

HHI performance (STAT score) Mean 3.39 2.89 3.5 3.25 

Std 0.93 1.35 1 0.96 

 

7.4.2 Pre-post comparison of robot-mediated intervention 

We conducted a combined evaluation of the change of the participants’ performance before and after 

the robot-mediated intervention utilizing both the IP and WLC groups. Since the WLC group also 

finished the intervention after the waiting period, they were combined with the IP group in this data 

analysis. From Table VII.3, we can see that the participants’ HRI performance decreased slightly, while 

their attention on the robot increased slightly. When examining HHI performance, we found that 54.55%, 

36.36%, and 9.09% of the participants’ HHI scores improved, did not change, or worsened. Overall, 

participants’ HHI performance improved by 0.52 as shown in Table VII.3. As stated before, STAT was 

scored in increments of 0.25-.50, and thus this improvement showed that the HHI performance was 

improved in a clinically meaningful increment based on the STAT scoring method. We ran 1-way 

ANOVA analyses on the results shown in Table VII.3. Given the small sample size, we did not observe 

any statistically significant differences between A1 and A2. 

In S3 and S4, the participants participated in novel HRI interactions introducing a higher order of 

complexity (see section 7.3).  Results indicate that in S3, all participants finished Part B, and 27.27% of 

the participants finished the DT-HRI. In S4, 81.82% of the participants finished Part B, and 36.36% of 

them completed the DT-HRI. This result highlights both the heterogeneity of ASD performance within 

system and that a subgroup of children with ASD may accept longer interactions (tolerated both part A 

and part B) with more complex interaction scenarios (e.g., DT-HRI) than the ST-HRI. 
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Table VII.3 The IP and WLC groups’ performance before and after the robot-mediated intervention 

Group IP + WLC 

Assessments A1 A2 

HRI performance Prompt level Mean 2.29 2.76 

std 0.84 1.02 

Target hit rate Mean 0.88 0.80 

std 0.14 0.19 

Trial length (s) Mean 35.84 39.29 

std 6.53 7.66 

Attention on robot Mean 0.22 0.25 

Std 0.11 0.15 

HHI performance (STAT score) Mean 3.34 2.82 

Std 0.90 1.22 

 

We further investigated the ADOS and the IQ scores of the participants who improved in the HRI and 

HHI. Higher ADOS scores reflect more severe ASD symptoms, and higher IQ reflects higher cognitive 

functioning. As shown in Table VII.4, we observed that children with higher ADOS and lower IQ scores 

showed better HRI performance. These children had more severe ASD symptoms and lower cognitive 

skills. Children who improved in HHI had lower ADOS score (indicates less severe ASD symptoms) and 

higher IQ (indicates higher cognitive functioning). Children who had fewer ASD symptoms and had 

higher intelligence showed more improvements in social interactions with another human. At present, our 

small sample size prevents us from making concrete conclusions about these findings. One hypothesis for 

the improved HRI performance in children with more significant ASD is that children with higher ASD 

symptoms may have a stronger preference for technology, such as robots. Regardless, these findings 

inspire us to track how ADOS and IQ scores may help us identify which subgroups of children with ASD 

could benefit more from robot-mediated intervention in future work. 

Finally, we calculated the HHI performance of the participants whose HRI improved (at least one HRI 

variable improved) versus these who did not improve after the robot-mediated intervention. Results 

showed that 7 participants improved in HRI, and their HHI performance improved by 0.64 from A1 to A2. 

In contrast, the participants who did not improve in HRI only improve by 0.31 in HHI (less than a half of 

the HRI improved group). In other words, participants who showed larger HRI improvement also 
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improved more in HHI. This may indicate that the robot-mediated intervention helped the participants 

learn social communication skills that can be applied well in HHI. 

 

Table VII.4 Average ADOS and IQ scores of the participants whose HRI and HHI performance improved and 

not improved after the robot-mediated intervention 

 Improved? Number of participants 

(IP + WLC) 

ADOS IQ 

HRI 

performance 

Prompt level Yes 3 21.33 60.67 

No 8 20.14 60.71 

Target hit rate Yes 5 24 50 

No 6 17 71.40 

Trial length Yes 4 22.75 57.75 

No 7 19 62.67 

HHI performance (STAT score) Yes 6 19 65.5 

No 5 22.75 53.5 

 

7.5 Discussion and Conclusion 

One of the most important results we observed in this study was that HHI performance improved after 

the robot-mediated intervention both relative to WLC and within our combined sample. The reason 

underlying this improvement could be that the intelligent robotic system exposed children to scenario that 

are meaningful within HHI, including consistently responding to the direction where the child was 

looking and reinforcing the procedure of responding to joint attention. The skills of engaging in 

communication with another agent and responding to a target following an administrator’s instruction 

were practiced with the system, and these are skills likely deployed in HHI. This linkage between HRI 

and HHI has an important meaning of conducting studies beyond the technology development. It is 

important to track the change of the performance within system. But ultimately, evaluation of the 

improvement outside HRI, in other words, whether the skills learnt in HRI can be generalized in HHI is 

the most important aspect   

Regarding the HRI performance, a subgroup of participants demonstrated more improvement post-

intervention. At the group level, we observed a slight, nonsignificant decrease in the HRI performance. 

The specific skill focus of the HRI and quantitative approach to understanding success was entirely 

defined by discrete event performance. However the benefit in HHI for those participating in the HRI 
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suggests the impact of the HRI system may not be around such skills, but a much broader ability to 

engage and participate in meaningful aspects of social communication and learning. We are not expecting 

for the HRI to replace existing clinical interventions, but we hope that it can provide children with ASD 

with a technological boost to accelerate their skill learning, either while waiting for human intervention or 

as a supplement to such. Specifically, interacting with technology may prime skills in the interaction with 

other people in their life. When psychological/clinical interventions are limited or not immediately 

accessible, for example, when the participants are on the waitlist for a clinical appointment, they can use 

technologies that provide consistent and engaging training to facilitate their learning, so that they will be 

better prepared when seeing professionals. 

Another interesting result we observed in the robot-mediated intervention was that S3 and S4 showed 

the variability among the participants. Some of the participants could tolerate and engage in longer 

interactions while some of them preferred a short interaction. Importantly, we were able to observe some 

children who did well in the additional layer of complexity (DT-HRI). In the future, these variability 

could be used to prevent ceiling effects and keep participant’s attention in other longitudinal HRI studies.  

The user study discussed in Chapter VI showed that the participants’ HRI performance improved 

significantly, which differs from the current study. However, the results in these different studies are not 

directly comparable due to several different factors. First, the participants in the previous study had a 

better baseline performance (target hit rate = 97% in the first session) than the current participant group 

(target hit rate = 88% in A1). Secondly, the length of time that the participants were allowed to finish the 

entire course of intervention sessions was not constrained in the previous study but was strictly scheduled 

in the current work. Thus some of the participants in the previous study finished 4 sessions in a few days 

and some others finished in a few weeks, which might impact the results. In addition, the participants in 

the previous study were diagnosed with ASD about 8 months (on average) before the study, while the 

participants in current study were diagnosed with ASD about 4 months before the experiments. Therefore, 

the participants in the previous study might have received more interventions between the diagnosis and 

attending the robot mediated sessions that could also impact the experimental results.  

In summary, we found that very young children with significant ASD impairment in the wake of 

diagnosis, which is a very stressful period for both the children and their families, could successfully 

engage in a longitudinal robot-mediated intervention and displayed improvements in important social 

communication skills after the intervention. This study gained interest from the families of children with 

ASD in local community, who came to the lab and participated voluntarily in this long term study. Even 

though we did not observe significant change regarding the HRI performance in current data, these data 

are interesting enough for us to continue with the study. Ultimately, by conducting longitudinal user 
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studies with fine-tuned machine-assisted intervention systems and reliable psychological evaluations, it 

will be clearer that how HRI impacts children with ASD in their daily interactions. Although we have not 

gotten conclusive result due to the limited data sample and preliminary experimental setup, this study 

shows great potential to continue in the future. In other words, this study tested a model of potential long 

term implication of technology on young children with ASD. 
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Chapter VIII. Contributions and Future work 

8.1 Overall Contributions 

Human machine interaction (HMI) has become increasingly important in psychological research. This 

dissertation describes my research on the design and development of novel HMI systems for their 

potential use as intervention tools for children with ASD. There is a pressing need for effective treatments 

that will substantially impact the neurodevelopmental trajectories of young children with ASD. Although 

important investigations by other researchers in this area have shown immense potential for HMI in ASD 

intervention, there still exists several gaps that this dissertation attempts to address. First, most existing 

technical intervention systems for children with ASD do not target the core deficits of ASD, which may 

limit their impact. In addition, many of these systems need to be controlled by a human operator; this 

requires extra resources and training, in addition to limiting the precision and the speed of system 

response. Furthermore, many existing HMI systems require attaching physical sensors to subjects in order 

to detect interaction cues, such as gestures or gaze. Many young children (particularly those with ASD) 

cannot tolerate these sensors and are thus excluded from being helped by these systems. Finally, the 

generalization of skills learnt in human-robot interaction to human-human interaction, which reflects the 

ultimate value of technology-assisted intervention, has not yet been studied. The research presented in this 

dissertation was designed to address these problems. Specifically, the main contributions of this work are: 

1) design and development intervention systems that are oriented to core deficits of ASD; 2) design and 

development of fully autonomous intervention systems that are able to adaptively adjust system behaviors 

based on the children’s response in real-time; 3) autonomous detection of interaction cues in children with 

ASD using non-invasive methods; 4) designing and conducting pilot user studies to demonstrate the 

usefulness of these HMI systems on typically developing children and children with ASD in machine-

assisted interventions, and 5) conducting a controlled user study to investigate whether the skills learnt in 

robot-mediated intervention can be generalized to human-human interaction. These contributions can be 

categorized into technical contributions and scientific contributions, as stated in the following two 

sections. Note that these contributions are closely related and thus cannot be separated completely. We 

summarize them in different sections for the sake of clear presentation and easy understanding. All my 

publications during this dissertation research is listed in the Appendix. 

8.2 Technical Contributions 

8.2.1 System architecture and interaction logic design 

My first set of technical contributions lies in the design of automated intervention system architectures 

and the corresponding interaction logic for ASD intervention.  
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System architecture 

System architecture is the global picture of a system, and the foundation of its functionality. Most of 

the earlier robot-mediated intervention systems were mostly open-loop systems that did not have 

mechanisms to provide adaptive feedback to children regarding their real-time performance. A few of 

them provided feedback to the participants using manual operation, which was slow and required 

experienced operators. Such limitations significantly impacted the efficacy and application of these 

systems. One of the main reasons for these limitations was the lack of autonomous interaction cue 

detection methods, which are the key components of designing autonomous intervention system. 

Consequently, the architectures of the previous systems were not embedded with autonomous interaction 

cue detection modules, and thus could not produce a fully autonomous intervention system. Additionally, 

it was also not clear how to coordinate different system components to form closed-loop interaction for 

intervention.  

Therefore, in this dissertation research, one of the most important tasks in building the intervention 

systems was to design proper system architectures for closed-loop autonomous interactions. As shown in 

Chapter II, III, VI, and VI, we have designed several new autonomous intervention architectures, RISIA1, 

RISIA2, ASOTS, and Norris. These architectures include a supervisory/centralized controller as the 

“brain” of the system. This controller mediates the communication of different system components, and 

control the global interaction logic accordingly. All these architectures have autonomous interaction cue 

detection modules (e.g., gesture recognition methods in RISIA1 and RISIA2, as well as gaze tracking 

methods in ASOTS and Norris) as the “eyes” of the system that sense behavior of the participants. The 

sensed behavioral information was sent to executive modules (e.g., the robot module in RISIA1, RISIA2, 

and Norris, and the display subsystem in the ASOTS) to present adaptive prompts to the participants (e.g., 

robot motions/speeches, and stimuli display). Given these prompts, the participants would change their 

behaviors and this information was sensed by the interaction cue detection modules again. Thus 

interaction loops were built within the systems. In addition, we provided formal mathematical modeling 

that bridged the abstract architectures and the detail implementation of the systems (e.g., the Harel 

Statechart models in Chapter IV and Chapter VI). Although each intervention system has its own 

architecture, as explained in these chapters, these architectures are not limited to a certain intervention, 

but can be easily adjusted for training of other skills. 

Interaction protocol design 

In this dissertation, the interaction protocol indicates the global interaction logic applied to an 

intervention system. It describes the procedure of intervention and decision from the system during the 

interventions. Most of the previous studies simply applied free-play type of interactions, which were not 
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particularly oriented to the core deficits of ASD, and thus did not provide targeted trainings. However, 

psychologists have argued that intensive interventions targeted to a particular impairment of ASD that 

symmetrically scaffold the learning of children can achieve the best results. While psychological and 

pedagogical intervention/teaching methodologies exist, few studies have shown how to implement them 

in a technology-assisted system. More specifically, the main difficulty is how to structure the behavior of 

the executive modules following appropriate educational/training principles. Therefore, in this 

dissertation study, we emphasize on the choice and implementation of proper intervention protocols. 

Mostly, we applied the Least-to-Most (LTM) prompting hierarchy for intervention. In a LTM hierarchy, 

the intervention administrator allows the learner an opportunity to respond independently on each training 

stage and delivers the least intrusive prompt first. If necessary, more intrusive prompts, usually upgraded 

based on the previous prompts, are then delivered to the learner to complete each training procedure. In 

this study, finely tuned behaviors of the executive modules were designed to reflect LTM. In Chapter II, 

the robot first showed a gesture to the participant and asked him/her to copy it. If the child could not do it 

correctly, the robot would point out where to improve verbally, re-demonstrate the gesture accordingly, as 

well as mirroring the participant’s behavior in the following prompts. In Chapter IV, different levels of 

attention attractor with special motion and acoustics effects were added on top of simple name calling as 

the prompt level went up. In Chapter V and Chapter VI, the system provided more informative robot 

motions, speeches, audio, and video gradually if the participants could not look at the correct target 

monitor under simple prompts.  

We can see that LTM is not limited to a specific skill, but can be used as a general guidance mechanism 

for machine-assisted intervention. However, to our knowledge, no mathematical model has been proposed 

to create a general LTM framework. Therefore, In Chapter VI, we developed a general LTM-based 

Robot-mediated Intervention (LTM-RI) model. Such a mathematical model can be used to teach different 

skills to children with ASD as well as adapt the prompts for a specific skill. 

8.2.2 Interaction cue detection methods 

My second set of technical contributions is the design of interaction cue detection methods. These 

methods are the key components in the intervention systems. As mentioned before, lack of autonomous 

interaction cue detection methods was the main bottleneck in previous machine-assisted intervention 

systems. In this dissertation, we designed autonomous gesture recognition and gaze tracking methods. 

Note that although each of them was applied in a particular system in this dissertation, these methods are 

independent components that can be easily transferred to any system that requires gesture recognition and 

gaze tracking.  
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Gesture recognition methods 

Gesture recognition is the essential part of an autonomous gestural imitation intervention system, since 

it is the key for the system to understand the response of the participants. Most of the existing gesture 

recognition methods are probabilistic methods such as Hidden Markov Model, particle filtering, and SVM. 

However, these methods do not fit in the intervention systems for young children with ASD. First, these 

methods need training data, but it is difficult for young children to repeat a standard gesture multiple 

times accurately to create the training dataset. Second, the computational complexity of these algorithms 

are too high for real-time gesture recognition. Third, classification-based gesture recognition methods 

provide binary results, i.e., a gesture is detected or not. However, in the imitation intervention, the robot 

needs to recognize even partially finished gestures, and tell the exact gesture stage that the participant 

need to improve. In addition, some existing algorithms need invasive sensors attached to the participants 

for body tracking, which are unlikely to be tolerated by many young children with ASD. 

 To solve these problems, we developed a novel non-invasive gesture detection methods in Chapter II. 

We used Microsoft Kinect for skeleton tracking, and thus no body-attached physical sensor was needed. 

The skeleton tracking data was input to a newly designed FSM-based gesture recognition algorithm, 

named SGR. This algorithm was low in computation complexity that guaranteed real-time recognition. It 

does not require training data and can recognize even partially finished gestures with high accuracy.  

While SGR only recognize single gestures, in chapter III, we extended it to another algorithm, named 

MGRS, to recognize the combination of different single gestures. In real life learning, children may 

perform different gestures in parallel, and this behavior need to be properly recognized by an imitation 

intervention system. MGRS could recognize different mixed single gestures and spot the start and end 

time of each of the performed gestures, either fully or partially completed. The MGRS also showed high 

accuracy in validation studies. 

Gaze tracking methods 

Gaze tracking is an indispensable component of an autonomous intervention system for teaching 

attentional skills to children with ASD. It allows the system to track the gaze direction of a participant and 

thus give response to guide or capture the participant’s attention. The most commonly applied gaze 

tracking method is to use an eye tracker. However, it could not be applied in a large range interactive 

system as ASOTS and Norris, due to its limited detection range. In addition, the participant has to hold 

his/her head pose during calibration and interaction, which is impossible in a large interaction 

environment. Therefore, we developed two new gaze tracking methods in Chapter IV and VI to solve the 

problems. 
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In Chapter IV, we developed a new large range gaze tracking method. It utilizes a network of web-

cameras and thus no invasive sensor needs to be attached to the participants. Each of the camera has a 

limited view and could only detect the participant’s frontal head pose using a SDM algorithm when the 

frontal face was visible to the camera. We arranged different cameras in particular positions and angles so 

that the view and detection ranges of these cameras were seamlessly fused. Then, transformations were 

performed to normalize the detection results from different cameras into a global frame. Finally, a linear 

mapping function computes the frontal head orientation based on the gaze direction of the participants. 

This method is robust, with real-time computation speed, and accurate enough for the response to name 

intervention discussed in Chapter IV. Then in Chapter VI, we further improved this method by training a 

polynomial mapping function between the head orientation and the gaze direction of the participants. This 

new mapping function improves the accuracy of the algorithm, while maintaining the real-time gaze 

tracking speed. 

8.3 Contributions to the Science of ASD Intervention 

In addition to the technical contributions described above, this work contributes to the science of ASD 

intervention by providing controllable environments where different intervention paradigms can be 

assessed with precisely controlled stimuli and objective measurement. Such technologically sophisticated 

systems are expected to play an important role in addressing common challenges of ASD intervention, 

including a lack of access to trained clinicians and very high costs of treatment. Therefore, we designed 

and conducted experimental studies with targeted population to validate the systems that we have built. 

Without these user studies, it was impossible to probe the feasibility, tolerability, efficacy and other 

potential values of these systems for young children with ASD.  

In the study presented in Chapter II, the robotic system taught children single-gesture imitation skills. 

Using the same interaction protocol, the effect of the robot on children’s gesture use was compared with 

that of a human therapist. Eight children with ASD and eight typically developing (TD) children tested 

the RISIA1 system. We found that the participants with ASD paid more attention to the robot than to a 

human therapist. Compared with the human therapist, the robot also promoted significantly better 

imitation performance. In Chapter III, we tested the RISIA2 system for teaching mixed gestures to 

children with ASD. Four children with ASD and two TD children tested the system. The results showed 

that RISIA2 also captured the attention of these children and successfully promoted mixed gesture 

imitation behaviors from them.  

In Chapter IV, the ASOTS system was tested by 10 toddlers with ASD and 10 TD infants. The results 

demonstrated that ASOTS were well tolerated by both groups. This system successfully attracted and 
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guided the attention of both groups, and stimulated response–to-name behavior with a high success rate. 

This shows that ASOTS has a great potential to be used: 1) as an intervention tool for children who are 

diagnosed with ASD; and 2) as an early screening tool for at risk infants (e.g., siblings of children with 

ASD) who are too young to be diagnosed with ASD. This study also quantitatively measured the 

participants’ performance in video- and audio-based name calling environment. Overall, the experiment 

revealed that participants performed better in the video-based session, where both the sound and the 

images of the name caller was displayed.  

In Chapter V, we first evaluated the feasibility of a non-invasive robot-mediated joint attention 

intervention system. Due to the technical limitation, this system was not fully autonomous, but provided 

robot-mediated intervention with the help of human operator. A small scale longitudinal experiment with 

6 children with ASD showed that children with ASD tolerated a non-invasive robotic system much better 

than an invasive one. In addition, their attention was constantly attracted by the robot in a few 

intervention sessions, and their within-system joint attention performance improved significantly after the 

robot-mediated intervention sessions. This work encouraged us to conduct another longitudinal user study 

with the fully autonomous robotics system Norris in Chapter VI. A preliminary user study with 14 young 

children with ASD showed that Norris was well tolerated by them. Similar results to what has been 

shown in Chapter V was obtained from this user study. Children’s within-system performance improved, 

and they maintained attention on the system over multiple interaction sessions. However, it was still not 

clear whether the robot-mediated intervention has an impact on the children in human-human interactions. 

Therefore, as discussed in Chapter VII, we further conducted a more rigorous randomized controlled 

experiment with 11 toddlers with ASD. Results showed that compared to children who did not experience 

robot mediated intervention, children who completed this intervention showed improved social 

communication skills in human-human interaction. Furthermore, we found that the participants’ social 

communication skills in human-human interaction improved after a few sessions of robot-mediated joint 

attention intervention. We demonstrated, for the first time, the long-term benefits of autonomous robot-

mediated ASD intervention in joint attention. 

Although not designed to replace therapists or traditional behavioral intervention, we believe that the 

proposed systems could be used as adjunctive intervention tools to powerfully accelerate and prime 

learning of key skills, either prior to accessing more traditional services or in support of such services. 

The current work provides initial insight into how machine-assisted intervention could move from merely 

an interesting idea to a technological tool that can augment intervention application and science. It is our 

hope that this research will pave the way for a more accurate understanding of the role of machine-

assisted intervention in population with ASD.  



131 
 

8.4 Future Work 

Advances in technology may help overcome traditional resource limitations and bridge the historical 

gaps between early concerns about ASD and the initiation of early intervention by building technological 

capacity and promoting mainstream clinical use. To date, many offered technologies have focused on 

isolated, discrete behaviors and skills in older children (e.g., eye-gaze, emotion recognition, skill learning), 

rather than attempting to utilize technologies as dynamic early social support tools that promote 

meaningful changes in quality of life. In the future, developing machine-assisted intervention specifically 

to promote early improvements in core social communication skills in young children with ASD via 

continuous, autonomous detection and intelligent, meaningful responses to child behavior during 

technologically-mediated interactions will be a very important step in both engineering and scientific 

research.  

Although promising results were achieved in this dissertation research, the studies were preliminary, 

and there are important limitations to be addressed in the future. First, the sample sizes for these pilot 

studies were small. In the future, larger samples will be needed to conduct more powerful user studies, 

which would strengthen corresponding statistical analyses. In addition, the user studies presented here 

were not formal clinical studies. Therefore, the clinical impact of the proposed systems on everyday 

functioning of children with ASD is still unclear. In order to conduct such studies, the systems will need 

to be upgraded to fit into corresponding clinical settings, and follow-up observation and measurement will 

need to be conducted across different settings. Although the proposed systems are capable of detecting 

different types of participant behaviors, only a few interaction cues were tracked, such as gesture and gaze 

direction. In order to precisely evaluate the behaviors of children with ASD, more sensory channels need 

to be integrated. For example, some participants talked during the interaction, and their speech may 

reflect their needs, attitude and/or interests towards an object. Therefore, the fusion of gesture recognition 

and gaze tracking with speech recognition may create more precise evaluation of participants’ intentions 

and responses in future studies. 

The technologies proposed in this dissertation research could be further strengthened in several ways. 

First, the gesture recognition algorithms were tested only with 4 simple gestures. Including more gestures, 

especially complex gestures, would further validate the recognition accuracy and the scalability of the 

algorithm. Additionally, the gaze tracking algorithms use frontal head orientation to approximate gaze 

direction. This method gives satisfactory accuracy when detecting whether a participant’s gaze direction 

falls into a region of interest. However, these algorithms may not provide precise estimation if we care 

about which particular point a participant looks within the region of interest. In order to address this issue, 
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advanced high resolution cameras will be required instead of simple webcams. These cameras should be 

able to zoom in around the eye region of the participants, so that high resolution images of the 

participant’s eyes can be captured. Feature extraction around the eye region may provide enough 

information to estimate the movement of the eye balls, and thus will offer additional features for accurate 

gaze estimation. When designing these new algorithms, computational complexity and hardware setup 

need to be carefully analyzed to guarantee real-time execution. 

Another important technical component of intervention systems is the interaction logic. The current 

studies mostly used least-to-most prompting hierarchies. However, it is not the only option. Other 

successful interactive procedures, such as the most-to-least prompting hierarchy, may also fit in diverse 

types of interventions. The improvement of software and hardware will also enhance the communication 

capabilities of the robot. In the current works, the robot used simple predetermined speech and motions to 

express instructions and encouragement to the participants. In the future, different technologies, such as 

speech recognition, emotion recognition, and physiological signals, can be coordinated in the system so 

that the robot will be able to understand the participants’ status more precisely in real time. This 

coordination will help further customize how the robot responds to participants. In addition, in 

longitudinal studies, repeating the same interaction logic will cause a ceiling effect or make children lose 

interest over time. To solve this problem, we will need to track long term changes in the participants’ 

behavior. Technologies such as active learning and reinforcement learning can be applied in accordance 

with an individualized database of each participant’s responses to recognize individual differences and 

behavior change trajectory. Based on this information, the system can be designed to adaptively adjust its 

behavior and provide a specific training plan that fits a participant’s individualized demands. 

Important future work also includes more investigation into whether and how targeted skills generalize 

from human-machine interaction to human-human interaction. The human-machine interaction results we 

have gotten so far are encouraging. However, our goal is to help children with ASD gain better 

communication skills in their daily life during human-human interactions (HHI). We have conducted a 

pilot study on joint attention skills with encouraging results indicating skill transfer from HMI to HHI. In 

the future, generalization of other skills learned within machine-assisted environments (such as imitation 

and social orienting) should also be assessed, since this is an important step to prove the eventual efficacy 

of machine-assisted intervention. These generalization studies could investigate single skill generalization, 

e.g., whether joint attention skills learned within human-robot interaction can be generalized to the joint 

attention skills in human-human interaction. It is also meaningful to study the generalization across 

different skills, since social communication skills are not isolated but are well related and interactive in 

children’s daily life. In this context, it is important to explore whether a particular skill learned in human-
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machine interaction has an impact on other skills in human-human interaction. For example, response to 

name is one of the starting points of paying attention and receiving messages from caregivers. If a 

participant’s response to name skill improves during human-machine interaction, then it may be 

worthwhile to study whether this skill can serve as a trigger for learning other social communication skills 

outside the technological environment, such as joint attention and language development.  
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