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  1 

 

Introduction 

 

In everyday situations, we often need to keep multiple pieces of information briefly 

in mind for as long as they are needed to carry out a task, such as rehearsing a phone 

number while dialing it or completing a math problem through multiple steps of 

calculation. The ability to temporarily store and manipulate information in the service of 

ongoing cognition is called working memory. Working memory is thought to provide a 

foundation for many high-level cognitive functions, including language comprehension, 

learning, planning, reasoning, and general fluid intelligence (Baddeley, 1986; Daneman & 

Carpenter, 1980; Engle, Kane, & Tuholski, 1999). Working memory is a multifaceted 

concept that has evolved over time since the beginnings of psychology, as reflected in the 

various names this system has been called: “primary memory” emphasizing the 

phenomenology of conscious access to its contents (James, 1890), “short-term memory” 

emphasizing the transient nature of the storage (George Miller, 1956; Atkinson & Shiffrin, 

1968), and finally, “working memory” emphasizing the active mental operations on the 

stored information (Baddeley & Hitch, 1974).  

The most influential view of working memory is that developed by Baddeley and 

colleagues (e.g., Baddeley, 1986, 1992, 2000, 2012; Baddeley & Hitch 1974), in which 

working memory consists of separate buffers for storing different forms of information, 

controlled by executive attentional processes. While this multi-component model of 

working memory emphasizes the dynamic role that this system plays in complex cognitive 

activities, another aspect of working memory that researchers have focused heavily on is its 

limited capacity (e.g., Cowan, 2001; Luck & Vogel, 1997), which has led to prominent 

advances in our understanding of the fundamental limits in mental storage capacity. While 

the multi-component model views the overall capacity limit as an emergent property of the 

coordinated operation of multiple cognitive resources or subsystems, this latter approach 

seeks to determine the ‘true’ capacity limit of working memory after removing 

contaminating variables, such as articulatory rehearsal, chunking, and long-term retrieval. 

Based on an extensive number of studies, Cowan (2001) estimated that up to 3~4 chunks of 

information can be simultaneously held in working memory. 
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Historically, working memory research was dominated by verbal paradigms, 

perhaps because of the prominent role of verbal ability in everyday cognition. Over the 

past two decades, however, research on visual working memory has seen tremendous 

theoretical and methodological advances, shedding new light on the nature of the capacity 

limits in the storage of visual information. 

 

The capacity limitations in visual working memory (VWM) 

One of the critical findings that spurred considerable research on visual working 

memory (VWM) was a pioneering study by Luck and Vogel (1997). While earlier 

psychophysical studies examined short-term memory for a single visual feature (e.g., 

Kinchla & Smyzer, 1967; Magnussen, Greenlee, Asplund, & Dyrnes, 1991; Nilsson & 

Nelson, 1981; Regan, 1985) or a complex visual pattern (e.g., Miyashita & Chang, 1988; 

Phillips, 1974), the storage capacity for such stimuli could not be precisely quantified. 

Luck and Vogel devised a paradigm that involved the brief presentation of a sample array 

containing a variable number of simple features (e.g., colored squares or oriented bars), 

followed by a blank interval and then a test array. The test array either remained the same 

or one of the features was altered, and the task was to indicate whether a change had 

occurred across the two displays or not. This change detection paradigm revealed that 

observers could accurately detect a change in arrays containing a small number of items, 

but that performance suffered as the set size increased beyond 3 or 4 items. On the other 

hand, sample arrays of objects consisting of multiple task-relevant features (e.g., colored 

oriented bars) led to similar levels of performance as was found for single-feature objects. 

These results suggested that the capacity of VWM was limited by a fixed number of 

integrated objects, such that performance was about equally good regardless of the number 

of individual features that had to be stored for each object. This finding led to an influential 

theory of VWM, which posits that individual visual objects are held in working memory 

using a small, fixed number of independent “slots” (Luck & Vogel, 1997).  

Another major shift in research on VWM was prompted by the finding that the 

precision of VWM monotonically declines as a function of number of items to be 

remembered in the sample array (Wilken & Ma, 2004). The authors developed a delayed 

estimation paradigm, in which the observer is briefly shown an array of items whose 
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feature values can continuously vary, and asked to precisely report the remembered feature 

of a randomly probed item, by adjusting a test stimulus in a continuous feature space. 

Memory noise, as indicated by the variability (SD) of recall errors (i.e. difference between 

the correct value and the reported value), was found to increase in a continuous fashion as 

the set size increased, indicating a decline in memory precision. Based on this finding, 

Wilken and Ma proposed that VWM capacity is best understood as a continuous resource 

that can be flexibly shared among numerous items.  

The proposal that memory capacity consists of a continuous and flexible resource 

(Bays & Husain, 2008; Wilken & Ma, 2004) substantially challenged the longstanding 

notion that items in working memory are either remembered or forgotten in an all-or-none 

fashion. More recently, Zhang and Luck (2008) introduced a novel procedure to separately 

estimate the precision of memory and the probability of forgetting in a delayed estimation 

task. Their mixture modeling approach provides a conceptual framework for dissociating 

response errors reflecting complete memory failure (i.e., random guesses) from those 

reflecting the noise in successfully remembered items (i.e., a normal distribution centered 

on the correct value). Through their work, the authors demonstrated that estimated rates of 

guessing substantially increased as the set size increased beyond three, implying that 

VWM has a fixed item-limit. To account for the superior memory precision observed at 

smaller set sizes, Zhang and Luck proposed that multiple copies of a single item can be 

stored in independent slots, which can be averaged to reduce the overall noise associated 

with the representation of that item. 

Since then, researchers have shown that the continuous resource model can also be 

extended to account for these considerations of “apparent” guessing, by introducing 

stochastic variability of memory precision across items and across trials (Fougnie, Suchow, 

& Alvarez, 2012; van den Berg, Shin, Chou, George, & Ma, 2012). In addition, some 

portion of the uniform error distribution may be attributable to accidentally reporting 

information about the wrong item in the display; such confusion errors may not necessarily 

reflect complete forgetting of the probed item (Bays, Catalao, & Husain, 2009). On the 

other hand, some of the variability in memory precision across trials has been shown to 

arise from systematic variation in precision of working memory across the stimulus space 

tested (Bae, Olkkonen, Allred, Wilson, & Flombaum, 2014; Pratte, Park, Rademaker, & 
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Tong, 2017), rather than from random fluctuations in the distribution of memory resources. 

Importantly, when these systematic sources of variability were taken into account, VWM 

performance revealed evidence of a discrete capacity limit in VWM (Pratte et al., 2017).  

Thus, the formulation of each of these two competing views of the capacity limits 

of VWM has evolved in order to accommodate novel observations. This intense debate has 

led to a richer understanding of how visual information is stored in the short term, as well 

as continued refinement in the measurement and in the interpretation of recall errors. 

 

Central goals of this thesis 

In this dissertation, I will critically examine the assumptions of the discrete-slots 

view of VWM, which presumes that there is a fixed item-limit in VWM that is supposedly 

invariant across different types of stimuli. I will demonstrate that the physical appearance 

of stimuli can greatly impact the information capacity of VWM even within the same task-

relevant feature dimension. Specifically, my studies demonstrate that people can hold far 

more line orientations in working memory than orientations defined by gratings, whereas 

visual precision is similar across the two stimulus types. These empirical findings cannot 

be readily explained by the existing models of VWM capacity assuming either discrete 

slots or a continuous resource. I will propose a new modeling framework that incorporates 

visual grouping into the discrete-slots model of VWM to account for these dramatic 

differences in the estimated memory capacity across different types of stimuli. By 

assuming that multiple items can be efficiently stored as a coherent memory unit, I will 

demonstrate that the apparent lack of fixed-item limit for certain types of stimuli can be 

explained within the discrete-slots framework, if one considers that “visual groups”, rather 

than individual items, serve as the storage units of memory. 

 

Orientation as a window to the architecture of VWM 

Orientation is strongly represented in the visual system, and there is considerable 

cognitive neuroscience evidence that VWM for orientation relies on representations in the 

early visual cortex (Harrison & Tong, 2009; Serences, Ester, Vogel, & Awh, 2009; Ester, 

Serences, & Awh, 2009; Ester, Sprague, & Serences, 2015). Orientation stimuli are 

commonly used in studies of VWM (Luck & Vogel, 1997; Fougnie, Asplund & Marois, 
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2010; Fougnie, & Alvarez, 2011; Park, Sy, Hong, & Tong, in press; Rademaker, Bloem, 

De Weerd, & Sack, 2015; Rademaker, Tredway & Tong, 2012; van den Berg et al., 2012; 

Wilken & Ma, 2004). While VWM for color may benefit from verbal encoding (Donkin, 

Nosofsky, Gold, & Shiffrin, 2015), VWM for orientation appears to rely primarily on a 

visual code, as suggested by the engagement of the visual cortex during periods of working 

memory maintenance. A consideration of how orientation information is processed by the 

visual system has proven to be crucial for a better characterization of the nature of the 

capacity limits in VWM (Pratte et al., 2017).  

While orientation stimuli have been widely used in studies of VWM capacity, most 

research has assumed that VWM performance arises from fundamental capacity limits, and 

therefore, should be invariant to the particular stimulus type or stimulus form to be 

remembered. Thus, the potential role of different stimulus forms, such as Gabor patches or 

bars, in the capacity of VWM has been largely neglected. In this dissertation, I will 

investigate the impacts of stimulus form in VWM performance for orientation, using a 

paradigm that allows estimation of the number and precision of orientations stored in 

VWM.  

 

Overview 

In this dissertation, I present a series of studies that examine the role of stimulus 

form in the efficient storage of orientation information in VWM, comparing the VWM 

performance between two stimulus formats: gratings and lines.  

In the first study (Chapter 2), I report a large enhancement in VWM capacity for 

line orientation over grating orientation, as a starting point for an in-depth series of studies 

that explore the role of visual grouping in the capacity advantage for line stimuli. In the 

second study (Chapter 3), I develop a model of VWM capacity that incorporates visual 

grouping into the existing discrete-slots model in order to account for the stimulus-

dependent changes in the information capacity of VWM, as well as the progressive 

advantage I observe in storage efficiency for line orientation as compared to grating 

orientation, with increasing set size. In the final study (Chapter 4), I examine whether 

VWM performance varies systematically across randomly generated line and grating 

displays. To determine whether this variability in performance across displays arises from 
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perceptual organization processes, I develop a model that quantifies multiple perceptual 

grouping cues in each display and predicts VWM performance based on the combined 

strengths of these grouping mechanisms for each display. This Gestalt-inspired model 

could successfully predict human performance, accounting for a major proportion of 

variance in VWM performance across displays. 

Together, these studies demonstrate that multiple perceptual grouping mechanisms 

give rise to superior VWM capacity for line orientation, by combining behavioral 

experiments and computational modeling. The findings from these studies provide novel 

insights into the nature of capacity limits in VWM, and highlight the crucial role of 

stimulus factors and perceptual grouping mechanisms in determining the storage efficiency 

of VWM.



Chapter 2 
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Visual working memory capacity for orientation depends on stimulus form 

 

Introduction 

In everyday situations, we may need to remember important details of a visual 

scene when they are no longer in view, such as when comparing the face of a stranger with 

that from a wanted poster or when following a series of origami instructions across 

successive fixations. The ability to actively maintain and manipulate visual information for 

use in the task at hand is called visual working memory (VWM) (see review by Luck & 

Vogel, 2013; Ma, Husain, & Bays, 2014). While VWM provides a workspace needed for 

complex visual tasks, its capacity is severely limited, able to hold no more than 3-4 visual 

objects at a time (Luck & Vogel, 1997; Vogel, Woodman, & Luck, 2001; Zhang & Luck, 

2008).  

The capacity of VWM is typically measured using simple, unidimensional features, 

such as color or orientation. One of the advantages to using such stimuli is that the stored 

information is easy to quantify in terms of the number of discrete features (Luck & Vogel, 

1997, 2013; Rouder, Morey, Morey, & Cowan, 2011), whereas the part-based structure of 

complex objects, such as Chinese characters or random polygons, would be more difficult 

to quantify (e.g., Alvarez & Cavanagh, 2004). Presumably, a random set of simple features 

cannot be organized based on any semantic relationship (e.g., Ericsson & Chase, 1982), the 

capacity measures are thought to be uncontaminated by grouping or rehearsal strategies 

(Cowan, 2010). Change detection tasks with simple visual features provide reliable 

measures of working memory capacity, which are highly correlated with broad measures of 

cognitive aptitude and fluid intelligence (Cowan et al., 2005; Fukuda, Vogel, Mayr, & 

Awh, 2010; Johnson et al., 2013). Thus, these capacity estimates are thought to provide 

relatively pure measures of one’s core cognitive capacity, general across modalities and 

domains.

While a heavy emphasis has been placed on the link between VWM capacity and a 

general, cross-domain resource, a relatively neglected issue is the role of the visual system 

per se in mediating the capacity measures for specific types of visual stimuli. Although 

some studies have suggested that VWM capacity is diminished for perceptually complex 
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objects (Alvarez & Cavanagh, 2004; Eng, Chen, & Jiang, 2005; but see Awh, Barton, & 

Vogel, 2007), the ways in which VWM capacity for simple, unidimensional features might 

be affected by physical appearance of the stimuli have not been fully investigated. 

Even within a common feature domain, VWM capacity and precision might depend 

critically on aspects of stimulus form. An important clue is provided by an earlier study by 

Alvarez and Cavanagh (2008), who compared change detection performance for 

orientations defined by Gabor gratings and lines. The authors found that VWM capacity for 

lines (4.0 items) was nearly twice as large as that for Gabor gratings (2.3 items), which was 

taken to suggest that the capacity of VWM depends on whether orientation information is 

defined by an object's bounding contour as in the case of line stimuli, or by its surface 

texture as in the case of grating stimuli. This finding led to the boundary hypothesis, which 

posits that an object’s boundary feature (i.e., a line’s tilt or a grating’s round shape) is 

encoded into VWM first, followed by an encoding of the object’s surface feature when 

necessary (i.e., a tilt of the grating’s striped texture). Unlike the line stimuli, the grating 

stimuli additionally require their surface features to be encoded, thereby requiring extra 

“space” in VWM (Alvarez & Cavanagh, 2004).  

Alvarez and Cavanagh’s (2008) finding highlights the important role of stimulus 

factors in influencing VWM capacity estimates. However, given that change detection 

performance is determined not only by whether the probed item is stored in VWM, but also 

by whether the resolution of the stored representation is sufficient for reliable detection of a 

change (Awh et al., 2007; Wilken & Ma, 2004), it is unclear whether the impaired 

performance for gratings is due to a reduced VWM capacity or poorer resolution of stored 

orientation compared to that for lines. Another issue that has not been fully investigated is 

the possibility that VWM for lines could have benefited from enhanced perceptual 

grouping of line orientations. To account for the dramatic difference in VWM performance 

between gratings and lines, Alvarez and Cavanagh emphasized the inefficiency inherent to 

extracting a surface feature of an object, compared to a boundary feature of an object. 

While an isolated line orientation itself might be stored more efficiently than a grating 

orientation, a further VWM advantage could arise from visual grouping of multiple lines 

into coherent chunks and configurations.  
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In the present study, I wanted to determine whether VWM for gratings and lines 

differ in terms of the number or the resolution of stored orientations. I used a delayed 

estimation paradigm that required a precise report of the remembered feature value 

(Wilken & Ma, 2004). Applying a mixture model (Zhang & Luck, 2008) allowed me to 

obtain separate estimates of VWM precision and capacity for these stimuli. In addition, I 

sought to further examine the role of visual grouping as a potential mechanism for the 

efficient storage of line orientations. 

 

General Methods 

Participants 

The participant pool consisted of healthy volunteers with normal or corrected-to-

normal visual acuity, recruited from the Vanderbilt University community. Participants 

(except the author) received course credit or monetary compensation ($12 per hour) for 

participation. Written informed consent was obtained prior to participation. All aspects of 

this study were conducted according to procedures approved by the Institutional Review 

Board of Vanderbilt University. 

 

Apparatus and stimuli 

In all of the experiments, visual stimuli were generated using MATLAB 8.3.0 (The 

MathWorks, Natick, MA) and the Psychophysics Toolbox (Brainard, 1997) running on a 

Mac Pro. Stimuli were displayed on a gamma-corrected CRT monitor (1280 x 1024 

resolution; a 85Hz refresh rate; 27.2 cd/m2 mean luminance). Experiments were conducted 

in a darkened room, and head position was stabilized using a chin rest with a forehead bar 

to maintain a viewing distance of 46 cm. Observers were asked to fixate centrally on a 

black bull’s eye (0.5˚ visual angle in diameter) for the duration of each trial, throughout the 

experiment.  

The grating stimulus consisted of a sine-wave grating (2˚ in diameter, 2 cycles/˚, 

50% contrast) presented within a circular Gaussian envelope (σ = 2˚, truncated at 2˚ 

diameter). In Experiment 1A, the line stimulus was a white rectangle (0.25˚ x 2˚), 

smoothed with a Gaussian filter (σ = 0.15˚), with the same peak luminance as the grating 

stimulus (40.8 cd/m2). In all subsequent experiments, the line stimulus was generated by 
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applying a rectangular aperture (0.25˚ x 2˚) to the central bar of the grating, which 

corresponded to half a cycle of the sine wave. All stimuli were presented on a gray 

background (mean luminance 27.2 cd/m2).  

A sample array typically consisted of six gratings or lines presented at randomized 

locations surrounding the central fixation point (4˚ eccentricity) with a minimum 

separation distance of 0.62˚ edge to edge. This circular arrangement was used in all 

experiments, except for Experiment 1B, in which stimuli were presented at random 

locations on a virtual 4 x 4 grid with spatial jittering (see Experiment 1B for details). 

Stimulus orientation was randomly chosen on each trial for each item, from 180 evenly 

spaced orientations (0-180 ̊). 

For the delayed estimation task (Experiments 1–3), I used a PowerMate USB knob 

(Griffin Technology, USA) to allow the observers to continuously adjust the orientation of 

a test stimulus. In Experiment 4, I evaluated working memory performance using a change 

detection task. 

 

Experiment 1A 

The goal of this experiment was to determine whether stimulus form (gratings or 

lines) impacts the capacity or precision of VWM for orientation. I adopted a mixture-

modeling approach to characterize the response error distribution as a mixture of two 

components: A von Mises distribution (the circular analogue of the Gaussian distribution) 

centered on the true feature value for trials in which the probed item was successfully held 

in memory, and a uniform distribution for trials in which a random guess was made (Zhang 

& Luck, 2008). The delayed estimation responses will likely be more accurate for lines 

than gratings, but it was of interest whether this advantage would be characterized by a 

more precise representation of orientations in memory or a reduced occurrence of random 

guess responses.  

Two components of the mixture model are depicted in Figure 1A. Considering this 

mixture distribution as representing the VWM performance for grating stimuli, two 

possible forms of VWM enhancement relative to this distribution are presented in Figure 

1B. If VWM has a greater capacity to store line orientations (Figure 1B, left), the height of 

the uniform component (Pfailure, shown in red) should be reduced for lines compared to 
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gratings. By contrast, if VWM can store the same number of lines as gratings but at a much 

higher resolution (Figure 1B, right), the spread of the von Mises distribution (SD, shown 

in blue) should be narrower for lines while the uniform component should be equivalent for 

the two stimulus types. 

 

 
Figure 1. Zhang and Luck’s (2008) mixture model analysis of delayed estimation data. (A) 
The distribution of errors is modeled as a mixture of two probability distributions: A von 
Mises distribution (blue) and a uniform distribution (red). The shapes of these two 
components are determined by the SD and Pfailure parameters, respectively. (B) Two 
possible forms of VWM performance enhancement, relative to the error distribution 
depicted in (A).   
 

Method 

Participants  

12 participants (6 male; ages 19–30 years), including the author, took part in this 

study.  

 

Stimuli and procedure 

Each sample array consisted of 2 or 6 items of either stimulus type (gratings or 

lines) positioned at randomized locations, 4˚ from central fixation, with different stimulus 

types presented in separate blocks of trials.   

A typical trial sequence for a delayed estimation task is depicted in Figure 2. Each 

trial began with a central fixation presented for 1 s, followed by a sample array containing 

2 or 6 items for 200 ms. After a 1-s delay, a spatial cue (a black outline circle; 2˚ in 

diameter) appeared at one of the stimulus locations for 500 ms, followed by a test stimulus 

(a grating or a line) at fixation. Participants were asked to report the orientation of the cued 
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item from memory as precisely as they could, by rotating the test stimulus with a rotary 

knob. The initial orientation of the test stimulus was randomly determined on each trial, 

independent of the orientation of the original target stimulus. Participants were asked to 

press a space bar when they were satisfied with their response, after which they received 

visual and auditory feedback. Visual feedback consisted of a test stimulus showing the true 

orientation, along with an accuracy score (0-100), calculated as 100% minus the percentage 

of the absolute error magnitude relative to the maximum possible error (90 ̊). Depending on 

the accuracy score, a pleasant rising tone (≥ 99%), a cash register sound (≥ 50%), or a low-

pitched beep (< 50%) was played. For accuracy scores above 99%, participants received 

100 bonus points. Participants received feedback about their average accuracy and the 

number of bonus points earned at the end of each experimental block. In general, 

participants appeared to find this feedback to be encouraging and motivating. 

 

Figure 2. A trial sequence for the delayed estimation task in Experiment 1A. A sample 
array contained either gratings or lines (2 or 6 items). To highlight the visual impact of 
changing the stimulus form, the grating and line arrays are shown with matched 
orientations and locations. In the actual experiment, these values were randomly 
determined for each stimulus type. 
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Each participant completed two 1-hour sessions. Each session consisted of 10 

alternating blocks of the two stimulus types (gratings and lines), 40 trials each. The order 

of the two stimulus types was counterbalanced across participants and sessions. Two set 

sizes (2 and 6) were randomly intermixed within each experimental block. For each 

participant, I obtained a total of 800 trials, resulting in 200 trials for each condition.  

 

Data Analysis 

The delayed estimation data were analyzed using the mixture model proposed by 

Zhang and Luck (2008). The model has two parameters: SD and Pfailure (see Figure 1A). 

The SD parameter determines the spread of the von Mises distribution, which is inversely 

proportional to the precision of the stored representation. The location (i.e., central 

tendency) of the von Mises distribution was fixed at zero, assuming no systematic bias 

away from the true stimulus orientation. The Pfailure parameter determines the height of the 

uniform component, representing the probability that the probed item is lost from memory. 

The mixture model was fitted separately to each experimental condition for each 

participant, using maximum likelihood estimation. The Pfailure and SD estimates were each 

submitted to a repeated-measures ANOVA, with stimulus type (line and grating) and set 

size (2 and 6) as within-subjects factors.   

I calculated the number of stored orientations (K) for each condition using the 

formula, K = (1- Pfailure) x N, where N denotes the number of items in the memory array, or 

the set size. While I will plot the K values to facilitate comparison of capacity estimates 

across different set size conditions, the statistical tests were performed on the raw Pfailure 

data.  
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Figure 3. Results of Experiment 1A. (A) A representative participant’s response 

error histograms for delayed estimation of gratings and lines, at set sizes 2 and 6. All 
histograms consist of 40 bins, with a bin width of 4.5˚.  For each condition, the best-fitting 
mixture distribution for this participant is shown by a black curve. The fitted memory 
precision (SD) and guess rate (Pfailure) components are indicated with the von Mises (blue) 
and uniform (red) distributions, respectively. (B) Results of the mixture model analysis (N 
= 12). The estimates of capacity (K) and memory precision (SD) are shown on the left and 
right panels, respectively. A higher K value represents a greater memory capacity, whereas 
a lower SD value represents greater memory precision. The error bars represent between-
subject standard error of the mean (SEM).  

 

Results 

The distribution of response errors for a representative participant is presented in 

Figure 3A. As evident in this participant’s response error histogram, VWM performance 
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was very similar for gratings and lines at set size 2, with a modest advantage in memory 

precision for lines and little guessing in general. On the other hand, there was a prominent 

elevation of uniform guessing responses for gratings compared to lines at set size 6, 

suggesting a reduced capacity for gratings. This trend was mirrored in the group-averaged 

results (Figure 3B), which showed that participants could hold an average of 2.8 grating 

orientations, but as many as 5.5 line orientations. The ANOVA confirmed that Pfailure was 

significantly lower for lines than for gratings, F(1, 11) = 69.67,  p < .001, ηp
2 = 0.86. The 

effect of stimulus type on Pfailure significantly interacted with set size, F(1, 11) = 102.46,  p 

< .001, ηp
2 = 0.90, indicating that the capacity advantage for lines over gratings was much 

larger at set size 6 compared to set size 2.  

Compared to this dramatic difference in K at set size 6 (Figure 3B, left), memory 

precision (SD; Figure 3B, right) was very comparable between gratings and lines at both 

set sizes, with a modest precision benefit for lines. The SD for lines was marginally smaller 

than that for gratings, F(1, 11) = 4.83,  p = .0503, ηp
2 = 0.31. For both gratings and lines, 

there was a general decline in memory precision at the larger set size, F(1, 11) = 43.97,  p 

< .001, ηp
2 = 0.80, but this effect did not interact with the stimulus type, F(1, 11) = 0.26,  p 

> .250. 

In summary, I found that VWM precision was comparable for line and grating 

orientation, but that estimated capacity was about twice as large for lines (K = 5.5) as for 

gratings (K = 2.8). This capacity advantage for lines is similar in magnitude to that 

reported by Alvarez and Cavanagh (2008) (K = 4.0 for lines, 2.3 for gratings), relying on a 

change detection paradigm. The present results demonstrate that the VWM advantage for 

lines over gratings primarily lies in the number, rather than the resolution, of stored 

orientations.  

 

Experiment 1B 

The capacity estimate of 5.5 line items in Experiment 1A was surprisingly high, 

while the capacity estimate of 2.8 grating items was comparable to the estimates obtained 

in the previous studies using a similar paradigm and stimuli (e.g., K = 2.6~2.7 in 

Rademaker, Tredway, & Tong, 2012; K = 3.6 in Pratte, Park, Rademaker, & Tong, 2017) 

or that obtained in color VWM tasks (K = 2.2~2.5 in Zhang & Luck, 2008; 2009; 2011). 
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I considered whether the unusually high capacity for lines be due to the circular 

layout of each sample array. Such a circular arrangement of line orientations might allow 

for the perception of a global shape in some cases, such as a triangle or a diamond. To 

address this issue, I designed a follow-up experiment, in which 6 gratings or lines were 

presented at random locations on a 4 x 4 grid (see Figure 12). If lines can be stored more 

efficiently than gratings regardless of the regularity of their spatial arrangements, the same 

capacity benefits should occur with this grid layout.  

 

Method 

Participants  

12 participants (6 male; ages 19-26 years) took part in Experiment 1B. The stimuli 

and procedure were identical to Experiment 1A, except for the following changes. 

 

Stimuli and procedure 

A new line stimulus was used, created by isolating a central bar of a grating 

stimulus (see General Method). A sample array contained 6 gratings or lines, presented in 

random positions within a 4 x 4 square grid (15˚ x 15˚) (see Figure 4). The x, y coordinate 

of each item was jittered ±0.6˚ from the center of each cell (3.75˚ x 3.75˚). The minimum 

edge-to-edge distance between items was 0.55˚, and the maximum eccentricity of the 

center of an item was 8.80˚.  

Each participant completed a 1-hour session, consisting of 8 alternating blocks of 

grating and line stimuli, 54 trials each. Only set size 6 was tested in this experiment to 

reduce the duration of the study and to ensure adequate power to test for differences in 

memory capacity. Each participant completed a total of 432 trials, resulting in 216 trials for 

each stimulus type.  

 

Results 

Results of the mixture model analysis are shown in Figure 4B. With the grid array, 

the estimated capacity (K) was 2.1 for grating orientations and 5.1 for line orientations, 

replicating the large capacity advantage for line stimuli. A paired-samples t-test (2-tailed) 

on the Pfailure data confirmed that this capacity difference was highly significant, t(11) = 
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15.91, p < .001, Cohen’s d = 4.59. On the other hand, the precision of stored orientation 

(SD) was not significantly different between gratings and lines, t(11) = 1.05, p > .250. 

Thus, I conclude that the large VWM capacity for line orientations is not just limited to a 

circular stimulus layout, but generalizes to more irregular spatial arrangements.  

 
Figure 4. Example stimuli used in Experiment 1B and the mixture model results. (A) A 
sample array consisted of six gratings or lines, presented at various locations within a 4 x 4 
grid. (B) The estimates of capacity (K) and memory precision (SD) are shown on the left 
and right panels, respectively (N = 12). The error bars represent between-subject standard 
error of the mean (SEM).  
 

Experiment 2 

While the results from Experiments 1A and 1B suggest that about twice as many 

line orientations as grating orientations can be stored in VWM, an alternative explanation 

is that VWM capacity might be the same for the two stimulus types, but gratings might 

take longer to encode into VWM than lines. A previous study suggests that two oriented 

gratings cannot be simultaneously consolidated into VWM as effectively as two 

sequentially presented gratings (Becker, Miller, & Liu, 2012). Specifically, orientation 
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judgment performance was found to be worse in the simultaneous condition than in the 

sequential condition when the two gratings were presented for 50–130 ms and then 

masked. Thus, it is possible that the current sample duration of 200 ms was not sufficient to 

encode all grating orientations that could be held in VWM.  

The purpose of Experiment 2 was to rule out the possibility that the gross 

differences in the capacity estimates for gratings and lines might be driven by faster 

encoding of line orientations into VWM. The time allowed for VWM encoding was 

manipulated by presenting the sample array for 200 or 1000 ms, followed by a patterned 

mask to limit the potential reliance on iconic memory (Averbach & Coriell, 1961; Sperling, 

1960). At stimulus onset asynchronies (SOAs) of 200 or 1000 ms, patterned masks are 

believed to interrupt VWM consolidation processes, without affecting the early sensory 

and perceptual processing of the sample array (Vogel, Woodman, & Luck, 2006).  

If VWM encoding were to require more time for gratings than for lines, then an 

increased display duration should allow for more gratings to be stored in VWM, thereby 

reducing the difference in capacity between the two stimulus types. In addition, if a 

persistent iconic memory for lines contributed to the enlarged storage capacity in the 

previous experiments, the patterned mask should markedly reduce the estimated capacity 

for lines. By contrast, if VWM capacity is truly enhanced for lines over gratings due to 

differences in storage efficiency, the pronounced advantage in memory capacity for line 

orientation should persist across these manipulations.  

 

Method 

Participants 

16 participants (4 male; ages 19-28 years) took part in Experiment 2. Stimuli and 

procedure were identical to Experiment 1A, except for the following changes. 

 

Stimuli and procedure 

Example stimuli in Experiment 2 are shown in Figure 5A. A sample array 

consisted of six gratings or lines presented at various locations around the central fixation 

at a 4˚ eccentricity. A line stimulus was taken from the central region of a grating (see 

General Method). The patterned mask stimulus consisted of a low-pass filtered uniform 
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noise (16˚ x 16˚) with a cut-off frequency of 4 cycles/˚ and a mean RMS contrast of 0.115 

(s.d. = 0.005), contained within an annulus (mean diameter 8˚) covering the circular sample 

array. The annulus was contrast modulated using a single cycle of a cosine function: 

𝑐𝑜𝑠 !"
!
+  𝜋 2+ !

!

!
, where d denotes the distance from the center (0˚ ≤ d ≤ 8˚).  

On each trial, a sample array was presented for either 200 ms or 1000 ms, and 

followed by a patterned mask for 200 ms. After an 800-ms delay, one of the items was 

randomly probed for report. The interstimulus interval (ISI) between sample and the spatial 

cue was kept at 1 s, consistent with Experiments 1A and 1B. The two stimulus types were 

presented in separate blocks of trials. Within each block, the encoding durations were 

randomly intermixed across trials. Each participant completed two 1-hr sessions, consisting 

of 12 alternating blocks of grating and line stimuli, 36 trials each. Each participant 

completed a total of 864 trials, resulting in 216 trials for each experimental condition. 

 

Results 

As shown in Figure 5B, observers exhibited a similar advantage in VWM capacity 

for lines over gratings regardless of whether stimuli were presented for 200 ms (2.2 

gratings, 4.6 lines) or 1000 ms (2.8 gratings, 5.0 lines), followed by a patterned mask. The 

main effect of stimulus type on Pfailure was highly significant, F(1, 15) = 67.37, p < .001, 

ηp
2 = 0.82. The longer encoding duration led to a modest improvement in capacity, F(1, 15) 

= 13.58, p = .002, ηp
2 = 0.48, but the magnitude of this benefit was not different between 

gratings and lines, F(1, 15) = .35, p > .250. Thus, even with the five-fold increase in 

encoding duration, observers could successfully maintain about twice as many lines as 

gratings. This rules out the alternative hypothesis that the capacity advantage for line 

orientation arises from faster encoding of lines than gratings. As in Experiment 1A, there 

was a subtle advantage in memory precision for lines over gratings, but this effect did not 

reach significance, F(1, 15) = 2.53, p = .133, ηp
2 = 0.14. The increased encoding duration 

did not significantly improve memory precision for either stimulus type, F(1, 15) = 3.04, p 

= .102, ηp
2 = 0.17.  

In summary, the capacity estimates for gratings and lines both improved modestly 

as the encoding duration increased from 200 ms to 1000 ms, but the large capacity 

advantage for lines was still preserved. Thus, the large difference in memory capacity for 



 

  20 

the two stimulus types cannot be attributed to insufficient encoding time for gratings or a 

more persistent iconic traces for lines, but instead, seems to reflect a true advantage in 

VWM capacity for lines over gratings.    

 
Figure 5. Example stimuli and mixture model results in Experiment 2. (A) Examples of 
sample arrays and a patterned mask. (B) Estimates of capacity and memory precision (N = 
16) The error bars represent between-subject standard error of the mean (SEM). 
 

Experiment 3 

One possible mechanism underlying the enhanced VWM capacity for line 

orientation is that multiple line orientations might be readily grouped into a higher-order 

configuration, which can then be efficiently stored as a set of coherent units or chunks in 

VWM (Miller, 1956). In Experiment 3, I wanted to test this visual grouping hypothesis.  

To disrupt visual grouping processes, six gratings or lines were sequentially 

presented at various locations, and sequential presentation performance was compared with 

the standard approach of simultaneous presentation (see Figure 6A). In the earlier study by 

Alvarez and Cavanagh (2008), the superior performance for lines over gratings was 
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observed even when the items were presented one at a time, suggesting that visual 

grouping was not necessary to show the advantage for lines over gratings. However, since 

the magnitude of the advantage for lines was not directly compared between the 

simultaneous and sequential conditions, it remains to be determined whether higher-order 

grouping among line items allows for an even greater storage advantage.    

If the efficient storage of lines relies on visual grouping of simultaneously 

presented lines, sequential presentation should severely impair VWM capacity for lines, to 

a greater extent than it does the capacity for gratings. As a result, the capacity difference 

between the two stimulus types should become much smaller in the sequential condition 

compared to the simultaneous condition. Alternatively, if an isolated line itself can be 

stored more efficiently than an isolated grating, sequential presentation should not affect 

the capacity advantage for lines over gratings. 

 

Method 

Participants 

16 participants (9 male; ages 18-30 years) took part in Experiment 3. Stimuli and 

procedure were identical to Experiment 2, except for the changes indicated below. 

 

Stimuli and procedure 

A schematic of the trial sequences for the simultaneous (Sim.) and sequential (Seq.) 

conditions are shown in Figure 6A. A sample array containing 6 gratings or lines was 

presented either simultaneously for 200 ms, or sequentially for 200 ms per item, with an 

interstimulus interval (ISI) of 400 ms. No patterned masks were presented. In the 

sequential condition, the items were presented one at a time along the virtual circle 

surrounding central fixation, in a clockwise or counter-clockwise direction. After a 1-s 

delay following the last item (or 4 s from the first item in the sequence), a spatial cue 

indicated which item to report. All four conditions (2 stimulus types x 2 presentation 

modes) were presented in separate blocks of trials. Within each block of the sequential 

condition, clockwise or counter-clockwise sequences were randomly intermixed across 

trials. The spatial position of the first item in the sequence was also randomly selected on 

each trial.  
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Each participant completed two 1-hr sessions. Each session consisted of 12 blocks, 

25 trials each. The two stimulus types alternated across blocks, in a counterbalanced order. 

For each stimulus type, the two presentation conditions were randomly shuffled across 

blocks. Each participant completed a total of 600 trials, resulting in 150 trials for each 

condition.  

 
Figure 6. Timing of events and mixture model results in Experiment 3. (A) In the 
simultaneous condition (Sim.), an array of six gratings or lines were presented all at the 
same time for 200 ms. In the sequential condition (Seq.), six gratings or lines were 
presented one after another, for 200 ms each, in a clockwise or counter-clockwise direction 
along the circular array. (B) The mixture model results for Experiment 3 (N = 16). The 
error bars represent between-subject standard error of the mean (SEM). 
 

Results 

The mixture model results (Figure 6B) showed that capacity estimates for gratings 

did not significantly change between simultaneous (K = 2.7) and sequential (K = 3.0) 

presentation, t(15) = 0.95, p > .250, whereas capacity estimates for lines drop from 5.5 to 

3.6 items with sequential presentation, t(15) = 7.51, p < .001, Cohen’s d = 1.88. Lines 

showed a small, marginally significant capacity advantage over gratings in the sequential 

condition, t(15) = 2.00, p = .064, Cohen’s d = 0.49, but the magnitude of this advantage 
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(ΔK = 0.6) was substantially smaller than that observed in the simultaneous condition (ΔK 

= 2.7; t(15) = 9.51, p < .001, Cohen’s d = 2.38), as indicated by a significant interaction 

between stimulus type and presentation mode on Pfailure, F(1, 15) = 76.37,  p < .001, ηp
2 = 

0.84.  

While the presentation mode did not affect the number of gratings that could be 

stored in VWM, memory precision for gratings was significantly impaired by sequential 

presentation, t(15) = 3.68, p = .002, Cohen’s d = 0.92. On the other hand, memory 

precision for lines remained unchanged, t(15) = 1.10, p > 0.250. The selective impairment 

in gratings’ precision due to sequential presentation was confirmed by a significant 

interaction of presentation mode and stimulus type on SD, F(1, 15) = 11.95, p = .004, ηp
2 = 

0.44.  

Sequential presentation severely impaired VWM capacity for line orientations, 

presumably because this manipulation impaired people's ability to group multiple line 

elements across successive frames. By contrast, the capacity for gratings remained 

unchanged with sequential presentation, with some impairment in memory precision. This 

led to a pronounced reduction of the capacity advantage for lines in the sequential 

condition, consistent with the hypothesis that visual grouping plays a crucial role in the 

efficient storage of line orientation. The small, residual capacity advantage for lines in the 

sequential condition might have occurred because sequential presentation severely 

interferes with the visual grouping process but might not entirely eliminate it. 

These findings suggest that estimates of VWM capacity can be greatly inflated if the 

stimuli can be readily grouped into higher-order patterns. The degree of inflation might 

depend on an individual’s ability to group multiple items into a chunk, as well as the 

degree to which the stimuli afford such visual grouping. It is reasonable to predict some 

degree of correlation between VWM performance across stimulus types and presentation 

modes given that individuals’ core cognitive capacities would underlie performance in a 

broad range of cognitive tasks. However, if lines tend to be more readily grouped than 

gratings, and if different individuals have different proclivities to rely on visual grouping, 

then the capacity estimates for gratings and lines may not be strongly correlated, especially 

in the simultaneous condition. On the other hand, if sequential presentation disrupts visual 

grouping of lines, the capacity estimates for the two stimulus types may be more strongly 
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correlated in the sequential condition. To explore this potential relationship, I conducted 

correlation analyses comparing individual participants’ VWM performance across 

conditions (stimulus type x presentation mode). Pearson’s correlation was calculated for all 

pairs of conditions, on the K and SD estimates. The results of the key comparisons are 

presented in Figure 7.  

 
Figure 7. Correlation analyses of VWM capacity in Experiment 3. The scatterplots show 
the correlations of individual participants’ VWM capacity (K) estimates across different 
conditions (N = 16). The first two panels show the relationship between simultaneous and 
sequential presentation performance within each stimulus type. The next two panels show 
the relationship between grating and line performance within each presentation condition. 
On the rightmost panel, the correlation strengths among the four conditions (presentation 
mode x stimulus type) are depicted using a multidimensional scaling (MDS) technique. 
The MDS was based on the dissimilarity score (D), measured as 1 minus the correlation (D 
= 0 for perfect positive correlation, 1 for no correlation, 2 for perfect negative correlation). 
 

As shown in the first two panels of Figure 7, individual capacity estimates for 

gratings were strongly correlated between simultaneous and sequential presentations, r(14) 

= .70, p = .002, and a similar relationship was observed for the capacity estimates for lines, 

r(14) = .60, p = .013. On the other hand, the grating capacity showed little correlation with 

the line capacity in the simultaneous condition (third panel), r(14) = .12, p > .250, 

consistent with the possibility that the line capacity might be additionally mediated by the 

individual’s visual grouping ability. Critically, a positive correlation between grating and 

line capacities emerged in the sequential condition (fourth panel), r(14) = .66, p = .006, 

conditions in which the capacity estimates for lines should be less affected by visual 

grouping strategies.  

To illustrate the relative correlation strengths across all four conditions, I conducted 

a multidimensional scaling (MDS) analysis, using a 4 x 4 dissimilarity matrix (D), 
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calculated as D = 1 – r. The MDS plot (Figure 7, rightmost panel) revealed an overall 

separation of grating and line capacities, but the distance between the two stimulus types 

was substantially reduced in the sequential condition (filled and empty triangles) compared 

to that in the simultaneous condition (filled and empty circles). These correlation results 

suggest that the disruption of visual grouping processes for lines in the sequential condition 

make the capacity for lines more similar to that for gratings. Thus, visual grouping plays an 

important role in the enhanced VWM capacity for lines, and visual grouping abilities can 

be distinguished from one’s core cognitive capacity.  

 

Experiment 4 

So far, I have relied on the delayed estimation paradigm to compare the VWM 

precision and capacity for gratings and lines. The fact that sequential presentation virtually 

eliminated the capacity advantage for line orientation (Experiment 3) supports my 

hypothesis that visual grouping mediates the capacity advantage for lines. In Experiment 4, 

I sought to provide converging evidence for visual grouping of lines using a change 

detection paradigm (Luck & Vogel, 1997). Change detection performance depends not 

only on how much information is encoded from the sample array, but also on how 

efficiently the stored representation can be compared with the probe array (Hollingworth, 

2003; Makovski, Sussman, & Jiang, 2008; Simons, Chabris, Schnur, & Levin, 2002). I can 

capitalize on this requirement of memory comparison to tap into the organization of stored 

representations. 

 One factor that could facilitate the memory comparison process is the consistency 

of the global configuration between the sample and probe arrays, especially when the 

memory representation includes higher-order, relational information among items (Jiang, 

Olson, & Chun, 2000). If multiple items are stored as higher-order patterns, such 

representations would be more likely to be disrupted by an isolated probe item, compared 

to change detection involving a whole-array probe that preserves the original context. 

Thus, I predicted that change detection for lines should benefit from the whole-array 

probes, relative to the single-item probe condition. On the other hand, if individual items 

are stored as separate distinct representations, as would be the case for gratings, the whole-
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array probe should not facilitate the comparison process, and thus, the whole-array benefit 

should be absent for gratings. 

 

Method 

Participants  

Sixteen participants (8 male; ages 18-26 years) took part in Experiment 4. Stimuli 

were identical to Experiment 3. Participants performed a change detection task on these 

stimuli, instead of a delayed estimation task. 

 

Stimuli and procedure 

The experimental design (whole array or single-item probe) and stimuli for the 

change detection tasks are shown in Figure 8A. Each trial began with a fixation period of 1 

s. A sample array containing 6 gratings or lines was presented for 200 ms, followed by a 1-

s delay, and a probe array for 200 ms. For each stimulus type, the probe array contained 

either a single item presented at one of the six locations or a whole array of six items at the 

corresponding locations. For the single-item probe, the probed item was rotated by 90˚ on 

half of the trials, and remained the same on the other half. Participants were asked to press 

“1” on the number pad if the probed item remained the same as the sample array, and press 

“2” if it was different. For the whole-array probe, a change could occur in one of the items, 

and the rest of the array always remained the same. Participants were asked to press “1” if 

the sample and probe arrays were the same, and press “2” if one of the items was different. 

Participants were told that accuracy was more important than speed, and that only their 

accuracy data would be analyzed. All four conditions (2 stimulus types x 2 probe types) 

were presented in separate blocks of trials. Within each block, the change and no-change 

trials were randomly intermixed. No auditory feedback was provided on each trial. Instead, 

participants received the average accuracy score at the end of each block. 

Each participant completed a 1-hr session, consisting of 8 blocks of 60 trials. The 

four experimental conditions were presented in a randomized order across blocks. I 

obtained a total of 480 trials for each participant, resulting in 60 change- and 60 no-change 

trials for each condition.  
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Figure 8. Example stimuli and results in Experiment 4. (A) Trial sequence for the change 
detection task with two types of probe. (B) Results from the change detection task (N = 
16). Two measures of change detection performance, K (capacity) and A’, are plotted as a 
function of stimulus types and probe types (single item and whole array), on the left and 
right panels, respectively. The error bars represent between-subject standard error of the 
mean (SEM). 
 

Data Analysis 

I examined change detection performance using two different measures: The 

capacity (K) measure (Cowan, 2001; Pashler, 1988), which assumes discrete, all-or-none 

representation of items in working memory, and the measure of signal detection sensitivity 

(A’) (Grier, 1971; Pollack & Norman, 1964), which assumes graded representation. The 

results from the delayed estimation task indicated that VWM performance for gratings and 
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lines is mainly limited by the number of items that can be stored, and that the resolution of 

the stored orientation (SD = 15˚-20˚) would be sufficient to allow a reliable detection of a 

90˚ change. Nevertheless, I examined both the discrete and continuous measures of VWM 

performance since different types of probe (single item or whole array) could affect the 

memory comparison process in an all-or-none or graded manner. While these measures are 

based on fundamentally different conceptualizations of VWM, their results should 

converge when there are large differences in performance accuracy across conditions. 

To measure the capacity in the single-item and whole-array probe tasks, I used two 

different formulae, proposed by Cowan (2001) and Pashler (1988), respectively (see 

Rouder et al., 2011, for discussion on the choice between two measures). Cowan’s K was 

calculated using the formula, K = N ( h – f ), where N is the number of items on the sample 

array, h is the observed hit rate (i.e., reporting change when there is a change), and f is the 

observed false alarm rate (i.e., falsely reporting change when there is none). Pashler’s K 

was calculated using the formula, K = N ( h – f ) / ( 1 – f ). The difference in the 

denominator reflects the fact that, with a single-item probe, guessing is needed only when 

the probed item is not in memory, whereas a whole-array probe requires guessing about the 

items that are not in memory whenever change is not detected among the stored items. 

A’ provides a non-parametric index of sensitivity that estimates the area under the 

receiver operating characteristic (ROC) curve (Grier, 1971; Pollack & Norman, 1964). A’ 

ranges between 0.5 (chance performance) and 1.0 (perfect performance). I use A’ instead of 

the more common measure d’ (Green & Swets, 1966) since A’ does not make strong 

assumptions about the underlying psychological mechanisms or the shape of the ROC 

curve. Moreover, A’ can be defined even when hit rates are perfect or false alarm rates are 

zero. A' was calculated using the formula provided by Grier (1971): A' = 0.5 + ( h – f ) ( 1 + 

h – f ) / [ 4 h ( 1 – f ) ]. If the false alarm rate (f) exceeded the hit rate (h), the following 

modification by Aaronson & Watts (1987) was used: A' = 0.5 – ( f – h ) ( 1 + f – h ) / [ 4 f ( 

1 – h ) ]. 

Both K and A’ utilize hit and false alarm rates, and provide a measure of 

information available for change detection, independent of guessing strategies or biases. 

These measures were calculated for each condition in each participant, based on the hit and 

false alarm rates in each condition. 
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Results 

As shown in Figure 8B, performance was much better overall for lines than for 

gratings, consistent with my earlier experiments. Of particular interest, memory 

performance for line-orientation displays was significantly better when tested with whole-

array probes, as compared to the single-item probe, t(15) = 5.43, p < .001, Cohen’s d = 

1.36 (K); t(15) = 3.37, p = .004, Cohen’s d = 0.84 (A’). This could be contrasted with 

memory performance for gratings, which did not significantly differ for the two probe 

conditions, t(15) = 0.60, p > .250 (K); t(15) = 1.01, p > .250 (A’). As a result, the 

performance advantage for lines became even larger in the whole-array probe condition, 

t(15) = 10.29, p < .001, Cohen’s d = 2.57 (K); t(15) = 9.00, p < .001, Cohen’s d = 2.25 (A’). 

This was confirmed by a significant interaction of stimulus type and probe type, F(1, 15) = 

17.48,  p < .001 (K), ηp
2 = 0.54; F(1, 15) = 10.61,  p = .005, ηp

2 = 0.41 (A’).   

The improved change detection performance for lines with the whole-array probe 

relative to the single-item probe is remarkable if one assumes that multiple comparisons 

between remembered items and currently perceived items must be performed to detect a 

change.  For the single-item probe, one must differentiate between change {1} from no-

change {0} just for the probed item, so the number of comparisons that need to be made is 

1 for both stimulus types. For the whole-array probe, on the other hand, one must 

differentiate five no-changes plus one change {0, 0, 0, 0, 0, 1} from six no-changes {0, 0, 

0, 0, 0, 0}, resulting in a total of 6 comparisons. If each item were independently 

represented in VWM in an all-or-none manner, as assumed by the slot model, about 2.4 

times as many comparisons would be made for a line array (Cowan’s K = 3.3) as for a 

grating array (Cowan’s K = 1.3), which would increase the decision noise more sharply for 

lines than for gratings. However, I found the opposite result: Line performance was 

improved with the whole-array probe (Pashler’s K = 4.3), whereas grating performance 

remained the same (Pashler’s K = 1.5). 

It appears that, when it comes to VWM for lines, probing only one item, rather than 

the whole array, is detrimental to the memory comparison process. Such impairment is 

expected if a line item is stored as part of a larger pattern, and if the stored pattern is easily 

disrupted by a single-item probe, due to the large configural change. On the other hand, the 

memory comparison process for gratings was not disrupted by a single-item probe 
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presumably because the individual gratings were represented separately from one another, 

nor did it meaningfully benefit from the smaller number of comparisons to be made 

because no more than a couple of gratings could be stored in VWM. The present results are 

consistent with the idea that configural information plays an important role in VWM for 

lines, but has a much lesser role in VWM for gratings. 

 

Discussion 

In the present experiments, I investigated whether the precision and capacity of 

VWM for orientation differ between gratings and lines. Using a paradigm that required 

precise reproduction of a remembered feature value, I found that VWM capacity was 

greatly enhanced for line orientation compared to grating orientation (2.8 gratings; 5.5 

lines) whereas the precision of stored orientation was comparable for the two stimulus 

types  (Experiment 1A). The increased VWM capacity for line orientation was not 

specifically due to the circular placement of the stimuli, as the results were replicated using 

a grid array (Experiment 1B). Similar results were obtained when stimuli were presented 

for 200ms or 1000ms and followed by a patterned mask, ruling out the possibility that 

gross differences in capacity might be driven by faster encoding or more persistent iconic 

traces for the line stimuli (Experiment 2). These results demonstrate that the capacity of 

VWM for orientation depends critically on stimulus form.  

Next, I evaluated the hypothesis that VWM capacity may be superior for lines 

because their random arrangements can be more readily organized into perceptual groups. I 

examined the impact of disrupting the visual grouping processes by sequentially presenting 

the items at various locations (Experiment 3). Compared to simultaneous presentation, 

memory capacity for lines was substantially impaired by sequential presentation (5.5 vs. 

3.6 lines), whereas the capacity for gratings remained unchanged, suggesting that higher-

order patterns formed by lines could be more efficiently maintained in VWM. To further 

investigate the difference in representational format between gratings and lines, I employed 

a change detection paradigm, presenting a probe item either in isolation or in context of the 

other items (Experiment 4). For lines, the single-item probe led to significantly worse 

change detection performance than the whole-array probe, suggesting that information 

about the item stored as part of a pattern was more likely to be disrupted by an isolated 
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probe item than by a whole-array probe. On the other hand, change detection performance 

for gratings did not depend on the probe, suggesting that the gratings were represented as 

isolated objects. These results provide converging evidence that visual grouping plays an 

important role in the efficient storage of line orientations in VWM.   

The present experiments are certainly consistent with an earlier report of superior 

change detection performance for lines than for gratings by Alvarez and Cavanagh (2008). 

Equipped with a more recently developed modeling approach that allowed for a fine-

grained characterization of VWM capacity and precision (Zhang & Luck, 2008), I show 

that VWM can store nearly twice as many line orientations as grating orientations, with 

just as good representational precision. Moreover, my experiments provide compelling new 

evidence that visual grouping underlies this dramatic mnemonic advantage for line 

orientation, whereas each grating appears to be represented in an independent manner. I 

find that the capacity advantage for line orientation is largely eliminated when the items are 

presented one at a time, inconsistent with Alvarez and Cavanagh’s original account based 

on the distinction between boundary and surface features (Grossberg & Mingolla, 1985), 

which predicts that each line item, on its own, should be stored more efficiently than a 

grating item.  

The visual grouping hypothesis is different from the boundary hypothesis in two 

important ways: First, it posits that a group of line items, rather than each individual line 

item, constitutes a coherent memory unit or a chunk. Second, it suggests that the capacity 

that people have for line orientation represents an overestimation of the upper limit on the 

number of items they can hold in working memory, because multiple line items can be 

stored as a coherent unit. This is quite different from the view that the reduced capacity for 

grating orientation reflects a trade-off between the amount of visual detail or complexity of 

each object and the maximum number of objects that can be stored (Alvarez & Cavanagh, 

2004; 2008). Consequently, the visual grouping hypothesis predicts that a VWM capacity 

estimate obtained using gratings or sequentially presented lines might be a better predictor 

of an individual's true working memory capacity than that obtained using line stimuli, 

which would be additionally influenced by one’s visual grouping abilities. My correlational 

analyses in Experiment 3 provide some support for this account. It would be an interesting 
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question for future research to compare the correlations of VWM capacities for gratings 

and lines with measures of aptitude and fluid intelligence.  

In arguing that line stimuli lead to exaggerated K estimates, I are not suggesting 

that the K estimates for grating stimuli should represent the absolute value of true K. A 

broader implication of the present work is that the core aspect of working memory 

capacity, such as that represented by Miller’s (1956) magical number 7 or Cowan’s (2001) 

4-chunk limit, might be only meaningful as a latent variable, which cannot be directly 

measured by any particular working memory paradigm. The apparent K estimates would 

be highly specific to the stimulus factors and task requirements. For example, in the present 

study, the average K values were 2.7-2.8 gratings and 5.0-5.5 lines in the delayed 

estimation tasks, but only 1.5 gratings and 4.3 lines in the change detection task with a 

whole-array probe, and 1.3 gratings and 3.3 lines with a single-item probe.  

The K values obtained in the present study were generally lower in the change 

detection task than in the delayed estimation task. One possible reason is that, with change 

detection, one likely needs to encode the probe item into VWM in order to compare it with 

other items previously encoded from the sample array, which might lead to overwriting or 

impaired access to one of the concurrently held items. While the delayed estimation task 

also requires encoding of the test stimulus while matching it with one of the items held in 

VWM, I sought to protect the stored information from the potential interference from the 

test stimulus, with a careful use of spatial cuing. Specifically, instead of presenting the test 

stimulus at the same time as the spatial cue indicating the to-be-reported item, as is 

commonly done in many VWM studies (e.g., Zhang & Luck, 2008; 2009), I delayed the 

presentation of the test stimulus by 500 ms so that observers could fully focus their 

attention to accessing the cued item stored in VWM before they were prompted to adjust 

the feature value of the test stimulus. This procedure is akin to retrospective cueing, 

whereby attention is directed to the contents of VWM ahead of testing them, leading to an 

improved VWM performance for the cued item, which is called the retro-cue effect (see 

Souza & Oberauer, 2016 for a review). On the other hand, the change detection task did 

not involve such cueing, leading to a diffuse state of attention over the stored items when 

the probe stimulus appeared. The change detection K estimates for both stimulus types 

would have been generally higher had I used the same cueing procedure, which would 
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promote the access to the stored information before it was interrupted by the probe 

stimulus (see Landman, Spekreijse, & Lamme, 2003; Sligte, Scholte, & Lamme, 2008, for 

high K estimates for oriented bars).  

Despite these differences in task requirements, the large capacity difference 

between gratings and lines was reliably observed across different paradigms. It appears that 

the amount of information stored in VWM for these stimuli can be more accurately 

measured with the delayed estimation paradigm with retrospective cueing, which 

minimizes the interruption of the stored information by subsequent visual processing. The 

delayed estimation paradigm might be more suited for studying the pure storage function 

of VWM than change detection, as the memory comparison process proves to be another 

important factor influencing change detection paradigm, in addition to the encoding and 

maintenance processes. 

The present study challenges the common assumption that VWM capacity for 

simple visual features remains stable across variations in stimulus form. I show that, even 

within the same feature dimension, the amount of feature information that can be stored in 

VWM depends critically on the physical appearance of the stimuli carrying those features. 

I propose that VWM can store orientation information in a highly efficient manner if the 

stimulus form (i.e., a line vs. a grating) allows multiple items to be more readily perceived 

as higher-order patterns rather than as independent visual objects. Such visual grouping 

processes can help alleviate the severe limits of human working memory capacity, in 

similar ways as VWM’s feature storage capacity can benefit from organization of multiple 

features into a coherent visual object (Luck & Vogel, 1997; Vogel, Woodman, & Vogel, 

2001; Xu, 2002). The benefits of chunking have long been known in the case of verbal 

working memory capacity (Miller, 1956; Ericsson & Chase, 1982), and can lead to 

dramatic improvements in effective capacity. In comparison, there has been little emphasis 

on the role chunking in the domain of visual working memory, with the exception of 

perhaps a few studies that have introduced strong correlations or regularities into the visual 

displays (e.g., Brady, Konkle, & Alvarez, 2009; Orbán, Fiser, Aslin, & Lengyel, 2008). 

Given the dramatic impact of stimulus form on VWM capacity, future research on the 

nature of capacity limits in VWM should consider the perceptual factors that allow for 

more efficient usage of the limited storage capacity.  



Chapter 3 
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Compression of working memory load by visual grouping: A modeling study 

 

Introduction 

In the earlier experiments, I found that VWM could store about twice as many line 

orientations as grating orientations, with little cost in the fidelity of the stored orientation. 

The large capacity advantage for lines crucially depended on the simultaneous presentation 

of the items, suggesting that the enhanced storage efficiency lies not in the representations 

of each isolated line item, but rather, in inter-item grouping. Based on these results, I 

proposed the visual grouping hypothesis: VWM can store multiple line items as a coherent 

unit, with just as good precision as storing each item as a separate, independent unit.  

While I previously focused on comparing the upper limits of VWM capacity for 

gratings and lines at a given set size (i.e., 6 items), further insights into the mechanisms 

underlying VWM advantage for lines can be gleaned from the systematic relationship 

between the number and resolution of stored items across a range of set sizes. It is well 

established that VWM precision systematically declines as the number of remembered 

items increases (Bays & Husain, 2008; Wilken & Ma, 2004; Zhang & Luck, 2008), 

reflecting limited working memory resources that must be shared among items. If VWM is 

viewed as a representational medium that stores independent, noisy copies of perceptual 

input, which can be averaged to estimate stimulus attributes, then the fidelity of estimation 

should depend on the availability of “samples” taken from that stimulus (Palmer, 1990; 

Shaw, 1980; Wilken & Ma, 2004). The maximum fidelity, or the smallest possible 

variability of the sample mean, can be achieved by taking all of the samples from one 

stimulus. Assuming a finite supply of samples (n), increasing the set size (s) would 

proportionally reduce the number of samples allocated to each stimulus (n/s), resulting in 

an increased variability of the sample mean, as predicted by the central limit theorem 

(!"
!

 vs. !"
!/!

). 

Current theories of VWM are divided as to whether these noisy samples are best 

characterized as a small, fixed number of discrete slots (Luck & Vogel, 1997; Zhang & 

Luck, 2008; Pratte, Park, Rademaker, & Tong, 2017) or as a continuous pool of resources 

that can be distributed among numerous items without a fixed upper limit (Bays & Husain, 
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2008; van den Berg et al., 2012; Wilken & Ma, 2004). Despite these divergent views 

regarding the upper limit of items that can be stored in VWM at a time, both theories 

predict a systematic trade-off between the number of items stored and the fidelity of stored 

representations, which is the result of dividing “a limited supply of representational 

medium” among multiple items (Ma, Husain, & Bays, 2014).   

However, my empirical findings present a conundrum for current models of VWM. 

Neither the discrete-slots model and nor continuous-resource model predicts such a 

dramatic difference in VWM performance between two stimulus formats conveying the 

same task-relevant feature information, tested within the same individual. The same person 

would appear to have a vastly different number of memory slots or a different amount of 

memory resources depending on the stimulus format, negating the concept of working 

memory capacity as a finite and stable quantity. This suggests that current models of VWM 

capacity should not only consider the capacity-limited, central resources but also 

incorporate content-specific modulation of storage efficiency or memory resource 

requirements. 

In the present study, I will incorporate the idea of visual grouping into an existing 

VWM model framework in order to better characterize an individual’s VWM performance 

for grating and line orientations across multiple set sizes. Specifically, I will develop a 

slots-plus-averaging model with probabilistic grouping, and test whether this model can 

provide a suitable fit of an individual's working memory performance across changes in 

stimulus form.  

For simplicity, visual grouping will be construed as lossless data compression, by 

which items in the memory array can be grouped into fewer memory units without 

sacrificing the representational precision of the items within a group. By allowing the 

degree of grouping to vary across stimulus types while keeping the core capacity of 

working memory constant within an individual, my model can account for the large 

difference in the presumed memory capacity for gratings and lines. Moreover, as I will 

describe below, the model predicts that visual grouping compresses the effective set size, 

thereby systematically altering the relationship between the nominal set size and VWM 

performance. Accounting for such compression should allow for a better characterization 

of VWM performance for a given stimulus type, especially if the stimulus form affords 
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strong visual grouping. I will test the fine-grained predictions of the visual grouping 

hypothesis by fitting the candidate models to the delayed estimation data obtained using a 

wide range of set sizes (1–8 items). Using a model comparison approach, I will assess the 

advantage of this new model over the existing model that does not incorporate visual 

grouping.  

Although the idea of data compression by visual grouping could be combined with 

either the discrete-slots or continuous-resource model, I adopted the former approach 

because of a straightforward theoretical interpretation of the model parameters (see 

Discussion for more on this issue). A recent version of the discrete-slots model, called the 

slots-plus-averaging (SA) model (Zhang & Luck, 2008), provides tightly constrained 

predictions on VWM performance using only two free parameters: The number of memory 

slots (K) and the precision of each slot (SDslot). The number of memory slots, but not 

memory precision, has been shown to predict fluid intelligence (Fukuda, Vogel, Mayr, & 

Awh , 2010) whereas memory precision, but not the number of slots, has been shown to 

improve with perceptual expertise (Lorenc, Pratte, Angeloni, & Tong, 2014; Scolari, 

Vogel, & Awh, 2008). Thus, these two parameters seem to reflect distinct aspects of 

working memory, one that reflects domain-general, core cognitive ability and one that 

reflects domain-specific or perceptual abilities. Moreover, each of these parameters 

controls VWM performance in a way that is distinct from visual grouping, allowing for 

reliable parameter estimation for the combined model as well as a straightforward 

interpretation of the fitted parameters.  

I will start by describing the existing approach of modeling VWM performance in 

the discrete-slots framework. Based on the known effects of stimulus form on VWM 

precision and capacity at set size 6, I will make predictions about how VWM performance 

should vary as a function of set size for each stimulus type if the capacity limit observed at 

set size 6 were taken to reflect an individual's true working memory capacity. I will then 

contrast these predictions with those based on the new model that incorporates visual 

grouping into the existing SA model.  

 

The slots-plus-averaging (SA) model 

The slots-plus-averaging (SA) model (Zhang & Luck, 2008) is a modification of 
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the classic item-limit model (Cowan, 2001; Luck & Vogel, 1997; Pashler, 1988), which 

postulates that VWM can store a small, fixed number of items with perfect precision. 

While the core assumption of a fixed item-limit is kept in the SA model, it integrates the 

idea that information stored in each memory slot is noisy, and that noise can be reduced by 

storing the same item in multiple independent slots and by averaging them. The standard 

SA model predicts the highest memory precision at set size 1 and declining precision as a 

function of increasing set size until the set size reaches the number of slots, after which the 

precision remains stable since an item would be either assigned a slot or not memorized at 

all. While memory precision would vary with increasing set sizes depending on the number 

of memory slots one has, the SA model constrains the total amount of information that an 

individual can store to be constant across all set sizes, by assuming a fixed number of 

memory slots for that individual.  

The formal implementation of the SA model followed the previous literature (Pratte 

et al., 2017; van den Berg et al., 2012). The basic SA model has two free parameters: K 

(the number of slots) and  (a single slot’s precision). Precision (denoted ) of the 

observer’s measurement (x) of a stimulus (s) is formally defined as Fisher Information 

(Cover & Thomas, 2001), which corresponds to the inverse variance,  = 1/σ2, if x follows 

a Gaussian distribution with mean s and standard deviation σ. However, since the 

orientation space is circular, the measurement is assumed to follow a von Mises (VM) 

distribution, centered at s with the concentration parameter κ: 

. 

is a normalizing constant, denoting the modified Bessel function of the first kind of 

order zero. The concentration parameter of the von Mises distribution has a one-to-one 

relationship with Fisher information, given by 

, 

where  is the modified Bessel function of the first kind of order one. For a given 

precision , the corresponding can be computed numerically.  

The SA model assumes that the observer’s response, denoted r, follows a mixture 

of a von Mises distribution centered at the studied orientation s when the probed item is in 

Jslot J

J
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I0 (κ )

J  = κ I1(κ )
I0 (κ )

I1(κ )

J κ



 

  38 

memory, and a uniform distribution when a random guess is made. The precision of in-

memory responses ( ) and the probability of guessing ( ) vary as a function of the set 

size (N), and they will be denoted as  and , respectively.  

. 

When the number of memory items is equal to or exceeds the number of slots (N ≥ 

K), an item will be successfully remembered with the probability of  !
!

 , and a guess 

response will occur with the probability g! = 1− !
!

 . Each of the remembered items will 

receive one memory slot, leading to a stable memory precision (calculated from

). On the other hand, when there are fewer memory items than the number of slots (N 

< K), guessing will never occur, and an item will receive a variable number of slots (1~ K) 

depending on the set size. For example, if three slots are evenly distributed across two 

items, each item will receive one slot on half of the time, and two slots on the other half. 

The number of slots (S) assigned to an item can be formally expressed as a mixture of two 

possibilities: 

, 

where  denotes the floor of .  These two possible slot assignments result in two levels 

of memory precision: 

, 

which reflect the fact that the memory precision  for an item is directly proportional to 

the number of slots allocated to that item.  and  are then converted to the 

concentration parameters of the von Mises distribution, and , respectively. 

Mixing these two von Mises distributions results in the following probability distribution 
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for in-memory responses:  

. 

The outcome distribution is no longer a von Mises distribution, but its expected precision 

can still be quantified in terms of the circular standard deviation of the response error 

vector (Fisher, 1995):  

, 

where  denotes the mean resultant length, calculated as:  

𝑅 =  
1
𝑛 cos(𝑥!)

!

!!!

!

+
1
𝑛 sin (𝑥!)

!

!!!

!

 . 

For a continuous function , can be computed using numerical integration: 

. 

While the parameter estimation will rely on the latent mixture of the two von Mises 

distributions without needing to estimate the SD of the outcome distribution, these SD 

estimates are useful for summarizing the memory precision at a given set size predicted by 

the model. Therefore, I will use these SD estimates to illustrate and contrast the predictions 

of the SA and SA-plus-grouping models.  

For the present study, the standard SA model will be fitted separately to the grating 

and line data, requiring a total of four free parameters for each participant: Grating’s K, 

Grating’s , Line’s K and Line’s . Separately modeling each stimulus type is a 

typical approach in the literature when each participant’s VWM is tested using one 

stimulus format and potential differences across different feature dimensions and stimulus 

materials are of little interest (e.g., Pratte et al., 2017; van den Berg et al., 2012; van den 

Berg, Awh, & Ma, 2014). I will demonstrate how this approach can lead to a suboptimal 

characterization of VWM performance when the model’s fundamental assumption that 

items are stored as independent units does not hold. For a more intuitive understanding of 

the precision parameter (J), or Fisher Information,  will be converted to the circular 

SD of the corresponding von Mises distribution, and will be reported as  within 0-

180˚ space.   

p(x | s) =  Plow ⋅VM(x; s, κ low(N )) +  Phigh ⋅VM(x; s, κhigh (N ))
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Incorporating visual grouping into the standard SA model 

The SA model with grouping builds upon the existing discrete-slots framework, 

introducing an element of flexible data compression via stochastic grouping processes. The 

key difference is that the SA model with grouping treats the set size (N) as nominal, and 

instead relies on a latent variable G denoting the number of groups in a memory array as 

the effective memory load. As a result, the guess rate, as well as memory precision, is 

determined by the number of groups in the memory array relative to the number of slots. 

The underlying assumption is that the apparent capacity estimate based on the number of 

items is likely to reflect exaggeration of one’s true working memory capacity due to visual 

grouping.  

In addition to the fixed number of slots (K) and the precision for each slot ( ), 

the model relies on a free parameter (p) that controls the probability of visual grouping to 

allow for a flexible apparent capacity. Here, visual grouping is operationally defined as “a 

process of compressing an array of N items into G groups, or memory units, by 

stochastically linking a pair of items”. One of the considerations in implementing the 

grouping process was that the effective memory load should continuously vary as a 

function of the grouping strength. In addition, this model makes an important prediction: 

since data compression via visual grouping arises from inter-item interactions, the data 

compression ratio or storage efficiency should increase as a function of the number of 

items in the memory array. To achieve these general goals, I make the following 

assumptions: 

1) A pair of items are linked through a binomial process (see Figure 9A). The 

linking occurs independently across all pairs of items, with the likelihood of success 

defined by probability p. 

2) For an array of N items, only up to N – 1 pairs will be considered, such that a 

maximum of N – 1 links (L) can be made. In theory, there are a total of  !(!!!)
!

 possible 

pairwise connections among N items, but calculating the independent success probabilities 

for all pairs of items (i.e.,  ) and counting the numbers of groups for all these 

possibilities becomes intractable as the N increases. Thus, I make a simplifying assumption 

that N items are represented in a hypothetical one-dimensional space where only the 

Jslot

2
N (N−1)
2
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neighboring items can be grouped together, resulting in a total of N – 1 pairs that can be 

linked. Alternatively, one could arrange the items along a circle, allowing up to N pairs to 

be linked. In that case, linking either N – 1 or N pairs would result in one group of fully 

linked items (via a transitive rule, see below) although only N – 1 links would be required 

to achieve G of 1. To remove this redundancy as well as to simplify the calculation, I will 

adopt the former approach of considering only N – 1 adjacent pairs on a line. This is a 

reasonable simplification, resulting in only slightly different expected numbers of groups 

for a given p, compared to those based on linking N pairs arranged on a circle.   

Figure 9. Probabilistic grouping and data compression. (A) An illustration of a 
hypothetical grouping process, using an example of a four-item array. (B) Predicted 
binomial distribution of the number of links (L) on arrays of 2, 4, and 8 items (from left to 
right) as the probability of linking a pair of items (p) varies from 0.0 to 0.5. (C) Expected 
number of groups (G) as a function of set size (N) and grouping probability (p).  

 

3) Non-adjacent items can be linked through a simple transitivity rule: If A is 

linked to B, and B is linked to C, then A becomes linked to C. Transitive grouping has 

been proposed as a fundamental grouping mechanism in the visual system, which is 

essential for correctly binding together image features that belong to the same surface or 
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object, based on the smooth variations in the local image properties (Geisler & Super, 

2000). This specific form of transitive grouping rule results in a straightforward calculation 

of the number of groups (G) by subtracting the number of links made (L) from the number 

of items (N): G = N – L. L follows a binomial distribution, L ~ B(n, p), where n is the 

number of pairs that can be linked (N – 1) and p is the probability of successful grouping. 

As illustrated in Figure 9B, a higher value of p leads to a higher expected L, as given by 

E(L) = (N – 1)p, which in turn leads to a smaller expected G, E(G) = N – (N – 1)p = N(1 – 

p) + p. This simple linear relationship between the nominal set size (N) and the effective 

set size (G) is illustrated in Figure 9C, across a range of grouping probabilities. It becomes 

clear that increasing p leads to systematic compression of G relative to N. Moreover, at a 

given level of p, compression becomes more efficient as N increases, which can be 

described by the increase in the compression ratio (G/N) from 1.00 at N = 1 to 1.78 at N = 

8 (E(G) = 4.5), with p = 0.5.  

(4) The assumption of an independent linking process across pairs of items implies 

that there is no strict restriction on the size of a group (i.e., the number items that can be 

grouped together). A group can contain as many as N items when all pairs are linked, and 

as few as 1 item when an item forms its own group without binding to other items.  

(5) Grouping results in lossless data compression. In other words, when multiple 

items are converted into a coherent memory unit, including more items in a group does not 

affect the precision with which each item is stored. Memory precision is solely determined 

by the number of slots allocated to a group, and not by the size of a group. For example, if 

six items are organized into two groups, the item precision remains the same for all 

different ways of partitioning the array, such as {1, 2, 3} {4, 5, 6} vs. {1, 2} {3, 4, 5, 6}. 

On the other hand, each of these groups is expected to receive more memory slots on 

average than if the array happens to be not grouped at all (G = 6), enjoying the advantage 

in memory precision as a result of the smaller effective set size (G = 2).  

Similar to the SA model, the SA model with grouping assumes that the observer’s 

response follows a mixture of in-memory responses and uniform guessing responses. 

However, the memory precision and guess rate at each set size are not defined by a fixed 

value N (i.e., 𝜅! and g!), but by a latent mixture of G, comprised of all possible outcomes 

of the binomial linking process for N – 1 pairs, as shown in Figure 9B. For N = 4, for 
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instance, the model considers eight possible cases of grouping (Ls = 0-7; Gs = 1-8) 

resulting from a binomial distribution of the number of links made, L ~ B(n, p), where n = 

N – 1. All possible grouping cases are combined with their associated probabilities, P 𝐿 =

𝑘 = 𝑛
𝑘 𝑝!(1− 𝑝)!!!.  

Within a given set size N, memory precision varies across different grouping cases. 

For each case of G, memory precision is determined by the product of a single slot’s 

precision and the number of slots assigned to a group, which is again a mixture of two 

possibilities: 

𝐽(𝐺) =     
𝐽!"# 𝐺 = 𝐽!"#$  

𝐾
𝐺

 ,      with probability  1−  
𝐾 mod 𝐺

𝐺

𝐽!"#!(𝐺) =  𝐽!"#$  
𝐾
𝐺

 + 1,     with probability  
𝐾 mod 𝐺

𝐺
 
 

The final distribution of in-memory responses at set size N consists of multiple von Mises 

distributions with a variable concentration parameter 𝜅(𝐺) corresponding to the J(G) 

provided above, weighted by their associated probabilities.  

Similarly, even with the fixed number of slots (K), the probability of remembering 

an item varies depending on grouping, leading to a variable guess rate within a given set 

size N:  

g 𝐺 = 1−
𝐾
𝐺    (if 𝐾 ≤ 𝐺) 

The expected guess rate (g!) can be calculated by the averaging the guess rates g 𝐺 ’s, 

weighted by their associated probabilities. This g! comprises the uniform component for 

the final response distribution at set size N. 

In the SA model with grouping, a common capacity parameter will apply for lines 

and gratings, while the precision of each slot (Jslot) and grouping probability (p) will be 

separately estimated for each stimulus type. As a result, a total of five parameters will be 

fitted to each participant’s data: True K, Grating’s 𝐽!"#$, Grating’s p, Line’s 𝐽!"#$, and 

Line’s p. 

 

Model predictions: Standard SA vs. SA with grouping 

The standard SA model allows one to use the VWM capacity and precision 

estimates previously obtained at set size 6 to generate predictions on the performance 
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across a range of different set sizes.  

Let’s assume that the capacity estimates were 3 items for gratings and 6 items for 

lines, with the same memory precision (SD = 20˚) for both stimulus types. If these 

estimates were obtained separately, one would assume that working memory consists of 3 

slots for gratings and 6 slots for lines, with SDslot of 20˚. This interpretation implies that 

line stimuli could be stored using twice as many memory slots as grating stimuli. Since the 

SA model assumes that memory noise (SD) is inversely proportional to the square root of 

the number of slots (n) allocated to an item (SD = !"!"#$
!

 ), this assumption of a different 

numbers of slots available for gratings and lines predicts that SD estimates should differ for 

these stimuli at set size 1. For example, averaging 3 independent estimates of a grating 

orientation would result in an SD of 11.5˚ ( !"˚
!
 ), whereas averaging 6 independent 

estimates of a line orientation would result in an SD of 8.2˚ (!"˚
!
 ), which is a much 

improved precision (i.e., a twofold increase in Fisher information) compared to that of a 

grating.  

The effects of a variable number of slots on the capacity and precision estimates 

across set sizes are illustrated in Figure 10A. The number of stored items (apparent K; left 

panel) increases with set size until it reaches the item limit set by the number of slots (K). 

At the same time, memory precision (SD; right panel) worsens as set size increases until 

SD reaches an asymptote set by the precision of a single slot (SDslot). Importantly, the SD 

predicted at set size 1 is substantially smaller for K = 6 than for K = 3 reflecting the 

precision advantage due to averaging of twice as many slots.  
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Figure 10. Comparison of predictions from the standard SA model and the SA model with 
grouping. The predicted VWM capacity (left column) and precision (right column) are 
shown as a function of set size (N). (A) Prediction from the standard SA model assuming a 
variable number of slots (Ks = 3-6) with a single slot’s precision (SDslot) of 20˚. (B) 
Prediction from the SA model with grouping assuming a fixed number of slots (True K = 
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3) with SDslot of 20˚, and variable grouping probabilities (ps = 0.00-0.55) that result in 
apparent capacity estimates of 3-6 items. (C) The juxtaposition of the predictions with- and 
without grouping, pairing the parameters that lead to the same apparent K at the largest set 
size. Solid lines are the predictions from (A) assuming no grouping (p = 0) and dashed 
lines are the predictions from (B) with grouping ps of 0.25-0.55. Predictions for K = 3 and 
p = 0.00 are identical between panels (A) and (B), and thus not replotted in (C). 
 

A new set of predictions can be generated using the SA with grouping framework 

by varying the grouping probability (p) while holding the number of slots constant (true K) 

(see Figure 10B). To highlight the deviations from the standard SA model’s prediction, I 

chose a set of grouping probabilities (ps = 0.00, 0.25, 0.41, and 0.55) that result in apparent 

Ks of 3, 4, 5, and 6, at the largest set size (N = 8) when combined with true K of 3. When p 

is greater than zero, the number of stored items (apparent K; left panel) increases smoothly 

and continually as the set size increases, without a set upper limit. A higher p leads to a 

steeper increasing function, resulting in a greater capacity advantage when the set size is 

larger. With perfect grouping (p = 1.0), the apparent K would be identical to N, since the 

effective memory load would always be one group, and no items will be lost.   

An important distinction between the grouping model and the standard SA model 

emerges in the predicted effects of memory precision (SD; right panel). A higher p tends to 

improve memory precision, resulting in smaller SDs, except at set size 1, where the SDs for 

all levels of p converge. This is due to the fact that the effective memory load (G) is still 

one for a single item, thereby precluding any benefits from multi-item grouping. At larger 

set sizes, on the other hand, a higher p reduces the average number of groups per memory 

array, thereby increasing the average number of slots devoted to each group. While 

increasing the number of available slots has an effect of vertically scaling down the 

memory SD (Figure 10A, right panel), increasing the grouping probability is akin to 

horizontally stretching the SD toward the right (Figure 10B, right panel), reflecting the 

compression of the effective set sizes. To contrast the predictions of two approaches, the 

curves in panels A and B are replotted in Figure 10C, by paring the parameters that lead to 

a matched apparent K at set size 8. It is evident that the deviations in the predicted SD 

become larger as the standard SA model (solid line) increases the number of slots (from 

top to bottom) to account for the enhanced capacity estimates.  



 

  47 

Figure 11. Visualization of the predicted response distribution. In each panel, the predicted 
response distributions for a subset of set sizes (1, 2, 4, and 8) are overlaid. The model 
parameters are identical to those shown in Figure 10. (A) Prediction from the standard SA 
model as the number of slots (K) varies from 3 to 6 (from left to right). A greater amount of 
memory resources (K) leads to improved VWM performance across all set sizes, as 
reflected in the proportional enhancement in memory precision for a single item (blue 
curves). (B) Prediction from the SA model with grouping as the grouping probability (p) 
varies from 0.00 to 0.55 (from left to right) while the number of slots is held constant (True 
K = 3). While increased grouping leads to fewer guess responses at large set sizes (orange 
or red curves), memory precision for a single item (blue curves) remains constant across 
different grouping probabilities. 

 

To give a sense of what the response distributions would look like after applying 

these different parameters, the predicted response distributions are presented in Figure 11 

for a subset of set sizes (1, 2, 4, and 8). The plots on the leftmost column (identical for 

panels A and B) would correspond to the predictions for gratings, assuming three slots and 

no grouping (p = 0). The plots on the rightmost column would correspond to the 

predictions for lines, assuming either six slots and no grouping (p = 0) (panel A) or three 
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markedly enhanced memory precision for set size 1 (shown in blue) with K = 6, compared 

smaller Ks, in proportion to the increasing number of available slots (from left to right). By 

contrast, the grouping-based predictions (panel B) show a stable memory precision for set 

size 1 (shown in blue) across increasing levels of grouping probability (p = 0.00 ~ 0.55; 

from left to right) while demonstrating a pronounced reduction of guess responses with a 

higher p at set size 8 (shown in red). Thus, increasing the number of slots and increasing 

the grouping probability provide distinct predictions for VWM performance as a function 

of set size, especially in terms of memory precision.  

An advantage for incorporating grouping into the standard SA model is that 

memory load will be no longer rigidly determined by the nominal set size. As illustrated in 

Figure 12A, flexible grouping strengths can accommodate possible changes in the 

effective memory load at a given set size, across different stimulus types. Moreover, the 

current implementation of grouping can account for changes in the storage efficiency 

within a given stimulus type as a function of set size. As shown in Figure 12B, the 

efficiency of data compression, measured by the ratio of the nominal set size (N) to the 

effective set size (G), has a baseline of 1 at set size 1, and gradually improves as set size 

increases. This implies that the more items there are in the memory array, the greater the 

potential benefit of grouping by the visual system. Whether this implementation of 

grouping indeed provides a better characterization of observers’ VWM performance is an 

empirical question. In the next section, I will turn to the behavioral experiments designed 

to test the advantage of this modeling approach.  

                         
Figure 12. Compression of effective memory load via visual grouping. (A) The expected 
number of groups (G) as a function of the number of items (N) as the grouping probability 
(p) varies from 0.00 to 0.55. (B) Data compression ratio calculated as the ratio of the 
nominal set size (N) to the effective set size (G). A higher ratio indicates greater storage 
efficiency.  
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Experiments 1 & 2 

The present experiments were conducted to examine how an individual’s VWM 

performance for grating and line orientation varies as a function of set size, and to 

determine whether the SA model with grouping can provide a better account of the 

behavioral data than the standard SA model. VWM performance was tested in a delayed 

estimation task, by presenting sample arrays containing a variable number (1, 2, 4, or 8) of 

gratings or lines; these items were arranged in a virtual circle (Experiment 1) or on a 

jittered grid layout (Experiment 2). In these two Experiments, I sought to generalize the 

findings across different stimulus layouts, and introduced a visual masking procedure to 

control for the role of iconic memory (Experiment 2).  

Two models (the standard SA model varying the number of slots across stimulus 

types and the alternative model that varies the probability of grouping while holding the 

number of slots constant) were fitted to the each participant’s delayed estimation data. A 

statistical model comparison revealed a marked advantage for the model with grouping 

over the standard SA model in both experiments.  

 

Methods 

Participants 

14 healthy volunteers with normal or corrected-to-normal visual acuity (6 male; 

ages 19-32 years) participated in Experiment 1, and another 14 volunteers (6 male; ages 

19-30 years) participated in Experiment 2. Six participants (including the author) took part 

in both experiments. Participants (except the author) received course credit or monetary 

compensation ($12 per hour; four hours for Experiment 1, and two hours for Experiment 2) 

for participation. Written informed consent was obtained prior to participation. All aspects 

of this study were conducted according to procedures approved by the Institutional Review 

Board of Vanderbilt University.  

 

Apparatus and stimuli 

The experiments were programmed and controlled using MATLAB 8.3.0 (The 

MathWorks, Natick, MA) and the Psychophysics Toolbox (Brainard, 1997) running on a 

Mac Pro. Participants viewed stimuli displayed on a gamma-corrected CRT monitor (1280 
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x 1024 resolution; a 85Hz refresh rate; 27.2 cd/m2 mean luminance) in a darkened room, at 

a viewing distance of 46 cm. Head position was stabilized using a chin rest with a forehead 

bar.  

The stimuli were generated using the same method described previously, using 

different spatial parameters and stimulus arrangements between Experiments 1 and 2. As in 

the previous experiments, Experiment 1 used a grating stimulus consisting of a sine-wave 

grating (2 cycles/˚, 50% contrast) presented within a circular Gaussian envelope (σ = 2˚, 

truncated at 2˚ diameter). In Experiment 2, the same sine-wave grating (2 cycles/˚, 50% 

contrast) was presented within a smaller Gaussian envelope (σ = 1.5˚, truncated at 1.5˚ 

diameter). In both experiments, the line stimulus was created by applying a rectangular 

aperture (0.25˚ x 2˚ in Experiment 1; 0.25˚ x 1.5˚ in Experiment 2) to the central bar of the 

grating stimulus, resulting in somewhat different aspect ratios between Experiments 1 and 

2 (1:8 and 1:6, respectively). All stimuli were presented on a gray background (mean 

luminance 27.2 cd/m2). 

In Experiment 1, the gratings and lines (2˚ in diameter) were presented at 

randomized locations at 4˚ eccentricity with a minimum separation distance of 0.62˚ edge 

to edge (see Figure 13A). In Experiment 2, the stimuli (1.5˚ in diameter) were presented at 

randomized locations within a 5 x 5 square grid (15˚ x 15˚; central cell excluded) (see 

Figure 13B). Each item’s position was jittered ±0.65˚ from the center of the cell (3˚ x 3˚), 

resulting in a minimum edge-to-edge separation of 0.20˚ between items. The maximum 

eccentricity of the center of an item was 9.40˚. 

Stimulus orientation was randomly chosen on each trial for each item, from 180 

evenly spaced orientations (0-180 ̊). Observers were asked to fixate centrally on a black 

bull’s eye (0.5˚ in diameter) for the duration of each trial, throughout the experiment. 

Experiment 2 used a patterned mask, consisting of low-pass filtered uniform noise 

(23˚ x 23˚) with a cut-off frequency of 4 cycles/˚ and a mean RMS contrast of 0.115 (SD = 

0.005). The noise pattern was contained in a square (13˚ x 13˚), smoothed with a two-

dimensional Gaussian kernel (σ = 12˚).  
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Figure 13. Trial sequences for the delayed estimation tasks in Experiments 1 and 2. In both 
Experiments 1 (A) and 2 (B), a sample array contained a various number of randomly tilted 
gratings or lines (1, 2, 4 or 8 items). For illustration, the grating and line arrays are shown 
with matched orientations and locations. In the actual experiment, these values were 
randomly determined for each stimulus type.  
 

Procedure 

A trial sequence for a delayed estimation in Experiment 1 is shown in Figure 13A. 

On each trial, a central fixation was presented for 1 s, followed by a sample array (200 ms) 

containing a various number (1, 2, 4, or 8) of gratings or lines, which varied randomly from 

trial to trial. After a 1-s delay, a spatial cue (a black outline circle; 2˚ in diameter) indicated 
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by turning a computer knob. Participants were asked to report the remembered orientation 

as precisely as they could, and hit space bar to submit their response. On each trial, 

participants received auditory feedback based on accuracy, as described previously. The 

average accuracy score (0-100) for a block of trials was displayed at the end of each 

experimental block.  

The trial sequence for Experiment 2 was identical to Experiment 1, except for the 

insertion of a patterned mask (Figure 13B). After the sample array (200 ms), a patterned 

mask was presented for 200 ms, followed by a blank interval of 800 ms, and a cue. The 
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sample-to-cue ISI was kept at 1 s as in Experiment 1.  

In both experiments, all conditions (two stimulus types, four set sizes) were 

randomly intermixed across trials. In Experiment 1, each participant completed four 1-hr 

sessions, divided into 9 blocks of 48 trials. This resulted in a total of 1728 trials, and 432 

trials for each condition. In Experiment 2, each participant completed two 1-hr sessions, 

divided into 9 blocks of 48 trials, resulting in a total of 864 trials, and 216 trials for each 

condition.  

 

Data Analysis 

As a means for summarizing the capacity and precision for each experimental 

condition, the mixture model (Zhang & Luck, 2008) was fitted separately to each set size 

and stimulus type condition for each subject. This was to convey the general pattern of 

results without assuming a fixed underlying number of slots for each subject that applies 

across all set sizes.  

For the standard SA approach, separate SA models were fitted to each participant’s 

grating data and their line data, utilizing all set sizes. A total of four parameters were 

estimated per participant: Grating’s K, Grating’s SDslot, Line’s K and Line’s SDslot. For the 

SA model with grouping, the grating and line data from each participant were fitted 

concurrently, estimating a total of five parameters per participant: True K, Grating’s SDslot, 

Grating’s p, Line’s SDslot, and Line’s p. All models were fitted based on maximum 

likelihood estimation, using the genetic algorithms (GA) in MATLAB’s Global 

Optimization Toolbox to seek the global optimal solution.   

Statistical model comparison was conducted using the Akaike information criterion 

(AIC) (Akaike, 1974). The AIC is calculated as: 

AIC = – 2 ln(L) + 2k, 

where L is the maximum likelihood value of the fitted model, and k is the number of free 

parameters in the model. Among candidate models, the model that yields the lowest AIC 

score is selected as the best model. The AIC takes into account both goodness of fit and 

parsimony of the model, by rewarding high log-likelihoods and penalizing for extra free 

parameters.  

The AIC score was calculated for each model for each participant. The AIC for the 
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standard SA model was simply a sum of the AIC scores for the two stimulus types. To 

obtain a total AIC score for each model, the AIC scores were summed across all 

participants from each experiment. 

 

Results 

Participants’ delayed estimation data are shown in Figure 14. As is evident in the 

response error histogram (Figure 14A, C), the orientation reports for both stimulus types 

became less precise as the number of items increased. Importantly, memory precision for a 

single grating (shown in blue) was nearly as good as that for a single line. The difference 

between the two stimulus types became larger as the set size increased, characterized by a 

pronounced increase in random guess responses for gratings at set size 8 (shown in red) 

and a relatively stable performance for lines across set sizes.  

The mixture model was separately fitted to each condition (Figure 14B, D); this 

revealed a subtle but reliable precision advantage for single lines over single gratings in 

Experiment 1 (ΔSD of 1.29˚, t(13) = 4.51, p = .001, Cohen’s d = 1.20), and Experiment 2 

(ΔSD of 1.30˚, t(13) = 2.47, p = .028, Cohen’s d = 0.66). In fact, a similar magnitude of 

precision advantage for lines was observed across all set sizes, as the SD increased at a 

similar rate for both stimulus types as a function of set size. This is inconsistent with the 

standard SA model’s prediction (see Figure 10A), in which the magnitude of the 

difference between the smallest and largest SDs depends on the number of available slots 

that can be averaged (SD!"# = SD!"#/ K). To illustrate, the average SD estimate for a 

single grating (10.6˚ in Experiment 1) is largely consistent with the SA model’s prediction 

obtained by dividing the SD estimate at set size 8 (i.e., a single slot’s precision) by the 

square root of the average K estimate at set size 8 (i.e., number of slots) (19.4˚/ 3.5 = 

10.3˚). On the other hand, the SD estimate for a single line (9.3˚ in Experiment 1) is 

substantially larger than that predicted by averaging of 6.6 slots with SD of 17.6˚ 

(17.6˚/ 6.6 = 6.9˚).  
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Figure 14. Delayed estimation results in Experiments 1 and 2. Top panels (A, B) show the 
results from Experiment 1 (the circular array), and bottom panels (C, D) show the results 
from Experiment 2 (the grid array). (A) and (C) show the response error histograms for 
gratings and lines, pooled across all 14 participants in each experiment. All histograms 
consist of 40 bins, 4.5˚ wide. Different colors indicate different set sizes (1, 2, 4, and 8), 
with the faint curves representing ±1 between-subject SEM of each bin’s frequency. In (B) 
and (D), VWM performance in each condition is summarized in terms of the number (K) 
and precision (SD) of stored items. These K and SD estimates were obtained by fitting a 
separate mixture model to each set size and stimulus type condition for each participant. 
The error bars represent ±1 between-subject SEM. 

 

This initial analysis provided a preliminary qualitative assessment of the SA 

model’s prediction and its limitations, using the group-level, descriptive measures of 

VWM performance. Next, I will present the results from the formal model-based approach, 

in which each individual’s VWM performance was characterized by two competing 

frameworks: The standard SA model and the new SA model with grouping. 

 

Modeling results 

When the standard SA model was fitted separately to each stimulus type, the 

difference between VWM for grating and line orientation was characterized as different 

numbers of memory slots. As shown in Figure 15 (left two panels), the mean K estimate 
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for lines was nearly twice that of gratings (Grating’s K = 3.6, Line’s K = 7.7 in Experiment 

1; Grating’s K = 3.4, Line’s K = 7.1, in Experiment 2), while the precision estimate for an 

orientation stored in a single slot was not reliably different between the two stimulus types.  

 
Figure 15. Modeling results in Experiments 1 and 2. (A) Results from Experiment 1. Left 
two panels show the mean parameter estimates for the standard SA model. Right three 
panels show the mean parameter estimates for the SA model with grouping. The error bars 
represent ±1 between-subject SEM. (B). Results from Experiment 2. 

 

However, as discussed earlier, allowing a variable working memory capacity within 

an individual is not only theoretically unprincipled, but it can also lead to a 

mischaracterization of VWM if the storage efficiency (i.e., memory resource requirement) 

for a given stimulus were to change with set size. Since the averaging-based precision 

advantage at smaller set sizes is dictated by the upper limit of stored items at the largest set 

size, the parameters that maximize the likelihood of the data across all set sizes would 

systematically mischaracterize VWM performance, especially at the smallest and largest 

set sizes. This is demonstrated in Figure 16, which shows the response error histograms for 

two representative participants from Experiment 1, along with the predicted mixture 

distributions based on the best-fitting parameters of each model. While the standard SA 

model (shown in red curves) provides a reasonably good fit of the grating data across all 

set sizes, the model’s prediction tends to deviate from the line data at two extreme set sizes, 

predicting a better precision at set size 1 and a worse precision at set size 8, compared to 

the actual data. 

Grating Line
0

2

4

6

8

10

K

Grating Line
0

10

20

30

SD
sl

ot
��Ý
�

Grating & Line
0

2

4

6

8

10
Tr

ue
 K

Grating Line
0

10

20

30

SD
sl

ot
��Ý
�

Grating Line
0

0.2

0.4

0.6

0.8

1

P

Grating Line
0

2

4

6

8

10

K

Grating Line
0

10

20

30
SD

sl
ot
��Ý
�

Grating & Line
0

2

4

6

8

10

Tr
ue

 K

Grating Line
0

10

20

30

SD
sl

ot
��Ý
�

Grating Line
0

0.2

0.4

0.6

0.8

1

P

A Standard SA model SA model with grouping

B



 

  56 

 
Figure 16. Example delayed estimation data and best-fitting model parameters from 
Experiment 1. Panels (A) and (B) show the response error histograms for two 
representative participants from Experiment 1, for each stimulus type and set size 
condition. All histograms consist of 40 bins, 4.5˚ wide. On each histogram, the mixture 
distribution based on the best-fitting parameters from the standard SA model (red curves) 
and the SA model with grouping (black curves) are overlaid.   
 

When the grouping probability and single slot’s precision were estimated separately 

for gratings and lines while holding the number of slots constant within an individual (the 

SA model with grouping; Figure 15, right panels), the estimated numbers of slots tended to 

be lower than those from the standard approach, with the mean True K of 2.5 and 2.4 in 

Experiments 1 and 2, respectively. The precision estimate for lines stored in a single slot 

was modestly better than that for gratings, t(13) = 2.53, p = .025, Cohen’s d = 0.68 

(Experiment 1); t(13) = 1.96, p = .071, Cohen’s d = 0.52 (Experiment 2).  
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Importantly, the probability of grouping (p) was much higher for lines than for 

gratings (0.71 vs. 0.28 in Experiment 1; 0.63 vs. 0.31 in Experiment 2). While the 

estimated p was reliably above zero for both gratings and lines, ts(13) > 4.54, ps < .001, the 

difference in grouping probabilities between the two stimulus types was highly reliable 

across participants, t(13) = 9.34, p < 0.001, Cohen’s d = 2.50 (Experiment 1); t(13) = 8.18, 

p < 0.001, Cohen’s d = 1.92 (Experiment 2). Moreover, introducing the grouping factor 

improved the model fit for the line data by a much greater magnitude than it did for the 

grating data, as indicated by the log-likelihood increase of +160 for gratings vs. +291 for 

lines in Experiment 1, and +36 vs. +84 in Experiment 2. These results suggest that 

grouping played a bigger role in VWM for lines than that for gratings. This can be also 

gleaned from the example histograms presented in Figure 16, which demonstrates that the 

SA model with grouping (shown in black curves) provides a much better fit of these 

participants’ line data than the standard SA model (red curves).  

The formal model comparison based on the AIC statistic confirmed that the model 

with grouping provided a better account of the data (i.e., a lower AIC score) than the 

standard model in both experiments, after taking into account its increased complexity: 

AIC1 = 46950 vs. AIC2 = 46076 in Experiment 1 (AIC1 is the standard SA model); AIC1 = 

25522 vs. AIC2 = 25308 in Experiment 2. AIC difference scores (ΔAIC) were calculated 

by subtracting the grouping SA model’s AIC score from the standard model’s AIC score, 

such that a positive difference indicates how much worse the standard model performed in 

comparison to the grouping model. ΔAIC scores for individual participants’ and the total 

difference score in each experiment are presented in Table 1, along with the number of 

participants showing positive ΔAICs (shown in parenthesis). In each experiment, the model 

with grouping outperformed the standard model in 12 out of 14 participants.  

The relative fit of the standard model (AIC1) compared to the grouping model 

(AIC2) can be measured by the relative likelihood (𝑒 !"#!!!"#! !). These measures 

indicated that the standard SA model was less than 10-189 times as probable as the grouping 

SA model in Experiment 1, and less than 10-46 times as probable in Experiment 2. Thus, 

the SA model’s ability to account for the differences in VWM performance across set sizes 

and stimulus types was appreciably improved by allowing different grouping factors for the 

different stimulus types, while holding the number of slots constant within an individual.   
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Table 1. ΔAIC scores for individual participants 

  Participant Sum 
  

1  2  3   4  5   6   7 8  9 10 11 12 13 14 

Expt. 1  147 62 71 17 30 165 24 62 62 44 -29 0 205 14 +875 (12) 

Expt. 2   16 35 33 18 7 7 19 -9 33 5 45 6 -6 3 +213 (12) 
  

Note. AIC = Akaike information criterion. Difference scores are calculated as: AIC(standard SA) – 
AIC(grouping SA) 
 

 

Discussion 

In the present study, I examined the systematic changes in VWM performance for 

grating and line orientation as a function of set size in order to better understand the 

resource allocation processes underlying the capacity advantage for line stimuli. Delayed 

estimation data showed that memory precision was very comparable for a single grating 

and a single line orientation. VWM performance for gratings sharply declined as the set 

size increased from 1 to 8, characterized by a marked increase in random guess responses. 

On the other hand, VWM performance for lines declined relatively smoothly as the set size 

increased, resulting in much fewer guess responses at the largest set size, with nearly twice 

as high of a maximum capacity as gratings. The observed relationship between the number 

and precision of stored items for line stimuli deviated substantially from the predictions of 

the standard slots-plus-averaging (SA) model, which assumed a greater number of memory 

slots for lines than for gratings. The alternative approach in which the number of slots was 

held constant while the probability of grouping (i.e., data compression ratio) was allowed 

to vary between stimulus types (the SA model with grouping) provided a much better 

account of VWM performance observed across different set sizes and stimulus types. This 

alternative model assumed that multiple items can be grouped into a coherent memory unit, 

reducing the effective memory load, and that the apparent capacity can be greatly increased 

depending on the degree to which the memory array is compressed into a fewer number of 

groups. The modeling results indicated that individual working memory capacity was 

limited to about 2.5 slots on average, but that the probability of grouping was nearly twice 

as high for lines as for gratings, leading to much higher estimates of apparent capacity for 

lines.  
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The present model of VWM with grouping provides a compelling account of the 

observed changes in the apparent information capacity of VWM across set sizes and 

stimulus types. In implementing visual grouping into the model, I made a few simplifying 

assumptions about how items are grouped together and how VWM resources are allocated 

among them. While these assumptions serve as a good starting point for characterizing the 

grouping process, they could be modified to more accurately capture the grouping 

mechanisms implemented by the brain. For example, I only considered grouping among N 

– 1 pairs of items comprising N items, instead of considering all N adjacent pairs along a 

circle or all possible pairwise connections within the array. This was to simplify the 

calculation of the number of groups based on the set size and grouping probability. The 

absolute value of the estimated probability will be valid only under certain assumptions, 

and thus should not be taken literally. It is also possible that grouping of items is not 

completely independent across pairs of items. If there are some constraints on the number 

of items that can be effectively grouped together, the number of groups will depend on the 

complex interactions among the potential grouping schemes among the items.  

In addition, the assumption of lossless compression might be an oversimplification. 

Grouping of multiple items into a coherent memory unit might incur some loss of 

information about individual items. For example, a set of collinear lines could be grouped 

into one smooth path, but the estimates of individual line orientations could be biased 

toward the smooth path (unless they happened to be exactly collinear), resulting in an 

increased response variability across items and trials. Such grouping processes would still 

be adaptive if only a small number of slots are available compared to the large array size, 

and if the benefit of saving a memory slot (i.e., reducing random guesses) outweighs a 

modest loss of memory precision.     

Among the competing models of VWM in the literature, I chose the discrete-slots 

framework for the theoretical reasons discussed earlier. While the idea that memory load 

can be reduced by visual grouping can be equally well applied to the continuous-resources 

framework, the resource models tend to be too unconstrained to be useful for explaining 

the perceptual and cognitive mechanisms behind VWM performance.  

A recent version of the resource model, called the variable precision (VP) model 

(van den Berg et al., 2012), relies on several free parameters that afford considerable 
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flexibility in fitting the data but at the cost of introducing ambiguity in the interpretation of 

these parameters. The VP model assumes that random fluctuations in memory resources 

lead to a variable precision varies across items and trials around the mean precision ( ), 

which is determined by the number of items on the memory array (N). This idea is 

implemented by the  parameter for the maximum precision at set size 1, and two 

additional parameters that freely vary depending on the data: The power parameter α that 

determines how steeply the mean precision should decline with increasing set size (

), and the scale parameter τ that interacts with the shape of the gamma 

distribution from which the precision values are drawn. It is unclear how these parameters 

can be linked with important psychological constructs, such as fluid intelligence, the scope 

of attention, perceptual expertise and visual precision. Moreover, the unconstrained α 

parameter means that the total information capacity can vary across set sizes, with α < 1 

indicating an increase in the total information with increasing set size, and α > 1 indicating 

a decline in the total information with increasing set size. No theoretical justification for 

such a variable information capacity has been provided. Importantly, the flexible α can 

mimic the effect of visual grouping, complicating the fitting and interpretation of the model 

parameters. For the current goal of understanding how visual grouping can increase the 

amount of information that can be stored in a limited memory space, the SA model was 

thus considered more suitable than the VP model.   

The present work highlights the importance of considering the perceptual factors 

that allow for a more efficient usage of the limited capacity of working memory. By 

isolating one’s core cognitive capacity from grouping-related capacity enhancements, the 

fluctuating estimates of VWM capacity can be reconciled with the large body of literature 

that links individual differences in working memory capacity with the scope of attentional 

focus (Cowan, 2001, 2005; Cowan, Morey, AuBuchon, Zwilling, & Gilchrist, 2010; Gold 

et al., 2006) or executive attention (Burgess, Gray, Conway, & Braver, 2011; Bettencourt, 

Michalka, & Somers, 2011; Cusack, Lehmann, Veldsman, & Mitchell, 2009; McNab & 

Klingberg, 2008; Kane, Bleckley, Conway, & Engle, 2001; Vogel, McCollough, & 

Machizawa, 2005). Thus, the present work is an important step toward a fuller 

understanding of the constraints on information capacity of the mind.   

J

J1

J = J1N
−α
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The role of perceptual organization in visual working memory for orientation 

 

Introduction 

The results from the previous experiments indicated that the total amount of 

information encoded from a line array, taking into account both the number and quality of 

stored orientations, continually increased as the set size increased. In contrast, the amount 

of information that could be encoded from viewing arrays of gratings remained relatively 

stable across the larger set sizes. These results suggested that the more line items there 

were in the memory array, the more efficiently the array could be compressed into a 

smaller number of units for storage, thereby allowing far more line orientations to be stored 

than would be expected based on standard capacity estimates of VWM. This implies that 

the total information capacity of VWM is not a constant, but instead, varies as a function of 

the stimulus format and the number of items in the memory array.  

So far, I have used the term visual grouping to describe the process that enhances 

storage efficiency in VWM (i.e., the amount of stored information per unit resource, 

whether discrete or continuous). This mechanism appears to be responsible for the 

dramatic capacity advantage for line stimuli over grating stimuli. The enhanced storage 

efficiency appears to arise from a formation of higher-order patterns or visual groups, 

given that the advantage for line stimuli was markedly reduced by sequential presentation 

of the stimuli, and that the amount of information stored for a single line orientation was 

negligibly different from that for a single grating orientation. However, visual grouping has 

thus far been discussed in a rather abstract manner as a data compression process, without 

regard to the specific visual mechanisms that might facilitate such processes. If this data 

compression is mediated by specific grouping mechanisms that operate on sets of oriented 

elements on an array, then storage efficiency should be directly linked to the configural 

properties of these elements, which can be systematically examined. 

The Gestalt principles of perceptual organization (see Wagemans, Elder, et al., 

2012; Wagemans, Feldman, et al., 2012, for recent reviews) provide important clues as to 

what stimulus properties might contribute to the efficient storage of orientation information 

in VWM. Early Gestalt psychologists introduced a set of principles that determine the 
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perceived grouping of image elements; these include the laws of proximity, similarity, good 

continuation, symmetry, and closure (Koffka, 1935; Wertheimer, 1923/1938). These 

grouping principles have been expanded upon and further tested by modern vision 

scientists, equipped with rigorous psychophysics and computational modeling. Given that 

these grouping processes determine the units of our perceptual experiences, in this work I 

propose that the same principles will likely determine the units of visual representations 

actively held in working memory.  

 

Role of perceptual organization in VWM 

The most prominent effect of perceptual grouping in VWM can be inferred at the 

item-specific level, in terms of the presumed object-based nature of VWM. Specifically, 

perceptual grouping can enhance the overall information capacity of VWM, as 

demonstrated by the fact that people can maintain more features in VWM if they belong to 

a common object than if they belong to separate objects (Luck & Vogel, 1997; see also 

Delvenne, & Bruyer, 2004; Xu, 2002). In a study by Xu (2006), the object-based storage 

benefit depended on both the proximity and the strength of connectedness between the two 

features (color and orientation) comprising parts of an object, suggesting that these 

grouping cues are crucial determinants of the units of storage in VWM. Similarly, grouping 

by common regions has been shown to allow more shapes to be stored in VWM (Xu & 

Chun, 2007). The behavioral benefit for the grouped shapes over the ungrouped shapes was 

accompanied by reduced fMRI responses in inferior intraparietal sulcus (IPS), reflecting a 

reduced number of discrete objects, and increased fMRI responses in superior IPS, 

reflecting increased information storage (Xu & Chun, 2007). Thus, perceptual grouping of 

multiple components into a common object allows discrete image elements to be organized 

into a smaller number of coherent perceptual units, substantially increasing the amount of 

information that can be simultaneously held in VWM.   

Although VWM performance has been characterized as relying on the assignment 

of discrete slots to individual items, several studies have suggested that perceptual 

grouping among the displayed items can influence performance in VWM tasks to some 

extent. Previous studies have systematically manipulated various grouping cues in the 

sample arrays to examine its impact on change detection performance. Woodman, Vecera, 
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and Luck (2003) showed that perceptual organization could bias the priority with which 

items are encoded into VWM; for example, colored squares that were grouped together by 

proximity or connectedness (Palmer & Rock, 1994) tended to be encoded together. VWM 

encoding can be also biased in favor of items grouped by similarity, as shown by Peterson 

& Berryhill’s (2013) study in which change detection accuracy was improved for a pair of 

same-colored items, compared to the rest of the items with non-repeated colors (see Lin & 

Luck, 2009, for a related finding of subtle improvement in display-wide performance for 

similar colors over dissimilar colors; cf. also Brady & Tenenbaum, 2013, for a contextual 

sensitivity in color change detection).  

In these previous studies, the grouped and ungrouped conditions were purposefully 

designed, such that the grouped displays contained greater regularities than would be 

expected by chance. Such manipulations could have affected the visual and cognitive 

strategies used by the subject to perform the task. In contrast, for the studies in this 

dissertation, the grating and line arrays used were randomly generated on each trial and no 

regular structure was introduced in an artificial manner. Nonetheless, the degree of 

perceived randomness (Hsu, Griffiths, & Schreiber, 2010) could still vary across these 

arrays. Previous studies of color working memory provide evidence that observers can 

extract and utilize higher-order structures even from randomly arranged colored items. 

Using a change detection task, Brady and Tenenbaum’s (2013) found that a change that 

altered the global texture of the display (i.e., the color similarity of neighboring items) was 

more easily detected than a change that did not, suggesting that observers were not just 

storing individual items as independent units but also storing higher-order summary 

information of the entire display. In a very different study, Brady & Alvarez (2015a) 

showed substantial display-specific variability in delayed estimation performance for 

displays containing three colors, which could be reasonably well captured by a model that 

integrated the item-level representations (individual colors) and cluster-level 

representations (i.e., the mean and variance of sets of colors in the display).  

The representation of gist-like summary statistics postulated by Brady and 

colleagues can be linked to some extent with the idea of perceptual grouping because both 

involve the process of assigning display elements into distinct clusters or sets. However, 

gist-based memory can be conceptually distinguished from the specific local processes 
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required for perceptual grouping, since no spatially specific information between pairs of 

items needed to be processed in their model. While the clusters comprising the gist 

representation are primarily defined by the similarity of items, perceptual groups can be 

defined by a more diverse set of image properties, such as those mentioned above. 

Moreover, perceptual grouping allows information about individual items to be encoded 

within a higher-order perceptual unit, without necessarily reducing the item-specific 

information to an abstract summary statistic, such as the mean or the variance. Despite 

these conceptual differences, both of these proposed notions of gist representation and 

perceptual grouping provide a means to represent visual information in working memory in 

a more efficient or compressed manner, and can be used to predict the systematic effects of 

display properties on VWM performance.  

Compared to color, VWM for orientation might benefit from the consideration of 

even richer spatial structures that can emerge from an array of oriented elements (see 

Figure 17).  

 
Figure 17. An illustration of perceptual grouping cues in oriented elements. (A) Similarity 
and proximity. (B) Good continuation. (C) Cocircularity. (D) A radial pattern. 

 

Parallelism (or orientation similarity) and proximity could provide strong grouping 

cues, as a region of a display consisting of parallel gratings or lines can be economically 

represented as one oriented texture (Figure 17A). Even when the display items consist of 

heterogeneous orientations, they can still be grouped by good continuation (Figure 17B) if 

the orientation varies smoothly from one item to the next (i.e., collinearity) or if they are 

aligned along a common circle (i.e., cocirciularity, see Figure 17C). Moreover, the entire 

display can be compressed into a mirror-symmetric polygon, such as a radial pattern 

(Figure 17D) or a closed circle, depending on the global configuration of the items.  

In this study, I will evaluate the hypothesis that perceptual grouping is not only 

A B C D
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limited to these rare situations where grouping cues are highly salient; instead, they may 

apply in a continuous manner to varying levels of grouping cues, modulating the 

probability of grouping among the items. If the visual system is adept at extracting 

regularities that emerge from these randomly oriented elements, and if these happen-

chance patterns can be analyzed by grouping mechanisms to compress the memory array, 

then VWM performance should vary systematically depending on the spatial relations 

among the elements in any given visual display. Thus, orientation provides a unique and 

rich opportunity to test for the role of perceptual organization in VWM. This experiment 

addresses an important question, as no study to date has systematically examined these 

geometric relationships among the oriented elements and their influence on VWM 

performance.  

 
Present study 

The present study had two primary goals. The first was to determine whether the 

perceptual organization that occurs in randomly generated arrays of oriented items leads to 

systematic influences on VWM performance. The second goal was to determine what 

factors account for the superior VWM capacity that people show for lines over gratings. 

We hypothesized that certain grouping mechanisms might operate specifically on line 

stimuli or that the grouping strength would persist over larger spatial separations for line 

stimuli. However, an alternative possibility is that the magnitude or probability of grouping 

is much weaker for gratings than for line orientations, while the tuning width and spatial 

profile of these grouping mechanisms are shared for both stimuli.  

To examine whether VWM performance varies systematically across displays, I 

conducted an online experiment in which the same set of randomly generated line and 

grating displays were shown to a large number of participants, using matched stimulus 

parameters between the two stimulus formats. I found substantial variability across 

displays in terms of how accurately the items were remembered, which was highly 

consistent across participants, as well as between the two stimulus formats. To gain insight 

into what spatial patterns observers might typically extract from a given display and hold in 

their VWM, I pooled the delayed estimation responses from all of the participants, and 

reconstructed the participants’ memory representation for each item from each display. 
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This reconstruction hinted at the role of Gestalt grouping principles, as some of the most 

accurately remembered displays contained highly regular structures, consistent with the 

predicted effects of parallelism, collinearity, and closure. Moreover, the errors in the 

reported orientations were not random, but rather, were systematically biased toward a 

pattern that made the reconstructed display appear more coherent than the original display. 

In order to quantify the strength of perceptual organization in these displays and 

test its relationship with VWM performance, I constructed a model of display-specific 

VWM performance, inspired by Gestalt grouping principles. The model considers a set of 

properties that can make an array of oriented stimuli more simple and unified, consisting of 

a set of perceptual grouping mechanisms that process information about the similarity, 

cocircularity and proximity of pairs of items, as well as the global radiality/circularity of 

the display. These perceptual grouping mechanisms are defined in a mathematically precise 

manner based on the stimulus variables (i.e., the positions and orientations of items in a 

display) and a small number of free parameters that are fitted to the participants' 

performance data. The overall pattern strength of a display is computed by a weighted sum 

of the strengths of the individual grouping mechanisms. The model estimates the 

parameters that maximize the correlation between the estimated pattern strength of every 

display and the accuracy with which the display is remembered.  

Assuming this approach proves successful, my second goal was to determine 

whether the same perceptual grouping processes that enabled efficient storage of specific 

arrangements of oriented elements were also responsible for the overall capacity advantage 

for line stimuli over grating stimuli. It is conceivable that line stimuli can be stored more 

efficiently than grating stimuli because the patterns formed by oriented lines are more 

readily grouped by the visual system than those formed by oriented gratings. One way this 

could occur is if certain perceptual grouping cues operate more effectively on line stimuli 

than on grating stimuli, producing a larger modulation of VWM performance for lines. 

Then, the largest performance advantage for lines should be obtained in the displays with 

the strongest grouping cues, whereas the line displays that are weak in such grouping cues 

should produce a similar level performance as that for grating displays.   

An alternative possibility, however, is that perceptual groups could be effectively 

formed in both grating and line displays, substantially modulating the storage efficiency in 
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each stimulus format, but the efficiency for storing line displays is enhanced over that for 

grating displays by a certain factor, across all levels of perceptual organization. For 

instance, perceptual grouping processes might provide the initial perceptual units for a 

given display that serve as blueprints for the organization of representations in VWM. The 

degree of facilitative interactions among these perceived units (i.e., gain modulation) might 

ultimately determine the representational units in VWM. It is possible that a set of local 

perceptual groups consisting of line items might be more readily apprehended as a whole 

than those consisting of grating items. This hypothesis predicts that VWM performance for 

both stimulus types should exhibit substantial variability across displays according to 

perceptual organization, and the performance for line displays should be enhanced relative 

to that for grating displays, to the same degree across all levels of perceptual organization.   

Testing these competing hypotheses is crucial for understanding the role of 

perceptual organization in VWM for orientation, as well as how the organization processes 

might interact with the stimulus format. To achieve this goal, it is important to test VWM 

performance across a large number of randomly generated displays, producing a large 

range of natural variability in perceptual organization across displays. It is also crucial to 

formulate a model that can capture a substantial portion of the variability across displays 

by integrating multiple perceptual grouping principles. In the following sections, I will 

describe the online experiment that allowed me to collect a rich dataset using a large set of 

stimuli, followed by a description of the Gestalt-inspired model that I developed to explain 

the variability observed in these data.   

 

Methods 

Participants 

600 participants were recruited on Amazon’s Mechanical Turk (MTurk; 

https://www.mturk.com) for the line version of experiment, and another 600 participants 

were recruited for the grating version. All participants (ages 18 years or older) were from 

the United States, gave informed consent, and were paid 50 cents for approximately 20 

minutes of their time. MTurk users are demographically diverse and more representative of 

the adult population in the United States than the college student population typically 

evaluated in experimental research (Berinsky, Huber, & Lenz, 2012; Buhrmester, Kwang, 
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& Gosling, 2011). Previous studies have shown that VWM experiments run on MTurk 

replicate the results obtained in the laboratory (Brady & Alvarez, 2011, 2015a; Brady & 

Tenenbaum, 2013).   

 

Stimuli and procedure 

Line and grating stimuli were generated using the same methods as described in 

Experiment 1 of Chapter 3, except that a fixed set of orientations and locations were used 

for both stimulus formats. A sample array consisted of six gratings or lines arranged on a 

virtual circle (see Figure 18A). A total of 96 stimulus configurations were used. The 

stimulus orientations and locations were randomly determined for each configuration. 

These configurations were applied to each stimulus format, resulting in 96 grating displays 

and 96 line displays.  

Figure 18B shows an example trial sequence of the delayed estimation task; this 

protocol was identical to that from Experiment 1 of Chapter 3, except the following 

changes in the experimental design.    

The stimulus type was manipulated between participants. Each participant ran in 

either the grating version or the line version of the experiment, receiving all 96 displays of 

the same stimulus type. Each display was presented only once, in a randomized order. For 

each participant, the probed item in each display was determined pseudo-randomly, such 

that the six items were evenly distributed across participants, ensuring an equal number of 

trials (i.e., 100 participants) per item. This pseudo-randomization procedure was repeated 

for all 96 displays to ensure that there was no correlation between any two subjects in 

terms of which items were probed across different displays. This counterbalancing 

approach prevented any systematic biases that might result from repetitions of specific 

combinations of conditions across participants.  
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Figure 18. Example stimuli and trial sequence for the delayed estimation task used in the 
online experiment. (A) 96 grating displays and 96 line displays were generated using the 
same set of random arrangements of orientations. (B) A trial sequence for the two versions 
of delayed estimation task, which used gratings and lines, respectively.  

 

Participants were asked to report the orientation of the cued item from memory by 

moving a mouse cursor in a rotational motion to modify the orientation of the test stimulus. 

As in all of my previous experiments, the initial orientation of the test stimulus was 

randomly determined on each trial, and thus it was independent of the orientation of the 

probed stimulus.  

In addition to the 96 pre-generated displays, participants received 10 catch trials, in 

which only a single randomly oriented item was presented at a randomized location, for a 

total of 106 trials. Participants showing extreme error magnitudes (>2 s.d. from the mean) 

in either the catch trials or the experimental trials were replaced with newly recruited 
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participants (7.1% in the line experiment, and 11.5% in the grating experiment) to ensure 

data quality and to achieve the target number of trials per display and item.  

  For the main experimental conditions, a total of 57,600 trials were obtained from 

600 participants (96 displays x 6 items x 100 trials) for each stimulus type. This large 

dataset allowed for reliable estimation of display-specific performance (600 trials/display) 

as well as item-specific performance (100 trials/display) for each stimulus type. 

  

Measures of VWM performance 

I applied two different sets of summary statistics to the delayed estimation data, to 

hone in on different aspects of the data.  

The mixture model (Zhang & Luck, 2008) is useful for summarizing the overall 

performance level of each participant (across all of the displays) in terms of memory 

capacity (K) and precision (SD), as was done in my earlier experiments. This approach will 

be used for comparing the overall VWM capacity and precision between gratings and lines.  

The mixture model approach can also be used to estimate the mean number of 

stored items in a particular display, by pooling the data from all 600 participants and 

considering them as obtained from a single observer. However, as I will demonstrate later, 

there was a modest degree of trade-off between the number of items stored in VWM and 

quality of information stored about each item, making display-specific K estimates an 

unreliable indicator of how well a display may be remembered (see Behavioral results). 

For this reason, the raw error magnitudes will be used in this study as a primary measure of 

display-specific VWM performance. The mean squared error (MSE) is inversely 

proportional to Fisher information, which provides an index of stored information per item. 

Since orientation is a circular variable, I will use the circular analog of the root mean 

squared error (RMSE), calculated based on the response error vector 𝑥 as follows:  

circular RMSE 𝑥 =  −2ln
1
𝑛 cos(𝑥!)

!

!!!

 . 

The RMSE is an aggregate measure of response error magnitude that reflects the variability 

as well as any bias in the responses. When the orientation estimation responses are 

unbiased, the RMSE is equivalent to the standard deviation of the responses, and the MSE 
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is equivalent to the variance.  

In addition to producing display-specific effects in VWM performance, the visual 

system’s sensitivity to perceptual grouping cues in a display might lead to systematic 

biases and variability in memory for individual items comprising the perceptual groups. To 

examine such item-specific effects, I used two additional summary statistics: The mean and 

the SD of responses. The circular mean of the error vector 𝑥 is calculated as follows 

(Fisher, 1995):  

circular mean 𝑥 = atan sin(𝑥!)
!

!!!

, cos(𝑥!)
!

!!!

. 

Any deviation of the mean from zero would indicate a systematic bias in the reported 

orientation relative to the true orientation. 

The circular SD is calculated as follows:  

circular SD 𝑥 =  −2ln(𝑅) , 

where  denotes the mean resultant length, calculated as: 

𝑅 =  
1
𝑛 cos(𝑥!)

!

!!!

!

+
1
𝑛 sin (𝑥!)

!

!!!

!

 . 

The SD of responses is similar to the RMSE, but it measures the response variability with 

respect to the mean reported orientation, not the true orientation. The measures of SD and 

RMSE may not agree if there is a large bias in the responses to an item. For example, an 

item’s overall response accuracy could be very low (i.e., large RMSE) if the responses are 

tightly spread (i.e., low SD) around a wrong stimulus value. 

 

Behavioral results 

To assess individual participants’ overall VWM performance across all of the 

displays, the mixture model was fitted to each participant’s data, separately for the catch 

trials (set size 1) and experimental trials (set size 6). The group-averaged capacity and 

precision estimates are presented in Figure 19. The catch-trial results indicated that the 

participants included in the final dataset (N = 1,200) performed reliably on the delayed 

estimation task, precisely reporting the single item’s orientation in nearly all of the catch 

R
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trials. The average guess rates were only 0.06 (SEM = 0.005) for gratings, and 0.04 (SEM 

= 0.004) for lines. Memory precision for a single item was comparable to that found in the 

lab, with the average SD of 12.36˚ (SEM = 0.22) for a single grating orientation, and SD of 

10.61˚ (SEM = 0.18˚) for a single line orientation. Importantly, the online experiment 

replicated the pronounced capacity advantage for line stimuli over grating stimuli found in 

the lab experiments. At set size 6, participants could remember an average of 2.3 grating 

orientations (SEM = 0.07), and 4.4 line orientations (SEM = 0.06). The precision of the 

stored orientation (SD) was modestly better for gratings (20.30˚; SEM = 0.57˚) than for 

lines (22.7˚; SEM = 0.39˚). Despite the small disadvantage in memory precision, overall 

VWM performance for line orientation was considerably better than that for grating 

orientation, allowing me to examine the role of perceptual organization as a potential 

mechanism of VWM advantage for lines.  

 
Figure 19. The mixture model results in the online experiment. The mixture model was 
fitted to each participant’s data (N = 600 for each stimulus type), using all of the trials from 
each set size condition (i.e., regardless of the displays). The error bars represent ±1 
between-subject SEM.  
 

When the delayed estimation responses were pooled across all 600 participants for 

each display and each stimulus type, I found substantial variability in RMSE scores across 

96 displays, which ranged from 38.2˚ to 55.3˚ (mean = 48.7˚, s.d. = 3.4˚) for grating 

displays, and from 24.0˚ to 40.0˚ (mean = 33.4˚, s.d. = 2.9˚) for line displays. The observed 

distribution of display RMSEs is shown on the leftmost column of Figure 20 (red curve). 

To compare the observed variability with the variability one would expect from random 

variations in performance for individual items arising from the noise within the data, I 
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randomly resampled 96 sets of 600 trials (with replacement) separately for each stimulus 

type (57,600 trials), blind to the display labels. The RMSE was calculated for each set of 

600 trials, treating them as if they came from the same display. After this resampling 

procedure was repeated 2,000 times, the expected variability (s.d.) of the 96 RMSE scores 

was only 2.1˚ for grating data, and 1.2˚ for line data (shown as shaded gray in Figure 20). 

The results indicated that observed magnitudes of variability across displays (3.4˚ for 

gratings, 2.1˚ for lines) were unlikely to have occurred if all displays were assumed to be 

equal and interchangeable (ps < 0.001).  

Figure 20. Variability of VWM performance across displays and items. The results from 
the grating experiment (top) and the line experiment (bottom) are shown separately. The 
leftmost column shows the distribution of RMSE values for 96 displays. The middle two 
columns show the distributions of the mean and the SD values of 576 items, which are 
displayed as a 2-dimensional scatter plot on the rightmost column. On each panel, the 
distribution of actual VWM performance is shown in red, and that based on the randomly 
resampled data is shown in gray.  
 

An examination of VWM performance for individual items (96 displays x 6 items = 

576 items) revealed substantial biases (i.e., shifts of the mean away from zero), as well as 

varying levels of response variability (SD) across items (see Figure 20, middle two 

columns). The same resampling procedure was performed at the level of item, randomly 

sampling 576 sets of 100 trials from each stimulus type and calculating the mean and SD of 

each set of 100 trials. Again, the observed variability across items was significantly larger 
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than expected by noise alone (ps < 0.001). The scatter plot on the rightmost column of 

Figure 20 illustrates the deviations of individual items’ observed mean and SD from those 

expected based on all of the data. 

To test whether these large display-specific and item-specific effects on VWM 

performance are reliable across participants, I performed split-half correlation analyses on 

these data. For each stimulus type, the participants were randomly split into two sub-

groups while ensuring that there were an equal number of participants assigned to each 

item (i.e., 50 participants) from each display (i.e., 300 participants) for the two groups. 

Pearson correlation was calculated between the two halves of the data, which was repeated 

for 2000 random splits. As shown on the top two rows of Figure 21, the effects of display 

and items on VWM performance were highly reliable across participants, as indicated by 

significant mean split-half correlations across 2000 random splits. The display and item 

effects tended to be less reliable for grating stimuli (r = 0.47 for display RMSEs; r = 0.30 

and r = 0.35 for item means and SDs, respectively; all ps < .001) compared to line stimuli 

(r = 0.75 for display RMSEs; r = 0.72 and r = 0.60 for item means and SDs, respectively; 

all ps < .001). Nevertheless, it is noteworthy that systematic variations in performance were 

observed across displays and items for both types of stimuli. 

If this variability in VWM performance across displays arose from a common 

perceptual grouping mechanism operating on the configuration of the display elements, 

there should be some correlation between grating and line performance. Indeed, I found a 

significant correlation in performance across the two stimulus types (r = 0.62 for display 

RMSEs; r = 0.33 and r = 0.51 for item means and SDs, respectively; all ps < .001), which 

is shown on the bottom row of Figure 21. While the RMSE varied greatly across both 

grating and line displays, the pronounced VWM advantage for line stimuli was preserved 

across all of the displays (i.e., all display RMSEs lie above the diagonal), with no stimulus 

configuration producing worse performance for lines than for gratings.  
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Figure 21. Reliability of display and item effects across participants and stimulus types. 
The random split-half correlations for the grating and line data are shown on the top two 
rows. On each panel, the mean Pearson correlation coefficient (r) across 2000 random 
splits is indicated in red. The scatter plot shows the results from one representative random 
split of the data. The correlations between grating and line performance are shown on the 
bottom row. On the bottom left corner, the displays with the largest discrepancy between 
line and grating performance are indicated with circles filled with pink (easy for gratings, 
hard for lines; IDs 46, 60, and 80) and light blue (easy for lines, hard for gratings; IDs 21, 
26, and 29). These displays are presented in Figure 24. 
 

This observed relationship between grating and line performance is inconsistent 

with the hypothesis that the enhanced VWM capacity for lines might arise from the 

perceptual grouping processes that operate specifically on line stimuli. This hypothesis 

predicts that RMSEs for line displays should vary substantially while RMSEs for grating 

displays should remain relatively stable, at a level comparable to the poorest performance 

(i.e., the largest RMSE) obtained with the line displays. On the contrary, VWM 
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performance appears to be similarly sensitive to the configural properties in grating and 

line displays.  

The display-specific effects of VWM performance can be also characterized in 

terms of the number of items stored for each display (K) and their precision (SD), by fitting 

the mixture model to all of the data collected for each display. Interestingly, I found 

evidence of a systematic trade-off between the estimated capacity and precision across 

displays. As is evident on the top panels of Figure 22, higher K estimates were associated 

with larger SD estimates (i.e., poorer memory precision for successfully remembered 

items) on many of the displays. As a result, some of the displays with a high K estimate 

actually showed a large overall error magnitude (RMSE) (shown as red circles), and some 

of the displays with a low K showed a small RMSE (shown as blue circles). Despite this 

trade-off between the capacity and precision, there was a general advantage to storing more 

items, as the displays with higher K estimates tended to show lower RMSEs (see Figure 

22, bottom panels). This relationship did not hold in a subset of displays, for which the 

increased K was not associated with any improvement in the overall performance, as 

reflected in the horizontal stripes of similar-colored circles (i.e., RMSEs of similar rank-

orders). Such flat performance across displays would be expected if the increased capacity 

was achieved by simply averaging the orientations of multiple items on a display, leading 

to a direct trade-off between the number of items averaged together and the accuracy of 

these items.  

The overall benefit of storing more items in a display is also well demonstrated by 

the large difference between grating and line stimuli in terms of their K estimates and 

RMSE scores. As reported above, average memory precision was subtly impaired for lines 

(SD = 22.7˚) compared to gratings (SD = 20.30˚), but the benefit of increased capacity 

greatly outweighed this precision cost, leading to a much smaller overall error for lines. As 

shown in the bottom right corner of Figure 22, the RMSE of a display is reasonably well 

predicted by the number of stored items in the display, across different displays and 

stimulus types.  In the subsequent modeling analyses, I will assume that enhanced 

perceptual grouping would lead to an overall performance benefit, achieved by an optimal 

balance of the number and precision of stored items. Therefore, the RMSE will be used as 

a primary measure of display-specific VWM performance. 
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Figure 22. The relationships among different measures of VWM performance for specific 
displays. Estimates of the number (K) and precision (SD) of stored items, and the overall 
error magnitude (RMSE) are shown, for each stimulus type. On the top panels, the SD 
estimates for specific displays are plotted against the capacity estimates, based on the 
mixture model fitted to each display. Data points are color-coded based on the rank-
ordered display RMSEs within each stimulus type (top right). On the bottom panels, the 
RMSE scores for specific displays are plotted against the same K estimates. The bottom 
right panel shows the data from the grating displays (gray circles) and line displays (black 
squares) on the same plot.   
 

Together, these results demonstrate that specific arrangements of oriented elements 

led to substantial variability in VWM performance across randomly generated displays, 

and these effects were highly reliable across participants and between stimulus formats.  

   

Reconstruction of remembered displays 

Based on the display RMSE scores, I explored what kinds of spatial regularities 

might be present in the displays that were remembered most accurately. Moreover, given 

that the different stimulus configurations resulted in systematic and reliable biases in the 

reported orientations for individual items, I wanted to examine whether such biases were 

shaped by the configural properties of the display. The schematics of the stimulus 

configurations that led to highly accurate VWM performance are presented in Figure 23, 

along with a polar-plot histogram of reported orientations for each item in each display. 

These displays were selected based on the RMSE scores for line stimuli, for which a 
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majority of the items were successfully remembered, with an average guess rate of 26.6%. 

Compared to the grating displays, which elicited high rates of guessing responses (61.4% 

on average), reconstructions of delayed estimation reports for line displays were quite 

accurate, so that any systematic biases or patterns could be easily discerned.  

 
Figure 23. Reconstruction of remembered displays based on reported orientations. The 
examples of stimulus configuration that led to the most accurate (top) and most inaccurate 
(bottom) VWM performance for line stimuli. The actual stimulus orientation and locations 
are represented as black tilted bars. The blue curve overlaid on each stimulus represent the 
polar histogram of reported orientation for that item. The ID of each configuration is an 
arbitrary number assigned to 96 different configurations. The number next to # indicates 
the rank order of each display in terms of overall accuracy (#1 = smallest RMSE; #96 = 
largest RMSE).  
 

ID  5

RMSE #95   
Mean = 38.5Ý

ID 35

RMSE #93  
Mean = 37.4Ý

ID 46

RMSE #94   
Mean = 38.0Ý

ID 60

RMSE #96  
Mean = 40.0Ý

ID 76

RMSE #92   
Mean = 37.4Ý

ID  1

RMSE # 9   
Mean = 29.2Ý

RMSE # 8   
Mean = 28.8Ý

ID 19

ID 88

RMSE #10   
Mean = 29.3Ý

ID 67

RMSE # 6   
Mean = 28.3Ý

ID 90

RMSE #15   
Mean = 30.6Ý

ID 18

RMSE #28   
Mean = 32.2Ý

ID 20

RMSE # 3   
Mean = 26.8Ý

ID 54

RMSE # 4   
Mean = 27.5Ý

ID 73

RMSE # 1   
0HDQ� �����Ý

ID 77

RMSE # 2   
Mean = 25.4Ý

Line displays with highest accuracy

Line displays with lowest accuracy

Parallelism Radiality

ClosureSymmetry



 

  79 

As shown in Figure 23, the displays that were remembered most accurately tended 

to have highly regular structures, such as parallelism, symmetry, radial organization, and 

closure. Moreover, the reported orientations for individual items in these displays showed 

systematic biases in preference for configurations that exaggerated these regularities in the 

actual stimuli. For example, the reported orientations for items in display #73 and #77 were 

biased toward orientations that were parallel to the neighboring items. The oddball items in 

displays with a high degree of closure revealed a bias to report an orientation that 

completed a closed circle formed by the rest of the items, leading to extreme errors (i.e., 

reported orientations were orthogonal to the stimulus orientation) on some of the trials. 

Despite these item-specific biases, storing the regular structures from these displays seems 

to have been adaptive, as indicated by very low display-level RMSE values, compared to 

those from the most irregular displays (bottom row).  

While there was generally good agreement between grating and line performance in 

term of which displays were easier to remember, some displays revealed highly discrepant 

performance across the two stimulus types. The discrepancy score for each stimulus 

configuration was calculated by subtracting the z-scored RMSE of the line display from 

that of the grating display, such that a positive score indicated a relative ease of 

remembering the line version of the configuration, and a negative score indicated a relative 

ease of remembering the grating version. Figure 24 shows example configurations that 

produced the top three positive scores (left column) and top three negative scores (right 

column). The RMSEs for these six displays relative to all other configurations can be also 

seen on the scatter plot in Figure 21 (bottom left corner).  
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Figure 24. Examples of displays showing discrepant VWM performance between line and 
grating stimuli.  
 

Visual inspection of the reported orientations for displays on the left column of 

Figure 24 (i.e., easy for lines) suggests that the parallel structure in these line displays led 

to highly accurate responses, but presentation of the same arrangement of oriented 
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elements in the grating displays often led to extreme biases, aligned with the angle formed 

between the center and the item’s location (i.e., the radial axis) or an angle tangent to the 

radial axis (i.e., aligned with the virtual circle). These extreme errors might reflect a 

guessing strategy, which happened to be suboptimal for these particular displays. On the 

other hand, the pattern of reported orientations for the displays on the right column (i.e., 

easy for gratings) appear very similar between gratings and lines. It is unclear what 

properties led to the relative advantage for grating stimuli or disadvantage for line stimuli.   

While it would be important to determine what spatial properties might constitute 

uniquely strong grouping cues for gratings but not for lines, or vice versa, the broad 

correspondence of the display effects between the two stimulus types suggests a prevailing 

influence of common perceptual grouping mechanisms on VWM performance for grating 

and line stimuli. Thus, the present study will focus on the similarities in performance 

across the stimulus types rather than their differences.  

 
Modeling the mechanisms of perceptual grouping 

In order to determine how much of the variability in VWM performance across 

displays can be explained by Gestalt-like organization, I constructed a model that 

quantified the sensitivity of human observers to various spatial properties in the display, 

including similarity, cocircularity, proximity, and globally radial or circular organization 

(see Figure 25). The central idea of the model is that, in any given display, oriented 

elements exhibiting these properties can be perceptually grouped, allowing for more 

efficient representation of their orientations in VWM. Assuming that visual system can 

combine various configural properties detected in a display, the model combines the 

strengths of individual properties to quantify the overall pattern strength of a display; the 

model is then fitted and used to predict VWM performance across all displays. 
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Figure 25. Components of the Gestalt-inspired model of display-specific VWM 
performance. (A) Illustration of the geometric relationships representing similarity, 
cocircularity, and radiality/circularity. Similarity and cocircularity are defined between 
pairs of items (items 1 and 2; gray bars). Radiality/circularity is defined as a global, higher-
order pattern that is built upon a highly specific configuration of all items, which varies 
between the two extremes (radial vs. circular patterns). (B) Orientation sensitivity (left) and 
distance sensitivity (right) functions used for calculation of the pairwise similarity and 
cocircularity strengths. The strength of similarity (or cocircularity) is determined jointly by 
the angular deviation (Δθ) of a second item from the orientation parallel to (or cocircular 
with) the first item, and the distance (d) between the two items. In the model, the 
orientation sensitivity parameter (κ) and the distance sensitivity parameter (σ) are 
estimated based on the data. (C) The radiality/circularity strength varies as a function of the 
average absolute deviation (Δθ) of all six items from the radial axis. The sensitivities for 
radial and circular patterns are determined by κrad and κcirc parameters, respectively. The 
peak strength of a radial pattern relative to that of a circular pattern is determined by the 
weight parameter, wrad. 

 

Each of these properties reflects a clearly defined geometric relationship among the 

items, which can be directly calculated from the orientations and locations of the items in a 

given display. The strength of each property is considered as a continuous variable, which 

has a maximum value if the arrangement of the items coincides with the strongest possible 

pattern that can be found among them, and gradually declines as the stimulus arrangement 
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deviates from the perfect pattern. This is characterized by a set of grouping functions, 

which relate the stimulus parameters to the perceived strength of each property in a 

display. As the perceived pattern strength would depend on both the physical stimulus 

parameters and the sensitivity of the organizational processes of the visual system, the 

parameters for the grouping functions will be estimated based on the VWM performance 

data.   

In the model, similarity is defined as the degree of parallelism between two 

orientations. As illustrated in Figure 25A, one item can be treated as the reference, and the 

other item’s orientation can be considered relative to the first item (shown as green lines). 

Similarity between a pair of oriented items is strongest when they are oriented parallel to 

each other, and decreases with increasing angular difference (∆θ) between the two items. 

The model also considers the spatial proximity between a pair of items, which is inversely 

related to Euclidean distance (d) between two items. The model assumes that grouping by 

similarity depends on proximity (i.e., similarity strength declines as a function of 

increasing distance between the items), based on the idea that the parallel structure within a 

display might be better detected when these similarly oriented items are nearer to each 

other. This assumption is supported by the environmental image statistics literature, which 

shows that nearby parallel lines are more likely to arise from the same coherent object than 

are distant parallel lines (Brunswick & Kamiya, 1953; Geisler, Perry, Super, Gallogly, 

2001).  

Cocircularity occurs when two oriented elements can form a tangent on a common 

circle, as indicated by the orange lines in Figure 25A. Cocircular structure is prevalent in 

natural images (Elder & Goldberg 2002; Geisler et al. 2001; Sigman, Cecchi, Gilbert, & 

Magnasco, 2001) and psychophysical evidence suggests its role in contour integration 

(Feldman, 1997; Field, Hayes, & Hess, 1993). For a given reference item with orientation 

θ1, a cocircular orientation (θc) can be defined based on the angular direction (Φ) of a 

second item with respect to the reference orientation, by rotating θ1 in the direction of the 

second item by 2Φ (θc = θ1 + 2Φ). At a given distance (d), two cocircular orientations are 

smooth (i.e., collinear) when the radius of the common circle is large, making collinearity 

as a special case of cocircularity (Parent & Zucker, 1989). Cocircularity is also linked to 

local symmetry, as any two edges tangent to the same circle are rotated with respect to a 
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line connecting the centers of the two edges, by the same angle (Φ) but with the opposite 

signs. As in the calculation of similarity strength, the model assumes that cocircularity 

strength between a pair of items is influenced by both the angular deviation (∆θ) of the 

second item from the perfectly cocircular orientation and the distance between the two 

items (d). 

Similarity and cocircularity can be independently calculated for any given pair of 

oriented items, although they will converge in some special cases. For example, two 

perfectly collinear items are automatically similar (i.e., parallel), but not vice versa: If the 

second item is displaced in an orthogonal direction without changing its orientation (e.g., 

as the green parallel lines in Figure 25A), the path between the two items is no longer as 

smooth as when they were on the same horizontal plane. Moreover, even highly 

heterogeneous orientations can have a strong cocircular relationship, depending on the 

alignment of their orientations and position.  

The model applies a set of smooth functions to convert the degree of orientation 

deviation and the distance between two items to strength scores (see Figure 25B). 

Orientation values are wrapped around a circular space, such that the absolute deviation 

between two orientations increases as the ∆θ changes from 0˚ to 90˚, and then decreases as 

∆θ changes from 90˚ to 180˚. To capture the circular nature of orientation space, I adopted 

a von Mises distribution (without the normalizing constant) as the orientation sensitivity 

functions for similarity and cocircularity strengths, both of which are defined based on ∆θ.  

The orientation sensitivity function produces maximum similarity or cocircularity 

value of 1 when a pair of items are perfectly parallel or cocircular. The strength declines as 

the orientation deviation (Δθ) increases toward 90˚. The shape of this orientation-tuned 

function is determined by the orientation sensitivity parameter κ, which corresponds to the 

precision parameter of the von Mises distribution. κ is estimated separately for similarity 

and cocircularity, based on the VWM performance data. Likewise, the distance sensitivity 

function (a half-Gaussian distribution1 without the normalizing constant) leads to 

                                                        
1 Previous studies have characterized the relationship between the stimulus separation and 
the strength of grouping by proximity using Gaussian (Elder & Zucker, 1994), exponential 
(Kubovy & Wagemans, 1995), and power law (Elder & Goldberg, 2002; Oyama, 1961) 
models. In the present study, these different functions produced comparable predictions of 
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decreasing grouping strength as the distance (d) between a pair of items increases. The 

steepness of the decline is determined by the distance sensitivity parameter σ, which 

corresponds to the standard deviation of the Gaussian distribution.  

Mathematically, the final strength of similarity or cocircularity between a pair of 

items is defined as the product of the orientation- and distance-based strength scores, which 

is calculated for all possible pairs of items within each display2. The display-level 

similarity and cocircularity strengths are obtained by averaging these pairwise strengths. 

The pairwise calculation of similarity and cocircularity is based on the concept of a “local 

association field” (Field et al., 1993), which refers to the region around an image element 

in which local oriented elements are grouped together according to a specific set of rules. 

These rules, or local grouping functions, are instantiated by the geometric relationships and 

functions presented in Figure 25. The structure of the association field can also be 

represented as a two-dimensional map, as shown in Figure 26. Spatial properties of the 

psychophysically defined association field can be linked to how visual information is 

integrated by neurons in the visual cortex via feedback and lateral connections, giving rise 

to receptive field structures representing complex spatial relationships (Hess & Field, 

1999). Since any coherent spatial relationships in a display would simultaneously activate 

the neurons sensitive to these structures, I assumed that all pairwise relationships among 

the items could contribute to the perceived pattern strength of the display, thereby 

influencing how accurately the display can be remembered.  

                                                                                                                                                                        
VWM performance, with the half-Gaussian distribution providing a modestly better overall 
fit. 
2 A display containing six items results in a total of 15 pairwise relationships. Unlike 
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Figure 26. A graphical representation of local similarity and cocircularity maps. Each map 
was created based on the best-fitting parameters obtained for the line stimuli (κsim = 1.87, 
σsim = 3.80; κcocirc = 4.70, σcocirc = 3.30). The white horizontal bar at the center represents a 
reference item. The bowtie-shaped elements in the surround represent the strength of 
grouping by similarity or cocircularity at the corresponding item locations, which is 
modulated by the orientation deviation of the second item, as well as its distance from the 
reference item. The perfectly similar (i.e., parallel) or cocircular orientation for the second 
item is indicated by a thin yellow line. The progressive weakening of similarity or 
cocircularity as a function of orientation deviation and distance is indicated by the 
transition from yellow to red to black.   
 

The last component of the model is radiality/circularity.  Unlike the first two 

parameterized grouping mechanisms, which are based on local relationships among pairs 

of items, radiality/circularity considers the configuration of all items in a display 

simultaneously. A radial orientation can be defined at any position in a display relative to 

the central fixation point, and is specified by the angular position of an item arranged on 

the virtual circle. When all items in a display are radially oriented, they comprise a globally 

radial pattern (shown as cyan spokes in Figure 25C). In contrast, when all items are 

orthogonal to the radial axis (i.e., tangent to the virtual circle), they comprise a globally 

circular pattern (shown as a magenta circle). As the items deviate from the radial axis, 

radiality decreases and circularity increases. Thus, radiality and circularity are two 

opposing patterns.  
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The model assumes that any arrangement of randomly oriented items with their 

centers positioned on a virtual circle lies on a continuum of radiality and circularity, with 

the strongest patterns occurring at the two extremes and the weakest patterns occurring at 

intermediate levels of radiality/circularity. This is because a display with an even mix of 

radial and tangential orientations would not be expected to elicit a strong sense of pattern 

coherence. The function specifying this relationship is depicted in Figure 25C, which is 

characterized as a mixture of two von Mises functions centered at zero (i.e., radial 

orientation) and 90˚ (i.e., tangential orientation) with different concentration parameters 

(κrad and κcirc). The weight parameter wrad determines the peak strength of a radial pattern 

relative to that of a circular pattern. The input for this function is the average of the 

absolute deviations (Δθ) of all six items from the radial axis, such that the mean absolute 

deviations of 0˚ and 90˚ indicate the strongest radiality and circularity3, respectively, and 

the mean deviations around 45˚ (e.g., three 0˚s and three 90˚s) indicates the weakest pattern 

strength.   

Radiality/circularity also partly overlaps with the other two components, but it 

requires very specific combinations of local similarity or circularities. For instance, a 

globally circular pattern consists entirely of cocircular items. Also, a globally radial pattern 

can arise from a set of collinear item pairs, each forming a spoke of the radial axis. On the 

other hand, the strength of global radiality/circularity is generally opposed to that of 

similarity, as the various stimulus locations along the virtual circle dictate that the 

corresponding radial/circular orientations be highly heterogeneous. Separately modeling 

these global properties implies that VWM might receive an extra advantage from such a 

higher-order configuration, beyond the sum of benefits from local properties. 

Across the three components of the model, there were seven free parameters to 

determine the shape of the grouping functions. These include two sets of orientation and 

distance sensitivity parameters, for similarity strength (κsim, σsim)) and cocircularity strength 

(κcocirc, σcocirc), two orientation sensitivity parameters for radiality and circularity strengths 

                                                        
3 It is extremely rare to obtain these perfect radial or circular patterns just by coincidence. 
In fact, the averaged absolute deviations from the radial axis for the 96 randomly sampled 
displays in the present study ranged between 20.0˚ and 76.6˚ (mean = 45.3˚; s.d. = 11.1˚). 
Thus, highly radiality or circular patterns occurred only on a small subset of the displays. 
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(κrad, κcirc), and the relative weight between radiality and circularity strengths (wrad). The 

overall pattern strength of a display was calculated by a weighted sum of the outcomes of 

the three components. The weights among the three components were specified by two 

additional free parameters, w1 and w2: Similarity = w1; cocircularity = (1 – w1) ∙ w2, and 

radiality/circularity = 1 –  (1 – w1) ∙ w2. Thus, a total of nine parameters were estimated 

based on the data. 

A set of parameter values that maximized (negative) correlation between the 

display’s pattern strength and RMSE score were searched, using the genetic algorithms 

(GA) in MATLAB’s Global Optimization Toolbox. The model was fitted separately to the 

grating and line data.  

 

Modeling results 

The model combining the similarity, cocircularity, and radiality/circularity 

strengths could reliably predict VWM performance for specific displays to a considerable 

degree, for both grating and line stimuli. Each component of the model was found to be a 

significant predictor of VWM performance.  

The estimated grouping functions for individual components are presented in 

Figure 27A (left two columns). Overall, the results revealed very similar parameter 

estimates for gratings and lines, far more similar than I had initially anticipated. For the 

similarity component, the best-fitting orientation sensitivity (κsim) and distance sensitivity 

(σsim) parameters were highly consistent across the two stimulus types, as indicated by the 

overlapping curves for grating (gray) and line (black) stimuli. The display RMSEs showed 

a significant correlation with the display similarity scores calculated by these functions 

(right two columns). The correlation was stronger for the line displays (r = –0.6412; p < 

.001) compared to the grating displays (r = –0.4491; p < .001), which could be in part due 

to the greater frequency of guessing responses that occurred for the grating displays.   
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Figure 27. The results of the Gestalt-inspired model. (A) The similarity, cocircularity, and 
radiality/circularity grouping functions (left two columns), based on the best-fitting 
parameters for the grating (gray) and line (black) data. These parameters were fitted 
simultaneously to the data from each stimulus type. The shaded region in the distance 
sensitivity function (second column) for similarity and cocircularity indicates the range of 
possible distance between items in the current stimulus set. The correlation between the 
strength of each display property and the display RMSE score is shown on the right two 
columns, separately for the grating and line data. (B) The model’s prediction of display 
RSMEs based on the combined strength of display similarity, cocircularity, and 
radiality/circularity. 
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For the cocircularity component, orientation sensitivity was somewhat sharper (i.e., 

a higher κcocirc
 ) for the line displays than for the grating displays4, while the cocircularity 

strength for the grating displays tended to decline more sharply with increasing distance 

between the items (i.e., a smaller σcocirc) compared to that for the line displays. Although 

the significance of these differences is not yet clear, these results suggest that the visual 

system might be more sensitive to the cocircular structure defined by line items and 

capable of detecting cocircular relationships between relatively more distant items. Again, 

the correlation between the display collinearity and RMSE was highly significant for both 

grating (r = –0.3686, p < .001) and line data (r = –0.4705, p < .001), with a stronger 

relationship observed for the line data (Figure 27A; middle row, right two columns).  

The radiality/circularity component revealed a pronounced sensitivity for globally 

radial patterns, and a much weaker sensitivity for globally circular patterns, for both 

stimulus types. This can be appreciated by comparing the heights of the two von Mises 

functions representing the radiality (centered at 0˚) and circularity components (centered at 

90˚). (However, it should be noted that circular displays also lead to high cocircularity, so a 

component of this variance will be accounted for based on this grouping measure as well.) 

The asymmetry between the sensitivities to radiality and circularity was greater for the 

grating displays than for line displays, as demonstrated by the sharp peak of the pattern 

strength around 0˚ and the nearly flat modulation around 90˚. Radiality seems to play a 

particularly important role in VWM for gratings, as this component accounted for the 

largest variability across grating displays among the three components. Moreover, 

radiality/circularity was the only component that provided a better prediction of the 

RMSEs for the grating displays (r = –0.4875, p < .001) than it did for the line displays (r = 

–0.4510, p < .001). 

For the overall pattern strength, similarity, cocircularity, and radiality/circularity 

                                                        
4 The orientation sensitivity function for cocircularity might appear as if the overall 
cocircularity strength is greater for gratings than for lines. However, the range of the 
absolute function values is not so relevant as the relative function values and the shape of 
the gradient, in terms of the model’s ability to predict the variable RMSE scores across 
display. This is because a uniform elevation of the absolute function values across different 
orientation deviations would simply add a constant to the pattern strength for all displays, 
without accounting for any additional variability in RMSE across displays. 
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strengths were combined with weights of 0.14, 0.18, and 0.68 for grating displays, and 

0.42, 0.17, and 0.41 for line displays. As shown in Figure 27B, the prediction of display 

RMSE was considerably improved by combining these three components (R = –0.7108 for 

grating; R = –0.8087 for line). R2 values indicated that the model could account for 50.5% 

of the variance in RMSEs across grating displays, and 65.4% of the variance in RMSE 

across line displays.  

To provide a better indication of the shared perceptual organization mechanisms 

underlying VWM for grating and line displays, I examined how well the model’s 

prediction of display-specific VWM performance generalized across stimulus types. I also 

sought to examine how the stimulus format influences the modulation of VWM 

performance by pattern strength. As shown in Figure 28, the same pattern strengths (z-

scored for comparison across stimulus types) in terms of similarity, cocircularity, and 

radiality/circularity of display elements, could reliably predict the VWM performance for 

specific configurations of both grating (gray circles) and line (black circles) stimuli, even 

when the model was fitted to one stimulus type and tested on the other. VWM performance 

for both stimulus types exhibited similar patterns of modulation by the combined display 

pattern strength (Figure 28, bottom row), with the RMSEs for grating displays showing a 

nearly additive increase relative to those for line displays, across all levels of pattern 

strength. 
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Figure 28. Generalization of the model’s prediction across stimulus types. On each panel, 
VWM performance for grating displays (gray circles) and line displays (black circles) in 
terms of RMSE is plotted against the z-scored pattern strengths of the displays, along with 
the best-fitting regression line for each stimulus type (red). The pattern strengths on the left 
and right columns are based on the models fitted to the grating and line data, respectively. 
The generalization of prediction based on the strengths of individual components fitted 
together is shown on the top three rows. The generalization based on the combined model 
is shown on the bottom row.  
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I conducted a series of simulation analyses to characterize the observed relationship 

between pattern strength and VWM performance for grating and line displays. Delayed 

estimation responses for line displays were generated using a set of mixture model 

parameters that produced the observed range of performance variability in terms of RMSE 

scores (see Figure 29A, black solid line with squares). I assumed that VWM capacity (K) 

for line displays linearly increases from 3 to 6 items (i.e., Pmemory increases from 0.50 to 

1.00 with set size 6) as the display pattern strength increases, with a modest trade-off in 

memory precision (SD), which linearly increases from 17.1˚ to 24.9˚. Based on these 

parameters, error data were generated for 10 levels of display pattern strength, 600 trials 

each. The RMSE was calculated for these error data. This was repeated for 50 times at each 

level of pattern strength, resulting in 50 display RMSE scores at each level of pattern 

strength. On the rightmost column of Figure 29A, the mean RMSE score across 50 

stimulated error distributions is shown as a function of display pattern strength (black 

squares).  

Next, I generated error data for grating displays assuming three different scenarios 

regarding the relationship between grating and line performance. The first scenario 

assumes that VWM performance for grating displays is not modulated by display pattern 

strength, such that both K and SD remain constant (K = 2.25, SD = 21˚) across all displays 

(Figure 29A, gray dashed line with triangles). The second scenario assumes that Pmemory is 

reduced by 50% for grating displays relative to that for line displays, resulting in halved 

memory capacity for grating displays across all levels of pattern strength (K = 1.5~3.0 

items; Figure 29A, gray solid line with circles). For simplicity, memory precision for 

grating displays is assumed to be identical to that for line displays, showing the same 

decline as a function of increasing pattern strength. The last scenario assumes that Pmemory 

is reduced by a constant amount (–0.375) for grating displays relative to that for line 

displays, resulting in a reduction of memory capacity by 2.25 items across all displays (K = 

0.75~3.75 items; Figure 29A, gray solid line with x’s). As can be seen on the rightmost 

panel in Figure 29A, this last scenario leads to a sharper modulation of VWM performance 

by display pattern strength in terms of RMSE scores (i.e., the overall amount of stored 

information), compared to the first two scenarios. The actual modulation of VWM 

performance by display pattern strength (shown in Figure 28, bottom panels) appears more 
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consistent with the second scenario, which assumes a proportional reduction of memory 

capacity for grating displays relative to line displays. 

 
Figure 29. Simulations of the effects of display pattern strength on VWM performance for 
gratings and lines. (A) The left two panels show memory capacity (K) and precision (SD) 
parameters used to generate delayed estimation responses (600 trials per display) for 
grating and line displays, as a function of display pattern strength. The rightmost panel 
shows the mean display RMSE score across 50 simulated response distributions (600 trials 
per display), as a function of display pattern strength. The error bars represent ±1 SD of 
RMSE scores across 50 simulations at each level of display pattern strength. (B) The 
relationship between RMSE scores for simulated grating and line data, assuming three 
different scenarios regarding the impact of stimulus format on the sensitivity to perceptual 
grouping cues. 

  

 

Figure 29B shows the relationship between RSME scores for the simulated grating 

and line data, based on each of these three scenarios. The relationship observed in the 
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actual data (see the bottom left corner of Figure 21) appears quite consistent with the 

second scenario (Figure 29B, middle panel), suggesting that VWM is sensitive to the 

perceptual grouping cues in both grating and line displays, with the exception that the 

probability of successful memory maintenance is much lower for grating displays. The 

empirical and modeling results found here, as well as the simulation results, reveal an 

important yet non-intuitive finding, namely that common mechanisms of perceptual 

grouping can operate on both line and grating stimuli, yet the impact of grouping on 

effective memory capacity can still vastly differ across the two stimulus types.  

How is this possible? Consider the results from Chapter 3, in which estimates of the 

probability of grouping were far greater for lines (0.63 to 0.71) than for gratings (0.28 to 

0.31), leading to a substantial difference in effective capacity at the largest set size. 

Although estimated parameters for each grouping mechanism are very similar for lines and 

gratings, leading to similar orientation and distance tuning functions, the absolute 

magnitude in which these grouping interactions scale to the effective capacity is clearly 

much weaker for gratings than for lines. In this context, the absolute probability of 

grouping, or effective response gain of these grouping mechanisms, can differ across 

gratings and lines while the shape of their tuning functions remain invariant to changes in 

stimulus form. Such invariance of tuning is well documented in the vision literature, such 

as the stability of orientation tuning across changes in stimulus contrast. With respect to 

this study, the current findings suggest that perceptual grouping mechanisms may operate 

with quite stable or invariant tuning properties across stimulus forms, though this remains a 

question that should be studied in greater detail in future work.  

 
Discussion 

In the present study, I examined the role of perceptual organization in the efficient 

storage of orientation information in VWM. By obtaining a large data set measuring 

delayed estimation performance for 96 random arrangements of oriented gratings and lines, 

I found that specific stimulus configuration had a major impact on how accurately a given 

display could be remembered, for both stimulus types. The magnitude of estimation errors 

varied substantially across displays, in a manner that was highly reliable across 

participants, as well as across the two stimulus types. In order to determine how much of 
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this VWM performance variability can be explained by the variability in perceptual 

organization across displays, I constructed a model of display-specific VWM performance, 

informed by well-known Gestalt grouping principles. By quantifying the strengths of 

similarity, cocircularity, and radiality/circularity structures that the observers might extract 

from each stimulus configuration, the model could successfully predict VWM performance 

for specific displays, accounting for 50.5% and 65.4% of the variance in error magnitude 

for grating and line displays, respectively.  

VWM performance for both stimulus types showed largely comparable sensitivities 

to each of the grouping cues included in the model. While the model could more reliably 

predict the VWM performance for line stimuli than that for grating stimuli, both stimulus 

types were similar in terms of the magnitude of modulation by the display pattern strength. 

Simulation analyses indicated that the observed relationship between VWM performance 

for grating and line displays, as well as their modulation by display pattern strength, could 

be reasonably well characterized by the joint influences of perceptual grouping and 

stimulus form on the number of items encoded in a particular display.  

These results suggest that perceptual organization plays an important role for VWM 

for both grating and line orientation, and the enhanced capacity for storing line orientations 

cannot be attributed to a more effective operation of perceptual organization processes on 

the line stimuli. It appears that the visual system can extract regular spatial structures 

present in both grating and line stimuli, providing higher-order perceptual units that can be 

stored in VWM efficiently. These perceptual units seem to be utilized by VWM with 

different levels of efficiency depending on the stimulus format, such that the storage 

efficiency for line stimuli is enhanced over that for grating stimuli by a similar proportion 

(i.e., a twofold increase in the number of stored orientations) across all levels of perceptual 

organization.  

The finding that perceptual grouping cues, such as parallelism and collinearity, 

benefit VWM performance not just for line orientation, but also for grating orientation is 

not surprising given the prevalent use of both stimulus formats in research on the role of 

the good continuation principle for contour integration. In a classic study, Field and 

colleagues (1993) tested the observer’s ability to detect the presence of an elongated path, 

formed from oriented Gabor patches embedded in an array of randomly oriented distractor 
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elements. They found that observers could easily detect the contours where the orientations 

of the Gabors were aligned smoothly along the path, but not the contours where the 

orientations were randomly varied, demonstrating the effective grouping of Gabor 

elements by the principle of good continuation (see also Ledgeway, Hess, & Geisler, 2005; 

Machilsen, Pauwels, & Wagemans, 2009). Other studies have instead employed oriented 

line segments for the contour detection task (Geisler et al., 2001; Tversky, Geisler, & 

Perry, 2004), or both line and Gabor stimuli across different species (Kourtzi, Tolias, 

Altmann, Augath, & Logothetis, 2003). Oriented lines seem to be the preferred choice for 

studying the neural mechanisms of contour grouping (e.g., Kapadia, Ito, Gilbert, & 

Westheimer, 1995; Wannig, Stanisor, & Roelfsema, 2011). Thus, both stimulus formats 

seem to be used interchangeably to tap into the fundamental perceptual processes of the 

visual system. However, it would be of interest for future studies to explore how these two 

stimulus formats might differ in terms of sensitivity to various grouping cues, including 

higher-order properties, such as mirror symmetry or more complex shapes.  

In the Gestalt-inspired model of VWM performance, I integrated proximity with 

each of the similarity and cocircularity components rather than modeling it as a separate 

component, such that any performance benefits arising from two nearby items would 

depend on the specific alignment of their orientations. In other words, two similar or 

cocircular orientations would be perceived as a coherent unit when they are close together, 

but as independent units when they are distant. Integration of proximity with similarity or 

cocircularity may be adaptive given the ecological statistics of proximity cues in natural 

scenes (Brunswick & Kamiya, 1953; Geisler et al., 2001), in which local features tend to 

be correlated, but less so at larger distance separations. 

The modeling results confirmed that the benefits of similarity and cocircularity on 

VWM performance interacted with proximity, as indicated by the sharp decline of 

similarity and cocircularity strengths (σsim = 3.63-3.80˚; σcocirc = 2.64-3.30˚) across the 

possible range of distance between items (d = 2.62-8.00 ̊). When the distance sensitivity 

function was removed from both similarity and cocircularity components, the model’s 

overall prediction (R2) of display-specific VWM performance dropped from 50.5% to 

40.2% for gratings, and from 65.4% to 52.5% for lines, providing further support for this 

conclusion.  
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The present finding is also consistent with previous reported effects of proximity 

and similarity in VWM for orientation and color. In Orhan and Jacobs’ (2013) study, 

memory representations of orientations for two Gabor items showed a strong positive 

correlation when the actual stimulus orientations were similar, indicative of similarity-

based grouping, but this dependency between stored representations gradually decreased as 

the distance between the two stimuli increased. In a color change detection task, a 

significant benefit of color repetition on the sample array was found only when the two 

same-colored items were next to each other (Peterson & Berryhill, 2013), providing 

converging evidence that similarity-based grouping is constrained by spatial proximity.  

In the present model, similarity and cocircularity were defined by local grouping 

functions, in which the display-level strength was essentially a summed strength of all 

pairwise relationships. On the other hand, radiality/circularity was defined by a global 

grouping function, in which the display-level strength was determined by the configuration 

of the entire display, which could not be fully captured by simply summing across the 

strengths of individual items or pairs of items. The radiality/circularity component was 

initially motivated by the observation that items whose orientations were aligned with the 

radial axis of the display or tangential to the virtual circle tended to be reported more 

accurately than the rest of the items. This radial/tangential benefit was characterized by a 

heightened frequency of responses centered on these location-dependent orientation values, 

which occurred largely independently of the true orientation of the probed item. Such 

biases have been previously observed in delayed estimation tasks using a circular stimulus 

layout (e.g., Park, Rademaker, & Tong, VSS 2014), but only under high memory load that 

exceeded the typical estimates of working memory capacity. In the current study, the 

radial/tangential bias was more pronounced in the response distribution for grating stimuli 

than that for line stimuli, which raises the possibility that the observed effects of 

radiality/circularity on the display performance may at least in part reflect a guessing 

strategy based on the location of the probed item.  

Given that individual items with radial or tangential orientations can benefit from 

such response biases, one might expect to find an additive effect of item-level 

radiality/circularity strengths on the overall accuracy of a display. However, I found little 

correlation between the sum of individual items’ radiality/circularity scores and the display 
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RMSEs, which is hard to reconcile with the strong effects of individual items’ 

radiality/circularity scores on their accuracy. A substantial modulation of the display 

RMSE by radiality/circularity could be revealed only after applying a constraint that items 

on a display should be either all radial or all circular to achieve a high display-level score. 

One way to reconcile the inconsistent effects of item-level and display-level radiality is to 

assume that VWM benefits from a globally radial or circular pattern, which leads to 

reduced random guessing in relatively few displays, and that the incoherent configurations 

produced by a random mix of radial and tangential items, which are more common, leads 

to increased guessing in those displays. The cost of such poor configurations might 

effectively cancel out the benefit of radial/tangential guessing strategy occurring in these 

displays, resulting in performance indistinguishable from the displays with intermediate 

orientations. Thus, the observed benefit for individual radial/tangential items might be in 

part due to the configural benefit in remembering these items, in addition to the pure 

guessing strategy.  

The present study focused on demonstrating and explaining the variability in VWM 

performance across displays rather than the variability across individual items within a 

display, both of which were highly systematic and reliable. The primary reason was that 

display-level performance was a more reliable indicator of how efficiently a given display 

could be remembered on average, regardless of potential biases in memory resource 

allocation across the items. On the other hand, item-level performance could fluctuate 

within a display due to a prioritized encoding of certain items into VWM, reflecting a 

trade-off among items, which does not necessarily indicate an increased availability of 

memory resources due to grouping. However the item-level similarity and cocircularity 

scores, obtained by averaging across five pairwise relationships per item, were generally 

correlated with the individual item’s accuracy, suggesting that the local perceptual 

grouping also benefited memory for individual items. It remains to be determined whether 

these benefits reflect increased perceptual precision for these items (i.e., information that 

can be stored per unit VWM resource or attention) or prioritized allocation of limited 

VWM resources (or attention) to items with salient grouping cues. It is also important to 

determine whether different grouping cues, such as similarity and cocircularity, might be 

optimally combined or compete within a display, by examining the systematical biases in 
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the reported orientations, as these grouping cues would induce different types of biases 

(e.g., attraction toward nearby similar items to make them more parallel vs. repulsion in the 

opposite direction to make them more cocircular).  

The strong effects of perceptual organization on VWM performance for both 

grating and line displays suggest that VWM advantage for line stimuli cannot be explained 

by more effective perceptual grouping for these stimuli. Rather, perceptual organization 

critically modulates the storage efficiency for both stimulus formats, with line stimuli 

receiving relative benefits in efficiency over grating stimuli across all levels of perceptual 

organization. One possibility for this joint influence of perceptual organization and 

stimulus form on VWM performance is that attention could more readily spread among the 

perceptual groups formed by lines than those formed by gratings. The spread of attention 

might be interrupted by the round boundary perceived in each grating, making it difficult to 

simultaneously attend multiple perceptual groups, or a higher-order group, formed by 

grating stimuli.  

The present findings have important implications for understanding the architecture 

of VWM, as well as the nature of perceptual grouping among oriented elements. Perceptual 

grouping is important not just for correctly delineating the units of perceptual experiences 

into parts, objects, and surfaces, but also for understanding how an arbitrary configuration 

of oriented elements is actively held in mind and how such information can represented 

more efficiently in the mental workspace.  



Chapter 5 
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General Discussion 

 

Summary of findings 

In this dissertation, I explored the role of stimulus form in determining how much 

orientation information can be encoded in VWM. I presented a series of behavioral 

findings demonstrating a substantial increase in the capacity of VWM for storing line 

orientation compared to grating orientation, mediated by visual grouping of multiple line 

orientations. I proposed two novel modeling methods, which formally characterized the 

visual grouping mechanisms that allow for a highly efficient storage of orientation 

information in VWM. 

In Chapter 2, I used a delayed estimation paradigm and the mixture model approach 

to estimate the number of orientations stored in VWM and their representational precision. 

I found that memory precision was comparable for grating and line orientation, but that 

estimated capacity was about twice as large for lines as compared to gratings. The capacity 

advantage for lines was severely disrupted by sequential presentation of the stimuli, while 

the capacity for gratings was unaffected by sequential presentation, suggesting that visual 

grouping of simultaneously presented items is crucial for the capacity advantage for lines. 

Performance at a change detection task also benefitted from presenting an entire array of 

lines at test, rather than just a single test item, implying a benefit of relational coding. 

In Chapter 3, I examined how visual grouping can lead to a greater proportional 

increase in the effective capacity of VWM when there are more items to be remembered in 

the memory array. I found that increasing the number of items in the memory array 

produced a much shallower decline in VWM performance for line arrays than for grating 

arrays, such that the total amount of stored information for line arrays, considering both the 

number and precision of stored orientations, continually increased with increasing set size. 

This difference between gratings and lines, in terms of their sensitivity to the increased 

memory load, could not be readily explained by the existing discrete-slots model, in which 

the amount of available memory resources is set at a constant value across set sizes, as well 

as across stimulus formats. However, by incorporating a probabilistic grouping process 

into the discrete-slots model to allow multiple items to be compressed into a coherent 
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memory unit, I could successfully account for the observed changes in information 

capacity across set sizes and across stimulus types while keeping the number of working 

memory slots constant within an individual.   

In Chapter 4, I investigated the role of perceptual organization mechanisms in 

improving the efficiency of VWM for storing orientation information. I found substantial 

variability in the magnitude of delayed estimation errors across randomly generated arrays 

of oriented elements, which was highly consistent across participants and across stimulus 

types. To account for this display-specific effect on VWM performance, I developed a 

Gestalt-inspired model with multiple perceptual grouping mechanisms to detect the 

presence of different types of structure in these displays. This involved specifying 

mechanisms to encode local similarity and cocircularity relationships between pairs of 

items, as well as the global radiality/circularity pattern across the displays. This model 

could account for 50.5% of the variance in VWM performance across grating displays, and 

65.4% of the performance variance across line displays. These results demonstrated that 

the observers can exploit perceptual grouping cues even from the arbitrary arrangements of 

orientations, allowing for a highly efficient storage of orientation information in VWM.    

 

The relationship between visual grouping and summary statistics 

Studies of visual perception have shown that observers can quickly and accurately 

compute statistical information about multiple objects in a scene, such as the average 

orientation (Alvarez & Oliva, 2009; Parkes, Lund, Angelucci, Solomon, & Morgan, 2001), 

location (Alvarez & Oliva, 2008), and size (Ariely, 2001; Chong & Treisman, 2003) of 

multiple elements in a briefly presented display. Of potential relevance, a recent study 

found that the orientations conveyed by line stimuli can be more efficiently averaged than 

grating orientations (Choo, Levinthal, & Franconeri, 2012). One might wonder if VWM 

capacity advantage for line orientation is due to the fact that such summary information is 

more readily accessible from line stimuli than from grating stimuli.  

However, the ability to hold multiple pieces of information in VWM and the ability 

to extract summary statistics from a display represent two distinct cognitive abilities. A 

typical VWM task requires the individuation of each object in the display, by retaining 

precise information about the feature and spatial location of each object, whereas the 
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averaging task requires abstraction, discarding information about individual items so that 

attentional and working memory resources can be freed up to focus on encoding and 

maintaining a more accurate representation of ensemble statistics (e.g., Feigenson, 2008; 

Halberda, Sires, & Feigenson, 2006). I argue that the representation of the mean feature 

value, apart from the individual features, can only be useful as a secondary buffer in a 

delayed estimation task, as it may allow the observer to make an informed guess about the 

probed item when that item is not individually represented in working memory. If 

information can be redundantly coded at multiple levels of abstraction (Brady & Alvarez, 

2011), as an item and as an ensemble, then it would always be adaptive to use all of the 

independent sources of information to improve the overall accuracy of estimation across 

trials.  

Although the summary statistics can be useful if the feature values in a display tend 

to be highly correlated, allowing VWM to take advantage of the learned statistical 

regularities (e.g., Brady, Konkle, & Alvarez, 2009), such summary information is far too 

coarse to meaningfully enhance performance in a delayed estimation task with many 

randomly generated stimuli. A reliance on the mean feature value can lead to an accurate 

response if, by chance, most items in the sample array have highly similar feature values, 

which would serve to reduce the frequency of extreme errors (i.e., random responses). 

However, such benefits would occur on a only small proportion of trials in our task, since 

the feature values of each of the six items were highly variable and independently 

generated. As the set size increases, the information shared between each item and the 

mean becomes smaller, reducing the benefit of this additional source of information. 

Therefore, this global summary representation is unlikely to produce the pronounced 

increase in VWM capacity for line orientation.  

While the global mean and variance statistics could not have played a major role in 

enhancing performance for line stimuli over grating stimuli in general, the gist 

representation can account for the whole-array probe benefit in change detection for lines 

compared to the single-item probe condition (Chapter 2, Experiment 4). Previous studies 

have suggested that observers are better at detecting changes that alter the global statistics 

of the display, such as the mean or variability of colors (Brady & Tenenbaum, 2013; see 

also Brady & Alvarez, 2015b). According to Brady and colleagues, such summary 



 

  104 

information can boost change detection performance even in the absence of information 

about the feature values of individual items, and can thereby inflate the estimated capacity 

of working memory. In my change detection tasks, the observers might have noticed a 

change in the mean line orientation across displays or an increase/decrease in the 

variability of the orientations contained in the whole-array probe, even though they may 

not have been aware of exactly which item had undergone a change. Such gist information 

would increase the probability of correct “hit” responses for the whole-array probe, but 

cannot account for the differences between line and grating performance in the single-item 

probe condition for which item-specific information is required. 

This summary statistics account is different from my visual grouping account, 

according to which grouped line items held in VWM are disrupted due to the presentation 

of a single-item probe. The visual grouping account suggests that the whole-array probe 

provides a more accurate estimate of the number of line items initially encoded in VWM, 

whereas the single-item probe underestimates this capacity. Phenomenally, the location of 

the changed line item on the whole-array probe would pop up, without having to rely on 

gist to make a guess. It remains an open question which of these two accounts correctly 

characterizes the level of awareness of individual items on the whole-array change 

detection. One way to test these accounts would be to compare the performance between 

change detection and change localization for line stimuli, with the whole-array probe. 

While the whole-array probe benefit in change detection for line stimuli can be explained 

either by the summary representation or by the grouped item-representation, the latter 

seems to provide a more parsimonious account of both the large capacity advantage for line 

stimuli and the sensitivity to the probe stimulus in change detection for lines. 

 

The relationship between visual grouping and ensemble representations  

Ensemble representation is used in the literature as an umbrella term to refer to a 

variety of concise visual representations, from the simple statistical summary of a scene 

(e.g., the mean stimulus location in Alvarez & Oliva, 2008) to a higher-order spatial layout 

provided by the clustering of similar features into distinct regions or textures, to so-called 

spatial ensembles (Alvarez & Oliva, 2009; Brady & Alvarez, 2015a; Brady & Tenenbaum, 

2013). The latter type of ensemble representation is less gist-like and more configural in 
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nature, essentially determined by similarity and proximity grouping principles. For 

example, a display can be summarized as two distinct regions of warm and cold colors 

(Brady & Tenenbaum, 2013) or two distinct textures of Chinese characters and 3D cubes 

(Brady & Alvarez, 2015b). Compared to the global mean or the variance statistics, spatial 

ensemble representations are believed to preserve more specific featural and spatial 

information, thereby providing more useful information for correct estimation of individual 

items. Thus, there is a good deal of conceptual overlap between the spatial ensemble 

representation proposed by Brady and colleagues and the perceptual groups defined by 

similarity and proximity (Chapter 4). 

However, such similarity-based ensemble representations cannot fully capture the 

rich spatial structure present in arrays of oriented elements, comprised of higher-order 

configural information, which can be detected by perceptual grouping mechanisms 

sensitive to cocircularity, radiality, and symmetry. While grouping based on texture 

requires high feature similarity or parallelism, grouping based on contour (i.e., by a smooth 

variation of feature values along a path) or shape provides a means to efficiently represent 

elements that are not necessarily similar to one another. For example, even a heterogeneous 

set of orientations can be represented by a highly efficient code if all elements lie tangent 

to a common circle or are aligned with the radial axis of the array. In my Gestalt-inspired 

model of VWM performance for orientation, these configural properties are processed by 

grouping mechanisms sensitive to the precise geometric relationships among the items, and 

VWM’s sensitivity to each property is revealed concretely in the form of local orientation-

tuned grouping functions. Thus, the present work goes well beyond previous work on 

ensemble representation that relies on the global mean or local feature similarities, and 

provides concrete evidence that VWM can exploit even richer configural properties in the 

display. 

 

Implications for current models of VWM capacity 

Recent research in VWM has been driven by two broad categories of research 

questions. One domain concerns characterizing the capacity limitations of VWM and 

understanding why such limitations arise, especially through the development and testing 

of different working memory models. Another major domain of inquiry concerns 
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understanding what information is represented in VWM and how it is organized. Even 

though these two areas are potentially relevant to one another, they have been studied 

separately for the most part. The critical difference between the two approaches lies in 

what constitutes a representational unit in VWM.  

Most theories of VWM share the fundamental assumption that individual visual 

objects, or items, are represented by independent memory units. A discrete-slots model of 

VWM proposes that VWM can hold no more than 3 or 4 discrete objects at a time (Luck & 

Vogel, 2013, for review), while the continuous-resource view proposes that there is no 

upper limit on the number of objects that can be held, but that the distribution of finite 

memory resources across all of the objects in the memory array leads to a reduced quality 

of stored representations (Ma, Husain, & Bays, 2014, for review). In yet another account of 

VWM, the capacity of VWM is specified by both the visual information load of each 

object and by the number of objects, such that the working memory capacity tends to be 

greater for simple objects and tends to be reduced for more complex objects (Alvarez & 

Cavanagh, 2004). A common theme across all of these theories of VWM is the assumption 

that individual objects are stored as independent memory units, which allows for a 

quantification of the amount of stored information in terms of the number and/or precision 

of memory for each stored item.  

The present work challenges the fundamental assumption of item-based memory 

units, and suggests that a variable number of items can form a coherent memory unit 

depending on the strength of visual grouping. The modeling work I presented in Chapter 3 

(the slots-plus-averaging model with grouping) demonstrates that the large difference in 

the VWM capacity estimates between grating and line stimuli can be explained by more 

efficient compression of the line displays into fewer memory units, leading to an apparent 

lack of a fixed item-limit for line stimuli. Moreover, probabilistic visual grouping between 

pairs of items can account for the relatively shallow decline in VWM performance for line 

stimuli as a function of increasing set size, which the existing discrete-slots model fails to 

capture. By incorporating probabilistic grouping, the new discrete-slots model allowed for 

some fluctuations in memory precision across trials due to stochastic variability in the 

effective memory load (i.e., number of groups), and hence, a variable number of slots 

assigned to each group. Trial-to-trial variability in memory precision and the lack of fixed 
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item-limits are two key aspects of VWM performance that are readily captured by 

assuming a continuous and variable resource, as was proposed in the variable precision 

(VP) model (van den Berg et al., 2012). The present modeling work suggests that such 

aspects of VWM performance can be also explained by the variability in the allocation of 

discrete slots to perceptual groups that are detected in individual displays. The model I 

have developed provides a compelling account for why the precision of working memory 

performance will vary across trials and especially across displays, in a manner that is not 

addressed by variable precision model that assumes a stochastic distribution of memory 

resources across items and trials.  

Other researchers have emphasized going beyond an item-based approach of 

studying capacity limits, and focusing on the encoding of higher-order information in 

VWM, to examine how structured representations influence VWM performance (Brady, 

Konkle, & Alvarez, 2011, for review). These studies have contributed to uncovering 

various contextual effects in VWM performance even in tasks using simple arbitrary 

stimuli, such as evidence of a reliance on summary statistics as described above. This work 

has provided important evidence to challenge the conventional notion that individual items 

in a display are represented entirely independently of one another in VWM. However, the 

structured representations characterized in these studies are assumed to operate 

independently of the severe limits of working memory capacity, and issues of how the 

formation or the utility of such representations might interact with the individual’s working 

memory capacity remains unresolved. In the present work, I focused on the extent to which 

the item-level information capacity of VWM can be increased by such structured 

representation. In my SA model that incorporated grouping, the representations of 

individual items are integrated into a higher-order visual group, while preserving the item-

specific feature and location information. These visual groups serve as effective memory 

units (i.e., chunks), such that the storage of groups of different sizes is subject to the same 

capacity limit of working memory. Thus, the present research is a novel attempt to bridge 

these two lines of research – one that focuses on the capacity limit, and one that focuses on 

the contents and higher-order structures – by integrating the effects of visual grouping with 

the limited capacity of working memory, a fundamental characteristic of this cognitive 

function.   
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Comparison with other models of the organization of VWM 

Recently, a handful of models have been proposed with the goal of accounting for 

systematic variability in VWM performance based on contextual stimulus factors (Brady & 

Alvarez, 2015a; Brady & Tenenbaum, 2013; Orhan & Jacobs, 2013). In Orhan and Jacobs’ 

(2013) probabilistic clustering theory (PCT), VWM uses organizational processes that 

assign clusters or partitions for a set of items in an array, based on the clustering of noisy 

estimates of feature values (or locations, for spatial memory). This clustering process is 

implemented via a Dirichlet process mixture model, which automatically infers the 

probability distributions over all possible partitions of the items. This allows an item to be 

represented at multiple granularities simultaneously. For example, an item can belong to a 

cluster of its own (item-level) or a cluster that contains all of the items (display-level) or 

any levels in between. As a result, a representation of an item depends on the feature values 

of all of the other items on the displays, as well as its own. The probabilistic clustering 

theory predicts biases in estimates of items toward the mean of the cluster, as well as 

correlation between the estimates of items that are assigned to the same cluster, because the 

presumed observer treats the items within a cluster as arising from the same object. Both 

predictions were confirmed by the behavioral data. In contrast to the item-limit model, the 

probabilistic clustering model does not impose a fixed capacity limit on the encoding of 

items, nor on the maximum number of clusters that items can be grouped into. All items 

are automatically assigned to multiple levels of clusters, such that no item is completely 

lost, and the variable partitions of a display lead to the variable precision of clusters and 

memories.   

While the probabilistic clustering model and my Gestalt-inspired model (Chapter 4) 

are distinct in terms of their underlying architectures, as well as the aspects of VWM 

performance they seek to explain, there are some similarities between them. In the 

probabilistic clustering model, clustering entails a loss of individuating information about 

each item, thereby introducing a bias toward the mean of similar items. At the same time, 

clustering of similar items enhances the precision of the cluster, which implies that an 

optimal clustering of similar items can lead to a reduction of the expected error of the 

estimates. My Gestalt-inspired model revealed that strong similarity grouping cues in a 

display led to a reduced overall RMSE for the items in the display. This could reflect an 



 

  109 

optimal trade-off between the biases in the item estimates toward the group mean and the 

enhanced precision of memory for the grouped items. In addition, the probabilistic 

clustering model integrates over all possible partitions of the display, such that any given 

item’s representation is dependent on all other items. In my model, display-level similarity 

is calculated by averaging across all pairwise similarity of items in a display. Both feature-

based clustering and similarity grouping is consistent with the visual system’s parallel 

detection of feature similarity across all image elements.  

On the other hand, my Gestalt-inspired model offers novel predictions about the 

interaction of proximity and feature similarity, and provides well-specified mechanisms to 

account for other grouping cues, such as cocircularity and radiality. In the probabilistic 

clustering model, clustering was based on a single task-relevant feature dimension, such 

that orientation memory was affected by orientation similarity, and location memory was 

affected by spatial proximity. My model results demonstrate that grouping among similar 

features depends on their spatial proximity, which yields a prediction that dependencies 

between the two feature values reported in the same trial should be strongest for two 

nearby items, and the two reported feature values should become more independent of each 

other as they are more separated in space. Moreover, such dependencies should also be 

observed between pairs of highly cocircular orientations, which would show systematic 

biases toward a more cocircular orientations, rather than their mean orientation.   

Brady and Alvarez (2015a) have proposed a similar probabilistic model of 

structured representations in VWM, based on their characterization of working memory 

performance for a set of displays containing 3 color patches. As in Orhan and Jacob’s 

probabilistic clustering model, Brady and Alvarez’s hierarchical Bayesian model considers 

all possible clusters (i.e., ensembles) of items in a display, which are integrated in the 

observer’s estimates of individual items. These multiple, interacting levels of 

representations could explain some of the variability in color estimation performance 

across displays and items. One modification from the probabilistic clustering model was 

the introduction of a guessing component to account for memory failure in delayed 

estimation. They assumed that the clusters containing more items are less likely to be 

corrupted, such that clustering of more items allows more items to be stored in VWM. The 

mechanism behind the effect of clustering on guess rate remains unexplained, but this 
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essentially allows the clusters to increase VWM capacity at the cost of introducing biases.  

My Gestalt-inspired model was applied to the overall error scores (RMSEs) of the 

displays rather than the estimates of the number of remembered items (K) from a display 

and their precision (SD), because there was a modest trade-off between these two estimates 

across displays. A post hoc analysis indicated that higher model estimates of pattern 

strength were associated with higher K estimates for that display, whereas there was no 

clear relationship between pattern strength and display SD estimates. Thus, the reduced 

RMSE scores for high-similarity displays could be due to a large benefit in reduced guess 

rate that outweighs the modest cost of introducing biases in the individual items.  

All of the models described above, including my Gestalt-inspired model, can 

successfully characterize some of the systematic variability in VWM performance 

observed across displays and items. What remains poorly understood, however, is the 

relationship between one’s working memory capacity and the utility of such grouping 

processes in enhancing VWM performance. In Orhan and Jacob’s probabilistic clustering 

model and Brady and Alvarez’s hierarchical Bayesian model, the clustering process 

operates on the noisy perceptual samples that depend on both sensory and memory noise, 

but the clustering process itself is controlled by a separate set of parameters in the Dirichlet 

process. This implies that the clustering process and limited working memory capacity 

comprise two separate components of VWM. The precision of the inferred clusters, which 

is a critical factor determining the observer’s performance in estimating of individual 

items, is defined in an obscured way, independent of the observer’s sensory/memory 

encoding precision. Thus, it is unclear how much one can benefit from the use of such 

clusters in terms of overall VWM accuracy, as clustering of two or more non-identical 

items would always introduce biases in the estimates of the item.  

The optimal clustering strategy may depend on the level of memory noise, which in 

turn likely depends on one’s sensory precision and working memory resources. If the 

perceptual samples are highly noisy (e.g., due to a large set size), the benefit from the 

reduced variance of the cluster would be large enough to outweigh the bias introduced by 

the clustering. On the other hand, the trade-off between bias and variance may be 

suboptimal if the estimates are highly precise. This raises the possibility that individuals 

with low VWM capacities might be the ones who can benefit the most from clustering, 
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whereas individuals with high VWM capacities might do better by relying on precise 

representations of individual items. The relationship between VWM capacity and a 

person's sensitivity to perceptual grouping cues could be a fruitful area of research where 

the notion of capacity limit can be integrated with the structured representations.   

The probabilistic clustering model and the hierarchical Bayesian model are 

computational models that can generate response distributions and can be fitted directly to 

the observers’ psychophysical data. On the other hand, my Gestalt-inspired model (Chapter 

4) was a statistical model, which sought to describe the relationship between the observed 

performance and the presumed perceptual grouping mechanisms. This model serves as 

good starting point for identifying a set of principles that can explain the variability in 

VWM performance across displays. It will be important for future studies to test this 

model’s predictions on a novel set of stimulus parameters. Future studies could also 

incorporate insights from the current model and implement a computational model that can 

take the stimulus variables into account (cf. Pratte, Park, Rademaker, & Tong, 2017) and 

generate responses based on multiple perceptual grouping processes, as well as the 

allocation of working memory resources. Such a model could be fitted to an individual 

participant’s delayed estimation data, allowing for separate estimation of the participant’s 

working memory capacity and the efficiency of the perceptual organization process.  

In chapter 3, I developed a discrete-slots model with probabilistic grouping in order 

to characterize the overall benefit of grouping in terms of the capacity and precision of 

VWM, rather than the effects of stimulus configuration and perceptual organization. As it 

turned out in my subsequent study, the effects of stimulus form (grating vs. line) revealed 

the operation of very similar perceptual grouping mechanisms across the stimulus forms. If 

common perceptual grouping mechanisms operate in both cases, then what can account for 

the overall advantage in memory capacity for lines over gratings? The enhanced storage 

efficiency for lines over gratings can be still considered as arising from visual grouping 

mechanisms, given that this benefit depended on the simultaneous presentation of multiple 

line items (Chapter 2, Experiment 3) and that the magnitude of the benefit increased as the 

memory array contained more items to be remembered. These observations suggest some 

kind of facilitative interactions between multiple line items held in VWM, which allow 

them to be treated as a functional memory unit by VWM.   
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Conclusions 

A prominent theory of visual working memory proposes that there is a fundamental 

limit on the number of items that can be held in memory. An underlying assumption is that 

these capacity limits are invariant to the specific visual properties of the stimulus to be 

encoded. The present work challenges this longstanding assumption, by demonstrating that 

the capacity of VWM can be greatly expanded depending on the degree to which stimulus 

and display factors allow the observer to perceptually group multiple items into higher-

order patterns. The dramatic effect of stimulus form on memory capacity requires a 

reconsideration of what constitutes an item, or a chunk, in the active maintenance of visual 

information. The information capacity of visual working memory cannot be considered 

separately from the ways in which visual information can be efficiently compressed by the 

visual system. The computational models developed in this work reveal how specific 

perceptual grouping mechanisms can organize oriented elements into larger configurations, 

thereby alleviating the severe limitations of working memory. A full understanding of the 

architecture of VWM thus requires characterization of both the nature of the contents being 

represented and the fundamental limitations in working memory capacity.  
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