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Chapter 1 

1 INTRODUCTION 

 

1.1  The Non-renewable Earth 

Worldwide usage of non-renewable energy is not sustainable given current growth 

in energy demands.  For this reason, alternative energy sources need to be developed 

alongside current sources, so that a global energy crisis is averted when the time comes that 

energy can no longer reliably be sourced from non-renewable resources (estimated to occur 

within the next 53 years).
1
  Several renewable sources, such as hydro, wind, geothermal, 

and solar have been studied in regards to meeting this need.
2
  Of these, solar stands out as 

an extremely promising candidate for several reasons.  Firstly, the amount of energy which 

strikes the earth yearly from the sun is estimated to be nearly 10,000x the current global 

energy demand.
3
  Secondly, the application of this form of renewable energy could be 

easily adapted to open land, or to urban environments by affixing solar cells to the roofs of 

buildings or integrating them into windows.
4
  Finally, the harvesting of solar light is an 

option which, in recent years, has become increasingly affordable for consumers in 

developed countries, and stands to be deployable for developing countries as well. 

 Currently, the most commonly utilized type of solar cell is made of silicon.  This 

material has served well as an entry into utilizing solar energy, but there are factors which 

are major drawbacks for its use.  For instance, in order to absorb enough light to make a 

usable solar cell, layers of silicon ~ 100 μm thick must be used to achieve 90% light 

absorption.
5
  This is in contrast with other materials which have the capability of absorbing 

the same amount of light while using 0.05-0.40 μm thick layers.
6
  The theoretical 



 

2 

 

maximum efficiency for single p-n junction silicon cells is 33.7%,
7
 while solar cells 

available for purchase generally show efficiencies in the range of 13-24%.
8,9

  Lastly, 

utilizing silicon in solar requires a large amount of energy in processing, and consequently 

time and money, which must be invested in the purification of Si and manufacturing of the 

solar cells. 

 Given the restrictions of solar cells using pure Si, resources have been invested in 

developing new materials for solar energy capture which possess direct band gaps and 

lower costs of manufacturing.  Of considerable interest are colloidal semiconductor 

nanoparticles.  Nanoparticles (NPs), very small pieces of material with a diameter of 1-100 

nm, are desirable for use in solar cells because they are easily solution processable and can 

have  very high extinction coefficients.
10

  Added to this, many of these materials from 

which NPs are fabricated, such as CdSe and PbS, absorb well in the visible range of light, 

and possess tunable bandgaps via quantum confinement.  The combination of these 

qualities allows for a small amount of easily processed material to be made and tuned to 

specific parameters to achieve desired properties for a solar cell.  Figure 1.1 outlines the 

tremendous progress in the improvement of solar cell efficiency comparing quantum dot 

(QDs, a type of NP under quantum confinement [vide infra]) solar cells to traditional 

silicon solar cells. 

Utilizing solar cells to directly convert the sun’s energy into electricity is the most 

straightforward method of exploiting photonic energy, but another possibility is through 

photocatalysis.  In a traditional solar cell, the electricity generated by the sun must be 

stored in a battery.  By utilizing the sun’s energy to instead directly reduce water into 

hydrogen gas, the energy is being stored in the chemical bonds of H2 as a fuel.  This 
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method of energy storage is promising because compressed H2 has a very high energy 

density, and the oxidation of H2 with O2 only produces water vapor as a byproduct.
11

  

While safe H2 storage still remains a challenge, methods of producing H2 using sunlight 

and H2O via NPs of various types have been reported.
12–16

  Forward progress in this field 

requires the ability to effectively split water into H2 and O2 utilizing a method which 

harnesses clean energy in order to produce this energy source. 

 

 

 

 

 

Figure 1.1 Solar Cell Efficiencies.  The trend in increasing efficiencies of typical solar 

cell types shown since 1975.  Si cells are common in commercial production, but have 

not seen near the improvement of multijunction, thin-film, or photo-voltaic technology.  

This plot is courtesy of the National Renewable Energy Laboratory, Golden, CO. 
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The following introductory sections will cover the fundamentals of nanoparticles 

including synthesis, surface interactions and challenges, and quantum confinement effects.  

Fundamental synthetic details must be understood in order to control, not only of the 

resulting size and morphology, but also the chemistry between the nanoparticle surface and 

surrounding environment.  Further knowledge of the intrinsic materials properties are 

necessary when considering quantum confinement, and how changing electronic properties 

of a material will affect the ultimate application.  Further discussion of the applications of 

these materials to solar cells and photocatalysis applications will follow. 

 

1.2  Overview of Nanoparticles: Synthesis and Properties 

  NPs can be synthesized from many different types of materials including 

metals, metal compounds, semiconductors, and insulators.
10,17,18

  While intense scientific 

research has been undertaken on these structures in recent decades, their use was 

unknowingly perpetuated in glass making as early as the fourth century.  Au NPs feature 

light absorption around 520 nm due to surface plasmon resonance, a phenomena which is 

caused by oscillations of electrons on the surface of the material, resulting in a red or pink 

coloration.
19

 This property was used to color the well-known Lycurgus cup and is also used 

in stained glass.  The unique properties of nanoscale materials were, much later, 

specifically recognized by Michael Faraday as he noted that Au, when pressed into thin 

sheets, possessed unique properties not seen in bulk pieces of Au.
20

  Later in 1959 the 

famed physicist Richard Feynman presented a talk titled There’s Plenty of Room at the 
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Bottom, where he heralded the unexplored realm of very small structures as one with vast 

potential for discovery.
20

  The following decades saw an increased effort to both synthesize 

and characterize materials of smaller sizes for various applications. 

 

 

Figure 1.2: Visual Depiction of semiconductor photoabsorption.  A) Upon the 

absorption of the appropriate amount of energy, the electron is excited from the valence 

band to the conduction band.  B) An exciton pair is formed.  At this stage the charges 

may be used to perform oxidative or reductive processes.  C) The electron may 

recombine with the hole, giving off energy equal to that of the bandgap either as a 

photon (shown) in emissive radiative recombination or through heat in non-radiative 

recombination. 

 



 

6 

 

While different types of NPs have unique applications, semiconductor NPs are of 

particular interest for solar energy capture.  In a semiconductor, charge carriers are only 

generated upon the input of energy at a value equal to or greater than the band gap of the 

material.  The amount of energy required is intrinsic to the particular material.  For 

instance, if CdS is bombarded with visible light, an exciton pair (a negative charge 

[electron] in the condution band and positive charge [hole] in the valence band) will be 

generated.  This is because the bandgap, or amount of energy required to generate an 

exciton pair, is 2.42 eV and falls within the energy spectrum of visible light at 512 nm.
21

  

At this point the electron and hole can be used for reductive and oxidative processes, 

respectively, or the electron can fall back to ground state and emit heat or a photon of light 

(Figure 1.2).   

 

1.2.1 Nanoparticle Synthesis 

NPs can be produced through top down methods such as the laser ablation or 

mechanical grinding of bulk materials
22–24

 or by bottom up methods such as sol-gel 

techniques, self-assembly, and chemical colloidal synthesis.
25–28

  In the remainder of this 

dissertation, bottom-up colloidal NP synthesis will be the focus.  In particular, II-VI 

chalcogenide NPs, such as CdS, CdSe, and PbS, are highlighted extensively due to 

excellent material stability, appropriate band position for water reduction/oxidation, 

energetically relevant quantum confinement properties, and previous research done on the 

fundamental physical and optical properties of the materials.  Colloidal NP syntheses are 

performed in organic solution and involve long ligands, which serve to stabilize the NP 

surfaces as they form.  The formation of NPs can be understood by LaMer nucleation 
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theory, which describes the trade-off between the favorable change in Gibbs free energy of 

forming a solid versus the unfavorable change in creating high energy surfaces.  The 

equation below demonstrates this: 

Δ𝐺𝑁(r) = 
4

3
𝜋𝑟3Δ𝐺𝑉 + 4π𝑟2γ  

Eq. 1.1 

where r represents the radius of the NP, Δ𝐺𝑉 represents the free energy of forming a new 

solid, and γ represents the surface energy of the solid.  The formation of a material is 

favorable, and therefore the first term of this equation will be negative.  However, exposed 

surface states to the outside system will cause more interactions requiring surface 

passivation, thus being a positive term.  Ligands are used to lower this surface energy term 

and stabilize smaller particles.  This explains why larger particles are more stable, since the 

surface area to volume ratio increases as the size of a NP decreases. 

Two methods are generally used in colloidal semiconducting NP syntheses: heat-up 

and hot injection.  In a heat-up reaction, all reagents are in the reaction flask 

simultaneously as the temperature is increased.  This causes the formation of the precursors 

of the cationic and anionic components of the compound semiconductor in situ.  Once a 

temperature is reached that provides sufficient activation energy to overcome the energy 

cost of the formation of new surfaces, the molecular species will begin to grow over a 

period of time into molecular clusters.  This process continues until the precursors are 

consumed, equilibrium with dissolved compounds is reached, or the heat is removed.  The 

hot injection method involves the separation of 



 

8 

 

cationic and anionic precursors.  In this method one solution is injected into a second 

mixture which has been heated to a temperature above that at which growth occurs.  This 

causes a fast nucleation and growth step relative to the heat-up method.  The QDs will 

grow until the precursor concentration falls below the saturation point.
29

  A rapid 

nucleation separated in time from growth leads to monodisperse NP samples.  A 

visualization of these processes relating concentration and time to growth can be seen in 

Figure 1.3.   

 

 

Figure 1.3: Visual Depiction of LaMer Nucleation Theory.  During NP synthesis 

once the concentration of precursors reaches a critical point (between Cmax and Cmin in the 

figure, known as super saturation) nucleation occurs.  Once the concentration falls below 

the nucleation threshold (Cmin) nanoparticles will continue to grow until precursor 

consumption causes the concentration to drop below saturation (Cs).  Reproduced with 

permission from reference 29. 
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Another growth phenomenon which can occur is known as Ostwald ripening, which 

happens when the precursor concentration is depleted.  Here smaller particles will dissolve 

and their ions are added to other, larger particles.  This process is energetically favorable 

because the dissolution of small particles reduces the ratio of surface area to volume, thus 

lowering overall energy.  While this causes an overall increase in average size, Ostwald 

ripening also causes an increase in the standard deviation of the size and results in 

polydispersity.  This can be detrimental in some applications which require monodispersity 

for proper band alignment or NP packing. 

Post either heat-up or direct injection synthesis, NPs are subjected to precipitation 

to remove byproducts.  These byproducts could be unreacted precursors, degradation 

products from precursor decay, impurities from technical grade surfactants, and excess 

surfactant used during synthesis.  Since the NPs from either a heat-up or hot injection 

method are coated in a corona of organic ligands, the particles are soluble in non-polar 

organic solvents.  The surface ligands are typically long chain natural products such as 

oleic acid or oleylamine due to their availability, price, and lipophilicity.  By adding a polar 

solvent such as methanol, ethanol, isopropanol, or acetone to the solution containing the 

NP, the NP will agglomerate with one another and precipitate from solution.  The particles 

can then be separated from solution via centrifugation and supernatant removed. 

A crucial factor in determining appropriate ligands for synthesis is that of binding 

strength to the material being made; during NP synthesis, a stronger or weaker binding 

molecule may 
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produce a particle which is larger or smaller, or vary the morphology of the final product.  

When considering bonding types, three different categories are commonly described: L, X, 

and Z, which correspond to neutral and anionic donors, and electron acceptors as shown in 

Figure 1.4.
30–32

  Examples of L-type ligands are alkyl amines (such as olelyamine) or alkyl 

phosphines.  Common X-type ligands are organic carboxylates and phosphonates which 

possess a negative charge.  Z-type ligands are generally Lewis acids and typically 

 

 

 

Figure 1.4: Types of Ligand Binding.  Depiction of X, L and Z-type ligand binding to 

a NP.  Reprinted (adapted) with permission from reference 31. Copyright 2013 

American Chemical Society. 
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coordinate to an anionic site.  Z-type  (a cationic species paired with two X-ligands) ligands 

have been observed to act as a capping layer around a nanoparticle surface in lieu of direct 

bonding between a single ligand and the nanocrystal lattice.  It is important to remember 

these types of bonding interactions when designing experiments to control the size and 

morphology of the final product.  X-type ligands can also be present in an ion bound pair 

such as the interaction between a S
2-

 anion with an ammonium cation. These classifications 

are also important when considering ligand exchanges (vide infra). 

 

1.2.2 Nanoparticle Surface Characterization 

 In order for a NP to be useful in most applications, the interface with its outside 

environment must be understood and controlled.  Complex chemistry occurs that affect 

both the particle and outside environment.  For instance, formation of new bonds such as 

oxides on the NP surface can introduce trap states, which are new electronic states that can 

provide lower energy transitions, hindering quantum yields and charge transfer.
33

  Change 

in the structure of the ligand corona (for instance, the addition of charged functional 

groups, metal ions, or shortening of ligands) can also introduce trap states, and the colloidal 

stability of the NPs may also be reduced.  Further, leaching of metals such as Ag and Cd 

from NP surfaces is a possibility which can cause environmental and health concerns.
34

 For 

these reasons, extensive research has been devoted to the surface chemistry of NPs.  As the 

size of a NP decreases, the surface area to volume ratio increases; this fact is what makes 

NPs very active catalysts, as the surface sites are where chemical reactions occur.  Of 

continuing interest to the scientific community is the characterization of these surfaces with 

respect to both the crystallographic facets and the organic ligands which cover the NP 
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surface.  In order to get a full picture of the nature of a surface, techniques which analyze 

different aspects of NP chemistry must be performed and results compared. 

 When characterizing the inorganic core of NPs, common techniques used are 

transmission electron micrscopy (TEM), selective area electron diffraction (SAED), 

scanning transmission electron spectroscopy (STEM), energy-dispersive X-ray 

spectroscopy (EDS), STEM-EDS, X-ray diffraction (XRD), powder X-ray diffraction 

(PXRD), and computational modeling.
35,36

  TEM is a microscopy technique which utilizes 

electrons as “light” in a chamber under high vacuum.  Since the wavelength of an electron 

is quite small under the acceleration voltages used in TEM, NPs of very small sizes can be 

directly visualized.  The downside of this technique is that only elements which possess a 

sufficiently high Z number can be readily imaged, since the atoms must cause electrons to 

be scattered or diffracted which produces the image.  This hindrance can be overcome 

through the conjunction of EDS and STEM.  In STEM the electron beam is rastered across 

the sample and resulting data recorded for each point in two ways: dark field and bright 

field.  Dark field records scattered electrons from the sample surface, while bright field 

records in line with the electron beam, as in TEM.  EDS measurements record X-rays 

emitted due to electron irradiation at different energies which can be mapped to the ions 

which were struck.  SAED and XRD give direct crystal lattice information, though through 

diffracting different energy sources.
37

  SAED utilizes the diffracted electrons from a TEM 

to produce rings related to lattice parameters, while PXRD utilizes an X-ray source which 

illuminates a sample while the detector is moved at different angles to record incident X-

rays.  Combining direct imaging of NPs with information regarding the inorganic core 

through diffraction can then be supplemented with visualization of NP surfaces through 
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programs such as Visualization for Electronic and Structural Analysis (VESTA).  

Visualization of surfaces can help in identifying growth mechanisms or chemical reactivity 

by showing prominent crystal facets as charged or neutral. 

 To gain a complete understanding of a NP, the surface ligand systems must also be 

examined.  In colloidal NP systems, organic ligands coat the surface of nanoparticles 

resulting in a stable suspension in organic solvents.  During synthesis long chain organic 

molecules with a high boiling point are used, but these are often replaced afterwards to 

facilitate denser packing of particles in films and or charge transfer out of the inorganic 

core, or provide attachment points for biological probes such as DNA or proteins.
38

  

Perhaps the simplest way to probe organic molecules on NP surfaces is nuclear magnetic 

resonance (NMR), but this technique comes with limitations not normally seen in 

molecular NMR.  NMR utilizes radio frequency waves to cause the nuclear spin of nuclei 

to become excited, and then relax.  The energy of relaxation can be measured and is 

slightly shifted depending on the chemical environment surrounding the nuclei being 

investigated.  This allows for structural determination of molecules which are spin active 

such as 
1
H or 

13
C.

39–41
  Since NMR performed on molecules free in solution relies on a 

similar relaxation rate for all protons of a specific nucleus, and the NP core affects the 

relaxation rates of nuclei nearby, surface broadening causes protons (or other nuclei being 

observed) close to the NP surface to give signals broad enough that they are not visible.  

Protons of a sufficient distance from the NP core (for instance, the alkene peaks in 

oleylamine) are still visible.  Thus, NMR can be used to provide evidence of the existence 

of ligands containing peaks separated from the NP core, or to provide evidence of the 

absence of ligands used in synthesis.  2D NMR techniques such as diffusion ordered 
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spectroscopy (DOSY) and nuclear Overhauser effect spectroscopy (NOESY) allow for 

studies on the equilibrium between ligands which are bound or free on NPs.
39

  Other 

techniques used to observe surface ligands include X-ray photoelectron spectroscopy 

(XPS) which allows for observation of the oxidation states of atoms on the surface (thus 

providing evidence of functional groups or interactions with the crystal lattice), and 

thermogravimetric analysis (TGA) which allows one to determine the proportion by weight 

of a sample that makes up the organic shell versus the inorganic core.
42,43

 

Given that the topic of this dissertation is specifically focused on semiconductor NPs, 

optical spectroscopy techniques are also particularly important in characterization.  

Semiconducting materials employed in photovoltaics and photocatalysis often utilize 

visible light, as ultimate applications usually involve utilizing the sun’s energy to drive 

reactions forward.  Therefore, UV-Visible spectroscopy (UV-Vis) is used to measure the 

amount of light absorbed by a material.  This technique becomes very important when 

quantum confinement effects begin to shift absorption exciton peaks through the UV, 

visible, and near-IR ranges (vide infra). Fourier-Transform Infra-Red spectroscopy (FT-IR) 

is used to perform the same measurements, but for a broad region of the IR spectra.  

Information from IR gives stretching information which can be related to functional 

groups.  Finally, photoluminescence spectroscopy (primarily fluorescence) is used to 

measure the emission of NPs after excitation at a set wavelength.
44

  The ratio of the amount 

of light emitted to the amount of light absorbed is the quantum yield (QY).  This value is 

particularly important when assessing the best application for a material; a NP being used 

as a biological “tag” would require a high QY for visibility, but a NP being used in a 

charge transfer application would want charges to be moved into the ligands, resulting in a 
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“quench” in the QY.  NPs are known for possessing remarkably high QY values, which has 

made them a popular choice for biological imaging applications.
45

 

By combining all of these characterization techniques, an overall picture of a NP 

system can begin to be elucidated, allowing for the development of new NP syntheses and 

fine-tuning of ligand systems for new applications. 

 

1.2.3 Quantum Confinement 

Quantum confinement is a property which occurs in NPs when the size of the particle 

becomes smaller than the Bohr exciton radius (𝑟𝐵) of the material.  The Bohr exciton radius 

is a calculated intrinsic property of a material which represents the radius an exciton pair 

(hole and electron) will occupy in a bulk material upon excitation.
46

 The following 

equation can be used to calculate this value: 

 

𝑟𝐵 =
ħ2ɛ

𝑒2  ( 
1

𝑚𝑒
∗ +

1

𝑚ℎ
∗  ) 

Eq. 1.2 

 

where 𝑚𝑒
∗  and 𝑚ℎ

∗  represent the mass of the electron and the mass of the hole, respectively.
  

To envision at a molecular level what occurs when quantum confinement effects are 

observed, the linear combination of atomic orbitals (LCAO) can be employed.
47

  In a bulk 

material, thousands and thousands of orbitals comprise the valence and conduction bands.  

As the size of a material is reduced from bulk to the nano size regime, the number of 

orbitals comprising the frontier molecular orbitals is greatly reduced.  This results in 

discrete transitions of a higher energy as the number of orbitals is diminished and the 
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electronic properties of the material shift from a bulk state to a molecular one.  A 

representation of this is seen in Figure 1.5.
48

  It is important to take into account the 

difference between the mass of the electron and the mass of the hole when determining the 

position of the valence and conduction band.  As can be seen in the equation to calculate 

the Bohr exciton radius (Eq. 1.2), it is the inverse of the mass which is important in 

determination of rB.  Therefore, a smaller mass will have a larger effect on the movement 

of a band.  Given that the mass of electrons is generally much smaller than the mass of 

holes, conduction bands will move to a higher energy at a greater rate than the valence 

 

Figure 1.5: Quantum Confinement effects on Bandgaps.As NPs size decreases, the 

number of molecular orbitals decreases, causing the appearance of discrete energy 

levels.  Reproduced from reference 48. 
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band moving to a lower energy when quantum confinement effects are observed.  The Brus 

equation
49

 takes into account the particle in a box interaction as the increased attraction of 

the exciton changes upon decreasing particle size: 

 

𝐸𝑔 (r) = 𝐸𝑔
0 + 

ħ2𝜋2

2𝑟2  ( 
1

𝑚𝑒
∗ + 

1

𝑚ℎ
∗  ) - 

1.786𝑒2

4𝜋ɛ0ɛ𝑟𝑟
 

 

Eq. 1.3 

where 𝐸𝑔
0 is the band gap energy for the semiconductor, r is the radius of the NP, ħ is 

Planck’s constant, 𝑚𝑒
∗  and 𝑚ℎ

∗  are the mass of the electron and the mass of the hole 

respectively, ɛ0 is the permittivity of free space, ɛ𝑟 is the permittivity of the material, and e 

is the charge of an electron. 

 Since changing the bandgap of a semiconductor will change the amount of energy 

required to absorb a photon, the amount of energy emitted by a photon also changes.  This 

property has led to the use of QDs of different sizes (and thus emitting different colors) for 

labeling cells in tissue for bio-imaging.  The use of specifically functionalized QDs of 

different sizes, and therefore colors, allows the simultaneous labeling of multiple targets at 

once.  Further, the ability to tune bandgaps to specific sizes allows for tailoring of QDs to 

be used in devices to encourage charge transport, as discussed below.  The issue of charge 

transport is important for both device based and photocatalytic applications.
50

 

 

1.3  Nanoparticle Applications 

NPs have found niches in areas of science ranging from biology to physics.  Perhaps 
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one of the most widely known applications is that of biological imaging.  There are several 

reasons for this including the ability to alter the wavelength of particle emission through 

size tuning, functionalize surfaces with any necessary groups or biological entities such as 

antibodies, and eliminate photo-bleaching which is seen in traditional organic emitters.
51,52

  

Though much less studied, nanoparticles have also been shown to exhibit second harmonic 

generation (SHG).  SHG can be used to convert two photons of lower energy light into one 

photon of higher energy light.
53

  This is relevant in the area of biological imaging due to 

the SHG from collagen.
54

  While these fields continue to present interesting and useful data 

from a biological standpoint, the remainder of this dissertation will focus on the application 

of NPs in the areas of green chemistry, in particular that improving particles for 

photocatalysis and solar cells. 

The holy grail of NP catalysis is that of complete water splitting, meaning that the 

generated electron is used for reduction of water to H2 whilst the hole is used for the 

oxidation to O2.  It is necessary to note that complete water splitting has been successfully 

demonstrated in electrochemical cells, but since a potential must be applied to the cell it is 

not truly a green process.
55–57

  For this reason, much research has been invested in the use 

of abundant solar energy as the source to perform water splitting.
58

  Utilizing solar 
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energy inherently introduces challenges to the reduction/oxidation mechanisms, primarily 

by limiting the energetic driving force to the band gap of visible light and requiring charges 

to be trapped on very long timescales relative to that which is normally seen.  This is 

shown through the success of water reduction, but not oxidation, and the fact that reduction 

 

Figure 1.6. Energies and Half-reactions for Water Splitting.   A) Diagram showing 

the minimum energy required for water splitting in relation to the alignments of CdSe 

and CdS.  B) Half reactions of the water splitting reaction. 
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requires much less of an energetic driving force and occurs on much quicker timescales in 

comparison to water oxidation.
16

  Bandgaps of commonly used semiconductor materials 

and the half reactions for water splitting are shown in Figure 1.6. Further applications of 

photocatalytic NP processes have utilized charge transfer for water remediation,
59

 to 

combat biofouling of surfaces,
60

 or to break down organic dyes.
61

  These semiconducting 

materials possess the ability to coordinate or break down organic molecules and organisms 

which are otherwise difficult to remove.
62

 

QDs have been utilized in devices including optoelectronics such as laser diodes, 

light emitting diodes, and solar cells.  Concerning devices, the focus of this research is to 

improve the way in which QDs are used to fabricate a device such as a QD solar cells.  In a 

typical QDSSC (depicted in Figure 1.7)
63

, the QDs act as a photoabsorber which absorbs 

photons of light and separates the charges in order to generate a current.  This requires the 

replacement of the charge insulating ligands originally on the QD surface.  In a device, this 

process is generally performed via spin coating a solution of QDs onto a substrate, 

followed by removal of surface ligands in a low concentration 3-mercaptopropionic 

acid/methanol or ethanedithiol (EDT)/acetonitrile solution.  An illustration of this 

procedure can be seen in Figure 1.8.
64
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In order to have an efficient QDSSC, the QD film which is deposited must be 

uniform to facilitate charge transport.  The primary issue with the aforementioned 

deposition method is that the ligand exchange occurs post deposition of particles into a 

film.  This causes issues for multiple reasons including: solid state ligand exchanges on 

films can result in cracking as the inter-QD distance is drastically different after ligand 

exchange; surface leaching may occur during the exchange causing imperfect surfaces; the 

introduction of new molecular species in a dynamic environment can introduce new 

electronically active impurities;
65

 and complete removal of the native ligands is a 

challenge.
66

  Since ligand exchange to ligands such as MPA or EDT causes agglomeration 

of QDs if performed in solution, different methods of exchange are sought.  Previous 

attempts at developing new methodology have included inorganic ligand exchange as well 

as amide bond cleavage.
67,68

  Methods of cleavage reported herein will include the 

Fluorenylmethyloxycarbonyl (Fmoc) protecting group cleavage and photo-labile ligands. 

 

Figure 1.7. Depictions of various types of QDSSCs  A) metal-semiconductor, B) 

polymer-semiconductor, and C) semiconductor-semiconductor.  Reprinted (adapted) 

with permission from reference 63.  Copyright 2008 American Chemical Society. 
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1.4   Scope of Dissertation 

The focus of this dissertation will be to explain the importance of tailoring ligands for 

specific functionalities in the field of QD applications.  The first portion of the document 

will cover the design and both experimental and theoretical testing of a ligand to be used 

for the extraction of holes from QDs.  Hole extraction for oxidative purposes is a topic 

which, at this point in time, has been regarded largely as a nuisance rather than an 

opportunity.  While electrons have been successfully used for reduction, holes have simply 

 

Figure 1.8. Deposition of PbS solar cells.  PbS coated in native ligands and ligand-

exchanged in the solid state with EDT.  In this example ZnO and FTO are the electron 

transport layer and conductive substrate, respectively.  Figure reproduced with 

modification from reference 64. 

 



 

23 

 

been eliminated through the use of sacrificial electron donors such as methanol.  Chapter 2 

covers the synthesis and study of a ligand designed to extract holes and trap them in a 

bound metal center. 

  Chapters 3 and 4 will focus on facile ligand cleavage for superior film production in 

QD devices.  This will be accomplished through surface ligand modification.  In particular, 

this is in regards to the cleavage of ligands which have been exchanged in a colloidal 

matter.  By performing a complete exchange on particles in solution before shortening the 

ligands, films of a greater uniformity can be created.  This method is in contrast to previous 

techniques which rely upon the formation of films followed by ligand exchange.  Two 

methods will be discussed, one which involves the use of a mild base to cleave, and the 

other which utilizes light for cleavage.  The final chapter will address a new binding mode 

being investigated in our lab known as the “crystal-bound” binding mode.  Attention will 

be given to adapting this property to PbS and developing methods to control ligand  

functional groups.



Chapter 2 

2 DESIGN OF A HOLE TRAPPING LIGAND 

 

Light absorbed by NPs can be used to perform photocatalytic reactions, thus storing 

chemical energy in the bonds of molecules.  The most well-known example of this is the 

splitting of water to H2 and O2.  This chapter will cover attempts at adapting a colloidal 

semiconducting NP system towards utilizing photocatalysis for oxidative purposes.  All 

synthetic work was carried out in the Macdonald lab, while spectroscopic and 

computational work was performed by Kemar Reid from the Rosenthal group and Andrew 

O’Hara from the Pantelides group, respectively.  Data analysis and interpretation was 

performed in conjunction with all members.
69

 

 

2.1  Introduction 

With the growth in global energy demands comes the need for an alternative, clean 

energy source.
2,70

 Hydrogen gas has for the past few decades been heralded as a potential 

alternative-energy candidate owing to its high energy storage capacity and lack of 

hazardous byproducts upon combustion.
71

 The possibility of cleanly splitting water into 

hydrogen and oxygen gas has driven a broad field of research to investigate water 

splitting.
72–75

 Utilizing nanoparticle (NP) systems to perform water splitting has been under 

intense investigation, as NPs have increased surface areas, tunable valence bands (VB) and 

conduction bands (CB), and synthetic control over size and shape; these NP features 

provide the opportunity to study electronic level alignment of excitons in the nanoparticle 
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core vs organic ligands,
76

 and spatial attachment of multicomponent photocatalysts in a far 

more systematic manner.  

 The splitting of water into H2 and O2 has been demonstrated previously using both 

bulk and NP materials, the latter of which will be discussed in detail below.
15,77,78

  The 

issue with previously studied water splitting methods is that the methods require the 

application of a potential, and in these cases the energy source is likely non-renewable.  

Examples of this are the use of MoS2 grown on graphene and NiO/NaTaO3:La 

structures.
55,79

  Important information can be gleaned from these experiments, such as the 

latter case where it was shown that certain crystal facets promote H2 or O2 evolution.  The 

authors demonstrated that in a jagged crystal face the valleys of NiO/NaTaO3:La 

selectively oxidize water to O2, while the peaks reduce the water to H2 as in in Figure 

2.1.
80

 In this case the reaction was photocatalytic, but only under strong UV radiation 

which can only be provided through artificial means.  In order to have a renewable system 

which is also efficient, a broader wavelength range of solar radiation needs to be employed.    

 

Figure 2.1: Depiction of various crystal facets in NiO/NaTaO3:La NPs.  Water is 

preferentially oxidized at the valleys of the jagged crystal face, while it is reduced 

preferentially at the peaks.  Reprinted (adapted) with permission from reference 78.  

Copyright 2003 American Chemical Society. 
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 In developing catalysts for photocatalytic water splitting, well studied 

semiconductors have been at the forefront of device research for some time.  For example, 

CdS and CdSe/CdS nanorods (NRs) with attached metallic and metal oxide domains have 

been well studied for their ability to photoreduce water to H2.
15,77,78

 These systems and 

studies continue to suffer from limited stability of the particles and the requirement of 

sacrificial reductants, as the excited electron used for water reduction must be replenished 

from a molecule in solution.
74,81,82

 Recent reports have highlighted that the interaction of 

sacrificial reductants for hole removal from the rods is the primary factor affecting 

quantum efficiency of hydrogen production,
78

 and that near perfect photo-hydrogen 

conversion is possible.
15

  Improved methods for hole transfer are, therefore, needed which 

will ultimately lead to complete water splitting. The time for hole transfer to ligands on the 

surface of a CdS or CdSe/CdS NR with coordinated metal centers has been reported to 

occur as quickly as 0.1-1 ns; Alivisatos et al. showed hole transfer to chemically inert thiol-

tethered ferrocene derivatives,
83

 and Dukovic et al. demonstrated 0.1-1 ns hole transfer to 

an adsorbed Ru complex, followed by 10-100 ns recombination with the electron on the Ru 

metal center.
15

   Meanwhile, oxidative chemical transformations such as disulfide 

formation from thiolate ligands occur on the order of 10
4
 ns.

84
  It is also worthwhile to note 

that some of the fastest water oxidation on organometallic catalysts occur in 10
6
 ns.

 85
  In 

comparison, the time of electron transfer to a Pt tip on a CdSe/CdS rod has been reported 

as 0.001-0.01 ns.  The electron transfer and water reduction occurs on a much faster time 

scale than the oxidative processes.
13,86,87

   

The focus of this research was to develop a system which could extract holes from 

a NR system on the same time-scale that electrons can be shuttled to a Pt tip, while also 
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trapping the charges long enough for catalytic reaction to occur. Four points were 

considered in the design of a ligand for fast movement of holes: firstly, spatial overlap and 

continuous conjugation will promote ease of movement through the π orbitals of the 

ligand; secondly, a functional group known to be stable to oxidative processes while still 

being prone to hole trapping is necessary; thirdly, the ligand should contain a metal 

chelating moiety for potential catalytic reactions; and lastly, electronic transitions between 

the ligand and the CB should be disfavored in order to slow charge recombination.  All of 

these properties are possible in a dithiocarbamate (DTC) functional group directly 

conjugated to 2,2’-bipyridine (Bipy).  Previous reports have indicated that the DTC 

functional group is capable of sub-picosecond charge transfer when DTC is attached to 

known molecular hole acceptors.
88

  DTC functional groups have shown to chelate CdS and 

CdSe while also showing spatial and energetic overlap with the VB,
89–92

 while Bipy is a 

known chelator of water oxidation catalysts.
85

  A representation of this system is seen in 

Figure 2.2. 

Herein we report a theoretical and experimental study of a new ligand for CdS, 

2,2’-bipyridine-4-ylcarbamodithioate (DTCBipy), and its further chelation of Fe(II). Fe(II) 

was chosen as it readily undergoes one-electron oxidation, has analogous chemistry to 

highly active Ru based water oxidation catalysts, is identified as a water oxidation catalyst 

in its own right, and the nanorod-ligand-metal hybrid system was experimentally 

accessible.
93,94

  DFT calculations were performed using the Vienna ab initio simulation 

package (VASP)
95

 for a free ligand and for a slab of CdS with the ligand covalently bound 

on the surface in order to determine the existence of midgap hole acceptor states. 

Hybridized energy levels and hole transfer dynamics from the CdS surface state were 
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computed and indicated that successive hole transfer from the CdS to the ligand, then to the 

iron center, was faster than the radiative recombination from the CB to the VB of the CdS. 

Experimental assembly of the DTCBipy ligand system with chelated Fe(II) on fluorescent 

CdSe/CdS nanorods validated the theoretical predictions of the resulting absorbance 

spectra. The expected fluorescence quenches and Time Resolved Photoluminescence 

(TRPL) lifetimes were shortened due to the opening of new efficient non-radiative 

pathways. 

 

2.2  Theoretical Study 

In collaboration with Andrew O’hara from the group of Sokrates Pantelides, a 

computational comparison of the ligand and CdS energy levels gave encouraging results 

(see SI), and motivated more detailed calculations of a slab of CdS with the ligand 

covalently bound on the surface. The calculations of the pristine slab with a  0110  CdS 

facet do not have any midgap states. The optimized structure, as obtained by DFT energy 

 

 

Figure 2.2. Schematic representation of the proposed system; a 2,2’-bipyridine group is 

covalently linked via a dithiocarbamate functional group for the use of hole transfer to an 

attached metal center for catalytically oxidative reactions. Reprinted (adapted) with 

permission from refrence 69.  Copyright 2017 American Chemical Society. 
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minimization, for DTCBipy on CdS has two filled mid-gap molecular states just above the 

surface confined VB. The charge densities for the four relevant states are plotted in Figure 

2.3.  

The relevant electronic states exhibit differing levels of contribution from the 

ligand and CdS wave functions. The wave functions for the mid-gap molecular states are 

predominantly comprised of the molecular wave functions, with a small contribution from 

the CdS. Likewise, the VB contains partial contribution from the ligand but retains 

predominantly CdS surface character. In contrast, the CB is almost purely of CdS origin  

with even spatial distributions throughout. As result, only a small narrowing of the CdS 

band gap is expected. 

The optical absorption profile was obtained from the transition matrix elements 

between occupied and unoccupied states using VASP (SI). It was determined that the 

optical transitions between the mid-gap states and the CB minimum are dipole forbidden 

(with dipole oscillator strengths of less than 0.01), and consequently, the plotted calculated 

optical absorption (Figure A. 1.) has no peaks in the relevant wavelength region. The 

DTCBipy LUMO derived state sits significantly above the CB minimum of CdS and so the 

intramolecular excitations of the ligand are of sufficient energy to be occluded by the 

transitions of the semiconductor. 

Relevant for through-bond charge transfer, there is spatial overlap of the wave 

function of the surface confined VB and the mid-gap states, and the two have differing 

wave function symmetry. Therefore, we can expect allowed electronic transitions between 

the VB and mid-gap states to be dipole allowed if either contains a hole. Using the 

calculated oscillator strengths for transitions between each mid-gap molecular state and the 
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VB, we calculate a hole transfer time of 370 ns from CdS to the DTCBipy. It is important 

to point out that this calculation assumes a density of 0.34 ligands per nm
2
 whereas the 

experimental data (Table A. 1.) show the actual surface coverage on CdS NRs is almost an 

order of magnitude higher. As the hole acceptor states are localized molecular states, 

interactions between ligands should be a second order effect. This means rates can be 

scaled linearly with ligand coverage.
83

  Therefore, linearly scaling for the experimentally 

relevant coverage of 2200 ligands per CdSe/CdS NRs (vide infra), a theoretical hole 

transfer time of 167 ps is calculated. Since hole localization to the CdS surface occurs in 

times only slightly longer than localization to the CdSe core
96–100

 and the calculated rates 

for transfer to the ligands are much faster than exciton recombination for CdSe/CdS 

NRs,
15,83

 this implies that hole transfer to the ligand states via the CdS surface state is a 

competitive process to core localization. 

In the case of surface-attached DTCBipyFe(acac)2, a similar small red shift of the 

CdS bandgap is expected due to hybridization of the VB with ligand states. Seven filled 

mid-gap molecular states are expected (Figure 2.3)  States 2 and 4 are similar to the two 

mid-gap states in the Fe-free case. States 1, 2, and 3 demonstrate the conjugation of the 

dithiocarbamate group through to the Fe center. The upper three states are primarily due to 

molecular orbitals of the Fe d-states with surrounding atoms (essentially the three eg-type 

states of a d
6
 metal with octahedral coordination). These states are depicted in Figure 2.3 

and Figure A.2.  

As in the case of DTCBipy, all transitions between mid-gap molecular states of 

DTCBipyFe and the CB are dipole forbidden, and the oscillator strength is less than 0.01. 

The additional features seen in the absorption spectra (Figure A. 1) are due to 
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intramolecular excitations from the mid-gap states to unoccupied ligand molecular states 

above the CB. The transitions between the VB and DTCBipyFe(acac)2 mid-gap molecular 

 

 

Figure 2.3. Level alignment and Charge Densities of System ;(a) DTCBipy and (b) 

DTCBipyFe(acac)2 on the CdS surface. For DTCBipyFe(acac)2, only the three levels (1, 2, 

and 4) with the fastest calculated hole transfer rates from the CdS VB as well as the 

highest mid-gap state (7) are shown (see Supplementary Information for all). The arrows 

indicate the different optically allowed transitions between levels.  Reprinted (adapted) 

with permission from refrence 69.  Copyright 2017 American Chemical Society. 
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states are dipole allowed. The oscillator strength of these transitions was used to calculate a 

hole transfer time to a single ligand of 303 ns.  As above, if the rate is adjusted for the 

experimental ligand density, a hole transfer rate is 137 ps is calculated. This represents an 

increase of 22% in rate versus the non-metal center chelated form. In addition to the 

transitions from surface states to the ligands, tunneling from the quantum dot to the metal 

chelating ligands is in theory possible and the rate can be comparable,
83

 further enhancing 

the quenching of the quantum yield. Again, these rates are two orders of magnitude faster 

than band edge recombination of CdSe/CdS.   

The four lower DTC-dominated molecular states predominantly account for the 

hole transfer rate from CdS to DTCBipyFe, rather than the upper three Fe d-orbital 

dominated molecular states. Therefore, we calculated the transition rate between the upper 

three and  

lower four molecular states and found that the transfer rates are either similar or an order of 

magnitude faster compared to the initial transfer from the VB to the lower four states. This 

indicates that a hole can be transferred from the CdS VB to the upper Fe-based mid-gap 

states through a two-step process in which the initial transfer from the semiconductor to the 

ligand is rate determining. The ability to transfer the hole to the Fe is important for future 

applications to photocatalytic oxidation at the metal site. 

 After Andrew O’hara’s computational work showed promise for hole removal, 

synthetic work was undertaken to make the system. 
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2.3  Synthetic Detail 

 

2.3.1 Coupling Attempts 

Multiple attempts at the synthesis of a suitable 2,2’-bipyridine ligand were made 

before arriving at the final DTC used in this work.  Initially the deprotonation of 5,5’-

dimethyl-2,2’-pyridine by lithium diisopropyl amide was attempted, but a lack of reactivity 

and availability of a pure enough CO2 source rendered these attempts futile (Figure 2.4a).  

It was suspected that since CO2 was not available from a cylinder and had to be generated 

in situ from dry ice, moisture was being allowed into the reaction and quenching the 

generated base.  This was shown as only starting material was ever recovered from the 

reaction. 

  Attempts at coupling functionalized pyridine rings were then investigated, as this 

method would lead to greater control over the final product.  For instance, the ability to 

place functional groups in a way so that the metal catalyst was either closer or further away 

from the NP surface could be beneficial in later experiments.  In one attempt, 5-nitro-2-

chloropyridine was reduced to 5-amino-2-chloropyridine over iron, followed by protection 

of the amine with a benzylideneamine protecting group.  Protection of the amine was 

deemed necessary due to concerns of the free amine chelating any metal catalyst present in 

the coupling reaction.  A Negishi coupling was then attempted using the protected amino 

pyridine with 2-chloropyridine utilizing NiBr2(PPh3)2 as a cross-coupling catalyst, but no 

reactivity was observed.
101

  These reactions can be seen in Figure 2.4b.  It was deemed 

likely that this was due to inactivity of the zinc as used in the experiments, so experiments 

were then focused on ensuring an active organozinc compound was being produced 
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Activation techniques were focused on ensuring active zinc was being produced and 

the metal was inserting in to the aryl-halide bond.  Initially a method using Zn activated 

with 1,2-dibromo ethane and trimethylsilyl chloride and accelerated with the addition of 

LiCl was attempted on 2-bromopyridine and 3-iodopyridine,
102

 but analysis by gas 

chromatography (GC) indicated that no reaction was occurring.  Another method was then 

attempted using lithium metal and naphthalene as an electron shuttle with ZnCl2 to insert 

Zn into 2-bromopyridine,
103–105

 and traces from GC indicated the formation of a peak 

attributed to the organozinc compound (Figure 2.4c).  This compound was then used in 

Buchwald couplings using Pd(PPh3)4 and different phosphorus ligands (Figure 2.4d), but 

no 
1
H NMR peaks above 9 ppm relating to a bipyridine molecule were observed.

106
    To 

exhaust possible reaction mechanisms which could produce the desired coupled product, a 

Suzuki coupling using either a purchased phenylboronic MIDA ester and 

Butyloxycarbonyl (Boc) protected 3-amino pyridine or 2-pyridylboronate and 2-

bromopyridine with Pd(PPh3)4 was run with similar results (Figure 2.4e).
107–109

  It was 

concluded from these results that the reaction substrate, pyridine, must be interfering with 

the metal catalysts by chelating them and quenching reactivity.  Alternative routes to 

producing the 4-amine-2,2’-bipyridine were sought. 
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Figure 2.4 Attempted Coupling Syntheses. A) Carboxylation of 5-methyl-2,2’-

bipyridine. B) Reduction of 5-nitro-2-chloropyridine to 5-amino-2-chloropyridine, 

followed by benzylidene protection and attempted Negishi coupling with NiBr2(PPh3)2. 

C) Activation of pyridyl halides to organozinc halides.  D) Buchwald couplings using 

Pd(PPh3)4 and phosphorus catalysts. E) Suzuki coupling with MIDA-ester. F) MPA 

protection followed by EDC coupling to amino bipyridine. 

 



 

37 

 

 A separate set of experiments was run with the goal of coupling the later 

synthesized amine (vide infra) to 3-mercaptopropionic acid (3-MPA) in order to create a 

very stable bond which could covalently attach to the NP surface as shown in Figure 2.4f.  

To do this, the sulfur group of 3-MPA was protected with tri-methoxybenzyl (TMB) 

protecting group,
110

 followed by an 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide 

(EDC) coupling to produce the corresponding amide.  While this coupling was successful, 

it was abandoned due to difficulty in removal of the TMB group.  Other protecting groups 

for MPA were employed for the sulfur group including benzoyl, p-methoxybenzyl, and 

benzyl ether.  The acid group was also activated by conversion to the acid chloride to no 

avail.  In all of these experiments the molecules suffered from lack of reactivity or 

difficulty in removal of the sulfur protecting group.  Once a successful synthesis and ligand 

exchange protocol for DTCBipy was developed, research focus was shifted to other areas.  

 

2.3.2 Successful Synthesis and Exchange 

Prior to successful chelation of DTCBipy on the surface of CdSe/CdS, control 

experiments based on the work of the Weiss group were performed.  This led to an 

interesting discovery; when attempting to exchange native ligands from either CdSe or CdS 

seeds with that of DTCBipy, the seeds were no longer in solution as observed by UV-Vis 

spectroscopy.  To investigate the cause of this, the exchange was performed with four 

different variables: phenyldithiocarbamate (the ligand the Weiss group used), DTCBipy, 

2,2’-bipyridine, and a mixture of 2,2’-bipyridine and phenyldithiocarbamate.  In these 

scenarios, dissolution of the seeds was only observed when both a dithiocarbamate group 

and a 2,2’-bipyridine (which is a strongly chelating ligand) were present.  UVVis spectra of 
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this can be seen in Figure 2.5.  The strongly ligating ligands appeared to etch and dissolve 

the seeds, and both the DTC and bipyridine moieties are needed to see this effect.  While 

the same phenomenon was not observed with CdSe/CdS rods (likely due to more stable 

surface chemistry of the CdSe/CdS rods due to the lower surface energy of the larger rods), 

it is worth noting that the initiation of ligand exchange and presence of Bipy may affect the 

surface chemistry of NPs. 

 

 

Figure 2.5. Dissolution of CdSe Controls  Black denotes NP before organic treatment, 

while red denotes after.  All exchanges were performed using the same concentrations 

as performed by Weiss et. al.  A) Phenyldithiocarbamate  B) DTCBipy  C) 2,2’-

bipyridine D) Phenyldithiocarbamate and 2,2’-bipyridine.  Reprinted (adapted) with 

permission from refrence 69.  Copyright 2017 American Chemical Society. 
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Given the promising theoretical predictions, experiments were designed to 

synthesize and study the proposed ligand system.  The successful synthesis of the ligand 

ammonium-[2,2’-bipyridin]-4-ylcarbamodithioate (Figure 2.6, 3) was completed via the 

nitration of commercially available 2,2’-bipyridine N-oxide to 4-nitro-[2,2’-bipyridine] 1-

oxide (1).
111

  Reduction to 4-amino-2,2’bipyridine (2) was performed over Zn dust.
112

 The 

reaction of this amine with carbon disulfide in the presence of ammonium hydroxide
113

 

yielded the desired dithiocarbamate as an ammonium salt (3). CdSe/CdS NRs were grown 

via a seeded growth approach as reported elsewhere (Appendix A.1.). 
114

 

Ligand exchange of DTCBipy onto CdSe/CdS NRs was performed by adding a 

solution of 3 in toluene to NRs in toluene and stirring in the dark under Ar for 16 h. A 

concentration of 4.5 ligands/nm
2
 was determined experimentally to be optimal for surface 

saturation.  In order to complete the conjugation of a metal center to the CdSe/CdS rods, a 

 

 

Figure 2.6. Synthetic Scheme; Synthesis of ammonium-[2,2’-bipyridin]-4-

ylcarbamodithioate, via nitration, reduction, and nucleophilic acyl substitution of 2,2’-

bipyridyl n-oxide, ligand exchange onto CdSe/CdS NRs and coordination of Fe(acac)3.  

Reprinted (adapted) with permission from refrence 69.  Copyright 2017 American 

Chemical Society. 
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solution of Fe(acac)3 was added to the DTCBipy coordinated CdSe/CdS rods (Figure 2.6, 

detailed experimental procedures available in SI). An additional absorbance feature 

appeared, peaking at 541 nm.   This absorbance matches that of a free solution of DTCBipy 

and the iron precursor without the presence of the NRs.  This absorbance also matches the 

computational absorbance profile of DTCBipyFe(acac)2 (Figure A.3 and Figure 2.7 ) and 

the presence of crisp 
1
H NMR peaks further indicates diamagnetic low spin Fe(II) (Figure 

A.5).  
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2.4  Spectroscopic Analysis 

Scanning transmission electron microscopy energy dispersive X-ray spectroscopy 

(STEM)-EDS mapping visualizes the distribution of Fe on the NRs (Figure 2.8). An 

additional wide field image (STEM)-EDS map of DTCBipyFe ligand exchanged rods is 

available in the SI (Figure A.7).  Control experiments where Fe(acac)3 was mixed with 

NRs ligated with native ligands did not show any association between Fe and the NRs 

 

Figure 2.7. Spectroscopic Analysis;A) UV/Visible spectrum of CdSe/CdS NRs 

with native ligands (black), after ligand exchange with DTCBipy (red), and 

subsequent treatment with Fe(acac)3 (gold) B) Fluorescence spectroscopy of 

NRs C) TRPL of NRs (see supplementary information for parameters).  D) PL 

and TRPL data.  Reprinted (adapted) with permission from refrence 69.  

Copyright 2017 American Chemical Society. 
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(Figure A.6).  Quantitative EDS (Table A. 1.) of 10 different areas of sample revealed an 

average Fe signal of 2.41± 0.32 Fe atoms per nm
2
 of nanoparticle surface area were 

present.  Since the amount of Fe added was 4.5 ligands/nm
2
 and this is greater than 2.41 

ligands/nm
2
, this number shows persistence of the Fe only when bound to DTCBipy.  

 

 

Experimental validation of the predicted hole transfer from the NR to the ligands 

was performed by analyzing the samples via steady-state and time-resolved (TR) 

photoluminescence (PL) spectroscopy.  Given the band alignment of CdSe/CdS, only 

fluorescence from the CdSe core can be observed. Ligand exchange of native ligand NRs 

with DTCBipy (Figure 2.7) resulted in a large quench in QY from 85% to 8.0% , which 

was observed previously for DTC containing ligands.
89

 This is consistent with our 

prediction that hole transfer from the CdS to DTCBipy is facile and prevents radiative 

recombination of excitons.  Formation of the DTCBipy-Fe complex caused a further 

quench in the QY to 0.16%, as expected since hole transfer was calculated to be even faster 

 

Figure 2.8. STEM-EDS map. CdSe/CdS rod ligand exchanged with DTCBipy then 

treated with Fe(acac)3.  Scale bar is 10 nm.  The overall picture omits S for clarity.  

Reprinted (adapted) with permission from refrence 69.  Copyright 2017 American 

Chemical Society. 
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once Fe was coordinated. This QY quench was over a factor of ten larger than that seen by 

only adding Fe(acac)3 to a solution containing native ligand capped NRs (Figure A.9.). 

The latter is likely due to charge trapping at a small amount of Fe adsorbed to the surface, 

as was similarly observed by Shevchenko et. al. in the case of CdSe/CdS mixed with Au.
115

 

Similar QY quenches were observed when exciting primarily the CdSe core, which denotes 

that the charge transfer process is primarily surface mediated.  (Figure A.10.). 

In collaboration with Kemar Reid from the lab of Sandra J. Rosenthal, TRPL data 

was acquired for the synthesized system and details regarding the laser parameters can be 

found in the Appendix A.  Fits of the TRPL data for the CdSe/CdS NRs capped with 

native ligands showed a τavg of 23.5 ns for the fluorescence of the CdSe core, which is in 

good agreement with those reported elsewhere in literature.
116

  The bi-exponential decay 

(Figure A.10 and Figure A.11) was assigned to band edge recombination and a small 

amount of trapping of charges to surface states.  Upon ligand exchange with DTCBipy, τavg 

decreased slightly to 20.9 ns (Figure 2.7). The combined large QY quench and consistent 

lifetime dynamics indicates that the holes are mostly extracted from the photoexcited CdS 

rod to the ligands before they can be localized to the CdSe core.  The VB offset of CdSe is 

0.55 eV from the CdS VB,
114

 and sits above the mid-gap states so they are not accessible 

for hole transfer from the CdSe core.  Upon chelation of Fe to the surface coordinated 

DTCBipy ligand, τavg quenches to 455 ps (Figure 2.7) and is best fit by a tri-exponential 

decay with time constants of 133 ps, 1.24 ns, and 15.03 ns.  While directly assigning these 

pathways to specific processes is difficult, a lifetime of 1.24 ns is similar to those reported 

for intrinsic CdSe core recombination,
117

 and the 133 ps component is similar to our 

calculated value for transition from the CdS to the ligand molecular states.  The 15.03 ns 
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component is of very low contribution to the weighted average (Figure A.13).  We note 

that the 133 ps process is significantly longer than the sub-picosecond hole transfer times 

experimentally measured by the Weiss group for a conjugated DTCBipy ligand.
88

  This can 

be expected as the driving force reported for the sub-picosecond hole transfer ligand is -1.2 

eV, while in the DTCBipy system the driving force for transfer from the CdS to the 

molecular ligand state is much smaller, as it was calculated to only be between -0.02 to - 

0.38 eV.   

 

2.5 Conclusions and Future Directions 

Unfortunately, studies concerning the oxidation of water using DTCBipy were 

curtailed by the realization that the ligand, DTCBipy, was itself sensitive to moisture.  It is 

known that dithiocarbamates are sensitive to degradation in acidic medium due to 

protonation of the amine group which results in the release of carbon disulfide.
118

  In this 

case degradation was observed when DTCBipy was dissolved in pyridine (a basic solvent) 

and water added to χ=0.2 of H2O.  The observed effect was the return of fluorescence in 

CdSe/CdS rods which were previously quenched (see Figure A.16), and the occurrence of 

a putrid smell due to released CS2.  This prompted further studies to be carried out in 

anhydrous conditions, and ligand to be stored under argon in the freezer in between 

experiments. 

In summary, we have modeled and synthesized a CdSe/CdS NR system with an 

organic ligand capable of electronically coupling with the energetics of the NR while 

chelating a molecular metal center.  DFT studies revealed the presence of two hybridized 

mid-gap molecular states on CdS in the presence of DTCBipy; these states show promising 
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calculated hole transfer rates between CdS and DTCBipy with minimal recombination via 

the CB. The experimental quench in quantum yield supports this prediction, though these 

experiments alone cannot entirely rule out the existence of trapping or separation caused by 

other pathways.
30,119,120

  The chelation of Fe(II) by this complex resulted in seven mid-gap 

states.  The calculations indicate that the rate of hole trapping should further increase and 

proceed most efficiently by a two-step process from the CdS to the DTC group orbitals, 

followed by a faster transition to the Fe center.  The measured  hole transfer time is slower 

than those seen for other DTC based ligands,
88

 but comparing the energetic driving forces 

of the processes the transfer time follows the expected trend.  One of the potential 

advantages of this conjugated ligand design is that transitions from the ligand mid-gap 

states to the CdS CB are dipole forbidden, which in the future should facilitate slow 

oxidative catalytic processes to occur on the metal center, rather than facile recombination 

with the electron. The assembly of this system indicates great potential in the use of light 

as a renewable driving force for oxidative and reductive processes in a single colloidal 

nanoparticle system. 

  



Chapter 3 

 

3 MULTI-STEP LIGAND EXCHANGE ON P-TYPE QUANTUM DOTS 

FACILITATES HIGH-PERFORMANCE SOLAR CELLS 

 

Upon absorption of light, semiconductor NPs generate an exciton pair that can be used 

to perform a chemical reaction, as discussed previously, or separated and transported to 

different materials, as occurs in a solar cell.  This chapter will discuss an idea which was 

developed in our lab concerning the fabrication of solar cells.  Quantum Dots (QDs, NPs 

under quantum confinement) are used in QD solar cells as a photo-absorber.  This requires 

film deposition followed by either a solid-state exchange or chemical treatment of surface 

ligands.  In our lab, a new ligand utilizing the Fmoc protecting group was synthesized and 

tested as a ligand for colloidally stable PbS QDs.  Devices were fabricated and tested 

through collaboration with James Fan and Kevin Yang from the Sargent group at the 

University of Toronto.  Devices constructed utilizing the facile deprotection mechanism of 

Fmoc-coated PbS films produced higher efficiency solar cells in comparison to control 

devices. 

 

3.1  Introduction 

Solution-processed colloidal QDs have attracted much interest over the past decade 

as they offer attractive characteristics for optoelectronic devices such as photovoltaics 

(PVs),
6
 photodetectors,

121
 lasers,

122
 and light-emitting diodes.

123 
Among the attractive 

properties of this type of material are the low cost of fabrication, the ability to tune the 
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bandgap of the desired material for specific applications, and a high absorption per unit 

length. 

 Much attention has been paid in recent studies towards improving QD active layers 

in PV devices. Comparatively, there has been little focus on the fabrication of the hole 

transport layer (HTL). 
124–129

 In the earlier generation of PbS PV devices, the typical HTL 

consists of a MoOx/Au/Ag anode.
124,130,131

 In this type of device, the MoOx is sputtered 

onto the PbS active layer and Au and Ag are sequentially thermally deposited on top of the 

MoOx. The MoOx serves as an ohmic contact to the Au layer, facilitates hole transport, and 

protects the PbS active layer from the noble metal evaporation process.
130

 These types of 

devices have power conversion efficiencies (PCE) up to 9.5%.
131

 In recent years, the 

choice of material has been switched to a solution processable layer such as PbS QDs 

functionalized with a short chain thiol (e.g., 1,2-ethanedithiol (EDT)).
132

 In comparison to 

MoOx, EDT-PbS also provides an ohmic contact between Au, and this HTL can be 

processed in ambient conditions. The band positions of halide-passivated PbS-active layers 

is deeper than that of EDT-PbS QDs, therefore using EDT-PbS QDs as an HTL provides a 

band offset that offers hole transport while blocking electrons.
132,133

 Devices with EDT-

PbS HTLs have recently exhibited PCEs that exceed 10%.
125,127,134

 

 The EDT-PbS layer is typically prepared through a solid-state ligand exchange 

approach.
135

 An oleic acid (OA)-capped PbS (OA-PbS) film is prepared by spin-coating 

PbS QDs on top of a PbS active layer; ligand exchange is performed by soaking the film in 

an EDT solution. This process is generally repeated twice to yield a HTL PbS thin film, 

and from henceforth will be referred to as EDT/EDT-PbS.
135

 This ligand exchange process, 

however, may disturb the QD surfaces. It has been reported that during the exchange 
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process, the detachment of Pb(OA)2 species may occur and result in QDs with etched, 

fused, or oxidized surfaces.
136,137

 In addition, unreacted free thiol groups (R-SH, R = alkyl 

or aryl chains), as opposed to thiolates (R-S
-
), may form oxidation products in an ambient 

environment.
138

 Therefore, a facile method to introduce non-charge-insulating ligands is 

highly desired. 

 It has been previously shown that a homogeneous ligand exchange can be 

performed directly after the synthesis of QDs in a one-pot reaction.
138

 During the cooling 

stage, alkanethiol capping ligands are injected into the reaction flask to undergo ligand 

exchange in the nonpolar phase.
139140

 This method of homogeneous ligand exchange is 

gentle to the surface because the QDs are not exposed to air during this process, and the 

aggregated QDs are easily precipitated away from the free OA ligands in solution during 

the purification process.
141

 However, the direct injection of bifunctional EDT molecules 

during the synthesis stage will cause crosslinking and aggregation of the PbS-QDs, 

resulting in a colloidally unstable solution.
128

 The QDs must remain suspended post-

synthesis in a homogenous suspension to allow the deposition of a uniform film.  

This work builds upon strategies by Turo et al.,
142

 which placed long chain esters 

within a molecule that stabilized nanoparticles in a homogenous colloidal solution while 

also providing further functionality via the ability to hydrolyze the ester to an acid. The 

fluorenylmethyloxycarbonyl (Fmoc) protecting group has been commonly used in solid 

state peptide synthesis where it is cleaved using a gentle organic base treatment.
143–145

 

Fmoc was attached asymmetrically to EDT to produce the molecule O-((9H-fluoren-9-

yl)methyl) S-(2-mercaptoethyl) carbonothioate (FMT) (1) (Figures B.1 and B.2).
 
We 

hypothesized that the FMT ligand would exchange with surface OA ligand, forming FMT-
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passivated PbS QDs.  Molecular DFT calculations for FMT and EDT can be seen in 

 

Figure 3.1. Ligand Synthesis and Device Fabrication; A) Synthesis of FMT.  B) 

Schematic illustration showing PbS thin film formation.  Pristine oleic acid (OA)-

capped PbS is exchanged in solution with FMT. After the cleavage with a facile base, 

byproducts are removed leaving behind only EDT.  C) Mechanism of Fmoc 

deprotection. 

 



 

50 

 

Figure B.8 and indicate that the electron donating HOMO of the FMT is ~.5 eV higher 

than that of EDT.   This places the HOMO of FMT closer to that of the valence band of 

PbS (~ -6.14 eV), allowing for a stronger bonding interaction.
146

 These initially long bulky 

ligands enabled the FMT-PbS QDs to be colloidally stable in a non-polar solvent, and 

yielded smooth and uniform thin films from spin coating procedures. Following film 

deposition, the FMT was cleaved by a mild base to produce a high quality EDT-PbS QD 

film as shown in Figure 3.1.
143

 FMT syntheses as well as initial ligand exchange and 

cleavage conditions were developed in the Macdonald lab, and FMT was shipped to the 

Sargent lab for further device preparation and characterization.  We applied the film 

preparation strategy to fabricate QD PVs and studied the effect of different bases upon the 

QD surfaces during the Fmoc deprotection. We will denote the cleaved FMT-PbS film as 

cFMT-PbS as the nomenclature for the rest of this manuscript. The EDT-capped PbS QD 

prepared by the traditional direct soak method will simply be denoted as EDT-PbS. 

 

3.2 Ligand Synthesis and Film Fabrication 

In designing a ligand tailored for the application of an uniform film, the Fmoc 

protecting group presented itself as the optimal choice since it 1) can be combined with the 

commonly used EDT, 2) provides colloidal stability for the QDs after homogenous ligand 

exchange, 3) can be cleaved with a mild base that does not interfere with the QD surfaces, 

4) can be synthesized on the gram scale in a scale-up one-step synthesis, 5) is a short ligand 

which facilitates dense QD packing, and 6) deprotection of the ligand forms byproducts 

that are electronically and chemically inert to the QD surfaces, in particular avoiding 

carboxylic acids which have been shown to be problematic in PbS photovoltaics.
65

 The 
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mechanism of deprotection for an Fmoc protecting group is detailed in Figure 3.1. Briefly, 

the most acidic proton residing on cyclopentyl ring within the Fmoc protecting group is 

first deprotonated by a mild base. This causes the electrons to break the dibenzofulvene 

bond, therefore forming the unstable carbonothioate in solution, which quickly decomposes 

into CO2 and EDThiolate. The dibenzofulvene byproduct is a highly reactive nucleophile 

which then reacts with a nearby electrophile to form an inert molecule. In this report, 1,8-

diazabicyclo(5.4.0)undec-7-ene (DBU), was used in catalytic amounts to perform the 

initial deprotonation of the Fmoc group, while dimethylpiperidine (DMPpy) was used as a 

sterically hindered electrophile for reaction with the dibenzofulvene adduct.
143

  

The synthesis of OA-PbS has followed the procedure reported by Hines and 

Scholes
147

 and was slightly modified for this study (see Supplementary Information). 

Briefly, Pb-oleate is generated in situ via the dissolution of PbO in OA. At a temperature of 

63 °C a mixture of trimethylsilyl sulfide in ODE was swiftly injected, and the reaction was 

allowed to cool to room temperature before purification via precipitation with acetone. A 

1
H NMR of OA-PbS particles can be seen in Figure B.3 which shows the alkene protons 

from the oleic acid attached to the QD surface.  FMT-PbS solutions were prepared by 

ligand exchange of FMT on to the PbS surfaces via the dropwise addition of a solution of  

FMT in CHCl3 to OA-PbS suspended in CHCl3. The QDs were precipitated with acetone 

until no alkene peak from OA could be observed in the 
1
H NMR upon resuspension in 

CDCl3 (Figure B.4). Only very broad, weak signals from bound FMT were observable due 

to surface broadening effects from the PbS surface.
39

 To make the FMT-PbS solution 
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ready for device fabrication, the FMT-PbS precipitate was dissolved in octane at  

50 mgmL
-1

 to yield thin, uniform, spin coated films.  While the FMT concept, synthesis 

and exchange was developed personally in the Macdonald lab, the ligand was shipped to 

 

Figure 3.2. Optical Spectroscopies of PbS films; A) Absorbance spectra of QD 

films: OA-PbS (black), FMT-PbS (red), EDT-PbS films made by the conventional 

method (yellow), and cFMT-PbS films (green). B) FTIR spectra QD films: OA-PbS 

(black, scaled to one third intensity for comparison), FMT-PbS (red), EDT-PbS films 

made by the conventional method (yellow), and cFMT-PbS films (green). C) XPS 

sulfur 2p spectra comparing the EDT-PbS film (yellow) and cFMT-PbS film (green) 

D) Band structure determined by UPS and absorbance results comparing the band 

alignments of an EDT-PbS film (black) and a cFMT-PbS film (red). 
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James Fan of the Sargent group where he carried out ligand exchange, film deposition, and 

film characterization as well as device fabrication. 

Fmoc cleavage or EDT ligand exchange was performed on the respective films, and 

surface analysis techniques were used to verify the fulfillment of a complete “on film” 

reaction. Similar absorbance values for both FMT-PbS and OA-PbS films suggest that both 

have similar thicknesses. The FMT-PbS film is red-shifted compared to OA-PbS as has 

been observed for other systems upon ligand exchange.
148

 The absorbance of both films 

increased after their conversion to cFMT-PbS or EDT-PbS QD films (Figure 3.2a). 

Previous studies have suggested that the optical density of PbS films increases after ligand 

exchange reactions when the exchanged QDs are more densely packed.
149

 When 

comparing the two absorption spectra in Figure 3.2a, it is evident that the optical density 

increased significantly more for cFMT-PbS QD films than the EDT-PbS counterpart, 

indicating a higher packing density of the QDs. The denser packing and stronger 

absorbance at the exciton peak is also reflected later in the External quantum efficiency 

measurements of the prepared devices (vide infra) (Figure 3.3d). 

Fourier transform infrared (FTIR) spectroscopy reveals a decrease in organic 

content after each QD functionalization. In particular, the C-H stretches (2850-3000 cm
-1

) 

were reduced successively between OA-PbS, FMT-PbS and cFMT-PbS. A broad –OH 

peak appears at 3500 cm
-1

 for the EDT-PbS QD film which can be attributed to the 
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fabrication process of EDT-PbS; the direct soak EDT solvent, acetonitrile, is hydrophilic 

which allows for atmospheric moisture to be absorbed into the film.
150

  A complete 

decrease in the carbonyl peak can be seen when comparing the OA-PbS to the EDT-PbS.  

However, the carbonyl peak remains in the cFMT-PbS sample compared to the FMT-PbS.  

 

Figure 3.3. Devices Structure and Data; A) Solar cell architecture using only the 

conventional EDT exchange method.  B) Solar cell architecture utilizing both the 

traditional EDT exchange method and the FMT exchange method. C) J-V curves for 

FMT-colloidal QDs (black) and traditional OA-colloidal QDs (grey). D) External 

quantum efficiency measurements comparing the devices fabricated with an FMT-

colloidal QD and traditional OA-colloidal QDs. 

 

 



 

55 

 

The shape of this peak changes, and is reflective of that reported for bicarbonate which 

could be produced from CO2 in the basic cleavage environment.
243

 

X-ray photoelectron spectroscopy (XPS) measurements were used to determine the 

surface composition of the EDT-PbS and cFMT-PbS QD films (Figure B.5). The spin 

orbit coupled sulfur 2p3/2 and sulfur 2p1/2 peaks appearing at around 160.4 eV and 161.7 eV 

shown in Figure B.5c matches closely to that of PbS.
128

 The pair of peaks at 163.5 and 

164.7 eV corresponds to thiolates of  EDT bound to the PbS surface. It is worth noticing 

that the normalized intensities of peaks originating from EDT are of much greater intensity 

for the EDT-PbS compared to the cFMT-PbS, suggesting more ligand is present in EDT-

PbS film, consistent with the tighter packing of QDs in cFMT-PbS noted by the absorbance 

measurements above. The cleavage procedure may avoid the introduction of excess non-

functional ligand into the films.  The peaks in the Pb4f and C1s spectra of both films match 

closely (Figure B.5a and d). Again, both films show in the oxygen 1s spectra expected 

lead oxide species due to air exposure at 530.7 eV,
151

 but an additional large peak at 532.6 

eV was only observed for the EDT-PbS films, which is attributed to lead oleate 

species.
152,153

 The presence of carboxylate indicates an incomplete EDT ligand exchange 

and/or oleate removal during the fabrication of the direct soak EDT film. The lack of a 

carboxylate
 
signal on the cFMT-PbS O1s spectra suggests that the homogeneous ligand 

exchange successfully displaced all of the oleic acid.  

The electronic properties of a cFMT-PbS QD film and its traditional EDT-PbS 

counterpart were analyzed using ultraviolet photoelectron spectroscopy (UPS) (Figure 

3.2d and B.6). The determination of the valence band maximum, conduction band 

minimum, and Fermi level for each films are discussed in detail in the experimental 
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section. The bandgaps for the EDT-PbS QD film and the cFMT-PbS QD film were 1.35 eV 

(λex = 918.5 nm) and 1.41 eV (λex = 880 nm), respectively. The position of the bandgap for 

the EDT-PbS QD film matches well with those reported in literature, while the cFMT-PbS 

film measurements showed a shallower band position than EDT-PbS.
132,133

 For these 

similarly sized QDs, it was surprising that the band position of the cFMT-PbS QD film 

exhibited a band position that is higher in energy than the EDT-PbS QD film.  This is 

likely due to a previously observed ligand effects, as EDT capped QDs are known to 

produce a more p-type QD film than OA capped QDs.
154

 Given that OA was shown to 

remain in the films using the EDT direct soak method, it is likely that the complete 

removal of OA through the FMT approach produces a more stongly p-type film lifting the 

band position. The shallower position of the conduction band as seen in the cFMT-PbS QD 

film may allow for further electron blocking when used as a hole transport layer in a 

typical inverted QD solar cell. A good electron blocking layer will decrease the chance of 

charge recombination at the Au contact, and successfully transport holes to the anode. 

132,134,155
  

 

3.3 Device Fabrication and Characterization 

To illustrate the advantages of the solution processed cFMT-PbS QDs, we used this 

approach to construct a HTL for solar cells. A traditional PbS solar cell architecture is 

indium doped tin oxide (ITO)/zinc oxide (ZnO)/PbS-Active layer/EDT-PbS/Au (Figure 

3.3a).
125,132,134

 The specific method for producing the ZnO electron transport layer and PbS 

active layer has been discussed in previous literature.
134

 In the conventional QD PV device, 

two layers of solid-state exchanged EDT-PbS (50 nm in total) were applied onto the top of 



 

57 

 

the active layer to serve as the HTL
132

. Herein, we replaced the traditional HTL with our 

cFMT-PbS layers while keeping the rest of the device architecture unchanged. 

To evaluate the quality of the fmoc cleavage approach to the preparation of the 

HTL in a device scenario, the FMT-QDs were cleaved using a mixture of DBU and a 

second weaker base. In this reaction, DBU is used as a catalytic base, while the second 

base acts as a nucleophilic “sponge” to remove the dibenzofulvene byproduct.
143

 The solar 

cell figures of merit, open circuit voltage (Voc), short circuit current density (Jsc), fill factor 

(FF), and power conversion efficiencies (PCEs) are listed in Figure 3.4 for three base 

treatment protocols. A large variation of PCEs were observed when the byproduct 

“sponge” was changed, and performance of these devices were compared to the control 

device. The control device utilizes EDT/EDT-PbS QDs for the HTL and had a PCE of 

9.43%. When FMT-PbS HTLs were soaked with only a 1% v/v DBU solution and no 

secondary base, a device with a PCE of 7.8% was produced. The combination of low Voc, 

Jsc, and FF indicate that the device has poor band alignment and poor charge extraction. 

We hypothesize the reduction in performance is due to residual DBU, dibenzofulvene, or 

uncleaved Fmoc left within the film even after the washing procedure. According to the 

mechanism in Figure 3.1, DBU is responsible for performing the initial deprotonation 

leading to cleavage of the Fmoc group. However, as a non-nucleophilic base, it will not 

readily react with dibenzofulvene, and steps of the cleavage may reverse and therefore 

produce an incomplete cleavage. While the addition of a nucleophile to the treatment 

protocol is therefore needed, careful consideration must be given to the base sterics and 

electronics. When the base/nucleophile combination of aa 1% solution of 9:2 v/v 2,6-

lutidine and DBU were used to remove the dibenzofulvene byproduct, a device was 
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produced with a PCE of only 5.8%. Unfortunately, the electron rich nitrogen group of 2,6-

lutidine likely performs a ligand exchange with the QD surfaces, similar to those seen 

previously with butylamine.
156–158

 The 2,6-lutidine as a surface ligand may diminish charge 

transport between QDs, lowering the overall performance of the device. Due to this issue, 

we hypothesized that a similar base with a bulkier side chain may actually avoid ligand 

exchange on the surface of the QDs due to steric hindrance but still be able to react with 

the small dibenzofulvene. Therefore, the choice of 2,6-ditertbutylpyridine (DTP) was a 

good replacement over the smaller 2,6-lutidene. For this specific device, the optimized 

concentration of 1% 9:3 v/v DTP:DBU was employed. This device exhibited a noticeably 

higher Jsc over the other FMT-based devices (27 mA/cm
-2

 vs. 20mA/cm
-2

), and an overall 

PCE of 9.56%. External quantum efficiency (EQE) measurements reveal that the cFMT-

PbS QD devices are enhanced mainly in the height of the exciton peak (Figure 3.3d). The 

overall performance of the cFMT/cFMT-PbS (9.56%) was slightly greater than that of our 

EDT/EDT-PbS device (9.43%). 

 From UPS studies as seen in Figure 3.2, there was evidence that band positions of 

the cFMT-PbS QD films are shallower than the EDT-PbS counterparts. Therefore, a graded 

HTL architecture designed as EDT/cFMT-PbS was employed as seen in Figure 3.3. 

Graded HTLs architectures can create an energy landscape that facilitates hole transport 

and have been used previously to improve the efficiency of PbS-QD solar cells by 

effectively extending the depletion width in the main absorber layer.
135159

 In this scenario, 

instead of spincoating two OA-PbS layers followed ligand exchange to EDT after each 

application, one EDT-PbS layer is fabricated in this traditional manner followed by the 

addition of an FMT-PbS layer which is then cleaved with base (DBU) and nucleophile 
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(2,6-dimethylpiperidine, DMPpy), a base chosen for its improved ability to react with 

dibenzolfulvene due to its lack of aromaticity. The base used for the FMT-cleaved QDs 

was a mixture of 30:1 DMPpy:DBU. A device produced in this fashion yielded a 

performance of 11.01%. Most noticeably, this device retained the high Voc from a pure 

directly soaked EDT/EDT-PbS QD device, while maintaining a high FF value. The 

external quantum efficiency (EQE) plots reveal enhancements at the exciton peak for both 

the EDT/cFMT-PbS and EDT/EDT-PbS QD devices (Figure 3.3d). 

 

 

3.4 Conclusions 

In conclusion, a high quality EDT-functionalized PbS QD film was produced 

through an alternative protection and deprotection step of EDT. The native OA ligands of 

PbS were completely exchanged in solution and removed by a novel FMT ligand to yield 

 

Functionalization solvent 

Voc 

(V) 

Jsc 

(mA/cm
2
) 

FFforward  

(%) 

FFreverse  

(%) 

PCE  

(%) 

DBU only 0.58 20.77 66.02 65.30 7.80 

9:2 v/v 2,6-lutidine: DBU 0.56 20.58 54.07 51.17 5.88 

9:3 v/v DTP:DBU 0.60 26.96 59.72 58.53 9.56 

EDT-PbS control 0.63 26.29 57.89 56.01 9.43 

Graded: 1 Layer EDT-PbS + 1 

layer 30:1 v/v DMPpy: DBU        0.66 27.41 60.65 61.14 11.01 

 

Figure 3.4. Figure of Merit for Solar CellsFigure 4.1. Mechanism of NB Degradation;  
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colloidal FMT-capped QDs. These FMT-QDs were used to construct the hole transport 

layer. The Fmoc protecting group of the FMT ligand was easily removed by a mild base 

treatment, and a pristine EDT-PbS film was produced. A film with denser QD packing, 

fewer EDT-ligands, fewer carboxylate-impurities and more p-type character was produced 

through the FMT cleavage method than the traditional EDT ligand exchange method. The 

effectiveness of this hole transport layer was tested in the fabrication of a QD solar cell, 

and yielded power conversion efficiencies greater than the traditional EDT-PbS 

counterpart. By developing a graded device architecture by using the first direct soak-

counterpart and then a cFMT-PbS QD film, a QD device with a performance of over 11% 

was fabricated. This work provides important insight into the necessity of improving the 

HTL and highlights the role that chemistry on the surface of QDs affects their electronic 

properties.   

This work illustrates the necessity of collaboration to advance scientific ideals.  

Though the original idea of utilizing FMT for solar cells was born in the Macdonald lab, 

researchers with specialization in device fabrication were needed to bring the idea to 

fruition.  After the ligand had been synthesized and initial ligand exchange conditions 

optimized, workers in the Sargent group were able to use the ligand to make films, make 

devices, and characterize devices.  Intellectual contribution was thus split in two different 

fabrication steps, then combined at the end for data interpretation. 

 

 



Chapter 4 

 

4 CONCEPT AND PRELIMINARY WORK: LIGHT SENSITIVE LIGANDS 

 

As discussed in the previous chapter, one of the major challenges of utilizing QDs for 

solar cells involves the processing of ligands (either through introduction in colloidal phase 

or solid state) for a densely packed film.  Surface ligands must be exchanged from charge 

insulating ligands to short ligands which permit charge transfer; this is typically done in the 

solid state and suffers from issues in either case.  Performing a ligand exchange on a film 

can cause disturbances to the QD surface, while reaction cleavage on the QD surface may 

be incomplete or leave behind electronically active impurities. The following section will 

outline the concept of using light-degradable ligands for ligand cleavage, followed by a 

summary of completed work. 

 

4.1  Introduction and Background 

The use of light as a catalyst for bond breaking or fission has been studied for a 

variety of applications across multiple fields.  In the field of biology, photo-activated 

reactions have played a large role in the development of systems which allow for real-time 

monitoring of cell environments through photo-responsive hydrogel material.
160–162

  

Another technique which has garnered significant interest is “biocaging” in which a 

bioactive molecule or marker is “tagged” and can be released once delivered to a specific 

area of interest.  For instance, polyethylene oxide materials were developed which form 

micelles that burst upon UV radiation,
163

  and other photolabile biocompatible protecting 
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groups have been synthesized which degrade upon UV or IR light absorption.
164–166

  

Further research into two-photon biomarker deprotection for reduction in background noise 

in biological imaging is also a topic of interest to the community.
167

  These 

accomplishments have opened up their own area of research in biology; however, the use 

of photochemistry for colloidal QD device fabrication remains unexplored. 

Light has been used in photochemistry as a clean catalyst in various reactions.  Some 

of these include photocycloadditions and rearrangements,
168,169

 redox reactions,
170,171

 and 

organometallic reactions.
172,173

  The chemistry has been applied to the field of materials 

science to create reactive polymers which degrade upon light irradiation,
174–176

 as well as 

polymers that will form a gel and expand under UV irradiation through the presence of the 

o-nitrobenzyl (NB) and the use of click chemistry. 
177

  Crucial to this is the o-nitrobenzyl 

group (NB) which was first introduced as a photoactive protecting group for peptides by 

Woodward and coworkers in 1970.
178

  NB has since seen a large application in biological 

and materials uses as the active group is simple to install on many molecules, stable to 

most conditions except extremely alkaline or acidic environments,
179,180

 and produces 

relatively benign byproducts after NB activation and removal.
181–188

  While possessing 

these qualities, it was reported by Woodward and co-workers that complete cleavage as 

determined by gas chromatography (GC) occurred within 1-24 hours of irradiation.
178

  

Other groups expanded on the possibility of monitoring for uncaging or deprotection by 

UVVis absorption,
181

 proton NMR,
186

 and HPLC,
189

 and synthetic schemes were devised to 

greatly increase the rate of deprotection.
166,183,184,186

  The current proposed photo-

degradation mechanism is shown in Figure 4.1.  Briefly, the aromatic benzene ring is 

excited by UV radiation, causing cyclization with the nitro group resulting in the formation 
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of nitrosobenzaldehyde and protonated leaving group.  This degradation applied to 

molecules synthesized here can be seen in Figure 4.2a. 

 

 In the design of a ligand containing a group suitable for colloidal QD applications, 

both EDT and MPA were considered for binding to the QD.  In this work EDT is primarily 

utilized due to the affinity of thiols for CdSe and PbS which are common in device 

fabrication.  The reaction of EDT with a chloroformate precursor possessing the NB tag 

produces a molecule containing a light sensitive group, carbonate, and thiol which may be 

readily exchanged with the QD.  The produced ligands should decompose under light 

irradiation to nitrosobenzaldehyde and 2-mercaptoethylcarbonothioate, which will quickly 

decompose to produce EDT and carbon dioxide.
190

  An illustration of this can be seen in 

 

Figure 4.1. Mechanism of NB Degradation; Pathway of degradation of NB including 

equilibrium state of nitro group.  In this case, the “protected” functional group was 

methanol.  Reproduced from reference 165. 
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Figure 4.2b.  Studies were also undertaken to synthesize the ligand lacking the 

thiocarbonate functionality.  This methodology minimizes the minimum amount of soluble 

byproducts produced while also avoiding the need to add other cleavage reagents which 

may produce other impurities or disrupt the nanoparticle surface.  Figure 4.2c shows the 

 

Figure 4.2. Degradation and Fabrication Pathways; A) Degradation of 

monofunctionally NB protected EDT.  B) Degradation of monofunctionally NB 

protected thiocarbonate-EDT. C) Deposition and degradation of PbS. 
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proposed path to utilizing these types of ligands in a QD film.  QDs are first ligand 

exchanged colloidally, followed by film deposition.  Since UV light is the catalyst for 

degradation, films can then be subjected to light, and byproducts from the reaction can 

simply be washed away leaving a tightly packed, ordered QD film. 

 

4.2 Synthesis and Degradation 

 Several reaction pathways were explored to evaluate the application of these types 

of ligands to QD systems.  Initial syntheses involved alkyl chloroformates as they are the 

simplest starting point, reagents are readily available, their structure mimics that of 

preciously reported QD ligands.
67,142

.  A one-step reaction between the alkyl chloroformate 

and nucleophile results in the desired ligand in moderate yield.  The general reaction 

scheme for these ligands can be seen in Figure 4.3a.  After reaction and ligand exchange 

conditions were optimized, NB ligands were synthesized as shown in Figure 4.3b and c.  

The methoxyl variant of the chloroformate ligand, O-(4,5-dimethoxy-2-nitrobenzyl) S-(2-

mercaptoethyl) carbonothioate (DNMC), was synthesized since the onset of absorption is 

significantly redshifted compared to the variant without methoxy groups, which should 

allow for lower energy photocleavage.
191

  A ligand omitting the thiocarbonate 
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functionality, 2-((2-nitrobenzyl)thio)ethane-1-thiol (NET),  was also synthesized via a SN2 

mechanism between 2-nitrobenzyl bromide and EDT to study the effects of methyl and 

thiocarbonate groups on ligand functionality.   Further synthetic attempts were aimed at the 

synthesis of a variant of NB containing a methyl group in the benzyl position, as it has 

been reported that such substitution drastically improves the rate of decomposition (Figure 

 

Figure 4.3. Reaction Paths; A) Alkyl thiocarbonates.  B) NB thiocarbonate.  C) Mono-

substituted EDT with NB functionality.  D)  Mono-substituted 3-hydroxypropionic acid 

with methyl substituted benzyl position. 
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4.3d).
185,186

  While this molecule should provide interesting data, it was not completed 

 

Figure 4.4. UVVis Spectra of Ligand Degradation; A) DNMC.  B) NET.  Both 

spectra were recorded in CHCl3 and illuminated with a 4W 254 nm light.  Spectra are 

not normalized. 
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within the timeframe of this research.  Experimental data concerning these syntheses can 

be found in Appendix B. 

A variety of conditions were used to affect the degradation of the ligands which 

were taken from previously cited literature.  For alkyl thiocarbonates, mole fractions of 

H2O in THF ranging from χ=0.60 to χ=1,
178

 pure isopropanol,
184

 or pure chloroform
186,187

 

for 0.2M concentrations of ligand were tested.  When using a 4W UV light, no degradation 

was seen over 4 hours via GC or NMR spectroscopy.  This is in contrast with studies using 

NB which showed upwards of 50% cleavage within 1 hour.
186

  From these studies we 

concluded the thiocarbonate group alone is not photo-active, and focus was shifted to 

producing NB containing ligands.   

Utilizing the same reaction scheme from alkyl chloroformates, 4,5-dimethoxy-2-

nitrobenzyl chloroformate was reacted with EDT to form DNMC (Figure 4.3b).  This 

molecule contains a thiocarbonate group connected to the more thoroughly studied photo-

labile 2-nitrobenzyl group.  When DNMC was dissolved in chloroform and subjected to 

UV radiation from the 4W lamp, degradation was observed, but not as expected.  As shown 

in Figure 4.4, illumination of DNMC over the course of 4 hours causes a degradation of 

the first molecular transition, as well as appearance of a new transition around ~550 nm.  

This change in absorbance is saturated by 4 hours.  NMR of the solution, however, did not 

show the symmetric single peak which would be expected from EDT; instead, two sets of 

peaks were observed, one from DNMC, and another from what is likely an unsymmetrical 

byproduct (See Figure 4.5b).  The aromatic region of the spectra still only contains two 

singlet peaks, so the resulting EDT molecule is unlikely to be the product of the reaction 

between EDT and the resulting benzaldehyde.  Instead, this may be due to the reaction of 
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Figure 4.5. NMR of Degraded Products; A) NMR of NB thiocarbonate ligand before 

irradiation with UV light.  B) After 4 hours of irradiation a new set of asymmetrical EDT 

peaks appear, along with a peak presumably from CDCl3 decomposing to 

dichloromethane.  C) Proposed byproducts from reaction of EDT with thiocarbonate. 
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the thiol with the intermediate thiocarbonate produced after UV degradation followed by a 

disulfide oxidation resulting in a ring closure (Figure 4.5c).  This interpretation is 

supported by the lack of multiple aromatic species, the presence of a new unsymmetrical 

EDT compound, and the triplet splitting of the two methylene carbons indicating the 

presence of only two neighboring protons for each carbon.  An additional peak at 5.3 ppm 

indicated these conditions were also causing the degradation of chloroform to 

dichloromethane.
192

  In an effort to simplify the structure and determine the cause of 

unexpected reactivity, a molecule was made which omitted the thiocarbonate functionality 

(Figure 4.3c), but similar UVVis and NMR data was observed after degradation.  Ligand 

exchange and subsequent degradation studies were also performed on PbS with DNMC, 

but NMR data was inconclusive and the strong absorbance of PbS in the UV and visible 

spectrum occluded any spectral transitions occurring from the ligand.  This data, as well as 

experimental details of the ligand exchange and degradation studies can be found in 

Appendix B. 

Given the lack of precedence in literature for NB ligands containing thiol groups 

connected to the benzyl position, it is likely that the reactivity of the thiol in the presence of 

the generated benzaldehyde is forming a hemithioacetal or thioacetal as shown in Figure 

4.6.
193

  Keeping this in mind, as well as implementing a methyl group in the benzyl 

position to increase photosensitivity and decrease byproduct reactivity, a reaction scheme 

was devised for 3-(1-phenylethoxy)propanoic acid (PEP, see Figure 4.3d).  Due to time 

constraints, synthesis of this molecule was not completed. 
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4.3 Further Directions 

Substantial progress was made towards determining and synthesizing a ligand suitable 

for photodegradation on colloidal nanoparticles.  It was determined that alkyl 

thiocarbonates are not suitable for photodegradation.  Further, thiocarbonates were deemed 

unnecessary, and perhaps detrimental, in the process of degradation.  Their synthesis was 

useful, however, as degradation studies with NB containing thiocarbonates suggested the 

reactivity of produced thiols with generated aldehyde, suggesting the uncaging of a thiol 

while using this particular photolabile protecting group is a poor choice. 

Another issue which presented itself through this work is the absorbance of PbS 

impeding the use of light to degrade the ligands.  Other materials which don’t absorb as 

strongly in the visible spectrum, such as CdSe and CdS, or materials which absorb 

primarily in the UV such as VO2,
194,195

 ZnO,
196

 or TiO2
197

 would thus be superior choices 

for initial studies into implementing photo-functionalized materials for nanoscale devices.  

These materials would also be superior for ligand exchange with groups other than thiols, 

allowing for the use of more thoroughly studied photolabile groups which degrade to 

reveal a hydroxyl or carboxyl group.  Further progress in the area of photosensitive ligands 

 

Figure 4.6. Proposed Side Reaction of thiol and aldehyde; The reactivity of the thiol 

and generated benzaldehyde may be producing either the hemithioacetal or thioacetal 

products. 
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would provide exciting new possibilities in the realm of fabrication of devices utilizing 

colloidal QDs. 

 

 

 

  



Chapter 5 

5 STRATEGIES FOR CRYSTAL BOUND LEAD SULFIDE 

 

In congruence with previous topics, the following chapter concerns itself with surface 

chemistry, but this time on a deeper level.  While most NPs feature ligands which are 

bound to their surface, some reports have shown that the ligands can be embedded into the 

crystal lattice.  This chapter focuses on these NPs which feature a robust attachment to 

their ligands into the crystal lattice, including synthesis and characterization. 

 

5.1 Introduction:  Crystal Bound Ligands and Hidden Functionality 

Much of this dissertation—and research as a whole—has focused  on manipulating 

surface chemistry via ligand exchange, but this portion of work shifts towards NPs which 

are synthesized in a manner which inhibits ligand exchange of their surfaces.  A myriad of 

methods have been developed for the synthesis of colloidal semiconducting NPs including 

top-down methods,
198,199

 intra-polymer and glass,
200–204

, and solution phase,
142,147,205–211

 the 

latter of which will be discussed here.   The individual environments of the inorganic 

crystal lattice and outer organic ligands are fairly well understood, but the marriage of 

these two systems on the NP surface begets a unique system for each NP/ligand system.  

Research has been done on the dynamic nature of surface ligands in colloidal 

environments; some systems experience very rapid exchange of surface ligands in solution, 

while others remain more statically bound.
30,39–41,212

  Work by Turo et al. has demonstrated 

a case where ligands remain tightly bound with Cu2S and ZnS.
142,213

  In this work, it was 

observed that when thiols are used as the sulfur source and ligand in reactions, the terminal 
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layer of sulfurs on metal-sulfides seemed to remain attached to their carbon substituents.  A 

visualization of this is seen in Figure 5.1.    

As discussed in Chapter 1.2 (See Figure 1.4), several different types of ligand 

binding are known for ligands attached to the NP surface.  These classifications (X-type 

[lattice termination through an anion], L-type [neutral donor], or Z-type [neutral 

acceptor])
214

 all view the surface as a pristine surface which terminates in either a anionic 

or cationic atom.  Such ideal conditions are likely not the case for all materials, as was 

demonstrated in the case of gold clusters.  Single crystal data was obtained of Au102(SR)44 

clusters which indicated that a “staple” motif was present.
215

  In this binding mode, the 

surface sulfurs each bond to two gold atoms, wherein one gold atom is pulled upwards 

from the crystal lattice and bonds to two sulfur atoms simultaneously.  An example of this 

is seen in Figure 5.1b.  This motif has been verified for several other gold-thiol 

nanoclusters.
216–218

  Since most nanocrystals do not form discrete clusters, single crystal x-

ray data is not widely obtainable. However, this finding helps to illuminate the 

complexities of ligand binding on and in the surface.  The actual surface connectivity of the 

semiconducting NPs discussed here has yet to be detailed on an atomic level, and general 

models do not apply to all systems.  It is likely however, that each system possesses its 

own unique characteristics and cannot be adequately described by simplifications shown in 

Figure 1.4 or Figure 5.1a. 
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 Different synthetic routes can be taken to obtain nanocrystals, and will be discussed 

here.  Solution synthesis methods follow generally either a direct heat-up or injection 

pathway.  Which of these two methods are utilized is dependent on the reactivity, melting 

point, and boiling point of precursors.  In determining reagents for NP reactions, four 

 

 

 

Figure 5.1. Crystal-bound versus Surface-bound ligands; A)  The termination of 

crystal-bound ligands in metal sulfides features a thiol which has a higher coordination 

number than the surface-bound counterpart.  Reprinted (adapted) with permission from 

reference 212. Copyright 2014 American Chemical Society.  B) A “staple” motif 

adapted in gold clusters.  Yellow atoms represent gold, blue atoms represent sulfur, red 

atoms represent carbon, and green atoms represent hydrogen.  Reprinted (adapted) with 

permission from reference 214. Copyright 2008 American Chemical Society.  
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components should be considered: metal source, chalcogenide source, solvent, and ligand.  

Not all of these components are independent of one another, however.  For instance, a 

metal source such as Pb(NO3)2 may be reacted with thiobenzoic acid (TBA) separately 

rather than in situ to produce Pb(TBA)2.
211

  Pb(TBA)2 can act as both the metal and 

chalcogenide source, meaning only an additional ligand and/or solvent are needed in the 

synthesis.   Additionally, the ligand may be the chalcogenide source when using sulfur 

containing molecules such as dodecanethiol.    The concentrations of these components 

along with stir times, temperatures, injections, and cleaning procedures all have an effect 

on the ultimate size, morphology, and quality of the product.  An example of different 

morphologies obtained by varying these components to make PbS NPs can be seen in 

Figure 5.2. 

The physical properties of reactants may determine reaction conditions or help to 

provide insight into variations of parameters which drive a desired effect.  For instance, NP 

nucleation often requires the degradation of the metal and/or chalcogenide precursor.  

Information about the temperature at which this happens may be gained through 

differential scanning calorimetry (DSC),
219–221

 or more simply through careful observation 

of color changes upon heating a reaction.  Knowing decomposition temperature of a 

molecule is key to determining the temperature where active precursors can be generated.  

In the case of a reaction which utilizes separation of reagents through an injection, the 

decomposition temperature may be seen as a minimum temperature to assure rapid reaction 

of precursor upon injection due to the high concentration.  The concentration of ligands 

which bind with precursors may also be varied in order to slow or expedite NP growth.
222

  



 

77 

 

Additionally, ligands may be added which bind preferentially to certain facets of a NP in 

order to push growth of a particle into a certain shape or crystal structure.
114

 

 

 

Figure 5.2. Morphology Control of PbS; Oleic acid (OA), dodecanethiol (DDT), 

octadecene (ODE), and oleylamine (OA) are used at various reaction temperatures to elicit 

different morphologies.  Different binding of surfactants and surface ligands causes 

preferential growth of certain crystal facets.  Reprinted (adapted) with permission from 

reference 206. Copyright 2012 American Chemical SocieFigure 5.3. Disulfide formation 

on CdSety. 
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NPs are characterized commonly via optical spectroscopy and electron microscopy; 

while these techniques provide important information they fail to provide an intimate 

surface analysis mapping the interactions on the surface.  One technique which has been of 

importance is x-ray photoelectron spectroscopy.  This surface technique bombards a 

sample with x-rays which causes electrons on the surface to escape the sample.  The energy 

of the escaping electrons is measured and number of electrons counted.  The specific 

energy of each electron is precise enough that not only can the specific element the 

electron originated from be determined, but also the element’s oxidation state.  This has 

been used previously in NPs to determine stoichiometric ratios,
223

 oxidation states,
224

 and 

relative coordination numbers.
142

  The latter of these uses will be applied here to 

characterize NPs as surface bound or crystal bound.  Another technique employed in our 

lab to test the strength of ligand binding is via the tracking of disulfide formation via 

NMR.
142

  The surface of NPs, such as CdSe, are known to promote disulfide formation 

under amibient light and air exposure.
30,214,225

  This can be seen visually through the 

agglomeration of NPs due to loss of surface ligands (see Figure 5.3a).  It was found that if 

excess sulfide, in this case dodecyl-3-mercaptopropanoate (D3MP), was added to samples 

of CdSe NPs which were identical except for the suspected binding mode of the particles, 

the surface bound samples cause the formation of a significantly larger amount of disulfide 

due to the dynamic and exposed nature of the particle surface.  This was shown in the 

proton NMR by a disappearance in the peak alpha to the thiol, and the appearance of a new 

peak corresponding the peak alpha to the disulfide.  An example of this is shown in Figure 
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Figure 5.3. Disulfide formation on CdSe; A) Pathway of disulfide formation in ambient 

conditions on CdSe.  Reprinted (adapted) with permission from reference 224. Copyright 

2001 American Chemical Society.  B) D3MP. C,D) NMR of crystal bound vs. surface 

bound thiols under ambient conditions after the addition of excess D3MP.  Reprinted 

(adapted) with permission from reference 212. Copyright 2014 American Chemical 

SocietyFigure 5.4. Pb(OAc)2 Reaction Times and Temperatures.   
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5.3b-e. 

 This chapter will focus on attempts to develop new methods of PbS synthesis which 

result in crystal-bound ligand systems, as well as the characterization required to 

differentiate between crystal and surface bound systems. 

 

5.2 Precursors and Strategies 

Two main goals were set for this project: produce and characterize PbS which 

display distinctly different properties related to surface bound and crystal-bound ligand 

systems, and design a general synthetic strategy for producing PbS with crystal bound 

ligands.  PbS was chosen as a material of interest due to its heavy usage in devices such as 

solar cells.  The ability to robustly and uniformly attach ligands to NP surfaces would aid 

in creating pristine films for photo-absorption that feature excellent charge mobility after 

cleavage to a short chain via a group such as D3MP.  In this section various precursors will 

be investigated for suitability in making crystal bound PbS NPss.  Syntheses will be 

addressed in order of Pb precursor.  See Section D.1 in Appendix D for specific synthetic 

techniques. 
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Initial attempts at PbS synthetic control were performed by directly adjusting the 

parameters of published methods.  Mimicking a method by Hyeon et al.,
207

 Pb(OAc)2 was 

degassed with D3MP before heating to temperatures between 180 °C - 200 °C and being 

allowed to react for 0-10 min.  It was observed that size and morphology could be tuned 

with time and temperature; shorter times and lower temperatures resulted in smaller, less 

distinct particles.  At 10 minutes of growth time, a trend of reactions held at 180 °C 

produced spheres, 190 °C produced cubes, and 200 °C produced agglomerated cubes as 

shown in Figure 5.4a.  Aliquots taken at 190 °C, 0 minutes at 200 °C, 5 minutes at 200 °C, 

and 10 minutes at 200 °C showed the progression of growth of the QDs as shown in 

Figure 5.4b.  It is interesting to note that in these reactions what appear as hexagonal disks 

 

Figure 5.4. Pb(OAc)2 Reaction Times and Temperatures; A) Reactions held at 10 

minutes at specified temperatures.  Scale bars are 200 nm.  B) Reaction aliquots taken at 

specified times/temperatures for one experiment.  Aliquots were injected into hexanes for 

quenching prior to washing.  Scale bars are 50 Figure 5.5. TEM images of different lead 

salt QDsnm. 
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grow into cubes, which is similar to that seen in work done by Teng.
207

  What is 

particularly important about these samples is that the earliest sample, taken at 190 °C, 

measured 14.1 ± 0.7 nm (n=120), which is smaller than the Bohr exciton radius of 20 nm 

for PbS and thus the particles are quantum confined (QC).
226

  Quantum confinement is 

necessary for aptly tuned solar absorption and band compatibility in devices.
227–230

 

However, since 180 °C was the lowest temperature required for nucleation in this system 

yet produced particles which were still too large the desired application of solar cell 

fabrication.  Other synthetic methods were thus sought which could produce smaller QDs. 

The following strategies discussed here will use lead precursors which have been 

synthesized prior to the QD synthesis.  A detailed procedure for lead salt synthesis can be 

found in Appendix D.  Pb(NO3)2 was reacted with a thiol ligand to produce the 

corresponding salt, with the intent of increasing interaction between Pb and the organic 

counterion during NP synthesis.  Initial studies were focused on Pb(dodecanethiol)2 

[Pb(DDT)2] and Pb(dodecyl-3-mercaptopropanoate)2 [Pb(D3MP)2].  It was shown that 

reactions of these lead precursors alone in non-coordinating solvent lead to large particles, 

so additional reagents needed to be added.  Bis-trimethylsilyl sulfide (TMSS) is known as a 

very volatile and reactive sulfur source which is used at relatively low temperatures (~125 

°C) to produce very small quantum confined PbS QDs used in solar cells.  Since the 

reaction of TMSS and Pb oleate resulted in nucleation followed by growth with Pb oleate, 

the Pb oleate was replaced with the lead salt of the ligand desired for the final product.  

The intention of this method was to produce a synthesis in which the only coordinating 

ligand was also a sulfur source.  This method was successful in making small, colloidal, 

spherical PbS using D3MP and DDT as seen in Figure 5.5a and b.  However, this method 
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did not prove fruitful in providing a method in which size or surface chemistry can be 

controlled.  Many variables were altered for particles prepared from Pb(D3MP)2 including 

Pb precursor concentration, sulfur precursor concentration, surfactant concentration, 

amount of TMS, reaction temperature, and reaction time, but all resulting particles were of 

a similar size (2-5 nm) and morphology (see Appendix D).  Indeed, it can be said that this 

reaction was reliable in terms of reproducibility, but was not adaptable.  This method was 

 

Figure 5.5. TEM images of different lead salt QDs; A) Pb(DDT)2  B) Pb(D3MP)2   C) 

Pb(DTC)2  D) Pb(FMT)2.  All scale bars are 50 nmFigure 5.6. TEM images of tested PbS 

QDs.  
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also attempted with O-((9H-fluoren-9-yl)methyl) S-(2-mercaptoethyl) carbonothioate  

 

Figure 5.6. TEM images of tested PbS QDs; A) Surface bound D3MP (diameter = 3.6 

nm) on PbS NPs,  B) Crystal bound DDT (diameter = 1.9 nm) on PbS NPs, and C) 

Crystal bound D3MP (diameter = 4.0 nm) on PbS NPs.  All scale bars are 50 nm.  Sizes 

were calculated using an equation from reference 14Figure 5.7. NMR test of ligand 

dynamics.7. 
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(FMT) and dithiocarbamate (DTC) lead salts, but these ligands proved to be too reactive 

and only produced PbS agglomerates as seen in Figure 5.5c and d.   

 

5.3 Surface Analaysis 

After developing a method which reliably produced PbS QDs with possible crystal 

bound surface chemistry, NMR and XPS were used to evaluate the surface activity and 

bonding nature.  For the following surface bound particles, the well-studied reaction 

between Pb-oleate and bis-trimethylsilyl sulfide (TMS) was performed, followed by a 

ligand exchange with dodecanethiol (DDT).
147

  For crystal-bound ligand PbS QDs, the 

reaction of Pb(D3MP)2 or Pb(DDT)2 and TMS at 180 °C per conditions developed in lab 

(vide infra) was employed.  TEM images of these NPs can be seen in Figure 5.6.  All 

particles were spherical and exhibited a narrow size distribution as evidenced by a sharp 

first exciton peak in the near-IR absorbance (Figure D.2).   

A surface exchange NMR experiment was undertaken to observe the surface 

reactivity of the different PbS samples.  In these experiments DDT surface-bound and 

crystal-bound ligand PbS QDs were used.  After synthesis and/or ligand exchange the 

samples were washed thoroughly by precipitation with acetone until the proton NMR 

spectra of the samples showed only the peaks from DDT bound to the surface, which 

consists of a methyl peak and alkyl chain peaks.  An excess of D3MP was then added to 

the QDs and the spectra recorded once more.  After addition, only D3MP peaks were 

visible; the excess of ligand and overlapping chemical shift with the QD ligands occluded 



 

86 

 

 

Figure 5.7. NMR test of ligand dynamics.; A) Expected reaction from surface bound 

particles.  B, C) Resulting NMR from surface bound DDT coated QDs: Before D3MP 

addition (blue), directly after D3MP addition (red), 24 hours after D3MP addition 

(green). 
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Figure 5.8. XPS Measurements of PbS QDs.; A) XPS of S2p orbitals for surface bound 

PbS QDs.  B)  XPS of S2p orbitals for crystal bound PbS QDs.  C) Peak positions and 

FWHM along with constraints.  Data was analyzed using CasaXPS. 
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visibility of DDT ligands (Figure 5.7).  Of particular interest on D3MP in this study were 

the peaks alpha to the ester and alpha to the thiol, as their downfield chemical shift makes 

them readily identifiable.  After 24 hours in solution under ambient conditions the proton 

NMR was recorded again.  At this point in time, signals could be seen appearing in the 

surface bound signal denoted as δ and ε in Figure 5.7, but not in the crystal bound sample.  

This is due to the oxidative nature of the QD surface coupled with the dynamic nature of 

surface bound ligands in comparison to crystal bound ligands.
142,214,231

  The new signals are 

attributed to the formation of the disulfide of D3MP, which was shown experimentally 

previously by other group members.
142

 This reaction is occurring due to the dynamic nature 

of surface-bound ligand systems; ligands are able to detach and reattach from the surface, 

allowing for photo-oxidation to occur.  

 Given promising NMR results, XPS was undertaken as a secondary 

characterization technique to verify the possibility of a different binding mode.  These 

samples were prepared by drop casting surface bound or crystal bound PbS QDs onto a 

silicon wafer and allowing the solvent to evaporate.  The XPS signal for sulfur 2p orbitals 

were examined closely, as shown in Figure 5.8, as these orbitals are the ones which are 

responsible for bonding between the sulfur and other carbon or lead atoms.  Unfortunately, 

these results were not conclusive as a way to classify the character of two types of distinct 

surfaces.  The 2p region of sulfur XPS shows one sulfur signal as a doublet of peaks due to 

spin-orbit coupling.  In both samples run through XPS, two sets of doublets were observed, 

corresponding to sulfur in two different oxidation states (in this case, it can be thought of 

as different coordination numbers).  Previous work has shown that in crystal-bound 

samples, only one doublet is expected, as all sulfur is integrated into the crystal lattice.  
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Given the relative success of the NMR experiment, it is possible that the crystal-bound 

sample possesses some facets which are ligated on the surface while others are crystal 

bound, causing multiple signals in the XPS.  Ultimately these results further press the 

critical issue with nanoparticle characterization which limits understanding of structure-

property relationships: surface analysis. 

 

5.4 Further Directions 

Multiple synthetic methods were used to synthesize and characterize PbS QDs in 

hopes of producing a system that could be definitively considered crystal-bound.  Two 

pressing issues in synthesis were that of size and colloidal stability; the QDs had to be 

maintained small enough that they were quantum confined and useful for device 

fabrication, and colloidal stability is required to produce a uniform film.  While new 

methods were developed that produced monodisperse PbS at appropriate size, very little 

control was gained over varying size or ligand chemistry.  Further, while NMR data 

showed reduced dynamic ligand activity for crystal bound samples, XPS data was 

inconclusive. 

 QD synthesis has reached a point where analysis of surface on an atomic level is of 

importance for understanding and exploiting the unique properties of these materials.  

Further advancements in the areas of spectroscopy and microscopy will allow for these 

materials to be understood in terms of catalytic properties on the nanoscale and larger after 

device fabrication, which will in turn guide research into advanced synthetic methods to 

achieve desired goals.



Chapter 6 

6 CONCLUSION 

 

6.1 Summary 

As energy demand across the globe continues to rise, the demand for new methods of 

producing clean energy will continue to increase.  Renewable energy sources such as solar 

are particularly suited to this because of their limited carbon footprint,
232

 but also their 

ability to be deployed in remote areas without the need for energy transport services.  The 

work herein shows incremental steps towards the development of new technology which 

can meet these needs, and also provides a deeper insight into the fundamental materials 

properties of colloidal semiconducting NP systems. 

The second chapter addressed the need to be able to efficiently trap charges outside 

of NP cores to perform oxidative or reductive reactions.  This area of research is crucial to 

the application of colloidal NPs in catalytic systems such as the reduction and oxidation of 

H2O to H2 and O2 gas, respectively.  Application can also be found in the catalytic 

production of chemical feedstocks.
233,234

  In this work, a functional group known to chelate 

and interact electronically with common metal-chalcogenide semiconducting NPs, a 

dithiocarbamate, was appended to a common ligand, 2-2,-bipyridine, used in catalytic 

processes.  It was shown that ligand exchange from native ligands to the new ligand 

followed by addition of an iron salt allowed for the metal complex to be anchored to the 

NP surface.  This interaction caused a quench in the photoluminescence and fluorescence 

lifetime, indicating the extraction of charges to new molecular states caused by the 

interaction of the complex with the NP as shown from DFT calculations.  These 
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fundamental studies show the possibility of harnessing the power of visible light through 

semiconducting NPs for catalytic reactions. 

These studies were promising in that the expected QY quench and decrease in 

fluorescence lifetime are indicative of the transfer of a charge out into the ligands where 

radiative recombination no longer occurs.  It is even more exciting that the modeling 

performed by Andrew O’hara from the group of Sokrates Pantelides was able to predict not 

only that charge transfer would occur, but also accurately predict the timescale on which it 

would occur.  However, it is necessary for charges to remain at catalytic sites long enough 

for a catalytic process to happen.  In the case of water splitting, oxidation reactions occur 

on substantially slower timescales than reduction reactions.  The indication that a charge 

has been removed from the inorganic NP is exciting, but further studies to determine the 

stability of the oxidized catalyst would be needed to validate the possibility of harnessing 

the charge transfer for a chemical reaction.  Further, in this study, it was discovered that the 

ligand which had been designed for water oxidation was itself sensitive to water.  More 

work needs to be invested in designing functional groups which are stable to more harsh 

conditions while maintaining hole transfer functionality.  

Moving forward, there are two majors challenges which need to be addressed: ligand 

stability and reaction rate management.  Dithiocarbamate ligands are known to be 

susceptible to degradation in acidic conditions after protonation of the amine as seen in 

Figure 6.1a.
118

  This results in the generation of CS2 and the corresponding amine.  This 

pathway could possibly be hindered through the replacement of the nitrogen proton with a 

bulkier group such as –methyl or –t-butyl (Figure 6.1b).  Addition of these groups would 

increase steric hindrance around the lone nitrogen pair, as well as lend electron density 
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towards the nitrogen group.  This would make the amine a more active nucleophile, and 

strengthen the N-C(S)2 bond.  Another possible route towards improving stability could be 

found in xanthates (Figure 6.1c).  While these ligands have yet to be studied in regards to 

their hole extracting qualities on metal chalcogenide NPs, they may possess similar 

electronic properties while showing greater stability; however, they are also known to 

degrade in acidic conditions.  Ultimately, it may be necessary to utilize basic or slightly 

basic conditions for ligand stability when attempting to use these types of ligands. 

 

Further efforts must also be made to address the difference in time scales of the water 

reduction and water oxidation reactions.  Previous reports have shown that by using a 

hydroxyl anion-radical redox couple at high pH can result in almost unity H2 production 

quantum efficiency,
16

 but these conditions are not optimal for a fast rate of hydrogen 

production.  The idea of using a redox shuttle, however, could prove beneficial, as if holes 

remain attached to a NP for too long newly promoted electrons may still recombine with 

 

Figure 6.1. DTCBipy Challenges and Opportunities; A) Degradation pathway of 

DTCBipy in acidic medium.  B) DTCBipy alternatives   C) Xanthate derivation of 

DTCBipy.  
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holes in the ligands.
235

  Other research has shown that hydrogen production can be 

performed by shuttling electrons from CdSe NPs,
236

 so further research should be focused 

towards performing water oxidation via shuttling the hole from the NP to a catalyst in 

solution.  After this process and related timescales are understood, it may be possible to 

optimize a system in which water is directly reduced on the photoabsorber, while water is 

oxidized by holes shuttled from the photoabsorber to a catalyst in solution.  

In chapter 3, the improvement of fabrication methods for solar cells was addressed 

by looking at the nature of solid state ligand exchange.  Since colloidal NPs are grown in 

organic solvent, they ultimately are covered in long chain organic ligands.  These ligands 

are charge insulating, and must be removed before the NPs are suitable for solar cells.  The 

most common method of doing this involves a solid state exchange whereby lead oleate is 

ripped from the particle surface and replaced with a short chain ligand such as ethane 

dithiol.  This chapter focused on the design and synthesis of a short molecule mono-

functionally protected with a protecting group which could be easily removed.  After a 

complete ligand exchange—something which can only be verified in solution—was 

performed, the NPs were used to make a pristine film.  This film could then be deprotected 

to produce a film made from entirely short-ligand coated NPs, which demonstrated a more 

p-type behavior.  The film was then used in a solar cell to show improved efficiency over 

controls, indicating that typical solid state exchange methods are not completely treating 

the surface of NPs used in colloidal NP devices. 

This collaboration in this work brought together groups focusing at very different 

levels to uncover synergistic results.  I proposed that by incorporating a peptide protecting 

group into the surface ligands of NPs, a superior film could be produced for devices such 
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as solar cells.  After I tackled the challenge of synthesizing the ligand and verifying the 

colloidal stability of NPs after ligand exchange with it, the Sargent group took up the 

application of this absorber to devices.  Such a proposal—of using peptide chemistry in 

solar cell designs—had never occurred to them, and highlights the transformative role a 

diverse knowledge of chemistry can play in device engineering.  While I was focused on 

the interface between particle and environment, they focused on the interface between 

disparate layers of material.  This allowed them to apply their engineering and fabrication 

knowledge which was needed but I was not personally able to complete.  The resulting p-

type film provided an excellent stepping stone in a graded architecture which resulted in 

the end goal of a more efficient device.  

Incorporating the knowledge that band position can be changed by ligand coverage, 

and that this can be altered by changing from solid state to colloidal exchange methods, 

further fabrication studies could provide continued improvements into device architecture.  

Since one additional layer increased device efficiency, it is likely that controlling multiple 

layers to fabricate a more gradual energy level gradient from the depletion zone of the solar 

cell through the absorbing layer to the hole transport layer and metal contact would further 

optimize charge transport to improve efficiency.  This would require the collaboration 

between synthetic, computational, and device fabrication scientists to determine what 

ligands are likely to alter the energy alignment of PbS when bound to the surface, how to 

make and apply the ligands, and how to incorporate the new methodologies into 

fabrication. 

 Chapter 4 dealt with manipulating NP surfaces to transition from long, charge-

insulating ligands to very short chain ligands, but sought to achieve the goal through photo-
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catalytic reactions.  Whereas chapter 3 used chemical treatment of ligands to transform 

colloidally stable ligands to short-chain charge transfer capable ligands, this chapter dealt 

with light sensitive ligands.  With solid state exchange or previous functional group 

cleavage, acids or bases must be employed which disturb or damage NP surfaces.  This 

interference may result in trap states which hinder charge transfer, and thus device 

performance.  Several different photo-labile targets were identified and synthesized, as 

well as tested for photo-activity.  While some activity was seen with the ligands isolated, it 

was not in a controlled manner as reported previously.  Further, it was found that during 

the photodegradation process the generation of a free thiol and benzaldehyde group would 

lead to further undesirable side reactions.  Future targets for photodegradable colloidal 

semiconducting NPs were also discussed.   

One possible application of these ligands is the incorporation of them into devices 

such as solar cells as discussed in chapter 3.  A fabrication method in which pristine QD 

films can be deposited, followed by a deprotection with no added reagents would take extra 

variables out of the process and allow for films optimal for charge transfer.  Such a method 

would prove useful, though it is conceivable that their use for colloidal semiconductors 

may be limited.  The UV light typically used to degrade ligands is strongly absorbed by 

most semiconductors, so the amount of incident light making it to the ligands may be too 

small.  Further, side reactions occurring from released byproducts could cause issues just 

as cleavage reagents do.  The idea has however been demonstrated on non-colloidal 

materials, and merits further research.  

 The final research chapter of this work delved into the binding mode of NPs, 

specifically PbS.  There are many different modes in which ligands can be bound to the 
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surface (mono or bidentate, as a negative, positive, or neutral donor), but this chapter 

focused on work previously from our lab: ligands which are bound into the crystal lattice 

of the NP.  It was previously shown by other members that for Cu2S when using a sulfur 

source that is the same as the surfactant, the surface ligands become bound in the final 

layer of crystal lattice and feature a higher coordination number.  Several synthetic 

schemes were devised to adapt this idea to PbS.  NMR tests showed that the surface 

activity of possible crystal bound PbS was indeed altered through comparison with surface 

bound PbS, but XPS failed to show significant changes to the oxidation states of the sulfur 

on the surfaces of the NPs.  Continued XPS experiments to ascertain the oxidation states of 

surface atoms would be useful.  Another technique that could provide interesting 

information is elemental analysis, performed either by quantitative EDS or inductively 

coupled plasma experiments.  This would provide data on the composition of lead and 

sulfur in the particles, which could prove interesting since the reactions ran were rich in 

sulfur.  The proper balance of reactivity for each precursor still needs to be determined for 

these reactions.  Further synthesis and surface analysis is necessary to implement these NPs 

in catalytic systems or devices. 

 This segment of research highlighted highly exploratory research.  The area of 

surface chemistry is hotly debated, and the suggestion of a new ligand system, such as 

crystal-bound, is likely to spark debate with those in the field.  Though some studies have 

documented such systems, proposing a new binding mode for any material requires highly 

corroborated data.  This relies heavily on spectroscopic data acquisition and proper 

analysis.  Though data were not collected to clearly indicate that which was sought, other 

interesting aspects of PbS growth, including smaller sizes/dimensions of crystals than 
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previously reported were found.  These new syntheses could perhaps be tuned to favor 

certain crystal facets for reactivity or film packing. 

 The driving purpose for developing QD applications in device fabrication and 

renewable energy utilization is to not only improve our environment, but to shift the 

paradigm of resource utilization for a sustainable future.  The need for renewable energy 

comes not only from increased energy demand, but the negative impacts of burning fossil 

fuels.  The increase of greenhouse gases in the environment not only causes an increase of 

temperature, but also alters environments by changing the biogeography of forests resulting 

in increased wildfires, changing precipitation patterns resulting in species die-off, and 

increased flood risk.
237–239

  These problems will ultimately degrade the foundations of 

developed life as it is currently known by severely restricting the availability of all 

resources.
240

  It can thus be seen that new paths must be taken to support human growth. 

   Many directions can be taken in attempting to begin to shift energy production or 

consumption towards a more sustainable future.  This dissertation has focused on the 

surface chemistry of QDs to aid in both of these goals.  A thorough understanding of this 

area will lead to precision control of syntheses to manipulate the size, shape, and 

morphology of these systems, which will lead to pushing the application of these materials 

into practical use.  Further development of application-specific ligand systems will push 

these materials into the next generation of green energy devices. 

  



 

98 

 

REFERENCES 

 

(1)  Stocker, T. F.; Qin, D.; Plattner, G.-K.; Tignor, M.; Allen, S. K.; Boschung, J.; 

Nauels, A.; Xia, Y.; Bex, V.; Midgley, P. M. Climate Change 2013: The Physical 

Science Basis. Contribution of Working Group I to the Fifth Assessment Report of 

the Intergovernmental Panel on Climate Change; Cambridge, United Kingdom, 

2013. 

 

(2)  Shafiee, S.; Topal, E. When Will Fossil Fuel Reserves Be Diminished? Energy 

Policy 2009, 37, 181–189. 

 

(3)  BP. Statistical Review of World Energy. BP Stat. Rev. World Energy 2016, 1–48. 

 

(4)  Debije, M. G.; Verbunt, P. P. C. Thirty Years of Luminescent Solar Concentrator 

Research: Solar Energy for the Built Environment. Adv. Energy Mater. 2012, 2, 12–

35. 

 

(5)  Goetzberger, A.; Hebling, C.; Schock, H.-W. Photovoltaic Materials, History, Status 

and Outlook. Mater. Sci. Eng. R 2003, 40, 1–46. 

 

(6)  Carey, G. H.; Abdelhady, A. L.; Ning, Z.; Thon, S. M.; Bakr, O. M.; Sargent, E. H. 

Colloidal Quantum Dot Solar Cells. Chem. Rev. 2015, 115, 12732–12763. 

 

(7)  Shockley, W.; Queisser, H. J. Detailed Balance Limit of Efficiency of P-n Junction 

Solar Cells. J. Appl. Phys. 1961, 32, 510–519. 

 

(8)  Graetzel, M. Photoelectrochemical Cells. Nature 2001, 338-344. 

 

(9)  Aggarwal, V. What are the most efficient solar panels on the market? 

https://news.energysage.com/what-are-the-most-efficient-solar-panels-on-the-

market/ (accessed Aug 9, 2018). 

 

(10)  Alivisatos, A. P. Perspectives on the Physical Chemistry of Semiconductor 

Nanocrystals. J. Phys. Chem. 1996, 100, 13226–13239. 

 

(11)  Arico, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J.; Schalkwijk, W. V. A. N. 

Nanostructured Materials for Advanced Energy Conversion and Storage Devices. 

Nat. Mater. 2005, 4, 366–377. 

 

(12)  Amirav, L.; Alivisatos, A. P. Photocatalytic Hydrogen Production with Tunable 

Nanorod Heterostructures. J. Phys. Chem. Lett. 2010, 1051–1054. 

 

(13)  Liu, C.; Qiu, F.; Peterson, J. J.; Krauss, T. D. Aqueous Photogeneration of H 2 with 



 

99 

 

CdSe Nanocrystals and Nickel Catalysts: Electron Transfer Dynamics. J. Phys. 

Chem. B 2015, 119, 7349–7357. 

 

(14)  Hong, D.; Yamada, Y.; Nagatomi, T.; Takai, Y.; Fukuzumi, S. Catalysis of Nickel 

Ferrite for Photocatalytic Water Oxidation Using [Ru(Bpy)3]
2+

 and S2O8
2−

. 2012, 3–

6. 

  

(15)  Kalisman, P.; Kauffmann, Y.; Amirav, L.; Maeda, K.; Teramura, K.; Lu, D.; Takata, 

T.; Saito, N.; Inoue, Y.; Domen, K.; et al. Photochemical Oxidation on Nanorod 

Photocatalysts. J. Mater. Chem. A 2015, 3, 3261–3265. 

 

(16)  Kalisman, P.; Nakibli, Y.; Amirav, L. Perfect Photon-to-Hydrogen Conversion 

Efficiency. Nano Lett. 2016, 16, 1776–1781. 

 

(17)  Kodama, R. . Magnetic Nanoparticles. J. Magn. Magn. Mater. 1999, 200, 359–372. 

 

(18)  Barnes, W. L.; Dereux, A.; Ebbesen, T. W. Surface Plasmon Subwavelength Optics. 

Nature 2003, 424, 824–830. 

 

(19)  Willets, K. A.; Van Duyne, R. P. Localized Surface Plasmon Resonance 

Spectroscopy and Sensing. Annu. Rev. Phys. Chem. 2007, 58, 267–297. 

 

(20)  Feynman, R. P. There’s (Still) Plenty of Room at the Bottom. In Annual Meeting of 

the American Physical Society at Caltech; Pasadena, CA, 1960. 

 

(21)  Strehlow, W. H.; Cook, E.L. Compilation of Energy Band Gaps in Elemental and 

Binary Compound Semiconductors and Insulators. J. Phys. Chem. Ref. 1973, 2, 163-

199. 

 

 (22)  Kaupp, G. Mechanochemistry: The Varied Applications of Mechanical Bond-

Breaking. CrystEngComm 2009, 11, 388–403. 

 

(23)  Suryanarayana, C. Mechanical Alloying and Milling. Prog. Mater. Sci. 2001, 46, 1–

184. 

 

(24)  Fecht, H. J. Nanostructure Formation by Mechanical Attrition. Nanostructured 

Mater. 1995, 6, 33–42. 

 

(25)  Barth, S.; Hernandez-Ramirez, F.; Holmes, J. D.; Romano-Rodriguez, A. Synthesis 

and Applications of One-Dimensional Semiconductors. Prog. Mater. Sci. 2010, 55, 

563–627. 

 

(26)  Lu, W.; Lieber, C. M. Semiconductor Nanowires. J. Phys. D. Appl. Phys. 2006, 39. 

 



 

100 

 

(27)  Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. A General Strategy for Nanocrystal 

Synthesis. Nature 2005, 437, 121–124. 

 

(28)  Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The Chemistry 

of Two-Dimensional Layered Transition Metal Dichalcogenide Nanosheets. Nat. 

Chem. 2013, 5, 263–275. 

 

(29)  Bahrig, L.; Hickey, S. G.; Eychmüller, A. Mesocrystalline Materials and the 

Involvement of Oriented Attachment-a Review. CrystEngComm 2014, 16, 9408–

9424. 

 

(30)  Owen, J. S.; Park, J.; Trudeau, P.-E.; Alivisatos, A. P. Reaction Chemistry and 

Ligand Exchange at Cadmium−Selenide Nanocrystal Surfaces. J. Am. Chem. Soc. 

2008, 130, 12279–12281. 

 

(31)  Anderson, N. C.; Hendricks, M. P.; Choi, J. J.; Owen, J. S. Ligand Exchange and the 

Stoichiometry of Metal Chalcogenide Nanocrystals: Spectroscopic Observation of 

Facile Metal-Carboxylate Displacement and Binding. J. Am. Chem. Soc. 2013, 135, 

18536–18548. 

 

(32)  Morrison, C. E.; Wang, F.; Rath, N. P.; Wieliczka, B. M.; Loomis, R. A.; Buhro, W. 

E. Cadmium Bis(Phenyldithiocarbamate) as a Nanocrystal Shell-Growth Precursor. 

Inorg. Chem. 2017, 56, 12920–12929. 

 

(33)  Reiss, P.; Protière, M.; Li, L. Core/Shell Semiconductor Nanocrystals. Small 2009, 

5, 154–168. 

 

(34)  Lead, J. R.; Batley, G. E.; Alvarez, P. J. J.; Croteau, M. N.; Handy, R. D.; 

McLaughlin, M. J.; Judy, J. D.; Schirmer, K. Nanomaterials in the Environment: 

Behavior, Fate, Bioavailability, and Effects—An Updated Review. Environ. Toxicol. 

Chem. 2018, 37, 2029–2063. 

 

(35)  Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and Characterization of 

Nearly Monodisperse CdE (E = Sulfur, Selenium, Tellurium) Semiconductor 

Nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706–8715. 

 

(36)  Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H. 

One-Dimensional Nanostructures: Synthesis, Characterization, and Applications. 

Adv. Mater. 2003, 15, 353–389. 

 

(37)  Sun, S.; Zeng, H.; Robinson, D. B.; Raoux, S.; Rice, P. M.; Wang, S. X.; Li, G. 

Monodisperse MFe 2 O 4 (M = Fe, Co, Mn) Nanoparticles. J. Am. Chem. Soc. 2004, 

126, 273–279. 

 

(38)  Spicer, C. D.; Jumeaux, C.; Gupta, B.; Stevens, M. M. Peptide and Protein 



 

101 

 

Nanoparticle Conjugates: Versatile Platforms for Biomedical Applications. Chem. 

Soc. Rev. 2018, 47, 3574–3620. 

 

(39)  Hens, Z.; Martins, J. C. A Solution NMR Toolbox for Characterizing the Surface 

Chemistry of Colloidal Nanocrystals. Chem. Mater. 2013, 25, 1211–1221. 

 

(40)  Gomes, R.; Hassinen, A.; Szczygiel, A.; Zhao, Q.; Vantomme, A.; Martins, J. C.; 

Hens, Z. Binding of Phosphonic Acids to CdSe Quantum Dots: A Solution NMR 

Study. J. Phys. Chem. Lett. 2011, 2, 145–152. 

 

(41)  Fritzinger, B.; Capek, R. K.; Lambert, K.; Martins, J. C.; Hens, Z. Utilizing Self-

Exchange to Address the Binding of Carboxylic Acid Ligands to CdSe Quantum 

Dots. J. Am. Chem. Soc. 2010, 132, 10195–10201. 

 

(42)  Biesinger, M. C.; Payne, B. P.; Grosvenor, A. P.; Lau, L. W. M.; Gerson, A. R.; 

Smart, R. S. C. Resolving Surface Chemical States in XPS Analysis of First Row 

Transition Metals, Oxides and Hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 

2011, 257, 2717–2730. 

 

(43)  Rogach, A. L.; Franzl, T.; Klar, T. A.; Feldmann, J.; Gaponik, N.; Lesnyak, V.; 

Shavel, A.; Eychmüller, A.; Rakovich, Y. P.; Donegan, J. F. Aqueous Synthesis of 

Thiol-Capped CdTe Nanocrystals: State-of-the-Art. J. Phys. Chem. C 2007, 111, 

14628–14637. 

 

(44)  Dabbousi, B. O.; Rodriguez-Viejo, J.; Mikulec, F. V.; Heine, J. R.; Mattoussi, H.; 

Ober, R.; Jensen, K. F.; Bawendi, M. G. (CdSe)ZnS Core−Shell Quantum 

Dots:  Synthesis and Characterization of a Size Series of Highly Luminescent 

Nanocrystallites. J. Phys. Chem. B 1997, 101, 9463–9475. 

 

(45)  Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H. Quantum Dot 

Bioconjugates for Imaging, Labelling and Sensing. Nat. Mater. 2005, 4, 435–446. 

 

(46)  Khanna, V. K. Nanomaterials and Their Properties; Springer, New Delhi, 2016. 

 

(47)  Baskoutas, S.; Terzis, A. F. Size-Dependent Band Gap of Colloidal Quantum Dots. 

J. Appl. Phys. 2006, 99. 

 

(48)  McKittrick, J.; Shea-Rohwer, L. E. Review: Down Conversion Materials for Solid-

State Lighting. J. Am. Ceram. Soc. 2014, 97, 1327–1352. 

 

(49)  Brus, L. Electronic Wave Functions in Semiconductor Clusters: Experiment and 

Theory. J. Phys. Chem. 1986, 90, 2555–2560. 

 

(50)  Zhang, J. Z. Interfacial Charge Carrier Dynamics of Colloidal Semiconductor 

Nanoparticles. J. Phys. Chem. B 2000, 104, 7239–7253. 



 

102 

 

 

(51)  Jain, P. K.; Lee, K. S.; El-Sayed, I. H.; El-Sayed, M. A. Calculated Absorption and 

Scattering Properties of Gold Nanoparticles of Different Size, Shape, and 

Composition: Applications in Biological Imaging and Biomedicine. J. Phys. Chem. 

B 2006, 110, 7238–7248. 

 

(52)  Yohan, D.; Chithrani, B. D. Applications of Nanoparticles in Nanomedicine. J. 

Biomed. Nanotechnol. 2014, 10, 2371–2392. 

 

(53)  Zhang, Y.; Grady, N. K.; Ayala-Orozco, C.; Halas, N. J. Three-Dimensional 

Nanostructures as Highly Efficient Generators of Second Harmonic Light. Nano 

Lett. 2011, 11, 5519–5523. 

 

(54)  Brown, D. J.; Morishige, N.; Neekhra, A.; Minckler, D. S.; Jester, J. V. Application 

of Second Harmonic Imaging Microscopy to Assess Structural Changes in Optic 

Nerve Head Structure Ex Vivo. J. Biomed. Opt. 2007, 12, 024029-1 - 024029-5 

. 

(55)  Li, Y.; Wang, H.; Xie, L.; Liang, Y.; Hong, G.; Dai, H. MoS2 Nanoparticles Grown 

on Graphene: An Advanced Catalyst for the Hydrogen Evolution Reaction. J. Am. 

Chem. Soc. 2011, 133, 7296–7299. 

 

(56)  Liang, Y.; Li, Y.; Wang, H.; Zhou, J.; Wang, J.; Regier, T.; Dai, H. Co3O4 

Nanocrystals on Graphene as a Synergistic Catalyst for Oxygen Reduction Reaction. 

Nat. Mater. 2011, 10, 780–786. 

 

(57)  Khan, S. U. M.; Mofareh, A.; Ingler, W. B. Efficient Photochemical Water Splitting 

by a Chemically Modified n-TiO2. Science. 2013, 297, 2243–2245. 

 

 (58)  Pelaez, M.; Nolan, N. T.; Pillai, S. C.; Seery, M. K.; Falaras, P.; Kontos, A. G.; 

Dunlop, P. S. M.; Hamilton, J. W. J.; Byrne, J. A.; O’Shea, K.; et al. A Review on 

the Visible Light Active Titanium Dioxide Photocatalysts for Environmental 

Applications. Appl. Catal. B Environ. 2012, 125, 331–349. 

 

(59)  Macdonald, J. E.; Veinot, J. G. C.; Macdonald, J. E.; Veinot, J. G. C. Removal of 

Residual Metal Catalysts with Iron/Iron Oxide Nanoparticles from Coordinating 

Environments. 2008, 20, 7169–7177. 

 

 (60)  Kim, S. H.; Kwak, S. Y.; Sohn, B. H.; Park, T. H. Design of TiO2nanoparticle Self-

Assembled Aromatic Polyamide Thin-Film-Composite (TFC) Membrane as an 

Approach to Solve Biofouling Problem. J. Memb. Sci. 2003, 211, 157–165. 

 

(61)  Sobana, N.; Muruganadham, M.; Swaminathan, M. Nano-Ag Particles Doped 

TiO2for Efficient Photodegradation of Direct Azo Dyes. J. Mol. Catal. A Chem. 

2006, 258, 124–132. 



 

103 

 

 

(62)  Chong, M. N.; Jin, B.; Chow, C. W. K.; Saint, C. Recent Developments in 

Photocatalytic Water Treatment Technology: A Review. Water Res. 2010, 44, 2997–

3027. 

 

(63)  Kamat, P. V. Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light 

Harvesters. J. Phys. Chem. C 2008, 112, 18737–18753. 

 

(64)  Nam, M.; Lee, T.; Kim, S.; Kim, S.; Kim, S. W.; Lee, K. K. Two Strategies to 

Enhance Efficiency of PbS Quantum Dot Solar Cells: Removing Surface Organic 

Ligands and Configuring a Bilayer Heterojunction with a New Conjugated Polymer. 

Org. Electron. physics, Mater. Appl. 2014, 15, 391–398. 

 

(65)  Carey, G. H.; Kramer, I. J.; Kanjanaboos, P.; Moreno-Bautista, G.; Voznyy, O.; 

Rollny, L.; Tang, J. A.; Hoogland, S.; Sargent, E. H. Electronically Active 

Impurities in Colloidal Quantum Dot Solids. ACS Nano 2014, 8, 11763–11769. 

 

(66)  Woong Jo, J.; Choi, J.; Pelayo García de Arquer, F.; Seifitokaldani, A.; Sun, B.; 

Kim, Y.; Ahn, H.; Fan, J.; Quintero-Bermudez, R.; Kim, J.; et al. Acid-Assisted 

Ligand Exchange Enhances Coupling in Colloidal Quantum Dot Solids. 2018. 

 

(67)  Carey, G. H.; Yuan, M.; Comin, R.; Voznyy, O.; Sargent, E. H. Cleavable Ligands 

Enable Uniform Close Packing in Colloidal Quantum Dot Solids. ACS Appl. Mater. 

Interfaces 2015, 7, 21995–22000. 

 

(68)  Woong Jo, J.; Choi, J.; Pelayo García de Arquer, F.; Seifitokaldani, A.; Sun, B.; 

Kim, Y.; Ahn, H.; Fan, J.; Quintero-Bermudez, R.; Kim, J.; et al. Acid-Assisted 

Ligand Exchange Enhances Coupling in Colloidal Quantum Dot Solids. Nano Lett. 

2018, 16, 4417–4423. 

 

(69)  La Croix, A. D.; O’Hara, A.; Reid, K. R.; Orfield, N. J.; Pantelides, S. T.; Rosenthal, 

S. J.; Macdonald, J. E. Design of a Hole Trapping Ligand. Nano Lett. 2017, 17, 909–

914. 

 

(70)  Crowley, T. J. Causes of Climate Change Over the Past 1000 Years. Science. 2014, 

289, 270–277. 

 

 (71)  Dunn, S. Hydrogen Futures: Toward a Sustainable Energy System. Int. J. Hydrogen 

Energy 2002, 27, 235–264. 

 

(72)  Bak, T.; Nowotny, J.; Rekas, M.; Sorrell, C. . Photo-Electrochemical Hydrogen 

Generation from Water Using Solar Energy. Materials-Related Aspects. Int. J. 

Hydrogen Energy 2002, 27, 991–1022. 

 

(73)  Chen, X.; Shen, S.; Guo, L.; Mao, S. S. Semiconductor-Based Photocatalytic 



 

104 

 

Hydrogen Generation. 2010, 6503–6570. 

 

(74)  Han, Z.; Qiu, F.; Eisenberg, R.; Holland, P. L.; Krauss, T. D. Robust 

Photogeneration of H2 in Water Using Semiconductor Nanocrystals and a Nickel 

Catalyst. Science.. 2012, 338. 

 

 (75)  McCarthy, C. L.; Downes, C. A.; Schueller, E. C.; Abuyen, K.; Brutchey, R. L. 

Method for the Solution Deposition of Phase-Pure CoSe 2 as an Efficient Hydrogen 

Evolution Reaction Electrocatalyst. ACS Energy Lett. 2016, 1, 607–611. 

 

(76)  Lifshitz, E. Evidence in Support of Exciton to Ligand Vibrational Coupling in 

Colloidal Quantum Dots. J. Phys. Chem. Lett. 2015, 6, 4336–4347. 

 

(77)  Amirav, L.; Alivisatos, A. P. Photocatalytic Hydrogen Production with Tunable 

Nanorod Heterostructures. J. Phys. Chem. Lett. 2010, 1, 1051–1054. 

 

(78)  Wu, K.; Zhu, H.; Liu, Z.; Rodríguez-Córdoba, W.; Lian, T. Ultrafast Charge 

Separation and Long-Lived Charge Separated State in Photocatalytic CdS–Pt 

Nanorod Heterostructures. J. Am. Chem. Soc. 2012, 134, 10337–10340. 

 

(79)  Kato, H.; Asakura, K.; Kudo, A. Highly Efficient Water Splitting into H2 and O2 

over Lanthanum-Doped NaTaO3 Photocatalysts with High Crystallinity and Surface 

Nanostructure. J. Am. Chem. Soc. 2003, 125, 3082–3089. 

  

(80)  Kato, H.; Asakura, K.; Kudo, A. Highly Efficient Water Splitting into H2 and O2 

over Lanthanum-Doped NaTaO3 Photocatalysts with High Crystallinity and Surface 

Nanostructure. J. Am. Chem. Soc. 2003, 125, 3082–3089. 

  

(81)  Bao, N.; Shen, L.; Takata, T.; Domen, K. Self-Templated Synthesis of Nanoporous 

CdS Nanostructures for Highly Efficient Photocatalytic Hydrogen Production under 

Visible Light. Chem. Mater.. 2008, 20, 110–117. 

 

(82)  Berr, M.; Vaneski, A.; Susha, A. S.; Rodríguez-Fernández, J.; Döblinger, M.; Jäckel, 

F.; Rogach, A. L.; Feldmann, J. Colloidal CdS Nanorods Decorated with 

Subnanometer Sized Pt Clusters for Photocatalytic Hydrogen Generation. Appl. 

Phys. Lett. 2010, 97, 093108-1 - 093108-3. 

 

(83)  Tarafder, K.; Surendranath, Y.; Olshansky, J. H.; Alivisatos, A. P.; Wang, L. Hole 

Transfer Dynamics from a CdSe/CdS Quantum Rod to a Tethered Ferrocene 

Derivative. 2014, 136, 5121-5131. 

 

 (84)  Veinot, J. G. C.; Galloro, J.; Pugliese, L.; Pestrin, R.; Pietro, W. J. Surface 

Functionalization of Cadmium Sulfide Quantum-Confined Nanoclusters. 5. 

Evidence of Facile Surface-Core Electronic Communication in the 



 

105 

 

Photodecomposition Mechanism of Functionalized Quantum Dots 
†
. Chem. Mater. 

1999, 11, 642–648. 

 

(85)  Barnett, S. M.; Goldberg, K. I.; Mayer, J. M. A Soluble Copper-Bipyridine Water-

Oxidation Electrocatalyst. Nat. Chem. 2012, 1–5. 

 

(86)  Connor, T. O.; Panov, M. S.; Mereshchenko, A.; Tarnovsky, A. N.; Lorek, R.; 

Perera, D.; Diederich, G.; Lambright, S.; Moroz, P.; Zamkov, M. The Effect of the 

Charge-Separating Interface on Exciton Dynamics in Photocatalytic Colloidal 

Heteronanocrystals. 2012, 8156–8165. 

 

 (87)  Amirav, L.; Alivisatos, A. P. Luminescence Studies of Individual Quantum Dot 

Photocatalysts. J. Am. Chem. Soc. 2013, 135, 13049–13053. 

 

(88)  Lian, S.; Weinberg, D. J.; Harris, R. D.; Kodaimati, M. S.; Weiss, E. A. 

Subpicosecond Photoinduced Hole Transfer from a CdS Quantum Dot to a 

Molecular Acceptor Bound Through an Exciton-Delocalizing Ligand. ACS Nano 

2016, 10, 6372–6382. 

 

(89)  Frederick, M. T.; Weiss, E. A. Relaxation of Exciton Confinement in CdSe 

Quantum Dots by Modification with a Conjugated Dithiocarbamate Ligand. ACS 

Nano 2010, 4, 3195–3200. 

 

(90)  Frederick, M. T.; Amin, V. A.; Cass, L. C.; Weiss, E. A. A Molecule to Detect and 

Perturb the Confinement of Charge Carriers in Quantum Dots. 2011, 11, 5455–5460. 

 

(91)  Frederick, M. T.; Amin, V. A.; Weiss, E. A. Optical Properties of Strongly Coupled 

Quantum Dot–Ligand Systems. J. Phys. Chem. Lett. 2013, 4, 634–640. 

 

(92)  Frederick, M. T.; Amin, V. A.; Swenson, N. K.; Ho, A. Y.; Weiss, E. A. Control of 

Exciton Confinement in Quantum Dot–Organic Complexes through Energetic 

Alignment of Interfacial Orbitals. Nano Lett. 2013, 13, 287–292. 

 

(93)  Wickramasinghe, L. D.; Zhou, R.; Zong, R.; Vo, P.; Gagnon, K. J.; Thummel, R. P. 

Iron Complexes of Square Planar Tetradentate Polypyridyl-Type Ligands as 

Catalysts for Water Oxidation. J. Am. Chem. Soc. 2015, 137, 13260–13263. 

 

(94)  Fillol, J. L.; Codolà, Z.; Garcia-Bosch, I.; Gàmez, L.; Pla, J. J.; Costas, M. Efficient 

Water Oxidation Catalysts Based on Readily Available Iron Coordination 

Complexes. Nat. Chem. 2011, 3, 807–813. 

 

(95)  Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab Initio Total-Energy 

Calculations Using a Plane-Wave Basis Set. Phys. Rev. B 1996, 54, 11169–11186. 

 

(96)  Yan, Y.; Chen, G.; Van Patten, P. G. Ultrafast Exciton Dynamics in CdTe 



 

106 

 

Nanocrystals and Core/Shell CdTe/CdS Nanocrystals. J. Phys. Chem. C 2011, 115, 

22717–22728. 

 

(97)  Keene, J. D.; McBride, J. R.; Orfield, N. J.; Rosenthal, S. J. Elimination of Hole-

Surface Overlap in Graded CdSxSe1- x Nanocrystals Revealed by Ultrafast 

Fluorescence Upconversion Spectroscopy. ACS Nano 2014, 8, 10665–10673. 

 

(98)  Xing, G.; Liao, Y.; Wu, X.; Chakrabortty, S.; Liu, X.; Yeow, E. K. L.; Chan, Y.; 

Sum, T. C. Ultralow-Threshold Two-Photon Pumped Amplified Spontaneous 

Emission and Lasing from Seeded CdSe/CdS Nanorod Heterostructures. ACS Nano 

2012, 6, 10835–10844. 

 

(99)  Zavelani-Rossi, M.; Lupo, M. G.; Krahne, R.; Manna, L.; Lanzani, G. Lasing in 

Self-Assembled Microcavities of CdSe/CdS Core/Shell Colloidal Quantum Rods. 

Nanoscale 2010, 2, 931–935. 

 

(100)  Lupo, M. G.; Sala, F. Della; Carbone, L.; Zavelani-rossi, M.; Fiore, A.; Lu, L.; Polli, 

D.; Cingolani, R.; Manna, L.; Lanzani, G.; et al. Ultrafast Electron-Hole Dynamics 

in Core / Shell CdSe / CdS Dot / Rod Nanocrystals. Nano Lett. 2008, 8, 4582-4587. 

 

 (101)Wang, L., and Wang, Z. Efficient Cross-Coupling of Aryl Chlorides with Arylzinc 

Reagents Catalyzed be Amido Pincer Complexes of Nickel. Org. Lett. 2007. 9, 

4335-4338. 

 

(102)  Krasovskiy, A.; Malakhov, V.; Gavryushin, A.; Knochel, P. Efficient Synthesis of 

Functionalized Organozinc Compounds by the Direct Insertion of Zinc into Organic 

Iodides and Bromides. Angew. Chemie - Int. Ed. 2006, 45, 6040–6044. 

 

(103)  Zhang, B.; Breslow, R. Ester Hydrolysis by a Catalytic Cyclodextrin Dimer Enzyme 

Mimic with a Metallobipyridyl Linking Group. J. Am. Chem. Soc. 1997, 119, 1676–

1681. 

 

(104)  Sakamoto, T.; Kondo, Y.; Murata, N.; Yamanaka, H. Pyridinylzinc halides by 

oxidative addition of active zinc with halopyridines. 1992, 33, 5373–5374. 

 

(105)  Zhu, L.; Wehmeyer, R. M.; Rieke, R. D. The Direct Formation of Functionalized 

Alkyl (Aryl) Zinc Halides by Oxidative Addition of Highly Reactive Zinc with 

Organic Halides and Their Reactions with Acid Chlorides, α, β-Unsaturated 

Ketones, and Allylic, Aryl, and Vinyl Halides. J. Org. Chem. 1991, 56, 1445–1453. 

 

(106)  Bruno, N. C.; Tudge, M. T.; Buchwald, S. L. Design and Preparation of New 

Palladium Precatalysts for C-C and C-N Cross-Coupling Reactions. Chem. Sci. 

2013, 4, 916–920. 

 

(107)  Chankeshwara, S. V.; Chakraborti, A. K. Catalyst-Free Chemoselective N-Tert-



 

107 

 

Butyloxycarbonylation of Amines in Water. Org. Lett. 2006, 8, 3259–3262. 

 

(108)  Hodgson, P. B.; Salingue, F. H. The Preparation of a Stable 2-Pyridylboronate and 

Its Reactivity in the Suzuki-Miyaura Cross-Coupling Reaction. Tetrahedron Lett. 

2004, 45, 685–687. 

 

(109)  Gütz, C.; Lützen, A. Synthesis of 2,2-Bipyridines via Suzuki-Miyaura Cross-

Coupling. Synthesis (Stuttg). 2010, 85–90. 

 

(110)  Munson, M. C.; Albericio, F.; Barany, G.; García-Echevería, C.; Albericio, F.; 

Albericio, F. S-2,4,6-Trimethoxybenzyl (Tmob): A Novel Cysteine Protecting 

Group for the Nα-(9-Fluorenylmethoxycarbonyl) (Fmoc) Strategy of Peptide 

Synthesis. J. Org. Chem. 1992, 57, 3013–3018. 

 

(111)  Bair, J. S.; Harrison, R. G. Synthesis and Optical Properties of Bifunctional 

Thiophene Molecules Coordinated to Ruthenium. J. Org. Chem. 2007, 72, 6653–

6661. 

 

(112)  Aoyagi, Y., Abe, T., Ohta, A. Facile and Efficient Deoxygenation of Aromatic N-

Oxides with Zinc and Aqueous Ammonium Chloride. Synthesis (Stuttg). 1997, 891–

894. 

 

(113)  Humeres, E.; Debacher, N. A.; Franco, J. D.; Lee, B. S.; Martendal, A. Mechanisms 

of Acid Decomposition of Dithiocarbamates. 3. Aryldithiocarbamates and the 

Torsional Effect. J. Org. Chem. 2002, 67, 3662–3667. 

 

(114) Hill, L. J.; Bull, M. M.; Sung, Y.; Simmonds, A. G.; Dirlam, P. T.; Richey, N. E.; 

DeRosa, S. E.; Shim, I.; Guin, D.; Costanzo, P. J.; Pinna, N.; Willinger, M.; Vogel, 

W.; Char, K; Pyun, J. Directing the Deposition of Ferromagnetic Cobalt onto Pt-

Tipped CdSe@CdS Nanorods : Synthetic and Mechanistic Insights.. ACS Nano.  

2012, 6, 8632-8645. 

 

 (115) Demortière, A.; Schaller, R. D.; Li, T.; Chattopadhyay, S.; Krylova, G.; Shibata, T.; 

Dos Santos Claro, P. C.; Rowland, C. E.; Miller, J. T.; Cook, R.; et al. In Situ 

Optical and Structural Studies on Photoluminesence Quenching in CdSe/CdS/Au 

Heterostructures. J. Am. Chem. Soc. 2014, 136, 2342–2350. 

 

(116)  Talapin, D. V.; Koeppe, R.; Goetzinger, S.; Kornowski, A.; Lupton, J. M.; Rogach, 

A. L.; Benson, O.; Feldmann, J.; Weller, H. Highly Emissive Colloidal CdSe/CdS 

Heterostructures of Mixed Dimensionality. Nano Lett. 2003, 3, 1677–1681. 

 

(117)  Knowles, K. E.; McArthur, E. A.; Weiss, E. A. A Multi-Timescale Map of Radiative 

and Nonradiative Decay Pathways for Excitons in CdSe Quantum Dots. ACS Nano 

2011, 5, 2026–2035. 

 



 

108 

 

(118)  Humeres, E.; Debacher, N. A.; Franco, J. D.; Lee, B. S.; Martendal, A. Mechanisms 

of Acid Decomposition of Dithiocarbamates. 3. Aryldithiocarbamates and the 

Torsional Effect. J. Org. Chem. 2002, 67, 3662–3667. 

 

(119)  Leatherdale, C.; Kagan, C.; Morgan, N.; Empedocles, S.; Kastner, M.; Bawendi, M. 

Photoconductivity in CdSe Quantum Dot Solids. Phys. Rev. B - Condens. Matter 

Mater. Phys. 2000, 62, 2669–2680. 

 

(120)  Liu, I.-S.; Lo, H.-H.; Chien, C.-T.; Lin, Y.-Y.; Chen, C.-W.; Chen, Y.-F.; Su, W.-F.; 

Liou, S.-C.; Bruchez, M.; Moronne, M.; et al. Enhancing Photoluminescence 

Quenching and Photoelectric Properties of CdSe Quantum Dots with Hole 

Accepting Ligands. J. Mater. Chem. 2008, 18, 675. 

 

(121)  García de Arquer, F. P.; Armin, A.; Meredith, P.; Sargent, E. H. Solution-Processed 

Semiconductors for next-Generation Photodetectors. Nat. Rev. Mater. 2017, 2, 

16100. 

 

(122)  Fan, F.; Voznyy, O.; Sabatini, R. P.; Bicanic, K. T.; Adachi, M. M.; McBride, J. R.; 

Reid, K. R.; Park, Y.-S.; Li, X.; Jain, A.; et al. Continuous-Wave Lasing in 

Colloidal Quantum Dot Solids Enabled by Facet-Selective Epitaxy. Nature 2017, 

544, 75–79. 

 

(123)  Dai, X.; Zhang, Z.; Jin, Y.; Niu, Y.; Cao, H.; Liang, X.; Chen, L.; Wang, J.; Peng, 

X. Solution-Processed, High-Performance Light-Emitting Diodes Based on 

Quantum Dots. Nature 2014, 515. 

 

(124)  Ip, A. H.; Thon, S. M.; Hoogland, S.; Voznyy, O.; Zhitomirsky, D.; Debnath, R.; 

Levina, L.; Rollny, L. R.; Carey, G. H.; Fischer, A.; et al. Hybrid Passivated 

Colloidal Quantum Dot Solids. Nat. Nanotechnol. 2012, 7, 577–582. 

 

(125)  Lan, X.; Voznyy, O.; García De Arquer, F. P.; Liu, M.; Xu, J.; Proppe, A. H.; 

Walters, G.; Fan, F.; Tan, H.; Liu, M.; et al. 10.6% Certified Colloidal Quantum Dot 

Solar Cells via Solvent-Polarity-Engineered Halide Passivation. Nano Lett. 2016, 

16, 4630–4634. 

 

(126)  Zhang, N.; Neo, D. C. J.; Tazawa, Y.; Li, X.; Assender, H. E.; Compton, R. G.; 

Watt, A. A. R. Narrow Band Gap Lead Sulfide Hole Transport Layers for Quantum 

Dot Photovoltaics. ACS Appl. Mater. Interfaces 2016, 8, 21417–21422. 

 

(127)  Zhang, X.; Zhang, J.; Phuyal, D.; Du, J.; Tian, L.; Öberg, V. A.; Johansson, M. B.; 

Cappel, U. B.; Karis, O.; Liu, J.; et al. Inorganic CsPbI 3 Perovskite Coating on PbS 

Quantum Dot for Highly Efficient and Stable Infrared Light Converting Solar Cells. 

Adv. Energy Mater. 2017, 1702049, 1702049. 

 

(128)  Cao, Y.; Stavrinadis, A.; Lasanta, T.; So, D.; Konstantatos, G. The Role of Surface 



 

109 

 

Passivation for Efficient and Photostable PbS Quantum Dot Solar Cells. Nat. Energy 

2016, 1, 16035. 

 

(129)  Bi, Y.; Pradhan, S.; Gupta, S.; Akgul, M. Z.; Stavrinadis, A.; Konstantatos, G. 

Infrared Solution-Processed Quantum Dot Solar Cells Reaching External Quantum 

Efficiency of 80% at 1.35 Μm and Jsc in Excess of 34 mA cm
−2

. Adv. Mater. 2018, 

30, 1–6. 

 

(130)  Gao, J.; Perkins, C. L.; Luther, J. M.; Hanna, M. C.; Chen, H. Y.; Semonin, O. E.; 

Nozik, A. J.; Ellingson, R. J.; Beard, M. C. N-Type Transition Metal Oxide as a 

Hole Extraction Layer in PbS Quantum Dot Solar Cells. Nano Lett. 2011, 11, 3263–

3266. 

 

(131)  Carey, G. H.; Levina, L.; Comin, R.; Voznyy, O.; Sargent, E. H. Record Charge 

Carrier Diffusion Length in Colloidal Quantum Dot Solids via Mutual Dot-To-Dot 

Surface Passivation. Adv. Mater. 2015, 27, 3325–3330. 

 

(132)  Chuang, C.-H. M.; Brown, P. R.; Bulović, V.; Bawendi, M. G. Improved 

Performance and Stability in Quantum Dot Solar Cells through Band 

Alignment Engineering. Nat. Mater. 2014, 13, 1–6. 

 

(133)  Brown, P. R.; Kim, D.; Lunt, R. R.; Zhao, N.; Bawendi, M. G.; Grossman, J. C.; 

Bulović, V. Energy Level Modification in Lead Sulfide Quantum Dot Thin Films 

through Ligand Exchange. ACS Nano 2014, 8, 5863–5872. 

 

(134)  Liu, M.; Voznyy, O.; Sabatini, R.; García De Arquer, F. P.; Munir, R.; Balawi, A. 

H.; Lan, X.; Fan, F.; Walters, G.; Kirmani, A. R.; et al. Hybrid Organic-Inorganic 

Inks Flatten the Energy Landscape in Colloidal Quantum Dot Solids. Nat. Mater. 

2017, 16, 258–263. 

 

(135)  Chuang, C.-H. M.; Brown, P. R.; Bulović, V.; Bawendi, M. G. Improved 

Performance and Stability in Quantum Dot Solar Cells through Band Alignment 

Engineering. Nat. Mater. 2014, 13, 1–6. 

 

(136)  Zherebetskyy, D.; Scheele, M.; Zhang, Y.; Bronstein, N.; Thompson, C.; Britt, D.; 

Salmeron, M.; Alivisatos, P.; Wang, L.-W. Hydroxylation of the Surface of PbS 

Nanocrystals Passivated with Oleic Acid. Science. 2014, 344, 1380-1384. 

 

 (137) Boles, M. A.; Ling, D.; Hyeon, T.; Talapin, D. V. The Surface Science of 

Nanocrystals. Nat. Mater. 2016, 15, 141–153. 

 

(138)  Bagiyan, G. A.; Koroleva, I. K.; Soroka, N. V.; Ufimtsev, A. V. Oxidation of Thiol 

Compounds by Molecular Oxygen in Aqueous Solutions. Russ. Chem. Bull. 2003, 

52, 1135–1141. 

 



 

110 

 

(139)  Ip, A. H.; Labelle, A. J.; Sargent, E. H. Efficient, Air-Stable Colloidal Quantum Dot 

Solar Cells Encapsulated Using Atomic Layer Deposition of a Nanolaminate 

Barrier. Appl. Phys. Lett. 2013, 103, 1–4. 

 

(140)  Carey, G. H.; Yuan, M.; Comin, R.; Voznyy, O.; Sargent, E. H. Cleavable Ligands 

Enable Uniform Close Packing in Colloidal Quantum Dot Solids. ACS Appl. Mater. 

Interfaces 2015, 7, 21995–22000. 

 

(141)  Ip, A. H.; Labelle, A. J.; Sargent, E. H. Efficient, Air-Stable Colloidal Quantum Dot 

Solar Cells Encapsulated Using Atomic Layer Deposition of a Nanolaminate 

Barrier. Appl. Phys. Lett. 2013, 103, 1–4. 

 

(142)  Turo, M. J.; Macdonald, J. E. Crystal-Bound vs Surface-Bound Thiols on 

Nanocrystals. ACS Nano 2014, 8, 10205–10213. 

 

(143)  Ralhan, K.; KrishnaKumar, V. G.; Gupta, S. Piperazine and DBU: A Safer 

Alternative for Rapid and Efficient Fmoc Deprotection in Solid Phase Peptide 

Synthesis. RSC Adv. 2015, 5, 104417–104425. 

 

(144)   Tickler, A. K.; Barrow, C. J.; Wade, J. D. Improved Preparation of Amyloid- 

Peptides Using DBU As N-Fmoc Deprotection Reagent. J. Pept. Sci. 2001, 7, 488–

494. 

 

 (145) Behrendt, R.; White, P.; Offer, J. Advances in Fmoc Solid-Phase Peptide Synthesis. 

J. Pept. Sci. 2016, 22, 4–27. 

 

(146)  Yong, X.; Schoonen, M. A. A. The Absolute Energy Positions of Conduction and 

Valence Bands of Selected Semiconducting Minerals. Am. Mineral. 2000, 85, 543–

556. 

 

(147)  Hines, M. A.; Scholes, G. D. Colloidal PbS Nanocrystals with Size-Tunable Near-

Infrared Emission: Observation of Post-Synthesis Self-Narrowing of the Particle 

Size Distribution. Adv. Mater. 2003, 15, 1844–1849. 

 

(148)  Miller, E. M.; Kroupa, D. M.; Zhang, J.; Schulz, P.; Marshall, A. R.; Kahn, A.; 

Lany, S.; Luther, J. M.; Beard, M. C.; Perkins, C. L.; et al. Revisiting the Valence 

and Conduction Band Size Dependence of PbS Quantum Dot Thin Films. ACS Nano 

2016, 10, 3302–3311. 

 

(149)  Ip, A. H.; Kiani, A.; Kramer, I. J.; Voznyy, O.; Movahed, H. F.; Levina, L.; Adachi, 

M. M.; Hoogland, S.; Sargent, E. H. Infrared Colloidal Quantum Dot Photovoltaics 

via Coupling Enhancement and Agglomeration Suppression. ACS Nano 2015, 9, 

8833–8842. 

 

(150)  Tang, J.; Wang, X.; Brzozowski, L.; Barkhouse, D. A. R.; Debnath, R.; Levina, L.; 



 

111 

 

Sargent, E. H. Schottky Quantum Dot Solar Cells Stable in Air under Solar 

Illumination. Adv. Mater. 2010, 22, 1398–1402. 

 

(151)  Crist, V. B. Handbook of Monochromatic XPS Spectra; John Wiley & Sons, Ltd.: 

West Sussex, England, 2000. 

 

(152)  Biniak, S.; Szymański, G.; Siedlewski, J.; Świa̧tkowski, A. The Characterization of 

Activated Carbons with Oxygen and Nitrogen Surface Groups. Carbon N. Y. 1997, 

35, 1799–1810. 

 

(153)  Feng, Q.; Zhao, W.; Wen, S.; Cao, Q. Activation Mechanism of Lead Ions in 

Cassiterite Flotation with Salicylhydroxamic Acid as Collector. Sep. Purif. Technol. 

2017, 178, 193–199. 

 

(154)   Kundu, B.; Pal, A. J. Ligand-Mediated Energy-Level Modification in PbS Quantum 

Dots as Probed by Density of States (DOS) Spectra. J. Phys. Chem. C 2018, 122, 

11570–11576.  

 

(155)  Yang, Z.; Janmohamed, A.; Lan, X.; García De Arquer, F. P.; Voznyy, O.; 

Yassitepe, E.; Kim, G. H.; Ning, Z.; Gong, X.; Comin, R.; et al. Colloidal Quantum 

Dot Photovoltaics Enhanced by Perovskite Shelling. Nano Lett. 2015, 15, 7539–

7543. 

 

(156)  Owen, J. S.; Park, J.; Trudeau, P. E.; Alivisatos, A. P. Reaction Chemistry and 

Ligand Exchange at Cadmium-Selenide Nanocrystal Surfaces. J. Am. Chem. Soc. 

2008, 130, 12279–12281. 

 

(157)  Morris-Cohen, A. J.; Donakowski, M. D.; Knowles, K. E.; Weiss, E. A. The Effect 

of a Common Purification Procedure on the Chemical Composition of the Surfaces 

of Cdse Quantum Dots Synthesized with Trioctylphosphine Oxide. J. Phys. Chem. C 

2010, 114, 897–906. 

 

(158)  Böhm, M. L.; Kist, R. J. P.; Morgenstern, F. S. F.; Ehrler, B.; Zarra, S.; Kumar, A.; 

Vaynzof, Y.; Greenham, N. C. The Influence of Nanocrystal Aggregates on 

Photovoltaic Performance in Nanocrystal-Polymer Bulk Heterojunction Solar Cells. 

Adv. Energy Mater. 2014, 4, 1–8. 

 

(159)  Zhijun, N.; David, Z.; Valerio, A.; Brandon, S.; Jixian, X.; Oleksandr, V.; Pouya, 

M.; Xinzheng, L.; Sjoerd, H.; Yuan, R.; et al. Graded Doping for Enhanced 

Colloidal Quantum Dot Photovoltaics. Adv. Mater. 2013, 25, 1719–1723. 

 

(160)  Kloxin, A. M.; Kasko, A. M.; Salinas, C. N.; Anseth, K. S. Photodegradable 

hydrogels for dynamic tuning of physical and chemical properties. Science, 2009, 

324, 59–63. 

 



 

112 

 

 (161) DeForest, C. A.; Anseth, K. S. Cytocompatible Click-Based Hydrogels with 

Dynamically Tunable Properties through Orthogonal Photoconjugation and 

Photocleavage Reactions. Nat. Chem. 2011, 3, 925–931. 

 

(162)  Dong, Y.; Jin, G.; Hong, Y.; Zhu, H.; Lu, T. J.; Xu, F.; Bai, D.; Lin, M. Engineering 

the Cell Microenvironment Using Novel Photoresponsive Hydrogels. ACS Appl. 

Mater. Interfaces 2018, 10, 12374–12389. 

 

(163)  Han, D.; Tong, X.; Zhao, Y. Fast Photodegradable Block Copolymer Micelles for 

Burst Release. Macromolecules 2011, 44, 437–439. 

 

(164)  Walker, J. W.; Reid, G. P.; McCray, J. A.; Trentham, D. R. Photolabile 1-(2-

Nitrophenyl)Ethyl Phosphate Esters of Adenine Nucleotide Analogues. Synthesis 

and Mechanism of Photolysis. J. Am. Chem. Soc. 1988, 110, 7170–7177. 

 

(165)  Furuta, T.; Wang, S. S.-H.; Dantzker, J. L.; Dore, T. M.; Bybee, W. J.; Callaway, E. 

M.; Denk, W.; Tsien, R. Y. Brominated 7-Hydroxycoumarin-4-Ylmethyls: 

Photolabile Protecting Groups with Biologically Useful Cross-Sections for Two 

Photon Photolysis. Proc. Natl. Acad. Sci. 1999, 96, 1193–1200. 

 

(166)  Pelliccioli, A. P.; Wirz, J. Photoremovable Protecting Groups: Reaction Mechanisms 

and Applications. Photochem. Photobiol. Sci. 2002, 1, 441–458. 

 

(167)  Zhao, H.; Sterner, E. S.; Coughlin, E. B.; Theato, P. O-Nitrobenzyl Alcohol 

Derivatives: Opportunities in Polymer and Materials Science. Macromolecules 

2012, 45, 1723–1736. 

 

(168)  Iriondo-Alberdi, J.; Greaney, M. F. Photocycloaddition in Natural Product 

Synthesis. European J. Org. Chem. 2007, 4801–4815. 

 

(169)  Ullman, E. F.; Singh, B. Photochemical Transposition of Ring Atoms in Five-

Membered Heterocycles. The Photorearrangement of 3,5-Diphenylisoxazole. J. Am. 

Chem. Soc. 1966, 88, 1844–1845. 

 

(170)  Yoon, T. P.; Ischay, M. A.; Du, J. Visible Light Photocatalysis as a Greener 

Approach to Photochemical Synthesis. Nat. Chem. 2010, 2, 527–532. 

 

(171)   Schultz, D. M.; Yoon, T. P.; Solar Synthesis: Prospects in Visible Light 

Photocatalysis. Science, 2015, 6174. 

 

(172)  Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Visible Light Photoredox 

Catalysis with Transition Metal Complexes: Applications in Organic Synthesis. 

Chem. Rev. 2013, 113, 5322–5363. 

 

(173)  Xuan, J.; Xiao, W. J. Visible-Light Photoredox Catalysis. Angew. Chemie - Int. Ed. 



 

113 

 

2012, 51, 6828–6838. 

 

(174)  Ammala, A.; Bateman, S.; Dean, K.; Petinakis, E.; Sangwan, P.; Wong, S.; Yuan, 

Q.; Yu, L.; Patrick, C.; Leong, K. H. An Overview of Degradable and 

Biodegradable Polyolefins; Elsevier Ltd, 2011; Vol. 36. 

 

(175)  Cho, S.; Choi, W. Solid-Phase Photocatalytic Degradation of PVC–TiO2 Polymer 

Composites. J. Photochem. Photobiol. A Chem. 2001, 143, 221–228. 

 

(176)  Kyrikou, I.; Briassoulis, D. Biodegradation of Agricultural Plastic Films: A Critical 

Review. J. Polym. Environ. 2007, 15, 125–150. 

 

(177)  Johnson, J. A.; Baskin, J. M.; Bertozzi, C. R.; Koberstein, J. T.; Turro, N. J. Copper-

Free Click Chemistry for the in Situ Crosslinking of Photodegradable Star Polymers. 

Chem. Commun. 2008, 3064–3066. 

 

(178)  Patchornik, A.; Amit, B.; Woodward, R. B. Photosensitive Protecting Groups. JACS 

1970, 6333–6335. 

 

(179)  Green, T. W.; Wuts, P. G. M. Protecting Groups in Organic Synthesis; Wiley-

Interscience: New York, 1999. 

 

(180)  Johnson, E. C. B.; Kent, S. B. H. Synthesis, Stability and Optimized Photolytic 

Cleavage of 4-Methoxy-2-Nitrobenzyl Backbone-Protected Peptides. Chem. 

Commun. 2006, 1557–1559. 

 

(181)  Aujard, I.; Benbrahim, C.; Gouget, Ma.; Ruel, O.; Baudin, J.-B.; Neveu, P.; Jullien, 

L. O-Nitrobenzyl Photolabile Protecting Groups with Red-Shifted Absorption: 

Syntheses and Uncaging Cross-Sections for One- and Two-Photon Excitation. 

Chem. Eur. J. 2006, 12, 6865–6879. 

 

(182)  Atilgan, A.; Tanriverdi Eçik, E.; Guliyev, R.; Uyar, T. B.; Erbas-Cakmak, S.; 

Akkaya, E. U. Near-IR-Triggered, Remote-Controlled Release of Metal Ions: A 

Novel Strategy for Caged Ions. Angew. Chemie - Int. Ed. 2014, 53, 10678–10681. 

 

(183)  Yuri V. Il’ichev, †; Markus A. Schwörer, ‡ and; Wirz*, J. Photochemical Reaction 

Mechanisms of 2-Nitrobenzyl Compounds:  Methyl Ethers and Caged ATP. 2004. 

 

(184)  Hoffmann, N. Photochemical Reactions as Key Steps in Organic Synthesis. Chem. 

Rev. 2008, 108, 1052–1103. 

 

(185)  Hu, X.; Qureishi, Z.; Thomas, S. W. Light-Controlled Selective Disruption, 

Multilevel Patterning, and Sequential Release with Polyelectrolyte Multilayer Films 

Incorporating Four Photocleavable Chromophores. Chem. Mater. 2017, 29, 2951–

2960. 



 

114 

 

 

(186)  Kim, M. S.; Diamond, S. L. Photocleavage of O-Nitrobenzyl Ether Derivatives for 

Rapid Biomedical Release Applications. Bioorganic Med. Chem. Lett. 2006, 16, 

4007–4010. 

 

(187)  Kevwitch, R. M.; McGrath, D. V. Synthesis and Degradation of Photolabile 

Dendrimers Based on O-Nitrobenzyl Ether Photolabile Cores. New J. Chem. 2007, 

31, 1332–1336. 

 

(188)  Shi, L.; Santhanakrishnan, S.; Cheah, Y. S.; Li, M.; Chai, C. L. L.; Neoh, K. G. One-

Pot UV-Triggered o-Nitrobenzyl Dopamine Polymerization and Coating for Surface 

Antibacterial Application. ACS Appl. Mater. Interfaces 2016, 8, 33131–33138. 

 

(189)  Berr, M. J.; Wagner, P.; Fischbach, S.; Vaneski, A.; Schneider, J.; Susha, A. S.; 

Rogach, A. L.; Jäckel, F.; Feldmann, J. Hole Scavenger Redox Potentials Determine 

Quantum Efficiency and Stability of Pt-Decorated CdS Nanorods for Photocatalytic 

Hydrogen Generation. Appl. Phys. Lett. 2012, 100, 223903. 

 

(190)  Pocker, Y.; Davison, B. L.; Deits, T. L. Decarboxylation of Monosubstituted 

Derivatives of Carbonic Acid. Comparative Studies of Water- and Acid-Catalyzed 

Decarboxylation of Sodium Alkyl Carbonates1 in H2O and D2O2. J. Am. Chem. Soc. 

1978, 100, 3564–3567. 

 

(191)  Tavasli, M.; Moore, T. N.; Zheng, Y.; Bryce, M. R.; Fox, M. A.; Griffiths, G. C.; 

Jankus, V.; Al-Attar, H. A.; Monkman, A. P. Colour Tuning from Green to Red by 

Substituent Effects in Phosphorescent Tris-Cyclometalated Iridium(III) Complexes 

of Carbazole-Based Ligands: Synthetic, Photophysical, Computational and High 

Efficiency OLED Studies. J. Mater. Chem. 2012, 22, 6419–6428. 

 

(192)  Watts, P.; Long, G.; Meek, M. E. Concise International Chemical Assessment 

Document (CICAD): A New Chemical Safety Series in IPCS, Internationalizing 

National Reviews. Concise Int. Chem. Assess. Doc. 58 2004, 1–64. 

 

(193)  Baert, J. J.; Clippeleer, J. De; Cooman, L. De; Aerts, G.; Leuven, K. U. Exploring 

the Binding Behavior of Beer Staling Aldehydes in Model Systems. J. Am. Soc. 

Brew. Chem. 2015. 

 

(194)  Eranna, G.; Joshi, B. C.; Runthala, D. P.; Gupta, R. P. Oxide Materials for 

Development of Integrated Gas Sensors—A Comprehensive Review. Crit. Rev. 

Solid State Mater. Sci. 2004, 29, 111–188. 

 

(195)  Meyer, J.; Hamwi, S.; Kröger, M.; Kowalsky, W.; Riedl, T.; Kahn, A. Transition 

Metal Oxides for Organic Electronics: Energetics, Device Physics and Applications. 

Adv. Mater. 2012, 24, 5408–5427. 

 



 

115 

 

(196)  Özgür, Ü.; Alivov, Y. I.; Liu, C.; Teke, A.; Reshchikov, M. A.; Doǧan, S.; Avrutin, 

V.; Cho, S. J.; Morko̧, H. A Comprehensive Review of ZnO Materials and Devices. 

J. Appl. Phys. 2005, 98, 1–103. 

 

(197)  Diebold, U. The Surface Science of Titanium Dioxide. Surf. Sci. Rep. 2003, 48, 53–

229. 

 

(198)  Yang, J.; Ling, T.; Wu, W. T.; Liu, H.; Gao, M. R.; Ling, C.; Li, L.; Du, X. W. A 

Top-down Strategy towards Monodisperse Colloidal Lead Sulphide Quantum Dots. 

Nat. Commun. 2013, 4, 1695–1696. 

 

(199)  Bierman, M. J.; Lau, Y. K. A.; Jin, S. Hyperbranched PbS and PbSe Nanowires and 

the Effect of Hydrogen Gas on Their Synthesis. Nano Lett. 2007, 7, 2907–2912. 

 

(200)  Kane, R. S.; Cohen, R. E.; Silbey, R. Synthesis of PbS Nanoclusters within Block 

Copolymer Nanoreactors. Chem. Mater. 1996, 8, 1919–1924. 

 

(201)  Dutta, A. K.; Ho, T.; Zhang, L.; Stroeve, P. Nucleation and Growth of Lead Sulfide 

Nano- and Microcrystallites in Supramolecular Polymer Assemblies. Chem. Mater. 

2000, 12, 1042–1048. 

 

(202)  Parvathy, N. N.; Pajonk, G. M.; Rao, A. V. Synthesis and Study of Quantum Size 

Effect, XRD and IR Spectral Properties of PbS Nanocrystals Doped in SiO2 Xerogel 

Matrix. J. Cryst. Growth 1997, 179, 249–257. 

 

(203)  Schneider, T.; Haase, M., Kornowski, A., Naused, S., and Wller, H. Synthesis and 

Characterization of PbS Nanoparticles in Block Copolymer Micelles. Ber, 

Bunsenges. Phys. Chem.  1997. 101, 1654–1656. 

 

(204)  Lipovskii,  a. Synthesis of Monodisperse PbS Quantum Dots in Phosphate Glass. 

Phys. E Low-dimensional Syst. Nanostructures 1999, 5, 157–160. 

 

(205)  Cao, H.; Wang, G.; Zhang, S.; Zhang, X. Growth and Photoluminescence Properties 

of PbS Nanocubes. Nanotechnology 2006, 17, 3280–3287. 

 

(206)  Wang, N.; Cao, X.; Guo, L.; Yang, S.; Wu, Z. Facile Synthesis of PbS Truncated 

Octahedron Crystals with High Symmetry and Their Large-Scale Assembly into 

Regular Patterns by a Simple Solution Route. ACS Nano 2008, 2, 184–190. 

 

(207)  Wang, Y.; Tang, A.; Li, K.; Yang, C.; Wang, M.; Ye, H.; Hou, Y.; Teng, F. Shape-

Controlled Synthesis of Pbs Nanocrystals via a Simple One-Step Process. Langmuir 

2012, 28, 16436–16443. 

 

(208)  Liu, Z.; Liang, J.; Xu, D.; Lu, J.; Qian, Y. A Facile Chemical Route to 

Semiconductor Metal Sulfide Nanocrystal.Pdf. Chem. Commun. 2004, 2724–2725. 



 

116 

 

 

(209)  Joo, J.; Na, H. Bin; Yu, T.; Yu, J. H.; Kim, Y. W.; Wu, F.; Zhang, J. Z.; Hyeon, T. 

Generalized and Facile Synthesis of Semiconducting Metal Sulfide Nanocrystals. 

JACS. 2003. 125, 11100-11105. 

 

(210)  Chintso, T.; Ajibade, P. A. Synthesis and Structural Studies of Hexadecylamine 

Capped Lead Sulfide Nanoparticles from Dithiocarbamate Complexes Single Source 

Precursors. Mater. Lett. 2015, 141, 1–6. 

 

(211)  Zhang, Z.; Lee, S. H.; Vittal, J. J.; Chin, W. S. A Simple Way to Prepare PbS 

Nanocrystals with Morphology Tuning at Room Temperature. J. Phys. Chem. B 

2006, 110, 6649–6654. 

 

(212)  Moreels, I.; Martins, J. C.; Hens, Z. Ligand Adsorption/Desorption on Sterically 

Stabilized InP Colloidal Nanocrystals: Observation and Thermodynamic Analysis. 

ChemPhysChem 2006, 7, 1028–1031. 

 

(213)  Turo, M. J.; Shen, X.; Brandon, N. K.; Castillo, S.; Fall, A. M.; Pantelides, S. T.; 

Macdonald, J. E.; Yin, Y.; Alivisatos, A. P.; Owen, J. S.; et al. Dual-Mode Crystal-

Bound and X-Type Passivation of Quantum Dots. Chem. Commun. 2016, 52, 

12214–12217. 

 

(214)  Anderson, N. C.; Hendricks, M. P.; Choi, J. J.; Owen, J. S. Ligand Exchange and the 

Stoichiometry of Metal Chalcogenide Nanocrystals: Spectroscopic Observation of 

Facile Metal-Carboxylate Displacement and Binding. J. Am. Chem. Soc. 2013, 135, 

18536–18548. 

 

(215)  Jiang, D. E.; Tiago, M. L.; Luo, W.; Dai, S. The “Staple” Motif: A Key to Stability 

of Thiolate-Protected Gold Nanoclusters. J. Am. Chem. Soc. 2008, 130, 2777–2779. 

 

(216)  Qian, H.; Eckenhoff, W. T.; Zhu, Y.; Pintauer, T.; Jin, R. Total Structure 

Determination of Thiolate-Protected Au38 Nanoparticles. J. Am. Chem. Soc. 2010, 

132, 8280–8281. 

 

(217)  Zeng, C.; Li, T.; Das, A.; Rosi, N. L.; Jin, R. Chiral Structure of Thiolate-Protected 

28-Gold-Atom Nanocluster Determined by X-Ray Crystallography. J. Am. Chem. 

Soc. 2013, 135, 10011–10013. 

 

(218)  Heaven, M. W.; Dass, A.; White, P. S.; Holt, K. M.; Murray, R. W. Crystal 

Structure of the Gold Nanoparticle [N(C 8 H 17 ) 4 ][Au 25 (SCH 2 CH 2 Ph) 18 ]. J. 

Am. Chem. Soc. 2008, 130, 3754–3755. 

 

(219)  Watson, E. S.; O’Neill, M. J.; Justin, J.; Brenner, N. A Differential Scanning 

Calorimeter for Quantitative Differential Thermal Analysis. Anal. Chem. 1964, 36, 

1233–1238. 



 

117 

 

 

(220)  O’Neill, M. J. The Analysis of a Temperature-Controlled Scanning Calorimeter. 

Anal. Chem. 1964, 36, 1238–1245. 

 

(221) Silva, L. A.; Matos, J. R.; De Andrade, J. B. Synthesis, Identification and Thermal 

Decomposition of Double Sulfites like Cu2SO3·MSO3·2H2O (M = Cu, Fe, Mn or 

Cd). Thermochim. Acta 2000, 360, 17–27.  

 

(222)  Ahrenstorf, K.; Heller, H.; Kornowski, A.; Broekaert, J. A. C.; Weller, H. 

Nucleation and Growth Mechanism of NixPt1-x Nanoparticles. Adv. Funct. Mater. 

2008, 18, 3850–3856. 

 

(223)  Li, H.; Brescia, R.; Povia, M.; Prato, M.; Bertoni, G.; Manna, L.; Moreels, I. 

Synthesis of Uniform Disk-Shaped Copper Telluride Nanocrystals and Cation 

Exchange to Cadmium Telluride Quantum Disks with Stable Red Emission. J. Am. 

Chem. Soc. 2013, 135, 12270–12278. 

 

(224)  Xie, Y.; Riedinger, A.; Prato, M.; Casu, A.; Genovese, A.; Guardia, P.; Sottini, S.; 

Sangregorio, C.; Miszta, K.; Ghosh, S.; et al. Copper Sulfide Nanocrystals with 

Tunable Composition by Reduction of Covellite Nanocrystals with Cu+ions. J. Am. 

Chem. Soc. 2013, 135, 17630–17637. 

 

(225)  Jose Aldana; Y. Andrew Wang,  and; Peng*, X. Photochemical Instability of CdSe 

Nanocrystals Coated by Hydrophilic Thiols.  JACS. 2001. 123, 8844-8850. 

 

(226)  Wise, F. W. Lead Salt Quantum Dots: The Limit of Strong Quantum Confinement. 

Acc. Chem. Res. 2000, 33, 773–780. 

 

(227)  Pattantyus-Abraham, A. G.; Kramer, I. J.; Barkhouse, A. R.; ... Depleted-

Heterojunction Colloidal Quantum Dot Solar Cells. Acs … 2010, 4, 3374–3380. 

 

(228)  Mcdonald, S. A.; Konstantatos, G.; Zhang, S.; Cyr, P. W.; Klem, E. J. D.; Levina, 

L.; Sargent, E. H. Solution-Processed PbS Quantum Dot Infrared Photodetectors and 

Photovoltaics. Nat. Mater. 2005, 4, 138–142. 

 

(229)  Lee, H.; Leventis, H. C.; Moon, S. J.; Chen, P.; Ito, S.; Haque, S. A.; Torres, T.; 

Nüesch, F.; Geiger, T.; Zakeeruddin, S. M.; et al. PbS and CdS Quantum Dot-

Sensitized Solid-State Solar Cells: “Old Concepts, New Results.” Adv. Funct. 

Mater. 2009, 19, 2735–2742. 

 

(230)  Hyun, B. R.; Zhong, Y. W.; Bartnik, A. C.; Sun, L. F.; Abruna, H. D.; Wise, F. W.; 

Goodreau, J. D.; Matthews, J. R.; Leslie, T. M.; Borrelli, N. F. Electron Injection 

from Colloidal PbS Quantum Dots into Titanium Dioxide Nanoparticles. ACS Nano 

2008, 2, 2206–2212. 

 



 

118 

 

(231)  Aldana, J.; Wang, Y. A.; Peng, X. Photochemical Instability of CdSe Nanocrystals 

Coated by Hydrophilic Thiols. J. Am. Chem. Soc. 2001, 123, 8844–8850. 

 

(232)  Jacobson, M. Z. Review of Solutions to Global Warming, Air Pollution, and Energy 

Security. Energy Environ. Sci. 2009, 2, 148–173. 

 

(233)  Naik, S. N.; Goud, V. V.; Rout, P. K.; Dalai, A. K. Production of First and Second 

Generation Biofuels: A Comprehensive Review. Renew. Sustain. Energy Rev. 2010, 

14, 578–597. 

 

(234)  Lunsford, J. H. Catalytic Conversion of Methane to More Useful Chemicals and 

Fuels:A Challenge for the 21st Century. Catal. Today 2000, 63, 165–174. 

 

(235)  Tseng, H. W.; Wilker, M. B.; Damrauer, N. H.; Dukovic, G. Charge Transfer 

Dynamics between Photoexcited CdS Nanorods and Mononuclear Ru Water-

Oxidation Catalysts. J. Am. Chem. Soc. 2013, 135, 3383–3386. 

 

(236)  Das, A.; Han, Z.; Haghighi, M. G.; Eisenberg, R. Photogeneration of Hydrogen from 

Water Using CdSe Nanocrystals Demonstrating the Importance of Surface 

Exchange. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 16716–16723. 

 

(237)  Barnett P., T.; Adam C., J.; Lettenmaier P., D. Potential Impacts of a Warming 

Climate on Water Availability in Snow-Dominated Regions. Nature 2005, 438, 

303–309. 

 

(238) R.J. Charlson, S.E. Schwartz, J.M. Hales, R.D. Cess, J.A. Coakley, Jr. and J.E. 

Hansen . Climate Forcing by Anthropogenic Aerosols. Onefile. 2018, 5043, 1–13. 

 

(239)  Allen, C. D.; Macalady, A. K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; 

Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D. D.; Hogg, E. H. Ted.; et al. 

A Global Overview of Drought and Heat-Induced Tree Mortality Reveals Emerging 

Climate Change Risks for Forests. For. Ecol. Manage. 2010, 259, 660–684. 

 

(240)  McMichael, A. J.; Woodruff, R. E.; Hales, S. Climate Change and Human Health: 

Present and Future Risks. Lancet 2006, 367, 859–869. 

 

(241)  I.Moreels; K.Lambert; D.Smeets; D.DeMuynck; T.Nollet; Martins, J. C.; 

F.Vanhaecke; A.Vantomme; C.Delerue; G.Allan; et al. Size-Dependent Optical 

Properties of Colloidal {PbS} Quantum Dots. ACS Nano 2009, 3, 3023–3030. 

 

(242)  Cademartiri, L.; Montanari, E.; Calestani, G.; Migliori, A.; Guagliardi, A.; Ozin, G. 

A. Size-Dependent Extinction Coefficients of PbS Quantum Dots. J. Am. Chem. 

Soc. 2006, 128, 10337–10346. 

 

(243) Coblentz Society, Inc., "Evaluated Infrared Reference Spectra" in NIST Chemistry 



 

119 

 

WebBook, NIST Standard Reference Database Number 69, Eds. P.J. Linstrom 

and W.G. Mallard.  National Institute of Standards and Technology, Gaithersburg 

MD, 20899, doi:10.18434/T4D303, (retrieved September 18, 2018). 

 



 

120 

 

APPENDICES 

 

A. Additional Synthetic Procedures for Chapter 2 

 General Notes 

 All glassware was thoroughly dried in an oven before use.  Schlenk line technique with 

Argon was used in all reactions.  A J-KEM Scientific Model 210 temperature controller 

was used to control the temperature of all reactions unless otherwise noted.  All 

solvents and reagents were used as received unless otherwise noted.   

 UV/Vis spectra were recorded on a Jasco V-670 spectrophotometer using quartz 

cuvettes.  A baseline was first recorded without any reference cuvette, and then 

samples were recorded with a background of the appropriate neat solvent in the 

reference cuvette.  Fluorescence spectra were recorded on a Jasco FP-3800 

spectrofluorometer.  QY measurements were made using rhodamine B as a standard.  

TEM images were taken on a Phillips CM-20 TEM and sized using ImageJ.  NMR 

spectra were taken using a Bruker DRX-400 (400 MHz) spectrometer.  Spectra were 

calibrated to residual solvent signals of 7.26 and 77.0 ppm for 
1
H and 

13
C NMR 

spectra, respectively, in CDCl3.  Spectra were calibrated to 4.79 ppm for 
1
H in D2O. 

  

 Materials 

 Selenium Powder (99.99%) and cadmium oxide (99.999%) were purchased from Strem 

Chemicals Inc.  Trioctylphosphine (TOP, 90%), Trioctylphosphine oxide (TOPO, 

99%), Sulfur, 2,2’-dipyridiyl-n-oxide (98%), methylene chloride (≥99.8%), anhydrous 

magnesium sulfate (≥97%), anhydrous tetrahydrofuran (THF, ≥99.9%), zinc dust (<10 

µm, ≥98%), hydrochloric acid (37%), ammonium chloride (≥99.5%), ethyl acetate 

(≥99.7%), ammonium hydroxide (28.0-30.0%), iron (III) acetylacetonate (≥99.9%), 

and anhydrous pyridine (99.8%) were purchased from Sigma-Aldrich.  HPLC grade 

toluene, concentrated nitric acid, sodium hydroxide (98.9%), 2-propanol, and 

anhydrous ethyl ether were purchased from Fisher Scientific.  Octadecylphosphonic 

acid and hexylphosphonic acid were purchased from PCI Synthesis.  

Ethylenediaminetetraacetic acid (99%) and carbon disulfide (99.9+%) were purchased 

from Alfa-Aesar.  200 proof ethanol was purchased from Decon Laboratories Inc.  

Concentrated sulfuric acid was purchased from EMD chemicals.  All chemicals were 

used without further purification unless otherwise noted. 
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 Synthesis of CdSe Nanoparticles 

 Preparation of Se Precursor:  In a glove box, Se (0.058 g, 0.734 mmol) was added to a 

1 dram vial containing TOP (0.430 ml, 0.964 mmol) and a stir bar.  The Se was 

dissolved with heat and stirring.  Prior to injection, the optically clear, colorless 

solution was drawn into a 10 ml polypropylene syringe with an 18 gauge needle and 

plugged into a septa for removal from the glove box 

  

 In a typical synthesis, TOPO (3.0 g, 7.76 mmol), ODPA (0.28 g, 0.84 mmol), and CdO 

(0.06 g, 0.47 mmol) were added to a 25 ml three-neck round bottom flask equipped 

with a stir bar, two rubber septa, condenser, and inlet adapter attached to a Schlenk 

line.  The mixture was degassed at 150 °C under vigorous stirring for 1 hour.  The 

reaction was then flushed with Ar and heated to 310 °C where the CdO dissolved to 

form an optically clear, colorless solution.  TOP (1.8 ml, 4.03 mmol) was injected into 

the flask, and the reaction was heated to 380 °C.  The heating mantle was removed and 

replaced by an evaporating dish.  As the temperature fell past 370 °C, the Se precursor 

was injected.  The flask was immediately sprayed with acetone until the temperature 

fell below 200 °C, were 10 ml of toluene were injected.  The solution was split between 

two 6 dram vials and particles cleaned via three successive crashes using ethanol as a 

bad solvent and toluene for particle dispersion (centrifugation for 5 minutes at 4400 

rpm). 

  

 Synthesis of CdSe/CdS Nanorods 

 Preparation of Seed/Sulfur Precursor:  Sulfur (0.06 g, 1.87 mmol) was added to a 1 

dram vial, followed by 8 x 10
-8

 mol of CdSe seeds, as determined by the absorbance of 

the stock seed solution at the first absorption peak.
1
  The solution was evacuated and 

flushed with Ar 3 times on a Schlenk line, and then TOP was added (1.8 ml, 4.03 

mmol).  The sulfur was dissolved with vortexing. 

  

 In a typical synthesis, TOPO (3.0 g, 7.76 mmol), ODPA (0.29 g, 0.67 mmol), and CdO 

(0.075 g, 0.584 mmol) were added to a 25 ml three-neck round bottom flask equipped 

with a stir bar, two rubber septa, condenser, and inlet adapter attached to a Schlenk 

line.  The reaction was degassed at 150 °C for 30 minutes.  The flask was then flushed 

with Ar and heated to 355 °C.   A clear, colorless solution was observed.  TOP (1.8 ml, 
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4.03 mmol) was injected and the temperature was allowed to recover.  The aluminum 

foil was removed and cotton wrapped around the glass wool (cotton was necessary for 

quick temperature recovery, but was watched closely as it was an inherent fire hazard).  

The reaction was allowed to equilibrate for 5 minutes past the cotton swaddling.  The 

seed/sulfur solution was then quickly injected into the flask.  Temperature recovery 

above 350 °C was observed within 90 seconds of injection.  After 6 minutes of growth 

time the heating mantle was removed and reaction allowed to cool.  At 100 °C 10 ml of 

toluene was injected.  The solution was split between two 6 dram vials and precipitated 

via three successive crashes using ethanol as a bad solvent and toluene for particle 

dispersion (centrifugation for 5 minutes at 4400 rpm). QY 85.3%, length 45.7 ± 5.2 nm, 

diameter 6.0 ± 0.8 nm n=120 

  

 Synthesis of ammonium-[2,2’-bipyridin]-4-ylcarbamodithioate (1) 

 4-nitro-[2,2’-bipyridine] 1-oxide (3).    2,2’-dipyridyl N-oxide, 2, (1.72 g, 10 mmol) 

was added to a 50 ml three-neck round bottom flask.  20 ml of concentrated H2SO4 was 

added and the reaction vessel was flushed with Ar for 1 min.  The solid was dissolved 

with stirring at 100°C in an oil bath.  Concentrated HNO3 (4.2 ml, 100 mmol) was 

added over 17 h via a syringe pump using a disposable polypropylene syringe and 

PTFE tubing.  The reaction was allowed to continue for an additional 2 h at 100°C, and 

then the reaction flask was removed from the oil bath and allowed to cool.  30 g of 

NaOH dissolved in 30 ml of H2O was used to render the solution slightly basic in an 

ice bath.  As the pH of the solution rose, solid formed which prevented the reaction 

from stirring; the addition of extra H2O alleviated this problem.  The basic solution was 

extracted with dichloromethane (3 x 30 ml), and the combined organics were washed 

with 1 M NaOH (2 x 25 ml) and brine (1 x 25 ml) before being dried over MgSO4.  The 

solvent was removed under reduced pressure to produce yellow crystals which were 

recrystallized from isopropanol (Yield 41%).  Spectra shown below (Figure S6a).  
1
H 

NMR (400MHz, CDCl3) δ 9.18 (d, 1H, J=3.3Hz), 8.90 (d, 1H, J=8.1 Hz), 8.80 (dm, 

1H, J=4.9 Hz), 8.37 (d, 1H, J=7.2 Hz), 8.07 (dd, 1H J=3.9, 7.2 Hz), 7.89 (td, 1H, J=1.8, 

7.8 Hz), 7.44 (ddd, 1H, J=1.1, 4.8, 7.5 Hz). 
13

C NMR (100 MHz, CDCl3) δ 149.8, 

147.5, 141.9, 136.6, 125.3, 125.0, 122.6, 118.8 ppm (ArC). 

  

 4-amino-2,2’-bipyridine (4).  4-nitro-2,2’-dipyridyl N-oxide, 3, (0.217 g, 1 mmol) was 

added to a 50 ml three-neck round bottom flask.  The flask was evacuated and flushed 

with Ar three times.  15 ml of THF was added to the flask and the solid dissolved.  Zn 

dust (0.9807 g, 15 mmol) was activated via successive washes with 2% HCl, H2O, 
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EtOH, and Et2O. 15 ml 30% (w/v) NH4Cl solution was added followed by the Zn dust.  

The reaction was brought to 60°C under Ar for 3 h.  The reaction was removed from 

heat, and 25 ml of 1 M EDTA was added to quench the reaction.  Excess Zn dust was 

removed via vacuum filtration with a Büchner funnel.  THF was removed under 

reduced pressure.  The remaining aqueous layer was made basic with 1 M NaOH, then 

extracted with ethyl acetate (3 x 25 ml).  The combined organics were washed with 1 

M NaOH (2 x 15 ml) and brine (1 x 15 ml) before being dried over MgSO4.  The 

solvent was removed under reduced pressure to produce an off-white crystal (Yield 

76%).  Spectra shown below (Figure S6b).  
1
H NMR (400 MHz, CDCl3) δ 8.60 (d, 1H, 

J=4.6 Hz), 8.31 (d, 1H, J=8 Hz), 8.25 (d, 1H, J=5.5 Hz), 7.75 (tm, 1H, J=6.9 Hz), 7.63 

(s, 1H), 7.24 (tm, 1H, J=5.9 Hz), 6.50 (m, 1H), 4.43 (br, 2H, -NH2).  
13

C NMR (100 

MHz, CDCl3) δ 156.5, 156.2, 153.8, 149.7, 148.8, 136.9, 123.5, 121.2, 109.5, 106.8 

ppm (ArC). 

  

 Ammonium-[2,2’-bipyridin]-4-ylcarbamodithioate (1).  4-amino-2,2’-bipyridine (4) 

(0.085 g, 0.5 mmol) was added to a 6 dram vial and capped with a septa.  The vial was 

evacuated and flushed with Ar three times.  1.5 ml of EtOH was added and the solid 

was dissolved.  NH4OH (0.04 ml) was added, followed by CS2 (0.09 ml, 1.5 mmol).  

After no reaction had occurred for several minutes, an excess of CS2 (0.36 ml, 6 mmol) 

was added, followed by NH4OH (0.55 ml).  Within 1 min, the reaction turned from tan 

to yellow, and white precipitate formed.  After 5 min, the supernatant was clear and 

orange.  After one hour, the solvents were removed under reduced pressure, and the 

resulting solid was triturated with EtOH (3 x 3 ml) to produce a pale yellow solid 

(Yield 77%).  Spectra shown below (Figure S6C-D).  

  
1
H NMR (400 MHz, DMSO-d6) δ 8.75 (d, 1H, J=4.4 Hz) 8.22 (d, 1H, J=8.0 Hz), 8.13 

(d, 1H, J=6.5 Hz), 8.03 (td, 1 H, J=1.7, 7.8 Hz), 7.69 (br, 4H, NH4), 7.60 (d, 1H, J=2.3 

Hz), 7.57 (dd, 1H, J=5.4, 7.2 Hz), 6.76 (dd, 1H, J=2.3, 6.5 Hz), 3.36 (br, 1H, NH).  

 13
C NMR (100 MHz, DMSO) δ 217.7 (CS2), 157.3, 149.6, 146.7, 137.8, 130.3, 125.0, 

121.2, 109.3, 106.1 (ArC) ppm.  Anal. Calcd. for C11H12N4S2: C, 49.98; H, 4.58; N, 

21.19; S, 24.25.  Found: C, 49.85; H, 4.90; N, 21.08; S, 24.02. 

 

 

 Coordination of Ligands to Nanostructures 

 In a typical exchange, 2.26 * 10
-10  

moles of rods (as determined by previously 

established methods)
1
 were taken from a stock solution and added to 2.5 ml of toluene 

in a quartz fluorescence cuvette.  Fluorescence and UV-Vis spectra of the NP were 
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recorded.  A solution of DTCBipy and toluene was prepared (typically ~0.5mM) and 

DTCBipy was added in solution with toluene so that 4.5 ligands were introduced per 

nm
2
 of NP surface area.  Spectra were recorded again before the vial was flushed with 

Ar and allowed to stir in the dark for 16 hours. After 16 hours the spectra were 

recorded again, and Fe(acac)3 three was added from a solution of toluene in an 

equimolar amount to the added DTCBipy.  The vial was then flushed with Ar and 

allowed to stir under Ar in the dark for 24 hours.  Spectra were then recorded, and the 

particles were precipitated from solution via centrifugation for 5 minutes at 4.4k rpm.  

The NP were redispersed in toluene, then precipitated again via centrifugation for 5 

minutes at 4.4k rpm.  The NP were then redispersed in toluene with a sonicator.  Upon 

standing, the particles would precipitate from solution, but further sonication would 

afford an optically clear solution. 

  

 Formation of DTCBipy Complex in the absence of nanorods 

 A solution of 11.2 mg (3.17 * 10
-5 

moles) of Fe(acac)3 in 10 ml of toluene was added to 

a 25 ml three neck round bottom flask.  A stir bar was added and the reaction was 

capped with a septa and flushed with Ar.  Separately 13.2 mg (5.0 * 10
-5

 moles) of 

DTCBipy was dissolved in 10 ml of toluene.  6.35 ml of the DTCBipy solution was 

added to the Fe(acac)3 solution to form an equimolar amount of iron to DTCBipy.  The 

solution was allowed to stir overnight (16 hours).  The next morning the pink crystals 

were collected via centrifugation and allowed to dry.  Analysis of the compound via 

UV-Vis (Figure S2A) produced the redshift seen in nanorod DTCBipy-Fe formation. 

NMR (Figure S1) verified the existence of a low spin complex, since when considering 

Fe
3+

 LS, Fe
3+

 HS, Fe
2+

 LS, and Fe
2+

 HS
 
only Fe

2+
 LS offers a diamagnetic spin state. 

1
H NMR (400 MHz, MeOD) δ 8.75 (d, 1H, J=4.88 Hz), 8.14 (d, 1H, J=8.12 Hz), 8.10 

(d, 1H, J=6.6 Hz), 8.02 (td, 1H, J=1.6, 7.76 Hz), 7.56 (dd, 1H, J=4.8 Hz, 7.4 Hz), 7.48 

(d, 1H, J=2.32 Hz), 6.82 (dd, 1H, J=2.32, 6.64 Hz) 
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A.1. Quantitative TEM-EDS Procedures 

 EDS Spectra were acquired using a Tecnai Osiris operating at 200 kV.  Rods were drop 

cast onto a Ni TEM grid.  A collection of rods was located, and EDS spectra were 

acquired for 5 minutes.  Using Bruker Espirit software the resulting spectra was 

matched for all elements present, and deconvoluted to exclude all elements except for 

Cd, S, Se, and Fe to give the atomic % of the elements present.  This procedure was 

repeated ten times in different grid boxes each time.  To calculate the number of Fe 

atoms per nm
2
, it was assumed that the observed sample was representative of the 

entire NR population, and thus the data was representative of a single rod.  The number 

of Cd present in a single rod was calculated based off of rod volume and unit cell 

volume as determined by measuring via ImageJ.  This number was then used to 

calculate total atoms present, then the number of Fe present was taken from this 

number.  The number of Fe per rod was divided by the surface area of the rod to 

deduce Fe coverage.  The raw data can be seen in Table B.1. below. 

 

 

Table A. 1. 

      

Sample % Cd 

% Cd 
 decimal 

form 
atoms per 

rod % Fe 

% Fe  
decimal 

form 
Fe per 

rod Fe/nm
2
 

1 49.2 0.492 5.34E+04 4.79 0.0479 2.56E+03 2.77 

2 49.6 0.496 5.30E+04 3.74 0.0374 1.98E+03 2.14 

3 49.6 0.496 5.30E+04 4.10 0.0410 2.18E+03 2.36 

4 49.7 0.497 5.29E+04 4.51 0.0451 2.39E+03 2.58 

5 49.6 0.496 5.31E+04 4.55 0.0455 2.41E+03 2.61 

6 51.6 0.516 5.09E+04 3.75 0.0375 1.91E+03 2.07 

7 51.8 0.518 5.08E+04 4.03 0.0403 2.05E+03 2.22 

8 51.0 0.510 5.16E+04 3.91 0.0391 2.02E+03 2.18 

9 50.7 0.507 5.19E+04 3.80 0.0380 1.97E+03 2.13 

10 50.8 0.508 5.18E+04 5.37 0.0537 2.78E+03 3.01 

 
Cd per rod 

 

SA rod 
(nm^2) 

  
Average 2.41E+00 

 
2.63E+04 

 
923.92 

  
Std. dev 3.20E-01 

 

 

A.2. Additional Computational Procedures 

 Density functional theory calculations were performed using the Vienna ab initio 

Simulation Package (VASP).
4
 The projector augmented wave method

5, 6
 was used to 

describe the interactions between valence and core electrons and the plane-wave basis 
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cutoff was taken to be 950 eV. For molecules, only the Γ was used, while surface slabs 

used a  Γ-centered Monkhorst-Pack grid
7
 during relaxations. Integration was 

performed with Gaussian broadening with σ = 0.05 eV for all calculations, while 

absorption spectra were calculated with σ = 0.2 eV. At least 10 Å of vacuum were used 

to minimize interactions between periodic images. The structures were relaxed using 

the conjugant gradient method until forces were less than 0.02 eV/Å. During structural 

optimization, the Perdew-Burke-Ernzerhof (PBE)
8
 version of the generalized gradient 

approximation (GGA) was used to describe the exchange-correlation functional, while 

the HSE06 range separated hybrid functional
9, 10

 was used for calculation of the 

electronic structure. 

 Simple calculations of the ligand system alone were performed to predict if there is 

good spatial and energetic alignment of the ligand states with CdS valence and 

conduction band energies, before attempting more computationally costly calculations 

of the hybridized system. We find that the HOMO and HOMO-1 energy levels of [2,2’-

bipyridin]-4-ylcarbamodithioic acid (HDTCBipy) comprise primarily the sulfur orbitals 

of the dithiocarbamate functional group, and are energetically 0.03 eV and 0.24 eV 

higher than the CdS valence band relative to the vacuum level. The calculations 

indicate there is a good energetic and spatial alignment of the HOMO levels of 

DTCBipy for hybridization with the CdS valence band. Calculations were also 

performed for HDTCBipyFe(acac)2. Two filled dithiocarbamate orbitals, similar to 

HDTCBipy, lie 0.05 eV below and 0.04 eV above the CdS valence band. Additionally, 

there are two filled molecular states with contribution from the dithiocarbamate and 

bipyridine at 0.50 and 0.83 eV above the valence band. Above this, are three new 

additional occupied orbitals comprised primarily of Fe-related states. The calculations 

again predict the plausibility of advantageous hybridization of the iron chelated ligand 

system with CdS for hole transfer. 

 In order to determine the ability for hole transfer from the valence band to the ligand to 

occur, we use density functional theory to calculate the dipole transition oscillator 

strengths. Then, the rate of spontaneous emission can be evaluated as: 

, (1) 

 where the dipole matrix element can be extracted from the DFT computed oscillator 

strength via: 

. (2) 

 The lifetime for an excitation is given by . The oscillator strengths themselves 

122 

  2

2134

0

3

21

3


 c

E
R






2

21212221
3

2
E

e

m
f e 



1



 

127 

 

can be computed through the use of the optical routines implemented in VASP in one 

of two ways. The first is from the matrix elements obtained through calculation of the 

frequency-dependent dielectric matrix. In a typical calculation done this way, however, 

the matrix elements and oscillator strengths are not readily readable. The alternative 

way is to use what essentially amounts to the TD-DFT derived version of the Bethe-

Salpeter equation for the optical absorption. These routines can be applied in the single-

particle framework and yield the same values as the previous method, but with the 

desired oscillator strengths user-accessible. Ordinarily, the use of these routines is for 

determining the optical properties from the electronic ground state and hence calculated 

between the valence states (or HOMO-n levels) and conduction states (or LUMO+m 

levels). In order to determine the oscillator strength between levels that are all 

ordinarily occupied prior to photoexcitation (in our case the CdS valence band and the 

molecular states), VASP allows for the wave functions to be constrained or “frozen” to 

their original form and the occupations to be set manually. This is done after the self-

consistent optimization and before the calculation of the oscillator strengths for valence 

to molecular transitions. For example, in our pristine CdS surface with no adsorbed 

ligands, we can calculate the lifetime to be 0.8 ns. This is in relative agreement with 

measurements on large sample CdS systems.
11

 For the purposes of testing for hole 

transfer to the molecular states, the comparison for radiative decay rates should actually 

be made not to pure CdS, but rather DTC-ligand free CdSe-CdS core-shell nanorods. 

The measured lifetime for these is ~20 ns resulting in a radiative decay rate of ~0.05 ns
-

1
 (this is consistent with lifetime measurements for similar systesm).

12
 Since we are 

interested if the hole can transfer to any of the midgap molecular states, we calculate 

the total rate for hole transfer as a sum of the individual rates. 

 The surface of the nanorods was modeled using a six-layer thick slab of -oriented 

wurtzite CdS terminated with pseudohydrogen. This surface is both the lowest energy 

surface termination of CdS
13

 and CdSe
14

 as well as a dominant facet for wurtzite 

nanorods. The chosen slab has minimal quantum confinement effects and a band gap of 

2.53 eV. Relative to the vacuum level, the valence band is -6.47 eV, while the 

conduction bands is -3.94 eV. For calculations including the absorption of DTC-

complexes to the surface, a  supercell of the 45°-rotated primitive surface cell was 

utilized resulting in a density of 0.34 molecules per nm
2
. Such a density was chosen in 

order to isolate the interaction between neighboring images of the molecule in order to 

focus on understanding how the molecule interacts with the CdS. We model surface 

attachment with a chelating geometry at the cadmium site by the dithiocarbamate group 

consistent with the prior studies.
15, 16
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 As a benchmark to our calculation, we use the deprotonated forms of DTCBipy and 

DTCBipyFe(acac)2 to compute the optical absorption and compare them with the 

experimental results. The calculated optical absorption of surface-free DTCBipy 

(Figure S2B) shows two primary features at 275 nm (4.51 eV) and 345 nm (3.59 eV) 

with a smaller feature around 530 nm (2.34 eV). Compared to the experimental 

absorption shown in Figure S4A, we see that there is a systematic blueshift of the 

primary peaks due to a slight overestimation of the HOMO-n/LUMO+m gap. In the 

experimental figure, the first primary peak is cutoff as this peak merges with the 

solvent peak and becomes difficult to interpret. The smaller intensity feature may be 

related to the signal at the limit of detection around 600 nm in Figure S4A. In both 

Fe(acac)3 and Fe(bipy)3, the iron is octahedrally coordinated and can be stabilized as 

either Fe
3+

 or Fe
2+

 where both oxidation states have both low-spin and high-spin 

configurations. Computationally, for DTCBipyFe(acac)2 with Fe
3+

 the energetically 

preferred spin-state is the high-spin (μ=5) state and for Fe
2+

, the energetically preferred 

state is the low-spin (μ=0). This result combined with the NMR data for 

DTCBipyFe(acac)2 (Figure S5) suggests that our system contains Fe
2+

. Furthermore, 

the optical absorption spectra calculated using Fe
2+

 provides a qualitative match to the 

experimental absorption spectra (see Figs. S2A and S2B); whereas the spectra 

calculated using Fe
3+

 contains an extra feature around 750 nm with no corresponding 

feature in experimental spectra (see Figure S4C). 

  



 

129 

 

A.3. Additional TRPL Procedures 

 Time-resolved photoluminescence measurements were performed using a home built 

confocal microscope. Dilute solutions of QDs in toluene were excited at low fluence 

with a 400 nm pulsed laser at 250 kHz repetition rate. The fluorescence from the QD 

solution was collected by a single photon avalanche diode. Lifetime data were acquired 

in the form of photon arrival events using a time-correlated single photon counting 

system (Picoharp 300) with a time bin of 128 ps. Decays were fit to bi- or tri- 

exponentials of the form: 𝑦 = 𝑦0 + ∑ 𝐴𝑖exp (
−(𝑥−𝑥0)

𝜏𝑖
)𝑛

𝑖=1 , where n = 2, 3. Average 

lifetimes were calculated using the lifetime and amplitude coefficients: 𝜏𝑎𝑣𝑔 =  ∑
𝐴𝑖𝜏𝑖

∑ 𝐴𝑖𝑖

𝑛
𝑖 .     
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A.4. Calculated absorption spectrum for slab calculations

 
Figure A. 1. Calculated absorption spectrum for the CdS surface  ; bare (black), the 

surface with DTCBipy (red), and the surface with DTCBipyFe(acac)2 shows the redshift of 

the band edge as well as the introduction of discernable intramolecular excitations. This 

complements Figure 2. of the main text. 
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A.5. Orbital Charge Density Plots 

 

 

Figure A.2. Orbital charge density plots ; Orbital charge density plots for 

DTCBipyFe(acac)2 on CdS showing all seven mid-gap as well as the valence and 

conduction band (extension of Figure 4 from the main text). 
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A.6. Theoretical absorbance spectra of DTCBipy and DTCBipy-Fe complexes

 
Figure A.3. DTCBipy and DTCBipyFe(acac)2 theoretical absorbance. 
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A.7. Theoretical absorbance of DTCBipyFe(acac)2 (Fe2+) and DTCBipyFe(acac)2 

(Fe3+)  

 

Figure A. 4.Theoretical absorbance of DTCBipyFe(acac)2 (Fe
2+

) and 

DTCBipyFe(acac)2 (Fe
3+)
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A.8. 1
H NMR of DTCBipyFe complex

 
 

Figure A. 5.
1
H NMR of DTCBipy-Fe complex 
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A.9.  Wide-field STEM-EDS map  

 

 

 

Figure A.6. Wide field STEM-EDS Map ; An image showing a group of CdSe/CdS NRs 

after ligand exchange with DTCBipy, treatment with Fe(acac)3, and cleaning.  Red is Cd, 

green is Fe, turquoise is S, and blue is Se.  S and Se are omitted from the overall picture for 

clarity.  The scale bar is 40 nm. 
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A.10. STEM-EDS Map of Fe control 

 

 

Figure A. 7.STEM-EDS Map of Fe control ; native ligand capped CdSe/CdS rods after 

being stirred for 16 hours, then precipitated twice as in the DTCBipy ligand capped 

CdSe/CdS procedure. 
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A.11. UVVis and Fluorescene Spectroscopy of Fe Control 

 

  

Figure A.8. UVVis and Fluorescene Spectroscopy of Fe Control ; UVVis and 

fluorescence spectrum of CdSe/CdS rods (native ligands) and Fe(acac)3 stirred overnight 

(black, QY 2.2%) and CdSe/CdS rods (DTCBipy LE) and Fe(acac)3 stirred overnight 

(yellow, QY 0.16%). 
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A.12. Varying wavelength excitation experiments 

 

  

 

Figure A.9. Varying wavelength excitation experiments ; (Left) Absorbance spectra of 

CdSe/CdS rods in excitation experiments performed at 514 nm.  514 nm was chosen as a 

suitable wavelength as it lay in between the CdS and CdSe absorptions, and a known laser 

standard (Rhodamine B) is suitable for this wavelength.  (Right) Excitation experiments 

performed at 514 nm: Native ligands (black, QY 5.4%), DTCBipy exchanged rods (red, 

QY 0.3%), and DTCBipyFe exchanged rods (yellow, QY 0.001%).  These quenches were 

expected as ligand exchange can cause the formation of trap states,
17

 even in systems 

which have a passivated core
18

.  Further, the mid-gap states presented from DTCBipy 

could also be serving to quench fluorescence. Secondly, there is no region between the 

onset of the CdS bandgap and CdSe absorption that would completely negate CdS 

absorption, so effects of the CdS quenching are always present to a degree. 
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A.13. Bi-exponential fit of CdSe/CdS NRs capped with native ligands. 

 

 

 

 

Figure A.10. Bi-exponential fit of CdSe/CdS NRs capped with native ligands. 
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A.14. Bi-exponential fit of CdSe/CdS NRs capped with native ligands. 

 

 

 

Figure A.11. Bi-exponential fit of CdSe/CdS NRs capped with native ligands. 
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A.15. Tri-exponential fit of CdSe/CdS NRs capped with DTCBipyFe 

 

 

 

 

Figure A.12. Tri-exponential fit of CdSe/CdS NRs capped with DTCBipyFe 
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A.16. DTCBipy Decomposition UVVis and Fluorescence 

 

 

 

 

Figure A.13. Solutions of pyridine and DTCBipy exchanged CdSe/CdS before and after 

addition of the appropriate amount of water to bring the mol fraction of H2O to χ=0.2. 
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B. Additional Synthetic Procedures for Chapter 3 

 

B.1. Experimental Detail 

Materials: Dichloromethane (DCM) (anhydrous, ≥99.8%), ethanedithiol (≥98.0%), 

trimethylamine (≥99.5%), ethyl acetate (EtOAc) (99.9%), hexanes (99.9%), NaHCO3 

(ACS grade), and MgSO4 (anhydrous, 97%) were purchased from Sigma-Aldrich.  9-

Fluorenylmethyl chloroformate (Fmoc-Cl) (98%) was purchased from Oakwood Chemical.  

All materials were used as purchased without further purification. 

 

FMT ligand synthesis 

To a 100-ml round bottom flask with stir bar was added dry DCM, Fmoc-Cl (2.5 g, 10 

mmol),and ethanedithiol (3.35 ml, 40 mmol). The reaction flask was sealed and maintained 

under inert atmosphere. Triethylamine (1.4 ml, 10 mmol) was added dropwise via syringe. 

The reaction was monitored via TLC (20% EtOAc / 80% Hexanes). Reactions typically 

completed within 15 min. The crude product was then washed 2 times with 5% NaHCO3, 

followed by one brine wash. The organic layer was then dried over MgSO4, solvent 

removed under reduced pressure. The resulting crude product was purified via column 

chromatography using a solvent gradient from 2.5% EtOAc/hexanes to 10% 

EtOAc/hexanes to yield a thick yellow oil. Yield: 1.74g (55%) 
1
H NMR (400MHz, CDCl3) 

δ 7.79 (d, 2H, J=7.6 Hz), 7.60 (d, 2H. J=7.1 Hz), 7.43 (t, 2 H, J=7.4Hz), 7.34 (td, 2H, 

J=7.5, 1.1 Hz), 4.52 (d, 2H, J=7.4 Hz), 4.28 ( t, 1H, J=7.3 Hz), 3.08 (t, 2H, J=6.7 Hz, 2.76 

(m, 2H), 1.65 (t, 1H, J=8.6 Hz). 
13

C NMR (100 MHz, CDCl3) δ 170.4 (C=O), 143.2, 141.3, 

127.9, 127.2, 125.1, 120.1 (ArC), 69.2 (-CH-), 46.7(-CH2-), 35.0(-CH2-), 24.8(-CH2-) ppm.  

 

OA-QD synthesis 

The synthetic procedure for fabricating oleic acid capped PbS QDs are described in detail 

by Hines and Scholes.
147

 

 

 

FMT-in synthesis exchange 
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To a solution of PbS QDs in CHCl3 under vigorous stirring was added a solution of FMT 

in CHCl3. After 30 min, the particles were precipitated with acetone three times, and the 

removal of the native OA ligands was verified via 
1
H NMR spectroscopy, notably the loss 

of the vinylic protons. 

 

To prepare FMT-PbS QDs for device fabrication, the FMT ligand (0.1 g, 0.316 mmol) was 

first dissolved in 1 mL of toluene. In another round bottom flask, PbO (0.3 g, 1.3 mmol) 

and oleic acid (1.5 mL, 4.7 mmol) was dissolved in 18 mL of octadecene and degassed at 

100°C under vacuum overnight to form Pb-oleate. In a separate flask, bis(trimethylsilyl) 

sulfide (TMS) (0.29 mL, 1.37 mmol) was dissolved in 13 mL of degassed octadecene. The 

Pb-oleate solution was heated to 63°C, and then the TMS solution was injected rapidly to 

enable nucleation of the PbS-QDs. After the initial synthesis of the oleic acid capped PbS 

QDs, the FMT solution was injected into the flask at 60°C during the cooling stage of the 

reaction. The reaction was further cooled to 30°C, and acetone was injected into the flask 

to precipitate the QDs. The FMT-QDs were centrifuged at 7800 rpm for 5 minutes, and the 

precipitate was redispersed in toluene. These FMT-QDs were precipitated again with 

acetone, and dried under vacuum for 20 minutes. The FMT-QDs were then dissolved in 

anhydrous octane at 50 mgmL
-1

. 

 

Full device preparation 

Two layers of ZnO nanoparticles are spin coated onto an ITO substrate at 3000 rpm for 30 

s. The synthesis of these ZnO nanoparticles are discussed elsewhere.
125

 Then a 315mg/mL 

of a PbI0.8Br0.2-PbS active layer was spin coated onto the top of the ZnO nanoparticles .The 

synthesis and ligand exchange method for these PbI0.8Br0.2-PbS QDs are discussed 

elsewhere.
134

 Then two layers of EDT-PbS were spin coated onto the active layer. The 

methods are discussed below: 

 

Direct soak EDT-PbS QDs  

The preparation of the EDT-PbS QD exchange was performed as described in a previous 

study.
134

 To prepare one layer of EDT-PbS QDs, a 50mg/mL solution OA-QDs were spin 
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coated at 2500 rpm for 10 s onto the top of a PbS-active layer. The OA-QD layer was then 

soaked in a 0.01% v/v solution of 1,2-ethanedithiol (EDT) in acetonitrile for 30 s. The 

solution was then spin coated off at 2500 rpm, and washed three times with acetonitrile. 

These steps were repeated twice to yield 2 layers of EDT-PbS.  

 

FMT-cleaved EDT-PbS QDs 

The FMT-QDs initially dispersed in toluene were precipitated with the addition of acetone. 

The QDs were further dried and dispersed in octane at a concentration of 50 mgmL
-1

  The 

FMT-QDs were spin coated on top of a PbS-active layer at a spin speed of 2500 rpm for 10 

s. The FMT-QD layer is then treated with mild base solution noted below in ethyl acetate 

for 30 s. The device was then spun at 2500 rpm for 10 s to remove the residual solvent. The 

film was washed 3 additional times with ethyl acetate. 

 

FMT mild base preparation 

Mixtures of bases were prepared at a 1% v/v solution in ethyl acetate. For example, a 9:3 

mixture of DTP:DBU is as follows: 100 μL of DTP is diluted in 10 mL of ethyl acetate. In 

a separate vial, 100 μL of DBU is dissolved in 10 mL of ethyl acetate. Then 900 μL of the 

1% DTP solution is mixed with 300 μL of the 1% DBU solution yield a 9:3 DTP: DBU 

mixture.  

For the 30:1 DMPpy:DBU mixture, 100 μL of DMPpy is diluted in 10 mL of Ethyl 

Acetate. In a separate vial, 100 μL of DBU is dissolved in 10 mL of ethyl acetate. Then 

900 μL of the 1% DMPpy solution is mixed with 30 μL of the 1% DBU solution to yield a 

30:1 DMPpy: DBU mixture. 

 

Absorbance characterization 

Film Absorbance measurements were performed by a Lambda 950 500 UV-Vis-IR 

spectrometer. 
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Fourier transform infrared (FTIR) spectroscopy measurements 

Attenuated total reflectance (ATR) FTIR measurements were performed on a Thermo 

Nicolet is50. 

 

UPS Measurements 

A thin layer of colloidal QDs were spin-coated at 2500 rpm onto an Au substrate before 

UPS testing. The ultraviolet photo-electron spectra were obtained using the 21.22 eV He I 

lines from the discharge lamp. The band gaps for both the EDT-PbS film and cFMT-PbS 

film were determined by the optical absorption spectrum by taking the value from their 

first excitonic peaks. The Fermi level for each film were taken from the intersection from 

the slope of the low binding energy section and its baseline, and subtracted from the He I 

line. The value of the valence band maximum was determined by adding the Fermi level 

and the value from the intersection from the slope of the high binding energy section and 

its baseline. The value of the conduction band minimum was determined by adding the 

value of the valence band maximum and the optical band gap. 

 

XPS characterization 

A layer of colloidal QDs were spin-coated at 2500 rpm onto a glass substrate before XPS 

measurements. The film was then mounted onto a stainless steel mounting plate. XPS 

measurements were performed on a Thermo Scientific K-Alpha system. The source used 

was an Al Kα source. The takeoff angle was 90°. In order to account for charging, XPS 

spectra were calibrated to the samples’ respective C 1s peak at 284.8 eV.  

 

AM1.5 Measurements 

AM1.5 current voltage (J-V) sweeps were collected using a Keithley 2400 sourcemeter unit 

under simulated AM1.5G illumination (Sciencetech class A). The AM1.5 was calibrated 

using a reference solar cell (Newport). The devices were measured under a continuous flow 

of nitrogen gas. The aperture was 4.9 mm
2
 for a device. 

 

External Quantum Efficiency (EQE) measurements 
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EQE measurements are performed with an Oriel Instruments Quantum Efficiency 

measurement system. 

 

DFT Calculations 

All DFT calculations were performed using Gaussian 09.  B3LYP was used as the 

functional and all molecules were optimized to a basis set of 6-311g**. 
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B.2. FMT 
1
H NMR 

 

 

 

Figure B.1. 
1
H NMR of Pure FMT. 
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B.3. FMT 
13

C NMR 

 

 

 

Figure B.2. 
13

C NMR of Pure FMT. 
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B.4. 1

H NMR of OA-PbS 

 

 

 

Figure B.3. 
1
H NMR of OA-PbS.  Pertinent signals are marked. 
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B.5. 1
H NMR of FMT-PbS 

 

 

 

Figure B.4. 
1
H NMR of FMT-PbS.  Pertinent peaks are marked. 

  

CHCl3 
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H2O 

Grease 
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B.6. XPS Data 

 

 

Figure B.5. XPS spectra comparing a FMT- cleaved Film to an direct soak EDT-PbS Film. 

XPS spectra are shown for a) Pb 4f, b) S 2p, c)O 1s, d) C 1s.  The C1s spectra for FMT 

contains a small signal at 289 eV which is likely due to residual ethyl acetate from the 

cleavage procedure.  
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B.7. UPS Data 

 

UPS-EDT-PbS 
 

 
 

UPS-cFMT-PbS 

 

 
 

 

Figure B.6. Ultraviolet Photoelectron Spectra comparing a directly soaked EDT film and a 

FMT-Cleaved EDT-PbS Film. A) Zoom in spectra of the high binding energies for a 

directly soaked EDT film. B) Zoom in spectra of the low binding energies for a directly 

soaked EDT film. C) Zoom in spectra of the high binding energies for a FMT cleaved 

EDT-PbS Film. D) Zoom in Spectra of the low binding energies for a FMT cleaved EDT-

PbS film. 
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B.8. JV Sweeps 

 

 

 

Figure B.7 Full device characteristics for those tabulated in Table 1. 
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B.9. DFT Data 

 

Molecule HOMO (eV) LUMO(eV) Bandgap (eV) 

EDT -6.73 -0.17 6.56 

FMT -6.22 -1.31 4.92 

 

 

Figure B.8.  HOMO, LUMO, and bandgap of EDT and FMT calculated from DFT. 
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C. Additional Synthetic Procedures for Chapter 4 

 

C.1. General synthetic procedure for alkyl  thiocarbonates 

To an argon flushed 50 ml round bottom flask was added dry DCM (15 ml), pyridine (5 

ml), and ethanedithiol (6.14 ml, 73.2 mmol).  Alkyl chloroformate (24.4 mmol) was added 

slowly at a rate of 0.5 ml/hr via syringe pump.  After addition was complete the reaction 

was allowed to stir for 6 hours at which point a white precipitate had formed.  The reaction 

mixture was washed 2x with 10 ml of 5% HCl solution, 1x with 10ml of brine, and dried 

over MgSO4.  Solvent was removed under reduced pressure.  The remaining clear colorless 

oil and white precipitate was purified via vacuum distillation. 

 

O-butyl S-(2-mercaptoethyl) carbonothioate.  BP 145 °C@ ~2 torr.  Clear, colorless oil, 

57.1% yield.  
1
H NMR (400MHz, CDCl3) δ 4.12 (t, 2H, J=5.4Hz), 3.02 (t, 2H, J=5.1 Hz), 

2.73 (q, 2H, J=5.3 Hz), 1.60 (qt, 3H, J=6.6 Hz), 1.35 (sext, 2H, J=6.0 Hz), 0.89 (t, 3H, 

J=5.9 Hz). 

 

O-hexyl S-(2-mercaptoethyl) carbonothioate.  BP 135 °C@ ~2 torr.  Clear, colorless oil, 

48.2% yield.  
1
H NMR (400MHz, CDCl3) δ 4.22 (t, 2H, J=7.7 Hz), 3.07 (m, 2H), 2.78 (m, 

2H), 1.65 (m, 3H), 1.31 (m, 6H), 0.90 (t, 3H, J=6.8 Hz). 

 

 

 

C.2. Synthetic procedure for O-(4,5-dimethoxy-2-nitrobenzyl) S-(2-mercaptoethyl) 

carbonothioate 

 

To a dry 25 ml round bottom flask was added 4,5-dimethoxy-2-nitrobenzyl chloroformate 

(276 mg, 1 mmol) the flask was transferred to a dark fume hood and flushed with argon.  

Dry DCM (7 ml), and ethanedithiol (0.25 ml, 3 mmol) were added.  Triethylamine (0.4 ml, 

1 mmol) was added dropwise with vigorous stirring.  After 30 minutes TLC indicated 

reaction completion.  The reaction mixture was reduced with rotary evaporation and 

resulting orange/red solid run through a “hypersep” column using a solvent gradient of 

10% ethylacetate in hexanes to 30% ethylacetate in hexanes to produce a yellow crystal in 

10.4% yield.  
1
H NMR (400MHz, CDCl3) δ 7.70 (s, 1H), 6.97 (s, 1H), 5.63 (s, 1H), 3.97 

(s, 3H), 3.94 (s, 3H), 3.09 (t, 2H, J=5.56 Hz), 2.77 (q, 2H, J=5.8 Hz), 1.63 (t, 1H, J=6.8 

Hz). 
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C.3. Synthetic procedure for 2-((2-nitrobenzyl)thio)ethane-1-thiol 

 

To a dry 100 ml round bottom flask was added DCM (48 ml), EDT (1.36 ml, 16 mmol), 

and triethylamine (0.56 ml, 4 mmol).  2-nitrobenzyl bromide (0.864 g, 4 mmol) was 

dissolved in 5 ml of DCM and added dropwise to the reaction solution.  After 15 minutes 

TLC using ceric ammonium molybdate stain indicated reaction completion.  The reaction 

solution was washed twice with 10 ml of deionized H2O, once with 10 ml of brine, dried 

over MgSO4, and reduced via rotary evaporation.  The oil was purified via column 

chromatography (10-30% gradient of ethyl acetate in hexanes) to yield a slightly yellow, 

clear oil in 40.3% yield.  
1
H NMR (400MHz, CDCl3) δ 7.97 (dd, 1H, J=8.1, 1.1 Hz), 7.57 

(td, 1H, J=7.5, 1.3 Hz), 7.45 (m, 2H), 4.09 (s, 2H), 2.68 (m, 4H), 1.67 (t, 1H, J=7.9 Hz). 

 

C.4. PbS QD Synthesis 

 

PbO (2.1 mmol), OA (7.1 mmol), and ODE (12.7 ml) were added to a 50 ml three-neck 

round bottom flask with stir bar, septa, condenser, and inlet adapter and allowed to degass 

at 100 °C for 18 hours overnight.  The reaction was flushed with Ar and heated to 125 °C.  

TMS (0.85 mmol) was mixed with 1 ml of ODE in a nitrogen glovebox.  The solution was 

drawn into a syringe and injected swiftly into the lead oleate solution.  The solution 

immediately changed from clear, colorless to clear, dark brown.  After 1 minutes the 

heating mantle was removed and solution allowed to cool to room temperature.  The 

solution was then centrifuged (15 min, 8k rpm) to remove any insoluble material.  10 ml of 

ethanol and 10 ml of acetone was then added to the mixture for precipitation via 

centrifugation (15 min, 8k rpm).  The pellet was suspended in toluene and cleaning process 

repeated two more times. 

 

C.5. Procedure for Ligand Exchange 

 

The absorbance of a suitable concentration of PbS QDs (OD of first exciton peak ~0.9) was 

measured for  calculation of size and concentration and the solution was placed into a 6 dr 

vial with a stir bar.
241,242

  ~5 mg of ligand (considered to be excess) was dissolved in 1 ml 

CHCl3 and added dropwise to the solution of OA-capped PbS.  The solution was allowed 

to stir for 1 hour.  The seeds were then precipitated via addition of acetone and 

resuspended in CHCl3 at least three times before being observed via 
1
H NMR. 

 

C.6. General Procedure for Ligand Degradation 

 

 

Various ligand degradation attempts all followed the same methodology.  The ligand 
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concentration in solution varied depending on which characterization technique was to be 

used; for instance, in situ UV-Vis absorbance monitoring required a smaller concentration 

of ligand in comparison to in situ NMR experiments.  GC-MS experiments (though no data 

yielded any viable information) were conducted by removing 50 µl from a UV-Vis 

experience and diluting with 1 mL of chromatography solvent. 

 

Irradiation on degradation experiments was performed using a 4W lamp set at either 254 

nm or 348 nm, or a Xe lamp with a A.R. density of 1.5 calibrated to 1 sun intensity.  

Removal of the IR filter on the sun lamp caused rapid organic decomposition.  Various 

intervals were used (5 minutes, 15 minutes, 30 minutes, etc.) to take data points during 

these experiments, but there was no evidence that the expected molecular transformations 

were occurring during any of these time increments.  Typical results from UV-Vis 

absorbance and NMR spectroscopies are shown below. 

 

  



 

159 

 

 

C.7. UV Degradation of NET 

 

 

 

 

Figure C.1. Lack of degradation of NET when undergoing irradiation by a 4W 254 nm 

lamp for 4 hours. 
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C.8. NMR after 16 hour UV Irradiation of DMNC on PbS 

 

 

 

 

Figure C.2. Lack of free ligand when PbS ligand exchanged with DMNC is irradiated with 

a 4W 254 nm light overnight.  If free ligand existed, a peak around ~10 ppm corresponding 

to the nitrosoaldehyde should be present. 
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C.9. UVVis Absorbance spectra of PbS ligand exchanged with DNMC before and 

after irradiation with UV light 

 

 

  

 

Figure C.3. Observance of ligand degradation via UVVis spectroscopy was not possible 

due to the occlusion of ligand absorbances by the PbS.  Some absorbance is seen in the 16 

hr sample due to scattering from precipitated PbS after prolonged irradiation. 

 

 

 

 

 

 

 

 

0 hr 

16 hr 
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D. Additional Procedures and Data for Chapter 5 

 

D.1. General Synthetic Procedures 

 

Pb Salt Synthesis.  Pb(NO3)2 (1 mmol) was dissolved in 5 ml of deionized H2O.  

Separately the desired thiol (in this case DDT, D3MP, FMT, DMC, or DTC) (2 mmol) was 

dissolved in 1 ml of acetone.  The thiol solution was added dropwise to the lead solution.  

Another solution of 2 mmol of triethylamine in 1 ml of acetone was then added dropwise, 

resulting in precipitation of a yellow solid.  The solid was filtered and allowed to dry on 

vacuum overnight. 

 

Pb(OAc)2 Syntheses.  Pb(OAc)2 (1 mmol) and D3MP (6.65 ml) were added to a 25 ml 

round bottom flask with stir bar and inlet adapter and degassed at room temperature for 30 

minutes.  The flask was then flushed with Ar and heated to 200 °C where it was held for 10 

minutes.  The heating mantle was then removed and the reaction allowed to cool to room 

temperature.  The particles were then cleaned via precipitation with ethanol and 

resuspension in chloroform three times before characterization. 

 

Other Pb Salt Syntheses.  Solvent (DPE or ODE, 9.6 ml) and surfactant (0.4 ml, same 

ligand as salt) were combined in a 25 ml three-neck round bottom flask with stir bar and 

condenser and degassed at 100 °C for 2 hours.  Lead salt (0.4 mmol) in 2 ml of TOP was 

degassed at room temperature for 2 hours.  A solution of TMS (0.1-0.3 mmol) in ODE (1 

ml) was prepared in the glovebox.  After 2 hours the lead salt and reaction flask were 

flushed with Ar.  The reaction flask was heated to 140 °C.  Both lead salt and TMS 

solutions were injected either at the same time or with a 5 second delay into the reaction 

solution.  The reaction solution was allowed to grow for a set amount of time until the 

heating mantle was removed.  The reaction solution was then centrifuged to remove 

insoluble debris.  The particles were then cleaned via precipitation with ethanol and 

resuspension in hexanes three times prior to characterization. three time with ethanol and 

resuspended in hexanes prior to characterization. 
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D.2. Reaction Conditions for PbS Syntheses 
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Figure C.1.  Various reaction conditions.  Abbreviations: dodecanethiol (DDT), bis-

trimethylsilyl sulfide (TMS), dithiocarbamate (DTC), hexadecylamine (HDA), octadecene 

(ODE), trioctylphosphine (TOP), diphenyl ether (DPE), oleylamine (OLAM), oleic acid 

(OA), O-((9H-fluoren-9-yl)methyl) S-(2-mercaptoethyl) carbonothioate (FMT), O-dodecyl 

S-(2-mercaptoethyl) carbonothioate (DMC), polydisperse (PD), and agglomerated (Agg). 
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D.3. Absorption spectra of PbS QDs.   

 

 
 

Figure C.2.  Absorption spectra of PbS QDs. A) DDT-capped crystal bound PbS 

(λex=1107 nm), B) D3MP-capped crystal bound PbS (λex=1210 nm), C) Surface bound 

DDT-capped surface bound PbS (λex=1058 nm).  
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