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CHAPTER I 

 

INTRODUCTION 

 

Overview 

Cellular metabolism is a highly complex system of coupled reactions that take 

place at a variety of different time scales.  Due to its complexity, studying only one 

reaction or species gives limited information about metabolism as a whole.  In addition, 

by acquiring measurements at low frequency, much of the dynamics of the system will 

not be observable.  This is especially true if the biological system is perturbed in some 

manner.  By acquiring metabolic information on multiple species simultaneously and at 

high frequency, more information about the system can be ascertained.  To this end, a 

multianalyte microphysiometer (MMP) was developed by Dr. Cliffel’s group which 

measures extracellular concentrations of glucose, lactate, oxygen, and pH every two 

minutes from ~105 cells contained in ~3 µL.  This gives a snapshot of general metabolism 

and the degree of aerobic versus anaerobic metabolism.  This device has been used to 

observe the metabolic effects of a variety of pharmacological and real-world metabolic 

toxins.  As useful as the MMP is, it has its limitations.  Measuring only four analytes at 

once limits the metabolic information able to be derived.  Metabolism of amino acids is 

intricately linked to a variety of glycolytic and TCA cycle intermediates.  By measuring 

amino acid metabolism, a much more detailed view of cellular metabolism ought to be 

obtained. 
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Commercial instrumentation used to detect and quantitate amino acids such as 

high-pressure liquid chromatography (HPLC), capillary electrophoresis (CE), and ion 

exchange chromatography are offline batch techniques in which the user or autosampler 

injects samples from contained vial.  These techniques are frequently labor intensive and 

time consuming.  Since the goal of this research is to obtain dynamic time response of 

amino acid flux, online instrumentation is required.  Therefore, construction of a home-

built online instrument was required. 

The goal of this research was to be able to observe amino acid flux from groups of 

cells with high temporal resolution.  To accomplish this goal, a combination of the 

microbioreactor (MBR) and online amino acid flux analyzer (AAFA) was constructed as 

shown in Figure 1.  Cell media continuously perifuses the MBR, which is designed to 

evenly perifuse cells at a high cell-to-media volume ratio and with minimal flow-through 

volume.  Background and introductory material are presented in Chapter 1.  The design, 

construction, and use of the MBR is shown in Chapter 3.  As described in Chapter 2, the 

effluent is preliminarily evaluated to observe amino acid uptake and release offline, using 

HPLC.  With our online AAFA, the effluent from the MBR is mixed with derivatization 

reagents which fluorescently label amino acids.  The derivatized effluent is injected in 

batches onto the separation capillary where the amino acids are separated by micellar 

electrokinetic chromatography.  The labeled amino acids are detected by a laser induced 

fluorescence detector.  The design, construction, and preliminary evaluation of the AAFA 

are shown in Chapter 4.  A proof-of-concept experiment, in which basal amino acid flux 

from cells as well as changes in metabolism upon exposure to pharmacological inhibitors 

are measured using the MBR and online AAFA, is shown in Chapter 5. 
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There are a number of design criteria the MBR and AAFA must meet in order to 

fully reach the goals of the experiment as shown in Table 1.  Many of these specifications 

are based upon the MMP, discussed later in this chapter, such as the chamber volume, 

cell number, inject-to-inject time, and response time.  The media transit time and delay 

time were based on literature flux rates and calculating the amount of time necessary to 

change the concentration of amino acids in the media by a relatively large percentage.1 

The precision was based upon the Guidance for Industry published by the FDA.2 

 

Figure 1.  Diagram of MBR and AAFA created for this research.  Media is pumped 
continuously through the MBR.  The output is derivatized, labeling primary amines.  The 
reaction mixture flows to the flow-gate where it is injected onto the separation capillary.  
Amino acids are separated by capillary electrophoresis and quantified by the detector. 
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 Chapter 1 presents background and introductory material which supports the 

need for the construction of the MBR and AAFA as well fundamental scientific 

information relevant to the work presented.  First, glucose metabolism and the MMP is 

presented, upon which the fundamental purpose of building this instrument is based.  

Next, amino acid metabolism is presented follow by amino acid flux rates of a model 

system.  This forms the basis of the sensitivity needed by the instrument in order to 

observe changes in amino acid flux.  This is followed by background information on soft 

lithography, a technique which was used to fabricate the MBR, and information on other 

published examples of MBRs.  Lastly, background on capillary electrophoresis and 

application to amino acid separation is presented along with derivatization chemistry 

necessary to detect amino acids. 

Table 1.  MBR and AAFA specification goals. 

 
Characteristic Value 

MBR Cell Number  ~ 1 × 105 

MBR Volume  < 5 µL 

MBR Media Transit Time  < 5 min 

Delay Time From MBR to AAFA  < 5 min 

Response Time  < 2 min 
AAFA Inject-to-Inject Time   < 2 min 

Electropherogram Reproducibility (RSD)  < 15% 
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Metabolism and the Multianalyte Microphysiometer 

Glucose metabolism is one 

of the primary ways of obtaining 

cellular energy.  A diagram showing the 

main elements of glucose metabolism is 

shown in Figure 2.  Glucose enters the 

cell through transporters and then is 

converted to pyruvate through 

glycolysis.  Pyruvate then has two fates: 

anaerobic metabolism by conversion to 

lactate and exportation from the cell, or 

aerobic metabolism by conversion to acetyl-CoA followed by oxidative physphorylation.  

The tricarboxylic acid (TCA) cycle converts acetyl-CoA to carbon dioxide and generates 

the electrons carried by NADH that are ultimately used in the production of ATP, a key 

energy source for the cell.  Two key elements decide the fate of pyruvate.  One, the 

electron transport chain requires oxygen, while the conversion to lactate does not.  Two, 

aerobic metabolism produces over 10-fold more ATP than anaerobic metabolism.3  

Therefore, by measuring the extent to which metabolism is aerobic or anaerobic, one can 

get an estimation of energy production. 

  The Cytosensor Microphysiometer has been used by many researchers to 

obtain metabolic and signaling information.4-14  The microphysiometer operates by stop-

flow perifusion of cells in the presence of a low-buffered cell media in a 3 μL chamber.  

The perifusion is then stopped for 30 s during which the pH of the cell media in the 

 

Figure 2.  Simplified representation of glucose 
metabolism.  
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chamber decreases due to a buildup of excreted acid from a variety of sources.  This 

change in the pH of the media is measured using a light-addressable potentiometric 

sensor.  After 30 s, perifusion is resumed for 90 s and the process is repeated.  Thus, the 

rate of acidification can be determined every two minutes, allowing rapid changes in 

extracellular acidification to be elucidated.15   

Extracellular acidification is directly influenced by many factors, including lactate 

and carbon dioxide production, as well as the activity of hydrogen ion channels.  

However, the source of the change in extracellular acidification cannot be determined 

using the Cytosensor Microphysiometer as supplied.  Therefore, the measurement of 

multiple elements allows for a better understanding of cellular metabolism.  The 

Cytosensor has been recently modified to detect many important elements in cellular 

metabolism such as glucose, 

lactate, oxygen, and pH, 

resulting in the multianalyte 

microphysiometer (MMP), see 

Figure 3.16-18  This device has 

been used to easily distinguish 

between fluoride, 2,4-

dinitrophenol, and antimycin 

A which are common 

metabolic inhibitors of 

glycoloysis or the electron 

transport chain.16  

1 cm1 cm
 

Figure 3.  The multianalyte microphysiometer cell 
chamber and sensor head 
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Furthermore it has been able to differentiate between select list toxins such as botulinum 

neurotoxin A and ricin toxin with neuroblastoma cells, alamethicin and anthrax protective 

antigen with RAW macrophages, and cholera toxin and muscarine with CHO cells.19 

 

Amino Acid Metabolism and Transport 

Measuring extracellular concentrations of the compounds listed in Figure 2 gives 

a limited amount of metabolic information regarding the degree of aerobic or anaerobic 

metabolism.  To obtain a more complete view of metabolism, a more detailed 

representation is required.  In order to accomplish this, more compounds need to be 

considered.  Due to the large role amino acids play in cellular metabolism, the 

measurement of amino acid flux would allow a more detailed view of cellular 

metabolism to be obtained.  

There are two fates of amino acids metabolism in hepatocytes that result in the 

majority of amino acid flux as shown in Figure 4.  One fate is gluconeogenesis, wherein 

amino acids are converted to TCA cycle intermediates or pyruvate where they can be 

used to make glucose.  The other fate is ketogenesis, during which amino acids are 

converted to acetyl-CoA and converted to ketone bodies where other organs use them as 

fuel.3  Protein synthesis, another fate of amino acid flux, can be ignored because the 

amino acid flux resulting from protein synthesis is an extremely small percentage of the 

total amino acid flux.1 
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Basal Amino Acid Flux and Hormonal Perturbations 

In order to obtain an accurate perception of the change in amino acid 

concentration expected in our experiments, calculations with literature flux rates were 

performed.  The literature flux values obtained were from primary hepatocytes cultured 

in 8 hour or 24 hour cultures.  First, the change in the concentration in media caused by 

the basal metabolism of the cells was estimated.  This was done by taking the flux rate 

from the literature1 and converting it to the number of moles expected using the 

conditions in the MBR, that is, 2.0 × 105 cells being perifused at 0.5 µL/min with 2.0 µL 

media outside the cells.  The percent change in the concentration of the media was 

 

Figure 4.  Amino acid catabolism and the urea cycle 
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calculated from the number of moles in the 2.0 µL of media.  Next, the percent change in 

flux rate caused by application of insulin or glucagon20, two hormones that drastically 

change the metabolism of hepatocytes, was calculated by determining the percent change 

in the amino acid flux caused by the hormones.  Finally, the percent change in the media 

caused by the change in flux was calculated by multiplying the change caused by the 

media by the change caused by the hormones.  These results in the percent change in the 

concentration of the amino acids needed to observe the effects of insulin or glucagon.  

The results are shown in Table 2.  Amino acids which have a large percent concentration 

change such as glutamine and glutamate which should be detectible by the AAFA, 

whereas those with a very small concentration change such as isoleucine and asparagine 

should not be detectable.  Amino acids with intermediate percent concentration changes 

might be detectible depending on the reproducibility of the AAFA.  
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Soft Lithography 

In order to perform dynamic in vitro cellular perifusion experimentation, a device 

of a specific geometry must be made to contain cells in order to minimize extracellular 

volume and provide a smooth flow path for media across the cells.  Soft lithography, 

which refers to any technique that employs an elastomer with embedded structures, is 

ideally suited for such a task.  Originally, this elastomer was used as a stamp to form 

Table 2.  Change in concentration of amino acids in DMEM:F-12 media caused by basal 
metabolism1 of primary hepatocytes and the effect of insulin or glucagon20 upon the 
metabolism using conditions found in the microbioreactor.  Positive numbers indicate the 
concentration increases, while negative numbers indicate the concentration decreases. 
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other structures or patterned surfaces, but more recently, the elastomer itself is the desired 

product.21-25  The process of generating the elastomer with microfabricated structures 

involves three steps:  mask fabrication, master construction, and elastomer production.  

These three elements are shown in Figure 5.  

A mask is used to define the relief in the desired structure via opaque and 

translucent regions.  A mask can be fabricated by many different procedures depending 

on the resolution required.  For low-resolution, a mask can be prepared using a simple 

 

Figure 5.  Process of fabrication of a soft lithographic device.  A) Master construction 
begins by spinning a photoresist on a silicon substrate.  B) A fabricated mask in the 
desired final shape is placed on the substrate and exposed to UV light, curing the 
photoresist in the form of the mask.  C) The unexposed photoresist is developed away, 
completing master construction.  D) Uncured elastomer is poured and molded over the 
master.  E) After curing, the master is removed, producing the final elastomer. 
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laser printer, while for high-resolution, a mask can be purchased from a variety of 

vendors. 

A master is a mold used to make the desired structure.  Construction of the master 

begins by coating a substrate, such as a silicone wafer, with a light sensitive resist.  The 

resist can be any thickness up to ~100 μm.  The mask is placed between a light source 

and the substrate during exposure of the master.  The resist is only exposed to the light 

where the mask is translucent resulting in cross-linking of the polymer.  Lastly, the resist 

is developed using a chemical developer that removes the unexposed portions of the 

polymer.  While a negative resist is depicted in Figure 5, positive resists, where only the 

areas exposed to the light are removed during development, are also quite common.   

An elastomer, often composed of Polydimethylsiloxane (PDMS), is the final product 

resulting from soft lithography.  Production of the elastomer begins by pouring the 

elastomer prepolymer over the master where it conforms to the shape of the relief.  The 

elastomer is then cured and removed from the master, producing the final structure.  The 

elastomer can be used to form 3-D fluidic devices by bonding the elastomer to a substrate 

and providing fluidic access to the fluidic device.  Using soft lithography, it is easy to 

create a cellular perifusion device of any shape desired.  If one device becomes 

compromised, only the production of the elastomer must be repeated. 

 

Microbioreactors 

Microbioreactors (MBRs) are vessels which contain cells, either eukaryotic or 

prokaryotic, in a device which contains microliter quantities of cell media or broth.  

MBRs require some form of active nutrient exchange since cells are at a high enough 
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density to quickly deplete nutrients and build up waste products.  Creating bioreactors on 

the microscale is advantageous for multiple reasons.  They conserve valuable cell growth 

media and supplies, allow for easier access to parallel bioreactors to perform multiple 

simultaneous experiments, are less labor intensive to set up and run, and allow faster 

responses to be observed due to the decreased dimensions.  MBRs can also be made 

inexpensively.26,27  There is a great deal of variability within the design of MBRs.  They 

may be designed to run for a time-period of a few hours to several weeks, there are 

several different ways to provide flow to the MBR, and there are a variety of materials in 

which MBRs are constructed. 

 There are many ways to feed media to a microbioreactor.  The most common 

types of pumps used are the peristaltic pump28-30 or syringe pump27,31-36.  A peristaltic 

pump is useful for relatively high flow rates in the mL/min to high µL/min range.  

Syringe pumps are useful in the high to low microL/min range, but can only be used to 

dispense the volume contained within the syringe.  When very low flow rates or long-

term operation at low flow rates are desired, on-chip pumping mechanisms have been 

developed.  Pneumatically operated, thin film PDMS is one mechanism whereby air 

pressure drives a thin PDMS film over a fluidic channel into the channel and occludes it.  

This creates a pneumatic valve.  If a series of three or four of these valves are adjacent to 

each other in a channel, they can act like a pump when closed and opened in 

sequence.37,38  Based on the same principle, Braille displays, in which pins are directly 

inserted over a fluidic channel can block the channel when activated.39,40  Braille displays 

can be used as pumps in the same manner as pneumatic valves.  Braille displays are 

simpler and occlude channels completely without special manufacturing techniques.  
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However, they are opaque and cannot be imaged through the way pneumatic PDMS 

pumps can. 

 A common manufacturing technique for MBRs is the use of 

photolithography.  The power of this technique is that a 2-D design of nearly any 

complexity can easily be manufactured.  The details of this technique were discussed in a 

previous section of this chapter.  A few examples of how photolithography has been used 

to make microbioreactors follow.  Tourovskaia created a series of round chambers based 

from a 1536 well plate in which each well was evenly perifused from one side of the 

chamber to the other.31  Borenstein created several designs of an artificial capillary 

network of various capillary densities where endothelial cells were seeded in the 

network.32  Wu created a parallel 30-well microfluidic device with on-chip pumping 

where one pneumatic input controlled the entire pumping action.38   

 Membrane bioreactors are another classification of bioreactor whereby cells 

are retained by means of a membrane and analytes are exchanged through the membrane.  

Saucer grew cells in a relatively large chamber which was perifused by thin hollow fibers 

progressing though the chamber.41  Cells were introduced though a port into the chamber 

body and perifusion occurred through the fibers.41  Villain created a hollow fiber 

membrane bioreactor for E. coli, with one set of fibers for media and one for gas 

exchange.28  The presence of the gas exchange fibers greatly improved performance.  

Optical density (OD) and pO2 were measured, and cell growth and metabolism were 

comparable to shaker flasks.28  As Villain showed, components in the media can be 

measured to acquire a basic picture of the metabolism of cells in a bioreactor.28 
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Oxygen, pH, and other parameters can be measured, and sometimes closed loop 

feedback control of these parameters is used to optimize cell growth rate and cell density.  

pH, oxygen, and OD have been measured in E. coli bioreactors.28,36  Korin made linear 

microbioreactors and modeled oxygen and shear stress while measuring growth rate 

under various flow conditions as well as stop-flow.34,35  pH and oxygen were measured 

from a stop-flow bioreactor  in which instruments were calibrated during stop flow, and 

cellular metabolic rates taken during flow.30  Oxygen concentration gradients were 

measured across a microfluidic channel.29  Oxygen and pH were under closed-loop 

control in parallel E. coli bioreactors.  pH was controlled by periodically injecting base 

from an on-chip reservoir and oxygen was introduced through pneumatic valves.37 

The work presented uses a hepatocyte cell line.  Primary hepatocyte culture 

systems frequently have unique applications and thus necessitate unique designs of 

MBRs.  Some potential applications of primary hepatocyte MBRs include study of in 

vitro drug metabolism or use as a bioartificial liver.42,43  Gebhardt describes a perifused 

hepatocyte system for the short or long-term (1 to 7 days) culture of hepatocytes by either 

recirculating media or sending effluent to waste.42  Ostruvidov describes a system 

whereby hepatocytes are grown on a membrane where perifusion occurs both above and 

below the membrane simultaneously, which increases liver functions over bathing on 

only one side.44  There have been several devices which have been designed to replace  

the functions of the liver while a patient awaits a donor liver or until the liver regenerates 

natural function, and two devices have been used in phase I clinical trials.43 

This very brief overview of microbioreactors is not meant to be an all-

encompassing review of different designs.  There is a substantial literature on ways in 
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which cells have been successfully grown in a microfluidic environment.  This 

presentation was only designed to show a few examples of the great variety of different 

designs that have been successfully applied to the growth of cells in a miniature 

environment. 

 

Capillary Electrophoresis 

Capillary electrophoresis (CE) is a high resolution, batch method for the 

separation of small samples.  CE separates analytes based on differences in their charge 

to size ratio, termed the electrophoretic mobility, under the influence of an electric field.  

A sample is injected at one end of a capillary and a high voltage is applied between the 

two ends of the capillary, providing both the bulk flow though the capillary, termed 

electroosmosis, and the electrophoretic mobility.  A detector positioned on the opposite 

end of the capillary measures analytes as they pass. 

CE separates analytes based on differences in electrophoretic mobility, μep, which 

follows 

f
q

=epμ                                                                 (1) 

where q  is the net charge on the molecule and f  is the friction coefficient, which is 

proportional to the size of the molecule and the viscosity of the solution.  The total or 

apparent mobility (μapp) of the analyte is the sum of the electrophoretic mobility (μep) and 

the electroosmotic mobility (μos).  Electroosmosis is bulk movement of solution toward 

one end of the capillary and results from the negatively charged silanol (S-O-) groups on 

the inside wall of the fused silica capillary.  An electric double layer forms between the 

negatively charged capillary and the positively charged solution at the capillary wall.  
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When an electric field is applied, the cations are attracted to the cathode while the anions 

are attracted to the anode.  The positively charged solution at the walls of the capillary 

drives the solution toward the cathode.  Frequently, the electroosmotic mobility is greater 

than the electrophoretic mobility; thus, all analytes move toward the cathode.  In addition, 

electroosmosis is an advantageous method of fluid flow because the fluid velocity is the 

same at any point along the radius of the capillary, in comparison to pressure driven fluid 

flow, which creates a parabolic flow profile with higher velocity in the center and lower 

velocity near the walls.  Additionally, CE is not subject to band broadening due to mass 

transfer and multiple paths, as is typical of chromatography.  These result in decreased 

band broadening and increased resolution for CE in comparison to high-pressure liquid 

chromatography (HPLC).   

 The efficiency of the column to separate analytes is expressed as the number 

of theoretical plates (N), which follows: 

D
V

N
2
μapp=                                                       (2) 

where V is the applied voltage and D is the diffusion coefficient.  Thus, the greater the 

voltage applied, the greater the number of theoretical plates, and the separation efficiency 

assuming longitudinal diffusion is the only source of band broadening.  Thus, a longer 

capillary length does not necessarily equate to a more efficient separation.  By having a 

high voltage and a short capillary length, very quick and high-resolution separations can 

be accomplished.  Several sources cause variation from equation 2, including capillary 

heating, termed joule heating, injection plug length, detector length, and adsorption to the 

capillary walls. 
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Joule heating, resulting from the current due to the high voltage used in CE, 

results in the generation of heat and causes deviation from Equation 2.  This creates a 

temperature gradient from the middle of the capillary to the outside edge, resulting in 

turbulence and band broadening.  This heating is minimized by decreasing the electric 

field, decreasing the ionic strength of the separation buffer, cooling the capillary, and 

reducing the ID of the capillary. 

 Injection plug length is another potential source of band broadening.  The 

sample is injected into the capillary through either hydrodynamic or electrokinetic 

injection.  Hydrodynamic injection involves the use of a pressure difference between the 

ends of the capillary to drive the sample into the capillary.  Electrokinetic injection 

involves the application of a voltage across the capillary, pulling sample in due to μapp.  

With both of these methods, appropriate conditions need to be determined in order to 

provide enough sample for reliable detection, but not too much which leads to excessive 

band broadening. 

 Over extended replicate separations, molecules can adsorb to the wall of the 

fused silica capillary.  This reduces the charge on the wall of the capillary and reduces the 

electroosmotic flow.  This results in excessive band broadening and loss of resolution.  

Proteins and peptides are particularly prone to adsorption on fused silica capillaries.  To 

reduce this effect, proteins can be removed from the solution or the walls can be coated 

with compounds which change the surface of the capillary.  This change serves to prevent 

protein adsorption to the wall and prevent band broadening.  

Most amino acids have not net charge and hence have no electrophoretic mobility 

and therefore cannot be separated by traditional capillary zone electrophoresis, which is 
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the type of CE that has been presented.  In order to allow the separation of analytes with 

no charge, another driving force for separation is needed.  Thus, micellar electrokinetic 

chromatography (MEKC) was created.  In MEKC, a compound which forms micelles, 

such as sodium dodecylsulfate (SDS), is added to the electrophoresis buffer.  The center 

of the resulting micelles is hydrophobic, allowing the micelles to act as a 

pseudostationary phase in which analytes can partition.  Each derivatized amino acid has 

a different affinity for the micelles and is uniquely partitioned into them.  Hence, when 

amino acds in solution encounter micelles, the fraction of time that molecule spends 

bound to any micelle depends upon the unique hydrophobicity of that amino acid.  A free 

amino acid will migrate with the velocity of the solution while a bound amino acid will 

move with the velocity of the micelle.  This partitioning is analogous to reverse-phase 

liquid chromatography where the more hydrophobic the analyte, the more it will be 

retained by the stationary phase.  Therefore, in MEKC, analytes are separated by both 

their charge to size ratio and their hydrophobicity.  The micelles have a particular μep that 

which causes them to move at a different velocity than bulk solution.  In the case of SDS, 

since they possess a negative charge, the velocity of micelles is significantly less than 

bulk solution.  The more hydrophobic each individual analyte is, the larger the partition 

of that analyte into the SDS micelles, resulting in lower average velocity and hence 

longer retention time in the separation capillary.45   

The last element of capillary electrophoresis is the detection of the separated 

analytes.  While there are many CE detection methods, absorbance and fluorescence are 

the most common.  Fluorescence detection is much more sensitive than absorbance, but 

the instrumentation is more complex and fewer analytes can be detected by fluorescence 
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than absorbance.  Detection can be done on column, where the analytes are detected 

within the capillary, or end-column, where analytes are detected as they exit the capillary.  

Compounds which cannot readily be detected by these two modalities can be chemically 

modified by a number of derivatization reagents so that they can then be detected. 

Unique challenges are put forth in CE based separations when speed of separation 

is of paramount concern.  Several factors must be carefully controlled in order to produce 

efficient separation.  In many cases, these are the same effects which cause band 

broadening and include joule heating, injection length, detection length, and detector 

sensitivity.  In order to increase separation speed and increase resolution, higher electric 

fields and shorter capillaries are used.  In order to prevent excess joule heating, smaller 

capillary IDs of 10 μm or smaller are frequently used.  This reduction in size puts higher 

demands on detection and injection systems.46   

For high-speed detection, laser induced fluorescence (LIF) has become 

commonplace.  Lasers can be focused to a very small spot size and the high-intensity 

light increases the percentage of molecules in the excited state when compared to other 

light sources.  Detection limits of yoctomoles (10-24 mol) and even single-molecule 

detection have been achieved using LIF detection.47,48  The down side to LIF detection is 

that frequently analytes need to be derivatized in order to be detected. 

Injection systems also require special attention as injection width is frequently the 

largest contributor to band broadening in fast separations.49,50  One injection modality for 

fast separations is the optical gate.  In this system, analyte is continuously introduced to 

the separation capillary.  A high-intensity laser photobleaches the fluorophore near the 

inlet.  To perform an injection, this laser is briefly stopped, resulting in a small plug of 
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non-bleached analyte which is separated.  This method has been used to separate four 

FITC labeled amino acids in 140 ms.51  A second injection modality is the flow-gate.  In 

this method, a continuous stream of sample is divided from the separation capillary by a 

small gap (~100 μm) in which a strong gating flow that runs perpendicular to the sample 

and separation capillaries prevents the sample stream from contacting the separation 

capillary.  During an injection, the gating flow is stopped, allowing the sample to make 

contact with the separation capillary and allowing an electrokinetic injection to be made.  

After the injection, the gating flow is resumed.  Using this method, separations with over 

480,000 plates in 35 s have been achieved with relative standard deviation of repeated 

injections of less than 4%.52  

MEKC is particularly challenging to increases in separation time.  Many factors 

that increase separation efficiency decrease with faster separation.  In one study, three 

coumarine dyes were separated in a chip system.  Only at low electric fields (<400 V/cm) 

were micellar-based band sources of broadening not contributing significantly.49  In spite 

of these limitations, 10 amino acids have been separated by MEKC in less than 3 minutes 

with a 600 V/cm applied electric field.53 

 

Application of Micellar Electrokinetic Chromatography to Rapid Separation of 
Amino Acids 

 
Separation of amino acids by MEKC has received considerable attention due to 

the variety of fluorescent probes for amines, the continued miniaturization of CE 

instrumentation, as well as the importance of amino acids in a variety of biological 

processes.  One area of biological importance is the use of amino acids and other amines 

as neurotransmitters.  In vivo microdialysis of the rodent brain is an important 
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neuroscience tool.  Traditionally, dialysate is collected and analyzed by HPLC offline.  

However online analysis of dialysate with CE separation is becoming popular.  The first 

demonstration of online neurotransmitter detection with high recovery, multiple analyte 

detection, and good temporal resolution was published by Lada et.al.54  The online 

coupling of microdialysis to capillary electrophoresis was accomplished by use of a flow-

gate.  The flow-gate was originally developed to couple capillary chromatography with 

capillary electrophoresis and was later adapted for use with coupling microdialysis to 

CE.55,56  The initial success of online CE was further improved by reducing the capillary 

ID from 25 µm to 10 µm and implementing off-capillary detection using a sheath-flow 

cuvette.57  This resulted in a reduction of separation from 300 s to 20 s while increasing 

the number of theoretical plates from 120,000 to over 500,000, and improving sensitivity 

by ~ 15-fold.57  The derivatization reagent used for the two studies is OPA, which is 

excited in the UV but reacts very quickly (10-30 s).  NDA is brighter than OPA, is 

excited at 440, but is slower to react at 120-240 s.  The use of NDA allows the use of a 

less expensive laser and on-capillary detection.  It was shown to provide comparable 

separation time and efficiency as OPA methods and still provide a very quick response 

time of 12-18 s, less than the time of a typical electropherogram.58  More recently on-chip 

separation has been performed, although with reduced separation efficiencies, but results 

in a much simpler and smaller setup.59,60 

 On-chip capillary electrophoretic separation of amino acids is of great 

interest due to the small format and reduced complexity of chip based separations.  To 

that end, there has been much development in on-chip amino acid separation using 

micellar electrokinetic chromatography.  Heeren et al. separated six FITC amino acids 
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with a variable path length chip.61  Minimal time to separation was less than 80 s with 

101,000 plates.  %RSD of peak area was 0.78 for arginine with a limit of detection of 3.3 

nM.  Xu et al. performed two-dimensional separations of 20 amino acids. 62  MEKC was 

used as one dimension with CZE as another.  Separation took 20 minutes.  Culbertson et 

al. created a 25 cm long spiral separation channel. 63  Over 1 million plates were possible 

with the chip.  Nineteen TRITC labeled amino acids were separated in 165 s with an 

average number of theoretical plates of 280,000 with minimal resolution between peaks 

of 1.2.  Chiral on-chip separation of amino acids has also been performed.  Rodriguez  et 

al. performed enantiomeric separations of 14 pairs of FITC-amino acids individually in 

less than 160 s using SDS and CD in the separation buffer resulting in 7000-28000 

theoretical plates.64  Ro et al. performed chiral separation of 5 amino acids with the 

derivatization reagents  OPA/2,3,4,6-tetra-O-acetyl-1-thio-b-D-glucopyranose and no 

chiral selectors in the running buffer.65  Resolutions were 2.5-6.1 for various 

diastereomers with separation times of less than 90 s. 

 One of the most interesting applications of on-chip separation of amino acids 

is the development of sensors to detect signs of life on Mars.  The miniaturization 

provided by on-chip analysis is an absolute necessity.  The first attempt resulted in 

baseline resolution for 4 FITC-labeled amino acid enantiomers plus glycine in 4 

minutes.66  These values closely matched that of HPLC upon analysis of the Murchison 

meteorite.  Labelling with fluorescamine is also possible and results in limits of detection 

of ~50 nM.67  The first complete Mars Organic Analyzer (MOA) with pumps, valves, and 

CE separation was completed in 2005.68  Sensitivities of µM to 0.1 nM were 

demonstrated, and field tests of soil extracts from the Atacama Desert, Chile, were 
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performed with the MOA, including sample preparation, labeling, separation, and 

detection.  More recently, the fluorescent probe Pacific Blue succinimidyl ester (PB) was 

used on the MOA.69  This provides a 200-fold increase in sensitivity and increased 

resolution.  75 pM detection sensitivities were realized with resolution of 25 amino acids.  

There are a variety of applications and multiple instrumental configurations for 

separation and detection of amino acids with MEKC.  Some of those techniques provide 

exceptional separation time, resolution, and sensitivity.     

 

Fluorescent Derivatization of Amino Acids for Detection in Analytical Systems 

Underivatized amino acids are difficult to detect and distinguish from other 

small molecules in a complex solution such as cell media.  Fortunately, the fluorescent 

labeling of amines has developed as an industry standard so that it is now easy to label 

the amino acids in order to make them easier to detect.  A common labeling method is a 

covalent reaction to the α-amine forming a fluorescent product.  An extensive number of 

reagents have been formulated which label amines.70  The properties of the derivatization 

reagent used for this project are: the reactants are non-fluorescent, the reaction occurs 

fairly rapidly at room temperature, the reaction occurs in an aqueous solution, the 

procedure does not require extraction steps, the reaction is quantitative, and the final 

 

Figure 6.  Reactions of primary amines with A) OPA/RSH and B) NDA/CN- 
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product is very brightly fluorescent.  There are two common reagents which meet these 

criteria, o-phthaldialdehyde (OPA)/organic thiol (R-SH) and naphthalene-2,3-

dicarboxyaldehyde (NDA)/cyanide (CN-).  The reactions of OPA/R-SH or NDA/CN- 

with a primary amine are shown in Figure 6.   

Some properties of OPA and NDA derivatives are shown in Table 3.  OPA is 

excited in the UV while NDA is visible.  OPA has a considerably shorter reaction and 

degradation time in comparison to NDA. 

Fluorescent properties of selected NDA amino acid derivatives are shown in 

Table 3.  The absorption and emission max are very similar for all three amino acids.  

However, the intrinsic fluorescence sensitivity, a measure of the brightness of each 

fluorophore varies considerably from amino acid to amino acid.  

 

Table 3.  Properties of OPA/RSH and NDA/CN- reaction with amino 
acids.  Reaction times from Shou et al.58, all other data from de Montigny 
et al.71 

 Typical 
excitation 
max, nm 

Typical 
emission 
max, nm

Typical 
reaction 
time, s 

Degradation 
time 

OPA derivative 340 450 10 – 30 t1/2 = 1.5 hr 
NDA derivative 420 490 120 – 240 < 10% in 10 hr 
 

Table 4.  Fluorescent properties of specific NDA-amino acid fluorophores.72 

 
Absorption 

max, nm 
Molar 

absorptivity
Emission 
max, nm 

Quantum 
efficiency

Intrinsic 
fluorescence 
sensitivity 

Glycine 442 8900 493 0.75 2.3 
Alanine 443 6500 496 0.73 1.5 
Lysine 440 6500 486 0.55 0.7 
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CHAPTER II 

 

RAPID AND PRECISE DETERMINATION OF CELLULAR AMINO ACID 
FLUX RATES USING HPLC WITH AUTOMATED DERIVATIZATION WITH 

ABSORBANCE DETECTION 
 
 
 

Abstract 

A method is presented for analyzing primary amino acids in complete cell 

media using an Agilent 1100 HPLC with a Zorbax Eclipse Plus C18 column with 

absorbance detection.  Amino acids are derivatized with OPA using an online method, 

which decreases preparation time while increasing reproducibility over traditional offline 

methods.  The method is rapid, with an injection-to-injection time of 26 min, and highly 

reproducible, with a %RSD of peak area of 0.9 to 4.1 for all amino acids, and most 

between 1 and 2%.  Furthermore, this technique is applied to analysis of amino acid flux 

in the hepatocyte cell line AML12.  The flux rate is quantifiable for 18 of 19 amino acids. 

 

Introduction 

Determination of amino acid flux in cultured cells is an important indicator of the 

metabolic rate and health of those cells.  It can also be used as an indicator of the 

remaining carbon and nitrogenous fuel available.  This is especially true in hepatocyte 

and hepatoma cells lines where extensive gluconeogenesis, urea production, and protein 

synthesis may consume larger quantities of amino acids than other cell types. 

HPLC with pre-column derivatization is a standard technique in the analysis of 

amino acids.  Pre-column derivatization of free amino acids in solution for HPLC 
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separations with UV or fluorescence detection is at times done offline, manually.  Some 

immediate drawbacks to offline derivatization are sources of error due to operator skill, 

experience and laboratory technique, extra sample manipulation, additional time required, 

and increased risk of contamination.  Automated online derivatization minimizes these 

error sources, immediately improves precision, and saves time.  A rugged high-resolution 

HPLC method including online derivatization therefore can increase productivity 

compared to offline methods. 

The small sample volume (1 μL), consistent automated OPA-derivatization using 

injector programming of the HPLC's autosampler, and short, highly efficient columns 

generate a rapid, reproducible amino acid method ideal for cell culture media.  This 

method is convenient because the cell media samples are simply transferred to 

autosampler vials and analyzed.  The selectivity of the Eclipse Plus C18 and the gradient 

mobile phase provide high resolution of 19 primary amino acids. 

 

Experimental 

 

HPLC 

 

The Eclipse Plus AAA (amino acid analysis) method was performed using an Agilent 

1100 HPLC system and is an adaptation of previously used methods:73,74 

 

 

 



 28

• G1312A binary pump, flow rate: 1.5 mL/min.  

Gradient Timetable:  Time (min)  %B 
    0.0  2.0 
    0.5  2.0 
    16.0  47 
    16.1  100.0 
    19.5  100.0 
    19.6  2.0 

    Stop time 21.0  
 

• G1329A thermostated autosampler, with injection program: 

1. Draw 2.5 µl from Borate vial (0.4 M, pH = 10.2) 

2. Draw 1.0 µl from Sample vial 

3. Mix 3.5 µl “in air,” max speed, 5x 

4. Draw 0.0 µl from water vial (needle wash) 

5. Draw 0.5 µl from OPA vial (10mg/mL ortho-phthaldildehyde, 10mg/mL 3-

mercaptopropionic acid) 

6. Mix 4.0 µl “in air,” max speed, 10x 

7. Draw 0.0 µl from water vial (needle wash)  

8. Draw 32 µl from Injection Diluent vial (Mobile phase A with 1.5% v/v conc. 

H3PO4) 

9. Mix 20 µl “in air,” max speed, 8x 

10. Inject 

11. Wait 0.1 min 

12. Valve bypass 

  

• Thermo Scientific Hot Pocket column heater, set to 40°C  
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• G1314AC Variable Wavelength Detector (VWD) 338nm wavelength 13.74Hz 

 

Column 

ZORBAX Eclipse Plus C18, 4.6 x 150 mm, 3.5 μm, PN 959963-902 with Eclipse 

Plus C18  4.6 x 12.5 mm, 5 μm Guard Cartridge PN 820950-936 in Guard Column 

Hardware Kit PN 820888-901 

 

Mobile Phase and Injection Dilutent 

Mobile Phase A: 2.8 g anhydrous Na2HPO4 + 7.6 g Na2B4O7.10 H2O + 16 mg 

NaN3 in 2 L H20.  This makes a solution 10 mM in phosphate and 10 mM in borate.  

Adjust pH with 2.7 mL concentrated HCl, then add 100 µL aliquots until pH 8.15 

(approx. 300 μL).  Optional 8 ppm sodium azide prevents microbial growth. 

Mobile Phase B:  methanol: acetonitrile: water (9:9:2, v:v:v) 

 

Instrument Control and Peak Integration 

The Agilent 1100 HPLC was controlled by the Handheld Control Module with the 

exception of the VWD.  The VWD, data collection, and peak integration were performed 

on a PC using Xcalibur software (ThermoFinnigan). 

 

Cell Media and Amino Acid Standards 

Complete Cell Media:  1:1 mixture of Dulbecco’s modified Eagle’s medium 

(DMEM) and Ham’s F-12 media with 10% fetal bovine serum, 5 µg/mL insulin, 5 µg/mL 

transferrin, and 5 ng/mL dexamethasone. 
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Amino Acid Standard: Amino acid standard from Thermo Scientific PN 20088 with 

additions of l-glutamine, l-asparagine, and l-tryptophan.  Standard was diluted to make 

the concentration of each amino acid 800 µM, except cystine, which was 400 µM. 

 

Internal Standards:  Internal standards were made using 80% cell media with 20% 

internal amino acid standard.  Dilutions of this standard were used to prepare a 

calibration curve with five equally spaced points.  The most concentrated internal 

standard increased the concentration of the standard relative to the cell media by 160 µM 

for most amino acids; exceptions were 320µM each of l-threonine, l-leucine, l-isoleucine, 

l-valine, and l-lysine, 1600 µM of l-glutamine, and 32 µM of tryptophan. 

 

Cell Culture 

The non-transformed hepatocyte cell line AML12 75 was cultured in 5 wells of a 

12-well plate at a density of 1×105 cells per well in 1 mL cell media described above.  

After 3 hours, the media was aspirated and cells were rinsed with Hank’s buffered salt 

solution (HBSS) to remove any dead or unattached cells and 1 mL fresh media was 

applied.  In addition, 5 wells of the sample plate were filled with 1 mL cell media without 

any cells.  Each day for 3 days 50 µL media was collected from each well and 50 µL 

fresh media replaced.  Collected media was stored at -20°C until analysis.  After the final 

collection, the media was aspirated from all wells and cells were rinsed 3x with HBSS.  

Plates were stored dry at -20 °C for DNA assay.   
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DNA Quantification 

DNA quantification was performed using a picogreen assay (Invitrogen) 

according to the supplied directions.  Cells were lysed with Cell Culture Lysis Buffer 

(Promega) using 4 freeze-thaw cycles.  The calibration was performed using a linear 

range of DNA standard from 0-4 µg/mL DNA.  All calibration standards were run in 

duplicate, and all samples were run in triplicate.  Fluorescence was measured on a 

CytoFluor II plate reader at 485/530 nm.  DNA concentrations from all samples were 

averaged and subtracted from the averaged media controls to obtain the final 

concentration of DNA. 

 

Results and Discussion 

Complete cell culture media was analyzed on an Agilent 1100 HPLC using the 

conditions described in the experimental section.  The chromatogram was compared to an 

amino acid standard solution containing 800 µM of each of the 20 standard protein amino 

acids (shown in Figure 7).  The retention time of each amino acid in the culture media 

closely matches that of the amino acid standard.  The concentration of each amino acid in 

the media is also labeled on the figure.  Peak 19, lysine, contains two primary amine 

groups, thus doubling the concentration of fluorophores and doubling the relative peak 

intensity. 
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The reproducibility of this HPLC technique was measured by calculating the 

percent relative standard deviation in peak area and retention time for 5 complete cell 

media samples as shown in Table 5.  The chromatograms were collected in one 

continuous sequence which included 39 samples.  The individual replicates were spaced 

evenly throughout the sequence.  Therefore, the standard deviations represent both 

random error and instrumental drift over almost 17 hours of continual instrument use.  

All but two amino acids demonstrated a relative percent standard deviation of less than 

2% in peak area, and all amino acids demonstrated a less than 0.5% deviation in retention 

time with 12 of the 19 being less than 0.1%. 

 

Figure 7.  Separation of complete DMEM:F12 cell media (positive axis), 800µM amino 
acid standard (negative axis) on Agilent Eclipse plus C18 column on Agilent 1100 
HPLC.  Concentration of amino acids in media (µM) shown above each peak and the 
number of the amino acid in the key is shown below. 
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AML12 hepatocytes were 

cultured for 3 days in a 12-well 

plate.  In addition, media without 

cells was also placed in the same 

plate as a control.  Five replicates 

were cultured and aliquots were 

taken from each well for each of 3 

days.  Shown in Figure 8 is an 

example series of partial 

chromatograms from each of the 3 

days, including a media control.  

As can be seen, glutamine 

decreased in concentration while 

glutamate increased in 

concentration due to flux from the 

cells.  Other amino acids shown 

did not change appreciably.  Since the cultured cells were replicating, the magnitude of 

the change increased for each successive day as the number of cells increased. 

Quantitative flux rates of amino acids could be obtained for the AML12 

hepatocytes as shown in.  This was done by subtracting the media over cells from the 

control media without cells.  To obtain accurate concentration changes, a five-point 

calibration curve, using internal standards as described in the experimental section, was 

constructed.  The slope of this calibration was used to determine the change in 

Table 5.  Relative percent standard deviations of 
peak areas and retention time of 5 samples of online 
OPA derivatized amino acids in complete 
DMEM:F12 cell culture media.  Peak numbers 
correspond to the numbers in Figure 7. 
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concentration.  Data were normalized to DNA.  The error represents the 95% confidence 

interval and was calculated by propagating the error from the media control, media over 

cells, and the calibration.  A change in the amino acid concentration, demonstrated by 

having the confidence interval less than the calculated flux rate, was demonstrated for all 

but one amino acid.  The high reproducibility is demonstrated given that the flux rate 

could be observed even though the percent change in amino acid concentration caused by 

the cells was as low as 5%. 

 

Conclusion 

Cell culture media was easily analyzed for primary amino acids with the Agilent 

1100 HPLC equipped with a Rapid Resolution Eclipse Plus C18 column.  Samples were 

 

Figure 8.  Time series of amino acids in cell media in contact with AML12 hepatocytes.  
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measured using an automated 

online OPA-derivatization 

method.  Reproducibility was 

exceptional (0.90-4.1%RSD), and 

likely better than offline 

precolumn derivatization methods 

due to minimizing several sources 

of error.  The method is also rapid 

for standard pressure HPLC, with 

an injection-to-injection time of 

26 min.  

The method was used to 

measure quantitative flux rates of 

amino acids from AML12 hepatocytes.  Flux rates could be measured in 18 of 19 amino 

acids despite having changes in concentration of amino acids in the media as low as 5%. 
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Table 6.  Flux rates for cultured AML12 hepatocytes 
in complete cell media.  Data is ± 95% confidence 
interval. 
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CHAPTER III 

 

A HIGH-DENSITY PERIFUSED MICROBIOREACTOR WITH 
SIMULTANEOUS EFFLUENT COLLECTION AND CELL VIEWING FOR 

DETERMINATION OF AMINO ACID UPTAKE AND RELEASE  
 
 
 

Abstract 

A great advantage offered by microfluidics is the ability to use flow in restricted 

channels to maintain cells at a much higher density than is possible with conventional 

adherent or suspension cell culture.  We present a microbioreactor (MBR) perifusion 

device that is capable of perifusing cells at a very high cell-to-media volume ratio while 

simultaneously visualizing all of the cells contained in the chamber.  Our MBR contains 

~2 × 105 AML12 hepatocytes in a poly(dimethyl)siloxane microfluidic cell chamber that 

has a cell growth area of 1.7 cm2 with a volume of 4.2 μL.  We confirmed high viability 

of cells in the MBR.  The pH of solutions entering and exiting the MBR was similar to 

that in traditional cell culture.  The effluent was collected and amino acid flux was 

determined using two separate methods.  Glutamine and glutamate concentration change 

was monitored using HPLC-MS, and the amino acid flux rates were determined for 19 

primary amines using HPLC.  Fluxes for 15 of the 19 amino acids were determined to be 

non-zero, and 9 correlated with previous literature values determined from static 24 hour 

well plate experiments on primary hepatocytes.  In this system, less than 5 minutes of 

media contact time is equivalent to 24-hours of contact time using traditional cell culture 

techniques, while continuous perifusion ensures cell viability.  The observation of 
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dynamic changes in cell metabolism will be possible due to the high cell-to-media 

volume ratio resulting in rapid changes in the composition of the media.   

 

Introduction 

In the post-genomic, post-proteomic era there is an ever-increasing need for 

experimental methods which can acquire highly dynamic, multi-scale physiological data 

from intact systems.76  The data need to be collected with a high bandwidth in order to 

observe biological processes which have short time constants.77,78  Traditional methods 

only measure one or two variables, at time constants on the order of hours.79  But there is 

a push to collect more variables simultaneously with faster time constants to obtain a 

clearer picture of the dynamics of the cell as a whole.76  To meet this demand, there is an 

increasing need for experimental methods which allow access to this information.  

Traditional methods which have high bandwidths include electrophysiological and 

fluorescence methods.76  These methods can detect only a specific set of physiological 

variables, and hence techniques are being developed to obtain dynamic information about 

a wider array of biological processes.  One method which is amenable to a wide array of 

detection schemes is perifusion devices. 

Perifusion devices in which the perifusate is collected can be used in a wide array 

of instrumentation and bioassays.  There commonly exist two main types of commercial 

in vitro perifusion devices.  The first type consists of a transparent Petri dish or glass 

slide with adherent cells attached, from which measurements are taken optically or 

electrophysiologically, such as the perfusion chambers by AutoMate Scientific®.  The 

perifusion device usually contains several hundred microliters of media over fewer than a 
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hundred thousand cells, providing for a very low cell-to-media volume ratio.  Also, the 

flow of media is not directed across the cells but simply introduced near the edge of the 

dish and removed near the opposite edge.  The purpose of the perifusion for this type of 

device is primarily to maintain a constant environment for the cells and a limitation is 

that it is not designed for effluent collection for later analysis.  The second type takes 

measurements from the effluent.42,80-83  The cells are contained in a small tube or vessel, 

which is optically opaque or of a geometry not conducive to optical measurements of the 

cells.  The chamber has a large cell-to-media volume ratio and the flow of perfusate is 

designed to flow evenly past the cells.  The perifusate is collected and analyzed by any 

instrumentation technique the researcher desires.  These devices have been limited to 

tissue samples and large cell aggregates such as islets of Langerhans.80,81  Another 

limitation of this type is that there is no way to visualize the cells in the chamber.  Also, 

perifusion is usually performed at relatively high flow rates in comparison to the amount 

of biomaterial present, requiring increased sensitivity of assays which limits analysis to 

compounds not already present in the perifusate. 

There are several examples of microbioreactors in the literature.  Hung et al. 

demonstrated even perfusion across microbioreactor chambers and showed growth of 

cells for 7.5 days in the chambers.31  Thompson et al. demonstrated optical measurements 

of cells in a bioreactor and observed dynamic changes in gene experession via changes in 

fluorescence.84  Kane et al. seeded cells in a well, then assembled the microbioreactor.85  

Daily albumin and urea synthesis was measured on the effluent.85  Additionally, the 

consumption of glucose, a compound already present in the culture media, has been 

measured in the effluent of microbioreactors.86,87  
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In this paper, we combine the many features of these microbioreactors into one 

device.  The MBR presented allows for simultaneous viewing of cells during smooth, 

even perifusion of media across attached cells at a high cell-to-media volume ratio.  This 

allows for dynamic measurements of collected effluent of compounds already present in 

the media.  We have chosen to monitor the amino acid flux of AML12 hepatocytes.  

Using our design, we have been able to detect concentration changes in 18 amino acids 

from cultured hepatocytes in 5 minutes. 

 

Materials and Methods 

 

Microbioreactor Cell Chamber 

The cell chamber was formed by a layer of PDMS in which microfluidics 

were molded.  The PDMS microfluidic layer was applied to a glass slide, forming a 

chamber which held the cells being perifused (Figure 9A).  To allow fluidic access to and 

from the microbioreactor, Nanoports™ (Upchurch Scientific) were adhered, according to 

the instructions of the manufacturer, to a glass slide over 1 mm diameter holes formed 

using a diamond tipped drill bit (UKAM Industrial Superhard Tools).  Cell media was 

introduced to the MBR using a gastight Hamilton syringe in a syringe pump (PicoPlus, 

Harvard Apparatus) connected to 0.004” ID PEEK tubing via a leur lock and 10-32 coned 

fitting (Upchurch Scientific).  The effluent from the chamber was collected for later 

analysis. 
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The fluidic design of the cell chamber (Figure 9B) consists of a series of binary 

flow splitters resulting in sixty-four 50 μm wide channels each with the same flow 

velocity.  The central portion of the chamber consists of 50 μm × 50 μm square posts 

with 50 μm separations from each post.  The fluid is collected through another identical 

series of flow splitters.  The total volume of the empty microbioreactor is 4.2 μL with a 

surface area of 1.7 cm2. 

 

Figure 9.  Overview of the operation of the microbioreactor (MBR).  A) A syringe 
pump delivers cell media to the cell chamber via Nanoports™ adhered to a glass slide.  
The cell chamber consists of PDMS microfluidics clamped to the glass slide (clamp not 
shown for simplicity).  The effluent leaves the cell chamber for analysis by HPLC or 
HPLC-MS.  B) Design of the cell chamber where gray area the is cell chamber.  A 
binary splitter delivers constant velocity of media across the width of the chamber 
body.  The body contains 50 μm wide fluidic channels with 50 μm × 50 μm posts. 
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The PDMS microfluidics were created using standard rapid prototyping.88  In 

brief, a master was formed on a silicon wafer from the negative photoresist SU8 by 

spinning SU8-2035 (MicroChem) at 3100 rpm for 30 s on a silicon wafer followed by a 

soft bake.  A chrome mask was designed in AutoCad (Autodesk, San Rafael, CA) and 

created by Advance Reproductions.  The mask was placed on the SU8 coated wafer and 

exposed to UV light at 300 mJ/cm2 using an Exfo Novacure 2100 followed by a post 

expose bake.  The master was developed resulting in a 25 μm thick SU-8 master in the 

design of the fluidics.  To increase the visibility of SU8 on the wafer in order to aid in 

alignment at a later step, it was hard baked at 250 °C for 30 minutes. 

To form the PDMS layer, Dow Corning Sylgard 184 was mixed in a 1:10 w/w 

ratio, vacuum degassed, poured over the silicon wafer master to a thickness of ~4 mm, 

and cured at 70 °C for 1-2 hours.  To form the exact shape of the PDMS fluidic layer a 

guide consisting of the fluidic pattern printed on transparency paper was placed on the 

cured PDMS with the pattern on the transparency paper directly over the pattern on the 

mask.  A scalpel was used to cut the PDMS around the edges of the transparency paper 

resulting in a 2” × 2” × 4 mm thick PDMS block with the molded fluidics positioned 

precisely in the center in order to allow for proper alignment of the inlet and outlet on the 

slide to be positioned over the inlet and outlet of the PDMS fluidics. 

  

Cell Culture 

All cell culture reagents were purchased from BioWhittaker, except 

dexamethasone, which was purchased from MP Biomedicals, LLC.  AML12 cells were 

cultured as previously described.75,89  Briefly, cells were cultured in 25 cm2 flasks in 
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complete media.  Complete media is 10% fetal bovine serum (BioWhittaker), 90% 

DMEM:F-12 1:1 mix with 5 μg/ml insulin, 5 μg/ml transferrin, 5 ng/ml selenium and 40 

ng/ml dexamethasone.  Cells were grown to 70-90% confluence and were suspended at 

2.85 × 105 cells/ml for seeding in the MBR at 2 × 105 cells/0.7 ml. 

 

Collagen Coating and Cell Seeding 

Introduction of cells into the MBR was accomplished by seeding on an open-

faced slide, followed by assembly of the PDMS fluidics on the slide and perifusion of the 

assembled MBR.  In order to seed the cells on the slide, the slide was first cleaned, then 

collagen coated, sterilized, and seeded as depicted in Figure 10.  In preparation for 

collagen coating the glass slide with fluidic ports (Figure 9C) was thoroughly cleaned by 

using the following procedure: dip the non-port side in piranha solution (3:1 conc. 

H2SO4:30% H2O2) for ~1 min, rinse with DI water, dip non-port side in a base bath 

(KOH saturated ethanol) for ~1 min, thoroughly rinse with DI water, dry by vigorous 

nitrogen blowing, and cover non-port side with Scotch® Magic Tape to remove any 

particulates.  The tape was then removed and the glass slide was placed in a Petri dish in 

a sterile cell culture hood.   



 43

In order to form a well into which solutions could be dispensed and hence be 

contained on the glass slide, we utilized a small, custom-fabricated glass wall, as shown 

 

Figure 10.  Procedure for seeding cells on glass slide.  A) A silanized glass wall is applied 
to the glass slide with double sided 3M biocompatible tape cut to the size of the wall, 
taken care that the glass wall is centered between the nanoports  B) The surface of the 
slide is collagen coated, alcohol sterilized, and the cell suspension is added.  C) The cells 
are attached to the surface overnight, after which the cell media can be aspirated and the 
glass wall removed.  The fluidics are now ready for immediate assembly in the clamp 
shown in Figure 11 
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in Figure 10.  The glass wall was formed from a piece of square tubing which was cut 

and joined to form a rectangle with dimensions of 23 mm x 13 mm x 9.5 mm high.  The 

glass wall was then silanized with 5% dimethyldichlorosilane (DMDCS) in toluene 

(Sigma-Aldrich) according to the manufacturer’s instructions.  The silanization reduces 

the meniscus formed when introducing aqueous solutions to the well, resulting in more 

even dispersion of attached cells. 

In order to prevent bubbles from forming in the MBR microfluidics during 

assembly, the open-faced fludics must be filled with solution prior to assembly.  Due to 

the hydrophobic nature of PDMS, aqueous solutions do not wet the surface; however, 2-

propanol does.  A few microliters of 2-propanol were used to wet the fluidic surface of 

the PDMS.  Several hundered microliters of complete media were then put on the fluidics 

which will now wet the surface.  Two cycles of aspiration of media and introduction of 

fresh media were performed in order to eliminate residual 2-propanol.  The PDMS with 

complete media was put in a CO2 incubator overnight. 

The procedure to collagen coat and seed cells is shown in Figure 10.  The glass 

wall was temporarily affixed to the glass slide by means of bio-compatible double-sided 

sticky tape (3M, 9965) (Figure 10A) forming a well.  50 μM collagen (Type I, rat tail, BD 

Biosciences) solution in 20 mM acetic acid was added to the well made by the glass wall.  

After 1 hr, the solution was aspirated and rinsed with HBSS (BioWhittaker).  The well 

was sterilized by filling with 70% 2-propanol and sitting for 30 min.  The 70% 2-

propanol was aspirated and the slide was allowed to completely dry.  A cell suspension of 

2 × 105 cells in 700 μL was applied and the Petri dish was covered and placed in a 37 °C, 

5% CO2 incubator overnight to allow for cell attachment.  The next day the media was 
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aspirated and rinsed with cell media to remove any unattached cells, followed by removal 

of the glass wall (Figure 10C).  The PDMS fluidics were then immediately placed in the 

MBR clamp and perifusion was begun. 

     

Microbioreactor Clamp 

A clamp was designed to apply pressure between the fluidic layer and the 2” × 2” 

slide to prevent leaks and to align the inlet and outlet of the slide to the fluidics.  The 

general construction of the MBR clamp assembly is shown in Figure 11.  The brass 

clamp applies pressure between the PDMS fluidics, D, and top glass slide, C.  It consists 

of the top, A, which screws to the base, F, with 6-32 socket-head cap screws and contains 

additional socket-head cap screws, with the ends sanded flat, which apply pressure to the 

spacer, B, against the slide, C.  The top is designed to apply even pressure to the fluidics 

even if the thickness of the PDMS fluidics varies slightly.  The bottom glass slide, E, 

provides a rigid and transparent support to complete the glass sandwich around the fluidic 

layer, further preventing leaks.  The size of the fluidics is based upon the size of the two 

2” × 2” glass slides, C and E. 
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Figure 11.  Design of microbioreactor (MBR) clamp for containing and perifusing cells.  A) 
Top of clamp screwed to clamp base, with screws to provide a compressive force to seal 
fluidics.  B) Spacer for distributing the force between top and fluidics.  C) Glass slide with 
Upchurch Nanoports for fluidic connection.  D) PDMS fluidic layer.  E) Bottom glass slide.  
F) Clamp base with guide pins and screw holes. 
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Cellular Perifusion and Effluent Collection Using MBR 

The MBR was assembled according to Figure 11.  Care was taken to avoid 

introduction of air bubbles into the MBR during assembly by slowly placing the slide on 

the fluidics and filling the nanoports with media prior to assembly of the perifusion 

tubing.  Cell media was perifused at 1.0 μL/min using a 500 μL gastight Hamilton 

syringe in a syringe pump (PicoPlus, Harvard Apparatus) connected to 0.004” ID PEEK 

tubing and checked for leaks using a microscope.  Another length of PEEK tubing was 

connected to the outlet.  Once fluid was exiting the outlet, the MBR was placed in a 37°C 

incubator and the flow was reduced to the starting flow rate for that experiment.  After a 

1 hr equilibration, collection of the effluent was begun.   

 

Cell Imaging and Counting 

Cells perifused in the MBR were imaged on a Zeiss Axiovert 25CFL using an 

Achromat 10x objective.  Images were acquired using a CCD camera (QImaging 

Micropublisher 5.0).  For cell counting and determining viability, the MBR was perifused 

with DMEM/F-12 base media containing 4 μM ethidium homodimer-1, which stains 

dead cells red, and 0.5 μM SYTO 11, which stains all cells green, from Molecular Probes 

for 30 minutes.  Light from an HBO 100 lamp was filtered using a Chroma 11001 filter 

set.  Images were taken from several locations and cell counts were determined from 

those images.   
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HPLC and HPLC-MS Analysis Amino Acids 

HPLC-MS of glutamine and glutamate was performed using the following 

procedure.  Dansyl derivatives of amino acids were formed by mixing 5 μL of MBR 

effluent sample, 5 μL isotopic standard with 5 μL 25mM Dansyl Chloride in acetonitrile 

and diluted with 100 μL 100 mM borate buffer, pH = 9.  The isotopic standard consisted 

of 50 μM U-13C5; 15N l-glutamic acid and 500 μM U-13C5; U-15N2 l-glutamine 

(Cambridge Isotope Laboratories, Inc., Andover, MA) in 100 mM borate buffer pH=9.  

HPLC-MS analysis of glutamine and glutamate was performed on a Surveyor HPLC 

(Thermo Finnigan) with a Zorbax SB-C18, 2.1 x 50mm column on a TSQ Quantum 

(Thermo Finnigan) mass spectrometer in positive ion electrospray ionization mode.  

Masses were monitored as follows: glutamine (m/z 380), glutamate (m/z 381), glutamine 

and glutamate internal standard (m/z 387).  HPLC mobile phase A was 95:5:0.5 

water:acetonitrile:formic acid, and B was 5:95:0.5 water:acetonitrile:formic acid.  The 

gradient ran from 0% B to 30% B after 4 min, then to 100% B after 5 min, and was held 

until 9 min; the column was reset to 0% B and flushed for 3 min prior to the next 

injection for an inject-to-inject time of 12 min. Peak integration was performed with 

Xcalibur. 

After demonstrating amino acid flux, a second HPLC method for analysis of 19 

amino acids was used as described previously.90  Briefly, 5 μL of cell media was diluted 

to 25 μL in DI water.  Separation was performed on an Agilent 1100 HPLC with an 

Agilent 4.6 x 150 mm Zorbax Eclipse Plus C18 column.  Derivatization of amino acids 

by o-phthadialdehyde was automated using injection programming on an Agilent 

G1329A autosampler.  Separation time was 16 minutes and injection-to-injection time 
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was 25 minutes.  For each experiment, five replicates of 5 μL samples were collected in 

PCR tubes which contained 20 μL DI water at a flow rate of 0.5 μL/min for 10 minutes.  

This resulted in 25 μL total volume, the minimum required to ensure proper handling by 

the autosampler.  After the experiment, 5 samples of media that were not introduced into 

the MBR were collected in the same manner to provide a control. 

 

pH Measurments 

Measurements of pH were recorded on a fiber-optic based WPI pH Optica micro.  

For measurements on media leaving or entering the MBR, the tip of the sensing fiber was 

placed into the pool of media exiting the tubing for 1-2 minutes until the pH stabilized.  

Measurments of the pH of the inflow to the MBR were performed after the conclusion of 

an experiment by disconnecting the inflow from the MBR and measuring the flow exiting 

the tubing.  For measurements media from cells cultured in T-flasks, samples were 

aliquoted into microcentrifuge tubes, capped and then subsequently left at room 

temperature for 30 minutes.  Measurements were made by uncapping the tubes and 

submerging the fiber into the liquid and allowing the measurements to stabilize. 

 

Results and discussion 

 

Microbioreactor Assembly 

The design of the cell chamber is shown in Figure 9B.  The binary splitter divides 

the flow into two identical streams with identical flow rates.  Repeating this process 

several times in series ensures that the flow rate is the same across the width of the 
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reactor.  The reactor consists of 50 μm square posts with 50 μm spacing.  An early design 

consisted of 50 μm wide channels the entire width of the cell chamber; however, it was 

discovered that cell debris or a group of cells would frequently occlude the channel and 

prevent any fluid from traversing that channel. 

PDMS replica molding was chosen due to the ease of creating new masters with 

differing heights.  This allows the MBR to be tailored to the researchers needs.  For 

example, a change in cell line might require an adjustment of chamber height or a 

different cell-to-media volume ratio.  This is easily accomplished by creating a new 

master with different feature heights from the same mask. 

The seeding of hepatocytes was accomplished with aid of a temporary glass wall, 

whereby various solutions could be introduced and contained within a specific area of the 

glass slide with ports.  This method proved very successful.  One problem initially 

encountered was the much higher density of cells near the edges of the wall than in the 

middle of the well.  This was due to the tall meniscus which significantly increased the 

height of the cell suspension near the wall.  The solution was to silanlize the glass wall 

with DMDCS making the surface of the glass hydrophobic and thereby producing 

essentially no meniscus at the wall.  This resulted in an even density of cells across the 

entire MBR. 

Since the cells are introduced into the chamber by first attaching them to one 

surface, a choice had to be made between the PDMS or the glass.  Both techniques were 

demonstrated successfully; however, there were several reasons for choosing to adhere 

the cells to the glass slide.  Seeding the cells to the PDMS inevitably requires cells to be 

seeded on the binary splitter portion of the cell chamber.  This is not desirable as the flow 
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rates are not as uniform in the binary splitter as they are in the main chamber.  After 

several trials, it was discovered that the morphology of the cells was closer to traditional 

cell culture techniques as well as more reproducible when cells were seeded on the glass 

slide.  Seeding the cells on glass took fewer steps and was easier to accomplish, in part 

due to the difficulty in adhering the temporary glass wall to the hydrophobic PDMS 

surface.  

One potential drawback of using pressure to clamp a glass slide to PDMS is the 

difficulty in preventing leaks at the perimeter of the chamber.  The MBR presented in this 

paper provides several techniques to prevent leaks.  The clamp top (Figure 11A) contains 

six screws positioned around the edge of the chamber providing very even clamping 

pressure.  This also provides constant pressure even if the PDMS was not cast completely 

level.  The clamp spacer (Figure 11B) distributes the forces of the screw to a larger area 

and it prevents the screw torque from acting directly on the glass slide, reducing the 

likelihood of breaking the slide.  The bottom glass slide (Figure 11E) provides a rigid, yet 

transparent bottom surface to allow the PDMS layer to be completely sandwiched on 

both the top and bottom and helps prevent leaks.    

The macro-to-micro fluidic connections were completed using Upchurch 

Nanoports on the glass slide instead of the more common technique of punching holes 

through the PDMS and inserting tubing through the holes.  This was done for several 

reasons, which included reducing leaks and flow-through volume.  Leaks tend to form 

around PEEK tubing when inserted through punched holes in PDMS.  PEEK tubing was 

chosen due to its very low compliance and availability in very small IDs.  Nanoports 

remain leak free when properly adhered and are very quick and easy to connect to and 
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disconnect from the tubing.  Nanoports also provides a reduction in flow-through volume.  

When inserting tubing into punched holes in PDMS it is difficult for the tubing to reach 

all the way to the end of the hole due to the elastic nature of PDMS, this results in a small 

gap between the end of the tubing and the beginning of the fluidic device.  This gap can 

lead to a few microliter flow-through volume.  In the design presented here, a very small 

1 mm hole is drilled through the glass slide that is only 1 mm thick, resulting in less than 

one-microliter flow volume.  This reduction is critical since the flow rate through the 

MBR is less than 1 μL/min.  A flow-through volume of a few microliters would lead to 

significant delays in transport of the effluent from the MBR to the collection vial. 

 

Cell Images in MBR 

Figure 12 shows photomicrographs of identical fields of AML12 hepatocytes 

perifused in the MBR.  Figure 12A shows a phase contrast image in which cells are 

approximately 50-70% confluent.  This demonstrates that a proper confluency can be 

reached in which the cells are dense enough to cause a large modulation of the content of 

the effluent from the MBR, but not so dense that the cells are contact inhibited or piled on 

top of each other.  Figure 12B is the same field under fluorescent illumination.  Cells 

have been stained with ethidium homodimer-2, which stains dead cells red, and SYTO 

11, which stains all cells green.  Approximately 80% of the cells are alive, which 

indicates minimal damage during cell seeding and MBR assembly.  Most of the dead 

cells are adjacent to the posts; therefore, future designs incorporating fewer posts could 

possibly lead to a smaller percentage of dead cells. 
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Figure 12.  Photomicrograph of adherent AML-12 hepatocytes perifused in the MBR.  A)  
Phase contrast image.  B) Fluorescent image of lived cells stained with SYTO 11 (green) 
and dead cells stained with ethidium homodimer-2.  Both A and B are of the same field. 
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pH Measurements 

We measured the pH of MBR 

perifusate inflow and outflow and compared 

the results to traditional cell culture.  Since 

there is no gas exchange mechanism 

employed in our design, pH was measured 

as an indicator of proper CO2 concentration 

in the inflow and of general metabolism in 

the outflow.  Table 7 shows the results of the pH measurements.  Media was initially 

equilibrated to a 5% CO2 environment before loading into syringes for MBR perifusion.  

The low CO2 permeability of the glass syringe and PEEK tubing was verified, as the pH 

was similar to the pH of media taken directly from a 5% CO2 environment.  This was 

considerably lower than media from a 100% air environment, despite inflow measuring 

taking place after the conclusion of an experiment which allowed the maximal length of 

time for any potential gas exchange through the syringe or tubing.  The pH of the effluent 

from the MBR was also very similar to media taken from 24 hrs of contact with 70% 

confluent cells in a T-flask, indicating that the metabolic rate is similar.  In addition, the 

pH of the media is close to the normal physiological pH range of 7.35-7.45.  This 

indicates that the cellular environment within the perifusion device is similar to the 

cellular environment within traditional cell culture techniques and normal physiology. 

 

Table 7.  pH of cell media from 
traditional in vitro cell culture as well 
as MBR perifusate. 

 
Cell Media Condition pH 

In 100% air 7.75 
In 5% CO2 95% air 7.43 

Over cells for 24 hours 7.36 
Perifusate into MBR 7.5 

Perifusate out of MBR 7.3 
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Calibration Curves 

Calibration curves of glutamine and glutamate obtained from HPLC-MS are 

shown in Figure 13.  The concentration of amino acids used in the calibration curves 

were chosen based upon the concentration in cell media.  The concentration of glutamine 

is higher than glutamate in the media and as such is more reproducible as is indicated by 

the smaller confidence intervals for the slope. 

 

 

 

Figure 13.  Calibration curve for glutamine and glutamine using HPLC-MS.  Errors are 
the ± 95% confidence intervals. 
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A table of sensitivities, intercepts, and correlation coefficients for calibration 

curves of amino acids analyzed by HPLC are shown in Table 8.  The sensitivities were 

very similar being between 8.3 × 103 and 1.0 × 103 for all amino acids accept lysine and 

cystine.  Lysine contains two possible locations for reaction with the OPA/CN- 

derivatization reagents as such the added sensitivity is expected.  All amino acids accept 

histidine have larger errors in the intercept than the value therefore the calibration passes 

through zero as expected.  The correlation coefficients (R2) are all over 0.999, indicating 

a high degree of linearity between concentration and peak area. 

 

Table 8.  Calibration curve parameters for amino acids analyzed by HPLC.  The slope 
indicates the sensitivity, and R2 is the Pearson’s correlation coefficient.  Error is the ± 
95% confidence interval. 
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Measurement of Amino Acid Flux 

In order to demonstrate the feasibility of the MBR as a perifusion device 

which is capable of measuring small cellular fluxes, we measured cellular amino acid 

flux.  Amino acids are present in the media at a high concentration and have a low 

relative flux rate.  In order to verify whether amino acid consumption and/or production 

could be observed, we used HPLC-MS to measure the flux of two amino acids, glutamine 

and glutamate.  These amino acids were chosen for the test due to their high relative flux 

rates.  Additionally, their flux is in opposite directions, which was important, as any 

changes observed would be due to cellular metabolism, and not systematic error such as 

evaporation or dilution.  HPLC-MS data of glutamine and glutamate flux from AML12 

cells are shown in Figure 14.  Data calculated from literature values for flux rates of 

primary hepatocytes, are shown along with the experimentally determined values.1  The 

calculated flux rate of glutamine and glutamate at 0.5 μL/min flow rate were, 7.68 and -

0.11 μmol·day-1·106 cells-1, respectively, which correlates well with the literature values 

of 3.1 and  -0.12 μmol·day-1·106 cells-1, indicating that this method closely approximates 

the conditions found in traditional well plate experiments.1  The literature data correlated 

more closely with the experimental data at the lower media contact times.  This is thought 

to be due the high cell-to-media volume ratio within the MBR which caused toxic waste 

products and lower nutrient concentration at longer contact times. 
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 After amino acid metabolism had been observed for two amino acids, we 

utilized an improved HPLC technique which did not require using a mass spectrometer 

and expensive isotopic standards.  This technique did not require any sample preparation, 

was highly reproducible, and had a low injection-to-injection time.90  The MBR was used 

in the same way as before and basal metabolism of all 19 primary amino acids are shown 

for each of the three replicates in Figure 15A.  The perifusion flow rate used, 0.5 μL/min, 

is the same as the highest flow rate, and thus lowest contact time, used with the HPLC-

MS experiments shown in Figure 14.  Each of the three replicates agreed closely with 

each other.  However since the variation within each replicate was smaller than the 

 

Figure 14.  Graph of the change in concentration of glutamate and glutamine in cell media 
caused by cellular flux.  Measured change by AML-12 hepatocytes in MBR is 1.38 ± 0.15, 
and 0.59 ± 0.04 for glutamate and glutamine, respectively, after 3.9 min. Calculated 
fractional change for glutamate and glutamine is 1.64 and 0.67 respectively after 3.9 
minutes of contact determined by using literature flux rates.1 
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variation between the replicates testing the three replicates with an ANOVA 

demonstrated significant difference between replicates.  To combine the data, only the 

average flux rates were used.  In Figure 15B, the three replicates were combined and 

normalized to isoleucine, the amino acid with the median average flux rate.  Fourteen of 

the nineteen amino acids showed a significant difference from the control.  Only two 

amino acids, alanine and glycine, had literature values, shown in Figure 15B, that were 

outside the confidence intervals of the experimental data.  The literature values were 

taken during assumed steady-state conditions in a 24-hour well plate experiment using 

primary hepatocytes which likely have significantly different amino acid metabolism than 

AML12 cells.  Our results demonstrate that the effluent from the MBR is similar in 

composition to well plate methods.  The advantage of the MBR is that the media is only 

in contact with cells for a few minutes in the MBR, thus enabling a more dynamic picture 

of cell metabolism to be observed.  The differences in the flux of glycine and alanine 

from literature values are most likely due to differences in cell types, but differing growth 

environment or differences due to the short time scales with the method presented in this 

paper are also possibilities. 
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Figure 15.  Graphs of 19 amino acid flux rates from MBR perifusate measured by offline 
HPLC.  A) Three separate experiments and from literature values.1  Error bars are ± the 
95% confidence intervals of 5 replicates.  B)  Three experiments combined and fluxes 
normalized to isoleucine.  Error bars are the propagated 95% confidence intervals. 
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The MBR we describe has capabilities beyond counting cells within the cell 

chamber and measuring amino acid flux rates.  Optical measurements on the entire cell 

population within the operating MBR are possible.  Additionally, any compound(s) of 

interest could be analyzed from the effluent and would be present at a higher 

concentration than in many other perifusion devices.  Lastly, these two types of 

measurements could be collected simultaneously from the same cell population, allowing 

a much more detailed look at cellular physiology than is available from other cellular 

perifusion devices. 

 

Conclusions 

In this chapter, we present a microbioreactor perifusion device that is capable 

of perifusing ~105 attached cells.  The design of the fluidics ensures even flow velocity 

across all cells, which reduces the heterogeneity of response from the cells.  The MBR is 

designed to minimize flow-through volume for connecting inflow and outflow tubing.  

The MBR also has a very high cell-to-media volume ratio.  All of these design 

characteristics result in inducing large changes in the composition of the perifused media 

due to cellular metabolism in a short time period.  The MBR produces a change in media 

composition in 5 minutes that is equivalent to 24 hours using traditional cell culture.  This 

enables measurement of more dynamic processes than would be possible with traditional 

cell culture and analytical techniques.  In addition, the cells are adhered to a transparent 

2-D surface, which enables microscopic examination of cells during perifusion.  This 
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provides the important capability of optical measurements on the cells while being able to 

simultaneously collect the effluent for offline measurement.  



 63

CHAPTER IV 

 

THE AMINO ACID FLUX ANALYZER 

 

Introduction 

A major goal of this research is to develop an instrument which can 

quantitate amino acids from a cellular perifusion device online and with high temporal 

resolution.  The high temporal resolution is required in order to observe rapidly changing 

metabolic phenomena occurring in the cells.  There have been several techniques 

developed for fast separation of amino acids, but only a few which have been shown to 

separate more than a small number of amino acids.  The work shown here represents an 

extensive modification of work on neurotransmitter detection published by Dr. Robert 

Kennedy at the University of Michigan.  Modifications include changes in valves and 

pumps, extensive addition of plumbing, and completely new capillary holder and detector 

optics. 

   

Methods and Materials 

 

Overview of AAFA 

 Our Amino Acid Flux Analyzer (AAFA) is an online instrument capable of 

measuring amino acid concentrations in cellular effluent from a microbioreactor (MBR) 

every 30-60 s.  We chose amino acids because their metabolism involves a variety of 

glycolytic and TCA cycle intermediates, but the instrumentation could be modified to 
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measure several classes of analytes.  A general diagram of the instrument is shown in 

Figure 16.  The MBR, described in Chapter 3, is not part of the AAFA, but is shown here 

to demonstrate how the system operates.  Media is pumped into the MBR and the output 

or effluent continuously flows into the reaction cross.  In the reaction cross, media is 

continually mixed with the derivatization reagents to fluorescently label primary amines.  

This process is described in detail in the next section.  The mixture leaves the reaction 

cross and enters the reaction capillary.  The labeling reaction requires 200 s for 

completion and occurs as the mixture flows through the reaction capillary.  The mixture 

then enters the flow-gate interface.  The flow-gate injects small plugs of fluorescently 

labeled amino acids in the separation capillary.  The details of the flow-gate will be 

described in a later section.  The labeled amino acids are separated and quantified by 

micellar electrokinetic chromatography (MEKC).  MEKC, as described in Chapter 1, is a 

batch technique, whereby a small plug of the amino acid mixture is injected onto one end 

of the capillary, then the plug is pulled toward the other end by electroosmotic flow.  

Amino acids are separated based on differences in electrophoretic mobility as well as 

interaction with sodium dodecylsulfate (SDS) micelles forming a pseudo-stationary 

phase.  As the separated fluorescently labeled amino acids pass by the detector, the 

fluorescence is detected.  The strength of the signal is directly proportional to the 

concentration of amino acids.   
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Online Derivatization 

 NDA/CN- was chosen for this research.  The two components of the 

derivatization reagent, NDA and CN-, necessitate their being stored separately since they 

will form fluorescent products when stored together.  The first reagent consists of 5 mM 

NDA in 1:1 (v:v) mix of acetonitrile:15 mM tetraborate buffer pH=9.2.  The second 

reagent consists of 20 mM KCN in 15 mM tetraborate buffer pH=9.2 with 1 mM EDTA 

and 30 μM norleucine.  EDTA was used to prevent formation of a brown precipitate 

during the reaction process.58  The use of norleucine, a non-protein amino acid, was 

added as an internal standard which significantly increases the reproducibility of CE (and 

MEKC) as it allows the user to normalize for variability due to injection and detection.91  

The flow rate of both derivatization reagents was 7.0 μL/min and the cell media flow rate 

was 0.5 μL/min.  The concentration of all amino acids in the cell media is 7.3 mM, 

 

Figure 16.  Diagram of the amino acid flux analyzer (AAFA).  Media is pumped 
continuously through the MBR.  The output is derivatized, labeling primary amines.  
The reaction mixture flows to the flow-gate where it is injected onto the separation 
capillary.  Amino acids are separated by capillary electrophoresis and quantified by 
the detector. 
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resulting in an almost 10-fold molar excess of NDA.  In order to allow for 200 s of 

reaction time, the reaction capillary should contain 48 μL, which equates to a 99 cm 

length of 250 μm I.D. × 360 μm O.D. fused silica capillary used in this setup.    

 

Flow-Gate 

The flow-gate is used to inject samples from the reaction capillary onto the 

separation capillary.  Flow-gates have used for several years and their general design has 

remained fairly constant.46,55,58,92  A diagram of a flow-gate and injection timing is shown 

in Figure 17.  The reaction capillary is separated from the separation capillary by a small, 

~100 μm gap.  During a separation, the strong, ~1 mL/min gating flow sweeps the 

solution from the reaction capillary to waste, preventing it from contacting the separation 

capillary.  When an injection is to be performed, the gating flow is stopped by switching 

a computer-controlled 3-way rotary valve (Scivex) upstream of the flow-gate, and the 

separation voltage is turned off.  The sample then crosses the small gap during the delay 

and encounters the separation capillary.  An electrokinetic injection is performed by 

applying a small voltage to the separation capillary.  The rotary valve is then switched, 

resuming the gating flow and sweeping the sample away from the separation capillary 

during the post-injection delay, leaving a small injected plug at the end of the separation 

capillary.  The voltage is controllably ramped up to the separation voltage, starting the 

separation. 
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Figure 17.  Diagram of flow-gate and injection timing.  A) Diagram of the flow-gate.  B) 
Graph of injection timing showing voltage applied to the capillary and gating valve position.  
The solution from the reaction capillary is swept away from the separation capillary by the 
gating flow during a separation.  When an injection is to be performed, the gating flow is 
stopped and the voltage is removed.  During the delay, the reaction capillary solution crosses 
the small gap and makes contact with the separation capillary where an electrokinetic 
injection is performed by applying a small voltage.  The gating-flow is then resumed.  Any 
remaining sample is swept out of the gap during the post-injection delay.  The voltage is 
then ramped back to the voltage required for separation. 

A 

B 
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A machine drawing of the flow-gate is shown in Figure 18.  The flow-gate was 

made of acrylic which is an easily machinable transparent material.  It is important that it 

be transparent, as the reaction and separation capillaries need to be carefully aligned 

during assembly for proper operation.  Of critical importance is the quality of the 

intersection of the cross.  The two flow paths need to be as close to perfect alignment as 

possible for proper operation.  The mounting holes fit 8-32 fillister machine screws for 

mounting the flow-gate.  The ports are designed for 8-32 coned port fittings, and the 

cross accepts 360 μm OD fused silica capillary tubing.  The flow-gate was machined at 

the University of Michigan machine shop, Mr. Albert Wilson supervisor. 

 

Figure 18.  Machine drawing of flow-gate. 
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MEKC Separation of Amino Acids 

The MEKC separation of amino acids in this work necessitates a very fast 

separation in comparison to commercial capillary electrophoresis (CE) instruments.  In 

order to accomplish this goal, several modifications to traditional CE are required.  The 

capillary length must be significantly shortened.  For this research, a 12 cm long capillary 

with 9.5 cm injection-to-detector length was used.  However, simply shortening the 

capillary will lead to large drop in resolution.  To overcome this obstacle, the electric 

field is increased.  15-23 kV was applied to the capillary resulting in electric fields of 

1.25-1.9 kV/cm in comparison to electric fields of 40-200 V/cm for traditional CE.46  

Since resolution is directly proportional to the applied electric field, increasing the 

electric field increases resolution.  However, increasing the electric field also increases 

current, resulting in increased joule heating.  To reduce joule heating, a small 10 μm ID 

capillary was used, which has a larger ratio of surface area to volume than the 25-75 μm 

ID capillaries used in traditional CE.  A smaller diameter capillary equates to smaller 

sample volumes and fewer molecules to detect.  This requires a highly sensitive laser-

induced fluorescence (LIF) detector in order to give signals with high signal-to-noise 

ratios.  In addition, the injection plug and detection length need to be kept as short as 

possible in order to observe any separation which may be occurring.  The computer-

controlled flow-gate allows for injection of carefully controlled plugs of sample.  The 

detector is a single-pass on-capillary detector that only observes a length of capillary 

about equal to the ID of the capillary. 
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Capillary Conditioning 

In order to perform the MEKC separation of amino acids, the capillary must be 

conditioned to provide the charged silanol groups which produce electroosmotic 

mobility.  The separation capillary consists of a fused silica capillary with 360 μm OD 

and 10 μm ID with a length of 12 cm with a 9.5 cm injection-to-detector length.  The 

injection tip was beveled to a cone by hand-grinding on a Dremel with a polishing.  The 

polyamide coating was burned off using a small torch at the point in the separation 

capillary which will be used for detection.  The capillary was conditioned by flushing 

with 0.1 N NaOH in DDI water for 15 minutes.  This was followed by flushing with 

separation buffer for 20 minutes.  The separation buffer was 15mM phosphate pH=8.0 

with 30mM SDS.  The capillary was then positioned in the flow-gate, ready for assembly 

in the detector.   

The small ID of the capillary necessitated a pressure vessel for flushing the 

capillary with the NaOH and separation buffer.  The pressure vessel delivers fluid at 80 

psi to the separation capillary.  This was done by attaching the separation capillary to a 

100 μm ID capillary using a small piece of Teflon tubing with a slightly smaller ID than 

the 360 μm OD of the two capillaries.  The other end of this transfer capillary was in a 

vial of the flushing solution that was inside a pressure vessel.  The pressure vessel was 

attached to a 3-way valve that had at its other two ports an 80 psi N2 supply line or 

venting to air.  In this way the valve could be switched between supplying pressure to the 

vessel which would fill the capillary, or venting the chamber to air to change solutions 

when not in use.     
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Generation I Detector 

The Generation I detector was closely based on published work of Dr. Kennedy’s 

group.58  Valuable information was obtained from this detector, and several components 

and design features were used in the Generation II detector.  Therefore, a detailed 

description of both detectors will be presented. 

The general diagram of the Generation I detector is shown in Figure 19.  The 

optical path was from a Zeiss Axiovert 25CFL inverted microscope.  A capillary holder 

was constructed and was mounted to the XY mechanical stage of the microscope.  It 

consisted of mounting holes for the flow-gate, capillary-holding brackets near the 

objective, and a cover for blocking light during an experiment.  The objective used was a 

CP-Achromat 100× 1.25 NA oil immersion lens.  For excitation, a continuous wave, 

diode-pumped solid-state 440 nm laser (BCL-025-440, Crystal laser) was mounted in the 

lamp-housing socket.  A custom-made lamp housing socket adapter was machined and 

attached to an XY-stage onto which the laser was mounted.  The fluorescence filter set 

was Chroma Z442BP, which is a very narrow band 442nm laser excitation set with 

bandpass emission.  A custom-made ultra-sensitive light detection module, discussed in 

detail below, was mounted to the camera-port for fluorescence detection.  The module 

was mounted to a diagnostic instrument HRD100-CMT coupler with a ZV-Clamp 

adapter.  To reduce stray light from going to the detector, an iris was mounted at the 

camera mount intermediate image plane.  A custom-made holder attached to the end of 

the camera adapter held the iris at proper location.  The iris constricted the field of view 

to a small opening, corresponding to the area of the capillary illuminated by the laser. 
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Figure 19.  Overview of Generation I LIF detector.  A) Side view B) Front view shown 
without body tube and eyepieces.  The high sensitivity light detection module is shown in 
light green, high voltage isolation box in light blue, the capillary holder in light orange, and 
laser in purple mounted on a Zeiss Axiovert 25CFL microscope.  The separation capillary 
extension, shown in orange, connects the separation capillary to the high voltage.  The high 
voltage cable, shown in pink, goes to the high voltage power supply, which is not shown for 
clarity. 

A 

B 
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The separation capillary was connected to high voltage by a buffer reservoir held 

at high voltage in an isolation box.  A 100 μm ID capillary extension was connected to 

the detector end of the separation capillary by a short, ~1 cm piece of Teflon tubing 

which fit tightly over the two ends of the capillary.  The other end of the capillary 

extension was dipped into a vial of separation buffer located in an acrylic isolation box.  

The end of the high voltage line was also dipped in the buffer vial.  The box lid was 

connected to an interlock which prevented the high voltage power supply (CZE1000R, 

Spellman High Voltage Electronics Corp.) from turning on unless the lid was closed. 

The Generation I LIF detector required the custom machining of several parts, 

including an adapter for connecting the excitation laser to the lamp-housing socket on the 

microscope, a C-mount camera adapter for connecting the light detection module to the 

camera adapter, a holder for the attachment of the end of the camera adapter, which holds 

an iris at the intermediate image plane, and a capillary holder that aligns the separation 

capillary to the focal point of the objective and prevents outside light from entering the 

objective.  
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The laser-to-lamp house socket adapter is shown in Figure 20.  The four taped 

holes hold an angle bracket connected to an XY stage on which the laser is mounted.  The 

stage allows the laser to be aligned perfectly in the center of the field of view in the 

detector.  The small 1/8” hole allows the laser beam to pass.  The groove in the OD of the 

adapter allows a series of set screws on the microscope to hold the adapter in place.  The 

adapter is machined out of aluminum and anodized black by Midwestern Anodizing in 

Milwaukee, WI. 

The C-mount camera adapter is shown in Figure 21.  The adapter connects the 

light detection module to the camera adapter mounted in the camera port of the 

microscope.  The total thickness of the piece corresponds to placing the PMT in the focal 

plane according to C-mount standards, thus guaranteeing sharp focus on the PMT and 

assuring that as much light as possible enters the photomuliplier tube (PMT).  The four 

 

Figure 20.  Adapter for mounting the laser on an XY stage to the lamp housing on an 
Axiovert 25CFL microscope.  
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small holes allow four mounting screws to attach the PMT housing.  The large hole 

allows light to pass to the PMT.  The 1”-32 thread is the female C-mount thread.  The C-

mount adapter is machined out of aluminum and anodized black by Midwestern 

Anodizing in Milwaukee, WI.  

The detector spatial filter is shown in Figure 22.  The large diameter end slips 

over the end of the camera adapter and is secured by the set screw.  The iris slips on the 

smaller diameter end and butts next to the shelf.  The iris is held in by a retaining ring.  

The slot in the smaller diameter end allows the size of the hole in the iris to be adjusted 

by means of an arm on the iris.  The part is machined out of aluminum and anodized 

black by Midwestern Anodizing in Milwaukee, WI.   

 

 

 

 

Figure 21.  C-mount adapter for light detection module 
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The capillary holder is shown in Figure 23.  Part A shows the holder assembled as 

it is used during an experiment, with the exception of a top to the blackout box.  The 

holder consists of a series of tapped holes on the left where the flow-gate is mounted.  

The large number enables the use of a variety of lengths of capillary.  On the right are 

three walls of a blackout box and a groove for a lid.  The lid consists of the front and the 

top of the box (not shown).  The capillary is assembled and aligned by visualizing the 

capillary through the eyepiece and adjusting the focus and the XY-stage.  Once aligned, 

the lid is added, visualization is switched to the camera port and an experiment can begin.  

The blackout box prevents light from entering and interfering with the fluorescence 

detection.  The box lid was also wired to an interlock for the laser (not shown).  This 

prevents the laser from turning on unless the box lid is on to prevent accidental exposure 

to intense laser light.  Inside the box are capillary clamps.  In the detail, the capillary fits 

in the groove, with a small portion of the capillary protruding above.  The top is then 

clamped to the bottom by two nylon screws attached into the bottom of the clamp.  The 

 

Figure 22.  Detector spatial filter adapter 
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top applies pressure directly to the capillary, securing it in place.  This is crucial, since 

movement of even a micron or two will significantly affect the detection, and the high 

voltage imparts a force on the capillary.  The large hole in the bottom of the box provides 

microscope objective access to the capillary.  In the top of the holder are holes to mount 

the capillary holder to the XY stage of the microscope.  The holder is machined out of 

black Kydex T thermoplastic. 
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Figure 23.  Capillary holder for the Generation I AAFA.  A) Holder assembled showing 
flow-gate, separation capillary, microscope objective, and XY stage arm.  B) Machine 
drawing.  Detail shows side view of capillary clamp. 

B 

A 
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A high voltage isolation box was constructed as shown in Figure 24.  The purpose 

of the isolation box is to protect operators and bystanders from the high voltage 

encountered during MEKC separation.  The box holds a vial filled with separation buffer 

inside of a holder.  The high voltage cable is brought through the box through a tight-

fitting hole, and separation capillary extension is brought into the box between the box 

side and the lid.  Both the cable and capillary are inserted in the buffer in the vial.  The 

box contains a safety interlock such that the high voltage power supply can only be 

operated when the lid is closed.  The box is made from ¼" thick acrylic. 

 

An ultra-sensitive light detection module was fabricated to use as a fluorescence 

detector.  The heart of the module is a Hamamatsu H5784-40 PMT module mounted 

inside an aluminum box.  The module connects to the camera mount via the C-mount 

camera adapter described earlier.  On the side of the module are an on/off toggle switch, a 

poteniostat for gain adjustment, a DIN connector to power, and a BNC connector for 

 

Figure 24.  High voltage isolation box. 
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signal output.  The module was powered by an Eplac external power supply providing the 

+15 V and –15 V power to the PMT module. 

 

Generation II Detector 

 The Generation I detector proved to be unreliable due to an intermittent 

problem with arching as is described in detail in the results and discussion section.  

Therefore, we designed and constructed a Generation II detector.  The general layout of 

the Generation II LIF detector is shown in Figure 26.  This layout allows the separation 

capillary to be mounted vertically, rather than horizontally.  The separation capillary was 

 

Figure 25.  Light detection module. 
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mounted in a holder attached to an XYZ stage that allowed the capillary to be properly 

focused to the objective.  The injection end of the capillary was inserted in the flow-gate 

as in Generation I.  The detection end of the separation capillary was inserted into a 

buffer reservoir in which a high voltage was applied.  The optical path of the detector was 

assembled exclusively from individual optical components, rather than using a 

microscope as in Generation I.  As in Generation I, the detector is designed with epi-

illumination where the laser excitation light is reflected off the dichroic mirror and 

reflected 90° to the objective.  The emitted fluorescence is collected by the objective, 

passes through the dichroic mirror and excitation filter, to the tube lens.  The tube lens 

focuses the light on the same light detection module used in Generation I.  To align the 

capillary, a flip-down mirror is flipped up, focusing the capillary on an eyepiece.  The 

alignment illumination is turned on and the XYZ stage is adjusted to bring the objective 

to sharp focus on the capillary ID. 
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 The capillary holder is designed using the same principles as the first 

generation holder.  A machine drawing is shown in Figure 27.  The flow-gate mounts in 

one pair of the tapped holes on the left and the detection window is mounted in between 

the capillary clamps on the right. 

 

Figure 26.  Overview of Generation II LIF detector. 

 

Figure 27.  Capillary holder for Generation II.  All parts thickness of 0.21.  The capillary 
clamps are identical in design to those used in generation I.  (see Figure 23). 
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The capillary holder is mounted inside a sealed box filled with SF6 gas, which has 

a high dielectric strength of 8.5-9.8 kV/mm (several times that of air, which is 0.4- 3.0 

kV/mm).93  The box is shown in Figure 28.  Part A shows the empty box and its aspects 

in detail.  Part B shows the assembled unit, with capillary holder and detector objective in 

place.  In the absence of SF6, arching and corona discharge occur, making 

experimentation impossible.  The box is mounted to an XYZ stage by three nylon flat-

head mounting screws located at the bottom of the box.  The capillary holder is inserted 

into the box by sliding the holder down from the top of the box, moving it forward to the 

stops, then screwing a long nylon screw from the back of the box to the holder, clamping 

the capillary holder firmly in place.  The lid is then placed on the box.  The objective for 

the detector is introduced through a hole where a sheet of soft rubber with a hole smaller 

than the objective is clamped in place.  The microscope objective is inserted into the box 

through the hole in the soft rubber.  A seal forms around the objective, yet XYZ 

movement is still possible.  This allows the stationary objective to be focused on the 

capillary by moving the entire box.  A small groove is machined on the back of the box, 

allowing an illumination source to be inserted.  SF6 gas is introduced at a low flow rate 

though a small port in the bottom of the box, allowing for uniform filling of the heavier-

than-air gas.  The end of the separation capillary protrudes though a hole in the bottom of 

the box.  A removable high voltage buffer reservoir is attached through this hole.  The 

box is made of acrylic and spray painted black on all but one side, allowing observation 

of the capillary holder. 
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The high voltage buffer reservoir is shown in Figure 29.  At the top of the 

reservoir is an O-ring groove.  The reservoir is inserted into the hole at the bottom of the 

SF6 box until the body of the reservoir contacts the box.  The O-ring allows for a leak-

free attachment to the bottom of the SF6 box.  The pressure provided by the O-ring also 

holds the reservoir to the box.  The separation capillary dips down into the cavity in the 

reservoir.  Electrophoresis buffer fills the cavity and provides electrical contact between 

the high voltage from the platinum wire and the separation capillary.  The high voltage 

cable from the power supply is inserted into the opening in the right of the reservoir.  The 

 

Figure 28.  SF6 box.  The capillary holder is mounted in an SF6 box to prevent arching.  A)  
Empty box.  B)  Box with capillary holder in place and detector objective focused on 
capillary. 
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end of the cable contains a male connector which is mated to the female connector in the 

reservoir.  The female connector and platinum wire are epoxied into the reservoir, 

holding them in place and preventing buffer from contacting the high voltage cable.  The 

cable is inserted into the reservoir until it is stopped by the insulation at the change of 

diameters.  The buffer reservoir is made from acrylic, and the outside is spray painted flat 

black.         

                                                                                                                                                                       

Figure 30 shows the optics used for the Generation II detector.  The main 

components and working principles are the same as Generation I, but the optical path was 

totally rebuilt.  The microscope objective, laser, filter set, and detection module are 

 

Figure 29.  High voltage buffer reservoir. 
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reused in Generation II.  The laser, U, enters through a small hole in the lens tube, G, 

where the filter set is housed.  The Zeiss filter cube is a near-perfect fit in the 2" diameter 

lens tube.  The laser passes through the excitation filter and is reflected off the dichroic 

mirror and projected toward the objective, A.  The objective is focused on the center of 

the separation capillary.  Emitted fluorescence is collected by the objective and passes 

into the filter set, where it passes through the dichroic mirror and the emission filter to the 

tube lens.  The distance between the objective and the filter cube, and the filter cube and 

the tube lens, was designed to be close to that of the microscope to prevent any optical 

effects that might occur as a result of changing distances.  The tube lens brings the 

infinity space after the objective to a focal point.  The tube lens used was an achromatic 

lens with a focal length of 150 mm.  This is fairly close to the Zeiss tube lens focal length 

of 165 mm, ensuring that the magnification is similar to the microscope and reducing any 

imaging artifacts.  The tube lens focuses directly on the sensor of the PMT so that as 

much of the emitted light as possible enters the PMT.  During focusing of the capillary 

ID on the objective, the flip-down mirror is flipped up, directing light after the tube lens 

to the eyepiece.  The distance from the tube lens to the eyepiece or the PMT was made 

the same by temporarily attaching a C-mount camera to the C-mount where the detection 

module attaches.  The rear cage plate adapter, D, attached to the C-mount was slid along 

the cage assembly rods until both the eyepiece and camera were in focus.  The cage plate 

adapter was then locked in place.  During focusing of the capillary, an external 

illumination source is needed to properly observe the capillary. 
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Figure 30.  Diagram of Generation II LIF detector optics.  A) Side view, B) Top view.  
Letters correspond to the parts list in Table 9.   

A 

B 
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During capillary alignment, additional illumination is needed.  Due to the tight 

physical constraints of the area, a custom-made illumination source was constructed.  A 

diagram of the illumination source by itself and in use is shown in Figure 31.  All parts 

were purchased from Digi-Key.  The illumination source was constructed in a 

3.15x1.57x0.67" black ABS box.  It contains a 9 V battery for electrical power, an on/off 

toggle switch, a resister, and a white LED (PN: 365-1177-ND).  The resister was chosen 

to provide the proper 20 mA of current at 3.2 V.  The LED was chosen due to its high 

luminous intensity of 24 cd and small viewing angle of 15°, which provides a lot of light 

in the center of the LED where it is needed to illuminate the capillary.  

 

Table 9.  Parts list for LIF detector optics shown in Figure 30.  All parts are from Thorlabs 
except where noted.  Two letters assigned to the same part indicate that both parts are used 
at that location. 
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Figure 31.  Illumination source used to illuminate capillary during detector alignment.  A) 
Front view of illumination source.  B) Side view of illumination source during use. 
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Data Acquisition 

 The AAFA is computer-controlled.  A program written in LabVIEW controls 

a National Instruments PCI-6036E DAQ card.  The card is connected to a connector 

block for connection of the input and outputs.  The program controls the flow-gate valve 

and high-voltage power supply and collects voltage and current input signals from the 

power supply and collects the fluorescent data input.  The fluorescent data are filtered 

with a low-pass RC filter circuit with a 20 Hz cutoff frequency attached to the connector 

block.  The flow-gate valve is controlled by contact closure.  To interface the DAQ card 

with the contact closure, a pair of optically isolated relays was employed.  When a 

positive voltage is applied, one relay closes, causing the valve to divert the gating flow 

away from the flow-gate.  When a negative voltage is applied, another relay closes, 

causing the valve to resume the gating flow to the flow-gate. 

 The LabVIEW program which controls the AAFA and collects and stores the 

data was written by Jonathan Shackman at the University of Michigan, a graduate student 

of Dr. Robert Kennedy.94  I performed modifications to the program to make it suit the 

individual needs of my instrument.  The user inputs the delay time, inject time, post-

inject delay time, ramp time, injection voltage, separation voltage, collection frequency, 

and separation time.  The settings used for the bulk of the work were delay time 1000 ms, 

inject time 200 ms, post-inject delay 150 ms, ramp time 1000 ms, injection voltage 2 kV, 

separation voltage 12-23 kV, collection frequency 60 Hz, separation time 40-80 s.  

Additional details are provided in Appendix A. 

 A second LabVIEW program was utilized during an experimental run.  It 

includes all of the functionality of the first program, but allows running an automated 
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sequence of experimental runs.  It includes user inputs of number of runs and time 

between runs, and displays the total experimental time required.  The program 

automatically saves the current electropherogram with the time stamp and starts another 

run.  The process is repeated for the specified number of runs.  This allows a time course 

to be constructed of time versus peak area for each peak.  To obtain peak area, the 

electropherogram must be integrated. 

 

Data Processing 

 After the series of electropherograms are collected, they need to be processed 

in order to extract a time course of concentration as a function of time for each peak in 

the electropherogram.  A stand-alone program, Cutter, written in LabVIEW by Jonathan 

Shackman, was used for the high-throughput peak picking required for these 

experiments.94  Cutter was used as it is the only freeware high-throughput 

chromatographic data analysis software available.  Cutter allows the user to load the 

entire series of electropherograms from an experiment at once.  Electropherograms can 

be visualized as the entire series and individually in the same screen.  Since the retention 

times of the peaks from sequential electropherograms are close but not exact, the program 

allows the user to perform a temporal normalization, so one peak is aligned for all 

electropherograms by adding or subtracting retention time to the electropherograms.  The 

user is allowed to perform a baseline subtraction.  This was done by setting the smallest 

signal value equal to 0.  Finally, the area of that peak for all electropherograms is 

integrated.  The process of normalization and integration is repeated for all peaks.  If the 

retention time of several of the peaks is very close for all electropherograms, as is often 
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the case, more than one peak can be integrated without normalization.  Typically, only 

three to five normalizations are required to integrate all amino acids.   

 Once the area of all peaks has been determined, further data processing is 

performed in Microsoft Excel.  Sometimes the retention time of the peaks systematically 

increases during the course of an experiment.  This needs to corrected for since longer 

retention time means the analytes are moving slower though the capillary and therefore 

spend a longer time in the detector window, equating to larger peak areas for the same 

concentration.  To correct for this, a few electropherograms that were evenly spaced in 

the sequence were integrated without being temporally normalized.  The time stamp of 

the electropherogram and retention time were noted for each peak in each 

electropherogram.  A graph of retention time vs experimental time was constructed and 

the slope of the regression line obtained.  The area of each peak was divided by this slope 

to correct for the changing retention time.  If the retention time of the peaks did not 

change significantly during the course of the sequence, this correction factor was not 

necessary. 

 During each experiment an internal standard, usually norleucine or 

fluorescein, was added with the KCN solution since they do not interact with CN-.  They 

allow for correction due to injection or detector focus variability to be made since the 

concentration of standards should not change during the course of an experiment.  The 

peak area of all the peaks was divided by the internal standard, producing a peak area 

normalized to the internal standard. 
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Results and Discussion 

To test the ability of the Generation I AAFA to separate amino acids in cell 

media, no MBR was used initially.  Instead, cell media was loaded in a syringe and 

pumped directly into the instrument.  An example electropherogram demonstrating 

separation of amino acids from DMEM:F-12 cell media for the Generation I AAFA 

instrument is shown in Figure 32.  Thirteen of 19 primary amines, including the 

norleucine internal standard, were separated to the baseline in less than 30 s.  Serine, 

threonine, asparagine, and glutamine were partially separated and eluted first.  

Phenylalanine and leucine co-elute, and alanine were not seen.  Separation conditions are 

given in the methods section.  Peak identifications were made by spiking the cell media 

with one amino acid at approximately three times the nominal concentration of that 

amino acid, making the peak immediately identifiable.  This process was repeated for all 

19 primary amino acids.  
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The reproducibility of the technique was tested by running a 120 min long 

sequence with electropherograms collected every 45 seconds.  The percent relative 

standard deviation (RSD) was calculated for the normalized peak area for each amino 

acid.  The results are shown in Table 10.  Seven out of 12 peaks have RSDs of less than 

10%, which indicated that the AAFA is very stable.  The retention time of the later 

eluting peaks varied considerably throughout the experiment in a non-systematic way, 

making accurate quantitation of cystine, arginine, and lysine impossible.   

  

 

 

 

Figure 32.  Example separation of primary amino acids in DMEM:F-12 base cell media 
using the Generation I AAFA. 
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Several problems were encountered during the course of instrumental setup.  The 

first major problem involved the flow-gate valve.  The original setup used a 3-way 

solenoid valve.  After a very short period of use, usually 1-10 days, no injections could be 

observed.  This was verified using a microscope to visualize the injection of food 

coloring at the flow-gate.  When the valve was working, the food coloring would cross 

the gap and a plug of the food coloring was seen traveling down the separation capillary 

after an injection.  When the valve was not working, the food coloring still crossed the 

gap, but none was injected into the separation capillary.  It was presumed that after a 

short use, the valves stopped most but not all of the gating flow during an injection.  

Several different brands were tested, but all failed.  The solution was to use a rotary valve 

with an electronic actuator (Scivex V-2500).  The rotary valve is a much more expensive 

and slower acting valve, but it worked flawlessly for all of this work.  As a result of the 

slower action of this valve (~150 ms vs ~8 ms), a post-injection delay was added to the 

Table 10.  Long-term reproducibility of normalized peak areas for amino acid in 
DMEM:F-12 base media analyzed on the AAFA Generation I.  Data are 
collected approximately every 45 s continuously for 2 hours. 
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voltage timing, allowing time for the valve to completely resume the gating flow before 

separation was started.  If this were not done, a much longer injection band, or a double 

injection would result. 

The coupling of the separation capillary to the capillary extension proved very 

difficult with the Generation I detector.  In order to have the detector end of the 

separation capillary at a high voltage, a second capillary of much larger internal diameter, 

100 μm versus 10 μm, was coupled to the end of the separation capillary.  Since the 

larger diameter has a lower electrical resistance, almost all of the voltage drop, and 

therefore electric field, is isolated to the separation capillary.  The coupling of these two 

capillaries is of utmost importance since high voltage easily leaks out of all but the 

tightest seals.  In addition, the coupling needs to be easily removable and use as little 

capillary space as possible, since any additional length needed for coupling would result 

in a reduced electric field in the separation capillary.  A short 1 cm piece of Teflon 

tubing, of slightly smaller ID than the OD of the capillaries, provides a very tight seal.  

Unfortunately, it was unreliable, frequently emitting corona discharge from around the 

edges of the coupler.  The corona discharge produced large and erratic noise in the signal 

from the detector.  Several different designs were attempted to solve this, but ultimately it 

was decided that elimination of the extension was necessary.  The only way to do this is 

to orient the capillary vertically, inserting the end of the separation capillary directly into 

the high voltage buffer.  To this end the Generation II instrument. 

The detector optical train for the Generation II AAFA is horizontal, and 

composed of optical components rather than the microscope of Generation I.  This 

configuration allows the capillary to be mounted vertically, which provides for direct 
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contact between the separation capillary and the high voltage buffer.  This direct contact 

eliminates the need for any high voltage coupling of capillaries and any leaks from the 

coupling. 

The original design for the capillary holder did not include the SF6 box.  The 

capillary holder was attached to the XYZ movement and the capillary was inserted into a 

vial in which the high voltage line was placed.  This design resulted in severe arcing from 

the buffer to the objective along with extensive corona discharge.  Several geometries of 

buffer vials were attempted and some were successful in eliminating arcing, but none 

were able to eliminate corona discharge.  Due to these issues, it was decided to encase the 

high voltage buffer and separation capillary in a box which could be filled with SF6, a gas 

with approximately three times the dielectric strength and with much higher resistance to 

corona discharge than air.93  This design was used throughout the rest of this dissertation. 

An example electropherogram for the Generation II AAFA instrument is shown in 

Figure 33.  The order of elution, run time, and signal to noise ratio is comparable to the 

Generation I AAFA.  The peak heights have changed slightly, but can be attributed to 

older cell media which has reduced levels of glutamine and increased levels of glutamic 

acid, and a sharper arginine peak, thus increasing the height while maintaining similar 

area.  There are slight differences in resolution of peaks.  Serine and glutamine were 

resolved from asparagines and threonine, however valine and aspartic acid were not 

resolved.  Phenylalanine and leucine were partially resolved, but not quantitatively.  

Lastly, fluorescein was added as a second internal standard, which allows for 

normalization independent of derivatization.  However, it was never used, as the RSD 
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was greater for the fluorescein peak than for other amino acids.  The reason for this is not 

understood. 

 

It has frequently been observed that the electropherograms decrease in resolution 

and increase retention time during extended experimental runs.  The degree to which this 

occurs and the length of time it takes it to occur vary from experiment to experiment.  

During experiments with the Generation II AAFA, the severity and short time of onset of 

symptoms prevented further experimentation until a solution was found.  After an 

 

Figure 33.  Example separation of primary amino acids in DMEM:F-12 base cell media and 
internal standards using the using Generation II AAFA.  An unknown derivatization product 
is marked as X. 
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extensive trial and error process, it was discovered that the SDS brand was the source of 

the problem.  The old brand of SDS, electrophoresis grade from Fisher Scientific, was 

replaced with SigmaUltra grade from Sigma-Aldrich.  After making the change, the long-

term reproducibility increased dramatically, and there was very little increase in retention 

time or decrease in resolution over a period of greater than 2 hours of continuous use. 

The reproducibility of the Generation II AAFA was determined by collecting 

electropherograms every 1.0 min for over 2.5 hrs.  The normalized % RSD of amino acid 

peak areas in DMEM:F-12 base media is shown in Table 11.  The RSD is below 10% for 

13 of the 15 amino acid peaks, and below 5% for 8.  The two peaks which have an RSD 

of greater than 10%, aspartic acid and cystine, have peaks that are so small, they are 

barely above the baseline, making accurate quantitation problematic.  During this test, no 

internal standards were added with the derivatization reagents, so normalization was done 

Table 11.  Long-term reproducibility of normalized peak areas for amino acid in 
DMEM:F-12 base media analyzed on the AAFA Generation II.  Data are collected 
approximately every 60 s continuously for over 2.5 hours. 
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with glycine, with glycine being normalized with isoleucine.  The reduction in % RSD in 

Generation II vs Generation I is largely attributable to the change in SDS brands.   

The %RSD of peak area of the Generation II AAFA from Table 11 was compared 

to the expected change in amino acid concentration caused by insulin and glucagon found 

in Table 2.  The N required for the standard error of the instrument reproducibility to be 

less than the change imparted by insulin or glucagon is shown in Table 12. 

Since the desired time resolution of the AAFA is 2 min as shown in table 1, an N 

of 3 would be only 2.25 minutes, very close to the desired 2 minutes.  Nine out of 11 

amino acids demonstrate detectability in less than two minutes for insulin.  Five out of 11 

Table 12.  Percent change in the amino acid concentration of DMEM:F-12 media caused 
by flux change upon exposure to insulin or glucagon20 from table 2.  The %RSD of peak 
areas from table 10, and the calculated N required for the standard error of RSD to be less 
than the change expected by insulin or glucagon  
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amino acids demonstrate detectability in less than two minutes for glucagon.  This 

demonstrates that the AAFA should be able to detect changes in amino acid 

concentration due to cellular perturbations for several amino acids. 

Some of the variability in amino acid elution order and peak resolution between 

Figure 32 and Figure 33 are due to differences between the setup of the Generation I and 

II AAFAs.  However, some differences are day-to-day and capillary-to-capillary 

variation.  Before an experiment is begun, several test electropherograms with differing 

voltages are collected.  The voltage which produces the best separation of amino acids of 

interest is the voltage used that day.  For Generation I this was typically 20-24kV; for 

Generation II this was typically 14-20kV.  The reason for the difference between 

generations is not known since both have the same electrophoresis buffer and had very 

similar capillary lengths.  If the applied voltage was too low, the peaks were very broad 

and started to overlap, and separation time was significantly longer.  If the applied 

voltage was too high, the separation time was so short that the peaks started overlapping. 

A calibration curve of selected amino acids is shown in Figure 34.  The 

calibration curves were generated from a single solution consisting of diluted amino acid 

standards (Thermo Scientific) or amino acids dissolved from solids (Sigma-Aldrich).  

The amino acids were chosen due to intermediate (isoleucine), or low (aspartic acid), 

peak areas in electropherogram of cell media.  The variability in slope indicates that there 

is variability in the intrinsic fluorescence sensitivity or derivatization efficiency of the 

various NDA/CN- derivatized amino acids. 
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A table of sensitivities, intercepts, and correlation coefficients for all peaks is 

shown in Table 13, sorted by increasing sensitivity.  There was variability in the 

sensitivities of the various amino acids.  Lysine, aspartic acid, glutamic acid, and cystine 

have very low sensitivities.  Arginine and phenylalanine + leucine have very high 

sensitivities.  All other amino acids have similar sensitivities.  Due to the low sensitivity, 

lysine and aspartic acid also have much lower correlation coefficients.  These amino 

acids will most likely not be able to discern concentration changes caused by cellular flux 

form the MBR    

 

 

 

Figure 34.  Calibration curves of isoleucine and aspartic acids using Generation II 
AAFA. 
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Conclusion 

The design of a micellar electrokinetic chromatography instrument for fast 

separation of amino acids in cell media was presented.  While the instrument began as a 

slight modification of a published instrument design, the instrument required significant 

changes due to difficulties with the flow-gate valve, and not being able to implement a 

separation capillary extension.  This led to the development of a completely new design 

for the instrument. 

The instrument is designed to take cell effluent and monitor changes to amino 

acid consumption on-line in sub-minute time scales.  Generation II can separate 19 

primary amino acids into 15 distinguishable peaks.  This represents 12 amino acids with 

Table 13.  Calibration curve parameters for Generation II AAFA.  The slope is the sensitivity, 
and R2 is the Pearson’s correlation coefficient.  Error is the ± 95% confidence interval. 
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baseline separation and 3 peaks that contain 2 or 3 amino acids which co-elute.  Cell 

media, which is continually run for 2.5 hrs, collecting an electropherogram every 1.0 

minutes, demonstrate RSD of peak areas of less than 10% for all but two peaks. 

 The high resolution of separation and high reproducibility of 

electropherograms indicate that analysis of cell effluent from the MBR could be 

undertaken.  Amino acids with a high reproducibility and high sensitivity such as 

glutamine, and arginine will be very sensitive to small changes in concentration and 

changes in concentration from basal metabolism or application of a toxin should be 

discernable.  Amino acids with a low reproducibility and sensitivity such as aspartic acid 

and lysine will not be able do discern the small concentrations changes expected. 
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CHAPTER V 

 

MEASURING ONLINE CELLULAR AMINO ACID FLUX FROM A 
MICROBIOREACTOR USING THE AMINO ACID FLUX ANALYZER 

 
 
 

Introduction 

 To demonstrate the feasibility of using amino acid flux to observe changes in 

metabolism, compounds that cause a known change in cellular metabolism were selected 

in order to observe the changes in amino acid flux.  To that end, aminooxyacetate (AOA) 

and sodium arsenite (AsO2
-) were selected.  AML12 hepatocytes were seeded into the 

MBR and then perifused with the compounds.  The changes in amino acid flux were 

determined online using the AAFA. 

 AOA is a well-studied general transaminase inhibitor which effects enzymes 

in both the cytoplasm and mitochondria.95  In general, the inhibition is accomplished in 

enzymes requiring vitamin B6 by covalently binding to pyridoxal 5’-phosphate 

(PLP).96,97  As a result, PLP is no longer able to bind amino acids and transamination is 

halted.  

AOA has many effects on hepatocytes that encompass a variety of different 

processes in which amino acids play a role.  AOA completely inhibits the urea cycle by 

stopping mitochondrial transaminases.95  AOA significantly inhibits protein synthesis and 

eliminates any stimulatory effect by lactate, pyruvate, and amino acids on protein 

synthesis.98  AOA also significantly reduces gluconeogensis.95,99,100  However, it does not 

significantly effect overall energy production in the cell.95,98  AOA was chosen as it  
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affects many processes which employ amino acids and thus it should also effect cellular 

amino acid fluxes. 

 AsO2
-, which is arsenic in the +3 oxidation state, has long been recognized as 

a toxic agent.  It was even used during WWI in chemical weapons.101 The major effect of 

AsO2
- is inhibition of 2-oxo-acid dehydrogenase complexes such as pyruvate 

dehydrogenase, and alpha-ketoglutarate dehydrogenase by binding to the two sulfhydryl 

groups of lipoamide.101-103 This stops the TCA cycle and prevents cellular respiration.  

Since many amino acids are metabolized to TCA cycle intermediates and pyruvate, AsO2
- 

should affect cellular flux of amino acids. 

 In this chapter, we measured amino acid concentration online from the 

effluent of AML12 hepatocytes in the MBR.  The cells were then exposed to either AOA 

or AsO2
- and the change in the concentration caused by the toxin was then observed.  

Finally, the change in concentration caused by AOA was compared to that due to AsO2
-, 

and discrimination between the effects was made.  

 

Methods 

 

Combining the MBR and AAFA 

The MBR is used as described in Chapter 3 from the standpoint of the design, 

procedure for seeding of cells, and the setup of the perifusion.  However, the input and 

output have been modified.  The input is from a valve that can switch between five 

different solutions entering into the MBR.  Only two solutions were employed in the 
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study.  The output from the MBR is directed into a second valve so the effluent can be 

analyzed online by the AAFA, rather than offline by HPLC.  

In chapter 4, the AAFA was only used to analyze base cell media containing a 

known composition of small molecules.  Cell effluent, on the other hand, contains 

protein, which adsorb to the walls of fused silica, leading to band broadening and 

complete loss of resolution of separated amino acids.  To circumvent this problem, the 

effluent was dialyzed using a microdialysis probe.  This technique eliminates small 

molecules from the media while still providing capability for online analysis.  A CMA 11 

microdialysis probe, along with tubing and adapters, all from CMA Microdialysis, was 

used.  The probe was inserted into a 22-gauge needle, which was connected to a rotary 

valve, see Figure 35.  The sample flows into the needle and around the dialysis probe and 

flows out of the needle to waste.  The dialysate out contains small molecules from the 

effluent, but does not contain any proteins.  Since the flow rate of the dialysate through 

the probe and the sample around the probe remains constant, the percent recovery, which 

is the percent concentration of the sample in the dialysate, will remain constant.  

Therefore, any change in concentration of amino acids in the dialysate should be 

indicative of a concentration change in the sample. 
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 The AAFA was used as described in Chapter 4 with modification to the flow rate.  

The amino acid solution entering the AAFA is dialyzed at 1.0 μL/min with the dialysate 

output containing a single-digit percentage of amino acids from cell media.  The lower 

concentration of amino acids in the dialysate in comparison to cell media required 

 

 

Figure 35.  Diagram of online microdialysis of amino acid solutions.  The sample flows 
out of the valve chamber into a hole in the valve body, and then into the needle into 
which a microdialysis probe is inserted.  The sample then flows around the microdialysis 
probe and out the needle to waste.  The dialysate flows down the inner cannula which is 
in the shaft of the probe.  The dialysate flows back concentrically in contact with the 
dialysis membrane where small molecules diffuse in from the sample.  The dialysate 
returns outside the inner canula, back though the shaft of the probe, and to the outlet.  
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lowering the flow rate of the derivatization reagents in order to increase the concentration 

of derivatized amino acids.  The new flow rates were 1.3 μL/min for the KCN and 0.7 

μL/min for the NDA solution.  The reaction capillary was shortened to 20 cm of 250 μm 

ID fused silica, to provide an internal volume of 10 μL which maintains the same 

derivatization reaction time of 200 s.  

 

Experimental setup 

Each AAFA experiment provides quantization of amino acids in three different 

solutions.  A control media was used to provide a reference value for the starting 

concentration of each amino acid.  The basal metabolism of the cells was determined by 

perifusing the MBR with regular media and analyzing the effluent.  A test compound, 

either 0.5 mM AOA or 0.2 mM AsO2
- added to the cell media was then perifused through 

the MBR and the change in the metabolism is observed by analyzing the effluent.  The 

fluidics which brings these four solutions to the AAFA is shown in Figure 36.  The 

details of the AAFA instrument are presented in Chapter 4. 
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Figure 36.  Experimental setup for AAFA experiments.  Two rotary valves 1 and 2 are 
used to control flow to the microdialysis probe (MDP) and finally to the AAFA for 
analysis.  All media is continuously flowing at 0.5 μL/min. Starting conditions are shown 
in panel A, where control media (green) flows to the MDP at valve 1 and cell effluent 
(red) flows to waste.  The AAFA analyzes the control dialysate output.  Valve 1 is then 
switched to place the system in mode B, where cell effluent is diverted to the MDP for 
AAFA analysis.  Valve 2 is then switched to achieve mode C.  The test compound (blue) 
then perifuses the MBR and the effluent flows to the MDP and the AAFA records the 
effect of the test compound.  
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Results and Discussion 

 

Delay and Response Times of Solution Switching 

Before experiments were run with live cells, the instrument was tested with an 

MBR without cells to determine the delay and response time of switching between 

solutions as shown in Figure 37.  To observe the appearance and disappearance of each 

solution, cell media spiked with an amino acid was loaded into the experimental setup 

shown in Figure 36.  A different amino acid was spiked into each solution.  The delay 

time is defined as the time from when the valve is switched to the time when the signal 

changes by >10%.  The response time is defined as the time from when the new solution 

starts being analyzed to the time when the signal has reached 90% of the final response.  

Electropherograms were analyzed as described in Chapter 4.  The delay time for the first 

valve switch, represented by proceeding from Figure 1A to Figure 1B, was found to be 9 

minutes and the response time was found to be 8 minutes.  The delay time for the second 

valve switch, represented by Figure 1B to Figure 1C, was found to be 37 minutes and the 

response time was found to be 10 minutes.  The delay times strongly agree with the 

predicted times which were calculated from the volume of the MBR, ports, and tubing, at 

the given flow rates.  The predicted delay time for the first valve switch is 8.4 minutes 

determined from the flow rate and volume of the flow-through volumes of the port before 

the dialysis probe, the output of the dialysis probe, tubing from the dialysis probe to the 

derivatization cross, and time in the derivatization capillary.  The predicted delay time for 

the second valve switch is 38.7 minutes which is calculated from the flow rate and 

volume of the tubing from valve 2 in Figure 36 to the MBR, the volume of the MBR, and 
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inlet and outlets, the tubing from the MBR to valve 1, and the time for the first valve 

switch. 

Instrumental Achievements 

In Chapter I, several instrumental specification goals were stated.  These goals are 

compared to actual measured specifications as stated in Table 14. 

 

Figure 37.  The response and delay times of each of the valve switches were 
visualized by using media spiked with an amino acid.  At A-B, referring to Figure 36, 
valve 1 was switched from control to effluent.  The effect of the switch was observed 
at A-B*.  At B-C, valve 2 was switched from effluent to test compound.  The effect of 
the switch was observed at B-C*.  The time from A-B to A-B*, and B-C to B-C* 
represents the delay time of the valve switches.
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MBR parameters are met or nearly so with cell number, MBR volume, and media 

transit time close to the specified values.  The original goal of 1 × 105 cells was only 

designed to be an approximate guideline, so having doubled the number of cells is not of 

concern.  The AAFA goals were met or exceeded for most values.  The inject-to-inject 

time was less than half the the goal, and all but two amino acids were within the 

reproducibility goals.  Those two amino acids had particularly small peaks, so accurate 

quantitation proved difficult. 

Instrument specifications regarding attachment of the MBR to the AAFA were 

not met.  The delay time of 37 minutes was more than seven times higher than the goal 

and the response time was five times higher.  The low flow rate of 0.5 µL/min proved 

difficult to transport quickly in spite of using very small ID tubing of 100 µm.  Smaller 

tubing resulted in too much backpressure and resulted in leaks at the MBR.  Possible 

solutions are creating a larger MBR or integrating stop-flow perifusion.  A larger MBR 

will require larger flow rates.  Larger flow rates will be able to be transported faster and 

Table 14.  MBR and AAFA specification goals and measured 
parameters. 

Characteristic Goal Actual 
MBR Cell Number ~ 1 × 105 ~ 2 × 105 

MBR Volume < 5 µL 4 µL 
MBR Media Transit Time < 5 min 8 min 
Delay Time From MBR to 

AAFA 
< 5 min 37 min 

Response Time < 2 min 10 min 
AAFA Inject-to-Inject Time < 2 min 30-45 s 

Electropherogram 
Reproducibility (RSD) < 15% 

9 - < 5% 
4- 5-15% 
2 - ≥ 15% 
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with smaller pressure since volume contained withing tubing increased with the radius 

squared, but the pressure increases with the radius to the fourth power according to 

Poiseuille’s Law.  Stop-flow perifusion will allow accumulation of changes in the 

medium during the stop period that will be quickly swept to the instrument during the 

flow period. 

 

Normalized Raw Peak Areas 

Using this experimental setup, three MBR experiments with AML12 hepatocytes 

seeded in the MBR with AOA were completed.  The results for glutamine are shown in 

Figure 38, alanine in Figure 39, and arginine in Figure 40 are shown as examples.  

Graphs were made for all resolvable amino acids. 
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Figure 38.  Effects of AOA on normalized glutamine peak areas for three independent 
experiments (A-C).  Starting condition is control media.  A rotary valve is switched at the 
beginning of each dashed line.  The dashed line represents the delay time from when the 
valve is switched to when the solution starts being analyzed by the AAFA.  AAFA 
analysis occurs during the solid line.  The dotted line represents the response time of the 
AAFA, when solutions are transitioning from one to another.  

A 

B 

C 
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Figure 39.  Effects of AOA on normalized alanine peak areas for three 
independent experiments (A-C).  Starting condition is control media.  A rotary 
valve is switched at the beginning of the dashed line.  The dashed line 
represents the delay time from when the valve is switched to when the solution 
starts being analyzed by the AAFA.  AAFA analysis occurs during the solid 
line.  The dotted line represents the response time of the AAFA, when 
solutions are transitioning from one to another.
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Figure 40.  Effects of AOA on normalized arginine peak areas for three independent 
experiments (A-C).  Starting condition is control media.  A rotary valve is switched at the 
beginning of the dashed line.  The dashed line represents the delay time from when the 
valve is switched to when the solution starts being analyzed by the AAFA.  AAFA 
analysis occurs during the solid line.  The dotted line represents the response time of the 
AAFA, when solutions are transitioning from one to another. 
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The data show that all three experiments demonstrate a similar trend.  The 

glutamine experiments all showed a decrease in peak area for the cell effluent as 

compared to the control media, then a further decrease when AOA was applied, 

indicating that the flux rate increased upon application of AOA.  The alanine 

concentration in the cell effluent was higher than in the control media, but, then 

decreased back to close to basal levels during application of AOA.  The arginine 

concentration decreased relative to control during cell effluent measurement, but 

decreased even more strongly during AOA application.   

A second inhibitor, AsO2
-, was also utilized.  AsO2

- is an inhibitor of oxo-acid 

dehydrogenases.  This includes pyruvate dehydrogenase, oxoglutarate dehydrogenase, 

and the branched chain oxo-acid dehydrogenases.  Results are shown Figure 41, for 

glutamine, Figure 42, for alanine, and Figure 43 for arginine. 
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Figure 41.  Effects of AsO2
- on normalized glutamine peak areas for three independent 

experiments (A-C).  Starting condition is control media.  A rotary valve is switched at the 
beginning of the dashed line.  The dashed line represents the delay time from when the 
valve is switched to when the solution starts being analyzed by the AAFA.  AAFA 
analysis occurs during the solid line.  The dotted line represents the response time of the 
AAFA, when solutions are transitioning from one to another. 
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Figure 42.  Effects of AsO2
- on normalized alanine peak areas for three independent 

experiments (A-C).  Starting condition is control media.  A rotary valve is switched at the 
beginning of the dashed line.  The dashed line represents the delay time from when the 
valve is switched to when the solution starts being analyzed by the AAFA.  AAFA 
analysis occurs during the solid line.  The dotted line represents the response time of the 
AAFA, when solutions are transitioning from one to another. 
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Figure 43.  Effects of AsO2
- on normalized arginine peak areas for three independent 

experiments (A-C).  Starting condition is control media.  A rotary valve is switched at the 
beginning of the dashed line.  The dashed line represents the delay time from when the 
valve is switched to when the solution starts being analyzed by the AAFA.  AAFA 
analysis occurs during the solid line.  The dotted line represents the response time of the 
AAFA, when solutions are transitioning from one to another. 
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Most of the amino acids again behaved similarly in all three experiments.  The 

glutamine concentration in the effluent was lower than in the control media, and further 

still with application of AsO2
-.  The alanine concentration increased with the effluent and 

decreased upon application of AsO2
-, but the concentration only decreased to the basal 

metabolic level at the end of run in 2 out of 3 experiments.  The arginine concentration 

decreased almost to 0 for the effluent for 2 of the 3 experiments, the remaining 

experiment showed a moderate decrease that continued to moderately decrease with 

AsO2
- exposure. 

After inhibitor exposure, an amino acid standard was analyzed by the AAFA 

where the solution contained a known concentration of amino acids for the purposes of 

calibration.  This solution was not used during the data analysis for a variety of reasons.  

The standard frequently did not give steady responses for many of the amino acids and 

the observed concentration in the control media strongly disagreed with the nominal 

concentration in the base media; sometimes by more than a factor of two.  Since absolute 

quantitation of amino acids was not needed for this study, the standards were not used.   

 

Data Summary 

A summary of responses for select amino acids, normalized to control media, 

illustrating the effect of AOA and ASO2
- is shown in Figure 44.  The values were 

calculated by pooling points from each of the solution types measured, and dividing them 

by the cell media control.  Error is expressed as ± the 95% confidence interval of the 

data. 
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Figure 44.  Effect of 0.5 mM aminooxyacetae (A) and 0.2 mM AsO2
- (B) on peak areas 

relative to control media for three separate experiments.  The error bars before the basal 
metabolism is the error in the control media.  Basal cellular metabolism is shown in 
shades of red and AOA or AsO2

- are shown in shades of blue.  Error bars are the ±95% 
confidence interval. 
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The remainder of the amino acids are shown Table 15 for AOA and Table 16 for AsO2
-. 

Table 15. Effect of 0.5 mM AOA on peak areas relative to cell media control for three 
separate experiments.  Control is normalized to unity after averaging.  Basal and AOA 
are listed as fractional change relative to control. 
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Table 16.  Effect of 0.2 mM AsO2
- on peak areas relative to cell media control for three 

separate experiments.  Control is normalized to unity after averaging.  Basal and AOA 
are listed as fractional change relative to control. 

 



 126

 

  

There were large changes in four amino acid peak areas between the basal 

metabolism and the test compound in which the change was in the same direction for 

each of the three experiments.  This indicates that the AAFA was able to reproducibly 

detect in less than one hour, a change in amino acid flux in AML12 hepatocytes caused 

by two different compounds.  The amino acid flux change caused by both AOA and 

AsO2
- are similar in direction.  The peak areas for serine, glutamine, alanine, and arginine 

increase, thus indicating an overall increase in the influx of those amino acids.  The area 

of glutamate decreases indicating and overall increase in the out flow of glutamate.  The 

magnitude of the change generally appears to be smaller for AsO2
- than for AOA.  

Calculating the magnitude of the change in amino acid flux upon exposure of AOA and 

AsO2
- then comparing the magnitudes will allow for statistically significant differences to 

be observed. 

 

Data Normalized to Basal Metabolism 

The data summary shown in the previous section was used to determine if there 

was a differential response between AOA and AsO2
-. The three replicates were tested 

with ANOVA and found to have larger variation between each replicate than with, 

therefore the data could not be combined as one large data set.  Instead, the only the 

average values for each replicate was used.  Figure 45 and Figure 46 demonstrate the 

magnitude of the change in peak areas caused by AOA and AsO2
-, respectively, by 

combining the three experiments and normalizing to the basal metabolism.  This was 
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done using three different mathematical methods.  The first, was the ratio of the test 

compound peak area to that for the basal metabolism for each experiment was averaged 

for the three experiments to quantify the effect of the test compound relative to basal 

metabolism.  The second, subtraction of the test compound from the basal metabolism for 

each experiment followed by averaging the differences, represents the absolute change in 

concentration of the amino acid when applying the test compound, as compared to basal 

metabolism.  The third, the difference between the peak areas for the test compound and 

that for basal metabolism, then divide by the basal metabolism, represents change in 

concentration when applying the test compound, relative to basal metabolism. 
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Figure 45.  Effect of comparing amino acid peak areas of effluent of AOA exposure to 
basal cell metabolism using three different mathematical analyses. A) AOA peak area 
divided by basal cell metabolism peak area, B) AOA minus basal cell metabolism, C) 
(AOA minus basal cell metabolism) divided by basal cell metabolism.  Error bars show ± 
the 95% confidence interval. 

B 

C 

A 
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Figure 46.  Effect of comparing amino acid peak areas of effluent of AsO2
- exposure to 

basal cell metabolism using three different mathematical analyses.  A) AsO2
- peak area 

divided by basal cell metabolism, B) AsO2
- minus basal cell metabolism, C) (AsO2

- 
minus basal cell metabolism) divided by basal cell metabolism.  Error bars show ± the 
95% confidence interval. 

A 

B 

C 
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Statistically significant differences, i.e. p < 0.05, between the peak areas of the 

basal metabolism and during AOA or AsO2
- exposure are true whenever the confidence 

interval does not cross the baseline.  Thus, glutamine, alanine, and arginine show 

significant changes upon exposure to AOA, and alanine upon exposure to AsO2
-.  For 

each case in Figure 45 and Figure 46, the confidence intervals were calculated by 

combining the confidence intervals that were already present for each of the three 

experiments with the confidence interval calculated by averaging the three experiments.  

This was done by propagating the errors of each of the data points, already present 

through the mathematical averaging used to generate the data.  In addition, confidence 

intervals were calculated from the deviation between the three experiments.  The 

propagated confidence intervals were combined with the calculated confidence intervals 

to get the total confidence interval for each amino acid. 

In order to demonstrate which amino acids exhibited a significant difference in 

response to AOA versus AsO2
-, p-values for a student’s t test for each amino acid for 

each of the three analysis methods are shown Table 17.  A p-value of <0.05 indicates a 

significant difference.  The p-values were calculated using the averaged data for each of 

the three experiments for AsO2
- and AOA. 
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The flux changes observed upon exposure to AOA is difficult to interpret 

metabolically.  Since AOA is a general transaminase inhibitor, and transaminases are the 

first step in metabolism of most amino acids, AOA would be expected to inhibit the 

uptake and release of amino acids.  As shown in Figure 44, with the exception of alanine, 

this was not the case, as indicated by the peak areas going farther from the control.  The 

cause of this is not fully understood, but might involve cellular feedback, perhaps from 

amino acid transporters.  Additionally, the concentration of AOA might not be optimized 

for this system.  The concentration used, 0.5 mM was taken from literature values using 

primary hepatyctes in totally different experimental setup.95  In future experiments, a 

dose-response experimets could be performed to optimize the concentration of AOA. 

Exposure to AsO2
- also affects amino acid flux in ways that are difficult to 

interpret.  AsO2
- effectively shuts down the TCA cycle by inhibiting entry by acetyl-coA 

as well as inhibiting α-ketoglutarate.  This would be predicted to increase anaerobic 

metabolism.  Thus amino acid that metabolize to pyruvate, such as alanine, glycine, 

Table 17.  P-Values calculated between AOA and AsO2
- for the various methods 

shown in figures 39-40. * indicates significant difference. 
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serine, tryptophan, cystine, and threonine, would be predicted to increase efflux from 

cells and thus have a higher concentration in effluent from the MBR.  Other amino acids 

would be inhibited and would be predicted to have less flux and thus the amino acid 

concentration in MBR effluent would be closer to control media.  This was not what was 

observed.  From Figure 46, the only amino acid demonstrating significant change in 

concentration was alanine, which decreased in efflux.  Like AOA, the cause for this 

inconsistency is not understood at this time, but could be due to dose discrepancies due to 

different experimental conditions than literature values where the concentration was 

derived.104.  The cause of the variations were not due to AOA or AsO2
- affecting the 

AAFA.  There was no change in the peak area of any amino acid upon analysis of control 

media with either AOA or AsO2- when compared to control media without addition of 

AOA or AsO2
- (data not shown).   

There was larger variation between each of the experimental three replicates than 

within each replicate for all amino acids in both the AOA and AsO2
- data, and hence 

showed a significant difference with ANOVA.  A one-way analysis of variance (ANOVA 

aka F test) computes the ratio of the variance between the means of several samples and 

the sum of the variance within each sample.  This value is compared to a table and if the 

ratio is larger than the value on the table, there is a significant difference between the 

different groups.  This was the case for each of my samples and as such all the values 

used in each of the replicates could not be combined into one data set.  Instead, only the 

means were used to calculate the confidence intervals.  

The experimental results indicate several areas of improvement which could be 

addressed to obtain better results for future experiments.  The delay time between 
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changing the media that cells in the MBR are exposed and the time the effluent reaches 

the AAFA needs to be reduced.  This could be addressed several ways such as increasing 

the size of the MBR chamber which allows for faster flow rates and thus faster transit 

time in tubing, or converting to stop-flow rather than continual perifusion.  Reducing the 

delay time should also cause a reduction in the response time, thus allowing more rapid 

changes in metabolism to be observed.  The choice of cell line needs to be reconsidered.  

AML12 cells were chosen because they are a hepatocytes cell line which have a high rate 

of amino acid metabolism for gluconeogenesis and the urea cycle.  However, the 

metabolism of immortalized cell lines are typically vastly different from primary cells.  

Therefore, use of primary hepatocytes would allow more predicable metabolism to be 

used as well as non-pharmacolical interventions to be used.  Insulin and glucagon cause 

known changes amino acid flux in long-term experiments and would therefore be ideal 

candidates to demonstrate the feasibility of the AAFA.20,105 

 

Conclusions 

The AAFA was able to reproducibly observe online changes in amino acid 

concentration caused by basal cell metabolism from cells in the MBR.  The basal 

metabolism was altered by exposure to 0.5 mM AOA or 0.2 mM AsO2
- and the change in 

the concentration in amino acids resulting from exposure to these compounds was able to 

be observed.  Furthermore, the results from Table 17 indicate that a difference in cellular 

amino acid flux from the application of AOA and AsO2
- can be observed online with the 

effluent of the MBR going to the AAFA.  The change was able to be discerned with 
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alanine and arginine in spite of the flux changing in the same direction for both 

compounds. 

Once changes to the MBR and AAFA are implemented, the results obtained from 

flux measurements from cellular perturbations should improve significantly.  Results 

could then be implemented to observe dynamic metabolic changes in the cell.  The results 

could be applied to metabolic flux analysis or similar techniques to quantitate dynamic 

intracellular fluxes.  Application of toxins with unknown metabolic effect could be 

applied to cells and combined with data from the MMP in order to obtain a larger view of 

the dynamic of metabolism within cells. 
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APPENDIX A 

 

LABVIEW PROGRAM FOR CONTROL AND AAFA AND DATA COLLECTION 

 

The program was written in LabVIEW by Jonathan Shackman at the University of 

Michigan, a graduate student of Dr. Robert Kennedy.  The program controls the high 

voltage power supply and the flow-gate valve while collecting the signal from the light 

detection module of the AAFA.  The front panel is shown in Figure 47.  The user inputs 

the post-injection delay, delay, injection time, ramp time, collection rate, separation time, 

separation voltage, and run delay and the electropherogram is displayed along with 

meters showing the voltage and current of the high voltage power supply.  The laser 

power meter was never utilized. 

 

Figure 47.  Front panel of the LabVIEW program which controls 
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A flow diagram showing in general how the program works is shown in Figure 

48. 

 

A portion of the block diagram of the LabVIEW program is shown in Figure 49.  

This portion inputs the user settings and sends them to the sub-VI Injection Pulses.  The 

output of Injection Pulses is a 2-D array which contains information to control the high 

voltage power supply and the flow-gate valve for injection.  The output is similar to that 

displayed in Figure 17.  The array is sent to the AO loop which actually outputs the 

settings to the valve and power supply.  The Time Delay function I added which allows 

the user to delay the start of the program after the start button is selected. 

  

 

 

 

 

Figure 48.  Flow diagram of LabVIEW program. 
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The block diagram of the Injection Pulses sub-VI is shown in Figure 50.  The top 

portion builds the array which controls the flow-gate valve while the bottom portion 

builds the voltage array.  I rewrote the flow-gate valve control.  Dr. Kennedy uses a 

solenoid valve which requires a constant voltage to be applied during the duration of the 

injection.  I use a rotary valve which is controlled by contact closure by a pair of opto-

isolators.  When a positive voltage is pulsed, one of the opto-isolators is closed which 

switches the valve.  When a negative voltage is pulsed, the second opto-isolator is closed 

 

 

Figure 49.  Block Diagram of LabVIEW program showing input, Injectin Pulses VI, 

and the AO loop. 
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which switches the valve back.  I also added the portion of the code which adds the post-

injection delay.  The power supply and valve control arrays are combined into a 2-D 

array which is the output of the VI. 

The block diagram of the rest of the main LabView program is shown in Figure 

51.  The bulk of figure contains the loop which displays the electropherogram and stores 

data as well as updates the voltage and current meters.  I had to change the conversion 

from input voltage to units of kV and µA.  After the electropherogram is completed (or 

the stop button is pushed or there is an error) the user is prompted to save the file.  

Previously the high voltage would remain at the level of the separation voltage during the 

file saving process.  I added code which zeroed the high voltage immediately after the 

data collection completed. 

 

 

Figure 50.  Block diagram of Injection Pulses sub-VI. 
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A second program which automates execution and collecting of multiple 

electropherograms was utilized during experimental runs.  The front panel is shown in 

Figure 52.  The program is identical to the one already presented accept that the program 

inputs the number of runs and time between runs and automatically saves each 

electropherogram. 

 

 

Figure 51.  Block diagram of LabView program showing AI loop and file saving. 
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Figure 52.  Front panel of extended run LabView program 
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