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CHAPTER I 

 

INTRODUCTION 

 

The definitive endoderm gives rise to the epithelial lining of the digestive, respiratory, 

and urogenital tracts and associated organs. Processes such as gas exchange, food digestion, 

nutrient absorption, and waste removal functionally depend on these endodermal tissues. 

Congenital defects, chronic disease states, and metaplasia within endodermal tissues cause 

significant challenges to human health worldwide. Careful study of the developmental processes 

that lead to the formation of endodermal organs can help the generation of new treatments for 

these disease conditions. One potential emerging treatment for these conditions involves the 

generation of functional differentiated cell types from pluripotent cell sources (via in vitro 

directed differentiation) to replace damaged or non-functional tissues. The basis for this type of 

treatment is a sophisticated understanding of the development of endodermal organs, from the 

pluripotent stem cell stage into the properly terminally differentiated cell types. 

The pancreas is an endodermally derived organ with two major functional compartments, 

exocrine and endocrine. The exocrine pancreas, composed of acinar and duct cells, secretes and 

carries digestive enzymes (acinar cells) and bicarbonate (duct cells) into the duodenum to aid in 

food digestion and de-acidify contents released from the stomach. The endocrine pancreas is 

composed of five principal cell types – alpha (glucagon-secreting), beta (insulin), delta 

(somatostatin), epsilon (ghrelin), or PP (pancreatic polypeptide) – arranged in islets of 

Langerhans that regulate metabolism by secreting hormones into the bloodstream. Loss or 

dysfunction of the β-cell in the endocrine pancreas causes the disease diabetes. Both type I and 

type II diabetes result in the inability to generate sufficient insulin, which is secreted by the β-
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cell to regulate blood sugar levels. In type I diabetes, β-cells are destroyed by auto-immune 

attack leading to a complete lack of insulin-producing cells in the patient’s pancreas. Type II 

diabetes generally develops due to insulin resistance in peripheral tissues. Type II diabetes 

patients have insulin-producing β-cells, but cannot produce enough insulin to properly regulate 

blood sugar levels. The disease incidence of type II diabetes is rapidly increasing in the western 

world due to poor diet and lack of exercise, such that there is a significant need for better, longer-

lasting treatments for diabetes.    

As mentioned above, one still-hypothetical treatment for diabetes is to replace lost or 

dysfunctional pancreatic β-cells with new β-cells to bolster the production of insulin. Treatment 

of diabetes with bona fide β-cells has many potential benefits over the current, most broadly used 

treatment for diabetes – patient-monitored insulin administration. Insulin is only one factor that 

is produced by β-cells that impacts overall health. By supplying functional β-cells, they would 

contain all these necessary molecular components (c-peptide, amylin, etc.) in addition to insulin. 

β-cells also would respond to changes in blood sugar levels in a more physiological manner 

compared to the blunt insulin doses given by the patient. Supplying functional cell types to 

patients would also eliminate the need for a motivated patient to properly monitor blood sugar 

levels to control the disease. In addition to learning how to generate new sources for functional 

β-cells, the status of autoimmune attack in type I diabetes patients and lifestyle changes in type II 

diabetes patients will still need to be addressed before these treatments can be a successful 

therapy for patients. 

 Cadaveric islets, replication of pre-existing β-cells, transdifferentiation of other cell 

types into β-cells, or generating new β-cells from pluripotent cell sources are all potential ways 

of providing the patient with a fresh complement of functional β-cells. Given the scarcity of 
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cadaveric islets and how difficult it is to genetically modify cells within the human body in a 

clinically relevant manner, the generation of β-cells from pluripotent cell sources, such as human 

embryonic stem (hES) cells and induced pluripotent stem (iPS) cells, is perhaps the most 

promising way to generate new functional β-cells for clinical use. 

The generation of functional β-cells from pluripotent cell sources is a complex 

developmental biology problem. The most common-sense way to generate a β-cell from a 

pluripotent cell source is to transition the pluripotent cells through developmental states 

mimicking those found during embryogenesis leading to the generation of β-cells. Known 

developmental progenitor states that lead to the generation of β-cells, from earliest to latest, 

include definitive endoderm, regionalized posterior foregut, pancreatic progenitors, pancreatic 

endocrine progenitors, and finally, committed and differentiated pancreatic β-cells. Even the 

most advanced directed-differentiation protocols fail to produce large numbers of functional, 

glucose-responsive β-cells.  Instead these protocols generate low numbers of non-functional, 

multi-hormonal pancreatic endocrine cells (Kroon et al., 2008). The inability to generate large 

numbers of functional β-cells is likely due to our incomplete knowledge of the important cues 

required during various developmental stages to generate a functional β-cell.  Another problem 

with current studies is that they solely focus on the generation of β-cells. It may be necessary to 

generate the entire islet as organoids, including other endocrine cell types and support cells like 

the neural crest and pancreatic mesenchyme in order to generate fully functional β-cells. 

Careful genetic studies using developmental models is one way to further our 

understanding of the factors that can deterministically trigger the correct series of progenitor-

precursor-differentiated transitions that eventually lead to functional, mature pancreatic β-cells. 

The main focus of my thesis is to understand the role of the transcription factor Ptf1a in the 
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acquisition of organ identity and in the control of cell fate choice during pancreas organogenesis.  

Ptf1a is a basic helix-loop-helix transcription factor that is specifically expressed within 

pancreatic progenitors during early endodermal development. In subsequent stages, Ptf1a 

expression is maintained within multipotent progenitor cells in the growing pancreatic bud and, 

later, in all developing acinar cells (Krapp et al., 1998). Ptf1a is one of the components of a 

trimeric transcriptional activator complex, PTF1, which also contains a canonical E-protein (E12, 

E47, HEB) and the downstream mediator of Notch signaling, RBPJk (also referred to as CSL) 

(Beres et al., 2006).  

Both Ptf1a expression and its interaction with RBPJκ are necessary for pancreatic 

specification:  endodermal progenitors almost completely fail to be specified to the pancreatic 

lineage and become productively incorporated into the multipotency progenitor programs of 

adjacent organ primordia such as the bile duct and intestine in these conditions (Kawaguchi et 

al., 2001; Masui et al., 2008).  Ptf1a is also required to determine interneuron cell types in other 

non-endoderm organ systems including the retina, cerebellum, and spinal cord. In the absence of 

Ptf1a in these organs, cells that would normally adopt Ptf1a-controlled inhibitory interneuron 

cell fates differentiate into other neural cell lineages. For example, in the cerebellum, Ptf1a is 

required to specify GABAergic interneurons from the ventricular zone. In the absence of Ptf1a, 

these cells adopt an excitatory (glutamatergic) cell fate (Glasgow et al., 2005; Hoshino et al., 

2005; Fujitani et al., 2006).  Misexpression of Ptf1a in various model organisms has addressed 

the complementary issue: to what degree can Ptf1a dominantly control cell identity (Huang et al., 

2008; Jusuf et al., 2011; Lelièvre et al., 2011).   Ectopic expression of Ptf1a in retinal progenitor 

cells showed that Ptf1a is sufficient to determine the horizontal and amacrine cell fates (both of 

these cell types are lost in the absence of Ptf1a) over ganglion and photoreceptor cell fates.  
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The knockout phenotype of Ptf1a, and the expression pattern of Ptf1a during later 

pancreas development, implicates Ptf1a as an important specifier of cell identity during many 

stages of pancreas development.  In the results sections of my thesis, I will detail the generation 

and use of genetic systems to modify or eliminate the expression of Ptf1a during pancreatic 

specification and organogenesis to explore its instructive role in these processes. To provide 

context for the role of Ptf1a during pancreatic development, the next portion of this introduction 

will detail the specification and regionalization of definitive endoderm, which gives rise to all 

gut-derived organs in the adult. 

 

Endodermal Specification 

The definitive endoderm is formed by the ingression of epiblast cells through the 

primitive streak of the gastrulation-stage mouse embryo. Egressing endodermal progenitor cells 

incorporate into (and displace most of) the visceral endoderm, a single-layered epithelium 

beneath the epiblast, by single-cell intercalation (Kwon et al., 2008). The first epiblast cells to 

enter the primitive streak give rise to medial and lateral anterior endoderm (and mesoderm), 

while progenitors that enter the primitive streak at later stages give rise to more posterior 

endoderm (Lawson et al., 1986; Lawson and Schoenwolf, 2003). By the end of gastrulation, the 

definitive endoderm is a single-layered epithelial sheet residing on the outside of the embryo. 

Some visceral endoderm progenitors are retained within definitive endoderm and may give rise 

to a small portion of embryonic (as opposed to extraembryonic – the fate of most of the 

displaced visceral endoderm) structures (Kwon et al., 2008).  Near the completion of 

gastrulation, the endodermal sheet becomes shaped into pockets at the anterior and posterior end 

of embryo: the foregut and hindgut pockets, respectively. The endodermal tube is completed by 

the caudal and rostral spread, respectively, of the foregut and hindgut pockets – zippering has 
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been suggested as an appropriate term for this process, similar to the neural tube. As a whole, the 

formation of a nascent endodermal cylinder, growth of the lateral plate mesoderm, and the 

turning of the mouse embryo transform the endoderm from a simple sheet on the outside of the 

embryo to an internal tube (Fig. 1.1). 

 

Endodermal Regionalization 

The following description of endodermal specification, regionalization, and 

differentiation will thematically emphasize the coordination of these processes by the sequential 

activation of transcription factors, as these molecules were the focus of my thesis.  Less will be 

presented about the specific detailed roles of individual signaling molecules, although there will 

be some description of these factors when relevant to describing the expression or behavior of 

transcription factors. 

During definitive endoderm specification (for a detailed review see, Grapin-Botton and 

Constam, 2007) a highly evolutionarily conserved gene regulatory network controlled by 

transcription factors (such as Mixl1, Sox17, Foxa2, Gata4/6, and Eomes) is enacted to ensure the 

segregation of the endodermal progenitors from mesodermal progenitors and promote 

endodermal progenitor survival (Hart et al., 2002; Kanai-Azuma et al., 2002; Ang and Rossent, 

1994; Sasaki and Hogan, 1993; Morrisey et al., 1998; Jacobsen et al., 2002; Russ et al., 2000). 
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Figure 1.1 Morphogenetic changes in the endoderm during development. Endoderm 
is yellow in all schematics. (A) In the E8.25 embryo, the endoderm forms two pockets at the 

respective anterior and posterior end of the embryo.  “Zippering” of the endodermal sheet 

changes the endoderm into a gut tube. Endodermal progenitors are always in close contact with 

different [as discussed] mesodermal tissues. The ventral foregut is (transiently?) located close to 

the cardiac mesoderm (CM, arrow), while the dorsal foregut is in proximity to the notochord (N, 

arrow). FP, foregut pocket; HP, hindgut pocket (B) E9-9.5 embryo. Budding of many 

endodermal organs starts around E9.5. (C) E10.5 posterior region of the foregut. By E10.5, many 

organ buds are proliferating substantially and growing into the surrounding mesenchyme. lu, 

lung; li, liver; vp, ventral pancreas; dp, dorsal pancreas; gb, gall bladder; int, intestine. 
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During later stages of endodermal development, many of these transcription factors have 

important roles in endodermal development. A good example of the way in which these genes 

are reiteratively used is Sox17. Sox17 is essential for endoderm formation, and is expressed 

throughout the early definitive endoderm (Kanai-Azuma et al., 2002). During subsequent 

developmental stages, Sox17 expression recedes from rostral and caudal endodermal derivatives 

and becomes restricted to the prospective posterior ventral foregut that will go on to produce the 

extra hepatic biliary system (EHBS) and ventral pancreas. Using Foxa3
Cre

 to conditionally 

remove Sox17 function during endodermal regionalization causes defects in the specification of 

the gall bladder and cystic duct (Spence et al., 2009). Gata4 and Gata6 are also an example of 

transcription factors that are initially expressed throughout the definitive endoderm before 

becoming restricted to specific regions of the developing endoderm. Gata4 and Gata6 become 

restricted to the posterior foregut and have important roles in liver, pancreas and stomach 

development (Jacobsen et al 2002, Watt et al., 2007; Carrasco et al., 2012; Xuan et al., 2012).  In 

contrast, other genes such as Foxa2 maintain broad expression throughout the endoderm from its 

initial formation and through the processes of regionalization, with important roles in the 

organogenesis of most endodermal organs (for review see, Friedman and Kaestner, 2006). Foxa2 

has been shown to act as a pioneer factor. Pioneer factors bind to and open chromatin, allowing 

other regionally-expressed factors to access DNA and coordinate assembly of gene regulatory 

networks.  

The regional identity of the endoderm is thought to be influenced by the cues that 

endodermal progenitors receive from their post-gastrulation environment.  This environment 

includes mesodermal tissue, which is capable of influencing gene expression in the endodermal 

progenitors, ultimately stimulating the acquisition of regional competence states that 
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promote/restrict the downstream organ identities.  The type of mesodermal tissue that 

endodermal progenitors are located next to depends on their anterior-posterior and dorsal-ventral 

location in the gut tube.  

The endodermal gut tube is generally divided into three regions along the anterior-

posterior axis of the embryo: foregut, midgut, and hindgut.  Now moving directly to the main 

focus of this thesis, the Ptf1a-expressing pancreatic progenitors arise from a particular region of 

the posterior foregut.  The posterior foregut also gives rise to the posterior stomach, anterior 

duodenum, liver, gall bladder, and EHBS. The anterior foregut produces the endodermal 

derivatives that extend from the oral endoderm down to but not including the posterior-most 

antral stomach (in anterior to posterior sequence): salivary gland, pharynx, thyroid, parathyroid, 

thymus, lung, trachea, esophagus, forestomach, and glandular stomach. The midgut gives rise to 

the small intestine, and the hindgut produces the large intestine and urogenital tract.   

As mentioned above, after formation of the nascent gut tube, many important 

transcription factors become regionally expressed within the endoderm, often with 

spatiotemporally dynamic patterns.  Sox2 and Cdx2 are expressed in the most rostral and caudal 

endoderm, respectively, during early regionalization (Fig. 1.2). During subsequent development, 

Sox2 expression spreads posteriorly such that it marks the entire anterior endoderm from the 

prospective oral endoderm up to and including the posterior stomach. Cdx2 spreads anteriorly to 

mark the posterior endoderm that encompasses the region extending from the ano-rectal junction 

to and including the duodenum (Sherwood et al., 2009). Genetic manipulation of either Sox2 or 

Cdx2 indicates that both are important for maintaining the regional identity of the endoderm. 

Inactivation of either gene causes massive changes in cell identity within their respective 

expression domains. Complete knockout of Sox2 in the early endoderm has not been   
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Figure 1.2 Schematic representations of the expression domains of various fate-

instructive transcription factors in the E10.5 foregut endoderm. The approximate expression 

domains are: (A) Ptf1a: restricted to the dorsal and ventral pancreatic buds. (B) Pdx1: regionally 

expressed in the posterior foregut including the area producing the posterior stomach, anterior 

duodenum, pancreatic buds, and proximal EHBS. (C) Sox2: expressed throughout the anterior 

foregut extending from the prospective oral endoderm to the glandular stomach. Sox2 is not 

expressed in the lung bud at this stage, but it is expressed in the proximal lung and trachea at 

later stages of development. (D) Cdx2: expressed throughout the posterior derivatives of the 

endoderm including the anterior duodenum (orange). More posterior endoderm tissues such as 

the posterior small intestine and large intestine are not shown.   
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characterized because Sox2 global null mutants die during gastrulation and tools to conditionally 

inactivate Sox2 have not been widely available. Ongoing projects in the Wright lab are 

Sox17
GFP.Cre 

to conditionally inactivate Sox2 in the early endoderm. Lowering the gene dosage of 

Sox2 causes mis-specification of the esophagus (Que et al., 2007). In these Sox2 hypomorphic 

animals, the esophagus epithelium fails to establish a stratified squamous phenotype and adopts a 

more trachea-like phenotype. Loss of Cdx2 completely transforms the small intestine into a 

squamous cell state similar to the esophagus or rectum (Gao et al., 2009), indicating that Sox2 is 

required to maintain intestinal identity and prevent posterior endodermal progenitors from 

adopting other non-intestinal progenitor states.  

The posterior foregut is located between the endodermal expression territories of Sox2 

and Cdx2. It can be generally identified by the expression domain of Pdx1 (Fig 1.2). Pdx1 

expression is first detected within two distinct domains in the dorsal and ventral posterior 

foregut. Over developmental time, Pdx1 expression spreads anterior and posterior such that it 

overlaps the most posterior extent of Sox2 expression and anterior extent of Cdx2 expression. In 

total, Pdx1 expressing progenitors give rise to the prospective antrum (posterior or caudal 

stomach), anterior duodenum, pancreas, and EHBS. While the liver is derived from the posterior 

foregut, these progenitors probably never express Pdx1. Within the posterior foregut, the dorsal 

and ventral progenitor domains are located in drastically different environments. Dorsal posterior 

foregut progenitors – which give rise to the dorsal pancreas, posterior stomach, and anterior 

duodenum – are initially in close contract with the notochord until E9.5 (E, embryonic day; 

essentially equivalent to “days post coitum”) when it is displaced by the formation and medial 

movement of the dorsal aorta. Activin and FGF signals produced from the notochord are thought 
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to suppress Shh signaling in the posterior foregut to allow Pdx1 expression in this dorsal domain 

(Hebrok et al., 1998). Tissue recombination experiments in chicken embryos showed that in the 

absence of the notochord tissue, the Shh expression domain in the endoderm expanded and led to 

reduced Pdx1 expression in the prospective posterior foregut (Kim et al., 1997). Similarly, 

Inactivation of Patched, a negative regulator of Shh signaling, also led to a loss of Pdx1 

expression at E9.0-9.5 likely through expansion of the Shh expression domain (Hebrok et al., 

2000). Inhibiting Shh signaling in chicken embryos using cyclopamine treatment led to the 

expansion of pancreatic progenitors but did not appreciably alter the Pdx1 expression domain 

(Kim et al., 1998), indicating that Shh signaling may be more directly involved in limiting 

pancreas specification than setting the spatial boundaries of the Pdx1 expression domain. 

In contrast to the dorsal posterior foregut, the ventral posterior foregut gives rise to the 

liver, pancreas, and EHBS. This progenitor pool is transiently in close contact with the cardiac 

mesoderm and septum transversum mesenchyme. Both of these tissues produce FGF as a key 

regulator of the specification of the pancreas, EHBS, and liver, with the amount of FGF signaling 

influencing organ fate.  Higher levels or longer duration of FGF signaling promotes liver 

specification over pancreas and EHBS (Bort et al., 2004). During development of posterior 

ventral foregut organs, the liver is specified from the common progenitor pool first. Liver 

progenitors can be identified by the exclusive expression of Hnf4α. After liver specification, the 

EHBS and ventral pancreas remain as a common primordium expressing both Pdx1 and Sox17. 

By E10.5, the Sox17-expressing progenitors (gall bladder and cystic duct progenitors) and Pdx1-

expressing progenitors (ventral pancreas and common bile duct progenitors) separate into 

distinct organ anlagen (Fig 1.3). Separation of the gall bladder from the ventral pancreas is  
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Figure 1.3 Morphological changes in the ventral posterior endoderm. E8.25 foregut 

endoderm. The prospective liver, ventral pancreas, and EHBS are derived from a common 

progenitor pool. FGF ligands are produced by the adjacent cardiac mesoderm and high levels of 

FGF signal in posterior ventral foregut specify the liver, while lower levels of signal specify the 

pancreas/EHBS. (A) E9.5 posterior foregut. By E9.5, the liver is specified and Hnf4a+ 

hepatoblasts invade the adjacent mesenchyme (brown). The ventral pancreas and gall bladder 

still exist as a common progenitor pool (purple). (B) E10.5 posterior foregut. By E10.5, the gall 

bladder (red) and ventral pancreas (blue) have formed separate organ primodia.  
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thought to occur by Sox17-driven Hes1 expression in the gall bladder that suppresses Pdx1 and 

Ptf1a (Spence et al., 2009). 

 

Pancreatic Budding and Specification 

Pancreatic progenitors first become morphologically apparent when they begin to 

protrude, into the surrounding mesenchyme, from the Pdx1-positive posterior foregut endoderm 

around E8.5 to E9.0.  Prior to budding there are a number of factors expressed in early 

endodermal progenitors that are essential in order to access the pancreatic fate and initiate 

pancreatic organogenesis.  For the purpose of this introduction, I will focus below on the 

intrinsic factors in the endoderm that help build the pancreatic gene regulatory network. I will 

specifically focus on the signaling pathways and transcription factors that are involved in the 

regulation of the transcription factors Ptf1a and Pdx1. One observation from my thesis research 

is that the Ptf1a
+
Pdx1

+ 
co-expression state can initiate the self-assembly of the pancreatic 

program, suggesting that this
 
co-expression state is an essential intermediate state for the proper 

execution of the pancreatic program. 

Hnf1b, Onecut1 (a.k.a. Hnf6), and Mnx1 are all expressed prior to the more regionally 

restricted expression of Pdx1 in the posterior foregut. Inactivation of Hnf1b, Onecut1, or Mnx1 

leads to profound consequences on pancreatic specification and budding, partly derived from 

their effects on expression of Pdx1 and Ptf1a, two key regulators of pancreatic development. In 

the absence of Hnf1b, progenitors (correctly) begin to express Pdx1 and Mnx1 in a localized 

manner in the dorsal pancreatic bud region, but fail to expand in number.  The ventral pancreatic 

bud does not form in Hnf1b homozygous null mutants.  Progenitors within the respective regions 

of the normal prospective pancreatic buds fail to express Ptf1a, and thus, are not specified to the 
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pancreatic fate (Haumaitre et al., 2005). Onecut1 is required to regulate Pdx1. Pdx1 expression is 

reduced and delayed in Onecut1 mutants, leading to hypoplastic pancreatic buds (Jacquemin et 

al., 2003). In Mnx1 null mutants, budding and specification of the dorsal pancreas is lost, but 

ventral pancreas budding and specification is largely unaffected. In the remaining dorsal 

pancreatic region, Pdx1 is not properly upregulated. In contrast, Pdx1 expression in the ventral 

pancreatic bud is unaffected – and the ventral pancreas develops relatively normally, albeit with 

altered endocrine cell specification (Li et al., 1999; Harrison et al., 1999). The phenotype of 

Mnx1 mutants indicates that there are different transcriptional regulatory cascades operating in 

the dorsal and ventral pancreas that are required for budding and specification.  The differential 

requirement of Mnx1 in the dorsal and ventral pancreatic buds is likely due to the distinct 

developmental ontogeny of dorsal and ventral progenitors described above.  

In addition to the transcription-factor genes mentioned in the paragraph above, FoxA, 

Gata4, Gata6, Prox1 and Sox9 are all expressed in the posterior foregut prior to pancreatic 

specification. The direct role of these factors in pancreatic budding and specification has not 

been addressed, often because of early embryonic lethality of the global null mutants.  Some of 

these factors, such as Foxa1, Foxa2, Gata4, and Gata6 have been conditionally inactivated using 

Foxa3
Cre

 [Tg(Foxa3-cre)1Khk]. Foxa3
Cre

 activates around E8.25 to E8.5, about the same time as 

Pdx1 expression is initiated in the posterior foregut. While Foxa3
Cre

 is a usefully tool for the 

conditional inactivation in the endoderm, the late activation time-window of Foxa3
Cre

 may reveal 

a different phenotype when compared to an earlier endoderm-specific inactivation using Cre-

drivers like Sox17
GFPCre

. Foxa1 and Foxa2 double-knockout using Foxa3
Cre

 causes a complete 

loss of Pdx1 expression, indicating that the FoxA family is crucial for maintaining Pdx1 

expression in pancreatic endoderm (Gao et al., 2008). Gata4/Gata6 double-knockout using 
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Foxa3
Cre

 also causes a significant reduction of Pdx1 expression in pancreatic endoderm (Xuan et 

al., 2012; Carrasco et al., 2012). The function of Prox1 and Sox9 in pancreatic specification has 

only been conditionally addressed using Pdx1
Cre

, which activates even later than Foxa3
Cre

. 

Conditional knockout of Sox9 or Prox1 leads to hypoplastic pancreatic buds because there is 

failure to promote proliferation and survival of early pancreatic progenitors (Seymour et al., 

2012; Wang et al., 2005).  In the absence of Sox9, pancreatic progenitors start to express hepatic 

genes (such as α-fetoprotein and albumin), indicating that Sox9 is actively suppressing 

alternative organ programs during pancreatic development. 

Pdx1 is expressed throughout the posterior foregut and is required for the proper 

development of the antral stomach, duodenum, and common bile duct, in addition to the 

pancreas. Although activation of Pdx1 expression is often, incorrectly, used diagnostically as a 

specific indicator of pancreatic budding and specification, it is not explicitly required for either. 

In the absence of Pdx1, both pancreatic buds form and begin to protrude from the posterior 

foregut, but fail to expand any further.  By the end of development there is only a small dorsal 

bud rudiment containing very limited differentiation of acinar and endocrine cells.  No ventral 

rudiment can be found (Jonsson et al., 1994; Offield et al., 1996).  

The transcription factors Ptf1a (Fig 1.2), Nkx6.1, and Nkx2.2, which have pancreatic 

progenitor-specific expression in the endoderm, start to be expressed between E9 and E9.5.  

Although Nkx2.2 and Nkx6.1 have early pancreas-specific expression, neither gene is required 

for pancreatic specification (their roles will be described later).  In contrast, Ptf1a has an 

important role in this process. Both the dorsal and ventral pancreatic buds still form when Ptf1a 

is globally deleted, but the ventral pancreatic bud fails to be maintained and relatively rapidly 

seems to disappear completely. By the end of gestation, only a tiny dorsal rudiment remains that 
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completely lacks pancreatic acinar cells, although it does contain duct and endocrine cells (Krapp 

et al., 1998; Kawaguchi et al., 2002). Lineage-tracing studies with a ROSA26
YFP

 reporter in 

animals heterozygous for the Ptf1a
Cre

 knock-in – which is also a null allele – revealed that 

lineage-traced cells are restricted to pancreatic lineages and that the progeny of Ptf1a-positive 

cells give endocrine, duct, and acinar cell lineages in the pancreas. Lineage tracing cells in 

animals homozygous for the Ptf1a
Cre

 revealed that cells that would otherwise be committed to 

pancreatic lineages adopt an intestinal and EHBS progenitor state and go on to differentiate into 

representative cell types including the stem cell compartment within those organs (Kawaguchi et 

al. 2002). Because Ptf1a expression is maintained in wild-type animals in developing and adult 

acinar cells, and Ptf1a null mutants completely lack acinar cells, Ptf1a is thought to be one of the 

master regulatory factors of the acinar lineage. 

Given the pancreas-restricted expression of Ptf1a, the factors that control the expression 

of Ptf1a would provide insight into the pancreatic specification process. There is currently a very 

limited understanding of the factors that control the spatial and temporal extent of Ptf1a 

expression in the endoderm. In embryos lacking endothelial cells (Flk1
 
global null embryos), the 

expression of Ptf1a is initiated in the ventral pancreatic bud but not the dorsal pancreatic bud 

(Yoshitomi and Zaret, 2004). It remains to be discovered what factor(s) are secreted from the 

endothelial cells that promote dorsal bud expression of Ptf1a.  

While we have some understanding of the targets of Ptf1a in the acinar-cell lineage, we 

do not have a firm grasp of the targets of Ptf1a during pancreatic specification. One proposed 

target is Mnx1 (Thompson et al., 2012). Because Mnx1 is expressed in the endoderm prior to 

Ptf1a, and Mnx1 is not essential for ventral pancreas specification (described above), it is unclear 

if Mnx1 is a critical target of Ptf1a. Another potential direct target in the early pancreas is the 



18 
 

Notch ligand Delta (Dll1). Delta expression in the pancreatic epithelium is completely abrogated 

in Ptf1a null mutants. In Dll1 mutant mice, the pancreatic buds are hypoplastic in part due to 

decreased proliferation of early multipotent progenitors because of reduced Ptf1a expression 

(Ahnfelt-Rønne et al., 2012).   

 

Epithelial Apical-Basal Polarization and Plexus Formation  

At the beginning of the early multipotent progenitor cell (MPC) stage, the pancreatic bud 

is a pseudo-stratified columnar epithelium with little or no apical-basal polarization (Fig 1.4 

A,B). Apical-basal polarization of a few pioneer cells and the spreading of such cell polarity to 

surrounding cells leads to the formation of microlumens (Fig 1.4 C). The microlumens expand 

through the recruitment of adjacent polarized epithelial cells, and the process of merging with 

other microlumens forms a complex tubular network (Kesavan et al., 2009; Villasenor et al., 

2010) (Fig 1.4 D). This tubular network can be thought of as resembling the epithelial plexus 

state of the developing vascular system.  It represents a developmental process of tube formation 

and organ outgrowth that is distinct from branching morphogenesis of other organs such as the 

lung. The generation of a plexus state produces tubular structures containing distant tip and trunk 

progenitor domains (Fig 1.4 E).    

In parallel with the dynamic morphological reorganization of the pancreatic buds to a 

plexus state are large-scale changes in the gene expression patterns of various regions of the 

epithelium. Due the focus on Ptf1a in this thesis, I will highlight the changes that occur in the 

expression of Ptf1a during compartmentalization.  At the onset of pancreatic development, Ptf1a 

is expressed organ-wide. During polarization, Ptf1a expression becomes restricted to the tip 

domain.  Tip cells are in close contact with the basement membrane and mesenchyme  
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 Figure 1.4 Schematic representations of morphological changes of the pancreatic 

epithelium during development. (A) Permissive signals from the notochord (activin and FGF) 

along with proper expression of several transcription factors (Hnf1b, Mnx1, Onecut1, Foxa1, 

Foxa2, Gata4, Gata6) in the pre-pancreatic endoderm lead to the establishment of region (red) in 

the dorsal foregut endoderm the expresses both Pdx1 and Ptf1a. (B) The early pancreatic 

progenitors protrude from the foregut endoderm into the surrounding pancreatic mesenchyme. 

(C) The early pancreatic dorsal bud is pseudostratified columnar epithelium. Cell within the 

epithelium have no apical-basal polarization. Apical-basal polarization occurs in a few 

pioneering cells and spreads to surrounding cells to generate microlumens. (D) Microlumens 

coalesce to generate an epithelial plexus. (E) Within the epithelial plexus are two distinct 

progenitor populations, tip (pink) and trunk (green) cells. During early pancreatic development, 

both of these progenitors give rise to all pancreatic cell types. By late plexus state, tip cells are 

committed to the acinar cell lineage and trunk cells give rise to endocrine and ductal cells. The 

dense plexus state is thought to be a niche that supports the efficient specification of endocrine 

cells. As the plexus remodels into the more simplified tubular network (epithelial tree) in the 

mature pancreas, the ability to generate endocrine cells is lost. (F) The final morphology of the 

mature pancreas. Acinar cells (red) produce and secrete digestive enzymes to aid in food 

digestion. Duct cells secrete bicarbonate and carry acinar and duct secretions to the common bile 

duct and then on to the duodenum. these contents enter the duodenum. Islets are distributed 

through the pancreatic organ. β-cells (blue) form the core of the islet, while alpha and other 

endocrine cells (yellow) predominantly occupy a mantle location.   Adapted with permission 

from Pan and Wright, 2013. 
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surrounding the epithelium. It is thought the mesenchyme may help establish the unique gene 

expression patterns and progenitor behavior of tip cells through juxtacrine signaling. Trunk cells, 

which constitute the core of the dense plexus, maintain expression of a different set of genes 

from the tip domain, including genes such as Nkx6.1, Sox9, and Hnf1β. 

Transcription factors, such as Ptf1a and Nkx6.1, have been shown to have an important 

role in establishing the divergent expression characteristics of the tip and trunk domain. Nkx6.1 

and Ptf1a mutually repress each other’s expression. Constitutive misexpression of Nkx6.1 

throughout the epithelium causes repression of Ptf1a and the loss of tip cell character. The 

resulting epithelium adopts a trunk progenitor cell state. Misexpression of Ptf1a throughout the 

pancreas suppresses Nkx6.1 and turns the epithelium exclusively into tip cell-like progenitors. 

These data suggest a model where Ptf1a and Nkx6.1 affect the acquisition of tip or trunk cell 

states through directly or indirectly repressing the other cell state. Whether a cell in the 

pancreatic epithelium adopts a tip or trunk cell state could be triggered by signals that promote 

the maintenance of Ptf1a or Nkx6.1.  Notch signaling in pancreatic progenitors, which could be 

modulated by Ptf1a through competition for RBPJk, could shift the equilibrium of the Ptf1a-

Nkx6.1 cross-repressive loop to generate different cell states. The proximity of cells to the 

pancreatic mesenchyme might also influence the Ptf1a-Nkx6.1 expression status by promoting 

tip cell marker instead of trunk markers. 

Lineage tracing tip cells using the Cpa1 or Ptf1a promoter demonstrated that tip cells give 

rise to a significant number of duct, endocrine, and acinar cells up until E12.5 (Zhou et al., 2007; 

Pan et al., 2013). After E12.5, tips are essentially committed to the acinar cell lineage. Likewise, 

lineage-tracing trunk cells using the Sox9 or Hnf1b promoter indicates that trunk cells can give  
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rise to acinar, duct, and endocrine cells up until E13.5 (Kopp et al., 2011; Solar et al., 2009). 

After E13.5, trunk cells become a bipotent progenitor population that gives rise to duct and 

endocrine cells. After the main endocrine specification phase, Hnf1b-positive cells are 

committed to the ductal lineage (Solar et al., 2009).  

 The current model of multipotent progenitor behavior during pancreas development, 

based on available lineage-tracing data, is that the early pancreatic buds are full of a homogenous 

population of multipotent progenitors (that is, fully capable of giving rise to all three pancreatic 

cell lineages). Because of the compartmentalization of the pancreatic epithelium, multipotent 

progenitors allocate to the tip and trunk domains and become lineage-restricted. Multipotentiality 

is thought to remain due to the asynchronous nature of early multipotent progenitors committing 

to the tip or trunk progenitor domains. It is also possible that at the interface of the tip and trunk 

domain cells can readily transition between a tip and trunk cell state and adopt that population’s 

progenitor behavior.  

 

Plexus Resolution and Differentiation 

The stages of pancreas development covered in this introduction so far have encompassed 

the processes of specification, apicobasal polarization, and patterning of the pancreatic 

epithelium that lead to the generation of a dense epithelial plexus composed of spatially 

segregating pools of tip and trunk progenitor cells. I have also described that tip and trunk 

progenitors have different propensities to give rise to the differentiated cell types of the mature 

pancreas. Tip cells largely give rise to acinar cells while the trunk domain gives rise to the 

endocrine and ductal lineages (Zhou et al., 2007; Pan et al., 2013; Kopp et al., 2011; Solar et al., 

2009). The generation of the dense plexus state is thought to produce the tissue environment, or 

niche, for the efficient production of endocrine progenitor cells that are born from the epithelium, 
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delaminate, and go on to cluster and form the islets of Langerhans in the mature pancreas. 

Currently, it unclear what are the exact properties of the dense plexus state that promote efficient 

endocrine cell birth. As the epithelial plexus resolves into a simplified tubular network (Fig 1.4 

F), the ability to generate large numbers of endocrine progenitors is lost and the remaining cells 

become ductal cells.  It is interesting to note that β-cells seem to be made most efficiently from 

pancreatic epithelium in the dense plexus state. Other endocrine cell types like the alpha cell are 

made prior to the dense plexus state, while delta and PP cells are made as the plexus begins to 

resolve to the duct (after delaminated endocrine cells have all left). 

Endocrine precursors cells produced from the trunk progenitor cells during this stage of 

development are determined by high levels of the transcription factor Ngn3 (Gu et al., 2002). 

Following the scattered, transient induction of Ngn3, these progenitors delaminate from the trunk 

domain epithelium and coalesce with other endocrine progenitors to form endocrine progenitor 

cords.  Because they likely never really break through the basal lamina, these endocrine cords, 

bound by N-cadherin as opposed to E-cadherin in their preceding epithelial state, remain ‘spread 

along’ and in relatively close association with the epithelium that by this stage is becoming the 

almost mature ductal network. The endocrine cords are also in proximity to the intrapancreatic 

vasculature, which tends to mimic the pattern of the ductal epithelial tree, as expected because of 

the capillary bed that must develop within the islets.  These endocrine cords then remodel into a 

structure like beads-on-a-string and during subsequent development they break off to form the 

mature islets with a β-cell core with a mantle of other endocrine cell types. While the controlling 

the commitment of individual endocrine cell lineages is an important facet of pancreas 

development, I will not spend time detailing this topic. These processes are extensively detailed 

in Pan and Wright, (2011). 
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When tip cell multipotentiality is lost, these cells become converted to lineage-committed 

pro-acinar cells by essentially E12.5 or so. The residual multipotency detected by Pan et al. 

(2013) and others may reflect the asynchronous nature of the maturation of the epithelium to the 

trunk-tip compartmentalization state, with some regions completing this process much later than 

others.  Coinciding with the MPCs to pro-acinar transition of tip cells is an important alteration 

in the molecular character of the PTF1 complex.  During the early MPC stage, the PTF1 complex 

comprises the basic helix-loop-helix transcription factor Ptf1a, an E-box partner (HEB, E12, or 

E47), and RBPJκ (Beres et al., 2006). As tip cells transition to lineage-committed acinar cells, a 

direct the PTF1-κ (Ptf1a and RBPJκ) complex is RBPJL, a Notch-independent paralog of RBPJκ. 

As RBPJL levels rise, the PTF1 complex incorporates RBPJL to replace RBPJκ (Masui et al., 

2010). PTF1-J (Ptf1a and RBPJL) is thought to coordinate and maintain a transcriptional gene 

regulatory network of acinar cells through (auto)regulation of RBPJL, Ptf1a, and a number of 

key transcription factors such as Gata4, Nr5a2, and Mist1 (Holmstrom et al., 2011; Hale et al., 

2014; Xuan et al., 2012; Pin et al., 2001).  

 

Genetic Tools that Allow Manipulation of Key Instructive Molecules 

The genetic tools that are used in Chapter III and IV of this thesis rely on the use of 

Cre/loxP technology to manipulate genomic DNA in vivo. For an extensive review of the many 

capabilities of DNA recombinases in mouse genetics see Branda and Dymecki (2004). Cre 

recombinase is a type I topoisomerase that catalyzes the excision of DNA located between two 

34 bp motifs (13 bp palindromic sequences with an 8 bp internal spacer) called loxP sites.  Some 

forms of Cre recombinase described in this thesis are ligand-activatable.  In the CreER fusion 

protein, Cre recombinase is held in the cytoplasm until addition of tamoxifen, which binds to 

CreER allowing it enter the nucleus and act on DNA.  In my thesis research, I used a variety of 
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Cre drivers (Sox17
GFPCre

, Tie1
Cre

, EIIA
Cre

, and Ptf1a
CreER

) that produce Cre in specific embryonic 

tissues. When these Cre drivers are combined with floxed conditional null alleles (such as 

Ptf1a
flox

 –described in Chapter IV) or lineage-tracing reporters  (such as ROSA26
 
alleles 

described in Chapter III and IV), one can achieve gene inactivation or activation, or lineage 

reporting that is short-lived or indelibly carried within the progeny of parent cells in which Cre 

was active. 

Another component of the genetic system used in Chapter III of this thesis is the 

tetracycline-inducibility system, which allows on-off control of gene expression in eukaryotic 

cells.  tTA and rtTA are modified forms of the tetA E. coli gene that contain the DNA-binding 

domain of tetA and the transcriptional activation domain of VP16.  In the presence of  

tetracycline analogs such as doxycycline (preferred tetracycline analog for use in mammalian 

systems due to low toxicity), tTA and rtTA are able to bind to the tet operator sequences on 

responder genes, leading to either repression (tTA; Tet-Off) or activation (rtTA; Tet-ON) of gene 

expression.  In order to use this system in the mouse, alleles that express tTA/rtTA (driver 

alleles) and respond to tTA/rtTA (tetO allele - responder allele) must be generated. Responder 

alleles contain a gene cassette controlled by tandem repeats of the tet operon attached to a 

minimal promoter. 

When combined with Cre/loxP technology, such tTA or rtTA systems can achieve 

spatiotemporally controlled gene activation.  With my own specific case as the example (as used 

in Chapter IV), ROSA26
rtTA.IRES.EGFP 

is a Cre-activatable, tetracycline-driver allele.  After Cre-

mediated recombination in the chosen cell type, all progeny from the parent cell express rtTA 

from the “constitutively active” ROSA26 promoter.  In the presence of doxycyline, rtTA binds to 

and activates expression of the gene encoded in a tet responder allele.  By crossing 
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ROSA26
rtTA.IRES.EGFP 

to various Cre-driver alleles, I was able to control the cell lineage of 

expression via the spatial expression profile of the Cre allele, or gain temporal control by varying 

the timing of doxycycline administration, on the production of Ptf1a from the tet responder 

allele.      

 

Aims of the Dissertation Research   

This thesis is comprised of three main research areas, all dealing with the manipulation of 

key instructive molecules during development. I designed experiments to test: (1) the sufficiency 

of Ptf1a to determine organ identity during mammalian endodermal development, examining 

how progenitor competence and commitment changes during development, (2) the role of Ptf1a 

in controlling progenitor cell state and differentiation in the pancreatic epithelium, and (3) 

generate antibody reagents to validate mouse genetic tools.   

While several publications have reported on the role of signaling molecules and 

transcription factors in endodermal patterning and organogenesis through gene knockout, very 

few studies have assayed the potency of transcription factors as dominant controllers of entire 

organ re-specification during mammalian development.  In my first area of research for my 

thesis, I have designed a transient Ptf1a misexpression system allowing the interrogation of cell 

re-specification at early organ-allocation and terminal differentiation stages. The results of these 

experiments are reported in Chapter III (Dominant Control of Endodermal Organ Allocation by 

the Pancreatic Transcription Factor Ptf1a).  

For the second project, I generated novel genetic tools to examine the function of Ptf1a in tip 

MPCs during pancreas development. Previously published experiments have established that 

Ptf1a is sufficient to divert cells from trunk type specification, competitively working against 

Nkx6.1 (Schaffer et al., 2010). Using new tools, we hoped that our experiments would address 
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the reciprocal question of whether Ptf1a is required to maintain the tip MPC state.  The results of 

these experiments are reported in Chapter IV (The Role of Ptf1a in Tip Cells of the Developing 

Pancreatic Epithelium). 

In a third sub-project, I generated novel GST-Cre and GST-mCherry fusion proteins to produce 

new Cre and mCherry antibodies. Validating the expression patterns of DNA recombinases and 

fluorescent proteins used in genetic tools is important to make rigorous conclusions, and  we 

hoped that these antibodies could be used to accomplish this goal. The results of these 

experiments are reported in Chapter V (Antibodies to Detect Cre and mCherry Protein 

Localization).  
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CHAPTER II 

 

MATERIALS AND METHODS 

 

Mouse Strains 

Mice were maintained at Vanderbilt University Medical Center according to institutional 

protocols. Sox17
GFPCre

 (Choi et al., 2012), Tie1
Cre

 (Gustafsson et al., 2000), Ptf1a
CreER

 (Pan et al., 

2013), EIIA
Cre

 (Lakso et al., 1996), Flp
E
 (Rodriguez et al., 2000), Pdx1

CreEarly 
(Gu et al., 2000), 

ROSA26
rtTA.IRES.EGFP

 (Belteki et al., 2005), and ROSA26
YFP

 (Srinivas et al., 2001) were 

previously described. The details of the tetO
Ptf1a.IRES.LacZ

 allele will be provided in an upcoming 

publication from Dr. Raymond MacDonald, UTSW. Briefly, the tetO allele was generated by 

random transgenesis. It is driven by seven repeats of tet operator linked to the CMV minimal 

promoter. The Ptf1a gene cassette connected to the tet operator contains the 3’ UTR, intron, and 

exons from the endogenous Ptf1a locus. The 5’ UTR was replaced by the Xenopus laevis -

globin gene, and the 3’ UTR was truncated to remove its polyadenylation signal (Hale et al., 

2005) allowing fusion to an optimized Internal Ribosomal Entry Site (IRES) (Kim et al., 1992).  

The IRES is connected to a lacZ reporter with a nuclear localization signal. lacZ has the 3'UTR 

from the bovine growth hormone gene to improve mRNA stability and polyadenylation. The 5' 

HS4 insulator from the chicken -globin gene (Pikaart et al., 1998) flanks the transgene.  The 

generation of the Ptf1a floxed allele will be described in Chapter 4. All mouse strains were 

genotyped by PCR amplification of genomic DNA purified from protease digests of tail snip or 

ear punch tissue. 

 

 



28 
 

Doxycycline and Tamoxifen Administration 

The low dose regimen that worked effectively in my studies meant that it was critically 

important to weight out doxycycline and tamoxifen accurately, and an analytical balance (4 

decimal point accuracy). Doxycycline in water (5.0 mg/mL) was administered by intraperitoneal 

injection, at 10.0 µg/g body weight. Doxycycline was also prepared in drinking water, at 2.0 

mg/mL. Mice given doxycycline in the drinking water were deprived of other fluids to encourage 

drinking of the doxycycline solution. It is common practice to include an artificial sweetener to 

doxycycline solution because of its bitter taste, but I found that this made no difference. 

Doxycycline in the drinking water was kept in light-protective bottles and replaced every 48 to 

72 hours. Tamoxifen was dissolved in pharmaceutical grade corn oil (Welch, Holme & Clark 

Co., Inc.; at 30.0 mg/mL), and administered by intraperitoneal injection at 3.0 mg per pregnant 

dam of normal weight (obese mice must be dosed differently).   

 

Fixation and Preparation of Mouse Embryos and Tissues for Sectioning 

Early postnatal and embryonic tissue was obtained from naturally mated mice, with noon 

on the day of the vaginal plug defined as 0.5 days post coitum (d.p.c.), or as mostly referred to in 

this thesis, embryonic day (E) 0.5. After euthanasia and dissection in ice-cold PBS, embryonic 

and perinatal tissue was fixed (4% freshly made paraformaldehyde, 4°C; never more than 8 hrs 

old) for between 1 to 4 hours, with longer times for older stages (1 hour for E10.5, 2 hours for 

E12.5, 4 hours for E18.5). Embryos and tissues were prepared for cryosectioning by washing in 

ice-cold PBS following fixation, then sucrose-equilibrated (30%, 4°C, overnight), and embedded 

by standard procedures straight into OCT compound (Tissue-Tek, Sakura). Cryosections were 

cut on a standard Leica cryostat at 10 microns (µm) per section.  
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Embryos or dissected tissues were prepared for paraffin embedding by washing in ice-

cold PBS following fixation, and placed in 70% ethanol at 4°C until embedded was started. 

Tissues in 70% ethanol were dehydrated through an ethanol/water series (80% ethanol, 1 hour; 

90%, 1 hour; 95%, overnight; 100%, 2 hours) on a rocking table and placed in Histo-Clear 

(National Diagnostic; a non-toxic replacement for xylene-based embedding) for 2 hours. Tissues 

were transferred from Histo-Clear to a 50% Histo-Clear, 50% paraffin wax (Paraplast Plus, 

Fisher Scientific) mixture for 1 hour at 60°C followed by 3 consecutive 100% molten wax 

washes at 60°C for 45 minutes each. After the last 100% wax step, tissues were mounted in 

standard plastic peel away molds at a traditional wax embedding station and then “wax-glued” 

onto a plastic cassette for sectioning. Paraffin sections were cut on a standard Leica microtome 

(Lecia RM2135), 10 microns per section. Sections were floated on warm water bath, picked up 

on glass slides and dried on a slide warmer overnight. All sections were placed on Superfrost 

Plus pre-cleaned glass slides (Fisher Scientific).  Tissue sections stick to Superfrost Plus slides 

electrostatically without need for additional adhesives such as poly-L-lysine. 

 

Hematoxylin and Eosin Staining 

Paraffin sections on glass slides were prepared for hematoxylin and eosin staining by 

going through a standard dewaxing and rehydration series (Histo-Clear, 100% ethanol, 90% 

ethanol, 70% ethanol, 50% ethanol, and distilled water) for 3 minutes each. Slides were then 

immersed in hematoxylin (Harris Modified Hematoxylin, Fisher Scientific) for 30 seconds to 2 

minutes. Length of staining depends on the stage and type of tissue (the best results in my hands 

were to stain early postnatal stage tissues for 30 seconds to 1 minute and adult tissues for approx. 

1-2 minutes). Slides were then rinsed in running distilled water for 5 minutes and dipped in 

acidified alcohol (980 mL 70% ethanol mixed with 20 mL stock concentrated hydrochloric acid 



30 
 

(stock 12 M; 240 mM final concentration).  Acidified alcohol de-stains hematoxylin and changes 

the color of the stain from deep red/purple to brown/light brown. Acidified alcohol can be used 

to completely de-stain hematoxylin if left in the solution for a long period time. After acidified 

alcohol treatment, slides were rinsed in distilled water and dipped in 1 g/L sodium bicarbonate, 

which changes the hematoxylin stain from brown to blue. Any lightly basic solution can replace 

sodium bicarbonate in this protocol. Slides were transferred from sodium bicarbonate to distilled 

water and then immersed in 95% ethanol. Slides were then dipped into eosin (Accustain Eosin Y 

solution Alcoholic, Sigma-Aldrich). It is important to determine empirically the period of eosin 

staining for each stage and tissue. Eosin can be de-stained by rinsing slides in fresh 95% ethanol 

or by rinsing slides through 95% ethanol, distilled water, and 1 g/L sodium bicarbonate (basic 

solutions de-stain eosin). After achieving the appropriate eosin-staining intensity, slides were 

placed back in 95% ethanol, dehydrated, and cover-slip mounted in toluene-based permanent 

mounting medium (Permount SP15-100; Fisher Scientific).  

 

Section-based Immunohistochemistry 

Paraffin sections on glass slides were prepared for DAB (3, 3'-diaminobenzidine) staining 

by going through a standard dewaxing and rehydration series (100% Histo-Clear, 100% ethanol, 

90% ethanol, 70% ethanol, 50% ethanol, and distilled water). After being placed in distilled 

water for some time, endogenous peroxidase was quenched for 15 minutes at room temperature 

with 1.5% hydrogen peroxide in methanol. Slides were then rinsed in distilled water and 

permeabilized in 0.2% Triton X-100 in PBS. Antigen retrieval was performed for all the nuclear 

antigens (transcription factors) reported in this thesis, by heating slides for 2 minutes in 10 mM 

sodium citrate, pH 6.0 (1000 watt microwave, 100% power). Upon bring the retrieval solution to 

a boil in the microwave, the solution is microwaved for 10 minutes at 20% power.  Following 
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permeabilization or permeabilization and antigen retrieval, slides section were isolated using a 

pap pen and were blocked for 2 hours (5% serum with 0.2% Triton X-100 in PBS; the species of 

this serum was concordant with the species of the secondary antibody; for example, secondary 

antibodies raised in donkey were blocked with normal donkey serum). Primary antibodies were 

incubated overnight at 4°C in blocking solution. Slides were washed 5 times, for 5 min each, in 

PBS containing 0.2% Triton X-100. Next, biotinylated secondary antibody diluted 1:200 in 

blocking solution was incubated on slides for 30 minutes at room temperature.  Slides were 

washed in 0.2% Triton X-100 in PBS, and then incubated in avidin/biotin/peroxidase complexes 

(Vectastain ABC Kit, Vector Labs) diluted in blocking solution for 30 minutes at room 

temperature. Next, DAB substrate (Metal Enhanced DAB Substrate Kit, Thermo Scientific) was 

added. While DAB substrate incubated on the slides, slides were visualized periodically and 

briefly under brightfield on a dissecting scope until desired staining intensity was achieved. 

Staining was then quickly quenched by immersing slides in distilled water.  Following DAB 

staining, slides could be counter-stained with a variety of histological stains, including 

hematoxylin and eosin. DAB-stained slides were dehydrated and cover-slip mounted in 

Permount.   

 

Section-based Immunofluorescence  

Cryosections were washed in PBS, permeabilized in 0.2% Triton X-100 in PBS, and 

blocked for 1 hour (5% serum in PBS; as above, serum species altered according to secondary 

antibody). Primary antibodies were incubated overnight at 4° in blocking solution. For indirect 

immunofluorescence, secondary antibodies were incubated for 1 hour at room temperature in 

PBS. For avidin-biotin amplification, prior to adding the biotinylated secondary antibody (1 

hour, in blocking solution), sections were blocked with an avidin-biotin blocking kit (Vector 
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labs). Streptavidin-conjugated secondary antibodies were incubated for 1 hour at room 

temperature in PBS. For Tyramide
TM

 signal amplification (TSA; Perkin Elmer), the fluorescent 

TSA reagent (1:1000) was prepared in the TSA diluent and incubated on the slides for 10 

minutes. For all immunofluorescence techniques, slides were mounted with Prolong Gold anti-

fade with DAPI [2-(4-amidinophenyl)-1H-indole-6-carboxamidine; Invitrogen]. Slides were 

sealed with nail polish. 

 

Whole-mount immunofluorescence 

Embryos were fixed whole with 4% freshly made paraformaldehyde at 4°C for between 1 

to 4 hours (for E10.5: 1 hour), and then gut and associated tissues were dissected from the whole 

embryo, and blocked for 2 hours in 1x PBS containing 0.5% Tween-20 and 20% serum. Primary 

or secondary antibody incubations were overnight at 4° in PBS with 0.5% Tween-20 and 10% 

serum. Tissue was then dehydrated and cleared in BABB (benzyl alcohol: benzyl benzoate, 1:2) 

for imaging.  

 

Microscopy 

Brightfield images of tissue morphology were obtained with an Olympus DP-72 digital 

camera on an Olympus SZX12 microscope. Brightfield images of histology and chromogenic 

staining were photographed using an Aperio (Leica) whole-slide scanning. Fluorescent images 

were captured using a Zeiss LSM 510 Meta or Olympus FV-1000 confocal microscope. Imaging 

of whole-mount immunofluorescence was performed on a Zeiss LSM 510 Meta confocal 

microscope and images were analyzed with Image J (NIH). Whole-mount immunofluorescence 

max projections were produced using Image J with dust and scratches noise reduction processed 

in Photoshop (Adobe).   Noise reduction was applied to experimental and control embryos. 
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DNA preparation for transient transgenics 

Plasmid DNA from a midi- or maxi-prep was cut to remove the plasmid backbone, run 

out on low melt temperature (LMT) agarose gel, and purified ethanol precipitation. Gel purified 

DNA was phenol, phenol/chloroform extracted and ethanol precipitated. For additional purity, 

precipitated DNA was run on an Elutip column (Schleicher & Schuell), and eluted in high salt, 

before ethanol precipitation according to the manufacturer’s protocol, and re-suspended in Tris-

EDTA (10 mM TRIS, .1 mM EDTA)  DNA concentration was determined by a 

spectrophotometer before provided to the ES cell core. 

 

Antigen selection and cloning of Cre and mChery GST fusion proteins 

Hydrophilic regions of Cre and mCherry were determined by the Hopp-Wood 

hydrophobicity-plotting algorithm to potential generate highly soluble antigens for 

immunization. Hydrophilic regions of Cre and mCherry that showed no homology to other 

relevant proteins, including other DNA recombinases and fluorescent proteins were inserted in-

frame into pGEX-KG (Smith and Johnson, 1998) at the 3’ end of GST, after the glycine linker 

sequence.  The glycine linker sequence promotes autonomous folding of GST and the antigen 

and provides a steric gap for the antigen to move independent of GST. Plasmids were 

transformed into E. coli strain JM109. JM109 E. coli have a cell wall defect that makes soluble 

proteins easier to recover after sonication. Protein production described in greater detail in 

Chapter V. Soluble protein was collected and bound to (batch-style incubation) glutathione-

sepharose beads. GST-containing proteins, batch incubated, were loaded into small columns 

plugged with glass wool for washing and elution steps. GST-fusion proteins were eluted with 
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excess reduced glutathione and high protein factions were run on 10% SDS-PAGE gels. SDS-

PAGE gels were stained with Coomassie Brilliant Blue G-250 (Sigma-Aldrich).  

 

Southern blotting 

Southern blotting was performed by standard sodium hydroxide transfer onto PVDF 

membrane. Southern blot probes were radiolabeled with P
32-

incorporated ATP. For a detailed 

protocol of alkaline transfer, please consult Molecular Cloning, A Laboratory Manual, second 

edition (Sambrook, Fritsch, and Maniatas). 
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CHAPTER III 

 

DOMINANT CONTROL OF ENDODERMAL ORGAN ALLOCATION BY THE 

PANCREATIC TRANSCRIPTION FACTOR PTF1A 

 

Introduction 

This chapter is a modified version of a published article (Willet et al., 2014). The journal, 

Development, grants permission for reproduction within doctoral candidate thesis. 

Embryonic endodermal patterning directs naïve progenitors toward regionalized 

competence states and the subdivision into appropriately located organ-specific progenitors.  

Orderly analysis of the gene regulatory logic that resolves organ-specific identities would yield 

critical insight into the first steps of organogenesis.  Understanding how gene regulatory 

networks stabilize cell fates could also be relevant to the mechanisms underlying disease states 

or organ/tissue metaplasia, often considered to be associated with de-differentiation and 

reversion to more primitive progenitor-like states (an example related to diabetes: Talchai et al., 

2012).  

Also pertinent is the reciprocal interaction between endoderm and mesoderm: during later 

development, the mesoderm has been connected to important roles in endodermal survival and 

patterning (Morrisey and Hogan, 2012; Pan and Wright, 2011).  It is less clear at earlier 

specification stages what the role of either tissue is in enforcing the differentiated state of the 

partner tissue.  It is uncertain how and when the endoderm-adjacent mesoderm is specified 

towards a particular organ character, and the degree to which the regionalized endoderm directly 
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instructs that outcome.  Local mesoderm-endoderm codependency could be significant in 

building and maintaining normal organ functions.  

Transcription factors (TFs) are potent directors of cell-intrinsic gene regulatory networks.  

Despite knowledge of early-acting and regionally expressed endodermal TFs, it is often unclear 

how such gene regulatory networks interact with each other, presumably often in mutually 

repressive and auto-regulatory feedforward loops, to select target genes that promote or restrict 

progenitor competence associated with the formation of each organ.  

Loss-of-function or gene-dosage studies on key TFs (e.g., Sox2, Sox17, Ptf1a, Cdx2) 

have revealed roles in specifying regional and organ-specific progenitor character in the 

endoderm. In some cases, removing or reducing their function causes endodermal progenitors to 

acquire another region or organ identity (Que et al., 2007; Gao et al., 2009; Spence et al., 2009; 

Kawaguchi et al., 2002).  Limited studies address in detail their role in deterministically 

controlling progenitor behavior, especially in comprehensively switching organ fates.  

Combining necessity and sufficiency tests could help understand how organ territories are 

defined, how endoderm-mesoderm communication occurs, and how gene dysregulation leads to 

aberrant epithelial maintenance.  

The pancreas is initiated from separate domains in the posterior dorsal and ventral foregut 

endoderm.  The basic helix-loop-helix TF Ptf1a is expressed within endoderm throughout the 

pancreatic bud progenitors, subsequently within the growing tips of the branched epithelium, and 

finally in their subsequently derived acinar cells (Krapp et al., 1998; Kawaguchi et al., 2002; 

Zhou et al., 2007; Masui et al., 2007).  In the early MPC (multipotent progenitor cell), Ptf1a is 

part of a complex, PTF1, with a canonical E-protein (E12, E47, or HEB) and the nuclear 
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mediator of Notch signaling, RBPJκ.  As multipotent cells transition to acinar-lineage-restricted 

fates, increased expression of RPBJL, a Notch-independent RBPJκ paralog, replaces RBPJκ in 

PTF1 (Masui et al., 2007).  Thus, two types of PTF1, PTF1-J and PTF1-L, promote pro-

pancreatic multipotency or acinar gene-regulatory networks, respectively. 

Previous work in Xenopus tested Ptf1a as a dominant instructor of pancreas fate (Afelik 

et al., 2006; Jarikji et al., 2007), but left open questions, including the temporal and spatial 

windows during which such effects can be elicited, and the completeness of conversion.  

Particularly important issues include the duration of ectopic Ptf1a required for tissue conversion, 

and the effect on other genes that supposedly act together with Ptf1a as upper-level regulators of 

the cascade that regionally specifies pancreatic MPC and moves them to fully differentiated 

cells.  Moreover, it is essential to understand these issues in the mammalian embryo. 

We therefore addressed the potency of Ptf1a as a single TF in dominantly instructing 

organ fate in mammalian endoderm.  Transient endodermal Ptf1a misexpression caused a 

coherent change in the TF expression domains in the endoderm, including broad, rapid 

expansion of Pdx1 expressed from its endogenous locus, and recruitment of other pancreatic-

progenitor identifier genes.  Early transient Ptf1a stably converted pancreas-adjacent endoderm 

that normally forms the glandular stomach, extra hepatic biliary system, and rostral-most 

duodenum into pancreatic tissue comprising its full complement of cell fates, including 

endocrine cells.  Altering the timing of Ptf1a misexpression defined the developmental period 

over which dominant respecification of the endoderm became switched from early multipotent to 

lineage-restricted acinar transformation.  We also defined a period in which endoderm and 

endoderm-associated mesoderm displayed interdependent specification programs. 
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Prior to the work described below, I used a 4.5 kb Pdx1 promoter fragment to drive Ptf1a 

misexpression during endodermal development. The Pdx1 promoter fragment in this transgene 

should drive persistent expression of Ptf1a from the time the Pdx1 promoter is first 

activated (around E8.25 to E8.5) (Gannon et al., 2001). This transgene was used by Schaffer et 

al., (2010) to generate transient transgenic embryos to drive Ptf1a misexpression throughout 

pancreas development. They noticed areas of pancreatic respecification within the stomach and 

duodenum. The size and location of the respecified tissues were highly variable.  

To confirm the results obtained by the Sander lab, I generated transient transgenic 

embryos and analyzed them at E14.5 for pancreatic lineage markers. Consistent with the results 

from the Sander lab, I also noticed highly variable respecificaiton of the stomach and duodenum 

within the Pdx1 expression domain. We attributed the highly variable respecification to mosaic 

expression of the transgene. Ectopic pancreatic progenitors that were found maintained Ptf1a 

expression and expressed acinar cell markers (Amy and Cpa1). These ectopic progenitors did not 

express pancreatic endocrine (Insulin) or trunk markers (Sox9 and Nkx6.1). Due to the highly 

mosaic expression of the transgene and acinar cell nature of the respecified progenitors that were 

analyzed, I pursued the genetic system described in this chapter that would allow tighter control 

over the timing and duration of Ptf1a expression. 
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 Results  

 

Transient endodermal Ptf1a misexpression  

Transient endodermal Ptf1a misexpression, or Ptf1a
EDD

 [endoderm] used a three-allele 

system: Sox17
GFPCre

 pan-endodermal Cre driver; ROSA26
rtTA.IRES.EGFP

, which Cre-dependently 

expresses the reverse tetracycline transactivator (rtTA) and green fluorescent protein (EGFP); 

and tetO
Ptf1a.IRES.lacZ

, expressing Ptf1a and beta-galactosidase (βgal) in the presence of rtTA and 

doxycycline (Fig. 3.1A).  Single doxycycline injections produce pulsed Ptf1a expression.  Sox17 

is essential for endoderm formation, and is expressed throughout the early definitive endoderm 

(Kanai-Azuma et al., 2002).  Analysis of a ROSA26 reporter with an independent Sox17-Cre 

allele (Engert et al., 2009) indicated recombination starting as early as E7.5, with the ROSA26 

promoter maintaining extensive endodermal expression until at least E16.5.  Our own monitoring 

of EGFP expressed from ROSA26
rtTA.IRES.EGFP 

at E10.5 and E12.5 showed recombination broadly 

throughout the endoderm and endothelium, with the ROSA26 promoter equivalently active 

during the test windows used herein (not shown).  Therefore, variable response to doxycycline-

induced Ptf1a
EDD

 cannot be attributed to shutting down of the rtTA expression system.  

Appropriate system behavior was also validated by post-doxycycline pan-endodermal βgal (e.g., 

Fig. 3.1D).  Ectopic Ptf1a in trigenic animals was only activated in endoderm and endothelium in 

the presence of doxycycline (not shown); we rule out endothelial effects below.  Controls were 

largely Sox17
GFPCre

; ROSA26
rtTA.IRES.EGFP

 littermates, or non-littermate non-doxycycline-treated 

triple transgenics, which were phenotypically equivalent to wild type. 

To estimate the kinetics of Ptf1a
EDD

 misexpression, we analyzed Ptf1a at various stages 

after single E9.5 doxycycline injections.  By 24 hours (E10.5), βgal and Ptf1a were induced in  
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Figure 3.1. Conditional endodermal Ptf1a misexpression (Ptf1a
EDD

).  All E10.5 tissues 

except (G, J).  (A) Ptf1a
EDD

 system.  Black triangles, loxP sites.  (B,C) Morphologies of control 

and Ptf1a
EDD

 endoderm; whole-mount immunolabeling (maximum-intensity projection), pan-

endodermal Foxa2. (D) tetO allele activation by βgal immunolabeling. (E) Control endodermal 

Ptf1a was in pancreatic progenitors (dorsal pancreas, yellow arrowhead; intestine, white 

arrowhead). (F) Ptf1a
EDD

 embryos showed pan-endoderm Ptf1a at E10.5, including regions 

normally devoid of expression (e.g., anterior stomach progenitors: white arrowhead). (G) 72 hrs 

(E12.5) after initiating Ptf1a
EDD

, Ptf1a
+
 tissue was more restricted, with an anterior boundary 

within prospective stomach (posterior, anterior stomach: yellow, white arrowheads). (H) Control 

E10.5 embryo, Nkx6.1/Pdx1 co-production in dorsal pancreatic anlage. (I) With Ptf1a
EDD

, 

Nkx6.1 was suppressed in the pancreatic buds, but (J) by E12.5, was restored to normal levels 

(dorsal bud shown). Bars: B-D, 100 µm; E-J, 20 µm. dp, dorsal pancreas; vp, ventral pancreas; 

st, stomach; lv, liver; lg, lung; int, intestine. 
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endoderm and endothelium (Fig. 3.1D-F), essentially with uniform foregut endoderm coverage 

(Fig. 3.1D).  Endodermal cells broadly recognized and functionally responded to Ptf1a
EDD

.  

There were widespread alterations in tissue morphology associated with dominant re-

regionalization of the germ layer, described below (Fig. 3.2).  E10.5 embryos showed variable 

absence of overt organ buds (Fig. 3.1D), and slight retardation in forming lung buds, which 

always became distinct again by E12.5 (not shown).  Anterior endoderm showed wide 

suppression in Sox2 level, described below.  By 72 hours (E12.5), in addition to its presence in 

many pancreatic bud cells, Ptf1a was observed in tissue representing the region normally turning 

into stomach (Fig. 3.1G) and anterior duodenum.  In this region at this stage, any Ptf1a was 

likely derived from the endogenous locus, because Ptf1a was no longer observed in more 

anterior foregut such as Sox2
+
 prospective anterior stomach (Fig. 3.1G) or esophagus (not 

shown).  Extinguished Ptf1a in these regions suggests a limited window of exogenous Ptf1a
EDD

.   

Titrating the timing and level of doxycycline was required for eliciting coherent tissue 

responses to Ptf1a
EDD

.  In preliminary findings, prolonged Ptf1a
EDD

 via doxycycline in the 

drinking water caused pervasive malformations and embryo death between E10.5-11.5, and 

similarly with single 1.0 mg injections, leading to the low-level scheme (~0.25 mg/female) that 

caused short-lived Ptf1a
EDD

 and profound tissue-conversion.  Within the pancreas buds, Ptf1a
EDD

 

temporarily disturbed the normal marker combinations of early pro-pancreatic MPC status.  

Normally, Nkx6.1 is widely expressed in pancreatic progenitors at E10.5 (Fig. 3.1H), and 

slightly later (E11.5-12.5) becomes restricted to the trunk domain (i.e., absent from prospective 

pro-acinar tip domains) of the pancreatic epithelium.  Mutual repression between Ptf1a and 

Nkx6.1 has been reported, with Ptf1a from a Pdx1 promoter/enhancer transgene strongly 

suppressing Nkx6.1 (Schaffer et al., 2010).  Our observation of temporary Nkx6.1 suppression 
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(n=3) provides further indirect evidence for transient Ptf1a
EDD

.  Analysis 24 hours after E9.5 

doxycycline administration showed strong Nkx6.1 suppression within pancreatic bud MPC (Fig. 

3.1I).  We speculate that endogenous Ptf1a added to Ptf1a
EDD

 was greater than in normal 

pancreatic MPC thus suppressing Nkx6.1, and that the post-doxycycline decline in Ptf1a
EDD 

restored the Nkx6.1
+
 state (n=3; for 72 hours post-doxcycyline, Fig. 3.1J).  We propose that the 

post-doxycycline decline led to lower level, normally regulated Ptf1a from its endogenous locus, 

allowing the foregut endoderm either to restore normal pancreatic MPC specification, or undergo 

pro-pancreatic conversion with intermediate acquisition of a pro-pancreatic state. 

 

Ptf1a
EDD

 broadly expands the Pdx1
+
 endodermal territory and pro-pancreatic regulatory 

network 

We next examined alterations in early regional foregut endodermal gene expression.  

Pdx1 and Ptf1a are the best-known markers linked to pancreatic MPC specification (Zhou et al., 

2007; Pan et al., 2013).  Pdx1 expression at E10.5 normally marks endoderm representing the 

dorsal and ventral pancreatic buds, caudal-most stomach, rostral duodenum, and a portion of the 

extra-hepatic biliary system (EHBS) (Fig. 3.2A).  Endodermal Ptf1a is restricted to the 

developing pancreas within this territory.  Both genes are required for proper pancreatic 

outgrowth and differentiation (Jonsson et al., 1994; Offield et al., 1995; Holland et al., 2002; 

Krapp et al., 1998; Kawaguchi et al., 2001). In Ptf1a
EDD

 embryos at E10.5, the region of Pdx1
+
 

cells was reproducibly and greatly expanded into the more rostral endoderm and caudal ventral 

foregut (n=6; Fig. 3.2B). We reproducibly observed clear suppression of Sox2 in Ptf1a
EDD

 

anterior endoderm in whole-mounts (n=5; Fig. 3.2B, Fig. 3.3) or multiple independent side-by- 
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Figure 3.2. Expansion of Pdx1 and early pancreatic MPC markers. Ptf1a
EDD

 induced at E9.5, 

analysis 24 (E10.5) or 72 (E12.5) hrs post-injection. (A-D) Whole-mount immunolabeling: Pdx1, 

Sox2. (A) Pdx1 and Sox2 differentially marked foregut endoderm, with co-production in 

posterior stomach. (B) Pdx1
+
 domain greatly expanded by Ptf1a

EDD
. (C) Low-level Pdx1 

detected in a sub-region of control gall bladder (arrowhead). (D) Ptf1a
EDD

 broadly expanded the 

Pdx1
+
 territory into posterior ventral foregut (arrowhead). (E) Control Pdx1 was not co-

expressed with hepatoblast marker Hnf4α. (F) Ptf1a
EDD

 embryos, many Hnf4α
+
 hepatoblasts 

expressed low levels of Pdx1 (arrowheads: example cells). (G,H) By E12.5, Nkx6.1 (G) and 

Prox1 (H) were detected within presumptive posterior stomach (co-labeled with Sox2) under 

Ptf1a
EDD

 (yellow, white arrowheads: posterior, anterior stomach). (I) Ectopic Nkx6.1 expression 

within what normally would become anterior duodenum. (J) Pdx1
 
signal was not maintained 

within the definitive liver of E12.5 embryos from E9.5 Ptf1a
EDD

; few Pdx1
+
 cells were found 

within the liver anlage (arrowhead).  Inset: a different embryo showing a few groups of Pdx1
+
 

cells adjacent to Hnf4α
+
 cells.  Approximate sectional plane indicated in (G,H,I).  Bars: A/B, 100 

µm; C/D, 50 µm; E-J, 20 µm.   gb, gall bladder. 
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side section analyses (not shown).  For unknown reasons, the posterior Pdx1 expansion was 

limited and patchy.  Despite widespread endodermal activation of ROSA26
rtTA.IRES.EGFP

, the 

tetO
Ptf1a.IRES.lacZ

 allele was poorly activated in the prospective mid/hindgut (Fig. 3.4).  

Accordingly, Cdx2 expression and general histology was normal in the rostral-most remaining 

small intestine in our postnatal Ptf1a
EDD

 analysis (not shown).  This situation prevents rigorous 

conclusions regarding effects of Ptf1a
EDD

 in posterior endoderm, and we therefore focus on the 

rostral-most duodenum and regions located rostral and ventral to it.   

Because Sox17 is also expressed within endothelial cells, it was important to address 

effects of endothelial Ptf1a misexpression on endodermal patterning.  We misexpressed Ptf1a 

using the endothelial Tie1
Cre

 driver (Gustafsson et al., 2001) in Tie1
Cre

; ROSA26
rtTA.IRES.EGFP

; 

tetO
Ptf1a.IRES.lacZ

 embryos.  Endothelial Ptf1a, with the same injection regimen as Sox17
Cre

-based 

Ptf1a
EDD

 at E9.5, did not change the Pdx1 expression domain at E10.5 (n=3; Fig. 3.5), or affect 

other regional (Nkx6.1, Pdx1) expression patterns at E12.5 (data not shown).  Therefore, Ptf1a 

must be endodermally delivered to cause repatterning and organ conversion.  We cannot, 

however, rule out the possibility that endothelial Ptf1a somehow supported or synergized with 

the Ptf1a
EDD 

phenotype; but we note that other endodermal Cre drivers do not offer the timing 

and broad endodermal characteristics, are substantially mosaic, or expressed in other key tissues 

known as essential in patterning the embryo. 

The posterior ventral foregut produces liver, EHBS (extra hepatic biliary ducts, gall bladder) and 

ventral pancreas (McCracken and Wells, 2012). The presumptive ventral pancreas and gall 

bladder are distinguishable by Sox17 expression, which becomes progressively restricted to the 

gallbladder anlage (Spence et al., 2009), and Pdx1.  At 10.5, the ventral pancreas bud displays 

uniformly high Pdx1, while the gall bladder primordium shows lower, variable levels of Pdx1,   
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Figure 3.3: Broad foregut endoderm suppression of Sox2 levels following Ptf1a
EDD

. (A,B) 

Maximum-intensity projection of a confocal z-stack. (A) In control embryos, Sox2 marks 

anterior foregut endoderm and Pdx1 the posterior foregut endoderm. (B) In addition to an 

expanded Pdx1
+
 domain following Ptf1a

EDD
 (see Fig. 2), we observed Sox2 suppression 

throughout the foregut endoderm. Arrowhead in (B) indicates a presumed area of Sox2
+
 

endoderm that escaped ROSA26
rtTA.IRES.EGFP 

recombination (this area lacked any Ptf1a 

expression), such that this level, in side-by-side comparison to control whole mounts, was similar 

to the normal foregut endodermal signal, allowing direct estimation of the reduced level in all of 

the surrounding Ptf1a
EDD

 tissue.  This suppression was temporary, as shown in Fig. 2.  Scale 

bars: 100 µm. Abbreviations: dp, dorsal pancreas; vp, ventral pancreas; st, stomach; int, intestine. 
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Figure 3.4: Poor tetO allele activation in posterior endoderm. (A) Individual optical section 

of E10.5 Ptf1a
EDD

 midgut after doxycycline administration at E9.5. Foxa2 marks all endoderm 

progenitors while βgal indicates activation of the tetO
Ptf1a.IRES.LacZ 

allele. In contrast to the near-

ubiquitous activation of the tetO allele in the foregut (see Fig. 1), not all Foxa2
+
 cells (B) 

expressed βgal (C) in the midgut or hindgut (indicated by arrowheads).  In the absence of ectopic 

Ptf1a in these more posterior tissues, we cannot currently interpret their capacity to be 

respecified as pancreatic cell types. Scale bars, 25 µm. 
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which are shortly thereafter reduced further; i.e., the Pdx1
+
 domain seems to recede towards the 

ventral pancreas (Fig. 3.2C).  With Ptf1a
EDD

, the Pdx1
+
 territory was vastly expanded ventrally, 

and uniformly high within the posterior ventral foregut, suggesting that Pdx1 was ectopically 

expressed throughout the EHBS primordia and a substantial portion of the nearby liver anlage 

(n=6 individual embryos; Fig. 3.2D).  To verify ectopic Pdx1 activation in hepatoblasts, we 

tested for co-production of Pdx1 and the hepatoblast marker Hnf4α, which normally define 

complementary domains (n=3; Fig. 3.2E).  Ptf1a
EDD

 embryos showed many co-producing cells in 

ventral foregut endoderm (Fig. 3.2F).  In Ptf1a
EDD

 embryos analyzed at E12.5, no distinct gall 

bladder or EHBS could be found, consistent with the idea that their progenitors had been 

respecified and joined a common state with the ventral pancreatic bud (n=6).  Serial-section 

analysis failed to show ectopic Pdx1
+
 cells at E12.5 within the distinct liver domain, indicating 

resolution of the early mixed pancreas/liver state as the tissue moved into liver differentiation 

(Fig. 3.2J).  We cannot rule out that some Ptf1a-expressing hepatoblasts or forestomach 

progenitors did undergo respecification and move physically into adjacent respecified domains.  

We addressed a potential cell-death explanation below.  The cell migration issue would require 

early specification-marker-driven and temporally specific lineage tracing by non-Cre methods 

(because we used Cre to activate Ptf1a
EDD

), which are currently unavailable.  

We tested if Pdx1
+
Ptf1a

+
 endodermal progenitors induced by Ptf1a

EDD
 expressed other 

pancreatic MPC markers.  In normal E10.5-12.5 endoderm, Nkx6.1 specifically marks pancreatic 

progenitors (Pedersen et al., 2005), and therefore was not expressed in control Pdx1
+
 stomach or 

duodenum (not shown).  Analyzing Ptf1a
EDD

 embryos at E12.5, we observed co-production of 

Nkx6.1 within the Pdx1
+
Ptf1a

+ 
presumptive posterior stomach (n=6; Fig. 3.2G).  We 

reproducibly detected similar expansion of Prox1, another influential pancreatic progenitor TF 
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not normally expressed in the prospective stomach (n=3; Fig. 3.2H).  Nkx6.1 was also 

ectopically expressed in the domain that would normally produce anterior duodenum (Fig. 3.2I). 

We examined whether proliferative expansion of pancreatic progenitors contributed to the spatial 

expansion of pancreatic markers in Ptf1a
EDD

 embryos.  We presume that replacement of stomach 

progenitors by hyper-proliferative pancreatic progenitors would also involve loss of progenitors 

for other organ territories.  In Ptf1a
EDD

 embryos at E10.5, we were unable in this analysis to use 

pancreas-specific markers such as Ptf1a, which was expanded throughout the endoderm, or 

Nkx6.1 (temporarily suppressed).  Given that the vast expansion of Pdx1 occurs acutely 

following Ptf1a
EDD

, we examined E10.5 Ptf1a
EDD

 embryos by extensive sectional analysis for 

regional alterations in proliferation using phospho-histone H3 (chosen over, for example, Ki67 or 

BrdU labeling, because of the high proliferation rate of cells in all tissues over these stages of 

organogenesis).  We also tested for increased apoptosis (cleaved caspase-3) within the Pdx1
+
 

domain.  We detected no regional alterations in proliferation or apoptosis that could explain the 

expansion in the Pdx1
+
 domain as spreading of cells from the normal pancreatic domain (not 

shown).    

These combined alterations in progenitor markers suggest that Ptf1a
EDD

 initiated a 

dominant effect on the posterior foregut, initially activating expression of Pdx1, a principal 

component of the pro-pancreatic MPC gene regulatory network, from its endogenous locus and 

much more widespread than normal.  The expression of other pro-pancreatic MPC regulatory-

network members was recruited to the remaining Ptf1a
+
Pdx1

+
 region (more rostral regions 

withdrawing from this condition), stabilizing a pro-pancreatic condition in what would normally 

have become the prospective glandular stomach, anterior duodenum, and EHBS.    
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Figure 3.5: Endothelial misexpression of Ptf1a does not expand the endodermal Pdx1+ 

territory. (A) E10.5 Tie1
Cre

; ROSA26
rtTA.IRES.EGFP 

(control) maximum intensity projection of the 

posterior foregut. Pdx1 was restricted to its normal expression domain: pancreatic buds, posterior 

stomach, anterior duodenum, and a portion of the EHBS. (B) E10.5 Tie1
Cre

; ROSA26
rtTA.IRES.EGFP

; 

tetO
Ptf1a.IRES.LacZ 

(trigenic misexpression) maximum intensity projection of the posterior foregut 

following doxycycline administration at E9.5. In Tie1
Cre

-trigenic embryos, the tetO allele was 

activated within endothelial cells (expression of βgal) but not endoderm. Arrowheads indicate 

endothelial βgal expression. The maintenance of the normal expression domain of Pdx1 with this 

method indicates that endodermal Ptf1a production was required for the regionalized pancreas-

conversion effects reported here.  Scale bars, 100 µm. Scale bars: A, B, 100 µm. Abbreviations: 

dp, dorsal pancreas; vp, ventral pancreas; st, stomach; int, intestine; gb, gall bladder. 
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Respecified pancreas-adjacent endoderm produces differentiated pancreatic cell types  

To test if Ptf1a
EDD

 initiated a complete conversion to pancreatic tissue, misexpression 

was initiated at E9.5 and tissues analyzed at E18.5/P0 when differentiation programs are clearly 

distinguishable.  While some aspects of pancreas differentiation are discernible mid-gestation, 

the programs in stomach and intestine acquire many cell-type-specific characteristics only at 

later gestation and peri/postnatally.  Ptf1a
EDD

 pups were stillborn (likely caused by deficits in 

endothelial tissues), but otherwise equivalent in size to the various controls described above.   

The gross anatomy of foregut endodermal organs (e.g., Fig. 3.6 for lung) was normal except in 

the posterior foregut (described below), and cellular differentiation was largely normal in the 

lung and forestomach in Ptf1a
EDD

 pups.  Because Ptf1a
EDD

 pups were stillborn, their lungs did 

not inflate, but there was appropriate differentiation of proximal and distal lung, and extensive 

endothelial coverage of terminal airways (Fig. 3.6).  The Ptf1a
EDD

 forestomach contained 

multiple layers of Sox2
+
 cells (Fig. 3.7).  These data indicate that despite ectopic Ptf1a 

expression and effects on Sox2, the lung resisted Ptf1a-mediated respecification and the normal 

differentiation program was reasserted.  While the lack of forestomach-specific markers limited 

our depth of analysis, we conclude that the forestomach and lung were not grossly diverted from 

their normal organ identities, albeit suffering possible modest alterations in terminal 

differentiation.   

Abnormalities in embryos/pups from E9.5 Ptf1a
EDD

 (n=6) included disrupted 

gastrointestinal tract continuity at the stomach-duodenum junction, an abnormal shape and color 

of the stomach (Fig. 3.8B,D), and lack of a morphologically obvious EHBS (Fig. 3.8C,E).   
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Figure 3.6: Following endodermal Ptf1a misexpression, the lung maintains normal organ 

identity. (A,B) Organ morphology of control (A) and Ptf1a
EDD 

(B) lung at P0 after doxycycline 

administration at E9.5. The lungs in Ptf1a
EDD

 embryos were grossly equivalent to control 

embryos except that Ptf1a
EDD 

lungs were not inflated (animals are stillborn).  The completeness 

of lung development at P0 was tested by the production of terminal differentiation markers and 

endothelial cells. (C,F,I) CCSP (Clara cell secreted protein) marks Clara cells in the small 

airways of the lung. (D,G,J) SPC (Surfactant protein C) marks type II alveolar epithelial cells. 

(E,H,K) Endothelial cells were detected by the pan-endothelial marker Endomucin. The level and 

distribution of all markers were comparable between control and Ptf1a
EDD

 tissue. These results 

suggest that lung differentiation proceeds largely unchanged following early-stage Ptf1a
EDD

. 

Scale bars: A and B, 1 mm; C-K, 50 µm. 
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Figure 3.7: Additional histological analysis of Ptf1a
EDD

 initiated at E9.5.  (A) 

Immunohistochemical detection of Sox2 in control P0 forestomach tissue (brown). Sox2 

production was restricted to the basal layer of the forestomach. (B) Detection of Sox2 in Ptf1a
EDD

 

P0 forestomach tissue showed an expansion to multiple layers of the forestomach epithelium, 

and the tissue was lacking an apparently lacking superficial keratinized layer. (C) Large caliber 

DBA-reactive ducts (brown) adjacent to pancreas tissue that may resemble a stranded residual 

portion of the proximal EHBS (arrowheads).  (D) Histological example of a patch of pancreas 

tissue in Ptf1a
EDD

 pups located between the coelomic epithelium and submucosa of the small 

intestine. Scale bars, A-D 50 µm. Abbreviations: st. l, stomach lumen; duo, duodenum. 
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Pancreatic acini, the predominant pancreatic cell type, are visually distinguishable by their 

opacity and characteristic cauliflower-like tissue structure.  The posterior stomach in Ptf1a
EDD

 

pups contained tissue externally resembling pancreatic acinar cells (Fig. 3.8B,D).  The 

morphology, size, and position of the dorsal pancreas were visually normal.  The ventral 

pancreas resided near the break between the posterior stomach and blind end of the rostral-most 

duodenum (Fig. 3.8D). The postnatal and adult mouse stomach comprises three distinct domains 

(Lee et al., 1982).  The most rostral forestomach is overall typified by a pseudo-stratified 

keratinized epithelium.  Caudal to forestomach lies the glandular stomach, divided into the 

corpus and antrum.  Both domains have columnar epithelial morphology (Fig. 3.8F) but different 

cell types.  Parietal and chief cells are derived only from the corpus, while the antrum contains 

mucus-secreting cells.  Essentially replacing the entire glandular stomach epithelium in Ptf1a
EDD

 

pups were cells indistinguishable from pancreatic acini by morphology and H&E staining (large 

eosinophilic cells) (Fig. 3.8G,H).  It appeared as if pancreatic tissue had replaced the entire 

glandular stomach (Fig. 3.8H,I,J).  

In normal animals, the mesoderm surrounding the stomach (Fig. 3.8F) is distinct from the 

mesoderm at the pancreas.  Stomach-associated mesoderm becomes multi-layered, including 

submucosa and muscularis layers between the coelomic and endodermal epithelia.  This normal 

stomach-associated mesoderm was absent next to the ectopic pancreas in the posterior stomach 

of Ptf1a
EDD

 pups.  The ectopic pancreas was closely apposed to coelomic epthelium, and the 

mesoderm was characteristically pancreatic, with pervasive interdigitation amongst the ectopic 

differentiated epithelial tissue (Fig. 3.8H).  These data support the conclusion that following 

early conversion of the endoderm that would have formed the prospective stomach, anterior 

duodenum, and EHBS into pancreatic MPC, there was region-appropriate dominant instruction 
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Figure 3.8. Pancreatic cells replacing glandular stomach, anterior duodenum, EHBS.  (A) 

Set-up: E9.5 doxycycline transiently pulsed ectopic Ptf1a
EDD

, analysis at E18.5/P0.  (B,C) 

Morphology of control stomach, duodenum (B), extra-hepatic biliary system (EHBS; C).  Closed 

or open arrowheads in (C): cystic duct, gall bladder.  (D) With Ptf1a
EDD

, pancreatic acinar cells 

found within posterior stomach. Stomach and intestine were disconnected (yellow arrowheads). 

(E) Distal EHBS was absent. (F) H&E staining, control glandular stomach.  Dashed lines: 

submucosa (red), muscularis layers (yellow). (G) H&E-stained control pancreas.  (H) Glandular 

stomach in Ptf1a
EDD

 embryos replaced with pancreatic acini.  The thick mesenchymal layer 

normally surrounding glandular stomach was absent adjacent to ectopic pancreas (arrowheads). 

(I) Close-up from (G).  (J) Additional image, Ptf1a
EDD

 glandular stomach.  Bars: B-E, 1 mm; F, 

G, I, J, 50 µm; H, 500 µm.  sp, spleen; duo, duodenum; lu, stomach lumen; m, mucosa; a, acini; 

i, islet; fs, forestomach. 
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of the overlying mesoderm cell fate.   The visual lack of EHBS or anterior duodenum was 

corroborated by systematic serial-section analysis of Ptf1a
EDD

 tissue, which found no evidence 

for distal EHBS tissue types (gall bladder, cystic duct) or structures of the anterior duodenum, 

including the pyloric connection to stomach or the Brunner’s glands normally found at the 

rostral-most collar region of the duodenum.  Ptf1a
EDD

 tissue contained some large DBA-reactive 

ducts adjacent to the liver, and somewhat posterior to the pancreas-converted stomach, which 

could have represented a fragment or partially formed segment of the normal proximal EHBS 

(Fig. 3.7).  Small patches of pancreas tissue were found between the coelomic epithelium and 

submucosa along a limited portion of the small intestine (Fig. 3.7).  From this morphological and 

histological evidence, we infer that transient Ptf1a
EDD

 at E9.5 caused glandular stomach, anterior 

duodenum, and distal EHBS progenitors to become developmentally re-specified into pancreas.  

The fate switch of gut-tube endodermal progenitors, and change in character of the associated 

adjacent mesoderm, led to a break in stomach-intestine continuity and loss of a complete EHBS. 

 

Ectopic pancreas tissue replacing the glandular stomach contains endocrine cell types 

We focused in the next analysis on the stomach-associated ectopic pancreas, because we 

were unable to distinguish between the true ventral pancreas and pancreas tissue that had become 

continuous with it but was derived from the Ptf1a
EDD

-converted EHBS or rostral duodenum.  To 

determine the extent of pancreas conversion, we serially sectioned the entire foregut from three 

Ptf1a
EDD

 pups, using molecular markers to identify gastric and pancreatic cell types on a majority 

of these sections to ensure detailed tissue coverage.  Parietal cells are restricted to glands of the 

corpus and are marked by high HK-ATPase, while epithelium of the corpus and antrum is 

generally marked by GSII lectin (Griffonia Simplicifolia Lectin II).  Thus, GSII/HK-ATPase
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double-positive glands identify corpus (Fig. 3.9A) and GSII
+
/HK-ATPase

-
 glands signify 

antrum.  Ptf1a
EDD

-converted posterior stomach contained only minuscule, scattered GSII
+
/HK-

ATPase
+
 or GSII

+
/HK-ATPase

- 
areas.  Fig. 4B deliberately shows one of those remaining areas, 

with the overwhelming majority of cells within the posterior stomach expressing pancreatic 

acinar-specific amylase (Fig. 3.9B).   

Pancreatic endocrine and duct cells were present within the ectopic pancreas.  Pancreatic 

endocrine cells are generally synaptophysin
+
, while duct cells are DBA-lectin-reactive (Fig. 

3.9C).  Epithelial endocrine cells in the stomach normally distribute as single cells, while most 

endocrine cells in the pancreas cluster into the often-large islets of Langerhans, with insulin 

signifying pancreatic identity (Fig. 3.9E).  Consistent with the idea that early, transient Ptf1a
EDD

 

did not deflect normal pancreatic organogenesis in a major way, immunodetection and 

histological examination showed that islet-cell representations and clustering in the ‘endogenous 

pancreas’ after E9.5 Ptf1a
EDD

 were equivalent to normal controls.  Within the ectopic pancreas 

replacing the glandular stomach, we found synaptophysin
+ 

cells, both clustered and dispersed, 

and DBA
+
 duct cells.  Dispersed endocrine cells were much more numerous than those organized 

into scattered, loosely organized clusters (typified by Fig. 3.9D), but were reproducibly present 

throughout the ectopic pancreas (see also Fig. 3.10).  All endocrine cells were single-hormone-

positive, and expressed insulin, glucagon or somatostatin (Fig. 3.9F).  Insulin
+
 cells within the 

ectopic pancreas expressed Pdx1 and Nkx6.1; criteria for equivalence to normal beta cells (Fig. 

3.9H, I).  These cells are too few for isolation and physiological testing of their maturity and 

glucose-responsiveness.  The morphological, histological, and molecular analysis supports the 

conclusion that transient Ptf1a
EDD

 at E9.5 caused functional respecification of the prospective 

stomach into multipotent pancreatic progenitors that were then capable of deriving all pancreatic  
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Figure 3.9. Ectopic pancreas contains endocrine and exocrine cells. [Doxycycline at E9.5, 

analysis at E18.5/P0.]  (A) Control corpus glands reacted with GSII lectin and expressed HK-

ATPase, but not pancreatic acinar amylase.  (B) With Ptf1a
EDD

, most posterior stomach cells 

expressed amylase but not stomach markers.  (C) Normal pancreas, clustered synaptophysin
+
 

endocrine cells (islets) and DBA-reactive duct cells. (D) Ptf1a
EDD

-converted stomach with 

synaptophysin
+
 cell clusters, DBA-reactive ducts.  (E) Endocrine cells expressing insulin, 

glucagon, somatostatin.  (F) Ptf1a
EDD

-converted stomach contained numerous single-hormone-

positive endocrine cells for insulin, glucagon, somatostatin (insets – additional endocrine clusters 

in Ptf1a
EDD

 tissue). Somatostatin
+
 cells were far fewer than glucagon

+
 or insulin

+
 cells. (G) 

Insulin-producing normal β-cells were Pdx1
+
, Nkx6.1

+
.  (H) Insulin

+
 cells within Ptf1a

EDD
-

converted stomach were also Pdx1
+
/Nkx6.1

+
.  Bars: A-H, 20 µm.  sm, submucosa. 
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Figure 3.10: Additional histological analysis of endocrine cells in the Ptf1a
EDD 

glandular 

stomach.  (A,B) Representative images, immunohistochemical detection of insulin (brown) on 

P0 Ptf1a
EDD

-converted glandular stomach tissue after doxycycline administration at E9.5. 

Insulin-positive cells are distributed throughout the tissue as clusters and more scattered cells. 

(C, D) Higher magnifications A and B. All tissues are counter-stained with eosin. Scale bars: A 

and B, 1 mm; C and D, 200 µm.  
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lineages.  Possibly, the Ptf1a
EDD

-induced conversion from an epithelial naïve gut tube to bud-like 

pre-pancreatic tissue (from section analysis of E12.5 embryos; data not shown) reduced the 

number and organization of endocrine cells within the ectopic pancreas.   

 

Certain non-pancreatic progenitors maintain competence for Ptf1a-mediated 

respecification 

Given the striking re-specification of glandular stomach, anterior duodenum and EHBS, 

we tested if their competence to respond to Ptf1a
EDD

 became more restricted over developmental 

time.  Tissue gathered after doxycycline injection at E10.5 (n=6) or E11.5 (n=7) was similar to 

the E9.5 Ptf1a
EDD

 situation, with pancreatic acinar cells located throughout the glandular 

stomach.  The rostral-most end of the small intestine seemed closer to the posterior stomach 

compared to E9.5 induction, suggesting loss of less intestinal tissue, but the stomach-intestine 

connection was still interrupted by pancreas tissue (Fig. 3.11B,D).  The distal EHBS was still 

absent under E10.5 or E11.5 Ptf1a
EDD

 (Fig. 3.11C,E). 

Ptf1a
EDD

 initiated at E12.5 (n=5) still caused substantive replacement of the majority of 

the glandular stomach with pancreatic acini (Fig. 3.11F).  This stage of Ptf1a
EDD

 was the first at 

which the continuity of the gastrointestinal tract at the stomach-intestine junction was no longer 

interrupted, and the distal EHBS was morphologically apparent (Fig. 3.11G).  Sectional analysis 

revealed that the entire EHBS was replaced with pancreatic acini surrounding a central duct (Fig. 

5H).  Although the overall gross morphology of the intestine appeared normal, serial sectioning 

of Ptf1a
EDD

 tissue revealed a few small patches of pancreatic acinar cells scattered within the 

anterior duodenum (Fig. 3.11I). 
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Figure 3.11.  Posterior foregut anatomical alterations after shifting the Ptf1a
EDD

 window.  

(A) Ptf1a
EDD

 induced at E10.5, E11.5, or E12.5, and analyzed at E18.5/P0.  (B,C) Morphology of 

stomach, duodenum (B), EHBS (C) after E10.5 Ptf1a
EDD

. (B) Posterior stomach replaced by 

pancreas tissue, with disconnected blind-ended intestinal tube.  Arrowheads: pancreatic tissue 

present in this location. (C) Definitive EHBS structures were absent (arrowhead and data not 

shown). (D,E) Similar alterations with E11.5 Ptf1a
EDD

.  (E) Tissue from a separate animal, 

focused on continued lack of EHBS, but presence (arrowhead; close-up in inset) of several small 

patches of acinar clusters.  (F-I) E12.5 Ptf1a
EDD

.  (F) Pancreatic tissue still replaced much of the 

glandular stomach (arrowhead); definitive acini are shown in Fig. 6.  Stomach and duodenum 

were now connected (yellow line). (G) EHBS structures were apparent, but showed conversion 

of most of its endodermal epithelium to acini.  Insets: close-ups of both ends, centered on the two 

yellow arrowheads.  Right panel, tissue at the intestinal junction (asterisk). (H) Histology showed 

this “EHBS” to comprise pancreatic acini surrounding a central duct. (I) Pancreatic cells were 

also scattered within intestinal tissue (arrowhead). Bars: B-G, 1 mm; H, I, 50 µm.  

  



66 
 

We compared the morphological and molecular responses to Ptf1a
EDD

 initiated at E10.5, 

E11.5, or E12.5, with reference to the E9.5 data, by thorough serial-section analysis of three pups 

per stage.  The extent of pancreas replacement within the glandular stomach with Ptf1a
EDD

 

instigated at E10.5 or 11.5 was almost equivalent to the E9.5 Ptf1a
EDD

 effect.  In the limited 

regions not showing pancreas conversion, the normal thickened glandular stomach mesenchyme 

was present, but was otherwise pancreas-type elsewhere (Fig. 3.12A, B).  After Ptf1a
EDD

 at 

E12.5, replacement of the glandular stomach with pancreatic acini was substantial, but becoming 

much more focal.  There was a universal maintenance of stomach mesenchymal character with 

Ptf1a
EDD

 at any point from E12.5 onward (Fig. 3.12C, D). 

Formation of pancreatic acinar tissue following Ptf1a
EDD

 at E10.5, E11.5, or E12.5 

occurred throughout the glandular stomach, including the corpus (amylase expression 

interspersed with GSII
+
/HK-ATPase

+
 glands) (Fig. 3.12E,F).  After Ptf1a

EDD
 at E10.5 or E11.5, 

insulin
+
 cells within the ectopic pancreas tissue in the glandular stomach were rare, and not 

found in clusters (Fig. 3.12G).  No insulin
+
 cells were detected within the converted stomach 

with Ptf1a
EDD

 initiated at E12.5 (Fig. 3.12H) or thereafter.  

In summary, the endodermal progenitors of the glandular stomach (corpus, antrum), 

anterior duodenum, and EHBS retained the ability, until at least E12.5, to convert to pancreas 

tissue under Ptf1a
EDD

 challenge.  Between E9.5 and E12.5, the conversion transitioned from 

complete (whole pancreas) tissue-level replacement to progressively more focal and single-

lineage (acinar) cell types.  The completeness of pancreatic respecification with E9.5 Ptf1a
EDD

, 

as scored by all pancreatic lineages, including insulin
+ 

endocrine cells, diminished significantly  
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Figure 3.12. Temporal competence of Ptf1a
EDD

 respecification.  Ptf1a
EDD

 at E10.5, E11.5, or 

E12.5; analysis at E18.5/P0.  (A,B) Posterior stomach with E10.5 (A) or E11.5 (B) Ptf1a
EDD

.  

Pancreatic acinar-like cells replaced the columnar epithelium.  Normal stomach-type 

mesenchyme was absent adjacent to ectopic pancreas (arrowheads). (C,D) E12.5 Ptf1a
EDD

: 

pancreatic acini still largely replaced glandular stomach epithelium (C,D: anterior, posterior 

stomach), but stomach mesenchyme had its normal phenotype adjacent to ectopic pancreas.  

With (E) E10.5 or (F) E12.5 Ptf1a
EDD

, pancreatic acini were found next to HK-ATPase
+ 

corpus 

glands.  (G) With E11.5 Ptf1a
EDD

, pancreatic endocrine cells in converted tissue were 

unclustered and much less prevalent than with E9.5 Ptf1a
EDD

.  Very few insulin+ cells were 

detected. (H) E12.5 Ptf1a
EDD

, no insulin
+
 cells were detected.  Single, dispersed, synaptophysin

+
 

cells were detected, but normal stomach also contains endocrine cells.   Extensive analysis of 

Ptf1a
EDD

 stomach showed transformations were to pancreatic acini. Bars: A-C, 250 µm; D, 100 

µm; E-H, 20 µm.   
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by E10.5 and E11.5.  By E12.5, respecification was less robust than earlier Ptf1a
EDD

, and was 

wholly acinar-like.  With Ptf1a
EDD

 between E9.5 and E11.5, the mesoderm over the glandular 

stomach, anterior duodenum, and EHBS apparently received instruction from the respecified 

endoderm to adopt a pancreatic mesodermal character.  By E12.5, the fate of the overlying 

mesoderm in the intestine and glandular stomach was fixed in its original state. 

 

Discussion 

 

Regional susceptibility to dominant Ptf1a-based endodermal conversion to pancreas  

Transcription factors can control cell-lineage decisions, dominantly reprogram 

differentiated cells to pluripotency, or cause direct reprogramming between differentiated cell 

types.  Our work on the organ-switching potential of Ptf1a begins to address the competitive 

interplay between the transcriptional regulatory networks that pattern the early mammalian 

posterior foregut endoderm.  Under the classical specification–commitment–differentiation 

paradigm, we focused on the issue of if, how, and when endodermal regions become 

“irrevocably allocated” to specific organ fates.  Our study tested if the endoderm has regional 

variation in the open-ness to transcription-factor-induced fate switching, or variable response 

over time, as the organ anlagen begin to build their internal tissue-specific gene regulatory 

networks.  The previous studies on endoderm were mostly focused on how TFs and extracellular 

signals interact to control differentiation within a particular gut-tube-derived organ, with 

pioneering work relevant to our studies centered on the decision of posterior foregut endoderm to 

become liver or pancreas (for example, see Wandzioch et al., 2009). 
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Previous studies in frog embryos (Afelik et al., 2006; Jarikji et al., 2007) suggested that 

Ptf1a can divert early endoderm within the Pdx1 (XlHbox8 in frogs) territory towards pancreas 

fate, but our study takes critical further steps:  (1) The doxycycline-inducible system expresses 

unmodified Ptf1a.  (2) We find early-stage endoderm competent to switch organ fates 

completely, forming all pancreatic lineages.  There is a competence switch to lineage-restricted 

acinar transformations at later stages.  (3) We define the responsive tissues in more detail:  

responsive progenitor domains include those outside the endogenous Pdx1 expression domain 

(for example, not only stomach antrum but also corpus, and the entire EHBS).  (4) The 

differential sensitivity of mammalian tissue to the correct type of Ptf1a-based switching stimulus 

brings the endoderm-patterning focus closer to human relevance.   (5) We show clearly that Ptf1a 

triggers expression of principal early-acting (‘first tier’) members of the pro-pancreatic gene 

regulatory network, from their endogenous loci, and in particular the rapid and broad activation 

of Pdx1 expression, including far outside of its normal territory.  (6) We study the organ-

conversion process in terms of early-stage alterations in the regionalized expression of other 

transcriptional regulatory proteins, as well as the final cell/tissue differentiation phenotype, 

leading to our conclusion that certain tissues are resistant to conversion, despite the broad 

activation of Pdx1 expression – which in a few embryos extended even up into the vicinity of the 

lung bud (n=2; not shown). Longer term Ptf1a misexpression also lead to the expression of 

acinar cell markers (Cpa1) in endothelial cells (n=1; not shown). Future studies could explore the 

effects of longer term Ptf1a misexpression on the non-respecified organs like the lung and 

endothelial cells. Potentially, even if Ptf1a misexpression does not activate the endogenous Ptf1a 

and Pdx1 promoters in these cell populations, Ptf1a may be able to alter the epigenetic status of 

the promoters/enhancers that control these genes. 
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Our system showed differential effects after transiently expressing this fate-triggering factor at 

various stages of development.  Temporal changes in the progenitor response to the same factor 

help inform on the dynamics of epithelial competence during embryogenesis. For example, 

inducing Ngn3 activity at different stages of pancreas development caused changes in endocrine 

cell-fate choice (Johansson et al., 2007).  Also, altering BMP and TGFβ signaling in the posterior 

foregut produced different effects on pancreas specification over time (Wandzioch et al., 2009).  

An important component in our system was the transient Ptf1a
EDD

; too much ectopic Ptf1a, or for 

too long, caused early embryo death, likely from unresolvable tissue confusion or dysfunction.  

The transient expression allows exogenous Ptf1a to act on endogenous loci during a narrow 

developmental window, and we infer that the absence of continued exogenous Ptf1a allowed 

proper sequential self-assembly of gene regulatory networks from the endogenous genes.  

Endoderm farther from the pancreas, such as the prospective forestomach-esophagus and liver, 

also displayed Ptf1a-induced ectopic Pdx1 production.  But, in the farthest reaches, the expanded 

Ptf1a/Pdx1 co-positive territory subsequently underwent substantial retreat (most likely by 

extinguishing expression, not large-scale cell migration or apoptosis), with restoration of those 

territories’ original organogenesis programs.  

 

Endodermal Progenitor Competence 

The potency of Ptf1a to induce, rapidly, a much broader domain of expression of Pdx1, 

from its endogenous locus, indicates a tight interdependence between these two genes. Both 

genes represent primary (“first tier”) regulators of pro-pancreatic MPC character (Burlison et al., 

2008; Kawaguchi et al., 2002; Krapp et al., 1998; Jonsson et al., 1995; Offield et al., 1995; 

Thompson et al., 2012).  We speculate that acquiring a stable Ptf1a
+
Pdx1

+
 co-positive state, at a 
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particular stage of organ development, is an efficient feed-forward method of specifying and then 

committing to the pancreatic fate. A pair-wise threshold-dependent activation switch would be 

an attractive way of gating entry to specific organ commitment states.  Such a relationship could 

explain the ability of Nkx2.1 and Pax8 can by ectopic induction (although less transient than in 

our case) stimulate formation of apparently genuine thyroid follicles in vitro from mouse ES 

cells (Antonica et al., 2012).  The rapid activation of Pdx1 by Ptf1a induction and generation of a 

feed-forward loop is supported by evidence for Ptf1a and Pdx1 inter- and auto-regulation 

(Gerrish et al., 2001; Gerrish et al., 2004; Marshak et al., 2000; Masui et al., 2007; Oliver-

Krasinski et al., 2009; Wiebe et al., 2007).  Possibly, activation of endogenous Ptf1a involves its 

auto-regulatory enhancer (ARE) (Masui et al. 2008), and after activation the production of 

endogenous Ptf1a should help keep the Ptf1a locus active.  Potentially, the ARE is accessible to 

exogenous Ptf1a even at late stages, as cells in the prospective glandular stomach – perhaps 

epigenetically and functionally related to pancreatic acinar cells – retained competence at E15.5 

to initiate focal, acinar-only differentiation (data not shown).  The direct downstream target 

genes of Ptf1a causing respecification of stomach, duodenum, and EHBS, but not other 

endodermal regions, are unclear.  Our working model, however, is that Ptf1a/Pdx1 establish a 

‘first tier’ trigger of the pancreatic GRN, and that in tissues that are competent to fully stabilize 

their auto- and cross-regulatory interactions, they then dominantly subvert other regional organ 

programs.  This competency state includes the ability to utilize the “second tier” pro-pancreatic 

genes (Nkx6.1, Mnx1, Prox1, and so forth).   

A side-issue relates to the effects of early Ptf1a
EDD

 on the endogenous pancreas.   The 

transient suppression of Nkx6.1 by Ptf1a
EDD

, an incorrect state with respect to normal pancreatic 

bud MPC, was reversed by E12.5, likely related to post-doxycycline reduction of exogenous 
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Ptf1a.  After cells exited from this transitional state, endogenous pancreas differentiation 

proceeded essentially normally.  Later stage Ptf1a
EDD

, however, appeared to promote acinar-cell 

fates over endocrine and ductal cell fates, we propose via suppressing epithelial Nkx6.1 and 

Sox9, as reported by Schaffer et al. (2010).  Future studies are aimed at exploring if the acute 

effects of Ptf1a misexpression in the endogenous pancreas change over time.  

In resistant progenitor populations, such as the more distant anterior endoderm, Ptf1a
EDD

 

seems unable to initiate or sustain the expression from endogenous Ptf1a and Pdx1, perhaps with 

some threshold dependency.  We are now also setting up for genetically testing the possibility 

that the Ptf1a-Pdx1 inter-regulation, and the recruitment of second- and third-tier pro-pancreatic 

instructors, is countermanded by competing gene regulatory programs such as those run by Sox2.  

After an initial phase of suppressed Sox2 levels throughout Ptf1a
EDD

-endoderm, normal Sox2 

levels were then reasserted in the non-pancreas-convertible anterior endoderm, such as the 

presumptive forestomach, esophagus, and lung.  It is also plausible that there is an early-

established more repressive epigenetic packaging effect on the Pdx1, Ptf1a, and other member 

genes of the pro-pancreatic GRN in the non-convertible regions, as compared to conversion-

susceptible regions.  During embryogenesis, Sox2 expression starts in the rostral foregut and 

spreads posteriorly towards the caudal stomach (Sherwood et al., 2009).  Following the normal 

embryogenesis strategy of the mammalian embryo, wherein rostral/anterior regions are older, the 

more-anterior endoderm could receive a more-extended and stronger conditioning by Sox2 (for 

example, more anti-pancreatic chromatin remodeling), making cells resistant to Ptf1a
EDD

-

initiated pancreatic respecification.  We expect that the endoderm-specific elimination of Sox2 

expression would allow testing for destabilization in the assembly of competing programs, 

indirectly rendering these regions sensitive to Ptf1a-mediated pancreatic respecification.  Shh 
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signaling is active in anterior endoderm, and has been connected to the resistance to pancreatic 

respecification (Kim and Melton, 1998; Hebrok et al., 1998).  Possibly, the reason for the 

pancreas-proximate liver escaping full Ptf1a
EDD

-induced conversion to pancreas could be 

somewhat different.  Being required for embryonic viability, mechanisms could have arisen to 

ensure its early and robust commitment to a defined program. 

 

Spatial Precision of Normal Pancreatic Specification 

In endodermal development, therefore, it is clearly critical to restrain tightly the 

distribution of Ptf1a, to confine the area of pancreatic specification, and the delimiting 

mechanisms must presumably be very precise in the posterior ventral foregut where several 

tissues (EHBS, ventral pancreas, gall bladder) emerge from a relatively compact progenitor 

group (Spence et al., 2009).  It remains to be seen if such ‘pinpoint precision’ is accomplished by 

overlapping activity gradients of a few secreted factors, or if they work together with tightly 

regulated inductive tissue juxtapositions. 

The mesoderm-endoderm interaction is important for pancreatic growth and survival (for 

review, Pan and Wright, 2011), but little is known about how the pancreatic mesoderm, 

specifically, might be patterned or specified.  After Ptf1a
EDD

, the prospective mesodermal 

components of what would have normally been stomach, duodenum, and EHBS adopted a 

phenotype indistinguishable from that of normal pancreatic mesoderm.  Therefore, respecified 

endodermal MPCs were able to communicate locally with the adjacent mesoderm, and control 

the mesodermal differentiation pathway.  With the more-limited ability of later Ptf1a
EDD

 to 

produce only an acinar conversion (and which became progressively more focal as 

embryogenesis progressed), the mesoderm became resistant to transformation. These findings 

indicate that during an early developmental period, the mesoderm is sensitive to the local 
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specification state of the endoderm.  This period of development may be associated with 

substantial communication back and forth between endoderm-mesoderm, in which congenital 

defects (such as biliary, duodenal, or gastric atresia) could arise from altered specification states 

of the endoderm or mesoderm.  The factors produced by respecified endoderm that then switch 

the regional character of the mesoderm would be worthy to explore, and could involve retinoic 

acid, Wnt, FGF, Shh, and other pathways (Pan and Wright, 2011).  Aiding in such studies would 

be the identification of spatiotemporally resolved genes that imbue distinct regionalized 

character to the mesoderm of the primordial gut tube. 

Using Ptf1a/Pdx1 co-expression to mark the achievement of a ‘pancreatic commitment’ 

state has been partially applied in hESC directed-differentiation paradigms (Kroon et al., 2008): 

tissue with a Ptf1a/Pdx1 co-expression state in vitro, after transplantation into mice, underwent 

maturation into apparently fully differentiated pancreas tissue.  Our results suggest possible 

substantial improvements in the derivation and authenticity of material for human therapies 

based not on single-fate cells (e.g., pure beta cells), but on deriving tissues or organoids in vitro 

from embryonic or induced pluripotent stem cells.  The limited, transient expression of 

exogenous Ptf1a in appropriately staged tissue could prompt self-regulating assembly of a 

pancreas-generating program, conceivably including the co-specification of supportive tissues 

such as the pancreatic mesenchyme.  Induction of Ptf1a could divert more cells down the 

pancreas track, but its timing would be crucial.  Initiating Ptf1a expression after cells have 

moved past MPC competency, or enforcing expression too long, would lead to acinar 

specification at the expense of endocrine islet lineages (our results; Jarikji et al., 2007; Schaffer 

et al., 2010).  
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CHAPTER IV 

 

THE ROLE OF PTF1A IN TIP CELLS OF THE DEVELOPING PANCREATIC EPITHELIUM 

 

Introduction 

The post-specification pancreatic buds undergo a dramatic re-organization from what appears as 

a largely homogenous population of pseudo-stratified epithelial progenitor cells into a dense 

epithelial plexus. Coinciding with the beginning of this epithelial remodeling, which leads to the 

establishment of the pancreatic epithelial tree, is the formation of two progenitor populations, tip 

and trunk, within the pancreatic epithelium.   

Tip MPCs (multipotent progenitor cells) are a highly proliferative population of cells that 

grow into the surrounding pancreatic mesenchyme and leave behind progeny that give rise to 

other tips or trunk cells. Tip cells were first characterized by their production of the primary 

MPC markers Ptf1a and Pdx1 in addition to c-Myc and Cpa1 (Zhou et al., 2007).  The pancreatic 

mesenchyme is thought to promote tip cell identity by providing key signaling molecules and 

extracellular matrix components (for integrin signaling, etc). When formation of the epithelial 

plexus is disrupted by removing the function of the Rho-GTPase Cdc42, the mesenchyme and 

ECM environment normally enriched around the tip domain become more evenly distributed 

throughout the pancreatic epithelium. Increased acinar-cell gene expression is seen at the 

expense of endocrine-cell gene expression in these mutants (Kesavan et al., 2009). 

Tip cells were identified as a multipotent progenitor population through the use of genetic 

lineage tracing with CreER. Cells expressing Ptf1a or Cpa1 (which is a direct target gene of 

Ptf1a) are able to give rise to all pancreatic lineages as late as E14.5.  The MPC numbers are, 
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however, rapidly declining by this time as estimated by the decreased proportional labeling of 

the endocrine and duct cells compared to the acinar cells that maintain Ptf1a and Cpa1 

expression. By E15.5, the cells located in the tip domains largely exist as a unipotent, acinar-

restricted progenitor (because they are mitotic) and precursor population (Pan et al., 2013; Zhou 

et al., 2007). The change in progenitor behavior of tip cells from multipotent to unipotent 

corresponds with the timing of molecular changes in the PTF1 complex. In primary MPCs and 

early tip MPCs, the trimeric PTF1 complex contains RBPJκ (PTF1-κ), the downstream mediator 

of Notch signaling. As tip cells transition to an acinar-lineage restricted progenitor population, 

the PTF1 complex replaces RBPJκ with RBPJL (PTF1-J), a Notch-independent paralog of 

RBPJκ. RBPJL is a direct target gene of the PTF1-κ complex in tip cells, and as the levels of 

RBPJL increase, it replaces RBPJκ in the PTF1 complex (Beres et al., 2006; Masui et al., 2008).  

While the change in molecular character of the PTF1 complex coincides with the change 

in progenitor behavior of tip cells, recruitment of RBPJL into the PTF1 complex is, perhaps 

surprisingly, not functionally required for tip cells to change from multipotent to unipotent, pro-

acinar behavior. Genetic deletion of RBPJL causes no change in tip-cell behavior and only leads 

to minor changes in the terminal differentiation of acinar cells (Masui et al., 2010). Biochemical 

interrogation of RBPJL mutants suggests that RBPJκ can functionally replace RBPJL in the 

PTF1 complex and largely maintain the differentiation program of committed acinar cells. The 

minor changes in acinar cell differentiation seen in the RBPJL-deletion tissue compared to wild-

type tissue are thought to arise from subtle differences in DNA-binding potential between the 

PTF1-J and PTF1-κ complexes. While most developmental and early acinar-specific target genes 

appear to have binding sites compatible with both PTF1-κ and PTF1-J binding, some later-stage 

acinar-specific targets appear to require explicitly the PTF1-J complex for full-scale activation.  
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It is possible that acinar cells programmed by PTF1-κ complexes are more functionally inferior 

than we know from current analyses. 

Gain-of-function experiments using Ptf1a and Nkx6.1 have helped establish genetic 

relationships between the tip and trunk cell gene regulatory programs during the formation of 

these domains at E9.5/E10.5. Constitutive misexpression of Ptf1a in all pancreatic progenitors 

from the onset of pancreatic development leads to the expansion of tip cell markers, such as 

Cpa1, across the pancreatic epithelium and suppression of trunk cell markers such as Nkx6.1 and 

Sox9. In contrast, constitutive production of Nkx6.1 in all pancreatic progenitors causes the 

expansion of trunk-cell markers and suppression of Ptf1a. These experiments implicate Ptf1a as a 

high level member of the transcriptional network that establishes tip cell identity – first MPC, 

then acinar – during early development (Schaffer et al., 2010). 

Current models place the PTF1 complex as a major regulatory molecule controlling tip-

cell behavior throughout pancreatic development. Neither the RBPJk nor RBPJL knockout 

illuminated the role of the PTF1 complex in tip cells. To continue to explore the function of 

PTF1 in tip cells, I have focused on Ptf1a. The role of Ptf1a in the maintenance and function of 

tip cells has not been examined because Ptf1a null (described in the introduction to this thesis) 

and hypomorphic mutants have severe defects in pancreatic specification and morphogenesis. 

Mice with hypomorphic Ptf1a levels have hypoplastic pancreatic buds, with a substantial amount 

of pancreatic progenitors not specified to the pancreatic lineage similar to Ptf1a null embryos, 

and therefore significant alterations in overall pancreatic morphogenesis. Consequently, acinar 

differentiation is delayed and the hypomorphic mice are glucose intolerant due to decreased 

endocrine-cell specification (Fukuda et al., 2008).   
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In order to study the role of Ptf1a in tip cells, I developed a novel genetic tool: a Ptf1a 

conditional null allele (Ptf1a floxed allele or Ptf1a
Flox

). Combining Ptf1a
Flox

 with a tamoxifen-

inducible Cre allele, such as Ptf1a
CreER

 or Cpa1
CreER

, allows conditional removal of Ptf1a 

function from tip cells at various stages of pancreatic development. In combination with a 

ROSA26 lineage-tracing allele, the progeny of tip cells could then be observed for changes in 

progenitor behavior and cell fate upon the loss of Ptf1a function. The results section in this 

chapter will detail the generation of the Ptf1a floxed allele and experiments to conditionally 

remove Ptf1a function from tip progenitor cells. 

In addition to the experiments mentioned in this thesis, Ptf1a
Flox

 is useful to study Ptf1a 

function during development, homeostasis, and disease in many other organs. In the pancreas, 

collaborations have been set up to study the role of Ptf1a in adult acinar cells with Dr. Ray 

MacDonald at the University of Texas, Southwestern (Dallas). Ptf1a expression is maintained in 

adult acinar cells and may play an important role in adult acinar-cell function. Adult acinar cells 

are an interesting cell type to study because they can be reprogrammed into pancreatic β-cells 

using three transcription factors (Pdx1, Ngn3 and MafA) (Zhou et al., 2008). We are 

collaborating with Dr. Mark Magnuson at Vanderbilt University to test if destabilizing the 

acinar-cell state using Ptf1a
Flox

 is able to increase the efficiency of transcription factor-enforced 

acinar-cell reprogramming.  In human pancreatic cancer, pancreatic acinar cells are now 

becoming established as the primary cell-of-origin for this disease. We are collaborating with Dr. 

Charles Murtaugh at the University of Utah to test if destabilizing the acinar-cell state by 

removing Ptf1a function, in the background of other oncogenic mutations, increases cancer 

susceptibility and/or progression. Outside of the pancreas, the role of Ptf1a is being investigated 

in dorsal spinal cord interneurons with Dr. Julia Kaltschmidt at Memorial Sloan-Kettering 
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Cancer Center. Ptf1a
Flox

 will also be useful to study the role of Ptf1a in the retina, cerebellum, 

and other areas of the central nervous system, where Ptf1a is expressed in diverse groups of 

GABAergic interneurons.   

Ptf1a
Flox

 will also be useful for the generation of Ptf1a heterozygous and homozygous 

null mutants in any tissue, using an appropriate Cre driver to convert the Ptf1a
Flox 

allele to a null. 

The only previously available Ptf1a null allele was Ptf1a
Cre

, which had limited uses in many 

genetic experiments because it also produces Cre. Ptf1a
Flox

 crossed to a germ-line Cre driver, 

such as EIIA
Cre

, would generate a “global” Ptf1a null allele, Ptf1a
Null

, avoiding this caveat.  

 

Results 

 

Generation of Ptf1a
Flox

 

The overall strategy for generating the Ptf1a floxed allele was to create a targeting vector 

for homologous recombination in mouse embryonic stem (ES) cells by using BAC (Bacterial 

Artificial Chromosome) recombineering. BACs are large pieces of mouse genomic DNA 

(usually 90-200 kb) cloned into a plasmid backbone, based on a bacterial fertility or F-plasmid, 

that propagate at low copy number (1 or 2 copies) in bacterial cells. Fertility plasmids have 

partition genes that promote dispersal of the BAC into both bacterial cells upon cell division. 

BAC recombineering is useful for making modifications (insertions, deletions, point mutations, 

or combinations thereof) in large pieces of genomic DNA while leaving limited, if any, 

unwanted changes in the modified DNA. The modified pieces of genomic DNA can then be 

retrieved, using a so-called retrieval vector, to generate a much smaller plasmid called the 

targeting vector, which is able to be grown at much higher copy number to increase yield for use 

in transgenesis or homologous recombination in ES cells.   

http://labnodes.vanderbilt.edu/resource/view/id/375
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The bacterial strain that were used in to modify the Ptf1a BAC contained a heat-shock-

inducible gene cassette that leads to the expression of the RED recombination system from the λ 

bacteriophage (Lee et al., 2001).  Note that other BAC recombineering systems are available, but 

will not be described here.  RED proteins facilitate the efficient recombination in bacteria 

between short stretches of identical DNA sequences carried on separate DNA molecules. In 

addition to the RED system, an E. coli strain (SW106 - derived from the DH10B E. coli strain; 

Warming et al., 2006) that contains all the components of the gal operon except the galK 

(galactokinase) was used. Bacterial strains lacking galK can be used for positive-negative 

selection using galactokinase substrates – provided when the galK cassette is brought in on the 

exogenous BAC that will be engineered, for example. 

In order to generate the Ptf1a floxed allele, a BAC was ordered from BAC PAC 

Resources at C.H.O.R.I (https://bacpac.chori.org/). Because the Vanderbilt Transgenic 

Mouse/Embryonic Stem Cell Shared Resource (TMESCSR) uses a 129/Sv-derived ES cell line 

for homologous recombination, care was taken to order a BAC clone from a 129/Sv BAC 

library. The RP22-251-E16 clone was selected because it contained a large genomic region 

centered on the Ptf1a locus. Extensive restriction-digest fingerprinting and DNA sequencing 

verified that the genomic region contained in the BAC clone included the Ptf1a locus and the 

necessary 5´ and 3´ regions required to generate the derived Ptf1a floxed targeting vector. 

 

Insertion of the 5’ LoxP Site 

Briefly, the general strategy to insert the 5´ loxP site was to place a galK cassette in the 

desired location for the loxP site using positive selection and then to replace this galK cassette 

with the loxP site using negative selection.  A non-conserved region, identified by examining the 
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sequence conservation between rat and mouse, 1.7 kb 5´ of the Ptf1a transcriptional start site 

(TSS) was selected as the insertion site for the 5´ loxP site (Fig. 4.1). Two 500 bp homology 

regions (so-called 5´ and 3´ HRs) surrounding the location selected for 5´ loxP site were 

subcloned into a plasmid (pGALK) containing an em7-promoter-driven galK gene cassette. 

Restriction digests were performed to excise a DNA fragment from the modified pGALK 

plasmid containing the 5´ and 3´ HRs and the galK cassette, which was gel-purified and ethanol-

precipitated before further preparation for electroporation. The 5´HR–galK–3´HR DNA fragment 

was electroporated into SW106 bacteria containing the RP22 Ptf1a BAC clone and heat shocked 

(20 minutes) to induce the RED proteins. Bacteria recovered from the heat shock were grown on 

minimal medium plates lacking all carbon sources except galactose, and therefore bacteria 

require galactokinase to phosphorylate galactose for carbon utilization.  Bacteria containing a 

BAC clone that properly underwent insertion of galK cassette in the BAC by homologous 

recombination will become competent to grow on galactose-only minimal medium. Clones that 

grew on the galactose-only agar were screened by PCR and diagnostic restriction digests for the 

correct insertion of the galK cassette. DNA sequencing of PCR products generated from the 

modified 5´ LoxP region of the BAC identified correctly modified clones. 

To start negative selection, the pGALK plasmid that contained the 5’ HR, galK cassette, 

and 3´ HR was modified to replace the galK cassette with a single loxP site that was flanked with  

restriction sites. The 5´HR-loxP-3´HR DNA fragment was excised from the pGALK plasmid and 

electroporated into SW106 bacteria containing the RP22 galK Ptf1a BAC clone. The bacteria 
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Fig. 4.1 Location of the loxP sites in the Ptf1a
Flox

 locus. (A) The endogenous Ptf1a locus. 

Black boxes signify exons. Relevant restriction sites are indicated by dashed lines: X, XbaI; E, 

EcoRI. (B) Hypothetical configuration of Ptf1a
Flox

. Restriction sites added by BAC 

recombineering are indicated in blue. loxP sites are represented by triangles, FRT sites by line 

with a circle on top. (C, D) Vista genome browser sequence conservation plot. X-axis, kilo-bases 

5´ to 3´ (left to right); Y-axis, percent conservation. A higher the peak on the plot equals higher 

inter-species sequence conservation. Non-coding regions, red; untranslated regions, light blue; 

coding regions, darker blue. (C) Relative DNA-sequence conservation in the Ptf1a locus between 

mouse and human, and (D) mouse and rat. Dashed lines indicate the approximate location of 5´ 

and 3´ loxP sites in the Ptf1a
Flox

 locus. A non-conserved region 5´ of the Ptf1a coding region was 

selected for the location of the 5´ loxP site (note the absence of conservation peaks). DNA 

sequences 3´ of the Ptf1a coding region were highly conserved between mouse and rat. A region 

poorly conserved between mouse and human was chosen for the location of the 3´ loxP site.   
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were heat shocked to induce the RED proteins, recovered, and grown on agar plates containing 

2-deoxy-galactose (2-DOG). Bacterial cells containing galactokinase grown in the presence of 2-

DOG causes the production of 2-deoxy-galactose-1-phosphate, a toxic intermediate, and leads to 

cell death. Bacterial cells can only grow on 2-DOG agar if they modify or remove the galK 

cassette inserted into the Ptf1a BAC clone. Clones that grew on the 2-DOG minimal agar were 

screened by PCR and diagnostic restriction digest analysis for the correct insertion of the loxP 

site and the loss of the galK cassette in the BAC. Correctly modified clones were finally 

screened by DNA sequencing of PCR products produced from the modified BAC. The correctly 

targeted 5´ loxP Ptf1a BAC clone contained only the loxP sites and 4 restriction sites used in 

cloning or for Southern-blotting analysis after homologous recombination in mouse ES cells. 

 

Insertion of the 3´ LoxP Site 

Similar to the 5´ loxP site location, a non-conserved location 1 kb 3´ of the Ptf1a TSS 

was used as the insertion location for FRT-flanked neo
R
 cassette and 3´ loxP site (Fig. 4.1). Two 

500 bp HRs surrounding the genomic region selected for insertion of the 3´ loxP site were 

subcloned into a plasmid (PL451) containing a FRT-flanked PGK-em7- promoter-driven neo
R
 

cassette and loxP site. The loxP site is located 3´ to both FRT sites so that after homologous 

recombination and derivation of the Ptf1a floxed mouse line, the FRT-flanked neo
R
 cassette can 

be removed by crossing to FlpE-expressing mouse strains. Recombination between the FRT sites 

by FlpE resulted in removal of one FRT site and the neo
R
 gene cassette and left one FRT site and 

the 3´ loxP site of the Ptf1a floxed allele. 

The 5´HR-FRT-flanked neo
R
 cassette-3´loxP-3´HR DNA fragment was electroporated 

into SW106 bacteria containing the 5´ loxP RP22 BAC clone and the bacteria were heat shocked  
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to induce the RED system, recovered, and plated on agar with kanamycin (the neo
R
 cassette 

provides bacterial resistance to kanamycin). The correctly targeted 5´ loxP, FRT-flanked neo
R
 

cassette, 3´ loxP site Ptf1a BAC clones were identified by PCR, diagnostic restriction digest 

analysis, and DNA sequencing of PCR products. 

 

Retrieval of the Targeting Vector 

Targeting vectors contain modified genomic DNA with a positive selection marker (in 

this case, neo
R
) with a vector backbone containing a negative-selection marker (diphtheria toxin 

A) and are used for homologous recombination in eukaryotic cells. In addition to the modified 

genomic DNA, targeting vectors contain large pieces of genomic DNA (called homology arms), 

located 5´ and 3´ of the modified DNA, which initiate homologous recombination. Prior to the 

generation of the targeting vector, it is important to generate synthetically the proposed targeting 

vector using DNA-sequence analysis software to identify a restriction site that will be usable in 

the future linearization step to prepare the targeting vector for electroporation into ES cells – 

linearization being necessary for efficient homologous recombination. The restriction enzyme 

must linearize the targeting vector by cutting in the pBS (Bluescript™; Stratagene) vector 

backbone outside of the diphtheria toxin A gene cassette or the regions retrieved from the 

modified Ptf1a BAC.  

 The Ptf1a
Flox

 targeting vector was retrieved from the modified 5´ loxP, FRT-flanked 

neo
R
 cassette, 3´ loxP site Ptf1a BAC clone by using dual-drug selection and homologous 

recombination to re-circularize a linearized plasmid backbone. The plasmid backbone used to 

retrieve the targeting vector contains 500 bp 5´ and 3´ HRs, an ampicillin-resistance gene 

cassette, and a diphtheria toxin A gene cassette (pBS.DTA). All DNA sequences intervening 
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between the 5´ HR and 3´ HRs were retrieved from the modified BAC clone to re-circularize the 

plasmid. The 5´ HR was located 12.3 kb 5´ of the Ptf1a TSS, while the 3’ HR was located 6.3 kb 

3’ of the Ptf1a TSS. The spacing of the 5’ and 3’ HR regions in the retrieval vectors permits the 

generation of large homology arms for the Ptf1a targeting vector to try to increase the efficiency 

of homologous recombination in ES cells. When subcloning the 5´ and 3´ HR into the pBS.DTA 

vector, special consideration was taken to ensure there is a restriction enzyme located between 

the 5’ and 3’ HR that would be able to linearize (single cut) the pBS.DTA 5´ and 3´ HR plasmid. 

It is important that the restriction enzyme cuts between the HRs and not in the plasmid backbone, 

because the plasmid backbone needs to re-circularize and propagate the targeted DNA that has 

been retrieved from the modified BAC clone.  

The linearized pBS.DTA 5´ and 3´ HR plasmid was electroporated into SW106 bacteria 

containing the modified 5´ loxP, FRT-flanked neo
R
 cassette, 3´ loxP site Ptf1a BAC clone. The 

electroporated bacteria were heat shocked to induce RED recombination and plated on agar 

containing kanamycin and ampicillin. Only bacteria that contain the re-circularized pBS.DTA 

plasmid with the modified DNA containing the neo
R
 gene cassette retrieved from the BAC grow 

on the dual-drug agar. The targeting vector was thoroughly screened by PCR, diagnostic 

restriction digest analysis, and DNA sequencing to ensure no errors were contained in the DNA 

sequence of the finalized targeting vector. 

 

Homologous Recombination and Southern Blot Screening of Targeted ES Cell Clones 

Linearized targeting vector was supplied to the Vanderbilt TMESCSR for ES-cell 

electroporation. ES clones that underwent homologous recombination were selected using 

positive-negative selection. The neo
R
 gene cassette contains a eukaryotic promoter (PGK) and 

provides resistance to the drug G418, which inhibits peptide synthesis. The DTA gene cassette in 
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the pBS.DTA backbone kills any cell that incorporates DTA in the genome, and therefore should 

kill any randomly integrated, non-homologously recombined transgenic integrants.  

ES cell clones that grew in G418 medium were picked and grown in small quantities for 

large-scale Southern-blot screening (see Fig 4.2 for an overview of the Southern blot strategy). 

During the design of the Ptf1a
Flox

 targeting vector, restriction enzyme sites had been preplanned 

in the 5´ and 3´ homology arms to allow for accurate Southern-blot analysis of the final targeted 

Ptf1a
Flox

 locus. An EcoRI restriction site was added adjacent to the 3´ loxP site. Incorporation of 

this exogenous EcoRI site into the Ptf1a locus by homologous recombination changes the size of 

a restriction digest fragment that can be identified by the 3´ Southern blot probe from 10.1 kb to 

8.2 kb (Fig. 4.2 D). An XbaI restriction digest site was added 5´ side of the 5´ loxP site. 

Incorporation of this exogenous XbaI site into this location changes the size of a restriction 

digest fragment identified by the 5´ Southern-blot probe from 13.6 kb to 11.6 kb. After initially 

screening 600 potential targeted clones by EcoRI digestion of genomic DNA and the 3´ 

Southern-blot probe, seven clones (14 clones were identified in total from the initial screen) were 

expanded for additional screening. All seven clones were screened by EcoRI digestion with the 

3´ Southern-blot probe and XbaI digestion with the 5´ Southern-blot probe.   Importantly, both 

probes were located in regions external to the targeting vector. All seven clones were identified  

as properly targeted by the 5´ and 3´ Southern-blot probes, and two independent clones were 

selected for blastocyst injection. Several high-percentage (>60%) male chimeras were produced 
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Fig. 4.2. Southern Blot Strategy for Ptf1a
Flox

.  (A) Schematic of the endogenous Ptf1a locus 

with the approximate location of the 5´ and 3´ Southern-blot probes (SBP). Digestion of genomic 

DNA with XbaI (X) and performing a Southern blot with the 5´ SBP reveals a 13.6 kb DNA 

fragment. Digestion of genomic DNA with EcoRI (E) and Southern blot analysis with the 3´ SBP 

reveals a 10.1 kb DNA fragment. (B) Schematic of the Ptf1a
Flox

 targeting vector. loxP sites are 

indicated by triangles, FRT sites are indicated by lines with a circle on top. DTA, diphtheria 

toxin A; Neo, neomycin resistance cassette. (C) Schematic of the Ptf1a
FloxNEO 

targeted locus. 

Addition of new XbaI and EcoRI restriction sites via BAC recombineering changes the size of 

the DNA fragments in the Ptf1a locus revealed by the 5´ and 3´ SBPs. (D) Example Southern 

blot with the 3´ SBP and EcoRI digestion. Targeted ES cells (lane 2) produced the predicted 

DNA fragment size of 8.1 kb suggesting that the exogenous EcoRI site was incorporated into the 

Ptf1a locus.    
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from the blastocyst injections of the ES clones. The high-percentage male chimeras were mated 

to Black Swiss (an outbred strain) mice. All progeny derived from the chimeras had the coat 

color (agouti) of the  

injected, modified 129/Sv ES cells instead of the host blastocyst C57BL/6 (black) cells, 

indicating an unusually high, and near-100% incorporation of the targeted ES cells in the 

germline of the chimeras (the 129/Sv cells carry a dominant Agouti allele). F1 progeny from the 

chimera x Black Swiss cross were genotyped for the presence of the Ptf1a floxed allele 

(Ptf1a
floxNEO

, not having yet had the neo
R
 cassette removed). Ptf1a

floxNEO
 F1 progeny were mated 

to FlpE mice to remove the FRT-flanked neo
R
 cassette. Ptf1a

floxNEO
, FlpE-positive progeny were 

identified by genotyping and mated back to Black Swiss mice. In mice containing the FlpE 

allele, FLP-recombinase expression is driven mosaically throughout development and in adult 

tissues, indicating variegated expression from the β-actin promoter (Lakso et al., 1996). Because 

of mosaic expression, not all progeny from Ptf1a
FloxNEO

, FlpE-positive mice will inherit 

Ptfla
FloxNEO

 without the FRT-flanked neo
R
 cassette (Ptf1a

flox
). Progeny from the Ptf1a

FloxNEO
, 

FlpE-positive mice were systematically screened using PCR analysis to identify progeny 

containing Ptf1a
Flox

, and to validate the loss of the neo
R
 cassette and breed away the FlpE allele 

(Fig. 4.3). Ptf1a
Flox

 mice used in subsequent experiments were maintained on a mixed 

background of C57BL/6 and 129/Sv. 

 

Ptf1a
CreER

 deletion of Ptf1a
Flox

  

The Ptf1a
CreER

 allele of Pan et al. (2013) is a knock-in allele. In the absence of tamoxifen, 

Ptf1a
CreER/Flox 

mice are normal heterozygous animals. After the addition of tamoxifen, cells that 

express Ptf1a would recombine the Ptf1a floxed allele and in effect become Ptf1a-null cells (Fig. 
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4.3). In order to follow cells that activate CreER in the presence of tamoxifen, a genetic lineage-

tracing allele such as ROSA26
YFP

 is generally bred into the Ptf1a
CreER/Flox 

mice.  

In order to validate that Ptf1a was conditionally deleted from tip progenitor cells, it must 

be verified that Ptf1a protein production can be removed from the lineage-traced cell population. 

Genetic crosses were set up to generate Ptf1a
CreER

/
Flox

; ROSA26
YFP

/+ embryos. A single 3.0 mg 

dose of tamoxifen was given by intraperitoneal injection to pregnant dams at E12.5 of gestation 

and embryos were collected at E15.5.   

In this cross, Ptf1a is deleted from Ptf1a-expressing tip cells. Loss of Ptf1a can be shown 

by immunofluorescence analysis compared to the lineage-tracing indicator, YFP.  In control 

embryos (Ptf1a
CreER

/+; ROSA26
YFP

/+), the majority of lineage-traced cells should remain in the 

tip and produce Ptf1a protein. It is important to keep in mind that some tip cells lose expression 

of Ptf1a because they become non-Ptf1a-expressing progenitor-like trunk cells.  

In conditional-mutant embryos injected with tamoxifen at E12.5 (Ptf1a
CreER/Flox

; ROSA26
YFP

/+), 

it is expected that there will be an increased population of YFP-positive, Ptf1a-negative cells in 

tissue analyzed at E15.5. 

Ptf1a
CreER

/+; ROSA26
YFP

/+ and Ptf1a
CreER

/
Flox

; ROSA26
YFP

/+ embryos at E15.5 were 

cryosectioned and immunostained for Ptf1a and YFP. Unexpectedly, a large number of Ptf1a-

expressing cells residing in the tip domain were lineage-traced (YFP-positive) in Ptf1a
CreER

/
Flox

; 

ROSA26
YFP

/+ embryos. These data indicate that, under my conditions for tamoxifen 

administration, the Ptf1a
CreER

 allele was largely inefficient at recombining both ROSA26
YFP

 and   
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Fig 4.3. Modification of the Ptf1a
flox

 locus. (A) Schematic of the Ptf1a
FloxNEO

 locus. Mating the 

Ptf1a
FloxNEO

 allele to a FlpE-deleter strain causes recombination between the FRT sites. This 

leads to the deletion of the neo
R
 cassette and generates the Ptf1a

Flox
 allele, (B). Mating the 

Ptf1a
Flox 

allele to a germline-deleter strain, such as EIIA
Cre

, causes recombination between the 

loxP sites, removes the entire Ptf1a coding region, and generates a novel Ptf1a
Null

 allele. 

Triangle, loxP; line-circle, FRT; Neo, neomycin resistance cassette; E, EcoR1; X, Xba1. 
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Ptf1a
Flox

 in a large number of cells.   Because Ptf1a
Flox 

is a true, functional conditional-null allele 

(validated by crossing Ptf1a
Flox

 to EIIA
Cre

), we assume that non-parallel recombination 

(described below) is leading to appearance of YFP
+
 cells that are still Ptf1a

+ 
(Liu et al., 2013). 

In separate work that I contributed to (Liu et al., 2013), we showed that low Cre activity 

(when driven by a weak promoter or undergoing low activation of CreER with tamoxifen) leads 

to a high incidence of non-parallel recombination – that is, recombination of Ptf1a
Flox

 but not 

ROSA26
YFP

 (Gt(ROSA)26Sor
tm1(EYFP)Cos

) or vice versa, in individual Ptf1a-expressing cells. We 

came to this conclusion by using mice that were trans-heterozygous for different lineage-tracing 

alleles at the ROSA26 locus. These ROSA26 alleles (such as ROSA26
YFP

and ROSA26
AI9

) produce 

different fluorescent proteins after recombination, allowing the direct visualization of the 

recombination pattern of each allele. In the presence of low Cre activity, many cells activated 

only one of the ROSA26 alleles. From this study, we also speculated that other variables that 

potentially contribute to the non-parallel recombination of independent floxed alleles include the 

“openness” of the genetic locus (one locus could be in a closed or repressed state while another 

could be more open to recombination), and/or the distance between the loxP sites. A larger 

distance between loxP sites appears to cause a substantially lower frequency of recombination. 

My preliminary data, in combination with the study by Liu et al. (2013) indicate that Ptf1a
CreER

-

driven mosaic recombination of the Ptf1a
Flox

 is not a robust enough system to study the 

functional role of Ptf1a in tip progenitor cells due to the high degree of non-parallel 

recombination.     
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Discussion 

It is important to determine functionally the direct role of Ptf1a in tip progenitor cells. Because 

of non-parallel recombination, I was unable to use Ptf1a
CreER

 for the efficient conditional 

removal of Ptf1a function in tip cells, and to follow the progeny of those cells during 

organogenesis. To overcome these technical problems, a more robust genetic system will need to 

be developed that can efficiently link gene inactivation and lineage tracing. One potential 

approach would be to engineer a lineage-tracing tool directly into the Ptf1a
Flox

 allele. By directly 

linking the loss of Ptf1a function to lineage-tracing initiated from the same locus, one would 

prevent the need for an independent lineage-tracing allele, and avoid the problem of non-parallel 

recombination. However, the design of such an allele, towards tracing cells that move into a non-

Ptf1a-expressing state, would require somehow engineering a change in the behavior of the Ptf1a 

promoter, from cell-type specific to cell-type independent, occurring concomitant with removing 

Ptf1a function. Cell-type independent promoters (like ROSA26 promoter) are active regardless of 

the cell state while the Ptf1a promoter is only active in Ptf1a-expressing cells.  There is currently 

no way that has been invented to change a promoter from cell-type-specific to cell-type-

independent – such as using split promoters that are restored to function after removal of a floxed 

sequence. Currently there are techniques, such as the generation of COIN (Conditional by 

Inversion) alleles, which incorporate reporter tools into conditional null alleles. These alleles turn 

on the reporter upon functional inactivation by Cre-driven inversion, but are far from ideal.  

They require heavy modification of the endogenous locus, potentially altering important cis-

regulatory modules, and would rely on the gene’s own cell-type specificity, therefore not 

allowing one to follow progeny if they moved into a cell fate that did not express that gene.  Note 

that some short-term lineage tracing might be possible, which would be highly dependent upon 

the longevity of the marker (for example a fluorescent protein) that is produced after inversion. 
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Elsewhere in this thesis (see chapter III), I used a tetracycline-inducible system to 

activate gene expression at various stages of embryogenesis and organogenesis. This system can 

also be used for gene inactivation, and it has some benefits over CreER-based systems. 

Tetracycline-inducible systems allow for efficient gene activation during early development 

because the toxicity of tetracycline analogs (such as doxycycline) is low compared to tamoxifen. 

Tamoxifen is an abortifacient and therefore cannot be given at high doses to pregnant dams 

during early to mid-gestation. A Ptf1a
rtTA

 allele has been made available within the community 

and it could be used with a tetO-Cre allele, Ptf1a
Flox

, and a ROSA26 lineage-tracing allele to 

generate a system where high levels of Cre activity would be achieved to drive parallel 

recombination of both Ptf1a
Flox

 and ROSA26
YFP

 within more cells.  This system introduces more 

complexity with the additional allele.   Another potential system that could be used to drive 

conditional but mosaic deletion of Ptf1a and allow tracing of cell progeny is an in vitro organ 

culture system, bringing Cre activity in on a dilute viral vehicle.  In order to this method to be 

viable, long-term in vitro culture systems to study pancreas development must be developed to 

allow tracking of the behavior of infected progenitor cells during subsequent differentiation 

stages. 
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CHAPTER V 

 

ANTIBODIES TO DETECT CRE AND MCHERRY PROTEIN LOCALIZATION 

 

Introduction 

Current molecular genetic techniques, especially those using fluorescent proteins and 

DNA recombinases to trace cells for analysis in situ, or for flow-cytometry-based isolation and 

analysis, rely heavily on antibodies to select the specific populations of cells. Fluorescent 

proteins are also frequently used as a surrogate of the direct visualization of transcriptional 

activity from promoters, or for the very important determination of the sub-cellular localization 

of fusion proteins as part of determining molecular mechanisms. In these conditions, Cre and 

mCherry often have to be visualized by indirect methods, such as antibody detection.  In many 

instances, while the endogenous fluorescence of the GFP and dsRed family members are useful 

readouts, under many circumstances there are fixation conditions that are optimized for detecting 

other proteins but that reduce or eliminate the endogenous fluorescence.  For these and multiple 

other applications, such as co-immunoprecipitation of fluorescently tagged protein complexes, it 

was decided that it would be helpful to produce additional antibody reagents that would 

specifically detect these proteins, particularly because my research was possibly going to use 

multiple types of fluorescent mouse strains to label different cell populations.  Analytical 

flexibility afforded by these novel antibody reagents would increase the number and type of 

experimental approaches possible with the genetic tools. 

GFP and its derivatives (i.e. YFP, CFP, etc.) are the most commonly used fluorescent 

proteins within the scientific community.  There are a limited number of widely available high-

quality antibodies to detect these proteins in fixed tissue samples, and their relatedness allows the 
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same antibodies to detect many of the color variants. The dsRed family (i.e. mCherry, mApple, 

tdTomato, etc.) is another group of highly used fluorescent proteins. Molecular evolution of 

dsRed has produced several variant proteins, including a slow-maturing oligomer and a fast-

maturing monomeric fluorescent protein, and the latter has a wide variety of spectral variants 

useful for imaging. The amino-acid sequence alterations that stabilize the monomeric form of 

dsRed were achieved by a type of ‘modular replacement’, changing the N-terminal and C-

terminal regions of dsRed with the respective parts of GFP (Shaner et al., 2008). Because of this 

‘domain sharing’, many of the currently available antibodies directed against GFP therefore 

cross-react with the altered dsRed family members, which limits their usefulness in imaging 

settings if both classes of fluorescent proteins were to be used. The generation of antibodies 

solely against antigenic regions that represent non-shared, dsRed-specific sequences would allow 

specific protein detection in various experimental contexts. 

Cre recombinase seems to be the prevalent DNA recombinase in use today in mouse 

molecular genetics and other genetic manipulations used in cell lines, likely far outweighing the 

use of the Flp-FRT system.  Cre and its ligand-activated derivative, CreER, are used to 

manipulate the genome of live mice in a spatiotemporally controlled manner. Of several 

commercially available Cre antibodies that the Wright lab tested, almost all were found to be of 

poor quality, suggesting that new approaches should be used to generate antibodies against this 

protein.   Only one Cre antibody gave meaningful analytical data, and even then it seemed to 

work sporadically with seemingly little conclusive information arising over the correct type of 

fixation conditions or antibody titer to use.  In many instances it would be useful to detect Cre in 

tissues, or detect the period of nuclear-residency of tamoxifen-activated CreER, as it could 



96 
 

provide fundamental insight into the time window during which CreER is active and allow direct 

visualization of the cell populations that are being targeted in these experiments. 

With this rationale in hand, I therefore designed and generated fusion proteins containing 

predicted solvent-exposed, antigenic regions of the protein mCherry, which is a bright-red 

monomeric variant of dsRed, or Cre.  These regions were fused to the C-terminus of a carrier 

protein glutathione S-transferase (GST).  GST is a useful carrier protein for fusion proteins 

because of its high affinity for glutathione (Smith and Johnson, 1988), and when produced as a 

fusion protein with regions that antibodies are trying to be made against, it is thought that it 

might act to enhance any immunogenic response.  In my case, the fused mCherry or Cre domains 

could be thought of as essentially acting as ‘haptenized’ immunogenic regions. GST fusion 

proteins can be bound with high affinity to glutathione that is covalently immobilized on beads, 

allowing essentially a simple ‘one-step’ extraction of soluble fusion proteins from lysates that are 

prepared from the bacterial hosts. Using online algorithms (www.expasy.org), I combined 

antigenicity-prediction and hydrophilicity/hydrophobicity plots to predict likely regions that 

would either be hydrophilic, or represented moderately hydrophobic regions flanked by more 

hydrophilic regions.  These criteria were employed to try to maximize the likelihood of both a 

good solubility of the final GST fusion protein under non-denaturing sonication conditions, and 

when possible – using additional guidance from the 3-D structures of the proteins – that these 

regions would form ‘external’ parts of the protein, rather than being more buried, hydrophobic 

internal regions that would be much less accessible in future antibody-binding applications.    
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Results and Discussion 

 

Predicting likely solvent-exposed, ‘surface regions’ of Cre and mCherry 

Many of the currently available antibodies generated against Cre or dsRed family 

members have used the full-length proteins as the antigens. Often these full-length proteins have 

poor solubility. Using fragments of the selected protein that are hydrophilic, or likely external 

regions, can help improve solubility of the antigen during production and immunization.   

Otherwise one has to resort to relatively harsh denaturation and solubilization conditions, such as 

chaotropic agents, followed by sequential dialysis to remove these agents. These harsh 

conditions can have an uncertain effect on the protein and often the protein turns insoluble again 

during the dialysis steps.  To identify likely soluble regions of Cre and mCherry, I used the 

Hopp-Wood algorithm to plot the hydrophobicity of Cre (Fig. 5.1 A) and mCherry (Fig 5.1 C). 

The selected hydrophilic regions of Cre and mCherry were attached to the C-terminus of GST. In 

between GST and the fused antigen was a glycine-rich linker sequence, which should allow GST 

and the antigen to fold independently and improve presentation of the antigen during 

immunization (Fig 5.1 E). 

The most hydrophilic region of Cre was between amino acids 100-158. Additionally, 

amino acids 17-100 and 270-343 have a largely hydrophilic profile. Based on this plot I sub- 

cloned four different peptide fragments of Cre into the plasmid pGEX-KG to generate GST 

fusion proteins: a.a. 17-100 (C1), 17-158 (C2), 100-158 (C3), and 270-343 (C4) (Fig. 5.1 B). The 

Hopp-Wood hydrophobicity plot for mCherry suggested hydrophilic regions near its N and C 

terminus (Fig 5.1 C).  I sub-cloned three different peptide fragments of mCherry into pGEX-KG: 

a.a. 136-190 (FG1), 151-190 (FG2), and 23-57 (FGC) (Fig 5.1 D). As mentioned above, the N- 
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Figure 5.1 Hydrophobicity Plots of Cre and mCherry and Amino Acid selection for GST 

Fusion proteins. Plot of (A) Cre and (C) mCherry using the Hopp-Wood algorithm. The y-axis 

is a logarithmic representation of hydrophobicity (positive values, more hydrophilic; negative 

values, more hydrophobic); the x-axis is the amino-acid sequence of the respective proteins. (A) 

Amino-acid residues 100-158 represented the largest stretch of hydrophobic sequences in Cre, 

with smaller regions of largely hydrophobic character near the N- and C-termini.  (B) The 

peptide sequence regions of Cre selected for individual GST-Cre fusion proteins. (C) For 

mCherry, two regions of hydrophilic character were indicated near the N- and C-terminus. (D) 

Indication of mCherry peptide sequence selected for individual GST fusion proteins. (E) 

Structure of all GST-fusion proteins.  The selected antigen regions of Cre and mCherry were 

attached to the C-terminus of GST in the plasmid expression vector pGEX-KG, immediately 

after a short (Gly)5 linker sequence (discussed in methods).  
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terminal residues 1-12 and C-terminal residues 223-231 of mCherry were omitted from these 

fusion proteins because of their peptide sequence identity to GFP –we required reagents that 

would be specific for mCherry that could be used in mCherry and GFP co-expressing tissues. 

 

GST Fusion Proteins for Cre and mCherry 

Fusion proteins were generated using a standard GST fusion protein preparation, which is 

generally done at 37°C (and sometimes at 32°C as explained below). At all steps of fusion 

protein production the temperatures and incubation times can be altered depending on the 

behavior of the fusion protein (for extensive detail on fusion protein production, please see the 

Wright lab “fusion protein” manual).  Sometimes the fusion protein is produced slower at lower 

temperatures, with less of it becoming packed into an insoluble form inside bacterial inclusion 

bodies.  Thus, while the overall protein yield per bacterium might be lower at 32°C, the soluble 

proportion might be higher, allowing higher yield from the glutathione-agarose purification step.  

Cre and mCherry pGEX-KG fusion-protein plasmids were transformed into JM109 E. coli. Prior 

to large-scale protein preparations, small-scale protein preparations with sonication release from 

the bacteria into a simple low-salt buffer were performed to determine the general solubility of 

each fusion protein. The small-scale protein preparation protocol is similar to the large-scale 

method mentioned below, except the bacterial culture volumes are only 1.5 mL for both the 

overnight and the next day’s IPTG-induced culture. Duplicates of the “protein miniprep” were 

included to determine the total protein (sample not sonicated, just centrifugation-collected and 

then boiled in SDS-PAGE sample buffer) and soluble protein (that released by sonication). The 

total-protein fractions for Cre and mCherry fusion proteins indicated that good amounts of each 

were induced. Substantial amounts of IPTG-induced protein were observed at or near the 

predicted size (Fig 5.2 A). Of the four GST-Cre fusion proteins, C1 had the highest soluble- 
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Figure 5.2. Small-scale preparation of Cre and mCherry GST-fusion proteins. (A) Total 

protein preparation of Cre fusion proteins detected by Coomassie Brilliant Blue R-250 staining 

on SDS-PAGE gels. “Protein Minipreps” were done to induce fusion-protein production of either 

GST alone (Lane 2, 26 kDa), GST-C1 (lane 3, 35 kDa), GST-C2 (Lane 4, 41.5 kDa), GST-C3 

(Lane 5, 32.4 kDa), GST-C4 (Lane 6, 34 kDa), or without induction by IPTG (Lane 6). Intense 

protein bands were detected at or close to the predicted size for each GST-Cre fusion protein. (B) 

Soluble protein fractions, same lane assignments as in (A). C1 and C2 GST-Cre fusion proteins 

were more soluble than the C3 and C4 fusions. (C) Soluble protein fractions of mini-preparations 

of mCherry fusion proteins. All three GST-mCherry fusion proteins were highly soluble: GST-

FG1 (lane 2, 32 kDa); GST-FG2 (lane 3, 30 kDa), GST-FGC (lane 4, 30 kDa).  
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protein yield with C2 appearing slightly less soluble (Fig 5.2 B). Fusion proteins C3 and C4 did 

not appear in the soluble fraction. All GST-mCherry fusion proteins (FG1, FG2, and FGC) were 

highly soluble (Fig 5.2 C).  Fusion proteins C1, C4, and FG1 were therefore chosen for large- 

scale protein preparation. C4 was selected to determine if the small-scale “protein miniprep” was 

accurately depicting the solubility of the fusion proteins. 

Independent bacterial colonies representing C1, C4, and FG1 were used to inoculate 200 

mL overnight starter-cultures. Next morning, the starter-cultures were used to inoculate large 

cultures of 4 to 8 L, which were then grown for 2-4 hours before protein production was induced 

by adding Isopropyl β-D-1-thiogalactopyranoside (IPTG). IPTG binding to the lac repressor 

protein releases it from the lac operator sequence, initiating transcription from the associated 

transcription unit. The pGEX-KG plasmid contains a lac repressor gene cassette and a separate 

GST-fusion-protein gene cassette controlled by the lac operator. Induced bacteria were grown 

for a further two hours, collected by centrifugation, resuspended and sonicated. The sonicated 

bacterial solution was then centrifuged and the soluble supernatant gathered for affinity 

purification of the GST fusion proteins.  

The soluble proteins were bound to glutathione-agarose with rotation on a hematological 

mixer for several hours at room temperature, or up to overnight. The next morning the 

beads/lysate mixture was loaded into a plastic/glass column assembly with a sintered glass 

bottom. The column was washed with a lot of volume and then several aliquots of freshly made 

5.0 mM reduced glutathione were run over the column to compete the fusion protein off the 

glutathione-Sepharose beads, usually releasing the bulk of the bound GST fusion protein within 

close to the void volume of the settled matrix in the column. Ten 1.0 ml factions were collected 

during the elution process and examined for protein content by Bradford reagent.  High-content   



104 
 

protein fractions were analyzed by SDS-PAGE (Sodium Dodecyl Sulfate Polyacrylamide Gel 

Electrophoresis) on preformed 10% gels to determine the quality and concentration of the fusion 

proteins in each fraction. 

Consistent with the small-scale preparations, large-scale C1 and FG1 preparations 

contained large amounts of soluble protein (Fig 5.3). The most-concentrated protein-containing 

fractions were combined and stored at -20°C. The large-scale C4 GST-Cre preparation 

demonstrated a significantly higher solubility than indicated by the small-scale protein miniprep 

(Fig 5.3). The SDS-PAGE analysis of C4 showed two major bands: a larger one present in the 

minority that corresponded to the full-length fusion protein and a more major band that was 

slightly larger than GST alone. Adding protease inhibitors during the bacterial sonication and 

protein preparation did not significantly alter the ratio of these two bands (full-length and the 

smaller one that we presumed was undergoing proteolytic clipping).  

The pooled high-protein content fractions from the C1 and FG1 preparations were sent to 

the BCBC antibody core in Denmark (directed by Dr. Ole Madsen). Each fusion protein was 

used to immunize two rabbits and guinea pigs. Several test and production bleeds were gathered, 

in addition to an exsanguination bleed. Samples of approx. 1.0 ml of each bleed, from each 

species and fusion protein were sent to the Wright lab for our testing on tissue samples. To date, 

testing of each antibody’s characteristics was only done with the raw anti-serum; no affinity 

purification was attempted. 

No positive reaction to mCherry on fixed tissue sections was detected with the rabbit or 

guinea pig antiserum derived from FG1 mCherry immunization. One guinea pig immunized with  
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Figure 5.3. Large-scale fusion protein preparations of GST-C1, GST-C4, and FG1. Soluble 

protein preparation of GST-C1 (A), GST-C4 (B), and FG1 (C) fusion proteins detected by 

Coomassie Brilliant Blue R-250 staining on SDS-PAGE gels. For each gel: Lane 1, protein 

marker ladder; lane 2, 1.0 mg Bovine Serum Albumin (BSA); lane 3, 5.0 mg BSA; lane 4, 10.0 

mg BSA. Lanes 4-7 and 8-10 are serial dilutions of the two highest protein-content fractions for 

each fusion protein. (A) GST-C1 is a highly soluble well-behaved fusion protein. (B) GST-C4, 

which was very insoluble based on the small-scale fusion protein preparation (comparing 

solubilized protein between the sonicated and centrifugation-cleared lysate and the protein 

remaining in the pelleted material). Large-scale protein preparation revealed that GST-C4 is 

mildly soluble, but the fusion protein runs on the gel as a large protein band (full-length fusion 

protein) and smaller “clipped” band (mostly GST). Addition of a cocktail of protease inhibitors 

(Complete mini, Roche) did not alter the ratio of “clipped” fusion protein to full-length fusion 

protein (not shown). (C) FG1 was highly soluble, consistent with the first indications from the 

small-scale protein preparation. 
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the C1 Cre fusion protein produced raw antiserum detected Cre in fixed samples. Adult murine 

pancreas tissue containing CreER under the control of the Ptf1a cis-regulatory regions (from the 

Ptf1a
CreER 

knock-in strain) was used to test the antiserum. A Ptf1a
CreER

 animal was injected with 

tamoxifen and sacrificed 12-hours post-injection to capture the nuclearly translocated CreER. 

The tamoxifen-treated Ptf1a
CreER

 mice were compared to Ptf1a
CreER

-positive mice not treated 

with tamoxifen (should give a cytoplasmic signal), and adult pancreas tissue from animals with 

no CreER production (Fig. 5.4). Antiserum in the dilution range 1:500-1:2000 on CreER-

negative tissue gave no signal in any pancreatic cells. The Ptf1a
CreER+

 (no tamoxifen) samples 

showed diffuse cytoplasmic signal restricted to the acinar cells. Tamoxifen-treated Ptf1a
CreER+

 

samples produced strong nuclear signal only in Cpa1
+
 acinar cells. These data show that this raw 

Cre antiserum detects Cre or CreER selectively under these conditions; future affinity 

purification could clean the reagent up even more. 

When generating antibodies, it is often necessary to affinity purify the antibodies in order 

to reduce the background signal, making signal-to-noise higher and detecting lower amounts of 

protein more effective.  Often there are cross-reacting Abs against the GST and other 

contaminating bacterial proteins, and there are autoimmune reactions in the animals that can 

create problems in producing ‘specific but not desired’ signals on mammalian tissues.  Often a 

specific reagent is masked, and affinity purification of a GST-fusion protein column with 

previous depletion steps (see Wright lab antibody manual). For all the antisera that I generated, 

so far only the raw antiserum was tested.  In the case of the C1 Cre antiserum, an even cleaner, 

more specific signal might have been achieved with affinity purification.  If the antiserum from 

this guinea pig is affinity purified, I believe that this Cre antibody could be a useful tool for the 

scientific community to detect Cre protein on fixed tissue sections.  
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Figure 5.4 Validation of the behavior of antiserum derived from a guinea pig immunized 

with GST-C1.  (A, B) GST-C1 antiserum tested on Ptf1a
CreER

-negative cryo-embedded, fixed-

tissue; no positive signal is detected. (C, D) On Ptf1a
CreER

-positive tissue that was not 

administered tamoxifen, GST-C1 antiserum produced diffuse cytoplasmic signal in Cpa1-

positive acinar cells. In the absence of tamoxifen, CreER should localize to the cytoplasm of 

acinar cells in Ptf1a
CreER

 tissue. (E, F) After tamoxifen administration, CreER translocates to the 

nucleus. In this condition, GST-C1 anti-serum produced strong nuclear signal in Cpa1-positive 

acinar cells. These findings indicate that this new GST-C1 antiserum can detect the localization 

of Cre or CreER in cryo-embedded, fixed-tissue samples. 
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CHAPTER VI 

 

CONCLUSIONS AND FUTURE AIMS 

 

Conclusions 

There have been extensive studies of endodermal progenitor competence in model organisms 

(like chick, zebrafish, and Xenopus) using tissue recombination experiments. One interesting 

pertinent example to this thesis involves the specification of the glandular stomach (reviewed by 

Yasugi, 1993) in the chick. When glandular stomach mesenchyme was placed adjacent to 

gizzard endoderm, the gizzard endoderm adopted a glandular stomach phenotype and expressed 

markers such as pepsinogen (a marker specific to the glandular stomach). Follow-up studies 

placed the glandular stomach mesenchyme adjacent to other regions of the endoderm. When 

glandular stomach mesenchyme was placed adjacent to the allantoic or intestinal epithelium, the 

endoderm does not initiate expression of glandular stomach markers. These findings suggested 

that there are regional differences in the ability of the endoderm to adopt specific organ 

phenotypes. Tissue adjacent to the glandular stomach, like the gizzard, retained competence to 

interconvert organ fates when placed next to the glandular stomach mesenchyme, while distant 

regions of the endoderm did not. Further studies suggested that one mechanism by which the 

mesenchyme alters organ phenotype was through the regulation of key transcription factors. For 

example, gizzard mesenchyme induced high levels of Sox2 in glandular stomach endoderm 

(leading to a gizzard endodermal phenotype), while glandular stomach mesenchyme caused 

gizzard endoderm to express low levels of Sox2 (Ishii et al., 1998).  

Loss-of-function or gene-dosage studies on key transcription factors (e.g., Sox2, Sox17, 

Ptf1a, and Cdx2) in the mouse further confirmed the role of transcription factors in specifying 
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regional and organ-specific progenitor character in the endoderm. Removing or reducing the 

function of these transcription factors caused endodermal progenitors to acquire another region 

or organ identity (Que et al., 2007; Gao et al., 2009; Spence et al., 2009; Kawaguchi et al., 2002). 

These studies suggested that even during organ specification, endodermal progenitors retain 

competence to adopt other organ fates and that transcription factors are important regulators of 

progenitor specification and commitment.  

Less is understood in the field about how the timing of activation of organ-specific gene 

regulatory networks leads to or facilitates to organ commitment. Pioneering studies by 

Wandzioch and Zaret (2009) detailed that the response of progenitors in the ventral posterior 

foregut to specific signaling pathways is highly dependent on timing. Using an in vitro culture 

method and small molecules to inactivate BMP signaling, the Zaret lab was able to show the 

response of pancreatic progenitors to BMP signaling changes within a two hour window during 

development. During the 3-4 somite stage, BMP signaling initially limits expression of Pdx1 

expression in the posterior ventral foregut, but at the 5-6 somite stage BMP signaling promotes 

Pdx1 expression. While these studies did not directly determine the commitment state of these 

altered progenitors after treatment, they at least suggested that the process of progenitor 

commitment could be extremely dynamic during development. It would be interesting to enact 

the same alterations in BMP signaling in an intact embryo to determine if there are functional 

changes in commitment (i.e. do these progenitors adopt different organ fates depending on when 

BMP signaling is altered?). It is also unclear what cause the progenitor to change their response 

to BMP signaling.\ 

There is no single model for how key transcription factors establish and maintain organ-

specific gene regulatory networks. A potential model for the role of Ptf1a during establishment 
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of the pancreatic gene regulatory network is extrapolated from the role of c-Myc, a basic helix-

loop-helix transcription factor similar to Ptf1a, during reprogramming adult cell types into a 

pluripotent state (Soufi et al., 2012). In contrast to Sox2, Oct4, and Klf4 (the other 

reprogramming factors), which were shown to bind to enhancers distant from promoters and act 

as pioneer factors (reviewed by Zaret and Carroll, 2011) during early reprogramming, c-Myc 

was shown to preferentially bind to promoter regions of the genome that were active in the 

fibroblast state. 48 hours later, c-Myc was shown to bind to new regions of the genome made 

accessible through the pioneer activity of Sox2, Oct4, and Klf4. c-Myc was also shown to 

enhance the recruitment of the other factors to genomic region where it was located (Soufi et al., 

2012).  

Other important inferences to the behavior of Ptf1a can be derived from NeuroD and MyoD. 

NeuroD, MyoD, and Ptf1a are highly similar basic helix-loop-helix proteins (more-so even than 

to c-Myc). Both NeuroD and MyoD have been classically described as determinants of the 

neuogenic and myogenic lineages, respectively. When NeuroD was expressed in pluripotential 

mouse embryonal carcinoma cell line (P19 cells), these cells are converted into neurons. When 

MyoD was expressed in mouse embryonic fibroblasts (MEFs), these cells were converted into 

myoblasts. Interestingly, NeuroD cannot convert MEFs into neurons and MyoD cannot convert 

P19 cells into myoblasts (Fong et al., 2012; reviewed by Buckingham and Rigby, 2014). Similar 

to c-Myc, NeuroD and MyoD are only able to bind to open chromatin, and are, thus, limited in 

their ability to activate direct targets without other transcription factors opening the chromatin 

for them.  

One difference between NeuroD and MyoD that was thought to contribute to their cell-

specific ability to act instructively is their DNA-sequence recognition. NeuroD and MyoD bind 
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to different unique E-box sequences in addition to the canonical E-box (Fong et al., 2012).  The 

binding of the NeuroD or MyoD to the unique E-box sequences was associated with 

transcriptional activation. These finding are interesting with regards to Ptf1a, because Ptf1a 

forms a trimeric complex (with RBPJk or RBPJL) with a highly specific 14 base-pair recognition 

sequence (6 base-pair E-box; 8 base-pair TC-box) (Masui et al., 2009). This highly specific 

recognition sequence could confer ability of Ptf1a to act within the pancreatic gene regulatory 

network. 

The field is extremely limited in our overall understanding of the chromatin landscape of 

early endodermal progenitors, in contrast to ground state pluripotent cells and terminally 

differentiated cell types. The most thorough description of the chromatin landscape of early 

endodermal progenitors is derived from in vitro directed differentiation (Xie et al., 2013). It is 

unclear how well these cells compare to the in vivo progenitor state. This study found that as 

progenitors transition from naïve foregut progenitors to organ-specified progenitors, there is a 

transition of the epigenetic state from bivalent (reviewed by Vastenhouw and Schier, 2012) to 

active. This study specifically implicated the removal of marks laid down by Polycomb group 

(PcG) during this transition. The Wright lab has attempted to remove the function of PRC2 

during endodermal development. Preliminarily, there does not appear to be alterations in the 

patterning of the posterior foregut endoderm (Pdx1, Ptf1a, Gata4 and Sox2 appear to respect 

their normal expression territories) when Ezh2 function (essential for PRC2 function) is removed 

from the early endoderm (Reick and Wright, unpublished data). This is in contrast to previous 

studies by the Zaret lab (Xu et al., 2011), which implicated PcG in controlling the Pdx1 

expression domain. Additional description of the epigenetic landscape of naïve foregut 



113 
 

progenitors and organ-specified progenitors will be needed to continue to interrogate the role of 

epigenetic modifiers during the process of organ specification and commitment.  

Potentially during early endodermal development, pioneer factors in the endoderm (FoxAs 

and GATAs) establish “open” regions of genome, which are bivalent at this time (Xie et al., 

2013). Binding of Ptf1a to chromatin would then potentially promote the recruitment of 

epigenetic modifiers to maintain activation marks and remove repressive marks to cause full-

scale activation of the locus. Ptf1a has been shown to recruit histone acetyl-transferases (P/CAF) 

to specific loci in acinar cells (Rodolosse et al., 2009). The binding of Ptf1a to the chromatin 

could also increase the binding of other factors to the chromatin. Recent data has suggested that 

there is a genetic interaction between Ptf1a and Foxa2 during development (Meredith et al., 

2014). The ability of Ptf1a to change the distribution of Foxa2 on chromatin could help shape the 

pancreas-specific gene regulatory network. This type of model would predict that in a gain-of-

function experiment, Ptf1a would only be able to re-specify progenitors which contain the 

correct complement of pioneer factors that establish the right “open” chromatin for Ptf1a to 

access important direct target genes. In the absence of these pioneer factors, Ptf1a would not be 

able to access the genome, initiate transcription, and establish the pancreatic gene regulatory 

network. 

In the following paragraph prior to the Future Directions section, I will briefly summarize my 

finding from Chapter III. The findings of my thesis work make important contributions to the 

field by precisely defining the regions (entire glandular stomach, extra hepatic biliary system, 

and anterior duodenum) of the endoderm that have pancreatic competence. While Ptf1a has been 

misexpressed in other model organisms (Xenopus; Afelik et al., 2006), the territories that are 

competent to be respecified have never been described in such precise spatial detail as in this 
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thesis. Additionally, I attempted to define the time window in which these progenitors are 

competent to be respecified as pancreatic progenitors. I have described that territories like the 

glandular stomach retained the ability to be respecified as pancreatic cell types as late as E15.5 

(the last stage I tested). These findings demonstrate that competence to access pancreatic fate 

persists far later during development than previously appreciated in the posterior foregut. I was 

also able to interrogate, for the first time, what factors are controlled by Ptf1a during the 

initiation of pancreatic respecification. I describe that Ptf1a strongly induces Pdx1 expression, 

indicating that Ptf1a and Pdx1 act inter-dependently during this time. Finally, I describe the 

ability of the endoderm to change the specification state of the mesoderm. These findings 

suggest that there is a level of plasticity in the endoderm-associated mesoderm that has not been 

properly appreciated previously and the endoderm and mesoderm have interdependent 

specification programs.  

Our tetracycline-based transient Ptf1a misexpression system permitted us to determine the 

consequence of broad Ptf1a misexpression in early mammalian endodermal progenitors, testing 

for its dominance as an organ-fate instructor. Our findings revealed that Ptf1a is a context-

specific dominant trigger of pancreatic specification, and revealed new information about its 

region-specific potency in recruiting expression from their endogenous loci of additional 

members of the pro-pancreatic gene regulatory network. Ptf1a misexpression dramatically 

induced a broader expression territory of Pdx1 in the early endoderm.  

Only the endodermal territories that retained Ptf1a
+
Pdx1

+
 progenitors at later stages went on 

to undergo differentiation as pancreatic progenitors.  Some areas such as the prospective rostral-

most stomach, esophagus and even lung bud, were induced to express Pdx1 from the endogenous 

locus, but then wound down Ptf1a and Pdx1 expression, and restored the normal organ-fate 
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program for those regions.  Our observations suggest that maintaining the Ptf1a
+
Pdx1

+
 state 

above a particular threshold or for long enough is likely an important gateway into establishing 

and maintaining the pancreatic fate, in competition with pre-existing gene regulatory networks 

that assign other organ fates.  

We further defined quality of pancreatic respecification changed over time.  Only early 

respecification (dox injections from E9.5-11.5) converted these territories into complete pancreas 

with representatives of all cell types – exocrine and most importantly endocrine cells – while the 

later-stage (E12.5 and after) Ptf1a induction only induced acinar-cell-specific respecification, 

and in a more mosaic/focal manner (clusters of acinar cells). 

An important observation regarding the reciprocal instruction of cell/tissue fate between 

endoderm and mesoderm was the observation that when the Ptf1a-induced pancreatic 

respecification was towards complete pancreas, the mesodermal progenitors of the prospective 

glandular-stomach region changed their organ phenotype from stomach (thick mesenchyme 

located beneath the endodermal epithelium) to pancreas (interdigitated within the endodermal 

epithelium). These observations suggest that Ptf1a-based conversion of endodermal fate can, at 

least within a specific early period of organogenesis, have non-autonomous effects on instructing 

mesodermal tissue fates.  It is therefore possible that defects in the mesenchyme could contribute 

to the almost complete failure of pancreas specification in Ptf1a null mutants. 

 

Future Directions 

There are many unanswered questions and future directions relating to the Ptf1a 

misexpression project. Possible future directions that are elaborated in greater detail following 

this listing include:  
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(1) Generating tools to misexpress Ptf1a and Pdx1 together as a way of testing if, in 

combination, these factors are more potent at driving pancreatic specification – they might act 

more effectively in achieving a specific threshold activation value for the Ptf1a-Pdx1 

feedforward loop proposed in Chapter III.  

(2) An exploratory project of high interest to me is the investigation of the molecular 

pathways that control the specification of pancreatic mesenchyme, and describing the changes in 

mesenchymal specification following Ptf1a misexpression.  

(3) Another exploratory project of great significance in my opinion would be to use 

Sox17
GFPCre

 to manipulate other factors controlling endodermal patterning (Sox2 and Cdx2, for 

example).  Combining Ptf1a misexpression with genetic conditions that are expected to alter 

early stages of endodermal patterning could be used to develop a molecular understanding of the 

factors that restrict or support pancreatic competence in the endoderm.  One type of genetic 

alteration I began to study towards the end of my thesis research was the endodermal deletion of 

Sox2, which is known to be expressed broadly and has known functions from studies of 

hypomorphs to be involved with the development of the stomach, esophagus, and trachea.  

Other smaller follow-up projects from the results presented in Chapter III include:  

(4)  Pervious studies (Schaffer et al., 2009) have described findings about persistent 

misexpression of Ptf1a in the endogenous pancreatic epithelium. The inducible misexpression 

system described in Chapter III of my thesis can be used to explore how the role of Ptf1a in 

controlling progenitor behavior and differentiation changes over time within the pancreatic 

epithelium.   
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(5) Transdifferentiating adult cell types into disease relevant cell populations is a potential 

therapeutic avenue for treating human disease conditions.  Ptf1a misexpression can be used to 

test if Ptf1a is able to reprogram fully differentiated adult non-pancreatic cell types (such as 

parietal and chief cells in the glandular stomach). Potentially, Ptf1a can covert these cell types 

(by itself or in combination with other genetic or epigenetic factors) into pancreatic acinar cells, 

which can be further transdifferentiated into pancreatic endocrine cells.    

Below, I now briefly speculate on some of these future directions.  

 

Conditional Misexpression of both Ptf1a and Pdx1 in the Early Endoderm 

Transient misexpression of Ptf1a in the early endoderm drastically expanded the 

expression territory of Pdx1. Pancreas-adjacent progenitor domains that were respecified 

maintained expression of both Pdx1 and Ptf1a. More distant endodermal territories that were not 

respecified could show a temporary expression of Pdx1, but, slightly later in embryogenesis, 

Pdx1 and Ptf1a expression from their endogenous loci was extinguished, as discussed below, and 

these territories proceeded with their normally expected organ-fate program for that region. 

These observations suggest that stabilizing a Pdx1
+
Ptf1a

+
 progenitor state is an essential 

intermediate to initiating the pancreatic program following Ptf1a misexpression.   

One potential reason why these distant organ territories are not converted into pancreatic 

cell types is because either the duration, or the protein level per cell, of transient Ptf1a was not 

sufficient to promote the establishment of the feed-forward cross-regulatory relationships with 

Pdx1 through activation of the endogenous Pdx1 and Ptf1a loci. In adjacent resistant organ 

territories such as the forestomach, esophagus, or liver, there is potentially a more repressive 

genetic and/or epigenetic state that blunts or offsets the limited-duration Ptf1a from accessing or 
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properly activating the endogenous Ptf1a and Pdx1 loci or other targets downstream targets of 

these genes. A new speculation that we are proposing is that the co-misexpression of Ptf1a/Pdx1 

at the same time might be more effective at initiating the pancreatic gene regulatory network, 

rather than relying on activation of Pdx1, and autoactivation of endogenous Ptf1a, by the 

doxycycline-activated Ptf1a
EDD

.  Under the idea that regional or organ-specific GRNs work 

competitively with each other, we are thus designing ways of enforcing the transient co-

misexpression of both Pdx1 and Ptf1a. Because I propose that activating the Pdx1
+
Ptf1a

+
 

expression state during intermediate stages of development is crucial to initiating and 

maintaining the pancreatic program, I would predict that triggering of both factors  in non-

pancreatic progenitor domains resistant pancreatic conversion from Ptf1a misexpression alone 

(forestomach, esophagous, lung, and liver) would lead to pancreatic respecification.  

The prediction in the previous paragraph could be tested by comparing the phenotype of 

Ptf1a misexpression alone to misexpression of Ptf1a and Pdx1 to two stages of analysis 

presented in Chapter III of this thesis (E12.5 and P0). At E12.5, I would interrogate changes in 

the expression domain of Ptf1a and Pdx1. Maintenance of these factors in different territories of 

the endoderm would indicate that misexpression of both factors at the same time is more 

efficient at activating their endogenous loci.  Failure to expand the domain of expression of Ptf1a 

and Pdx1 at E12.5 would indicate that activation of the Pdx1/Ptf1a co-expression state is not the 

limiting factor controlling the activation of the Pdx1 and Ptf1a loci. Perhaps, other genetic 

(permissive/repressive factor) or epigenetic (closed chromatin) mechanisms prevent the 

activation of these loci following Ptf1a or Ptf1a/Pdx1 misexpression. 

Ultimately, the most important comparison is whether misexpression of Ptf1a and Pdx1 

together cause a change in the distribution of ectopic pancreatic cell types at P0. Finding ectopic 
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pancreatic cell types in organs not converted by Ptf1a misexpression alone would indicate 

misexpression of Pdx1 and Ptf1a is more efficient at establishing and maintaining the pancreatic 

gene regulatory network during development. If Pdx1/Ptf1a misexpression produces an identical 

or nearly identical phenotype at P0 to Ptf1a misexpression alone, this would again indicate that 

activation of the Pdx1/Ptf1a co-expression state is not the limiting factor leading to pancreatic 

respecification. 

One way of achieving this goal would be to create a new tetO-driven transgene that could 

be used in the tri-genic misexpression system described in Chapter III (together with Sox17
GFPCre

 

and ROSA26
rtTA.IRES.EGFP

).
 
 The design currently under discussion in the Wright lab is a 

Ptf1a/Pdx1 co-producer allele that uses peptide-2A breaker sequences, rather than the more 

unpredictable IRES method.  The peptide-2A system should produce initially equivalent amounts 

of Ptf1a and Pdx1.  

The studies described above would further define the nature of pancreatic competence in 

the endoderm. Potentially all endodermal progenitors are competent to access pancreatic fates, 

provided they can be pushed – early enough, to access a stable pancreatic-MPC-specifier 

Ptf1a
+
Ptf1a

+
 coexpression state.  On the other hand, regardless of whether the correct levels of 

Pdx1 and Ptf1a are present at the right time, or if the two factors begin to activate the expression 

of downstream-tier propancreatic genes, some areas of the endoderm may still be extremely 

resistant to an artificial push towards a pancreatic fate.  Learning how the endoderm might be 

subdivided according to either of these possibilities would provide a primary new level of 

insight. 
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Molecular Pathways Underlying Pancreatic Mesenchyme Specification 

My studies using Ptf1a as a dominant trigger of pancreatic specification suggest that there is 

a developmental time window in which mesenchymal progenitor cells surrounding the 

prospective glandular stomach, EHBS, and anterior duodenum are competent to respond to the 

specification status of the adjacent endodermal progenitors. For example, glandular stomach has 

a thick multi-layered submucosal mesenchyme (Fig 3-8) containing multiple cells types such as 

smooth muscle cells, in stark contrast to the less structured, interdigitated pancreatic 

mesenchyme with the entire organ surrounded by the coelomic epithelium.   

The implication of my finding that the mesenchyme of the prospective stomach is 

dramatically switched to a pancreatic character after Ptf1a
EDD

 induction is that there is a direct or 

indirect but rapid activation of expression of some factor(s) in the endoderm that then instructs 

mesenchymal cell identity. Identification of such factor(s) would shed light on the pathways that 

regionalize the mesenchyme surrounding the endoderm. It is important to explore the molecular 

mechanisms that lead to the specification of pancreatic mesenchyme because this cell population 

plays important instructive and permissive roles during pancreatic organogenesis.   

Understanding the molecular pathways that control the specification of pancreatic mesenchyme 

would be useful in directed differentiation protocols.  Making bona fide pancreatic mesenchyme 

alongside pancreatic endoderm could substantially improve the quality and efficiency of 

complete pancreatic organoid or organ differentiation.  

Currently, very little is known about the pathways that control the differentiation endoderm-

associated mesenchyme in the posterior foregut.  We also only have speculative candidates for 

potential endodermally expressed targets of Ptf1a that could signal instructively to the 

mesenchyme (Eph/Ephrins, Netrins, FGFs), and direct its developmental program differentially 
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compared to the adjacent organ regions. Very few markers of regionally distinct mesenchymal 

progenitor populations are known.  Markers that are known, such as Nkx3.2 or Isl1, have poorly 

described spatiotemporal expression characteristics. Additionally, neither of the above markers 

has been linked to instructing organ-specific mesenchymal identity. Below I will describe a set 

of preliminary experiments, with and without the Ptf1a misexpression system, to explore the 

molecular mechanisms that lead to dominant specification of pancreatic mesenchyme. 

A suitable approach to exploring the mechanisms that control the regionalization of the 

endoderm-associated mesenchyme in the posterior foregut would be to profile the expression of 

genes within the developing endoderm-associated mesenchyme and early organ-specified 

endodermal progenitors. For example, this could be accomplished by isolating, sorting, and RNA 

profiling the mesenchyme of each organ domain in the posterior foregut during early 

development (i.e. E9.5 or E10.5). Without suitable cell surface markers that qualitatively 

subdivide the mesenchyme associated with the various organ fates, manual micro-dissection is a 

suitable initial approach to gather reasonably pure mesenchyme progenitor populations for each 

organ. Cell numbers are a huge concern when performing RNA profiling of progenitor 

populations at stages of development such as E9.5 and E10.5. If numerous wild-type matings, 

say ten or more, were to be set up in parallel, it would be feasible to attempt flow cytometry to 

gather enough endoderm and mesenchymal progenitors. For some organ domains, like the EHBS 

and anterior duodenum, the number of collectable cells would likely be insufficient for RNA 

profiling even with multiple litters for pooling samples. The stomach is, however, the largest 

organ at these stages and does have a substantial number of associated mesenchymal cells. 

Micro-dissecting the E10.5 stomach and sorting with the endodermal-specific marker EpiCAM 

would allow the isolation of two cell populations: one being the EpiCAM
+
 endodermal epithelial 
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cells, and the other (EpiCAM
-
) population being the mesoderm (the cell population of interest), 

together with the accompanying endothelial cells, and any neural crest-derived cells.  In such a 

preliminary, exploratory design, RNA profiling of the mesenchyme/endothelium/neural crest 

pool would still be able to detect potential interesting targets. In parallel, I would sort and RNA-

profile the pancreatic endoderm and mesenchyme (by sorting later-stage tissues because of cell 

number concerns, E12.5 or E13.5) to identify genes enriched in pancreatic organogenesis and 

mesenchymal development.  

Using these four data sets (pancreatic mesenchyme and endoderm; stomach mesenchyme and 

endoderm), I would hope to generate a candidate list of transcription factors and signaling 

molecules that are differentially expressed in the stomach and pancreas endoderm/mesenchyme. 

It is possible that there are no qualitatively differentially expressed genes that identify the 

mesenchyme of either organ. In this case, quantitative methods will need to be used. However, 

this is unlikely as it is known that Hox genes are expressed in a sequential order down the 

mesoderm/ectoderm and endoderm, although the latter is more poorly characterized.  

Using the data sets described above, I would then explore expression of these genes in E10.5 

Ptf1a
EDD 

embryos by whole-mount in situ hybridization. I would specifically examine the 

respecified stomach territory for acute changes in gene expression in the endoderm and 

mesenchyme following Ptf1a misexpression.  I would attempt to identify genes that become 

acutely ectopically expressed in the respecified stomach endoderm and/or mesenchyme. The 

most interesting candidates should be explored with genetic tools (for example, Sox17
GFPCre

-

based conditional deletion if the factor is endodermally expressed) to determine the direct role in 

pancreatic development and mesenchyme specification. Given the speculative nature of these 

experiments, it will be difficult to predict whether a specific gene that is induced in the stomach 
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endoderm after Ptf1a misexpression has a role in assembling the pancreatic gene regulatory 

network in the endoderm or communicating with the adjacent mesoderm. 

The data sets generated from profiling the developing stomach and pancreatic mesenchyme 

would also be useful to investigate the spatiotemporal expression characteristics of 

uncharacterized genes using in situ hybridization. Potentially, genes could be identified that are 

useful for genetic investigation of the development of mesenchyme (i.e. the spatiotemporal 

expression characteristics of their promoter might be useful for the generation of Cre drivers or 

fluorescent tools). 

 

Endodermal Patterning 

One prediction from studies described in Chapter III is that competence to adopt the 

pancreatic fate in relatively distant endodermal progenitor domains (anterior foregut, midgut, and 

hindgut) is restricted by the encoding of their normal organ programs, which concurrently place, 

genetically and epigenetically, the loci that are involved in the propancreatic program into a 

more-suppressed state. I therefore propose that an important future direction would be to explore 

what factors control organ specification and commitment in non-pancreatic endoderm. The 

emerging knowledge would further two goals: (1) Better understanding of the processes that 

control specification and commitment in the endoderm as a whole.  (2) Increased knowledge of 

how to re-direct progenitors that are initially non-pancreatic (that is, having been regionally 

specified as either nearby or more-distant endoderm) towards a propancreatic state, with or 

without misexpression of Ptf1a (± Pdx1), or suppression of a small number of selected 

transcription factor genes that operate as high-level instructors of other regional or organ fates.  
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One such attractive factor that has been implicated in the development of anterior endodermal 

fates, including forestomach and esophagus, is Sox2. Sox2 is a critically important transcription 

factor involved in a variety of essential developmental processes including specification of the 

epiblast, neural progenitors, and retinal progenitors (Avilion et al., 2003; Ferri et al., 2004; 

Taranova et al., 2006). Sox2 is also one of the four transcription factors that were first reported in 

the induced pluripotency from adult cell types, creating iPS cells (Takahashi et al., 2006). In 

addition to these well-studied functions, Sox2 is expressed in the anterior definitive endoderm. 

Hypomorphic Sox2 embryos have defects in the development of the esophagus and trachea, 

mimicking human disease conditions (anopthalmiaesophageal-genital syndrome) (Que et al., 

2007). The expression pattern of Sox2 suggests that Sox2 has an important role in patterning the 

early anterior foregut. There has been no attempt (due to a lack of suitable genetic tools) to 

completely remove Sox2 function from the endoderm. Sox17
GFP.Cre 

is an appropriate tool to 

conditionally inactivate Sox2 broadly throughout the endoderm, before it begins to exert any of 

its patterning functions.  The timing and broad expression characteristics of the new Sox17
GFP.Cre 

tool make it even better than, say, Foxa3
Cre

 (which would inactivate after Sox2 expression 

begins, be mosaic, and not target the very anterior foregut where Sox2 is expressed).  

Sox17
GFP.Cre

-based endoderm-specific Sox2 conditional inactivation could therefore reveal 

several putative levels of novel information. There could be a loss of the proper location of the 

glandular stomach-forestomach boundary. This boundary is especially pertinent to my thesis 

research because it seems to mark the limit of pancreatic competence identified under the 

challenge of Ptf1a
EDD

 (the prospective glandular stomach region being convertible, but 

forestomach not).  I found that while Ptf1a misexpression was able to suppress Sox2 transiently 

in the prospective forestomach and esophagus, just a little later in development the Sox2 
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expression returned to levels indistinguishable from wild type – even though the final 

differentiation was not normal, the forestomach and esophageal endoderm did not convert to 

pancreatic tissue. In contrast, the Ptf1a
EDD

-converted progenitors of the putative glandular 

stomach region did not reactive Sox2 and remained fully diverted to the pancreatic fate.  

I have begun these initial studies with Sox17
GFP.Cre

-based elimination of endodermal Sox2 

function.  I acquired a Sox2 null allele (Sox2
EGFP

) and conditional null allele (Sox2
COND

) 

(Taranova et al., 2006), and initially studied neonatal (P0) Sox17
GFP.Cre

/+; Sox2
EGFP/COND 

pups 

(termed Sox2
ΔEDD

). In these Sox2
ΔEDD

 pups, Sox2 was inactivated in specified definitive 

endoderm and endothelial cells, but because Sox2 is not expressed in endothelial cells, 

endothelial dysfunction will not complicate or contribute to this knockout model.  The P0 

Sox2
ΔEDD

 pups were stillborn and were observed as immediately not breathing, likely because of 

the morphological changes in endoderm described below. Dissection of Sox2
ΔEDD

 pups revealed 

large-scale disruptions in the normal wild-type morphology and tissue histology of the stomach, 

esophagus, and trachea, and dramatically distinct from the phenotype in Sox2 hypomorphic 

embryos described in Que et al. (2007). The stomach size was drastically reduced in Sox2
ΔEDD

 

pups (Fig. 6.1), whereas there was no such stomach size phenotype reported for Sox2 

hypomorphic mice (Que et al., 2007). Sox2
ΔEDD

 pups contained a single trachea-esophageal tube  
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Figure 6.1.  Morphological alterations in the stomach of Sox2
ΔEDD

 pups. (A) Dissected wild-

type P0 stomach and anterior duodenum. Junction between the duodenum and stomach (pylorus) 

is indicated by the dashed red line; between esophagus and forestomach by the dashed blue line. 

(B) Sox2
ΔEDD

 stomach and anterior duodenum. Sox2
ΔEDD

 stomachs are significantly hypoplastic 

compared to wild-type stomachs. (C) Direct size comparison of wild-type and Sox2
ΔEDD

 

stomachs. 
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that extended from the stomach up to the oral endoderm. The large bronchioles of the lung 

connected directly to this single tube (Fig. 6.2). The lack of separation of trachea and esophagus, 

as well as potential structural abnormalities in the pharynx (at least the epiglottis is missing) may 

cause Sox2
ΔEDD

 embryos to suffocate on amniotic fluid during gestation or these animals are 

simply incapable of coordinated breathing. 

The phenotypic changes in Sox2
ΔEDD

 endoderm differentiation were examined further by 

histology, and by an initial survey of the effects on important regionally restricted transcription 

factors. Confirming that endodermal Sox2 was completely eliminated by Sox17
GFPCre

, Sox2 was 

not immunodetectable in proximal lung samples of Sox2
ΔEDD

 pups (Fig. 6.3). Sox2 was also 

absent from the single trachea-esophageal tube, and the putative forestomach and glandular 

stomach (not shown).  Additional studies would be needed to determine if Sox2 expression is 

always lacking from the endoderm, by analyzing stages focused at and just after formation of the 

nascent definitive endoderm. 

One potential outcome of the complete removal of Sox2 in the endoderm is that the 

boundaries of other important regionally expression transcript factors will change. This finding 

would suggest that Sox2 has important role in defining these territories. One important early-

acting gene that needs to be considered strongly, knowing its role in endodermal patterning (Gao 

et al., 2009) is Cdx2. The expression territories of Cdx2 and Sox2 are non-overlapping (see the 

introductory chapter of this thesis), with the Sox2 domain ending in the caudal stomach, adjacent 

to the anterior limit of Cdx2 expression in the rostral-most anterior duodenal endoderm. 

Endoderm-selective removal of Cdx2 function causes the expansion of Sox2 throughout the 

posterior endoderm. Under a cross-repression model, removing Sox2 function would lead to 

expanded Cdx2 throughout the anterior endoderm. In my Sox2
ΔEDD

 analysis so far, none of the  
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Figure 6.2. Morphological alterations in esophagus and trachea of Sox2
ΔEDD 

pups. Wild-type 

(left) and Sox2
ΔEDD

 (right) trachea, esophagus, and lung. (A) Dorsal view, (B) Ventral view. 

Wild-type tissue has distinct tracheal (yellow arrowhead) and esophageal tubes (green 

arrowhead). Sox2
ΔEDD

 tissue has one tube structure throughout (red arrowhead).  The anterior 

portion of this tube appears to resemble the trachea (cartilage rings indicated by red arrowhead). 
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Figure 6.3. Histology and gene expression alterations in Sox2
ΔEDD

 tissue. (A, B) Sox2 

immunohistochemistry. (A) Sox2 signal in wild-type proximal lung (green arrowheads). (B) 

Sox2 production is lost in the proximal lung (green arrowheads) and the entire endoderm (not 

shown) of Sox2
ΔEDD

 pups. (C, D) Nkx2.1 immunohistochemical analysis. (C) Nkx2.1 in wild-

type lung in both the proximal (yellow arrowhead) and distal lung (green arrowhead) (B) Nkx2.1 

in the lung of Sox2
ΔEDD

 pups. Nkx2.1-positivity supports the idea that this tissue is lung, where 

Sox2 is normally expressed. The loss of Sox2 in the lung in (B) indicates that Sox17
GFPCre

-based 

deletion efficiently removes Sox2 from the endoderm. (E, F) Hematoxylin and eosin staining of 

wild-type (E) or Sox2
ΔEDD

 (F) tissue located anterior of the lung, around the thymus/thyroid. In 

this area of the endoderm there should be independent tracheal (yellow arrowhead) and 

esophageal tubes (green arrowhead). Sox2
ΔEDD

 tissue contains one tube resembling a trachea 

(yellow arrowhead). No squamous epithelium can be identified. (G, H) Hematoxylin and eosin 

staining of wild-type (G) compared to Sox2
ΔEDD

 (H) tissue between the lung and stomach. In this 

region of endoderm, there should be one tube with a squamous epithelium (esophagus, E). The 

single tube in Sox2
ΔEDD

 tissue (H) contains no squamous epithelium. The Sox2
ΔEDD

 epithelium in 

this location is much more columnar. The mesenchyme contains small pieces of cartilage (blue 

arrowhead) which would normally only surround the trachea.  
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endodermal cells in the glandular stomach or any other anterior endodermal territory showed 

Cdx2 positivity, thus indicating the absence of a fundamental change to an intestinal character. 

Preliminarily, therefore, it appears that Sox2 is not the only factor involved in limiting the 

expression territory of Cdx2. Another gene potentially regulated by Sox2 is Pdx1. Pdx1 and Sox2 

are co-expressed in the antral stomach and Sox2 could potentially set this Pdx1 expression 

boundary. However, the P0 analysis of Sox2
ΔEDD

 tissue showed that the Pdx1-positive tissue 

domain exhibited a similar anterior boundary compared to controls.  

In Sox2
ΔEDD

 pups, the normal stratified squamous epithelium of the forestomach and 

esophagus was replaced by a simple columnar epithelium.  There was no apparent stratification 

or keratinization of cells within the forestomach and esophagus. Because the columnar 

epithelium in the esophagus/forestomach was reminiscent of the type of epithelium seen in the 

wild-type proximal lung and trachea, I tested if there was a wide broadening of the expression 

domain of Nkx2.1.  Endodermal Nkx2.1 is found in the lung, trachea, and thyroid and is required 

for the proper development of all of these organs (Minoo et al., 1999). Interestingly, Nkx2.1-

positive tissue was found throughout the columnar epithelium replacing the esophagus and 

forestomach in the Sox2
ΔEDD

 tissues (Fig. 6.4).  These findings suggest strongly that Sox2 is a 

potent suppressor of Nkx2.1 expression in the prospective forestomach and esophagus during 

development.  Further studies should address if the columnar epithelial cells within the 

esophagus and forestomach express any of the differentiated cell markers of the trachea or 

proximal lung, to help identify the nature of this altered epithelium. Histological analysis also 

indicated significant changes in the development of the pharynx, which also appeared to be 

altered to a simple columnar epithelium with relatively uniform Nkx2.1-positivity.  
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Figure 6.4.  Histology and gene expression alterations in the forestomach of endodermal 

Sox2-null mice. (A, B) Hematoxylin and eosin staining of wild-type (A) compared to Sox2
ΔEDD

 

(B) stomach. The forestomach of Sox2
ΔEDD

 pups (B) does not resemble the stratified squamous 

epithelium of control embryos, but is columnar. (C, D) Immunohistochemical detection of 

Nkx2.1, which is not produced in wild-type forestomach (C), but is expressed throughout the 

Sox2
ΔEDD

 forestomach (D). This finding suggests that the Sox2
ΔEDD

 forestomach is likely being 

regionally converted into trachea/proximal lung-like cell fates. 
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My preliminary data suggests that in the absence of Sox2 function the forestomach, 

esophagus, and pharynx somehow are subject to a misallocation process, diverting them from 

their expected normal organ fates. By including transient Ptf1a
EDD

 (± Pdx1) misexpression into 

the context of the Sox2
ΔEDD

 deficiency, one could test is now a time window during which these 

organ territories show competence to access the pancreatic fate. Expansion of pancreatic cell 

types into the forestomach and esophagus after in the Ptf1a misexpresison, Sox2
ΔEDD

 background 

would indicate that Sox2, through programming the endogenous gene regulatory networks of the 

esophagus and forestomach, prevents these progenitors from accessing the pancreatic fate. 

Failure to convert the esophagus and forestomach into pancreatic cell types in the background of 

Sox2
EDD

 would indicate the programming of the endogenous forestomach and esophagus gene 

regulatory network does not restrict pancreatic competence. Other genetic (permissive/repressive 

factors) or epigenetic (differences in the chromatin landscape) mechanisms would need to be 

explored to explain the lack of pancreatic competence in the anterior endoderm. Competence to 

undergo conversion should also focus on whether or not such re-regionalization and organ fate 

reprogramming might need to occur prior to the action of Nkx2.1 in beginning to direct cells to 

tracheal and proximal lung fates.  

My analysis quickly revealed that Sox2 also shows expression in the most caudally located 

endodermal derivatives, which is in agreement with data shown in the GUDMAP 

(http://www.gudmap.org/). Sox2
+
 progenitors contribute to the urethra and anus, both of which 

develop into tissue with some squamous epithelial structure. Based on my observations of 

alterations in the squamous epithelia of the anterior endoderm in Sox2
ΔEDD

 tissue, it is possible 

that Sox2 is a key determinant, in general, of a squamous epithelial phenotype in all 

endodermally derived organ anlagen. Clearly, further investigation of Sox2 hypomorphic and 
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Sox2
ΔEDD

 tissue would be required to determine if Sox2 has deterministic tissue-instructive roles, 

rather than just determining a general epithelial structure, in caudal-most endoderm.  

 

Cell Lineage Allocation in the Endogenous Pancreas Following Ptf1a Misexpression 

In addition to the extra-pancreatic tissue alterations (see Chapter III), Ptf1a misexpression did 

cause substantial changes in the developmental program within the “endogenous” pancreas. 

Misexpression of Ptf1a within the pancreas was partially explored by Schaffer et al. (2010). They 

used chronic, not transient, Ptf1a expression from a transgene made in the Wright lab, in which 

expression was controlled by the Pdx1 promoter that activates within the developing pancreatic 

epithelium starting at E8.5.  They studied the effects of prolonged Ptf1a production within Pdx1-

expressing epithelium up until E14.5, which was the only stage of analysis reported. These 

studies demonstrated that such chronic misexpression of Ptf1a caused pancreatic progenitors to 

adopt a tip cell, pro-acinar state, and to suppress the movement to a ‘trunk state’ Nkx6.1-positive 

epithelium that could produce endocrine-directed progeny. In contrast, our system allows stage-

controlled Ptf1a misexpression, wherein we can alter the timing and duration of Ptf1a to test its 

ability to determine the progenitor state of later stage pancreatic progenitors.  

My initial scanning of the effects within the pancreas of mid-organogenesis application of 

Ptf1a
EDD

 (E12.5) suggested that there were changes in the relative specification of endocrine and 

ductal cell lineages, when scored in early post-natal tissue. In contrast, when initiating transient 

Ptf1a
EDD

 in the early pancreatic buds (at approx. E9.5-10.5), the early progenitors do not alter 

differentiation by the end of gestation. Exploring the reason why early progenitors fail to alter 

their behavior after exogenous Ptf1a misexpression might uncover novel genetic relationships 
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that could help illuminate the molecular pathways that distinguish and propagate the different 

lineages that emerge from the tip vs. trunk domains, how these domains are initially segregated, 

and the degree of commitment or plasticity in the later stages of embryogenesis.  Gene 

expression profiling could be helpful direction, because of the currently limited number of genes 

known as direct targets of Ptf1a in early pancreatic progenitors.  

 

Reprogramming Adult Cell Types into Pancreatic Acinar or Other Cell Types  

The transdifferentiation and/or reprogramming of adult cell types into clinically relevant cell 

types is an emerging field of study. I have shown in my thesis work that Ptf1a can exert 

dominant effects leading to the functional respecification of non-pancreatic progenitors into 

pancreatic cell types during development. A follow-up study based on my findings would be to 

test if Ptf1a could transdifferentiate adult non-pancreatic cell types into pancreatic cell types. 

Transdifferentiation of adult cell types into disease relevant cell populations is a potential 

therapeutic avenue for treating human disease conditions. Potentially, Ptf1a can convert adult 

non-pancreatic cell types (such as chief or parietal cell in the glandular stomach) into pancreatic 

acinar cells that could then be turned into pancreatic endocrine cells with further genetic 

manipulation such as those presented in Zhou et al. (2008). 

The use of CreER lines such as H/K ATPase
Cre

 (Syder et al., 1999) and Mist1
CreER

 (Shi et al., 

2009) in combination with ROSA26
rtTA.IRES.EGFP 

and tetO
Ptf1a.IRES.lacZ 

would allow misexpression 

of Ptf1a in parietal and chiefs cells of the adult stomach, respectively.  Other less specific CreER 

lines such as Sox9
CreER

 could also be useful. Sox9 is generally expressed in most endodermal 

organs (lung, stomach, intestine, liver, etc…) within the adult stem cell compartment and some 

differentiated cell progeny (Furuyama et al., 2011). There are well established in vitro organoid 
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culture conditions for the glandular stomach. Such an in vitro system would allow easy further 

manipulation of these cell types with small molecules and siRNA knockdown in background of 

Ptf1a misexpression. 

Perhaps, Ptf1a misexpression is sufficient to transdifferentiate parietal or chief cells into 

acinar cells. This type of outcome would indicate that even after terminal differentiation, the 

glandular stomach retains competence to access pancreatic cell fates. Another potential outcome 

is that Ptf1a may only be able to convert parietal cells and not chief cells, or vice versa. This type 

of outcome would indicate that during the differentiation of these adult cell types, the ability of 

access pancreatic cell fates only lost during specific differentiation programs. This is a particular 

attractive outcome because it allows the direct comparison of competence and non-competent 

adult cell types at genetic and epigenetic levels. This could potentially reveal important target, 

pathways, and co-regulators that necessary for pancreatic respecificaiton in adult cell types. 

While during development Ptf1a was sufficient to respecify glandular stomach progenitors to 

pancreatic progenitors, in the adult, another possible outcome is that Ptf1a alone is not sufficient 

to elicit this type of outcome. It may be necessary to misexpress Ptf1a with other factors, like 

Pdx1 for example, in order to promote any adult stomach cell to access the pancreatic fate. Other 

fruitful avenues could include using small molecules to inhibit epigenetic enzymes. This type of 

manipulation may relax the resistance of terminally differentiated cell types to conversion. 
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