
 

1/f NOISE AND AGING EFFECTS ON MOS TRANSISTORS 

 

By 

Ioana Danciu 

Thesis  

Submitted to the Faculty of the  

Graduate School of Vanderbilt University  

in partial fulfillment of the requirements  

for the degree of 

 

MASTER OF SCIENCE  

in  

Electrical Engineering 

 

December, 2011 
 
 

Nashville, Tennessee 

 

Approved: 
 

Daniel M. Fleetwood 
 

W. Tim Holman 
 

 



 ii 

 

 

 

 

To my loving grandmother, Maria Danciu, an excellent electrical engineer for 40 

years, a constant inspiration and role model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 iii 

ACKNOWLEDGMENT 

 

This research project would not have been possible without the support of many 

people. I would like to express my gratitude to my advisor, Dr. Fleetwood, who was 

abundantly helpful and offered invaluable assistance, support and guidance. Deepest 

gratitude is also due to Dr. Holman without whose knowledge and assistance this study 

would not have been successful. 

Special thanks are due to Ashley Francis and Tania Roy for their invaluable 

assistance and stimulating discussions. 

I would also like to thank my work supervisor, Dr. Josh Peterson, who has been 

extremely supportive of my graduate school progress. 

 

 

 

 

 

 

 

 

 

 

 

 



 iv 

TABLE OF CONTENTS 

 

                                    Page 

DEDICATION .............................................................................................................. ii 

ACKNOWLEDGEMENT ............................................................................................. iii 

LIST OF FIGURES.........................................................................................................v  

            

Chapter 

1.  INTRODUCTION................................................................................................1 

2.  BACKGROUND ..................................................................................................4 

     Background on Noise..........................................................................................4 
     Background on Aging .......................................................................................10 

3.  EXPERIMENTAL DETAILS AND MEASUREMENT TECHNIQUES...........12 

     Devices.............................................................................................................12 
     Measurements ..................................................................................................13 
      Threshold voltage measurements .................................................................13 
      Noise measurements ....................................................................................14 
      Temperature dependent noise measurements ...............................................17 
      Baking treatment..........................................................................................18 

4.  AGING EFFECTS ON MOS LOW FREQUENCY NOISE.................................19 

     Variation with drain voltage .............................................................................19 
     Variation with processing .................................................................................21 
     Variation with PETS.........................................................................................28 
     Variation with gate voltage...............................................................................36 
 

5.  CONCLUSIONS.................................................................................................38 
       
REFERENCES..............................................................................................................40 

 



 v 

LIST OF FIGURES 

 

Figure                                                                                                                              Page 

1. Schematic diagrams of the atomic positions and electronic densities of (a) 
‘‘dimer,’’ (b) ‘‘fourfold puckered,’’ and (c) ‘‘fivefold puckered’’ oxygen 
vacancies .............................................................................................................9 

 
2. Typical nMOS drain current versus gate voltage for a wafer 33 transistor. The 

threshold voltage for this device, Vth = 1 V. .......................................................13 
 

3. Schematic diagram of the noise measurement circuit .........................................14 
 

4. Noise power spectral density for nMOS transistors measured at different 
sampling rates ....................................................................................................15 

 
5. Noise power spectral density for an n-channel transistor with both the 

background and foreground noise represented.....................................................17 
 

6. Noise power spectral density for a wafer #10 n-channel transistor at a fixed    
Vg=4 V and several values of Vd measured in 1989..............................................20 

 
7. Noise power spectral density for a wafer #10 n-channel transistor at a fixed    

Vg=4 V and several values of Vd measured in 2007..............................................20 
 

8. Noise power spectral density for a wafer #10 n-channel transistor. The straight 
red line represents the measured noise in 1989 ...................................................21 

 
9. Noise power spectral density for a wafer #22 n-channel transistor. The straight 

red line represents the measured noise in 1989 ...................................................22 
 

10.  Noise power spectral density for a wafer #33 n-channel transistor. The straight 
red line represents the measured noise in 1989 ...................................................22 

 
11.  Noise power spectral density for a wafer #44 n-channel transistor. The straight 

red line represents the measured noise in 1989 ...................................................23 
 

12.  Comparative plot of the normalized noise level, K, in 1989 and 2007 for four 
wafer types. .......................................................................................................24 

 



 vi 

13.  Schematic diagram of the energy levels of dimer O vacancies in bulk SiO2     
with equilibrium Si–Si bond spacing of 0.25–0.30 nm, and near-interface      
dimer defects with stretched Si–Si bond spacing of 0.35–0.40 nm .....................26 

 
14.  Comparative plot of the threshold voltage in 1989 and 2007 for the four        

wafer types ........................................................................................................27 
 

15.  Noise magnitude at 1 Hz versus temperature for a wafer #10, 3x16 µm2            
n-channel transistor before and after a 200 ºC, 16 hour unbiased bake................29 

 
16.  Noise magnitude at 1 Hz versus temperature for a wafer #10, 4x16 µm2                  

n-channel transistor before and after a 200 ºC, 16 hour unbiased bake................30 
 

17.  Frequency exponent α versus temperature for a wafer #10, 3x16 µm2                 
n-channel transistor before and after a 200 ºC, 16 hour unbiased bake................32 

 
18.  Frequency exponent α versus temperature for a wafer #10, 4x16 µm2                 

n-channel transistor before and after a 200 ºC, 16 hour unbiased bake................33 
 

19.  Frequency exponent α versus temperature measured and predicted for a wafer 
#10, 4x16 µm2 n-channel transistor before a 200 ºC, 16 hour unbiased bake ......34 

 
20.  Frequency exponent α versus temperature measured and predicted for a wafer 

#10, 4x16 µm2 n-channel transistor after a 200 ºC, 16 hour unbiased bake .........35 
 

21. Comparative plot of the noise power spectral density for a wafer #10                  
n-channel transistor versus Vg-Vth at a fixed frequency (10 Hz) .........................37 

 

 

 

 

 



 1 

CHAPTER I 

 

INTRODUCTION 

 

1/f noise of electronic devices has been a topic of interest for many decades since 

its discovery in vacuum tubes in 1925 [1], [2]. Experimental research and theoretical 

work have been the driving forces to help understand the nature and practical 

implications of 1/f noise [3], [4].  

Understanding device response in different environments is extremely important 

for defense and space applications where technology is advancing very rapidly. It is well 

known that ionizing radiation exposure can greatly degrade the operation of MOS 

transistors [5], [6]. The main effects of ionizing radiation are reflected in threshold 

voltage changes, due to interface as well as oxide-induced charge. The industry focus is 

shifting more and more to concentrate on hardness assurance and reliability testing, in an 

attempt to increase performance and minimize system failure. Testing setups that involve 

mimicking space environments by exposing the MOS transistor to ionizing radiation are 

irreversibly destructive and extremely costly. In this context, being able to find non-

destructive tests to evaluate MOS device response becomes a very important task [7].  

In recent years, device degradation due to radiation-induced oxide charge has been 

correlated to device 1/f noise. There is evidence that defects responsible for 1/f noise are 

also responsible for radiation induced hole trapping in the oxide [7]-[12]. The defects are 

in the form of oxygen vacancies introduced at processing time. A phenomenon of 

particular interest to this work is device aging. It is very common for MOS transistors to 
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remain in operation for extended periods of time, when part of expensive equipment that 

cannot be replaced often. Understanding the expected behavior years down the road is 

extremely important and challenging at the same time.  

Batyrev et al. [13] found the main aging agent to be water molecules for devices 

stored in non-hermetic environments. Rodgers et al. [14] showed that the device 

threshold voltage rebound during post-irradiation anneal increased compared with similar 

measurements in 1988, due to an increase in interface traps after irradiation and room 

temperature anneal. The post-irradiation threshold voltage shift due to interface traps of 

aged devices has been analyzed extensively with the devices being subjected to different 

processes prior to irradiation like baking at high temperatures and elevated temperature-

humidity tests. Also responsible for threshold voltage shifts is oxide-trapped charge after 

irradiation, and the mechanisms responsible for it with aging have not been as well 

characterized.  

This work focuses on trying to understand the changes, with aging, in the oxide 

microstructure leading to 1/f noise, and oxide trap buildup during irradiation by 

examining the data obtained for four wafers, and comparing and contrasting the results. 

Two of these four wafers underwent a high-temperature anneal in N2 during processing, 

which is known to increase the density of oxygen vacancies and therefore the low-

frequency noise, and makes them radiation soft. The other two wafers were not annealed 

in N2, have an initial low defect density and are considered radiation hard. The nMOS 1/f 

noise after the 18 years of non-hermetic storage is analyzed versus temperature before 

and after baking, a procedure that is expected to reduce the amount of moisture that 

entered the oxide during the aging process. The temperature analysis uses the model 
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proposed by Dutta and Horn [15], which attributes the 1/f noise of nMOS transistors to a 

thermally activated process with a distribution of activation energies. We also analyze the 

gate voltage and drain voltage dependence of 1/f noise and compare it with results 

obtained in 1989 [10]. The results are consistent with the number fluctuation model of 1/f 

noise. Chapter II gives an overview of 1/f noise with a focus on the different models used 

to describe the noise and an explanation of what is currently known about the aging 

process. Chapter III describes the noise apparatus and the different parameters and 

procedures used during the noise measurements. Chapter IV discusses the results 

obtained experimentally in this study, and provides a comparison with similar results 

obtained for the same wafers in 1989. Chapter V is a conclusion for the work presented in 

chapter IV.  
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CHAPTER II 

 

BACKGROUND 

 

This chapter contains background information on low frequency noise in 

semiconductors and metals and describes a few models used to describe and explain the 

1/f noise. In addition, we are also presenting the effects of aging observed so far on MOS 

devices.  

 

Background on noise 

 

Spontaneous fluctuations or noise are common phenomena for a large variety of 

systems. The random thermal motion of electrons in a resistor, leading to a random 

output signal, also known as Johnson-Nyquist noise, is a phenomenon that is well 

understood. The mean-square voltage fluctuation < V2 > across a resistor demonstrated 

experimentally by Johnson [1] and then interpreted by Nyquist [2] to be equal to: 

 

where k is the Boltzmann constant, R is the resistance, T is the absolute temperature and 

B is the bandwidth. This formula does not apply for really high frequencies, i.e. if kT is 

not >>hf. Of particular interest to this work is the electrical noise observed in metals and 

semiconductor devices. Johnson-Nyquist noise, being a function of the random thermal 

motion of the electrons in a solid, is observed across a sample when Idc = 0, Vdc = 0 across 

the sample. Under steady state conditions (Idc = constant) the instantaneous voltage drop 
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across the sample fluctuates around its average value <V> = Vdc, and has been shown to 

increase above the value from Eq. (1). This noise is of two types: 1) shot noise which is 

due to the discrete number of charge carriers and which is dominant at low currents, and 

2) 1/f or flicker noise which is of particular interest for this work.  

The mechanisms of 1/f noise have been an interesting and controversial matter for 

over 60 years. In 1957 McWhorter proposed a model that described the 1/f noise of 

semiconductors as carrier-number fluctuations due to electrons tunneling in and out of 

surface states, leading to generation-recombination processes [16]. This model treats 1/f 

noise as a surface effect, with surface states being defined as electronic states with wave 

functions having maximum amplitudes at or near the surface. The surface states can be 

fast, meaning that they interact directly or via tunneling with the bulk silicon, and are 

located very closely to the interface (within 2.5 nm), and slow which require a very long 

time to interact with the underlying silicon. Two assumptions are made in the McWhorter 

model: 1) the traps have uniform spatial distribution through the oxide layer, and 2) the 

probability of an electron penetrating through the oxide decreases exponentially with the 

distance from the interface. The trapping time constant, τ, is then defined as: 

 

where τ0  is a time constant for a trap at the interface, β is the attenuation coefficient of 

the electron wavefunction in the oxide, and x is the distance from the interface. For Si-

SiO2, β = 108 cm-1 [17]. The traps contributing to the 1/f noise are those around the Fermi 

level, since the states more than a few kT above the Fermi level are filled, and those more 

than a few kT below the Fermi level are empty. Trapping and detrapping events 

associated with these states affect the number of charge carriers in the channel, hence the 
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number-fluctuation nature of this model. Experimental data obtained in Sah et al. [18], Fu 

et al. [19], and Abowitz et al. [20], etc., are consistent with the surface nature of 1/f noise. 

In 1969, Hooge introduced another model that attributed 1/f noise to carrier 

mobility fluctuations [21]-[24]. Working on gold films, he found that the noise is 

proportional to the sample resistance and therefore inversely proportional to the sample 

thickness, which indicates that 1/f noise is a property of the bulk material. To unify the 

noise model in metals with that of semiconductors, Hooge defined the fluctuations in 

conductance for a homogenous sample as a function of frequency as: 

 

where γ is an approximate constant with an average γ = 2x10-3 and N is the number of 

charge carriers in the sample. In the Hooge model, the mobility is affected by scattering 

due both to impurities and lattice, so the observed mobility, µ, can be expressed as: 

 

Hooge and Vandamme (1978) found experimentally that if 1/f noise is also affected by 

impurity scattering phenomena. If the lattice scattering affects the noise, and the impurity 

scattering does not, based on eq (3), eq (4) can be generalized as: 

 

In this model SG is related to SI via: 

 

and  
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for the linear mode of operation where Cox is the gate oxide capacitance, Vg is the gate 

voltage, Vth is the threshold voltage, W and L are the width and length of the channel, and 

q is the elementary charge. The drain current spectral density SId as a function of 

frequency can be expressed as: 

 

Modern density-functional theory (DFT) calculations and modeling provide 

insight into defect microstructure and support the theory that 1/f noise is caused by the 

capture and emission of electrons at oxygen vacancy traps located at or near the 

semiconductor-oxide interface. In 1981 Dutta and Horn described the 1/f noise in metals 

as the sum of activated random processes [15], each of which, for a characteristic time τ, 

has a Debye-Lorentzian spectrum: 

  

If the process is thermally activated then: 

 

This process was shown to lead to activation energies  

 

for D(E) varying slowly over any range ~kT. Defining the frequency exponent α locally 

as: 
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the frequency and temperature dependence of  α becomes: 

 

In 2002 Xiong [25] has found that eq (13) is valid for lot G1916A, wafer 33 

nMOS transistors fabricated at Sandia National Laboratory in 1984, devices that are 

particular interest for our work. 

In 1990 Hung et al. [26] proposed a unified 1/f noise model that includes the 

effects of correlated mobility and number fluctuations. Flicker noise is attributed to 

charge fluctuations in the oxide traps, with mobility fluctuations attributed to Coulombic 

scattering. The resulting mobility fluctuations are not the same as those envisioned in the 

Hooge model, and the effects of changes in carrier number as a result of trapping and 

detrapping events tend to have a more significant effect on the measured noise than do 

the changes in carrier mobility, depending on whether a scattering center is charged or 

uncharged. 

1/f noise relies entirely on whether traps with specific energies and locations are 

available in the SiO2 so they can exchange charge with the Si. It has been demonstrated 

that these traps are oxygen vacancies that lead to three types of configurations in 

amorphous SiO2 [27], [28]. In 1987 Rudra and Fowler [29] showed that in the neutral 

state the two silicon atoms left with dangling bonds due to the absence of an oxygen atom 

bond together forming a dimer defect. This type of center is now known as an E’
δ. Work 

by Lu et al., in 2002 [30] has showed that 90% of the oxygen vacancy sites form E’δ 

dimer configurations shown in Figure 1 (a), with 5% forming the 4-fold puckered 
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configurations E’
γ4 of Figure 1 (b) and 5% forming the 5-fold puckered configurations 

E’
γ4 of  Figure 1 (c). Puckered configurations E’

γ4 happen when one of the Si atoms 

relaxes past the plane of its three oxygens and bonds with a nearby oxygen and forms a 

dipole upon hole capture. E’
γ5 is very similar to E’

γ4 in the sense that the oxygen relaxes 

back past the plane of its oxygens but the Si atom bonds with another oxygen and another 

Si and does not form a dipole upon hole capture. Bond angles and atomic spacing 

determine whether a Si is spatially located close enough to form the E’
γ5 configuration. 

 

Figure 1: Schematic diagrams of the atomic positions and electronic densities of (a) 
‘‘dimer,’’ (b) ‘‘four- fold puckered,’’ and (c) ‘‘fivefold puckered’’ oxygen vacancies. 
After [30]. 

 

In an irradiated nMOS transistor one of the potential sources for 1/f noise is the 

charge exchange with E’
γ4 centers. Another potential source is the conversion of E’

γ4 

centers to E
’
γ5 centers due to thermal energy that makes the atoms stretch and rotate. 

Another possibility is that 1/f noise is caused by electron capture and emission from a 

stretched dimer. Since a dimer with equilibrium spacing (bond length 0.25-0.30 nm) does 
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not have any available states for an electron, the entity responsible for this process would 

have to be a dimer with a stretched Si-Si bond (bond length 0.35-0.40 nm) where midgap 

states start to open up with increased bond length [31]. After the electron is captured the 

Si-Si bond length decreases leading to an energy increase and electron re-emission.  

 

Background on aging 

 

Aging is extremely important for devices that must remain in operation for 

decades. In non-hermetic environments, exposure to moisture and hydrogenous species 

over long periods of time contributes to the aging effects observed in MOS transistors.  

Work by Batyrev et al. [13], [32] and Bakos et al. [33], [34] has shown that water 

molecules interact with the SiO2 via two mechanisms. First, if water molecules are 

present, via diffusion, in the vicinity of an oxygen vacancy center, they are attracted to 

the vacancy. Upon the reaction, the oxygen molecule fills in the oxygen vacancy, and the 

H2 left over remains as an interstitial molecule in the oxide. The second mechanism 

involves “dangling oxygens”, oxygens sharing a bond with a silicon and having a 

dangling bond. One hydrogen atom in water passivates this dangling bond, leading to a 

silanol, while the remaining silanol attaches to a neighbor silicon as a fifth bond. The 

hydrogen can then be released as a proton during the hole transport that occurs during 

irradiation. The H+ then migrates to the interface under positive bias where it reacts with 

Si-H bonds to form interface trapped charge [35].  

In 2005 Rodgers et al. [14] observed an elevated threshold voltage rebound during 

post-irradiation anneal. This phenomenon is explained by an interface trap buildup during 
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non-hermetic storage. Baking these parts before irradiation, a process that is expected to 

reduce the reduce the amount of moisture, also reduced the threshold voltage shifts. This 

clearly indicates that water absorption during non-hermetic storage for long periods of 

time can lead to changes in transistor response observed with aging. 
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CHAPTER III 

 

EXPERIMENTAL DETAILS AND MEASUREMENT TECHNIQUES 

 

Devices 

 

For the experiments performed, n-channel MOS devices 3 µm long and 16 µm 

wide were used. The transistors were fabricated in the same lot (G1916A) at Sandia 

National Labs using the 4/3 µm “old baseline processing” technique. The transistors 

came from four different wafers: W10, W22, W33 and W44, with multiple chips from 

each wafer being analyzed. The choice of devices is consistent with the devices used by 

Scofield et al. in 1989 [10]. The substrate doping for all NMOS devices used was 2.7 x 

1015 cm-3. The transistors from different wafers vary in oxide thickness (32 nm for W10 

and W22, 48 nm for W33 and 60 nm for W44), and oxidation and annealing conditions. 

The devices from wafers 10 and 33 underwent a 30 minute anneal at 1100 ºC in a 

relatively inert ambient (N2), process known to introduce high oxygen vacancies and 

strained Si-Si bonds in the oxide and make the oxide radiation “soft”. All chips used in 

these experiments were set in ceramic 24 pin ceramic dip packages and were stored for 

18 years before being analyzed. 
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Measurements 

 

Threshold voltage measurements 

 The threshold voltage measurements were performed with a HP 4156A parameter 

analyzer computer controlled via an IEEE-488 general purpose instrument bus (GPIB) 

interface. The gate was swept from subthreshold to inversion while a constant 100 mV 

voltage was applied to the drain. A plot of the measured drain current Id versus the 

measured gate voltage Vg was generated, and the threshold voltage was extracted from 

the linear region - the x-axis intercept right when the device begins conducting. A typical 

I-V curve is presented in figure 2 below. 

 

 

Figure 2: Typical nMOS drain current versus gate voltage for a wafer 33 transistor. The 
threshold voltage for this device, Vth = 1 V. 

 

 



 14 

Noise measurements 

Excess noise measurements were performed on a few devices from each of the 

four wafers under constant bias conditions. The experimental setup is presented in the 

figure 3 below.  

 

Figure 3: Schematic diagram of the noise measurement circuit 

 

The devices were operated in their linear regimes with the source and the 

substrate grounded. The drain was connected to a HP4140A dc voltage source via a 

ballast resistor (R = 20 kΩ) which insured a constant drain current of 100 mV. A dc 

voltage, also supplied by the HP4140A dc voltage source was applied to the gate. The 

gate voltage was set such that Vg-Vth = 1 V for the majority of the experiments. Data were 

also collected for a variable Vg (e.g., with Vg increased in 0.2 V increments ranging from 

Vth + 0.5 V to Vth + 2.5 V). The fluctuations in the drain voltage were passed through a 

Stanford Research (SR) model 560 low-noise preamplifier operated in low-noise mode 

battery mode and allowed frequency ranges of [0.3 Hz – 1 kHz]. The pre-amplification 
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gain was set to 100 and was numerically accounted for in the results. The pre-amplifier 

output was connected to a SR760 FFT spectrum analyzer. The drain voltage noise 

spectra were measured for frequencies in the [0, 780 Hz] range, and 2000 consecutive 

measurements were taken and averaged via the root mean square (RMS) method, resulting 

in data with good precision. Figure 4 below shows an example of a noise curve at different 

sampling rates.  

 

Figure 4: Noise power spectral density for nMOS transistors measured at different 
sampling rates. 

 

The curve obtained with the most averages (2500) is much more precise and much 

less “noisier” then the curve obtained with the least averages (500). Finding just the right 
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sampling rate is very important for obtaining accurate noise data, while leveraging the 

increase in measurement time incurred due to an increasing sampling rate.  

The nMOS transistor under test was enclosed in a metal testing box. The voltage 

source, pre-amplifier and spectrum analyzer were controlled by a personal computer via a 

GPIB card. For each device two sets of measurements were performed. First, a 

background noise measurement was done with the transistor biased at 0 V. The zero-bias 

noise is always present and is due to three causes: 1) Johnson-Nyquist noise, the random 

thermal motion of the carriers in the channel, which is the dominant type at high 

frequencies, 2) pre-amplifier noise that could not be corrected otherwise (operating the 

pre-amp on battery and the low-noise setting) which is dominant at low frequencies, and 

3) pickup from power lines, observed at 60 Hz and harmonics, which is ignored in the 

analysis. In a second measurement the foreground noise was measured with the non-zero 

bias specified above. The background noise was then subtracted from the foreground 

noise, leading to the excess noise spectrum Svd(f). Figure 5 below shows an example of a 

noise curve with the background and foreground noise represented on the same graph. The 

decreasing slope of the background noise is due to the preamplifier noise, which, as 

mentioned above, is greater at low frequencies.  
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Figure 5: Noise power spectral density for an n-channel transistor with both the 
background and foreground noise represented. 

 

Temperature dependent noise measurements 

A set of noise measurements was performed at temperatures in the [85 K, 300 K] 

range. The same setup described previously was used except that the nMOS device being 

tested was introduced in a cryostat. The temperature was adjusted by using a computer 

connected to a temperature controller. Liquid nitrogen was used for cooling the cryostat 

chamber to cryogenic temperatures.  
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Baking treatments 

Several devices from wafer 10 were subjected to preirradiation elevated 

temperature stress (PETS) to reduce the amount of moisture accumulated during the aging 

process. The chips were baked in a DELTA 9039 temperature chamber, with all the pins 

grounded for ~16 hours (overnight) at 200 ºC.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 19 

CHAPTER IV 

 

AGING EFFECTS ON MOS LOW FREQUENCY NOISE 

 

This section contains experimental noise data on n-channel devices from lot 

G1916A wafers 10, 22, 33 and 44 and describes the aging effects on the 1/f noise 

response and MOS characteristics.  

 

1/f noise measurements and moisture exposure 

 

Variation with drain voltage 

The output drain voltage noise, Svd is a measure of the trap distribution is space 

and energy along the channel. The drain voltage noise, Svd varies proportional with Vd
2 

and is due to fluctuations in the channel resistance. Figures 6 and 7 below compare the 

drain voltage noise of a device from wafer 10 in 2007 with that of a device from the 

wafer 10 measured in 1989 [10]. The measurements were done under the same 

conditions: room temperature and Vg fixed at 4 V. The noise in 1989 is more than twice 

that of the same type of device in 2007.  
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Figure 6: Noise power spectral density for a wafer #10 n-channel transistor at a fixed 
Vg=4 V and several values of Vd measured in 1989. After [10]. 
 

 

Figure 7: Noise power spectral density for a wafer #10 n-channel transistor at a fixed 
Vg=4 V for several values of Vd measured in 2007. 

 



 21 

Variation with processing 

Noise experiments were performed at room temperature for the nMOS devices 

from Sandia lot G1916A wafers 10 (4 parts), 22 (2 parts), 33 (3 parts) and 44 (3 parts). 

For simplicity, the gate voltage was kept at Vth + 1 V and the drain voltage was kept 

constant at 100 mV. The results presented below are for the 3 x 16 µm nMOS transistors 

in the four wafers, for consistency with previously reported data on these parts. The 3 

micron nMOS transistor was chosen out of the 3 nMOS transistors on the part because is 

located in the middle of the package, so less variation is expected due to packaging and 

handling. The resulting drain voltage noise spectra, Svd, as a function of frequency for the 

four wafers are presented in Figures 8-11 below, along with a comparison to the noise 

levels as measured in 1989 [10].  

 

 

Figure 8: Noise power spectral density for a wafer #10 n-channel transistor. The straight 
red line represents the measured noise in 1989. 
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Figure 9: Noise power spectral density for a wafer #22 n-channel transistor. The straight 
red line represents the measured noise in 1989. 
 

 

Figure 10: Noise power spectral density for a wafer #33 n-channel transistor. The 
straight red line represents the measured noise in 1989. 
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Figure 11: Noise power spectral density for a wafer #44 n-channel transistor. The 
straight red line represents the measured noise in 1989. 

 

The noise levels vary greatly across these transistor types. To understand changes 

in device microstructure with aging, it is important to compare the 1/f noise of these 

devices to results obtained via similar analysis in 1989 [10]. To help compare the devices 

tested under different voltage conditions, we use the normalized noise magnitude, K, 

defined as:   

 

where Svd is the voltage noise power density, Vg is the gate voltage, Vth is the threshold 

voltage and Vd is the drain voltage; alpha, the frequency exponent is close to unity 0.85≤ 

alpha ≤ 1.02, indicative of relatively constant defect densities as a function of energy. To 

get a better sense of the change in device response over time, we compared our data to 
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the normalized noise magnitudes measured in 1989 [10]. The resulting average K values 

in 10-10 V2 for the four wafer types are presented in Figure 12 below and were 2.8±0.1 V2 

for wafer 10, 0.42±0.06 V2 for wafer 22, and 4±1 V2 for wafer 33 and 1.8±1 V2 for wafer 

44. 

 

 

Figure 12: Comparative plot of the normalized noise level, K, in 1989 and 2007 for four 
wafer types. 

 

Both wafers annealed in N2 (10 & 33) show a decrease of more than 50% in their 

noise levels compared to 1989. Also important to note is the fact that the noise levels for 

the transistors annealed in N2 were significantly higher than those not being annealed in 

N2. The high temperature anneal in N2 is known to increase the O2 vacancies near the Si-

SiO2 interface region which have been known to be responsible for 1/f noise [36]. The 
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number fluctuation model can be used to give a rough estimate of the number of border 

traps responsible for the noise. This model assumes that trapping and detrapping events 

are the leading cause for noise, and carrier mobility fluctuations due to changes in trap 

occupancy have a negligible effect. A uniform trap energy and location distribution near 

the Si-SiO2 interface is another assumption for this model. Even though this model 

provides a somewhat oversimplified explanation of the noise, it is consistent with a broad 

range of experimental data, especially for nMOS transistors. If the noise is due to charge 

moving in and out of border traps, the effective density of border traps Nbt that are 

responsible for the noise can be defined as [11], [16], [37]-[39]: 

 

where L is the gate length, W is the gate width, εox is the oxide dielectric constant, τ1/τ2 

are the “cutoff” times for the fluctuation process, q is the elementary charge, k is the 

Boltzmann constant, T is the temperature, tox is the oxide thickness, and K is the 

normalized noise magnitude.  

For the devices that received the N2 anneal, Nbt ~1.5 x 1011 (2007) and Nbt ~ 6.5 x 

1011 (1989) for wafer 10,  Nbt ~ 1.5 x 1011 (2007) and Nbt ~ 4.5 x 1011 (1989) for wafer 

33. The border trap density is consistent between the two wafers and most importantly 

the decrease of border trap density with aging is also consistent between the two wafers. 

In the case of the wafers that were not annealed in N2, Nbt ~ 1.6 x 1010 (1989) and  

Nbt ~ 1 x 1010 (2007) for wafer 22, and Nbt ~ 1.5 x 1010 (1989) and Nbt ~ 1 x 1010 (2007) 

for wafer 44. These results clearly indicate that, for the devices that had high trap 
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densities to begin with, this was dramatically reduced with aging, whereas the devices 

that had small trap densities initially experienced a small reduction in their trap densities.  

 One potential explanation for these changes can be found through density 

functional theory calculations. An equilibrium dimer has Si-Si bond lengths of 0.25-0.3 

nm, but in the vicinity of the interface it is possible to find stretched Si-Si dimers with 

bonds lengths of 0.35-0.4 nm [31]. These defects are energetically prone to capturing an 

electron from the underlying Si under the right bias conditions. This is schematically 

shown in Figure 13 below.  

 

 

Figure 13: Schematic diagram of the energy levels of dimer O vacancies in bulk SiO2 
with equilibrium Si–Si bond spacing of 0.25–0.30 nm (1) and near-interface dimer 
defects with stretched Si–Si bond spacing of 0.35–0.40 nm (2). After [40]. 
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Once an electron is captured the energy of the complex increases, the bond length 

decreases, and the electron is reemitted. This is a very plausible explanation for the 1/f 

noise observed in these devices. For all devices, with aging, the number of defect sites 

with stretched Si-Si bonds has been reduced, leading to more of the defects reaching 

energies more than a few kT above the device Fermi levels and therefore no longer 

contributing to the 1/f noise for the respective devices. 

To understand some of the other processes and defect microstructures, it is 

important to also look at the threshold voltage changes with aging. The results are 

presented in Figure 14 below.  

 

 

Figure 14: Comparative plot of the threshold voltage in 1989 and 2007 for the four wafer 
types. 
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A comparable increase in threshold voltage is present for all wafers. The 

discrepancies between the 1/f noise and the Vth results are easily explained by the fact 

that either that similar increases do not occur as a result of similar reactions of hydrogen 

in the near-interfacial SiO2, or perhaps more likely, that the increase in effective border-

trap density due to the interactions of hydrogenous species in these devices is 

approximately offset by the relaxation of strained Si–Si bonds in the near-interfacial SiO2 

for wafers 22 and 44 (no postoxidation anneal), or contributes much less significantly to 

the change in noise than the Si–Si strained bond relaxation for wafers 10 and 33 (with a 

post-oxidation anneal). The increase in the threshold voltage is consistent with previous 

studies [14], [40]-[42]. It is energetically favorable for hydrogenous species like water to 

enter amorphous SiO2 and form two silanol groups, with substantial energy barriers of 

1.2 - 1.5 eV. This process takes a long time at room temperature, which is the case for 

this aging study. 

 

Variation with PETS 

Unbiased bakes have been found to help determine whether the species 

responsible for trap passivation with aging can be removed, thereby restoring the device 

initial response. In 1994 Shaneyfelt et al. [43] analyzed the radiation response of burned-

in MOS devices and found that, within experimental error, the oxide-trapped charge is 

not affected by pre-irradiation elevated temperature stress. In 2002, the aging 

experiments performed by Karmarkar et al. [44] on poly-Si-gate capacitors found similar 

results: no significant differences were observed between the charge trapping after 
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irradiation for the baked devices compared to the devices that did not undergo unbiased 

bakes prior to irradiation. Our work confirms this hypothesis. The results are presented in 

Fig. 15-16 below. 

 

 

Figure 15: Noise magnitude at 1 Hz versus temperature for a wafer #10, 3x16 µm2 n-
channel transistor before and after a 200 ºC, 16 hour unbiased bake. 
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Figure 16: Noise magnitude at 1 Hz versus temperature for a wafer #10, 4x16 µm2 n-
channel transistor before and after a 200 ºC, 16 hour unbiased bake. 

 

The noise levels after the unbiased bake are similar to the ones before the bake. 

The shape of the noise-temperature curves after PETS are however different, which 

translates to changes in defect densities and energy after the high temperature stress [45]. 

The very large peaks at low temperatures are not present in the 3 micron device. These 

peaks appear to be related to a defect that is present in the 4 micron device, but not in the 

3 micron device, thus illustrating device-to-device variation in defect densities and 

energies. The noise due to this defect changes somewhat with baking, but not in a 

systematic fashion. The gate pin for this package is at the end of the package (pin 13 of a 

24 pin dip), as compared to pin 17 for the 3 micron transistor (in the middle of the 
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package), so it is possible that this difference could have occurred at some point in 

packaging or handling over the years. More interestingly for our aging study, in both 

Figures 15 and 16, there appears to be a noise peak near 200 K (~ 0.6 eV) in each device 

that changes the same way (increases with baking). Interestingly, the noise levels are 

similar at room temperature, which would suggest comparable defect densities. At very 

low temperatures, however, the noise in the 4 micron device greatly exceeds that of the 3 

micron device. The notion that devices with similar noise levels at room temperatures can 

experience significant differences at low temperatures is particularly important for 

devices operating in cryogenic environments. Xiong et al. [25] have hypothesized that at 

low temperatures it is possible for both border and interface traps to be responsible for 

the noise. The lower temperatures slow down the charge carrier movement in and out of 

interface traps.   

The frequency dependence of the noise (α) corresponding to the noise spectral 

densities is presented in Figures 17 and 18 below. 
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Figure 17: Frequency exponent α versus temperature for a wafer #10, 3x16 µm2 n-
channel transistor before and after a 200 ºC, 16 hour unbiased bake. 
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Figure 18: Frequency exponent α versus temperature for a wafer #10, 4x16 µm2 n-
channel transistor before and after a 200 ºC, 16 hour unbiased bake. 

 

There is a direct correlation between the local peaks observed in the α curves and 

the increasing slope of the Svd curves.  For example, the peaks at 200 K for the 3 and 4 

micron transistors correlate with the steep slope of the Svd of the respective devices. The 

post bake slope increased observed in the 3 micron device at around 150 K translates to a 

peak in the α for the same device. To further this discussion, and see if the noise can be 

accurately predicted by the Dutta-Horn model, we used (13) to compute α(Τ) from the 

noise data shown in Figure 16. The resulting curves are presented in Figures 19-20 

below.  
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Figure 19: Frequency exponent α versus temperature measured and predicted for a 
wafer #10, 4x16 µm2 n-channel transistor before a 200 ºC, 16 hour unbiased bake. 
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Figure 20: Frequency exponent α versus temperature measured and predicted for a 
wafer #10, 4x16 µm2 n-channel transistor after a 200 ºC, 16 hour unbiased bake. 

 

The predicted α(T) curves describe the measured α fairly well in terms of both 

shape and overall level. These results are typical of Dutta-Horn thermally activated 

processes and would not have been observed if the 1/f noise of these devices was due 

only to simple tunneling mechanisms.  

Changes in defect energy distributions as those seen in these devices are 

indicative of changes in the atomic structure like bond length and atomic location. 

Changing from one defect type to another usually requires higher energies than atomic 

interactions within the same defect. The results presented above in Figures 15-18 strongly 
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suggest that aging and unbiased baking contribute to changes in defect energy 

distributions consistent with relaxations in strained bonds in the near-interfacial layer. 

 

Variation with gate voltage 

In MOS transistors, the gate potential determines the Fermi level of the device 

and therefore the traps contributing to noise and the hole density in the channel. Scofield 

et al., [46] have shown that important insights can be found by varying the gate voltage 

and temperature. They attributed the difference in gate voltage dependencies, for nMOS 

Svd ~  (Vg-Vth)-2 whereas for pMOS Svd ~ (Vg -Vth)-1 to the trap density remaining 

constant for nMOS and varying for pMOS with a variable Vg. For nMOS this is due to 

the energy of the electron traps contributing to the noise for nMOS transistors operating 

in strong inversion being close to the conduction band. In 2010 Francis et al. [47] found 

different gate voltages dependences of Svd with moisture exposure and total dose 

radiation. Svd ~ (Vg-Vth)-1.7 for nMOS devices from wafer #10 exposed to aging prior to 

irradiation. For the wafer #10 nMOS transistors exposed to moisture Svd ~ (Vg-Vth)-1.5. 

Figure 23 below investigates the excess drain voltage noise dependence on gate 

voltage with aging for wafer 10. Our data are consistent with Svd ~ (Vg-Vth)-1.7, which 

shows a departure from uniformity (Svd ~ (Vg-Vth)-2) with aging. Just like in 1989, the 

noise was greater around threshold and decreases with increasing gate voltage. The slope 

of the 2007 plot varies from that of the 1989 plot which showed a Svd ~ (Vg-Vth)-2 

dependence, which is due to a more significant dependence of the trap density on energy 

than was described previously. This observation has significant ramifications, because if 
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the distribution of trap energies is not constant, as suggested by this variation from 

uniformity, then the noise would have a different dependence on frequency (α ≠ 1), and 

temperature.  

 

Figure 21: Comparative plot of the noise power spectral density for a wafer #10 n-
channel transistor versus Vg-Vth at a fixed frequency (10 Hz). 
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CHAPTER V 

 

CONCLUSIONS 

 

Aging in non-hermetic environments changes the behavior of devices that must 

remain in operation for long periods of time. Devices fabricated through different 

techniques have different responses to aging, which we have demonstrated by performing 

noise measurements on devices annealed in N2 and comparing the results to those 

obtained from devices that did not receive such a treatment. The 1/f noise levels for the 

wafers annealed in N2 were initially much higher, indicative of higher defect densities in 

the near interfacial layer, and we have shown that after an 18 year aging process the noise 

levels have been greatly reduced potentially due to a relation of highly strained Si-Si 

bonds in the vicinity of the interface. Aging decreases the number of traps that are more 

than a few kT above the device Fermi level and therefore able to contribute to 1/f noise. 

While such changes are plausible, we would expect other materials with different defect 

densities, energies and governing dynamics to potentially respond differently to the aging 

process.  

We have also compared the threshold voltage levels amongst the four wafers with 

aging and found very slight changes. Even through the threshold voltage changes 

observed with aging were small, which would be the main concern for every day 

applications, understanding the 1/f noise gives a lot of insight into the device response to 

ionizing radiation.  
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To see if the aging effects can be reversed, we performed unbiased bakes on 

wafer #10 devices. Since moisture and hydrogenous species are the main aging agent, we 

investigated if eliminating the water can restore the transistor initial response. Just like in 

the Karmarkar et al. study [44] we have chosen devices with soft oxides, which at 

fabrication time had higher defect densities but experienced dramatic 1/f noise reduction 

which aging. We observed similar noise level after aging in the baked and unbaked 

devices, but the changes in the temperature dependence curves are indicative of changes 

in defect distributions and energies, consistent with changes in bond length and atomic 

position.  
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