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Chapter 1

Introduction

1.1 Motivation

Since the modern notion of Cyber-Physical Systems (CPS) was formulated during the

last decade, the CPS research area has attracted considerable attention from multiple re-

search communities [1]. It has been well-recognized that every corner of human life is or

will be reached by CPS, for example, power grids, automotive vehicles, aerospace crafts,

robotics, and medical devices. CPS will have great economical and societal impact in the

near future, and major investments are being made worldwide to develop the required tech-

nology [2]. However, in spite of those positive effects on our lives, there are also great

technical challenges in developing efficient and dependable CPS.

CPS can be characterized as integration of computation, communication, and physical

processes. The cyber part of the system typically monitors and/or controls the physical part,

while the physical part affects the cyber part through feedback loops [2], [3]. Therefore,

there are tight interactions between the physical dynamics, computational platforms, com-

munication networks, and CPS software [4], [5], [6]. Different from traditional standalone

embedded systems, CPS must interact with the physical world in a safe, dependable, secure,

efficient, real-time, and sometimes distributed way, since most of the CPS are safety-critical

control systems, such as automotive vehicles, aircraft, and industrial processes. Therefore,

formal methods for systematic analysis can be valuable when analyzing/verifying system

properties.

Due to the tight interactions in CPS, it is very difficult to have a unified method or

framework to formally analyze/verify the whole system. Moreover, economic factors, such

as persistent effort for low production costs and tight time-to-market, further complicate

the process of CPS analysis and verification. Since software can be the most error-prone
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part in a system, CPS can benefit greatly by analysis and verification methods focusing on

CPS software.

CPS Software Properties

Functionality Related

Timing

Security

Division by ZeroSaturation
Buffer Overflow

Energy/Power 

Schedulability Duration

Temperature

Correctness

Non-functionality Related

Stability

Figure 1.1: Taxonomy of CPS software properties

CPS software properties are diverse, and can be classified in different ways. A taxon-

omy of system properties related to our research is shown in Fig. 1.1. Properties can be

categorized into one group that affect the computational behavior of the system and another

group that impose constraints on the design of the system. Many of these properties are

not decidable in general. For instance, if we could estimate the worst-case execution time

(WCET) for any given program, then the halting problem (which is proven undecidable)

would be solved. However, since we confine the concerned domain to CPS software, which

uses more strict design methodologies, e.g. all the loops and recursions should be bounded,

the properties are more decidable.

In this thesis, we focus on using static analysis to analyze and verify both functional

and non-functional properties (in general, there are two main frameworks for static anal-

ysis [7]: data-flow analysis [8] and abstract interpretation [9]). Specifically, we perform

value analysis to find what values the variables of interest may have in order to verify

useful functional properties such as buffer overflow, division-by-zero, and saturation. We

also perform timing analysis to analyze the timing behavior, for example, the WCET and

preemption delay, which can be used for schedulability analysis.
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1.2 Challenges

In this work, we argue that CPS software must be analyzed at a level of abstraction that

captures low-level details of the computational platform. One direct challenge is that any

software in its low-level form (e.g. machine-code) loses many apparent properties which

are not dispensable to static analysis. For instance, the control-flow structure becomes less

obvious in the low-level code. Therefore, there are challenges related to how to reconstruct

the necessary information lost in transforming CPS software from its high-level form (e.g.

source-code) to its low-level form, for example, control flow graph reconstruction.

• The main challenges in value analysis of CPS software are:

– Selection of appropriate numeric domains which should be precise enough in

order to derive useful value properties but allow operations with proper compu-

tational complexity in order to make the analysis scalable;

– Accurate representation of the program semantics since value analysis needs to

conform to the program semantics which are encoded in a machine-dependent

way in the low-level code.

• The main challenges in timing analysis of CPS software are:

– Incorporating in the analysis different micro-architectural components such as

caches and cache hierarchies since these components have a huge impact on the

variation of execution time;

– Estimation of the preemption effect on a task since many task sets are only

schedulable under preemptive scheduling strategies that lead to additional de-

lays.
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1.3 Contributions

In the following, we briefly state the contributions made in this thesis. The correspond-

ing details can be found in later chapters.

1. We have studied how to perform generic value-set analysis on low-level code [10].

The main contributions of our work include:

(a) We extend the strided-interval domain and also define operations on the domain

to more precisely track the set of structured number.

(b) We propose an intermediate language to capture the semantics of the instruc-

tions of different architectures.

(c) We define the abstract semantics with respect to value-set analysis for the inter-

mediate language.

2. We have studied how to safely and precisely derive timing information in the context

of single-level and multi-level caches [11, 12, 13]. The main contributions of our

work include:

(a) We identify some sources of pessimism in two recent cache persistence analysis

for WCET estimation and propose two methods to eliminate these sources of

pessimism.

(b) We propose a top-down and bottom-up approach that can more precisely ana-

lyze the behavior of a cache hierarchy maintaining the inclusion property.

(c) We propose an approach which analyzes a multi-level inclusive cache as a

whole based on the abstract interpretation of a concrete operational semantics

defined for multi-level inclusive caches.

(d) We investigate the cache-related preemption delay due to the “pollution” of

the states of inclusive cache hierarchies and propose a method to bound this

preemption delay.
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1.4 Organization

The rest of this thesis is organized as follows: Chapter 2 describes the related work;

Chapter 3 presents how to analyze value ranges of low-level code in a generic way; Chapter

4 gives the work on cache persistence analysis that improves state-of-the-art approaches;

Chapter 5 describes the work on multi-level inclusive cache analysis that uses a novel

idea to tighten the WCET; Chapter 6 describes the work on how to further improve the

precision of multi-level inclusive cache analysis; Chapter 7 investigates the multi-level

inclusive cache-related preemption delay analysis; and Chapter 8 concludes this thesis and

lists future work.
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Chapter 2

Related Work

The main concentrations of this thesis is related to how to analyze and verify properties

of interest for CPS software in its low-level form. In order to represent the program for

analysis, control-flow graph (CFG) needs to be extracted from the low-level code. Based

on the CFG representation, various properties are analyzed/verified which are related to

data value ranges, execution time variation due to caches, and execution time overhead due

to preemptions.

Most of the CPS software properties can be precisely derived/verified if all concrete

states of the system are available, which means it has to explore all possible executions

under all possible environments. However, in general, the set of all concrete states is an

infinite mathematical object which is not computable. In order to predict these properties,

static analysis can be used to compute abstract states that over-approximate possible con-

crete states. By examining these abstract states, we can safely conclude the system has a

property of interest if the abstract states satisfy it (although the opposite is not necessarily

true: if the abstract states reject a property, the system may still have the property).

2.1 Control Flow Graph Reconstruction

Most static analyses are based on CFG of a program. The exact reconstruction of a

CFG from a binary executable is very difficult due to (1) indirect control transfers (indirect

jumps and indirect calls) typically generated due to uses of switch statements and function

pointers; (2) exception handling where control is indirectly transferred to a handler which

may belong to other binaries (e.g. RTOS); (3) ambiguous usage of instructions (e.g. MIPS’s

jr instruction can be used as return or unconditional jump); (4) data or padding bytes that

may be contained in the text section.
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In [14], Cifuentes et al. propose an approach to recover jump tables and their target

addresses in a machine and compiler independent way. When an indirect jump is encoun-

tered in the process of disassembling of the binary, the approach first utilizes intraproce-

dural backward slicing technique which is described in [15] to acquire the smallest set of

instructions that affect this indirect jump instruction. The slice is translated into a form

called register transfer list which describes the effects of machine instructions in terms of

register transfers. Then, forward expression substitution is performed to transform the in-

direct jump instruction to a normal form, which may belong to a set of normal forms for

n-conditional jumps. If the derived form is one of the normal forms, the jump table base

address and corresponding index can be derived.

Similar to the method in [14], Kastner et al. in [16] use program slicing to obtain the

part of the program that affects the computed jump/call targets. They encode the operation

semantics of a specific processor’s instructions using an intermediate language called TDL

(Target Description Language). By evaluation of the slice in the form of TDL, they can

resolve the possible branch targets in a generic way. In [17], De Sutter et al. use a fictitious

node called hell node to capture the conservativeness of unresolved indirect branches. The

outgoing and incoming hell edges are refined by analyzing the sliced program.

In [18], Theiling argues that traditional top-down CFG reconstruction algorithms may

suffer from the dependency of the information about procedure boundaries (start and end

addresses), some data or padding mixed into text section, and interlocked procedure code

parts. Thus, they propose a bottom-up algorithm to handle mixed data portions and in-

terlocked code parts, and the approach does not need to know the boundaries of the pro-

cedures. The basic idea is to maintain a stack of procedure start addresses, and for each

procedure, to maintain a queue of next possible instruction addresses. The program entry

address is pushed into the stack of procedure start addresses. The reconstruction pops a

procedure start address up as the current work address, and starts a loop: (1) disassem-

ble the content of the current address into an instruction; (2) analyze the instruction to
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discover next possible addresses according to the type of the instruction: enqueue falling

through addresses or/and branch target addresses into the procedure-wise queue of possi-

ble instruction addresses for non-procedure-call instructions, and push call target addresses

into the stack of procedure start addresses for procedure-call instructions; (3) exit the loop

if the queue is empty, otherwise assign a dequeued address to the current work address and

iterate again. The process ends when all discovered procedure start addresses are handled.

In [19], Kinder et al. propose an abstract interpretation-based framework for resolv-

ing indirect jumps which safely combines a pluggable abstract domain with the notion of

partial control flow graphs. They propose a simple low level assembly-like language and

assign this language a concrete semantics. They construct a resolve operator, based on con-

ditions imposed on the provided abstract domain, for calculating branch targets. They also

present their disassembly tool Jakstab which produces the most precise over-approximation

of the control flow graph with respect to the used abstract domain. Following the approach

proposed in [19], Flexeder et al. extend it with a treatment of procedure calls in [20]. One

particular problem this work addresses is abort and exit functions, which do not return to

the corresponding call site, but terminate the whole program whenever they are called.

Since approaches based on abstract interpretation produce over-approximation of the

indirect branch targets, many spurious control flow edges and basic blocks are added into

the reconstructed CFG, which makes the subsequent analysis or verification imprecise or

even useless. An interesting idea is presented by Kinder et al. in [21] to improve the

precision of CFG reconstruction. This method alternates over-approximation and under-

approximation when resolving indirect branches: as soon as a predefined condition is

met (the current indirect branch is unresolvable), it switches to try deriving an under-

approximation of the branch targets and skips over this unresolvable indirect branch by

substituting branch targets detected by the under-approximation. The under-approximation

can be derived by simply executing the program with random input. Later, the analysis

returns to use over-approximation.
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In [22], Reinbacher et al. propose a SAT-based control flow graph reconstruction ap-

proach. This approach uses the bit-blasting technique to encode the semantics of each

instruction i into a boolean formula encode(i) (each register/memory location is encoded

as a bit-vector and the semantics of i is encoded as the bit-wise changes), so the semantics

of a basic block b is represented by φ(b) =
∧

i∈b(encode(i)). By using the value-set ab-

straction proposed in [23], the set of values that a bit vector can have during the execution

are derived. For each basic block, the incremental SAT solving is applied to derive the

pre-conditions on the bit vectors of the entry of the basic block and the post-conditions

of the exit of the basic block. Given the boolean formulas which encode the semantics of

the basic blocks and the input/output conditions, the program can be analyzed forward and

backward to derive the invariants and resolve the indirect branches.

2.2 Value Analysis

Since many interesting CPS software properties are related to numerical computations

at run-time, such as division-by-zero, variable saturation, and buffer overflow, a sound and

precise static value analysis is essential for verifying these properties. Moreover, when

reconstructing the CFG, the indirect branch target addresses also need to be resolved by

value analysis. In order to make the value analysis sound and scalable, abstract interpreta-

tion of the concrete computational semantics defined on an abstract value domain becomes

necessary.

Many numerical abstract domains are proposed and corresponding operations on these

domains are defined. These domains are defined in the trade-offs between expressiveness

and computational complexity. Intervals are the most straightforward numerical abstrac-

tions. For example, in [24], Cousot et al. use integer intervals to perform numerical analy-

sis. In [25], Hickey et al. define the arithmetic operations on floating-point intervals. The

computational complexity of operations on interval abstractions is acceptable, but the over-

approximation of the operations can be very large. Some more precise domains are also
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proposed, for instance, the octagon domain is proposed in [26] and the pentagon domain is

proposed in [27]. The Parma Polyhedra Library is an excellent library implementation for

using many convex polyhedral domains [28].

In [29], Balakrishnan et al. propose value-set analysis (VSA) which combines nu-

merical analysis and pointer analysis together. The goal of VSA is to determine an over-

approximation of the set of numerical values and addresses at each program point. It is

a flow-sensitive, context-sensitive, and interprocedural static analysis approach based on

abstract interpretation. For a set of values, VSA uses an abstract domain called strided-

interval (SI) to over-approximate this set. A strided-interval is an abstract object used to

represent a set of structured integers with a fixed stride. A k-bit strided-interval s[l,u] where

−2k−1≤ l≤ u≤ 2k−1−1, 0≤ s≤ 2k−1 represents the set {i|i= l+n×s ∧ n≥ 0 ∧ i≤ u}.

A set of operations including arithmetic, shift, and bit-wise operations on SI is given in [30].

VSA is used in a tool called CodeSurfer/x86 for analyzing Intel x86 binary code [31].

One problem of the original SI representation is that: if l is required to be less than or

equal to u (i.e. ∀s[l,u], l ≤ u), it loses the ability to precisely track the set of numbers when

some of the numbers in the set lead to an overflow with respect to two's complement rep-

resentation. In [32], Sen et al. introduce a numerical abstract domain called CLP (circular

linear progression). CLP does not require l ≤ u, so it can represent a set of structured inte-

gers which cross the signed computation overflow boundary. The corresponding operations

are also defined in [32].

In order to realize generic value analysis on low-level code of different architectures,

semantically translating the low-level code to a generic intermediate form becomes neces-

sary. Intermediate languages are actually often used in many compiler frameworks, like

GCC and LLVM, to enable the support of different programming languages at the front

end and of different platforms at the back end. In order to make it possible to develop

analysis tools and algorithms for generic value analysis on binary code, an intermediate

language called REIL is proposed in [33]. REIL has a very compact set of intermediate
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instructions while being able to achieve semantic closure, but the translated code in REIL

may have a very long representation. More recently in [34], an extension to REIL called

RREIL is made mainly with an addition of several comparison instructions to take into ac-

count relational information. Based on RREIL, a toolkit called GDSL to specify semantics

to machine languages is presented in [35]. In [36], a binary analysis platform (BAP) is

introduced which is a successor of Vine that is used in the BitBlaze project [37]. Both BAP

and Vine use a formally specified intermediate language to enable generic static analysis.

In [38], a binary code analysis framework called BINCOA is proposed that is based on

a formal automaton model to capture the low-level code semantics. In order to achieve

adaptable value analysis, intermediate representations are also used in [39]. Incremental

SAT solving is used to derive sets of values for registers taking into account the relation-

ship between registers and status flags.

2.3 Timing Analysis

Since most of the CPS are hard real-time systems which have stringent timing con-

straints, a single deadline violation may cause significant damages. Thus, when designing

a CPS, a schedulability analysis must be carried out to guarantee all its timing constraints

will be met. However, only when each task’s WCET is known can schedulability be ana-

lyzed. Therefore, timing analysis is an essential job in the CPS design process.

WCET estimation problem has been under research for more than twenty years, and

many methods have been used in CPS, e.g. AbsInt’s aiT WCET analyzer has been used

to analyze A380’s flight control software [40]. It is worth to mention that Whilhelm et al.

give an excellent survey on WCET estimation techniques in [41]. Different timing analysis

methods are reviewed and different tools are compared from a bird’s-eye-perspective.

Since the exact WCET is almost impossible to acquire, we have to perform analysis

to derive a sound estimation, as shown in Fig. 2.1. A valid and useful WCET estimation

has to satisfy safety and precision criteria: (1) the estimation must be safe, i.e. it is an
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Figure 2.1: WCET/BCET and WCET/BCET estimations

upper bound of the real WCET; (2) the estimation should be as tight as possible in order to

maximize the processor utilization.

There are three timing analysis techniques: static approach, measurement-based ap-

proach, and hybrid approach [42]. While the measurement-based approach cannot guaran-

tee the estimation is safe, the static approach considers all possible executions and can pro-

vide the bounds on the execution time. The hybrid approach combines the measurement-

based method and static method together, but it still suffers from the deficiencies of the

measurement-based approach, and instrumentation code may be needed which, however,

is not allowed in some systems.

In general, the static approach starts with CFG reconstruction from the statically linked

binary executables (since only can statically linked binary executables provide all the needed

information and are not affected by compilation). Each node of the CFG is a basic block

which is a sequence of instructions without branches, except possibly at the end, and with-

out branch targets, except possibly at the beginning. Taking into account the processor’s

micro-architecture (e.g. pipeline and cache organizations), each basic block’s WCET can

be estimated. Techniques such as integer linear programming or model checking can be

used to find the path that leads to the worst case execution time of the program.

If the processing unit of the system is just a simple microcontroller (single-core with-

out performance enhancement features, such as caches, pipelines, and branch predictors),

12



the WCET analysis becomes much easier. However, as more and more computation is re-

quired, a lot of features are added into the processor to improve the performance but at the

same time these features make the timing behavior very hard to predict. Therefore, WCET

estimation approaches greatly depend on the processor’s micro-architecture [43].

Our work mainly focuses on cache analysis for WCET estimation1. The performance

gap between processors and main memories is increasingly large. As a result, caches are

introduced into the memory system to reduce this gap by leveraging the principle of local-

ity (spatial and temporal localities). Nowadays, many embedded processors even contain

multi-level caches. The presence of caches improves the average-case performance, but

their dynamic behavior makes the execution time change considerably so that the worse-

case performance is very hard to predict. Thus, a sound cache analysis becomes very

important in WCET estimation.

2.3.1 Cache Analysis for A Single Processor

In terms of a uni-core processor, the state-of-the-art single-level cache behavior anal-

ysis using abstract interpretation is proposed in [53]. It is assumed that the cache uses

least recently used (LRU) replacement policy2 and can have different associativities. The

method aims to classify each cache access into four categories under all possible execution

scenario, i.e. cache hit/miss classification (CHMC), as described in Tab. 2.1. Three sepa-

rate static analyses are used to derive the CHMC for every instruction cache access. At each

program point, each analysis computes an “abstract cache state” (ACS) according to this

1In addition to caches, other performance enhancement micro-architectural features of processors also
have an important role in affecting the execution time of a task. Two common ones in some advanced
embedded processors are pipelines and branch predictors. Pipelines are analyzed in terms of in-order (e.g. in
[44], [45], [46], and [47]) or out-of-order (e.g. in [48]). Branch predictors are mainly analyzed to bound the
misprediction effects e.g. in [49], [50], and [51]. An interesting phenomenon called timing anomaly can arise
from interactions between caches, pipelines, and branch predictors in a dynamically scheduled processor
[52].

2Other replacement policies are also studied by many researchers, for instance, PLRU is studied in [54]
and [55]; FIFO is studied in [56], [57], and [58]; and MRU is studied in [59]. However, as stated in [60],
LRU replacement policy is the most predictable one.
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analysis’s semantics. The semantics is actually embodied into two functions - update and

join. The update function is used to change the ACS before a program point into the ACS

after the point; The join function is used to combine two or more ACS into one ACS when

two or more control flows converge (e.g. the convergence point of a conditional branch).

must analysis determines which blocks are definitely in the cache at the cache access time:

if the accessed block is in this analysis’s ACS, the cache access is a AH.

may analysis determines which blocks may be in the cache at the cache access time: if

the accessed block is not in its ACS, the cache access is a AM.

persistence analysis determines if a block will not be evicted after it has been loaded: if

the accessed block is in its ACS, the cache access is a PS. If a cache access can not

be classified as neither AH, AM, nor PS, it will be classified as NC.

Classification Semantics
AH (always hit) the access always causes a cache hit

AM (always miss) the access always causes a cache miss
PS (persistent) the access may be a miss for the 1st time, but always hits later on

NC (not classified) the access cannot be classified into neither AH, AM, nor PS

Table 2.1: Cache Hit/Miss Classification (CHMC)

The techniques stated above can only safely provide single-level instruction cache anal-

ysis but not for multi-level instruction caches. The first correct multi-level non-inclusive

instruction cache behavior analysis is proposed in [61], and later extended in [62] for data

caches and in [63] for shared instruction caches. The idea behind the method is to clas-

sify if a memory reference will access each cache level. Three cache access classifications

(CAC) are introduced for categorizing a memory reference r at a cache level l, as described

in Tab. 2.2. The CAC for r at l depends on the results of cache analysis of this reference

at the level l-1 (CHMC and CAC). Obviously, if r at a level before l is AH, then the CAC

for r at l is N; r at the first level is definitely A, and if r at level l-1 has the CHMC AM

and CAC A, r at level l is definitely A as well; otherwise, the CAC for r is U. In order
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to take into account the extensions, the update function in [53] also needs to be extended

depending on the CAC for r at cache level l: if CAC is A, the original update function in

[53] is used; if CAC is N, the update function is an identity function which makes the ACS

of level l unchanged; if CAC is U, two sub-cases are considered – one assumes the access is

performed, so the update function is the original one, and the other one assumes the access

is not performed, so the update function is an identity function, and after having these two

sub-ACSs, the original join function is applied to them to get the final updated ACS. Thus,

we have

update(r, l,ACS) =


updateoriginal(r,ACS) i f CACr,l = A

ACS i f CACr,l = N

joinoriginal(ACS,updateoriginal(r,ACS)) i f CACr,l =U

Classification Semantics
N (never) the access to r is never performed at cache level l

A (always) the access to r is always performed at cache level l
U (uncertain) the access to r may be performed at cache level l

Table 2.2: Cache Access Classification (CAC)

In [64], Hardy et al. extend/modify non-inclusive cache hierarchy analysis method to

take into account inclusive and exclusive cache hierarchies. For inclusive cache hierarchies,

some accesses that are always hits under the situation of non-inclusive multi-level caches

may not be always hits anymore, since in order to maintain inclusion property, when a cache

block is evicted on a lower level, its corresponding copies on the higher levels need to be

invalidated. Thus, the method classifies all memory accesses to all cache levels, except the

first level, as U (uncertain), which makes the analysis of each cache level independent from

other levels. Similar to the approach in [63], U access classification makes the analysis

take into account two possible ACSs due to a memory reference and join the two into one

ACS. This mechanism introduces great pessimism. Also, the CHMC of each reference is

changed according to the influence of possibly invalidated blocks, which can be derived

15



from a persistence analysis. If an AH or PS reference on a cache level without considering

invalidation has its referenced block in any of the sets of possibly invalidated blocks of

higher cache levels, it needs to change to NC to take into account the possible influence

of invalidation. For exclusive cache hierarchies, an ingenious modeling of this hierarchy is

proposed to ignore whether a reference accesses to each cache level but to only consider

the impact of exclusion enforcement on the contents of multi-level caches. Under this

modeling technique, the ACSs of an exclusive cache hierarchy can be transformed into an

ACS of a single level cache, which then can be calculated by using the approach in [53].

Compared to data caches, the behavior of instruction caches is relatively easy to predict

since in a basic block (BB) the sequence of instruction memory access addresses is known

but the sequence of data memory access addresses may be varying, i.e. depend on its run-

time behavior. Local variables and procedure formal parameters are allocated on the stack,

and in the binary code they are often referenced relative to the stack pointer. Thus, if a

data memory access address is given by the pattern stack pointer + offset, the address can

be easily calculated since the values of the stack pointer can be determined considering

the calling contexts. In [65], Hur et al. extend the timing schema approach proposed in

[45] to take into account many micro-architectural features including data caches. They

conservatively assume if the load/store address is not given following the base register

(e.g. stack pointer) + offset pattern (so-called dynamic load/store instruction), it will cause

two cache misses (one is for the memory reference and the other is for the references to

the replaced block). In [66], Kim et al. first use reaching definitions data-flow analysis to

eliminate as many dynamic load/store instructions as possible, and then they employ the

pigeonhole principle to reduce the possible cache misses of dynamic load/store instructions

– if there are n memory references to m memory locations and n > m there must be at least

n−m cache hits. However, they must guarantee these n memory references should not

cause cache replacements (i.e. no conflict misses for accessing direct mapped cache).
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There is no doubt that if we want to improve the precision of data cache analysis in

the presence of dynamic load/store instructions, the set of possibly referenced addresses

need to be resolved. Usually, array references within loops are the main source of dynamic

load/store instructions, and they often exhibit certain reference patterns. In [67], Ghosh et

al. propose using a set of linear Diophantine equations called cache miss equations (CME)

to capture the relationships among loop indices, array sizes, base addresses, and cache pa-

rameters for cache misses in a loop nest. Reuse vectors proposed in [68] are used to capture

the temporal and spatial locality information. For each data reference instruction and along

every reuse vector for that reference, two kinds of CME are generated, which are cold miss

equations and replacement miss equations respectively. By solving the equations, accurate

cache misses can be derived. However, the method requires perfect loop nests with no

data dependent conditionals (perfect loop nests have all array references contained within

the inner-most loops). Furthermore, it also requires array indices and loop bounds to be

affine combinations of loop induction variables. In [69], Chatterjee et al. propose an ap-

proach based on Presburger arithmetic formulas to precisely model data cache behavior.

The approach has advantages because it can handle imperfect loop nests and a variety array

layouts from row- and column-major to non-linear. However, the computational complex-

ity of the approach is super-exponential in the worst case for satisfiability checking and

quantifier elimination of Presburger formulas.

In [70], Ramaprasad et al. extend the CME method to derive exact cache hit/miss

patterns. This work proposes a technique called forced loop fusion to concatenate iteration

spaces of sequential loops and introduce conditionals based on loop induction variables to

maintain correctness. Using this technique, it can deal with imperfect loop nests and non-

rectangle loops (non-rectangle loops has a condition on the upper bound of an inner loop

that is based on current value of an outer loop). The method analyzes all iteration points

(an iteration point is a vector whose components give corresponding loop iteration) in order

to get an exact data cache reference pattern. After solving the generated CME, the method
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re-analyzes all the compulsory misses to eliminate pessimistic misses and also verify cache

hits against the conditionals introduced at forced loop fusion. Apparently, methods like the

one in [70] depend on affine reference patterns which can be too restrictive.

In [71], White et al. use address expansion to calculate relative addresses for each load-

/store instruction. This relative address calculation actually can be achieved by a compiler

automatically. The calculated relative addresses are relative to the beginning of a global

variable or the stack frame. In order to get the set of virtual addresses a data reference may

access, control flow information is combined with relative addresses to derive the ranges of

virtual addresses. A static cache simulation approach which basically is an interprocedu-

ral data-flow analysis is used to categorize each scalar data reference into four categories

similar to the categories described above for instruction references in Tab. 2.1. For a non-

scalar data reference in a loop nest, the method introduces a new category called calculated

indicating the maximum number of data cache misses at each loop nest level. When com-

puting the maximum number of misses, the method also takes into account the spatial and

temporal localities to increase the accuracy.

In [72], Ferdinand et al. propose using a persistence analysis to tighten the number

of possible cache misses due to instructions referencing data caches. For a set of memory

blocks M = {m1,m2, ...,mx}, if each of memory block m ∈ M can be guaranteed as per-

sistent, and then the dynamic load/store instruction that possibly accesses these M blocks

can cause at most |M| data cache misses. Thus, a persistence analysis is used to bound the

worst-case data cache conflicts. However, this persistence analysis method is not safe, as

pointed out in [73] and [74].

In [75], Sen et al. first perform an address analysis to derive all the possible addresses

an instruction may reference, and then perform a must analysis of the cache contents.

The must analysis is extended from the well-established must cache analysis described in

many papers (e.g. in [53]). Their cache model is also n-way set associative employing

LRU replacement policy with write-through and write-no-allocate. The extension is to
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safely handle a set A of possibly accessed addresses when updating the ACS, while the

original method only deals with one address like when fetching an instruction. Since this

is a must analysis, if a memory block of the set A is not in current ACS, it should not be

added into the ACS; that is because “possibly accessed” is not “definitely accessed” and

a must cache analysis only discovers the memory blocks that are definitely in the cache

at a given program point. Given the set A by an address analysis, for each relative age

li of each ASS ŝx of the ACS, the method computes the number of ages o(x, i) that the

content of li should become “older” with. Let α(an address) denote the memory block

this address references. The o(x, i) will be an upper bound which gives the worst effect

on aging each cache block by referencing the set A of possible addresses: o(x, i) = |{a ∈

A|a mapped to set x ∧ (α(a)∈ content of l j, i< j≤ n ∨ α(a) 6∈ content of lk,1≤ k≤ n)}|.

They also employ partial loop unrolling to sequentialize the set of addresses as much as

possible such that an instruction that may reference many addresses in a loop will have

several duplicates each of which references fewer addresses in the unrolled loop instances.

In [73], Huynh et al. observe that the abstract interpretation-based methods like those

used in [72] and [75] suffer from large over-estimation because they ignore the tempo-

ral information of a data memory access when using address analysis to compute the

set of possibly referenced memory blocks. As mentioned before, the paper points out

the persistence analysis in [72] can underestimate the relative ages when updating the

ACS. They fix the problem by introducing a younger set ys(m) to each memory block

m at each program point that keeps track of memory blocks that may be younger than

m when reaching the program point along some possible execution path. Thus, for any

memory block m under the fixed persistence analysis, its maximal relative age will be

|ys(m)|+ 1. Based on the persistence analysis, they propose a scope-aware data cache

analysis method which captures the temporal information of a data reference over differ-

ent loop iterations. A temporal scope for memory block m which is possibly accessed by

a data reference d is a mapping: ts(m)(d) = {loopd
i 7→ [lw,up]} where loopd

i is the ith

19



loop d resides in and [lw,up] is the corresponding loop’s iteration range in which d may

access m (derived through access patterns). Two temporal scopes of memory blocks mi

and m j overlap at a loop nesting level if and only if the iteration intervals of this loop

nesting level and all upper loop nesting levels have intersections. Of course, when a mem-

ory block m may be referenced by an instruction, for all memory blocks whose temporal

scope overlaps with the temporal scope of m, their younger set needs to include m. The

proposed method categorizes the persistence of memory blocks in the calculated temporal

scopes. If a memory block m is not evicted during the iteration interval ts(m)(d)(loopi),

then all accesses to m from d cause at most one cache miss within the corresponding

loop execution. Given different loop nesting levels, the same memory block may have

different classifications. Let Lps(m) be the outer-most loop nesting level where a mem-

ory block m is consistently persistent. The upper bound of cache misses caused by a

data reference d will be ∑(∏(ts(m)(d)(loopi).up− ts(m)(d)(loopi).lw+ 1)) where m ∈

d’s possibly accessed blocks ∧ loopi is outer than Lps(m).

Interestingly enough, the underestimation generated by the persistence analysis in [72]

is also pointed out by Cullmann in [76]. A different approach is proposed to tackle this

problem which is to take into account the information computed by the may analysis. In this

proposed persistence analysis approach the abstract domain is augmented with a parallel

may analysis ACS on the basis of the original ACS of persistence analysis. The new join

function is just the parallel combination of the join function of may analysis and the join

function of the original persistence analysis. The new update function has two cases to

consider: (1) if the sum of the distinct memory blocks (compared to the currently accessed

one) is greater than or equal to the set associativity, which means that the set is possibly full,

then the update function updates the ACS of persistence analysis by shifting all positions

to the right by one and making the youngest age contain the currently accessed one; (2)

otherwise, the set is not full yet, so update function does the shifting as well but will not

evict blocks. In [76], Cullmann also introduces a much simpler algorithm by using conflict
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counting to compute persistence. It just keeps track of possibly contained memory blocks

and uses the cardinality of this set to decide if a reference is persistent or not. Although it

is safe (overestimation is guaranteed), it is not precise as the other approaches.

Multi-level non-inclusive instruction cache behavior analysis is proposed in [61], but

this method cannot be directly applied to multi-level data caches. In [62], Lesage et al.

extend the method in order to analyze multi-level non-inclusive set-associative data caches.

As the method in [61], the approach also relies on the concept of cache access classification

(CAC) at each cache level for a data reference. Address analysis is used to get a safe

approximation of accessed addresses for each data reference. CHMC similar to the ones

in Tab. 2.1 is used except here a data reference may access more than one addresses such

that if a data reference is AH then all the possibly referenced blocks should be in the ACS

(in the case of must analysis). A content-independent (CI) classification is also introduced

for store instructions – since their cache model assumes (1) write-through and write-no-

allocate policies are used; (2) writes go all the way through the memory hierarchy (3) write

will not affect the corresponding relative age of cache blocks, a store instruction will not

depend on the cache contents (only load instructions depend on and update ACS). When

a load instruction may access multiple addresses, the ACS is duplicated as many times as

the possible addresses and each of the duplicates is updated by the original update function

for a possible address, and then the original join function is used to merge these duplicated

ACSs together as the updated ACS. CAC similar to the ones in Tab. 2.2 are used except a

new classification U-N is added which means no guarantee can be given for the first access

to each possibly referenced blocks of the memory reference, but next accesses will never

be performed at this cache level. The rest of multi-level data cache analysis is similar to the

method in [61] with respect to the corresponding modified update functions of the analysis

(must/may/persistence).

In [77], Chattopadhyay et al. consider analysis of a multi-level cache architecture with

separate L1 instruction and data caches and a unified L2 cache which contains both in-
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struction and data. The approach combines the techniques presented in [53], in [75], and

in [61] for L1 instruction cache analysis, L1 data cache analysis, and CAC computation

respectively, and extend some techniques for unified L2 cache analysis. The basic steps

to compute the ACS of unified cache when executing a given instruction are: (1) update

the ACS first with the memory block where the given instruction is stored by using the

approach described in [61]; (2) if the given instruction is not a load/store instruction, return

the updated ACS; (3) compute the set of possibly accessed addresses through address anal-

ysis; (4) update the ACS considering all the possible memory blocks of the data access also

by using the approach described in [61]. For different analyses (must/may/persistence), the

corresponding update and join functions are different and they are given in [72] for persis-

tence analysis, in [75] for must analysis, and they extend the may analysis in [53] to take

into account non-singletons.

The approaches above for data cache analysis all assume write-through and write-no-

allocate schemes in favor of ease of analysis. However, write-back policy with write-

allocate is more common in processors. In [78], Sondag et al. propose a novel abstract

domain called “live caches” to handle multi-level instruction and data cache behavior anal-

yses, and their approach deals with write-back and write-allocate policy. Since write-back

with write-allocate is used, when a write happens, the corresponding block will be allo-

cated on the lower levels (starting from the first level) if it is not there until it is found on

some level, and the corresponding block on the first level also becomes dirty. A live cache

is an abstract cache maintained for a pair of cache levels. If there are N cache levels, there

will be
(N

2

)
live caches. A live cache is also set-associative, and each live cache set relates

two corresponding sets of the two related cache levels with the larger associativity of the

sets. A block will be in the live cache if it exists in at least one of the two related levels, so

live caches preserve the information that accessing the blocks will hit either level of cache.

Thus, when any of the related sets is updated, the corresponding live cache set needs to

be updated as well. The position of a block is determined by taking the better case of the
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same block’s positions in the two related cache levels. Both join and update functions need

to be modified to take into account the live cache and write-back policy. These modified

functions are rather complicated and have many sub-cases to consider. It should be noted

that when using join function, for must analysis, if the same block are both dirty in the

ACSs, the block is dirty in the joined ACS, but if a block is dirty in only one ACS, mark it

as maybe dirty; for may analysis, if a block is dirty in any one of the ACSs, it is dirty in the

joined ACS. Keeping track of dirty/maybe dirty blocks makes the analysis safe in the case

of using write-back policy.

2.3.2 Cache Analysis for A Multi-Core Processor

As many CPS require more and more computation, e.g. automotive control systems

may need to process and analyze images/videos, multi-core or many-core processors emerge

in CPS applications quickly. Although these technologies make high-performance and low

energy consumption CPS possible, the interferences in shared resources between cores af-

fect their timing behavior predictability [79].

A significant type of interference occurs in shared caches/memories. When several

tasks/threads run on different cores, the states of shared caches can be perturbed in a non-

deterministic manner since the access times of these tasks/threads are unpredictable. In

order to address this problem, research focuses on deriving an upper bound of disturbance

in shared instruction caches (shared data caches are much harder to analysis due to the

presence of cache coherence).

In [80], Yan et al. make the first attempt to analyze the WCET of a task running on a

multi-core processor. In the paper, only the memory accesses due to instruction references

are taken into account, so it is assumed there are no cache misses due to data references

(perfect L1 data cache). In the system model, each core has a private L1 cache and all the

cores share the same L2 cache which is a direct-mapped cache, and tasks running on dif-

ferent cores are independent and non-preemptive. Since a L2 instruction cache access only
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occurs when an instruction is not available in the L1 instruction cache, the method mainly

tries to estimate the bound of interferences in the shared L2 instruction cache. It is observed

that the worst-case instruction cache access interferences can be computed by examining

the control flow information of tasks of different cores (distinguishing instructions that are

in loops from instructions that are not in loops). The method classifies the L2 accesses into

three categories (L2 hit, L2 miss, and L2 hit except once). Each L2 access is categorized

considering the worst-case according to (1) whether or not the instruction leading to the L1

miss (so causing L2 access) is in a loop; (2) whether or not the corresponding instruction is

in L2 cache; and (3) whether or not the direct-mapped location may be contended by tasks.

However, the approach makes many strong assumptions, e.g. perfect L1 data cache, and

still gives relatively pessimistic estimation [81] [82] [63]. Moreover, Hardy et al. argue that

this method might underestimate the WCET when different cache blocks of the interfering

task are not in loops but map to the same location, or when the interfering task executes

several times while the real-time task is in execution [63].

In [81], Zhang et al. extend the Implicit Path Enumeration Technique (IPET) (proposed

by Li et al. [83] [84]) to take into account the shared L2 cache. The system model is exactly

the same as the model in [80]. The method uses integer linear programming to establish

an optimization model of the execution time of a task. The objective function has two

summand parts to represent the execution time of a task: the first part is the sum of all

execution time costs under L1 cache hit situations; the second part is the sum of all costs

under L1 cache miss situations. Since a L1 cache miss needs to access L2 cache which

can lead to either a L2 cache hit or a L2 cache miss and a miss is caused either by the

task itself or by interferences of other tasks running on other cores, the second part takes

into account these scenarios. The objective function is subject to three kinds of constraints:

(1) structural constraints, which describe the number of times flowing into a basic block

equals to the number of times flowing out of the block; (2) functionality constraints, which

capture conditions on feasible execution paths that depend on functionality of the task like
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loop bounds; (3) micro-architectural constraints, which give the ranges to some variables

based on micro-architectural features like direct-mapped cache conflict misses. Thus, the

WCET of the task is to maximize the objective function.

In [82], Li et al. propose an iterative approach to estimate the worst-case response

time (WCRT) of a concurrent program running on a multi-core processor. An observation

is that there will not be interferences between tasks if their lifetimes are not overlapped,

even though the same memory locations are accessed by them. Therefore, the method

described in [80] is very conservative, since it does not consider the lifetime overlapping

information. Although this method also only considers instruction references (i.e. perfect

L1 data cache in their system model), the cache model can have different associativities,

namely direct-mapped, n-way set associative, or fully associative. It is assumed that the

tasks are non-preemptive but can have dependencies (two dependent tasks will of course

not overlap). Thus, the task’s partial order and dependency can serve as the initial overlap-

ping information. Also, it is assumed that the architecture is free from timing anomalies,

so a cache miss will always contribute more execution time than a cache hit. By using

techniques described in [85] and [61], the method first performs multi-level non-inclusive

cache analysis for each task mapped to each core independently. Since the initial over-

lapping information is very limited, the first iteration assumes all the tasks that may have

overlapping lifetime are overlapped. Then, a shared L2 cache conflict analysis is carried

out in order to check whether some L2 cache hits should be turned into “not classified” due

to interferences. Consequently, the method can calculate conservative earliest ready time

and latest finishing time for each task. According to the calculated lifetime results, a task’s

overlapping information may be changed because some of its interfering tasks may have a

disjoint lifetime with the task. When any of the overlapping information is altered, another

iteration will be required to continue refining the information. The iteration will termi-

nate when it finds the least fix-point of the overlapping information. When the overlapping

information is fixed, the WCRT of the concurrent program can be calculated.
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In [63], Hardy et al. propose an interesting idea to tighten the WCET estimation by

using bypass features of some instruction set architectures. Traditionally a cache miss

would retrieve the missing block from a lower memory hierarchy level and store it into

all upper levels. An observation is that some blocks may not be accessed again before

evicted (single-usage blocks). Thus, the method tries to only cache blocks that are stat-

ically known as reused, but bypass other blocks without letting them pollute the shared

caches. First, the method extends the multi-level non-inclusive cache analysis technique

proposed in [61] to take into account shared caches. Based on their previous cache access

classifications (CAC), a new category (“U-N”) is added to produce a more precise identifi-

cation of static single-usage blocks. On each shared cache level, for every cache set s, the

method computes the worst-case number of potential cache conflicts denoted by CCN(s): if

any reference of a task from other cores is not “N” and the block that the reference accesses

to is mapped to the cache set s, it will contribute 1 to the CCN(s). Since the CCN(s) serves

as the worst-case interferences, a safe cache hit/miss classification (CHMC) can be derived

considering these interferences. Second, on each shared cache level, static single-usage

blocks can be identified by combining each memory reference’s CHMC and CAC. By set-

ting some bits in the instructions, the identified blocks can be bypassed so as to tighten the

WCET.

In [86], Lv et al. propose to use both abstract interpretation and model checking tech-

niques to solve the WCET estimation. The paper models the multi-core processors more

realistically to take into account the shared buses. Different bus arbitration protocols are

considered like TDMA and FCFS. First, the method uses abstract interpretation (see [85])

to analyze the private L1 cache behavior of a task running on a core. Then, it combines

the CFG of the task with the cache hit/miss classifications to build timed automata (TA)

of the execution behavior. For each “alway hit” instruction, the TA is quite simple – only

considering L1 cache access time and instruction execution time. For each “alway miss”

instruction, its execution will definitely access the shared bus, which can be modeled by
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using channels to synchronize with the bus TA model. For each “first miss” instruction, a

flag is used to record whether the instruction is the first time being referenced in order to

select one of the two paths; if it is the first time, it needs to access the shared bus and the

path is modeled as “always miss” TA; otherwise, all other subsequent references are cache

hits and the path is modeled as “always hit” TA. For each “not classified” instruction, two

non-deterministic paths are used to take into account every possible execution scenario:

one path is for considering L1 cache miss and the other one is for considering L1 cache

hit. The TA of the shared bus models its arbitration protocol, e.g. in the case of TDMA,

fixed bus slots are allocated to cores, and in the case of FCFS, a queue is used to keep the

access order. Channels are used for sending bus access requests and notifying bus access

completion. The network of TA models can be checked using UPPAAL to find the WCET.

However, it is assumed that there is no shared cache and so every data can be found on

the second level of memory hierarchy (which is the main memory). Thus, if shared caches

need to be added, the scalability of this approach is unknown.

Compared to data references, instruction references are easier to analyze, since all the

instruction addresses are known from the binary. Although assuming L1 data cache is

perfect is not realistic at all, only a few papers consider both data and instruction caches.

In [87], Gustavsson et al. propose to use timed automata to model the effects of both

instruction and data caches. This approach also utilizes CFG information to build TA for

the program which interact with the TA of the cores via channels. Each core has three

TA: a timing model, a private instruction cache model, and a private data cache model.

Their L1 data cache model is similar to the L1 instruction cache model except that the data

cache model has the ability to invalidate a data cache block in other cores (i.e. modeling

the coherence). All the cores’ TA interact with a shared cache model which has to be

mutual exclusively accessed through a spinlock synchronization model. One problem of

this approach is it does not scale well, since it does not perform any value analysis and

control flow analysis but depends heavily on the exhaustive search ability of the model
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checker.

In [88], Lesage et al. combine and extend their previous work in [61], [62], and [63]

to deal with shared data caches. The system model assumes write-through policy with by-

passing shared cache blocks from the private caches of cores. Therefore, it is not necessary

to deal with additional coherence traffic induced by cache coherence. First, the method

uses address analysis to derive the set of possible addresses a memory reference may ac-

cess. Then, the method uses the approach proposed in [62] to perform multi-level data

cache analysis for each task as if it were running on a single core. The results are CHMC

and CAC for each memory reference on each cache level. Similar to the method in [63],

for a task, for each cache set on each shared cache level, the number of conflicting cache

blocks (i.e. CCN) is computed with respect to the interfering tasks running on other cores.

CCN is used to derive the available cache space for a cache set s on that cache level l for

a task t running on a core, which basically is CahcheAssociativity−CCNl
t (s). With the

available cache space after considering the conflicts of other task, the task will be analyzed

again to refine its memory reference’s CHMC and CAC. In order to reduce the conflicts

between tasks on the shared caches, the method also uses bypassing technique to arrange

some instructions to use bypassing to reduce the number of evictions on the bypassed cache

levels, which is similar to the bypassing approach introduced in [63].

Due to the difficulties of timing analysis caused by many types of interferences in real

COTS multi-core processors, measurement-based methods have been proposed to tackle

the problem. Although these approaches are not safe in general, they can reveal the aspects

of various types of interference.

In [89], Nowotsch et al. perform the experiments on Freescale P4080 8-core processor

which may be used in avionics in the future. A benchmark with different configurations to

stress different shared resources is designed (including the interconnect, shared L2 cache,

L3 cache/SRAM, and main DDR memory). The method focuses on comparisons of exe-

cution time variations because of concurrent accesses to L3 SRAM and to DDR memory
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with different access patterns, and variations due to cache coherence. One interesting point

in this paper is that – even the current applications do not share any data, the coherence

protocol may cause a small variation of execution time due to coherence traffic on the bus.

In [90], Fernandez et al. choose the NGMP processor as the experimental target since it

is designed to be used in the future space missions of the European Space Agency. Like in

[89], micro-benchmarks are designed to stress different specific shared hardware resources

in order to observe the influences they cause on the execution time. Different experiments

are devised to take into account the shared AHB bus, the shared unified L2 cache, and the

memory controller incrementally. The paper also carries out a test concerning the write-

through policy of L1 data cache. In the end, the conclusion is that shared hardware resource

can cause a big execution time variation even on the COTS processor designed for space

domain.

2.3.3 Path Analysis

It should be noted that the final objective is to derive the WCET for the whole program

via path analysis after the WCET for each BB is derived through the analyses consider-

ing micro-architecture features. In general, the path analysis problem is undecidable and

equivalent to the halting problem [83]. However, absence of unbounded recursions and

unbounded loops, which is common in CPS software, makes this problem decidable.

The state-of-the-art path analysis approach is called implicit path enumeration tech-

nique (IPET) which is proposed in Li’s seminal work [83]. The IPET has a very significant

influence on the timing analysis research area (it has been used and/or extended by many

researchers). The basic idea of the IPET is to convert the original problem to a set of in-

teger linear programming (ILP) problems, which does not explicitly enumerate program

paths but implicitly considers them in its solution. The converted problem is to maximize

the objective function ∑
N
i=1 cixi where N is the number of BBs, ci is the derived WCET

for a BB bbi, and xi is the number of times bbi is executed. In a loop- and recursion-
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bounded program, xi cannot be any number, and these variables should be subject to a set

of program structural and functionality constraints. The structural constraints are used to

express control flow information of the program: each edge of the procedure’s CFG has

a variable d to represent how many times this control flow is take; for a BB bbi of the

CFG, the number of times it is executed equals the sum of the control flow going into it,

and the sum of the control flow going out from it; thus, for a bbi we have a constraint

xi = ∑e j∈in(bbi) d j = ∑ek∈out(bbi) dk where in(bbi) denotes the set of all incoming edges of

bbi, out(bbi) denotes the set of all outgoing edges of bbi, and d variable has the same index

as the corresponding edge. In terms of procedure invocation, the flow going into the proce-

dure via CG edges is the connection between the caller(s) and the callee. The functionality

constraints are used to denote loop bounds and other path information that depend on the

functionality of the program: given a loop and its bound [1,LB], if xi is the number of ex-

ecution times of the BB just before entering the loop, and x j is the number of execution

times of the first BB inside the loop, we can have the loop bound constraint xi ≤ x j and

x j ≤ LBxi; also for some exclusively executed BBs, e.g. bbi and bb j can exclusively exe-

cute once, we can have a non-linear constraint (xi = 1∧ x j = 0)∨ (xi = 0∧ x j = 1), which

can be transformed into two sets of linear constraints, xi = 1,x j = 0 and xi = 0,x j = 1, and

each of these two sets is combined with the other constraints to be solved by an ILP solver

and the one gives the bigger solution will give the WCET. The authors also argue that IPET

performs path analysis efficiently in practice, although solving a general ILP problem is a

NP-complete problem.

The most common WCET estimation method is to combine abstract interpretation and

integer linear programming (AI + ILP) [85]: AI is used to predict safely the processor

behavior (e.g. caches and pipeline) and ILP is used to determine one path on which the

upper bound for the execution time is computed. There is also an interesting debate about

whether model checking is useful for WCET estimation. In [91], Wilhelm argues that

model checking may suffer from state-space explosion although the exhaustiveness yields
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more precise results. Wilhelm also points out that the result computed by using AI + ILP

does not lead to a significant loss of precision based on the practical experience. However,

in [92] Metzner argues that model checking is perfect for estimating the WCET. Indeed,

employing model checking for processor-behavior analysis can improve the results due to

the avoidance of over-approximations induced by abstraction. Nevertheless, Metzner in

[92] does not tackle the fundamental reason why Wilhelm in [91] thinks model checking is

not appropriate – scalability.

When taking into account all necessary micro-architecture features, using model check-

ing to derive the WCET is indeed not appropriate with respect to the required analysis time

and memory space. However, if model checking is used only for searching the worst-case

path, after using abstract interpretation for deriving the WCET for each BB, model check-

ing may be feasible. A question is: if both IPET and model checking can discover the

desired path, but which one is better? In [93], Lv et al. perform several experiments to

compare the performances of IPET and model checking. The paper does not report which

ILP solver is used, but only mentions that CPLEX or lp solve can be used. Two model

checkers are used for the comparison, SPIN and NuSMV. According to the experimental

results, ILP yields very good performance, while model checking only works for simple

programs. When there are large loop bounds and complex program structures, SPIN runs

out of memory, and if the WCET is relatively large, NuSMV can not finish checking within

feasible time. Since the used benchmarks contain no more than 300 lines of code, it is be-

lieved that model checking will meet scalability problems when analyzing large systems.

2.4 Preemption Delay Analysis

The related work for timing analysis summarized above is mainly for deriving the

WCET of a single task without considering the effects of other tasks (i.e. only intra-task in-

terference is considered). While this is valid for non-preemptive real-time systems, it may

not hold when preemptive scheduling is used. When a lower-priority task (preempted
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task) is preempted due to the activation of a higher-priority task (preempting task), the

system states for the preempted task will be different after the preemption. One prominent

example is the cache – there may be much more cache misses due to the preemption com-

pared to the one without preemption. This is because when a preempting task is running,

some memory blocks may be evicted; when the preempted task resumes, it needs to reload

these evicted memory blocks. The preemption delay increases the WCET of the task, and

may cause the preempted task miss its deadline if there are many preemption points and

the preemption delay is expensive. Therefore, integrating schedulability analysis with pre-

emption delay analysis is needed to ensure the tasks will meet their timing constraints.

A very early seminal research on combining schedulability analysis with preemption

delay can be found in [94]. In [94], Lee et al. use the response time Ri of a task τi

to do schedulability analysis, namely if Ri < di where di is the deadline of τi is met

for each task, then this task set is schedulable. In order to take into account the ad-

ditional time caused by preemptions, the recurrence equation of response time is modi-

fied, which becomes Ri = Ci +∑ j∈hp(i)dRi
Tj
e×C j +∆i, where Ci is the computation time

(without considering preemption delay), hp(i) gives the set of higher-priority tasks than

τi, Tj is the period of task τ j, and ∆i is the delay caused by preemption. The objec-

tive is to derive the Ri through an iterative solving process (which starts from the high-

est priority task since it does not suffer from any preemption). The ∆i is calculated as

number of evicted cache blocks× cache reload time. Since one can conservatively assume

every cache block is evicted by the preempting tasks, this can cause a huge overestimation

which makes the task set unschedulable even it is actually schedulable (since the derived

overestimated response time may be over the deadline). In order to tighten the estimated

preemption delay, the work proposes to only consider the useful cache blocks of the pre-

empted task which are possibly used by the preempted task after resumption. The useful

cache blocks are derived by carrying out two data-flow analysis on the CFG: one is for

reaching cache blocks (like to derive reaching definitions) and the other one is for live
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cache blocks (like to derive live variables). Therefore, the useful cache blocks at a program

point is the intersection of the reaching cache blocks and the live cache blocks. Later, the

authors realize preempting tasks will not evict all the useful cache blocks, so in [95], they

also perform data-flow analyses on the preempting tasks to derive the used cache blocks.

Thus, the preemption can at most affect the cache blocks that are in the intersection of

useful cache blocks and used cache blocks.

In [96], Tomiyama et al. propose to use the ILP method to derive the maximum number

of possible used cache blocks in a preempting task. However, the work does not consider

the preempted task, namely they assume every cache block is useful in the preempted task

which will lead to an overestimation. In [97], Negi et al. find it is possible to refine

the useful cache blocks and used cache blocks by considering paths separately. Thus, the

approach records the possible cache state path-wise at a program point instead of keeping

track of possible memory blocks for each cache block independently. Although the method

can reduce the over-approximation, the space overhead to track every possible cache state

may be overwhelming. Therefore, binary decision diagram can be used to represent the

possible cache states at a program point to save space.

Although the method proposed in [97] can give more precise analysis results for one

preemption, it does not consider multiple preempting tasks which preempts a task multiple

times. In [98], Staschulat et al. notice when a task with a lower-priority gets preempted

multiple times, its preemption delay is much less than ∆×N where ∆ is the worst-case

preemption delay a preempting task can cause to the preempted task and N is the maximum

number of possible preemptions that a preempting task can cause. The reasons for this are:

(1) there may be nested preemptions in which case the preempted task never resumed; (2)

each instance of the preempting task will not evict the same number of memory blocks,

or even multiple preemptions will not evict any memory blocks after the first time. It also

considers the remaining memory blocks among different activations in order to tighten the

WCET. Later in [99], schedulability analysis in the presence of preemption delay for each
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task is also considered.

The previous mentioned work only considers instruction caches without taking into

account data caches. As stated in section 2.3, data caches are much harder to analyze due to

statically unknown memory reference patterns. As mentioned before in [70], Ramaprasad

et al. propose using CME to derive the exact patterns of data cache references. In [100],

Ramaprasad et al. extend their work to analyze the data cache-related preemption delay by

using their method proposed in [70]. For each task, the data reference chains are established

to represent the reuse relations, so the worst-case preemption delay happens when the most

number of chains are cut by the preempting task. For multiple preemptions, the delays

can be ordered from the worst-case cut to the best-case cut. It is also noticed that in the

presence of preemption delay the critical instant in the theory of schedulability analysis

is not necessarily the point in time when every task is activated. In [101], the method is

further improved by taking into account the possible range of an preemption. The improved

method increasingly uses a timing analyzer to derive the possible program points when an

preemption happens considering all the delays to rule out infeasible program points where

the corresponding preemption can happen.

In [102], Tan et al. summarize their work on the study of cache-related preemption de-

lay. Most of their methods are similar to those taking into account both useful cache blocks

for the preempted task and used cache blocks for the preempting tasks. The notable differ-

ence is the work considers n-way set associative caches other than merely direct-mapped

caches like all other work mentioned above. The method is straightforward: partitioning

the memory blocks into different sets and counting the number of conflicts. It is also no-

ticed that indirect preemption needs to be considered when calculating the response time

of a low-priority task.

A very interesting view is presented in [103]. Altmeyer et al. notice that the traditional

methods (e.g. the methods presented in [94], [96], and [97]) calculate the WCET and CRPD

(cache-related preemption delay) separately, and may count one cache miss twice (once for
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WCET calculation and the other for CRPD calculation). The reason for this is the useful

cache blocks are those that may be at a program point and may be used in the future. Thus,

the work proposes to find the subset of the traditional useful cache blocks that are definitely

in the cache at the program point and may be used in the future. Therefore, these memory

blocks are actually in the abstract cache state of the must analysis at this program point,

and are called definitely-cached useful cache blocks. One problem of using the definitely-

cached useful cache blocks to compute CRPD is the resultant CRPD may not be safe (since

the set of definitely-cached useful cache blocks is an underestimation of the set of useful

cache blocks), but the work proves that the combination of the over-approximated WCET

and the possibly under-approximated CRPD gives a safe estimation in terms of execution

time. The reason for this is the notion of definitely-cached useful cache blocks rules out the

possibility of counting a cache miss twice in the separated calculation processes of WCET

and CRPD.

In [104], Chattopadhyay et al. make the first attempt to study the CRPD in the presence

of multi-level non-inclusive caches. The work finds there may be indirect effects of pre-

emption that can cause additional L2 cache misses aside from the cache misses derived by

the traditional methods for L1 cache. A framework that is fit for analysis of two-level non-

inclusive caches is proposed. The main point is that if a reference was L1 AH in the absence

of preemption, it may not be L1 AH after the preemption. If a reference cannot be guar-

anteed as L1 AH after preemption, it may make an additional conflict in the corresponding

L2 cache set. The additional L2 conflicts may evict a block m from the corresponding L2

cache set at a program point, where m were definitely in the cache if there were no preemp-

tion. Therefore, if a reference to m were L2 AH in the absence of preemption, it may suffer

an L2 cache miss in the presence of preemption. Basically, the analysis of indirect effects

of preemption is to bound the number of additional L2 cache misses due to additional L2

conflicts.
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2.5 Tools and Benchmarks

Formally analyzing and/or verifying properties of binary executable programs has at-

tracted significant attention. Thus, many open source and commercial tools have been

developed and utilized to solve many problems in CPS. Due to the large amount of work,

here we only state several well-known tools and benchmarks that are influential and useful

for our research.

In [37], Song et al. introduce the BitBlaze project which aims at a unified binary anal-

ysis platform for different security problems. BitBlaze consists of three parts – Vine for

static analysis, TEMU for dynamic analysis, and Rudder for mixed concrete and symbolic

execution. BitBlaze has been successfully applied to solving many security problems, e.g.

crash analysis [105], malware detection and analysis [106], deviation detection [107], and

vulnerability analysis [108]. Although BitBlaze focuses on the security perspectives, many

of its concepts and sub-parts are related to this thesis – for instance, Vine uses an interme-

diate language for assembly (ILA) which is proposed to realize generic static analysis on

binaries.

Most relevant tools are related to timing analysis. In the following, we will briefly

describe three representative tools (which are commercial, open sourced, and free but close

sourced respectively) in the timing analysis field.

A well-known WCET analysis tool is from AbsInt company called aiT WCET analyzer

[40]. It is a commercial tool and has been used to analyze many real-life systems – Airbus

and Volvo have used the tool to estimate and verify the timing properties for their prod-

ucts (e.g. the flight control software in Airbus 380 and the control software in Volvo CE

vehicles). The success of this tool shows how the timing analysis research can be used

in real systems. The processors it supports include many real models of ARM, PowerPC,

TriCore, TI DSP, and so forth. An excellent advantage of this tool is the integration with

many control software development tools, including SCADE, STATEMATE, Ascet/SD,

and MATLAB/Simulink.
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In [109], Li et al. introduce their open source WCET analysis tool called Chronos. At

first, Chronos supports the analysis of (1) out-of-order pipelines [48], (2) various dynamic

branch prediction schemes [51], and (3) instruction caches, and the interaction among these

different features [51] [110]. Later, the support for data caches is added in [73] and the

support for multi-core processors with TDMA interconnects is added in [111]. However,

Chronos only supports the processor model of SimpleScalar simulator, which is a popular

cycle-accurate micro-architectural simulator [112]. Although the tool can target a sim-

ulated processor model so that the processor can be configured with different pipeline,

branch prediction, and instruction-cache options, it does not support other architectures

like ARM or PowerPC.

In [113], Ballabriga et al. present their WCET toolbox called OTAWA. The aim of

OTAWA is to provide an open framework that could be used by researchers to implement

their analyses and to combine them to already implemented ones. It is not a open source

tool but a toolbox, which means that it comes as a C++ library that can be used to develop

WCET analysis tools. However, OTAWA includes a number of algorithms which make

the extension really easy (example tools are distributed with the library). OTAWA has

the ability to support various target hardware configurations (via XML descriptions) as

well as various instruction sets, e.g. PowerPC, ARM, TriCore, HCS12, and Sparc. In

addition to the WCET analysis, it also includes a code processor that builds and runs a

cycle-accurate simulator, which is generated on top of the SystemC library and matches

the XML description of the target architecture. Cycle-accurate simulation can be used to

gain empirical results against the derived analysis results.

The three tools listed above apply a similar process:

1. CFG reconstruction (CFG is the representation of the program in most analyses)

2. High-level analysis (e.g. using value analysis to analyze loop bounds)

3. Low-level analysis (e.g. analyzing the effects of cache on timing)
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4. Path analysis (e.g. using IPET to find the longest execution path in an implicit way)

In terms of benchmarks, the Mälardalen WCET research group collects and maintains

a large number of WCET benchmark programs, used to evaluate and compare different

types of WCET analysis tools and methods [114]. The benchmarks are collected from

several different research groups and tool vendors around the world. There are more than 30

benchmarks which range from basic binary search program to generated control software

code.

Another benchmark that is useful is called PapaBench which is maintained by the

TRACES group in France [115]. The PapaBench is based on the Paparazzi project that rep-

resents a real-time application, developed to be embedded on different Unmanned Aerial

Vehicles (UAV). It is designed to be valuable for experimental work in WCET computa-

tion and may be also useful for schedulability analysis. The benchmark also provides a

high level AADL model, which reflects the behaviors of each component of the system and

their interactions. Unlike other usual WCET benchmarks, PapaBench is based on a real

and complete real-time embedded application.
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Chapter 3

Generic Value-Set Analysis on Low-Level Code

Cyber-physical systems (CPS) are complex systems that are characterized by tight in-

teractions between the physical dynamics, computational platforms, communication net-

works, and control software. Many CPS are safety-critical or mission-critical systems,

such as aerial vehicles and defense missiles, which means any failure may cause a great

damage. Since software bugs are notoriously responsible for many system failures, it is an

essential task to analyze/verify various properties of CPS software to guarantee it conforms

to the specification.

When analyzing/verifying many CPS software properties, it may be insufficient to only

consider this software in its high-level form, e.g. its source code. Often, we also need to

analyze/verify these properties in its low-level form, e.g. its machine code, namely we need

to take into account the compilation that transforms the source code into the low-level code

and the interactions between the compiled software and its underlying computational plat-

form; otherwise, even the high-level code is verified, compiler-induced bugs or unexpected

architectural limitations may still cause the system to fail. For example, it is reported in

[116] that every tested compiler is found to be able to generate wrong code silently; and a

Patriot missile failed to intercept a Scud missile in the Gulf War due to the precision error

of time calculation using a 24-bit fixed point register.

Value-set analysis (VSA) has been proposed to simultaneously perform numeric and

pointer analyses on low-level code [29], which can be used to analyze/verify various control

software properties (e.g. variable range and saturation) and security vulnerabilities (e.g.

buffer overflow and side channels) for a specific platform. However, the original work only

targets at the Intel x86 instruction set architecture (ISA). Thus, if we want to perform VSA

on binaries in other ISAs, we need to make changes repeatedly to take into account the
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semantics of their instructions, which can be a tedious and error-prone process.

While there is some uniqueness in different ISAs, many instructions of an ISA have

their counterparts in another ISA, and they share a lot of similarities in their semantics.

Thus, if we can use an intermediate language to encode the instructions of different ISAs

capturing their computational semantics, we can use one generic VSA program which an-

alyzes the translated binaries in this intermediate language, instead of modifying the VSA

programs to target at different ISAs.

Moreover, VSA uses an abstract numeric domain called strided-interval. While strided-

interval domain captures more precise information than the traditional interval domain, it

cannot precisely track the set of numbers when some of numbers in the set are big enough

such that they are interpreted as overflow with respect to two’s complement representation.

The main contributions of this chapter are: (1) we extend the original strided-interval

domain in order to prevent huge over-approximation from happening in the case of wrap-

around computations; (2) we define several operations on the extended strided-interval

domain which can more precisely track the set of structured numbers; (3) we use an In-

termediate Static Analysis Language (iSAL) with a straightforward concrete semantics to

encode instructions of different ISAs; (4) we define an abstract semantics for the iSAL in

the value-set abstract domain to facilitate any VSA program writing; (5) we give an ex-

ample to show the feasibility of the generic VSA approach, which is to precisely resolve

indirect branch target addresses. This work has been published in [10].

The rest of the chapter is organized as: Section 3.1 briefly describes VSA and presents

the extension to the original strided-interval domain with a set of operations; Section 3.2

introduces the syntax and concrete semantics of iSAL and defines abstract semantics with

respect to VSA; Section 3.3 discusses some issues when using iSAL to perform VSA;

Section 3.4 presents an example on resolving indirect branches and Section 3.5 concludes

this work and states some future work.
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3.1 Value-Set Analysis

In this section, we first briefly review VSA, and then we argue why it is necessary to

extend the original strided-interval domain, and redefine several operations on the extended

domain.

VSA combines numeric analysis and pointer analysis together, and its goal is to deter-

mine an over-approximation of the set of numeric values and addresses at each program

point [29]. It is a flow-sensitive, context-sensitive, and interprocedural static analysis ap-

proach based on abstract interpretation [9].

In order to avoid dependence on absolute memory addresses (since some of them may

not be determined statically), the memory model in VSA consists of a set of separated

memory regions, and each memory region is an abstract memory space which corresponds

to the set of all concrete memory spaces with respect to specific run-time properties, e.g.

all the possible stack frames of a procedure invocation are aggregated as a memory region.

There are three types of memory regions in VSA: the global-region for statically allocated

variables in the program, local-regions for locally allocated variables in the run-time stack,

and heap-regions for dynamically allocated variables in the heap. While there is only one

global-region, there are as many local-regions as procedures.

An abstract address in a memory region can be represented by 〈memory-region,value〉,

which corresponds to the set of all memory addresses a variable can have. A global variable

has a fixed address which can be represented by 〈global-region,address〉, while a local

variable has a varying address but a fixed offset to the varying base address of the stack

frame and its abstract address can be represented by 〈local-region,offset〉.

The explicitly referenced variables in the source code are accessed by using their ad-

dresses in the machine code, VSA needs to recover the variables from low-level code, and

represent them by using abstract locations (a-locs). An a-loc is a variable-like entity which

may have an explicit boundary (e.g. registers) or an implicit boundary (e.g. variables allo-

cated in the memory).
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Given an a-loc, the abstract state of VSA maps it to a value-set. A value-set is a function

that maps a memory region to a strided-interval (SI). A strided-interval is an abstract object

used to represent a set of structured integers with a fixed stride. A k-bit strided-interval

s[l,u] where −2k−1 ≤ l ≤ u≤ 2k−1−1, 0≤ s≤ 2k−1 represents the set {i|i = l +n× s ∧

n ≥ 0 ∧ i ≤ u}. Depending on the type of the given memory region, the mapped strided-

interval has different semantics: if the memory region is the global-region, the mapped

strided-interval represent a set of numeric values which are the values held by the a-loc

in some executions; otherwise, the mapped strided-interval represent a set of offsets in the

memory region, and each 〈memory-region,offset〉 pair is an abstract address with respect

to the memory region. For a given memory region, the mapped strided-interval may be a

⊥ which means the empty set of values. If the mapped strided-interval is a >, it is the set

of all the representable values 1[−2k−1,2k−1−1].

3.1.1 Extension to Strided-Interval

An important problem of the original strided-interval representation is that if l is re-

quired to be less than or equal to u (i.e. ∀s[l,u], l ≤ u), it loses the ability to precisely track

the set of numbers when some of the numbers in the set lead to an overflow interpretation

with respect to two’s complement representation. For example, on a 16-bit architecture,

if a strided-interval 4[0x7FF0, 0x7FFC] is added to another interval 0[4, 4], according

to the addition operation defined in [30], the resultant strided-interval will be 1[0x8000,

0x7FFF], i.e. the > element in the SI domain. Although the result is sound, basically it

treats the upper bound of the calculation as an overflow. Thus, when using > to safely

capture all possible values, the representation is not precise.

In the above example the interval 4[0x7FF4, 0x8000] would be a more precise and also

sound result, in which l represents a signed positive number 215− 12 and u represents a

signed negative number −215. Thus, a better decision is to eliminate the constraint l ≤ u in

order to allow both l and u to be any number of the range [−2k−1,2k−1−1], which induces

42



the proposed extended strided-interval (ESI) domain that is similar to the CLP domain in

[32]. Let γ denote the concretization function which maps an extended strided-interval

s[l,u] ∈ ESI to a set of integers, and we have

γ(s[l,u]) =


{i|i = l +n× s∧n≥ 0∧ i≤ u} i f l ≤ u

{i|i = l +n× s∧n≥ 0∧ i≤ u+2k} otherwise

3.1.2 Operations on Extended Strided-Interval

There are six groups of operations on ESI, which are arithmetic, shift, bit-wise, set,

comparison, and truncation operations. Let us assume the underlying platform is a n-bit

architecture, and let maxu be the number 2n−1, maxs be the number 2n−1−1, and mins be

the number−2n−1. For an arbitrary number x, n(x) denotes the lowest n bits representation

of x, and tz(x) denotes the number of trailing zeros in x’s representation.

In addition, let us define several functions that are used in the operations: let sg(p,q,s)

return the smallest number that is greater than p and can be reached by q in multiple s

strides, and let gs(p,q,s) return the greatest number that is smaller than p and can be

reached by q in multiple s strides (the computation wraps around in terms of n-bit).

Let dsiu(s[l,u]) denote an ordered set of disjoint strided-intervals, each of which rep-

resents a maximal sub-interval with respect to unsigned integers. Depending on the s[l,u],

this set can be a singleton (e.g. dsiu(1[10,20]) = {1[10,20]}), or has two members (e.g.

dsiu(1[−2,2]) = {1[0,2],1[maxu− 1,maxu]}). Let f st(dsiu(s[l,u])) denote the first mem-

ber in this ordered set, and let snd(dsiu(s[l,u])) denote the second one if it exists, or ⊥ if

the set is a singleton. Similarly, let dsis(s[l,u]) denote an ordered set of disjoint strided-

intervals, each of which represents a maximal sub-interval with respect to signed integers.
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3.1.2.1 Arithmetic Operations

For the addition operation s1[l1,u1] +
si s2[l2,u2], let us assume s = gcd(s1,s2), l̂ =

l1 + l2, and û = u1 +u2 without overflow, i.e. l̂ and û have enough bits to contain the sums.

From now on, let us assume all the arithmetic operations on numeric values will not induce

overflow. The operation is defined as

s1[l1,u1]+
si s2[l2,u2] =


s[n(l̂),n(û)] i f û− l̂ < 2n

s[sg(mins, l̂,s),gs(maxs, û,s)] else i f s = 2m

1[mins,maxs] otherwise

For the negation operation −sis1[l1,u1], since ESI allows l1 > u1, we can have

−sis1[l1,u1] = s1[−u1,−l1]

which is simpler but more precise than the negation operation for the original strided-

interval defined in [30]. Thus, for the subtraction operation s1[l1,u1]−si s2[l2,u2], we have

s1[l1,u1]−si s2[l2,u2] = s1[l1,u1]+
si (−sis2[l2,u2])

For the unsigned multiplication operation s1[l1,u1]×si
u s2[l2,u2], we define produ as

produ = {p|∃sx[lx,ux] ∈ dsiu(s1[l1,u1]),sy[ly,uy] ∈ dsiu(s2[l2,u2]) : p = lx× ly∨ p = ux×uy}

Let l̂1 be the lower bound of the interval f st(dsiu(s1[l1,u1])) and let l̂2 be the lower bound
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of the interval f st(dsiu(s2[l2,u2])). We have

ŝ1 = gcd(s1× s2, l̂1× s2, l̂2× s1)

ŝ2 = gcd(ŝ1, l̂1×2n,s1×2n)

ŝ3 = gcd(ŝ1, l̂2×2n,s2×2n)

ŝ4 = 2tz(gcd(ŝ2,ŝ3))

ŝ =



ŝ1 i f |dsiu(s1[l1,u1])|= 1∧|dsiu(s2[l2,u2])|= 1

ŝ2 i f |dsiu(s1[l1,u1])|= 1∧|dsiu(s2[l2,u2])|= 2

ŝ3 i f |dsiu(s1[l1,u1])|= 2∧|dsiu(s2[l2,u2])|= 1

ŝ4 i f |dsiu(s1[l1,u1])|= 2∧|dsiu(s2[l2,u2])|= 2

Since the product of two n-bit numbers should be contained in 2n-bit, we have the mul-

tiplication operation to generate two ESIs: the first ESI corresponds to the high n-bit

of the product, and the second one corresponds to the low n-bit of the product. Let

pmin = min(produ), and pmax = max(produ). We have

s1[l1,u1]×si
u s2[l2,u2] = 〈1[b

pmin

2n c,b
pmax

2n c], ŝ[l̂, û]〉

where [l̂, û] =


[n(pmin),n(pmax)] i f pmax− pmin ≤ maxu

[sg(0,2tz(ŝ), ŝ),maxu] otherwise

The signed multiplication operation s1[l1,u1]×si
s s2[l2,u2] is similar but makes use of dsis

instead of dsiu.

For the unsigned division operation s1[l1,u1]÷si
u s2[l2,u2], we have quotu defined as

quotu = {q|∃sx[lx,ux] ∈ dsiu(s1[l1,u1]),sy[ly,uy] ∈ dsiu(s2[l2,u2]) : q = b lx
uy
c∨q = bux

ly
c}
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Let l̂2 be the lower bound of f st(dsiu(s2[l2,u2])), and let q̂ = b s1
l̂2
c and r̂ = s1

l̂2
− q̂. We have

ŝ =


q̂ i f |γ(s1[l1,u1])|= 1∧ r̂ = 0 ∧ |dsiu(s1[l1,u1])|= 1∧ q̂ = 2m

1 otherwise

s1[l1,u1]÷si
u s2[l2,u2] = ŝ[min(quotu),max(quotu)]

For the signed division operation s1[l1,u1]÷si
s s2[l2,u2], it is similar but makes use of dsis

instead of dsiu, and the corresponding quots also contains q that is either q = b lx
ly
c or q =

bux
uy
c.

3.1.2.2 Shift Operations

Since a shift operation on a value (left or right, logical or arithmetic, but not circu-

lar) makes no difference when the numbers of bits to shift are greater than n, we define

shn(s[l,u]) as

shn(s[l,u]) = {x|0≤ x≤ n∧ x ∈ γ(s[l,u])}

to give the set of numbers by which the shift operations are performed usefully. For the log-

ical/arithmetic left-shift operation s1[l1,u1]�si s2[l2,u2], we extract the useful sub-interval

from s2[l2,u2] for the operation:

xmin = min(shn(s2[l2,u2]))

xmax = max(shn(s2[l2,u2]))

ŝ2[l̂2, û2] = (2xmin× (2s2−1))[2xmin,2xmax ]

s1[l1,u1]�si s2[l2,u2] = snd(s1[l1,u1]×si
s ŝ2[l̂2, û2])

For the logical right-shift operation s1[l1,u1]�si
l s2[l2,u2], it is similar but the result is the

quotient of s1[l1,u1]÷si
u ŝ2[l̂2, û2].
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For the arithmetic right-shift operation s1[l1,u1]�si
a s2[l2,u2], it is also similar but

the result is the quotient of s1[l1,u1]÷si
s ŝ2[l̂2, û2]. Different from logically shifting, an

arithmetic right-shift operation needs to fill in the sign bit of the shifted number. In the case

of |shn(s2[l2,u2])|= 0∧|γ(s2[l2,u2])| 6= 0, it means every number in γ(s2[l2,u2]) is greater

than n. Thus, we also have

i f |shn(s2[l2,u2])|= 0∧|γ(s2[l2,u2])| 6= 0

s1[l1,u1]�si
a s2[l2,u2] =


0[−1,−1] i f ∀y ∈ γ(s1[l1,u1]) : y < 0

0[0,0] i f ∀y ∈ γ(s1[l1,u1]) : y≥ 0

1[−1,0] otherwise

3.1.2.3 Bit-Wise Operations

Since all the bit-wise operations, including the bit-wise not operation ∼si s1[l1,u1], the

bit-wise or operation s1[l1,u1] |sis2[l2,u2], the bit-wise and s1[l1,u1] &sis2[l2,u2], and the

bit-wise xor operation s1[l1,u1]⊕si s2[l2,u2], are similar to the corresponding one defined

in [30], we will not state them here.

3.1.2.4 Set Operations

For the set union operation s1[l1,u1]∪ s2[l2,u2], let ŝ = gcd(s1,s2), and let us define

four boolean variables: b1 = l2 ∈ γ(ŝ[l1,u1]), b2 = u2 ∈ γ(ŝ[l1,u1]), b3 = l1 ∈ γ(ŝ[l2,u2]),
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and b4 = u1 ∈ γ(ŝ[l2,u2]). We have

s1[l1,u1]∪ s2[l2,u2] =



ŝ[la,ua] i f b1∧b2∧b3∧b4

ŝ[l1,u1] else i f b1∧b2

ŝ[l2,u2] else i f b3∧b4

ŝ[l1,u2] else i f b1∧b4

ŝ[l2,u1] else i f b2∧b3

ŝb[lb,ub] otherwise

where [la,ua] =


[l1,u1] i f l1 = l2∧u1 = u2

[sg(mins, l1, ŝ),gs(maxs,u1, ŝ)] otherwise

and the computation of ŝb[lb,ub] is similar to the set union operation given in [32], so

we will not state it here. The set intersection operation s1[l1,u1]∩si s2[l2,u2] and the set

complement operation s1[l1,u1]\sis2[l2,u2] are similar to the ones defined in [32] and are

not described here.

3.1.2.5 Comparison and Truncation Operations

For the comparison operation s1[l1,u1]Rs2[l2,u2], where R is a relational operator, we

compare the ranges of the members of dsiu|s(s1[l1,u1]) and dsiu|s(s2[l2,u2]). If the operation

is to compare unsigned numbers, we use dsiu; otherwise we use dsis.

For the truncation operation s1[l1,u1] ↓si s2[l2,u2], we assume s2[l2,u2] give the set of

numbers of bits kept in the truncated value. In order to be meaningful, the number of kept

bits given by s2[l2,u2] should be smaller than n; otherwise the original number will not

be truncated. We borrow shn(s2[l2,u2]) from the shift operations defined above. Given a
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number x < n, let us define trun(s[l,u],x) as

trun(s[l,u],x) =


0[l&(2x−1),u&(2x−1)] i f l = u

s[l,u] i f ∀y ∈ γ(s[l,u]) : y&2x = 0

1[0,2x−1] otherwise

and we have

s1[l1,u1] ↓si s2[l2,u2] =
⋃

x∈shn(s2[l2,u2])

trun(s1[l1,u1],x)

3.2 Intermediate Static Analysis Language (iSAL) with VSA Semantics

The iSAL consists of 25 intermediate instructions which are used to encode the seman-

tics of instructions of different ISAs. These instructions are selected between trade-offs in

expressivity and compactness (namely, some instructions may be redundant since they can

be represented by a combination of others, but their presence makes the translation much

easier).

3.2.1 Syntax and Concrete Semantics

The syntax and concrete semantics of the intermediate instructions are shown in Tab.

3.1. From Tab. 3.1, we can observe that most of the intermediate instructions have three

operands (only two of them have two operands, i.e. not and brc). In the table, we use r to

restrict the operand to be a register, and use f to represent the operand is a status flag. There

are no restrictions on s and t, namely, each of them can be either a register or an immediate

number.

The first 10 instructions are arithmetic instructions. For an arithmetic operation ∗, let

∗m denote the result of this operation is in m-bit. Therefore, if the result needs more than

m bits to represent, there is a potential overflow. Two functions, hi and lo, are defined as
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using the high m
2 bits and the low m

2 bits of a m-bit number respectively. Furthermore, we

use ∗u to denote that the operands are treated as unsigned numbers in the operation; and we

use ∗s to denote that the operands are treated as signed numbers in the operation.

The next 3 instructions are about shift operations. For the left-shift operation, �n
0

means the result is confined in n bits (discarding the bits higher than n) and 0 is shifted in

from the right to the left, namely, the operation is the logical left-shift. For the right-shift

operations,�0 is the logical right-shift operation which shifts 0 in from the left to the right

and�msb(s) is the arithmetic right-shift operation which shifts the sign bit of s in (i.e. the

most significant bit of s given by the function msb).

We have 4 instructions for bit-wise operations, although we can just include not and

or instructions and deduce and and xor instructions by De Morgan laws. Thus, there is a

trade-off between compactness and expressivity.

The next 5 comparison instructions are used to check the relations between two operands.

As the arithmetic instructions, they distinguish between signed and unsigned comparisons.

If the designated relation is met, the first status flag operand will be set; otherwise, the flag

will be cleared.

ld and st are the only two instructions to operate memory. The second operand s gives

the load/store size in bytes and the third operand t gives the base address of the memory

operation. Given an address range, the mem function returns the corresponding collection

of memory cells.

The sequential control flow can only be changed by the conditional branch instruction,

i.e. brc instruction. The unconditional branches instructions can be modeled by setting the

first status flag operand as always-set.

Translation from a binary executable B in some ISA into the corresponding program

BT in iSAL can be achieved automatically provided the mapping of instructions is avail-

able. The encoded mapping captures the semantics of the instructions of the ISA using the

iSAL.
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Table 3.1: Syntax and Concrete Semantics of 25 Intermediate Instructions

Instruction Concrete Semantics
add r, s, t r := s+n t
sub r, s, t r := s−n t

muluhi r, s, t r := hi(s×2n
u t)

mululo r, s, t r := lo(s×2n
u t)

mulshi r, s, t r := hi(s×2n
s t)

mulslo r, s, t r := lo(s×2n
s t)

divu r, s, t r := s÷u t
divs r, s, t r := s÷s t

modu r, s, t r := s mod u t
mods r, s, t r := s mod s t

shl r, s, t r := s�n
0 t

shrl r, s, t r := s�0 t
shra r, s, t r := s�msb(s) t
and r, s, t r := s & t
or r, s, t r := s | t
not r, s r :=∼ s

xor r, s, t r := s⊕ t
cmpeq f, s, t if s = t then set( f ) else clr( f )
cmpleu f, s, t if s≤u t then set( f ) else clr( f )
cmples f, s, t if s≤s t then set( f ) else clr( f )
cmpltu f, s, t if s <u t then set( f ) else clr( f )
cmplts f, s, t if s <s t then set( f ) else clr( f )

ld r, s, t r := mem(t, t + s)
st r, s, t mem(t, t + s) := r
brc f, t if isset( f ) then goto(t)

The concrete semantics of a binary executable program (and its translated intermedi-

ate program) considers every possible execution path in all possible environments. This

concrete semantics may be an infinite mathematical object which is not computable. In

order to make the analysis tractable, some form of over-approximation is needed. Abstract

interpretation [9] is proposed to formalize the notion of over-approximation in a unified

framework. Based on abstract interpretation, an analysis like VSA can be used to verify

the properties of CPS software.
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3.2.2 Abstract Domains for VSA

Following the original work of VSA (which is summarized in [29] and has been briefly

described in Section 3.1), we define several abstract domains that are used in VSA.

In our virtual iSAL architecture, in addition to the registers in the encoded ISA, tempo-

rary registers can be declared and used in order to keep intermediate values in the process

of an instruction execution. There can be as many temporary registers as needed. Let

NormLoc denote the set of ordinary a-locs corresponding to target ISA registers, global

variables, and local variables, let FlagLoc denote the set of a-locs corresponding to status

flags used in the encoding, and let TempLoc denote the set of temporary a-locs correspond-

ing to the declared temporary registers and other entities which hold temporary values. We

have AbsLoc defined as

AbsLoc = NormLoc∪FlagLoc∪TempLoc

Let MemRgn denote the set of all the memory regions, which include the single global-

region and all the local-regions (since CPS software seldom use dynamic memory alloca-

tion, usually we can ignore heap-regions), and let V S denote the set of all the value-sets.

Thus, we have

V S = MemRgn→ ESI⊥

where ESI⊥ is the lifted extended strided-interval domain, i.e. ESI⊥ = ESI ∪{⊥}. Thus,

there is a special value-set vs⊥ ∈ V S such that ∀mr ∈MemRgn : [mr 7→ ⊥]. We also have

another special value-set vs> ∈V S such that ∀mr ∈MemRgn : [mr 7→ >].

Let B3 denote the Kleene three-valued logic domain, i.e. B3 = {TRUE,FALSE,UNKOWN}.

Let gr denote the global-region. Given a b∈ B3, we define an auxiliary function bvs : B3→
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V S as

bvs(b) =


vs⊥[gr 7→ 0[1,1]] i f b = TRUE

vs⊥[gr 7→ 0[0,0]] i f b = FALSE

vs⊥[gr 7→ 1[0,1]] otherwise

1

Also, let us define vsb : V S→ B3 as the inverse operation of bvs. In order to facilitate spec-

ifying the abstract semantics for the comparison instructions, we define a product domain

FS as

FS =V S×AbsLoc×V S×V S

Given a f s ∈ FS, the first component of f s (denoted as f s〈1〉) is the answer of function

bvs applied to the result of a comparison, the second component ( f s〈2〉) is the a-loc of the

second operand in a comparison instruction, the third component ( f s〈3〉) is the partition of

the value-set mapped from f s〈2〉 that makes the comparison TRUE, and the last component

( f s〈4〉) is the partition that makes the comparison FALSE.

An abstract state of VSA maps an a-loc a ∈ AbsLoc to a vs ∈ V S if a ∈ NormLoc∪

TempLoc, or to a f s ∈ FS if a ∈ FlagLoc. Let State denote the set of all the abstract states

of VSA. We have

State = AbsLoc→V S∪FS

Since the translation for a given binary executable program is has a finite length and the

target architecture has a fixed word size, all the domains described above are finite.

3.2.3 Abstract Semantics for VSA

Each intermediate instruction in the iSAL has an abstract semantic function for VSA

which transforms an abstract state to another state(s). Let IInst denote the set of all the 25
1Given a function f : A→ B, let f [x 7→ y] mean f (x) = y and ∀a ∈ A∧a 6= x : f (a) = f (a)
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intermediate instructions. Formally, we have this semantic mapping function

sm : IInst→ (State→ State+)

which assigns each intermediate instruction an abstract semantic function on State. Let us

also define an auxiliary function

al : IInst×{1,2,3}→ AbsLoc

that maps the ith operand of an intermediate instruction to its corresponding a-loc. For a

two-operand instruction χ , i.e. not or brc instruction, let al(χ,3) give ε ∈ TempLoc such

that ∀σ ∈ State : σ(ε) = vs⊥.

Let ASB ⊂ IInst denote the set of intermediate instructions in the first three groups

(i.e. the arithmetic, shift, and bit-wise instructions). Given an instruction α ∈ ASB and an

abstract state σ ∈ State, we have

sm(α)(σ) =


σ [al(α,1) 7→ op(α)vsσ(al(α,2))] i f al(α,3) = ε

σ [al(α,1) 7→ σ(al(α,2))op(α)vsσ(al(α,3))] otherwise

where op(α) gives the corresponding operation the instruction semantically performing,

and op(α)vs denotes the operation is performed on V S domain. The operations on V S

domain are based on the operations on strided-interval domain (ESI domain in our case),

which are defined in [30].

Let CMP ⊂ IInst denote the set of comparison instructions. Given an instruction β ∈
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CMP and an abstract state σ ∈ State, we have

sm(β )(σ) = σ [al(β ,1) 7→ f s] where

f s〈1〉= bvs(al(β ,2)op(β )vsal(β ,3))∧

f s〈2〉= al(β ,2)∧

f s〈3〉(op(β )vs)−1
σ(al(β ,3)) = FALSE∧

f s〈4〉op(β )vs
σ(al(β ,3)) = FALSE

where (op(β )vs)−1 gives the inverse relational operation of op(β )vs. The reason of us-

ing inverse operation is: in the case of the comparison giving TRUE/FALSE instead of

UNKNOWN, f s〈4〉/ f s〈3〉 is vs⊥ and we assume a relational operation on vs⊥ always gives

FALSE. In terms of comparing two value-sets, we only compare them if they have the same

V S type – either V Sglobal (i.e. having all the memory regions mapped to ⊥ except for the

global-region) or V Ssingle with the same valid memory region mr (i.e. having all the mem-

ory regions mapped to ⊥ except for the mr); otherwise, the comparison gives UNKNOWN,

and both f s〈3〉 and f s〈4〉 are set as σ(al(β ,2)).

Let η be either a ld or a st instruction, which uses the second operand to specify the

load/store size. Since there is barely an architecture that has a varying size in a specific

load/store instruction, we can assume vs2 = σ(al(η ,2)) ∈ V Sglobal and vs2(gr) = 0[w,w]

where σ ∈ State and w is a valid size value that can be loaded/stored in the target archi-

tecture. η also uses the third operand to specify the base memory address, which can

be an address of a static object, or an address of an object that is allocated in stack. For a

vs∈V S, let us define a function rg : V S→MemRgn such that rg(vs) gives the global-region

if vs ∈V Sglobal; otherwise rg(vs) gives the local-region of the procedure that is under anal-

ysis. Let vs3 = σ(al(η ,3)), and let Addr be the set of a-locs that are constructed from w,
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rg(vs3) and γ(vs3(rg(vs3))). Let←−η be a ld instruction. We have

sm(
←−
η )(σ) = σ [al(←−η ,1) 7→ tvs

d∈Addrσ(d)]

where tvs is the join operation on V S which is to memory region-wisely join extended

strided-intervals.

In terms of storing, there may be some a-locs overlapping with the a-loc(s) being mod-

ified by a store instruction. Let Ovl p be the set of a-locs that are overlapping with the

a-loc(s) being modified by a st instruction −→η . We have

sm(
−→
η )(σ) = σ

 ∀d ∈ Addr : d 7→ σ(al(−→η ,1)),

∀o ∈ Ovl p : o 7→ vs>


A brc instruction δ denotes the end of the current basic block. It is the only way to

change the control flow and fork the current state σ depending on f s = σ(al(δ ,1)). We

have

sm(δ )(σ) =


〈σ [ f s〈2〉 7→ f s〈3〉],σ⊥〉 i f vsb( f s〈1〉) = TRUE

〈σ⊥,σ [ f s〈2〉 7→ f s〈4〉]〉 i f vsb( f s〈1〉) = FALSE

〈σ [ f s〈2〉 7→ f s〈3〉],σ [ f s〈2〉 7→ f s〈4〉]〉 otherwise

where σ⊥ means ∀a ∈ NormLoc∪TempLoc : σ(a) = vs⊥∧∀ f ∈ FlagLoc : σ( f ) = f s⊥.

Therefore, a brc instruction partitions the σ into two ordered parts: the first true part is for

the branch taken execution and the second false part is for the fall-through execution.

3.3 Value-Set Analysis of iSAL Programs

VSA of the translated program in iSAL intends to derive the fixed-points of the abstract

states of each program point using iterations. In each iteration, we update the abstract states
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according to the abstract semantics described above.

3.3.1 Handling Delay Slots

Several architectures (e.g. MIPS) use delay slots to compensate the performance loss

when dealing with conditional branches.

Since the brc instruction intends to mean the end of a basic block and partitions the

σ ∈ State into a true part and a fall-through part, any intermediate instruction following a

brc instruction will not change the value-sets of the true partition. However, in the presence

of delay slots, this does not conform to the original code’s semantics.

Fortunately, the instructions in the delay slots are arranged by the compiler which does

not allow any of the instructions in the delay slots to have a dependency with the associated

conditional branch. Thus, when we perform VSA on a basic block, if the last few instruc-

tions are used as delay slots, we can rearrange the order of the analysis by processing them

before the corresponding conditional branch.

3.3.2 Join Function

A join semantic function is needed to combine the incoming abstract states when a basic

block has more than one predecessors in the control flow graph (CFG). Given two abstract

states σ1 ∈ State and σ2 ∈ State, we have the join function join : State× State→ State

defined as

join(σ1,σ2) =


∀a ∈ NormLoc : a 7→ σ1(a)tvs σ2(a),

∀b ∈ TempLoc : b 7→ vs⊥,

∀ f ∈ FlagLoc : f 7→ σ1( f )t f s σ2( f )


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where t f s is the join operation on FS domain. Given a f s1 ∈ FS and a f s2 ∈ FS, we define

t f s as

f s1t f s f s2 =


〈bvs(UNKNOWN),ε,vs⊥,vs⊥〉 i f f s1〈2〉 6= f s2〈2〉

〈 f s1〈1〉tvs f s2〈1〉, f s1〈2〉, otherwise

f s1〈3〉tvs f s2〈3〉, f s1〈4〉tvs f s2〈4〉〉

When joining two abstract states, we discard the value-set information of temporary a-locs,

since the information is not used in the new basic block. If a basic block has more than

two predecessors, a successive joining is performed, i.e. join(σn, join(. . . join(σ1,σ2))).

Moreover, if a predecessor ends with a brc instruction, depending on whether the new basic

block is the target of that brc instruction, the true/false part of the resultant states is used.

3.3.3 Handling Input Dependent Value-Sets

When analyzing a program that has input dependent variables, for the sake of safety,

these variables are supposed to be any possible numbers. In the context of VSA, an abstract

state maps an a-loc corresponding to such an input dependent variable to vs>. Since the

result of an operation on a vs> is also a vs>, the propagation of vs> will make the analysis

imprecise or even useless.

In order to improve the precision of analysis, we keep track of the operations on vs>

until a brc instruction is met. Since the brc instruction partitions the state into two parts

depending on some previous comparison, in each part, we use the information discovered

by the comparison to refine the vs> propagation chain. In the current work, we only keep

track of the chains of linear operations so as to reduce the complexity.
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3.4 Example – Handling Indirect Branches

As model-based control design tools become mature like Simulink, a large part of con-

trol software is designed by using formal specifications like finite-state machine (FSM) or

state chart, and its C code is generated by using a code generator like Simulink Coder.

Usually, the code generator opts for using switch statements to implement the transitions

between states.

However, the compilers often implement switch statements by using indirect branches,

whose presence makes reconstructing a whole CFG from a binary very challenging. Since

a typically static analysis is performed on the extracted CFG, how to precisely resolve the

target addresses of these indirect branches becomes essential.

As an example, we encode most of the instructions of MIPS ISA (without considering

floating-point, coprocessor, and exception instructions) using the iSAL, and show VSA can

precisely resolve the indirect branch instructions when reconstructing the CFG.

As shown in Fig. 3.1, the code has an input dependent variable x, and the switch state-

ment relies on the value of the input. At the address 0x4002bc, the brc intermediate in-

struction in the beqz MIPS instruction can determine: when v1 ≥ 6, v0 is 0 and the branch

will be taken; otherwise, the control falls through. Thus, the partitioned true part of the

state has v1 ≥ 6 and the false part has 0≤ v1 ≤ 5. However, since the value of x is stored

in a local variable whose address is given as (s8+12) in the binary code where s8 has al-

ready been set equal to sp (stack pointer register), we also need to handle the value-set

mapped from the a-loc corresponding to (s8+12) in the true and false parts partitioned by

brc, whereas the value of v0 at the address 0x4002c4 will still be any possible number as

x.

From v0 at the address 0x4002d4, we can observe that it can have 6 values ranging

from 0x45bcd0 to 0x45bce4, each of which is separated by 4. These 6 values are exact

data addresses where the indirect branch target addresses are stored. However, since the

target addresses stored at these 6 data addresses are not regularly structured, after the lw
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x is in mem(12(s8))

x ≥ 6

j is in mem(8(s8))

v0→1[0, 5]
v1→4[0, 20]
v0→0x460000
v0→0x45bcd0
v0→4[0x45bcd0,  
           0x45bce4]

due to no case 2

v1→1[0x80000000,  
           0x7fffffff]

Figure 3.1: A C code snippet with switch statements and compiled MIPS code

instruction at the address 0x4002d8, v0 will have an extended strided-interval 4[0x4002e4,

0x40032c] which corresponds to 19 values. In order to remove this imprecision, we can

derive the use-definition chain for the branch target register, and the target addresses are

given by the right hand side of the definitions.

We also encode some instructions of ARM ISA (only for this example) using the iSAL,

and VSA can also resolve the indirect branch instructions, as shown in Fig. 3.2. From Fig.

3.2, we can see the data for branch target addresses is put into the text section under ARM

architecture, which is a challenge as stated in Chapter 2. However, storing the jump table

in the text section saves some computation related to jump table address calculation (like in

the case of MIPS code, we need to calculate where the jump table is located before loading

the target address into v0). Therefore, at the address 0x815c, PC relative addressing is used
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to get the jump table. Since in ARM we can directly manipulate the PC register, the target

address is loaded into the PC register directly instead of “branch to a register” like MIPS

does.

x ≥ 6

j is in mem(-8(fp))

817c:
...

8188:
...

8194:
...

819c:
...

81ac:
...

r3→1[0x80000000,  
           0x7fffffff]
x is in mem(-12(fp))

Figure 3.2: A C code snippet with switch statements and compiled ARM code

3.5 Conclusion and Future Work

In this chapter, we extend the original strided-interval domain to more precisely track

the set of structured numbers, and also define the operations on this extended strided-

interval domain. We present the syntax and concrete semantics of the iSAL, which can

be used to encode the instructions of different ISAs. In order to achieve generic VSA,

we define the abstract semantics for the intermediate language, and discuss how to use it

in VSA. We also show an example on using the approach to reconstruct the CFG in the
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presence of indirect branches.

In the future, we want to try the approach on more architectures, and also want to extend

iSAL with more static analysis methods. Moreover, we want to try to analyze some control

software generated from Simulink or other model-based design tools.
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Chapter 4

Improving the Precision of Abstract Interpretation Based Cache Persistence Analysis

When designing hard real-time embedded systems, we need to perform schedulability

analysis to guarantee the stringent timing constraints will be met. Schedulability analysis

needs the worst-case execution time (WCET) of each real-time task as input. Therefore,

WCET analysis is one essential step in designing such systems, and has been studied exten-

sively (see [41] for a survey). In general, the exact WCET of a task is impossible to derive.

Thus, when estimating WCET, over-approximation is necessary to guarantee safety. How-

ever, in order to maximize the resource utilization, an WCET estimation should be as tight

as possible.

Due to the big timing gap between a cache hit and a miss, cache behavior can affect

the execution time significantly. In order to derive a tight WCET estimation, we want the

cache behavior analysis to be as precise as possible. Although model checking-based cache

analysis can yield precise results since all the possible executions are examined, potential

state space explosion makes it hard to use in practice [91]. Compared to model checking,

cache analysis methods based on abstract interpretation may lose some precision but can

achieve much better scalability. In this chapter, we focus on how to improve the precision

of cache analysis that is based on abstract interpretation [9].

As described in Chapter 2, when predicting the cache behavior, a widely used method is

to classify the memory references as – AH (it always hits the cache), AM (it always misses

the cache), PS (it is persistent if the memory reference may result in a cache hit/miss for the

first time but it hits the cache subsequently), and NC (it is not classified if the memory ref-

erence is not classified as AH, AM, or PS). These classifications are derived by performing

three different analyses, must, may, and persistence analyses, on the control flow graph

(CFG) [85]. While the must and may analyses are safe, it has been known that the original
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persistence analysis method proposed in [117] is unsafe. Several approaches have been pro-

posed to ensure safe cache persistence analysis [73, 74, 76]. However, different approaches

may suffer from certain pessimism under different scenarios (i.e. some references should

have been classified as PS if the analysis were precise).

In this chapter, we first analyze the sources of pessimism of safe cache persistence

analysis of single-level loops. Then, we propose two methods to eliminate these sources of

pessimism. We focus on persistence analysis of A-way set associative instruction caches

which use LRU (least recently used) replacement policy. However, the methods can be

easily extended to data/unified cache persistence analysis.

The main technical contributions of this chapter include: (1) We identify the sources

of pessimism that two recent state-of-the-art persistence analysis methods may encounter:

The method proposed in [73] has a pessimistic join function, and the method proposed in

[74] has a pessimistic update function; (2) We optimize the update function proposed in

[74] by finding a safe limit that bounds the range of the blocks whose potential maximal

ages should be increased in an updating process; (3) We integrate the improved method of

[74] and the method proposed in [73] to further safely reduce pessimism but the integration

may have a large storage overhead. By studying the relations of these two approaches, we

define two auxiliary functions to reduce this overhead in the integration; (4) We prove the

proposed approaches are safe, namely if a memory reference at a program point is classified

as PS, the memory block it accesses is not possibly evicted from the cache at this point after

being loaded; (5) We demonstrate the number of memory references classified as PS can

be increased by using the proposed methods from the experimental evaluations performed

on a set of benchmarks. We also empirically compare the storage space and analysis time

used by different methods. This work has been published in [11].

The rest of the chapter is organized as follows: Section 4.1 briefly summarizes two

recent state-of-the-art safe approaches for cache persistence analysis; Section 4.2 compares

these two approaches in terms of their sources of pessimism; Section 4.3 improves the
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update function for the approach based on may analysis, and proves such an improvement

is safe; Section 4.4 proposes an integration of the two existing approaches; Section 4.5

presents the evaluation and Section 4.6 concludes this chapter.

4.1 Background

We first present the objective of cache persistence analysis, and then briefly describe

two recent state-of-the-art safe approaches, namely the approach based on younger set

which is proposed in [73] and the approach based on may analysis which is proposed in

[74].

We model an A-way set associative cache as a sequence of v cache sets F = 〈 f1, f2, . . . , fv〉.

Each cache set is an independent fully associative cache and is modeled by a sequence of

A cache blocks L = 〈l1, l2, . . . , lA〉. Since the behaviors of the cache sets are independent of

each other, we can focus on one cache set for the sake of readability. The memory consists

of a set of w memory blocks M = {m1,m2, . . . ,mw}, and the program has t program points

P = {p1, p2, . . . , pt}.

4.1.1 Cache Persistence Analysis

Cache persistence analysis aims to categorize a memory reference that cannot be clas-

sified as AH at a program point in a loop as PS, if its accessed memory block stays in the

cache after the first time this block is loaded. If a memory reference is categorized as PS,

it can result in at most one cache miss. In the case of a loop bounded by n iterations, a

reference classified as PS instead of NC can reduce the number of possible misses by n−1.

Thus, we want to safely classify as many references as possible as PS for a loop.

In order to guarantee safety, we need to over-approximate a memory block’s maximal

age at every program point. If a memory block is not among the set of possibly evicted

memory blocks, any reference to it can be treated as PS. In order to keep track of possibly

evicted memory blocks, an additional cache block lA+1 is appended to L. If a memory
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block’s potential maximal age is greater than the cache’s associativity A, it will be added

into this additional cache block. Let > ≡ A+ 1, so we have L′ = 〈l1, . . . , lA, l>〉 model

a cache set to capture persistent behavior. Therefore, in cache persistence analysis, an

abstract set state ŝpers is often modeled as ŝpers ∈ DP = L′→ 2M, and ŝpers(l>) gives the

over-approximated set of memory blocks that are possibly evicted after being loaded into

this cache set.

In order to improve the precision, we want to tighten the over-approximation of a mem-

ory block’s maximal age. Therefore, we want to eliminate possible sources of pessimism

in the analysis to keep l> from containing too many persistent memory blocks.

4.1.2 Cache Persistence Analysis Based on Younger Set

The basic idea of the approach based on younger set (YS-Pers) is to keep track of all the

memory blocks that may be younger than a memory block for that block. Thus, a mem-

ory reference can be categorized as PS if the cardinality of the accessed memory block’s

younger set is less than A.

Let ysp(m) denote the younger set of a memory block m at a program point p, and let

Y S = M→ (2M)⊥ denote the set of all the younger set mappings, i.e. we have ysp ∈ Y S.

Since the ysp may be a partial function, namely there may be no younger set for some

memory block at some program point, we use the lifted co-domain (2M)⊥ = 2M ∪{⊥},

where ⊥ means “no younger set at all”. As defined in [73], ysp(m) is a superset of all the

memory blocks that may have smaller relative ages (younger) than m at p in some possible

program execution that reaches p. The potential maximal age of m can be calculated as

|ysp(m)|+1 which is in the range [1 . . .>], assuming we stop tracking when |ys(m)| reaches

A.

Therefore, given the younger set mapping ysp at a program point p, the ith cache set’s

abstract set state ŝp,i
pers is actually derived from ysp by applying the function GP : Y S×
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{1, · · · ,v}→ DP (i.e. ŝp,i
pers = GP(ysp, i)), and the GP function is defined as:

GP(ys, i) := [lx 7→ {m|set(m) = i∧ ys(m) 6=⊥∧ x = |ys(m)|+1} with x = 1, · · · ,A]1

where [δ 7→ θ ] denotes a function that maps δ to θ and set(m) gives the cache set number

which m is mapped to.

If a memory block m′ is going to be accessed at a program point p′, which is imme-

diately following a program point p, the younger set mapping ysp′ can be calculated by

performing the younger set mapping update function ÛY S : Y S×M→ Y S on ysp to take

into account the effect of the reference to m′ (i.e. ysp′ = ÛY S (ysp,m′)), and the ÛY S is

defined as:

ÛY S (ys,m′) := [m 7→


ys(m) if set(m′) 6= set(m)

ys(m)∪{m′} else if m′ 6= m

/0 otherwise

]

If a program point p is a join point of two points p1 and p2 at which the younger

set mappings are ysp1 and ysp2 respectively, the joined younger set mapping ysp can be

calculated by applying the younger set mapping join function ĴY S : Y S×Y S→ Y S (i.e.

ysp = ĴY S (ysp1,ysp2)), and the ĴY S is defined as:

ĴY S (ysp1,ysp2) := [m 7→



ysp1(m)∪ysp2(m) if ysp1(m) 6=⊥∧ ysp2(m) 6=⊥

ysp1(m) else if ysp1(m) 6=⊥

ysp2(m) else if ysp2(m) 6=⊥

⊥ otherwise

]

1If we do not stop tracking new potentially younger blocks when |ys(m)| reaches A, we would have
x = min(|ys(m)|+1,>).
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where ∪ is a special set union operation which may truncate some memory blocks in the

union at random to make the cardinality of the union at most A. For a persistent memory

block m, the resulted younger set ysp(m) always contains all the potentially younger blocks

of m (in the case that m is not persistent, namely it is possibly evicted, some of its younger

blocks may be truncated, but it does not affect m will be placed in the corresponding l>).

4.1.3 Cache Persistence Analysis Based on May Analysis

The approach based on may analysis (May-Pers) utilizes the over-approximation of

cache contents generated by a parallel running may analysis to guide the maximal age

updating. Basically, May-Pers is a combination of two analyses: (1) the may-part analy-

sis (whose join and update functions are ĴM and ÛM respectively) is the traditional may

analysis and it is used to provide the other analysis with an over-approximation of cache

contents; and (2) the persistence-part analysis (whose join and update functions are ĴQ and

ÛQ respectively) is a modification of the traditional may analysis which tracks the maximal

age of a memory block instead of the minimal age [74, 76]. The abstract set state domain

used in this approach is

Dmay-pers
P = DM ×DP = (L→ 2M)× (L′→ 2M)

where DM = L → 2M is the abstract set state domain for the traditional may analysis

and DP = L′ → 2M is the abstract set state domain for the original persistence analysis.

Thus, an abstract set state is a 2-tuple 〈ŝmay, ŝpers〉, a may-part ŝmay and a persistence-part

ŝpers respectively. While the parallel running may-part analysis is independent from the

persistence-part analysis, when the persistence-part analysis updates ŝpers it has to take

into account ŝmay.
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The update function ÛP : Dmay-pers
P ×M→ Dmay-pers

P for the May-Pers is defined as:

ÛP(〈ŝmay, ŝpers〉,m) := 〈ÛM (ŝmay,m),ÛQ(ŝmay, ŝpers,m)〉

where ÛM is the well-defined update function for the may analysis (whose definition can be

found in [85]), and ÛQ : DM ×DP ×M→ DP is the update function for the persistence-

part analysis, which is defined as:

ÛQ(ŝmay, ŝpers,m) :=



[l1 7→ {m},

li 7→ ŝpers(li−1)\{m}|i = 2 . . .A,

l> 7→ (ŝpers(lA)∪ ŝpers(l>))\{m}] if mayevict(ŝmay,m)

[l1 7→ {m},

li 7→ ŝpers(li−1)\{m}|i = 2 . . .A−1,

lA 7→ (ŝpers(lA)∪ ŝpers(lA−1))\{m},

l> 7→ ŝpers(l>)\{m}] otherwise

mayevict(ŝmay,m) := |{m′|m′ 6= m∧m′ ∈ ŝmay}| ≥ A

Basically, mayevict(ŝmay,m) checks whether the overestimated contents given by ŝmay have

potentially filled the cache set or not. If the mayevict function returns true, the abstract set

state ŝmay of the may analysis contains at least A many other memory blocks than m. In

this case, the cache set may be completely filled already without counting m, so an access

to m potentially increase the maximal ages of all the memory blocks in ŝmay and may cause

some blocks evicted (as shown in the first case of the update function). On the contrary,

if the mayevict function returns false, the cache set is definitely not full yet, so no eviction

will happen due to loading m. In this case, the maximal ages of all memory blocks will not
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exceed A (as shown in the second case of the update function).

The join function ĴP : Dmay-pers
P ×Dmay-pers

P →Dmay-pers
P for the May-Pers is defined as:

ĴP(〈ŝp1
may, ŝ

p1
pers〉,〈ŝp2

may, ŝ
p2
pers〉) := 〈ĴM (ŝp1

may, ŝ
p2
may), ĴQ(ŝp1

pers, ŝ
p2
pers)〉

where the ĴM function is the well-defined join function for the may analysis (whose defi-

nition can be found in [85]), and ĴQ : DP ×DP → DP is defined as:

ĴQ(ŝp1
pers, ŝ

p2
pers) := [li 7→

{m|m ∈ ŝp1
pers(li)∧ 6 ∃b ∈ [1 . . .>] : m ∈ ŝp2

pers(lb)} ∪

{m|m ∈ ŝp2
pers(li)∧ 6 ∃a ∈ [1 . . .>] : m ∈ ŝp1

pers(la)} ∪

{m|∃a,b ∈ [1 . . .>] : m ∈ ŝp1
pers(la)∧m ∈ ŝp2

pers(lb)∧ i = max(a,b)}]

The ĴQ function is much similar to the join function of the original persistence analysis,

which is similar to set union operation except that if a memory block has two different ages

in the two joining set states then the function takes the oldest one.

4.2 Sources of Pessimism

There have been several approaches proposed to safely analyze cache persistence. How-

ever, there has been little work done to compare and find out whether these safe approaches

are precise enough under different circumstances, and to improve their precision for a

single-level loop. Although the advantages and disadvantages of the approaches based

on may analysis and conflict counting are discussed in [76], that paper does not compare

them with the approach based on younger set that is proposed in [73].

Since we know that the approach based on conflict counting is not as precise as the

one based on may analysis (due to the loss of age information), we concentrate on the

comparisons between the approaches based on younger set and may analysis – we discuss

under what circumstances an approach may give pessimistic analysis results and show how

the approaches can complement each other.
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In order to enhance the readability of examples, we assume a 2-way set associative

cache is used. Memory blocks ma, mb, and mc are mapped into the same cache set that

we focus on. In Fig. 4.1, a basic block with a memory block shown inside (e.g. BB1

in the figure has ma shown inside) denotes the basic block contains an instruction which

references to the corresponding memory block; otherwise, the basic block (e.g. BB2 in the

figure has no relationship with the cache set we are examining.

ma ma

mb mc

ma

ma

mb

BB0

BB1 BB3BB2

BB4

BB7

BB8

BB9

BB10

p4

p6

BB5 BB6

p5

p1 p2 p3

p7

Figure 4.1: The CFG of a program: all of the references in the loop should be classified as
PS
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4.2.1 Pessimism in YS-Pers

The persistence analysis based on younger set is safe, but it may excessively overesti-

mate the maximal age of a memory block m at a join point p j, since the join function ĴY S

uses the concept of set union (as mentioned in section 4.1.2, the ∪ operation is used) to

ensure all the possibly younger memory blocks on all the joined paths are captured for m,

namely

ysp j(m) = ĴY S (. . . , ĴY S (yspi1 (m),yspi2 (m)), . . . ,yspin (m))

where {pi1, pi2 , . . . , pin} is the set of the exit points of p j’s n predecessors denoted as

pred(p j). Therefore, this may introduce some pessimism if ∃pix , piy ∈ pred(p j) : yspix (m) 6=

yspiy (m), especially when disjoint sets of memory blocks are accessed in the disjoint parts

of paths reaching pix and piy .

Consider the program point p4 in Fig. 4.1 which is a join point with four predecessors

(i.e. BB4, BB5, BB6, and BB9). Although the memory reference to ma in BB7 cannot be

classified as AH due to the possible path BB0→ BB2→ BB5→ BB7, we can easily observe

the reference should be classified as PS, in which case, this memory reference contributes

at most one cache miss to the loop independent of the number of its iterations.

However, when using YS-Pers to perform persistence analysis, we observe that at the

exit point of BB7’s each predecessor (i.e. the program points p1, p2, p3, and p7) the ma’s

younger set is as follows:

ysp1(ma) = {mb} ysp2(ma) = /0

ysp3(ma) = {mc} ysp7(ma) = {mb}

Since the join function of the younger set is based on the ∪ operation, at p4 the younger set

of ma is always:

ysp4(ma) =
⋃

p∈{p1,p2,p3,p7}
ysp(ma) = {mb,mc}
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Given the cache associativity is 2, it means before the memory reference to ma in BB7, ma

always has the age >, which prevents us from classifying the reference as PS.

4.2.2 Pessimism in May-Pers

Compared to YS-Pers, May-Pers can precisely classify the memory reference to ma

in BB7 as PS. Although the approach does not suffer from pessimism when joining the

states, it does not mean the approach will always yield more precise analysis. Actually, one

apparent source of pessimism in this approach comes from its pessimistic update function,

which we will try to optimize in the next section. In order to ensure safety, when accessing

a memory block m, the persistence-part update function ÛQ proposed in [74] increases the

potential maximal ages of all memory blocks if the abstract set state ŝmay of the parallel

running may-part analysis contains at least cache’s associativity A many other elements

than m, namely when the mayevict(ŝmay,m) is true, as described in section 4.1.3.
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ageΤ
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may-part

ma

pers.-part may-part pers.-part

mb

ma

mc

ma

mc

ma

may-part pers.-part

may-part pers.-part

P4 P5 P6 P7

may-part pers.-part

Figure 4.2: Abstract set states of Fig. 4.1 computed by the may analysis based approach

In order to help understand the source of pessimism in May-Pers, Fig. 4.2 shows the

iterative process of deriving the fixed points of the abstract set states corresponding to the

seven program points shown in Fig. 4.1. The dotted transition lines in Fig. 4.2 are related

to the join function, and the solid transition lines are related to the update function. The
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initial set state at each program point is an empty 〈ŝmay, ŝpers〉. The figure shows in the

second iteration every abstract set state reaches its fixed point (and the third iteration is

omitted, which only verifies each abstract set state has reached its fixed point).

Consider the program point p5 in Fig. 4.1. Since there is a memory reference to ma

in BB8, the execution of BB8 needs to update the corresponding abstract set state. When

performing the update function which is piecewise, we need to consider how many memory

blocks other than ma are in the may-part of the input abstract set state. In our case, as shown

in the circled part of Fig. 4.2, the number of other memory blocks is |{mb,mc}|= 2 equal

to the cache’s associativity, which means the cache set may be already full and the memory

reference to ma may cause an eviction. As a consequence, the update function will increase

the potential maximal ages of all memory blocks in the persistence-part of the abstract set

state and reset ma to be the youngest, as shown in the circled abstract set state at p6.

From the resultant abstract set state at p6, we can find that the memory reference to mb

in BB9 cannot be classified as PS (since its new age is >). However, we can easily observe

that it is indeed persistent in the loop independent of the number of its iterations. Again,

the precision is reduced while the analysis is safe.

On the contrary, the approach based on younger set can give us the PS classification

for the reference to mb in BB9, since at p6 the younger set of mb is ysp6 = {ma} which

contains one possibly younger memory block. Therefore, as a comparison, we can observe

the YS-Pers approach may introduce some pessimism due to joining different younger sets

while the May-Pers approach may introduce some pessimism due to updating the abstract

set state.

4.2.3 Overview of the Proposed Approaches

Our problem is how to eliminate the sources of pessimism described above to improve

the PS classification precision while keeping the analysis still safe. In order to solve this

problem, we propose two approaches in the next two sections: The first one is based on
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the May-Pers approach but improves its updating strategy (see Section 4.3); and the second

one is an integration of the improved May-Pers and YS-Pers approaches (see Section 4.4).

In Fig. 4.3, the relationship between the various approaches is illustrated by a Venn

diagram. The whole area represents all of the memory references that are persistent in the

program. As shown in the figure, the approaches based on may analysis (i.e. the origi-

nal May-Pers and the improved May-Pers) can classify some references as PS while the

approach based on younger set cannot; and vice versa (as we have discussed above). How-

ever, we can see that the amount of memory references classified as PS by the integration

approach dominates that by the others. In Section 4.5, this relationship is validated empiri-

cally by experiments.

Figure 4.3: Venn diagram illustrating the relationship between different approaches

4.3 More Precise Update Function for May-Pers

As discussed in 4.2.2, although the persistence-part update function ÛQ is safe, it is not

precise enough – it makes mb be treated as possibly evicted while in reality mb definitely
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stays in the loop after the first time being loaded. We improve the ÛQ function by using

a new strategy to decide where the process of maximal age updating should end, while

keeping the join function of the analysis unchanged.

The new persistence analysis update function Ûnew
P : Dmay-pers

P ×M→Dmay-pers
P is based

on the well-defined update function for the may analysis (i.e the ÛM function) and the

improved ÛQ function (i.e. the Ûnew
Q function), and the Ûnew

P function is defined as:

Ûnew
P (〈ŝmay, ŝpers〉,m) := 〈ÛM (ŝmay,m),Ûnew

Q (ŝpers,m,H(ŝmay,m))〉

The Ûnew
P function is much similar to the ÛP function described in Section 4.1.3, except the

update function for the persistence-part (i.e. the Ûnew
Q function instead of the ÛQ function).

In the Ûnew
Q function, we use a H : DM ×M→ {1, · · · ,A,>} function to select a relative

age h which bounds the possibly affected age range due to the memory reference to m. The

H function is defined as:

H(ŝmay,m) := min({y|1≤ y≤ A∧ ∑
1≤i≤y

|ŝmay(li)\{m}|< y}∪{>})

The H function uses the over-approximation of cache contents in ŝmay to try to find

the youngest y which is smaller than > and strictly bigger than the total number of the

memory blocks whose relative ages are possibly younger than this y; if it cannot find a

single y, the age > is used. Note that if such a y exists, it means in any concrete cache

set state, without considering m, the cache blocks 〈l1, . . . , ly〉 are not full of memory blocks

yet, since each age position of ŝmay contains all the memory blocks that are possibly in that

position. Thus, a memory reference to m leads to m having the youngest relative age and

there is no memory block being possibly evicted from the 〈l1, . . . , ly〉 region. Therefore, any

memory block’s potential maximal age which is already beyond y will not be increased. In

order to gain more precision, the H function returns the smallest y, since there may exist

more than one y when the cache set is not full. If such a y does not exist, the cache set

76



is possibly full, so every memory block’s potential maximal age should be increased and

the H function returns >. Based on this argument, we can have the safe but more precise

updated function Ûnew
Q defined as:

Ûnew
Q (ŝpers,m,h) :=



[l1 7→ {m},

l2 7→ (ŝpers(l1)∪ ŝpers(l2))\{m},

li 7→ ŝpers(li)\{m}|i = 3 . . .>] if h = 1

[l1 7→ {m},

li 7→ ŝpers(li−1)\{m}|i = 1 . . .h−1,

lh 7→ (ŝpers(lh)∪ ŝpers(lh−1))\{m},

li 7→ ŝpers(li)\{m}|i = h+1 . . .>] else if 1 < h≤ A

[l1 7→ {m},

li 7→ ŝpers(li−1)\{m}|i = 2 . . .A,

l> 7→ (ŝpers(lA)∪ ŝpers(l>))\{m}] otherwise

From the Ûnew
Q function we can see if the value of H(ŝmay,m) (i.e. h) is not >, we do not

need to pessimistically increase the maximal ages of all memory blocks like the one does

in the original approach (i.e. the ÛQ function), even if ŝmay contains more than or equal to

A many other elements than m.

For example, consider Fig. 4.1 again. When we need to update the corresponding

abstract set state at p5 as shown in Fig. 4.4 (which is the same as the circled one in Fig.
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4.2) due to the memory reference to ma in BB8, H(ŝp5
may,ma) gives h = 1:

when y = 1, |ŝp5
may(l1)\{ma}|= | /0|= 0 < y

when y = 2,
2

∑
i=1
|ŝp5

may(li)\{ma}|= | /0|+ |{mb,mc}|= 2≥ y

therefore h = H(ŝp5
may,ma) = min({1}∪{>}) = 1

which does not alter the state at all since Ûnew
Q (ŝp5

pers,ma,1) applies the first case of the Ûnew
Q

function. Thus, the reference to mb in BB9 can be safely classified as PS.

age 1

age 2

age Τ

ma  
ma

may-part

mb,mc

pers.-part

ma

mb

mc

may-part pers.-part

ma

mb,mc

ma

mb

mc

P5 P6

Figure 4.4: Updating abstract set state at p5 more precisely

In the following, we use Orig. May-Pers to represent the May-Pers using the original

update function ÛP , and use Impr. May-Pers to represent the May-Pers using our improved

update function Ûnew
P .

Theorem 4.3.1. The Impr. May-Pers approach is safe, namely at a program point p, any

memory block that is loaded into the cache is in an age position of ŝp
pers and this age is

greater than or equal to the possible maximal age of the block when the execution reaches

p (which implies if this block is possibly evicted from the cache, it is in the > position of

ŝp
pers).

Proof. The well-developed cache may analysis is safe [118, 119]. Since in Impr. May-Pers

the may analysis is parallel running independently, its soundness ensures that at a program

point p, any memory block that is possibly in the cache is in an age position of ŝp
may and
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this age is smaller than or equal to the possible minimal age of this block. We use this fact

to prove this theorem holds at any program point by mathematical induction.

Base case: At the beginning of any execution, we have a cold start such that no memory

block is loaded; and we also have an empty ŝpers. Therefore, this theorem holds at the

beginning.

Inductive hypothesis: At any program point which is immediately before a program

point p, this theorem holds.

Inductive step: The program point p can be either a point inside a basic block or a join

point of different control flows. We need to prove in either case this theorem holds at p.

• Case 1: the program point p is a point inside a basic block. In this case, p only has one

immediately previous program point, say p′. Let us assume a memory block m is ac-

cessed at p. Thus, 〈ŝp
may, ŝ

p
pers〉 is 〈ÛM (ŝp′

may,m),Ûnew
Q (ŝp′

pers,m,H(ŝp′
may,m))〉. Accord-

ing to the discussion above, we know ŝp′
may and ŝp

may contains the over-approximated

contents at the program point p′ and p respectively. Therefore, with the over-approximated

contents in ŝp′
may, according to the rationale of the H function, we know that H(ŝp′

may,m)

finds a position y which is the upper bound of a region 〈l1, . . . , ly〉 such that no mem-

ory block will be evicted from this region due to m entering the region (note that if

y is >, this argument is still valid since no block will be removed from the region

〈l1, . . . , l>〉). According to the inductive hypothesis, we know the theorem holds at

p′, from which we can deduce any block in a position lx has its possible maximal age

at most x. Since Ûnew
Q increase the position of a memory block except for m (whose

age becomes the youngest) in the region 〈l1, . . . , ly〉, we can deduce any block is in

a position of ŝp
pers which is at least its possible maximal age, namely this theorem

holds at p.

• Case 2: the program point p is a join point of the exit points of i ≥ 1 basic blocks,

say these exit points are p′1, · · · , p′i. According to the inductive hypothesis, we know
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the theorem holds at p′1, · · · , p′i, namely when the execution reaches either one of

p′1, · · · , p′i, say p′, the possible maximal age of any loaded memory block m is at

most x given m ∈ ŝp′
pers(lx). Since no memory block is accessed at a join point and the

join function ĴP uses the maximum relative age of a memory block in ŝp′1
pers, · · · , ŝ

p′i
pers,

we can easily deduce this theorem holds at the join point p.

Combining Case 1 and Case 2, we can see this theorem holds at the program point p.

Therefore, we conclude this theorem holds at any program point.

4.4 Integration of the Two Approaches

Impr. May-Pers can precisely classify both the memory references to ma in BB7 and

to mb in BB9 in Fig. 4.1 as PS, which cannot be achieved neither by YS-Pers nor by Orig.

May-Pers. However, Impr. May-Pers may become imprecise when the overestimated cache

contents becomes more conservative at a join point corresponding to a loop head (since may

analysis does not distinguish different iterations in a loop).

Consider the program whose CFG is shown in Fig. 4.5. We can easily see the memory

reference to mb in BB5 should be classified as PS, since it is not possible to be evicted

once it is loaded into the cache. However, as we can observe from Fig. 4.6 which shows

the process of deriving the fixed points of the abstract set states at the five program points

marked in Fig. 4.5, the reference to mb in BB5 cannot be classified as PS, since from the

fixed point of the abstract set state at p4 we can observe mb is among the possibly evicted

memory blocks before the reference.

The reason for this pessimism is that at the join point p2 may analysis merges the

information of different iterations to form an over-approximation of cache contents for

each age position. If using the younger set generation technique as described in section

4.4.2, ma can even be conservatively treated as younger than mb, which is not possible

in reality. Therefore, using this ŝmay, it becomes harder for H(ŝmay,mc) to find a position

better than >, which leads to the state with mb being treated as possibly evicted.
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Figure 4.5: The CFG of another program: all of the references in the loops should be
classified as PS

Loop unrolling can eliminate this pessimism but with a very large overhead [120]. For-

tunately, we can observe that YS-Pers is immune to this pessimism (ysp2(mb) = {mc}) since

the younger block information is combined but cannot be collapsed at join point (ma can

never be younger than mb and mc). Thus, we want to integrate YS-Pers and May-Pers to

take advantage of both approaches to further reduce the number of possibly evicted memory

blocks.
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Figure 4.6: Abstract set states of Fig. 4.5 computed by the Impr. May-Pers approach

4.4.1 Information Exchange between Abstract Domains

Intuitively, we can take advantage of YS-Pers and May-Pers by running the two meth-

ods separately and then classifying a memory reference as PS if at least one method can

yield such a classification. However, a more precise approach is to integrate YS-Pers and

May-Pers (May+YS-Pers) to form an analysis that runs these two methods in parallel and

increase a memory block’s potential maximal age if both the methods find its current max-

imal age is not safe anymore. Thus, we have the abstract domain EP for cache sets defined

as EP = Dmay-pers
P ×Y S. The join function JP : EP ×EP → EP just simply joins cor-

responding components independently by using their own join functions, so it is defined

as:

JP(〈ŝp1
may, ŝ

p1
pers,ysp1〉,〈ŝp2

may, ŝ
p2
pers,ysp2〉) := 〈ĴP(〈ŝp1

may, ŝ
p1
pers〉,〈ŝp2

may, ŝ
p2
pers〉), ĴY S (ysp1,ysp2)〉

The update function UP : EP ×M→ EP uses our improved update function Ûnew
P on
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Dmay-pers
P and the update function ÛY S on Y S, and is defined as:

UP(〈ŝmay, ŝpers,ys〉,m) := 〈ŝX
may,XY P(ŝX

pers, ŝ
Y
pers),ysY 〉

where ysY = ÛY S (ys,m)

ŝY
pers = GP(ysY ,set(m))

〈ŝX
may, ŝ

X
pers〉= Ûnew

P (〈ŝmay, ŝpers〉,m)

and the XY P : DP ×DP → DP function is similar to the join function ĴM for the tradi-

tional may analysis, which means it is to select the smaller one between two possible ages

for a memory block. The XY P function is defined as:

XY P(ŝX
pers, ŝ

Y
pers) := [li 7→ {m|∃a,b ∈ [1 . . .>] : m ∈ ŝX

pers(la)∧m ∈ ŝY
pers(lb)∧ i = min(a,b)}]

Since at a program point both ŝX
pers and ŝY

pers would have the same set of memory blocks

(that corresponds to the set of memory blocks having been referenced so far), we do not

need to check if any block is absent from either ŝX
pers or ŝY

pers.

The strategy that the update function UP uses to increase the age of a memory block

in ŝpers can be described as follows: When a memory reference causes the corresponding

abstract set state 〈ŝmay, ŝpers,ys〉 to be updated, ys is updated first. When we need to increase

a memory block m’s potential maximal age, we compare its current age x in ŝpers with the

age y computed from its younger set, i.e. y= |ys(m)|+1: if x < y, we increase m’s potential

maximal age as usual; otherwise, we do not increase its maximal age.

Theorem 4.4.1. The May+YS-Pers approach is safe.

Proof. Since we do not change the join function on each domain, after two safe abstract

states are joined, the resultant state is still safe. To see why the new update strategy is also

safe, we consider why a memory block m’s current safe maximal age x in ŝpers has to be

increased when using the update functions Ûnew
P : the contents in ŝmay show before x the
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cache is possibly full, and a newly inserted younger block might make x no longer safe.

When using the new update strategy, since we also track and update ys independently, the

y = |ys′(m)|+ 1 is the safe maximal age for m where ys′ is the younger set mapping after

the effect of the newly referenced memory block is taken into account. Thus, if y ≤ x, we

can guarantee x is still safe from independently updated ys and we do not need to increase

x.

For example, consider Fig. 4.5 again. As we have seen in Fig. 4.6, when the second

iteration is finished, mb is not as pessimistic as it is when the fixed points are reached

(as shown in the circled states in dashed line and in solid line). When considering the

memory reference to mc in the third iteration, we can observe ys yields ys(ma) = {mb,mc},

ys(mb) = {mc}, and ys(mc) = /0. Although the ŝpers updating still tries to increase mb’s

maximal age to age >, the age computed from ys(mb) prevents this from happening and

cause mb to stay in age 2. In the end, the fixed point of the abstract set state at p4 is the

same as the one at p4 of its second iteration (i.e. the circled states will become identical).

Thus, the reference to mb in BB5 can be classified as PS.

4.4.2 Younger Set Generation

For a memory block m, a less precise younger set (i.e. a bigger superset) can be derived

from the abstract set state 〈ŝp
may, ŝ

p
pers〉 at a program point p: (1) if m can be found in ŝp

pers,

i.e. ∃x∈ [1 . . .>] : m∈ ŝp
pers(lx), the potential maximal age of m is x, and each memory block

ma, whose age y in ŝp
may is strictly less than x, i.e. ∃y ∈ [1 . . .A] : ma ∈ ŝp

may(ly)∧ y < x, is

possibly younger than m (since the may-part gives the possible minimal age of a memory

block); therefore, one of m’s possible younger sets is the set of all the memory blocks whose

age in ŝp
may is less than m’s age in ŝp

pers. (2) if m cannot be found in ŝp
pers, it means it has

never been brought into the cache yet; thus, its younger set does not exist (i.e. ysp(m) =⊥).

Formally, we have a younger set generation function GY : DP ×M → (2M)⊥ which is
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defined as:

GY (〈ŝmay, ŝpers〉,m) :=



⋃
1≤i<x

ŝmay(li)\{m} if ∃x ∈ [2 . . .>] : m ∈ ŝpers(lx)

/0 if m ∈ ŝpers(l1)

⊥ otherwise

If there were no join points in the program, the generated younger sets could be as

precise as the tracked ones, but they would use much less memory, since the tracked ones

would have some identical younger blocks in more than one of them. However, when a

join point is met, a generated younger set may become less precise since some younger

information may be collapsed by may analysis.

The disadvantage of using the combination of YS-Pers and May-Pers is that: An abstract

set state 〈ŝmay, ŝpers,ys〉 may contain a lot of redundant information wasting a lot of storage

space, since the same younger sets of some memory blocks can be derived from 〈ŝmay, ŝpers〉

using the GY function. In order to decrease this storage overhead, we use two functions to

help to compress the size of an abstract set state when saving it and to restore the precise

information when using it. The compress function CP : EP → EP is defined as:

CP(〈ŝmay, ŝpers,ys〉) := 〈ŝmay, ŝpers, ÿs〉 where

ÿs(m) :=


ys(m) if GY (〈ŝmay, ŝpers〉,m) 6= ys(m)

⊥ otherwise

Thus, at a saving point (e.g. the entry and exit points of a basic block), if a memory block’s

younger set can be generated from the 〈ŝmay, ŝpers〉 of that point, there is no need to keep it

in the saved state. When a saved state needs to be used (e.g. joining several states at a join

point), the precise abstract set state can be restored by a restore function RP : EP → EP ,

85



which is defined as:

RP(〈ŝmay, ŝpers, ÿs〉) := 〈ŝmay, ŝpers,ys〉 where

ys(m) :=


ÿs(m) if ÿs(m) 6=⊥

GY (〈ŝmay, ŝpers〉,m) otherwise

As mentioned in [73], we do not need to continue tracking a memory block m’s younger

set when it reaches |ys(m)|= A. In our case, if |GY (〈ŝmay, ŝpers〉,m)| ≥ A and |ys(m)| ≥ A

both hold, these two sets are considered as equal.

4.5 Evaluation

We carry out the evaluation on the Mälardalen benchmarks [114], which we compile for

the MIPS R3000 architecture. The evaluation is performed by using our research prototype

tool, which is described in Appendix A. At first, we compare the number of instruction

memory references which are in the loops and cannot be classified as AH but can be clas-

sified as PS. In order to create enough conflicts to observe differences between different

methods, we utilize very small cache capacities (128B and 256B) in this experiment.

The experimental results are shown in Tab. 4.1, and the results validate the relationship

between different approaches which is described in section 4.2.3 (see the Venn diagram in

Fig. 4.3): (1) As shown in Tab. 4.1, the May+YS-Pers approach always gives the most

number of PS references (either “more than” or “as many as”), which shows it dominates

other approaches in terms of precision. (2) As we can observe from the results for bs

under the 128B/8B/2-way configuration, the Orig. May-Pers approach can classify more

references as PS than the YS-Pers approach (i.e. 6 references are classified as PS by the

Orig. May-Pers approach but none are classified as PS by the YS-Pers approach); whereas,

under other scenarios, the YS-Pers approach is not worse (sometimes much better) than the

Orig. May-Pers approach. Thus, this shows they are not comparable but empirically in
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Table 4.1: The Number of PS Instructions under Cache Configurations: 128B/8B/2-way
/

256B/8B/4-way (Capacity/Block Size/Associativity)

Benchmark Orig. May-Pers Impr. May-Pers YS-Pers May+YS-Pers
adpcm 29/52 48/53 48/53 48/53

bs 6/16 6/18 0/27 6/27
compress -/16 -/28 -/29 -/29

edn 28/49 44/98 42/118 44/121
expint -/3 -/23 -/23 -/27

ludcmp 3/5 4/9 3/47 4/48
matmult 0/2 2/2 3/4 3/7
minver 23/41 29/41 25/67 29/73

ns 1/11 2/11 3/27 3/29
prime -/0 -/2 -/0 -/2

statemate -/- -/- -/- -/-
ud 1/4 2/8 2/42 2/42

Note: we use “-” to denote every one is 0 to avoid cluttering.

most cases the YS-Pers approach is better. (3) However, the Orig. May-Pers and the Impr.

May-Pers approaches are comparable: the Impr. May-Pers approach can always classify

more number of references as PS than (or at least as many as) the Orig. May-Pers classifies.

(4) In some cases, the Impr. May-Pers approach can have more references classified as PS

than the YS-Pers (e.g. bs, edn, ludcmp, and minver benchmarks under the 128B/8B/2-way

configuration), but in some cases, the YS-Pers can give more PS. Thus, the Impr. May-Pers

and the YS-Pers are not comparable. Therefore, we can see the relationship shown in Fig.

4.3 is empirically validated.

The ratio of cache size to loop body size has a direct effect on the usefulness of persis-

tence analysis. From the results for statemate benchmark which has a relatively large loop

body compared to the cache sizes, we can see that neither of the approaches can classify

any reference as PS. This is expected, since too many capacity misses in each cache set

will evict just referenced instructions soon before they are referenced again. Many of the

benchmarks, such as compress and edn, also contain nested loops which have an effect on

the precision of persistence analysis. In the experiments, we do not apply the multi-level

method proposed in [120] to deal with the nested loops. Although using the multi-level
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method can improve the precision of any persistence analysis approach, the relationship

between different approaches will still stay the same.

Next, we want to compare how much storage space and analysis time is used by each

method. We save two abstract cache states for each basic block (the states of its entry

and exit points). In this experiment, we use 512B, 1KB, 2KB, and 4KB capacities with

8B block size and 4-way associativity. Since some of the used benchmarks are relatively

small compared to 2KB and 4KB cache capacities, we only show the results of adpcm and

statemate. The relative memory usage is shown in Fig. 4.7, and the relative analysis time

is shown in Fig. 4.8. The shown result is the ratio of memory (analysis time) used by a

method to the corresponding value used by Orig. May-Pers under the same configuration.

Figure 4.7: Relative storage space used by adpcm and statemate

Since there may exist redundant information in YS-Pers, we expect it requires more

space. However, from Fig. 4.7, it is interesting to observe that: as the ratio of the total

instruction size to the capacity decreases, the ratio of memory used by YS-Pers to that used

by Orig. May-Pers decreases as well. When the cache capacity increases, there are fewer
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Figure 4.8: Relative analysis time of adpcm and statemate

instructions mapped into the same cache set, so each memory block has fewer younger

blocks, which means less redundant information for a single memory block. From Fig.

4.8, we can find May+YS-Pers requires more analysis time than the other approaches. One

reason is the analysis iterates more times, and the other reason is it compresses/restores

younger block information when processing a basic block in order to save more memory

space. Tab. 4.2 shows the ratio of memory used in May+YS-Pers by using CP/RP to that

without using them. As we can see, the memory space saving is more than 50%.

Table 4.2: Memory Usage Ratio (Compressed / Uncompressed)

Benchmark 512B/8B/4way 1KB/8B/4way 2KB/8B/4way 4KB/8B/4way
adpcm 0.259 0.326 0.384 0.510

statemate 0.194 0.220 0.320 0.457
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4.6 Conclusion

In this chapter, we first analyze the sources of pessimism in two recent state-of-the-

art safe persistence analysis methods. After identifying the update function of the may

analysis-based approach is too pessimistic, we define a new safe update function for that

approach but achieve more precision. We also integrate the approaches based on younger

set and may analysis together to eliminate more pessimism. Through the evaluations, we

observe the proposed techniques can improve the precision of cache persistence analysis.

We also observe the trade-offs between precision, memory usage, and analysis time (i.e.

the more precision, the more time and/or space spent).
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Chapter 5

Top-Down and Bottom-Up Multi-Level Cache Analysis for WCET Estimation

Recently, multi-level cache analysis has drawn much attention in real-time systems

[61, 62, 77, 78, 64], since there is a rising need of exploiting the high-performance proces-

sors, which are often equipped with multi-level caches. However, compared to single-level

cache analysis, multi-level cache analysis is much more challenging. Besides the sequence

of memory references, there is a need to take into account the effects of the behavior of

one cache level on the behavior of other cache levels (e.g. filtering memory accesses and

invalidating memory blocks), which can be different depending on the type of the cache

hierarchy.

Typically, there are three cache hierarchy types, which are inclusive, exclusive, and

non-inclusive. Multi-level inclusive caches require that the contents at upper cache levels

must be a subset of the contents at lower cache levels. On the contrary, multi-level exclusive

caches require that the contents at a cache level should not be duplicated at any other cache

levels. Multi-level non-inclusive caches allow duplicated contents existing at any cache

level, but they do not strictly enforce the inclusion. Moreover, there are some hybrid cache

hierarchies, which have some inclusive and/or exclusive cache levels and other levels being

non-inclusive. In this chapter, we call a cache hierarchy a multi-level inclusive cache as

long as it maintains the inclusion property at some cache level(s).

Compared to an exclusive/non-inclusive cache hierarchy, a cache hierarchy enforcing

inclusion has less effective cache capacity, but the inclusion property can significantly sim-

plify the maintenance of cache coherence [121]. Therefore, multi-level inclusive caches

are widely used in many multi-core architectures. A multi-level cache analysis framework

that can precisely analyze cache hierarchies that enforce inclusion becomes necessary for

WCET estimation.
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Most of the current approaches target multi-level non-inclusive cache analysis, and it

is not straightforward to extend these approaches to tightly analyze inclusive caches, since

the invalidation behavior introduced by maintaining the inclusion property requires making

conservative decisions in order to ensure safety [64]. The main idea in this chapter is that

this pessimism can actually be reduced by analyzing the multi-level inclusive caches in a

bottom-up direction, which is counter-intuitive in contrast with the natural top-down cache

hierarchy access direction that is used in existing methods for multi-level cache analysis. In

this chapter, the top-down direction is referring to the direction from the uppermost cache

level (i.e. L1) downto the lowest cache level, and the bottom-up direction is referring to the

opposite.

The main technical contributions of this chapter are: (1) We propose an approach which

analyzes all the inclusive caches in the bottom-up direction first, and then analyzes the

rest non-inclusive caches in the top-down direction. Due to the bottom-up analysis, the

invalidation behavior becomes visible at the time of analyzing upper levels; (2) We propose

a concept of aging barrier to capture the effects of the invalidations caused by inclusive

caches, and by using the aging barriers, we can safely slow down the increase of memory

block ages in a cache that is above an inclusive cache level, so more precise must and

persistence analyses can be achieved; (3) We evaluate the proposed approach using a set

of benchmarks, and we find the proposed approach can tighten the WCET estimation by

12.2% on average, compared to the approach proposed in [64]. In this chapter, we only

consider multi-level inclusive instruction caches for a single processor. Although the effects

of data references and inter-core interferences are not considered, this approach can serve

as a basis for such extensions. Our approach has been published in [12].

The rest of the chapter is organized as: Section 5.1 shows why a multi-level inclusive

cache is hard to analyze for WCET estimation; Section 5.2 gives the system model consid-

ered in this chapter; Section 5.3 presents our multi-level inclusive cache analysis; Section

5.4 formally proves the proposed approach is safe and can terminate; Section 5.5 evaluates
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the proposed approach; and Section 5.6 concludes this chapter.

5.1 Problem Statement

In the case of single-level cache analysis, only the effects of the memory reference

sequences need to be taken into account. In order to make the analysis scalable, most

of the approaches are based on abstract interpretation. An abstract interpretation based

approach aims to assign a cache hit/miss classification (CHMC) to each memory reference

according to the abstract cache states (ACSs) derived by three different analyses [85, 76].

The analyses are usually performed on the control-flow graph (CFG) reconstructed from

the low-level code of the program. At a given program point, a must analysis is used to

determine the set of memory blocks that are definitely in the cache, so a memory reference

to a block being in the set can be classified as always hit (AH); a may analysis is used to

determine the set of memory blocks that are possibly in the cache, so a memory reference

to a block not being in the set can be classified as always miss (AM); a persistence analysis

is used to determine the set of memory blocks that stay in the cache once they are loaded,

and a memory reference to such a block is classified as persistent (PS) or first miss (FM);

and, if a memory reference cannot be classified as AH, AM, or PS, it is classified as not

classified (NC).

When analyzing multi-level caches, it is also important to consider the effects of other

cache levels, like cache access filtering and memory block invalidation. For example, if we

treat every possible access at a level as always happening, the analysis may become unsafe,

since doing so may underestimate the set reuse distances1 of memory blocks [61].

For a reference at a cache level, a cache access classification (CAC) can be used to rep-

resent whether the cache access at this level will occur: always (A) denotes the access will

always occur, never (N) denotes the access will never happen, and uncertain (U) denotes

1In [61], the set reuse distance between two memory references to the same block at a cache level is
defined as the relative age of the memory block when the second reference occurs.
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the access may occur [61]. In order to ensure safety, the updates of the abstract cache states

due to U accesses need to take into account the two possible cases (access occurring and

not occurring).

In the case of multi-level non-inclusive cache analysis, the CAC for a reference r at a

cache level l can be derived from the CHMC and CAC for r at l−1 (as described in [61]),

and the behavior of l will not be affected by any lower cache level. However, in the case

of analyzing cache hierarchies containing inclusive caches, the CAC for r at l cannot be

safely derived from CHMC and CAC for r at l−1. The reason is the behavior of l depends

not only on the behavior of l− 1, but also on the invalidation behavior induced by some

lower inclusive cache level(s): When a memory block is evicted from a lower inclusive

cache level, all the contents that belong to this memory block need to be invalidated from

its upper cache levels (the invalidated memory blocks are called inclusion victims).

Example: Fig. 5.1 shows a 3-level inclusive cache, where L1 is 2-way set associative,

L2 is 4-way set associative, and L3 is 8-way set associative (at each level, only one set is

shown). We assume L1 has the smallest cache block size and L3 has the biggest, so a block

in L1 is a sub-block of some block in L2 and that block in L2 is a sub-block of some block

in L3. For a memory block m in L3, let ṁ denote a m’s sub-block in L2, and let m̈ denote

a ṁ’s sub-block in L1. For example, we have m̈a ⊂ ṁa ⊂ ma. If the next reference needs

the information that is in mx (mx is also mapped to the shown set of L3), the oldest ma in

that set needs to be evicted. The eviction of ma will also invalidate m̈a in L1 and ṁa in

L2 to maintain the inclusion property. Due to the invalidation, m̈h in L1 can live longer,

and depending on which sub-block of mx is needed by the reference, there may be some

“holes” left in L1 and L2.

In [64], multi-level non-inclusive cache analysis is adapted to multi-level inclusive

cache analysis. To achieve this, several conservative decisions are made on the CAC and

CHMC for a reference at a cache level due to any possible invalidation to ensure safety: (1)

Except for L1 which is always accessed, the CAC at any other level should be classified
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Figure 5.1: Invalidation due to the maintenance of the inclusion property of L3

as U; (2) If a reference is classified as AH or PS at a level, this CHMC may be changed

into NC depending on the analysis of lower inclusive levels; (3) Even if a memory refer-

ence is classified as AM at a level, this CHMC has to be changed into NC. In this way,

although safety is ensured, the tightness of the estimation may suffer a lot. Therefore, we

need a method that can more precisely analyze the effects of multi-level inclusive caches

on WCET estimation.

5.2 System Model

We focus on a general multi-level inclusive cache model. The model has p cache levels,

where p ≥ 2, among which q levels are inclusive, where p > q ≥ 1, and the other p− q

levels are non-inclusive2. We also assume the time for a processing element to access

a cache level is bounded and predictable, which can be achieved by using deterministic

interconnects to connect the caches, like TDMA buses [122].

Let L = {lx|1 ≤ x ≤ p} be the set of all the cache levels, in which lx denotes the xth

cache level. Let I be the set of all the inclusive cache levels, and let N be the set of all the

non-inclusive cache levels. Thus, we have L = I∪N
∧

I∩N = /0
∧
|I|= q. Since it does not

2It has no meaning for L1 cache to be inclusive/non-inclusive. Later, we treat L1 as non-inclusive to
facilitate the presentation. Thus, we assume p > q not p≥ q.
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matter whether l1 is inclusive or non-inclusive, we can simply assume l1 ∈ N, so neither I

nor N is an empty set. Fig. 5.2 gives two examples of the models focusing on single cores

of two multi-core architectures.

 inclusive

non-inclusive  inclusive

 inclusive

L1 private …. L1 private

 inclusive

….
L1 private

P

…. L1 private L1 private …. L1 private

P P P PP

  } ,{   }{   } , , 312321 llNlIlllL {   lN   l lI   l l lL }{},{},,{ 132321

Figure 5.2: Two examples of the models with respect to a single core

We assume at each level the cache is set associative, and least recently used (LRU)

replacement policy is used. The size of a cache block can be different at different cache

levels, and it is common to assume the block size does not increase as the level goes up.

It is also common to assume the capacity decreases as the level goes up. Let Clx denote

the cache at the cache level lx, let Alx denote the associativity of Clx , and let slx denote the

number of cache sets of Clx . Sometimes we use “cache level” to actually mean the cache

located at that level if there is no ambiguity.

Although we do not consider exclusive caches in the model, we can easily add them

into our analysis by using the approach proposed in [64]. Basically, the exclusive cache

levels can be collapsed by concatenating them to the end of the upper level to form a single

level for the analysis, as long as they all have the same number of cache sets and the same

cache block size. In this chapter, we focus on how to analyze multi-level caches in the

presence of invalidations caused by inclusion enforcement, so we simply consider multi-

level instruction caches in terms of a single processor. This work can serve as a basis for

analysis of multi-level data or unified caches, that may also suffer from invalidations, in
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terms of a multi-core processor.

In order to facilitate the presentation, we introduce the following notations. As de-

scribed in [85], an abstract cache state is a mapping from a cache set number to an abstract

set state, where an abstract set state is a mapping from a position to a set of memory

blocks. For the cache Clx , let αmust
lx , α

may
lx , and α

pers
lx denote the abstract cache states of Clx

with respect to the cache must, may, and persistence analysis respectively; and let ACSmust ,

ACSmay, and ACSpers denote the sets of all of the abstract cache states of these three analy-

ses. For an abstract cache state αlx (that is either αmust
lx , α

may
lx , or α

pers
lx ), let αlx(i) give the

ith abstract set state of αlx , and let αlx(i)(h) give the set of memory blocks corresponding

to the hth position in αlx(i).

Let U must and J must represent the update and join functions for single-level cache

must analysis. Similarly, let U may and J may represent the update and join functions for

single-level cache may analysis. These two sets of functions are well-known and defined in

[85]. Furthermore, let U pers and J pers represent the update and join functions for single-

level cache persistence analysis. Since the original persistence analysis has been known

unsafe, we can use the corresponding functions of the safe persistence analyses defined in

[73] or [76].

For a memory reference r at a cache level lx, let mr
lx denote the memory block that con-

tains the information r needs with respect to the cache block size and the number of cache

sets in Clx . We use mr
lx ∈ Clx to denote the needed memory block is in the correspond-

ing concrete set state of Clx , and use mr
lx ∈ α t

lx to denote the block is in the corresponding

abstract set state of t-analysis at this level, where t is either must, may, or persistence.

5.3 Multi-Level Inclusive Cache Analysis: Going Top-Down or Bottom-Up?

To our knowledge, existing work analyzes the cache hierarchies in a top-down direction,

since it is the natural direction of accessing a multi-level cache. As long as there are no

invalidations at any cache level, a top-down analysis can be safe and precise. However,
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when there are inclusive caches in the cache hierarchy, a top-down analysis cannot capture

the possible invalidation behavior precisely, since the invalidations appearing at a cache

level are actually caused by the inclusive caches located below this level. Thus, as discussed

in [64], conservative decisions have to be made to ensure safety which makes the analysis

pessimistic.

In order to make the analysis of multi-level inclusive caches more precise, we propose a

safe approach which analyzes the cache hierarchy in a rather counter-intuitive way: We first

analyze all the inclusive cache levels in the bottom-up direction so as to make the possible

invalidation behavior visible at a cache level, and then we analyze all the non-inclusive

levels in the traditional top-down direction taking into account the revealed invalidations.

The analysis process is shown in Fig. 5.3.
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…

inclusive

non-inclusive 

…
...

…
...

non-inclusive

inclusive

non-inclusive 

inclusive

non-inclusive

bottom-up

top-down

…
…

Figure 5.3: Multi-level inclusive cache analysis: going bottom-up and top-down

Our bottom-up analysis of inclusive caches is based on the following observation, that

is related to the amount of information that can be derived for the access to an inclusive

cache level ly from the state of Cly .

Lemma 5.3.1. When a memory reference r occurs,

1. ly will be definitely accessed, if mr
ly 6∈Cly .

2. ly will be possibly accessed, if mr
ly ∈Cly .
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Proof. If mr
ly is not in Cly , it means all the contents of mr

ly are not in any Clx neither, where

l1 ≤ lx < ly, due to the enforced inclusion property of Cly; so ly will be definitely accessed.

However, if mr
ly is already in Cly , we cannot determine whether there are some sub-blocks

of mr
ly that have the needed contents at above levels only from the state of Cly , so ly will be

possibly accessed.

Based on this lemma, we show that we can first analyze each inclusive level in the

bottom-up direction safely, and use the results of one inclusive level’s analyses to guide its

upper levels’ analyses to derive more precise CHMC. Note that for a memory reference r

which may access the cache level lx, we can always use J t(U t(α t
lx ,m

r
lx),α

t
lx) to handle

the access uncertainty so as to carry out a safe t-analysis at this level, where t is either must,

may, or persistence [61]. However, the more uncertainty we can resolve, the more precise

the analysis can become.

5.3.1 Last Inclusive Cache Analysis

The proposed multi-level inclusive cache analysis begins with the last inclusive cache.

There can be other non-inclusive caches located between the last inclusive cache and the

main memory. Let us assume the last inclusive cache level corresponds to lLIC ∈ I, so we

have ∀lx ∈ L : x > LIC =⇒ lx ∈ N.

5.3.1.1 Last Inclusive Cache May Analysis

At a program point, if a memory block is not in the abstract cache state of a safe may

analysis of the cache, it is definitely not in any concrete state of the cache. Therefore, if we

can safely perform a may analysis of the last inclusive cache, we can use the α
may
lLIC

to safely

classify some memory references as AM at a cache level lx where 1≤ x≤ LIC based on the

inclusion property.

For the may analysis of the last inclusive cache, we define the join function J may
LIC and
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update function U may
LIC as follows:

J may
LIC = J may

U may
LIC (αmay

lLIC
,mr

lLIC
) =


J may(U may(αmay

lLIC
,mr

lLIC
),αmay

lLIC
) if mr

lLIC
∈ α

may
lLIC

U may(αmay
lLIC

,mr
lLIC

) otherwise

where J may
LIC is the join function of the single-level cache may analysis, and the update

function U may
LIC is defined with respect to the two cases in Lemma 5.3.1 for a memory refer-

ence r: If mr
lLIC
6∈α

may
lLIC

, we can deduce mr
lLIC
6∈ClLIC

(this is formally proven in Lemma 5.4.1),

so it is certain that lLIC will be accessed, and using U may(αmay
lLIC

,mr
lLIC

) is certainly safe; if

mr
lLIC
∈α

may
lLIC

, mr
lLIC

may be in ClLIC
and lLIC may be accessed, so we use J may(U may(αmay

lLIC
,mr

lLIC
),αmay

lLIC
)

to safely update the α
may
lLIC

by taking into account both the access occurring and not occur-

ring.

Therefore, at a program point, α
may
lLIC

contains all the memory blocks that are possibly

in ClLIC
when the execution reaches this point. If a memory reference r is classified as AM

by the last inclusive cache may analysis (i.e. mr
lLIC
6∈ α

may
lLIC

), we can safely categorize r as

AM at any cache level lx where 1 ≤ x ≤ LIC, since, according to the inclusion property, if

a memory block is absent from the underlying inclusive cache, it is also absent from all of

the included upper-level caches. Therefore, compared to the top-down approach proposed

in [64], which needs to conservatively change any reference classified as AM to NC at any

cache level, the approach is more precise.

5.3.1.2 Last Inclusive Cache Must and Persistence Analysis

At a program point, the proposed must and persistence analyses of the last inclusive

cache depend on the α
may
lLIC

of that point. This is because only the information deduced from
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α
may
lLIC

can be used to determined whether the lLIC will be definitely accessed according to

Lemma 5.3.1.

For the last inclusive cache must (resp. persistence) analysis, we define the join function

J must
LIC (resp. J pers

LIC ) and update function U must
LIC (resp. U pers

LIC ) as follows:

J must
LIC = J must

U must
LIC (αmust

lLIC
,mr

lLIC
) =


J must(U must(αmust

lLIC
,mr

lLIC
),αmust

lLIC
) if mr

lLIC
∈ α

may
lLIC

U must(αmust
lLIC

,mr
lLIC

) otherwise

J pers
LIC = J pers

U pers
LIC (α pers

lLIC
,mr

lLIC
) =


J pers(U pers(α pers

lLIC
,mr

lLIC
),α pers

lLIC
) if mr

lLIC
∈ α

may
lLIC

U pers(α pers
lLIC

,mr
lLIC

) otherwise

where J must
LIC (resp. J pers

LIC ) is just the join function of the single-level cache must (resp.

persistence) analysis, and similar to U may
LIC , for a memory reference r, the update function

U must
LIC (resp. U pers

LIC ) is defined to safely update the αmust
lLIC

(resp. α
pers
lLIC

) by using the join

function to merge the two abstract cache states (i.e. one state corresponds to the access

occurring and the other corresponds to the access not occurring), if mr
lLIC
∈ α

may
lLIC

(i.e. mr
lLIC

is possibly in ClLIC
); otherwise, mr

lLIC
is definitely not in ClLIC

, so it can more precisely update

the abstract cache state by knowing the access definitely occurs.

Thus, at any program point, the memory blocks contained in αmust
lLIC

are definitely in ClLIC
,

and the memory blocks not contained in the > age positions of α
pers
lLIC

are persistent when

the execution reaches this point. If a memory reference r is classified as AH by the last

inclusive cache must analysis (i.e. mr
lLIC
∈ αmust

lLIC
), this reference will cause no cache misses
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at lLIC, but may result in misses at a cache level lx where 1 ≤ x < LIC. In other words, this

classification for this memory reference is only locally safe. If r is classified as AH by the

last inclusive cache must analysis, no memory blocks need to be evicted from Clx because

of this reference, so no invalidations are enforced by ClLIC
. Similarly, if a memory reference

r is classified as PS by the last inclusive cache persistence analysis (i.e. mr
lLIC

is not in > of

the corresponding set of α
pers
lLIC

), r will result in at most one cache miss at lLIC, but may cause

more than one misses at a cache level lx where 1≤ x < LIC. Finally, if r is classified as PS

by the last inclusive cache persistence analysis, at most one memory block will be evicted

from ClLIC
so that at most one invalidation enforcement can be caused because of r.

5.3.2 Aging Barriers

In order to analyze a cache located above an inclusive cache level more precisely, the

effects of the invalidations need to be captured. Since the invalidations are caused by lower

inclusive caches, compared to the top-down approach, one advantage of the bottom-up

approach is the invalidation behavior becomes visible when analyzing an upper level.

At a cache level, if a memory block is invalidated due to the maintenance of the inclu-

sion property, a “hole” will be left in the cache; until this “hole” is filled by some memory

block, any access to the corresponding cache set will not increase the ages of the memory

blocks that are behind this “hole”. Yet, it does not mean the age of a memory block behind

the “hole” will not be decreased, since a reference to such a block will decrease its age to

1 and fill the “hole”, in which case another “hole” will be created behind the filled “hole”.

A “hole” will be filled and no new one will be created when the referenced memory block

is not in the cache.

We propose a concept of aging barrier to capture this “hole” behavior so as to perform

more precise must and persistence analyses of a cache that may suffer from invalidations.

Without loss of generality, we present the concept in terms of an A-way set associative

cache C which has s cache sets.
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Definition 5.3.2 (Aging Barrier). A valid aging barrier (i, j) satisfies 1≤ i≤ s
∧

1≤ j≤ A,

and represents an unused position within the range [1, j] in the ith cache set, which prevents

the age of any memory block in the ith abstract set state of αmust or α pers from increasing

if the age is already greater than or equal to j for an access.

We treat an aging barrier (i, j) as an abstract must “hole”: if there is a valid aging

barrier (i, j) at a program point, in any concrete state of C, there must be a corresponding

real “hole” appearing in the ith cache set of C within the position range [1, j]. Thus, j

serves as the position upper bound of the real “hole”. For example, the aging barrier (1,2)

represents either the 1st or the 2nd young memory block in the 1st cache set is invalidated

and the position it occupied becomes available.

It is possible to have multiple valid aging barriers with respect to the ith cache set, which

are listed as (i, j1), · · · ,(i, jk) where k ≥ 1. In that case, there are certainly at least k real

“holes” in the ith cache set, whose positions are bounded by j1, · · · , jk respectively. Note

that it is valid to have multiple identical j’s with respect to the ith cache set, as long as the

multiset 3 formed by these upper bounds satisfies the condition: Given any position pos in

the cache set, the total number of j’s with j ≤ pos is at most pos. Let Ξ denote the set of

all of the valid multisets formed by “hole” position upper bounds of a cache set. Formally,

we have:

ξ ∈ Ξ ⇐⇒ max(ξ )≤ A
∧
∀pos ∈ {1, · · · ,A} :

pos

∑
j=1

ν(ξ , j)≤ pos

where max(ξ ) gives the maximum member and ν(ξ , j) gives the multiplicity of j in the

multiset ξ .

Definition 5.3.3 (Aging Barrier State). An aging barrier state β : {1, · · · ,s}→ Ξ is a map-

ping from a cache set number to a multiset of “hole” position upper bounds.

Given an aging barrier state β , the set of all the valid aging barriers is {(i, j)ν(β (i), j)|i ∈
3A multiset is a set in which members are allowed to appear more than once.
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{1, · · · ,s}
∧

j ∈ β (i)}, which is a multiset and uses ν(β (i), j) as the multiplicity of (i, j).

Let ABS denote the set of all the aging barrier states of C. We define three functions to

operate on the aging barrier states.

Let>=A+1 be the invalid aging barrier indicator. The function A : ABS×{1, · · · ,s}×

{1, · · · ,A,>}→ ABS is used to add an aging barrier into the state and is defined as: 4

A (β , i, j) = β
[
i 7→ β (i)]c { j}

]

where β (i)]c { j}=


β (i)]{ j} if β (i)]{ j} ∈ Ξ

β (i) otherwise

The function adds the aging barrier (i, j) into the state β only if the result of β (i)]{ j}

(] is the multiset sum operation) is a member of Ξ; otherwise, it keeps β unchanged. For

example, given a 4-way set associative cache (i.e. A is 4), when we want to add an aging

barrier (1,3) into the state β , the function A needs to check if β (1)]{3} is a member of

Ξ. Assume we have β (1) = {2,2}; then β (1)]{3}= {2,2,3} is a member of Ξ according

to the condition given above – the maximum member in {2,2,3} is 3 that is less than 4 and

no matter what pos is, the total number of the members that are less than or equal to pos is

at most pos. Therefore, after applying A (β ,1,3), we will have β (1) = {2,2,3}.

The function U : ABS×{1, · · · ,s} → ABS×{1, · · · ,A,>} is used to acquire an aging

barrier from the state and is defined as:

U (β , i) =
〈
β
[
i 7→ β (i)\{minc(β (i))}

]
,minc(β (i))

〉

where minc(β (i)) =


min(β (i)) if β (i) 6= /0

> otherwise

Given a cache set number i, the resultant aging barrier depends on whether the mapped mul-

4For a function f : X → Y , f
[
i 7→ k

]
means f (i) = k

∧
∀x ∈ X ∧ x 6= i : f (x) = f (x).
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tiset β (i) is empty: If β (i) is not empty, minc(β (i)) equals min(β (i)) that is the minimum

member in β (i), and the composite (i,min(β (i))) will be a valid aging barrier; otherwise,

minc(β (i)) equals > and there is no valid aging barrier for the ith cache set. Since a valid

aging barrier may be acquired in which case this aging barrier should no longer be in the

state, the function changes the state by mapping i to β (i)\{minc(β (i))} (\ is the multi-

set asymmetric difference operation). For example, let us continue with the last example

in which we have β (1) = {2,2,3}. Since the minimum member in {2,2,3} is 2, after

applying U (β ,1), we have a valid aging barrier (1,2) and β (1) becomes {2,3}.

The function J : ABS×ABS→ ABS is used to join two aging barrier states and is

defined as:

J (β1,β2) =
[
i 7→ β1(i)uc β2(i)|i = 1, · · · ,s

]

where β1(i)uc β2(i) =


/0 if β1(i) = /0

∨
β2(i) = /0

{ j1, · · · , jk} otherwise

where k = min(|β1(i)|, |β2(i)|)
∧

j1 = max(minc(β1(i)),minc(β2(i))
∧

j2 = max(min2
c(β1(i)),min2

c(β2(i))
∧

· · ·

jk = max(mink
c(β1(i)),mink

c(β2(i)))

where mink
c(β (i)) is similar to minc(β (i)) except it gives the kth minimum member of

β (i) if β (i) has at least k members (of course, if β (i) does not have that many members,

it gives >). When joining two aging barrier states, for the ith cache set, the cardinality

of β1(i)uc β2(i) (i.e. k) is the smaller one of the cardinalities of β1(i) and β2(i), which

implies the number of aging barriers that can be derived from J (β1,β2) will never exceed

that derived from either β1 or β2. In the case of k ≥ 1, j1 is the bigger one between the
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two minimum members of β1(i) and β2(i), which safely captures an aging barrier since

there must be a “hole” within position range [1, j1] along either path; and j2 is the bigger

one between the 2nd minimum members of β1(i) and β2(i). We repeat this process until

we have jk which is the bigger one between the kth minimum members of β1(i) and β2(i).

For example, assume we have β1(1) = {2,2} and β2(1) = {1,3,4}. After applying β =

J (β1,β2), we will have β (1) = {2,3}, since, for the 1st cache set, we have k = 2, j1 = 2,

and j2 = 3 when performing {2,2}uc {1,3,4}.

Definition 5.3.4 (Partial Ordering). Let β1 and β2 be two aging barrier states. We define

β1v β2 if and only if ∀i∈{1, · · · ,s} : |β2| ≤ |β1|
∧

minc(β1(i))≤minc(β2(i))
∧

min2
c(β1(i))≤

min2
c(β2(i))

∧
· · ·
∧

min|β2|
c (β1(i))≤min|β2|

c (β2(i)).

Therefore, we have β1 v β2, if and only if, for any cache set i, the mapped multisets

β1(i) and β2(i) satisfy: the number of members of β2(i) is not greater than that of β1(i), and

when we iterate the two multisets in the ascending order in parallel, the iterated number

from β2(i) is not smaller than that from β1(i). According to Definition 5.3.4, we can

deduce that β1 vJ (β1,β2) and β2 vJ (β1,β2). Let β⊥ =
[
i 7→ {1, · · · ,A}|i = 1, · · · ,s

]
and β> =

[
i 7→ /0|i = 1, · · · ,s

]
; thus, according to Definition 5.3.4, we can deduce that

∀β ∈ ABS : β⊥ v β v β>.

5.3.3 Integrating Aging Barriers into Update Functions

In order to realize more precise must and persistence analyses of the caches which

suffer from invalidations, we need to integrate the aging barriers into the update functions

of these analyses. Let M denote the set of all the memory blocks. Given a reference to a

memory block m ∈M that is mapped to the ith set of C and an aging barrier (i, j), where

j ∈ {1, · · · ,A,>} (recall that we use > as the invalid aging barrier indicator), we redefine

the update function U
must

: ACSmust×M×{1, · · · , A,>}→ ACSmust for the must analysis

106



as:

U
must

(αmust ,m, j) =


U must(αmust ,m) if k ≤ j

αmust[i 7→ εi
]

otherwise

where k =


h if m ∈ αmust(i)(h)

> otherwise

∧

εi =

[
ι1 7→ {m},

ιn 7→ αmust(i)(ιn−1)|n = 2, · · · , j−1,

ι j 7→ αmust(i)(ι j)∪αmust(i)(ι j−1),

ιn 7→ αmust(i)(ιn)\{m}|n = j+1, · · · ,A
]

The rationale of the redefined update function is: If there is no valid aging barrier avail-

able (i.e. j = >), or if the current valid aging barrier (i, j) is not needed (i.e. m ∈

αmust(i)(h)
∧

j ≤ A
∧

h ≤ j, in which case this update never attempts to affect the ages

of the memory blocks “protected” behind this aging barrier), then we can simply use the

U must to update the αmust ; otherwise, the current aging barrier can prevent the memory

blocks that are behind it in the corresponding abstract set state from aging, since it means

there is a “hole” before j (including j) that needs to be filled, and we can only increase

the ages of the memory blocks until j, and keep the ages of other blocks not increased

(excluding m which will be moved to the first age position if it is in the current state). Fig.

5.4 shows an example of using an aging barrier to update αmust more precisely – if mc in

αmust is invalidated, since it is definitely in the cache before the invalidation with an over-

estimated maximal age 3, a “hole” will definitely appear within the range [1,3], namely we

have an aging barrier with j = 3; when md is referenced, even if it is not in the cache, there

is a “hole” to fill, the maximal ages of mb and ma should not be increased. Therefore, using
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the redefined function U
must

leads to more precise analysis.

mc

invalidated

mb

 mc

a “hole” in this range

{ma} {mb} {ma}

{md} {mb}

{mb}{md} {ma}

md w
ith

out

aging barri
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m
d  with

j=3

aging barrier









Figure 5.4: Must analysis with aging barriers

Similarly, when updating α pers, given an aging barrier (i, j) and the k which is the

affected position range upper bound when applying the normal U pers, if we have k ≤

j, we simply perform the normal U pers; otherwise, we know in any concrete state of C

there will be a “hole” in the ith cache set within the position range [1, j], so we can take

advantage of this information to carry out a more precise update. We redefine the update

function U
pers

: ACSpers×M×{1, · · · ,A,>}→ACSpers for the persistence analysis. When

performing U
pers

(α pers,m, j), if we have j < k, for the memory blocks whose maximal

ages are already greater than or equal to j in the ith abstract set state, their ages will not be

increased (but one of them may be decreased to 1 if that block is the referenced one).

We maintain an aging barrier state for each cache which is located above at least one

inclusive cache level so as to achieve more precise analysis (described in the next subsec-

tion).

5.3.4 Cache Analysis above One Inclusive Cache Level

When the last inclusive cache analysis is completed, we move up to the second last

inclusive level if there is any; otherwise, we start from the first cache level l1 and move

down to analyze the non-inclusive caches. No matter which level lx (where 1 ≤ x < LIC)

we are going to analyze, this level is located above at least one inclusive cache level (i.e.
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the last inclusive cache level lLIC), so the cache at this level may suffer from invalidations

caused by the underlying inclusive cache(s).

When we analyze Clx with respect to the CFG of the program, at a join point, given

the abstract cache states α t
lx,1,α

t
lx,2 of the exit points of two predecessors, where t is either

may, must, or persistence, we can simply perform J t(α t
lx,1,α

t
lx,2) to safely join the abstract

cache states. However, at a program point in a basic block where r is the reference that is

going to occur, we need to take into account the invalidation behavior to safely update the

abstract cache state of the corresponding analysis.

In order to facilitate the presentation, let us assume ly is the uppermost inclusive level

that includes lx, and all the abstract states (i.e. α
may
lx αmust

lx , α
pers
lx , and βlx) and all the

arguments (e.g. the number of cache sets slx and the associativity Alx) at the cache level lx

are the attributes of Clx .

Since we first analyze the inclusive caches in the bottom-up direction, the analyses

of Cly are already completed at the time of analyzing Clx , and these analyses of Cly have

captured the possible invalidations caused by the inclusive levels lower than ly if there are

any. Thus, from α
may
ly , we can deduce whether the contents of a memory block are definitely

absent from Cly , and from α
pers
ly , we can deduce whether the contents of a memory block

are possibly absent from Cly . Thus, we only need to check lx against ly and not any other

lower inclusive cache levels.

5.3.4.1 May Analysis

As described in [64], it is unsafe to update the abstract cache state α
may
lx without con-

sidering the possible invalidations caused by its underlying inclusive levels, since there

possibly exist some “holes” so that some memory blocks at lx may live longer. Fortunately,

since we first analyze all the inclusive caches in the bottom-up direction, when we analyze

Clx , the invalidation behavior induced by its underlying inclusive levels has already become

visible.
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First, let us redefine the update function Umay : ACSmay×M×{1, · · · ,A,>}→ ACSmay

for the may analysis of Clx that is located above the inclusive level ly. Similar to the U
must

and U
pers

described in 5.3.3, given a memory reference r, in the U
may

(αmay
lx ,mr

lx , j), j

controls the upper bound on the aging process. However, different from the U
must

and

U
pers

, where j is given by an aging barrier, here j is decided by finding the youngest

position in which there is a possible inclusion victim (i.e. there is possibly a “hole” within

the range [ j,Alx ] if such a j can be found). Thus, if we have j = >, we just perform the

normal U may; otherwise, for the memory blocks whose ages are already greater than or

equal to j, their ages will not be increased (but may be decreased to 1 by the reference).

The steps to update α
may
lx are given in Algorithm 5.1.

Algorithm 5.1: Update α
may
lx above an inclusive level ly

Input: r, lx, ly
Result: updated α

may
lx

i← mr
lx mapped set number;1

j←>;2
k← 1;3
for j =>∧ k ≤ Alx do4

if the contents of a memory block mlx ∈ α
may
lx (i)(k) are possibly evicted according to α

pers
ly after r5

then j← k;
else k← k+1;6

if lx is inclusive then7
if mr

lx 6∈ α
may
lx (i) then α

may
lx ←U

may
(αmay

lx ,mr
lx , j);8

else α
may
lx ←J may(U

may
(αmay

lx ,mr
lx , j),αmay

lx );9
else10

get CAC for r at lx from CHMC and CAC at lx−1;11

if CAC is always then α
may
lx ←U

may
(αmay

lx ,mr
lx , j);12

else if CAC is never then α
may
lx ← α

may
lx ;13

else α
may
lx ←J may(U

may
(αmay

lx ,mr
lx , j),αmay

lx );14

The first loop (line 4-6) checks whether there is a memory block mlx whose contents

are in a block located in a > position of α
pers
ly after the reference r (i.e. α

pers
ly has taken

into account the effect of the reference), namely it checks if mlx is a sub-block of a possibly

evicted memory block due to the reference at ly. If there is such a block found in a position

k ≤ Alx , increasing the ages of the memory blocks which are not less than k may make the

may analysis unsafe (since there may be a “hole” within the range [k,Alx ]), so we set j as
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the youngest k; otherwise, j is >.

If lx is an inclusive level (line 7-9), we are still moving up in the cache hierarchy, so

it is not possible to decide the access occurrence by using the traditional CAC method.

Therefore, like in the last inclusive cache analyses, the algorithm checks against itself (i.e.

α
may
lx ) to find out if the memory block mr

lx referenced by r is possibly in the cache. If not,

this inclusive level will be definitely accessed, so we update α
may
lx directly; otherwise, we

have to safely update α
may
lx by taking into account the two cases (i.e. access occurring and

not occurring). If lx is a non-inclusive level (line 10-14), we have already analyzed all the

inclusive levels and are moving down in the cache hierarchy. Therefore, no matter which

type lx−1 is, where x > 1 (when lx is l1, it is always accessed), the analyses of Clx−1 have

been completed, so it is possible to derive the CAC for r at lx from the CHMC and CAC

for r at lx−1, and then to update the α
may
lx according to the derived CAC.

The last step is to update α
may
lx by removing all the memory blocks whose contents are

definitely not in α
may
lx . We perform this step by referring to the contents of α

may
ly at the same

point, after the may analysis of Clx is completed (i.e. at each program point, its α
may
lx has

reached a fixed-point).

5.3.4.2 Must Analysis

In the must analysis of Clx , we maintain both the abstract cache state αmust
lx and the aging

barrier state βlx . As we discussed above, at a join point, we simply perform J must(αmust
lx,1 ,αmust

lx,2 )

to safely join two abstract cache states. Similarly, given two aging barrier states βlx,1,βlx,2,

we simply perform J (βlx,1,βlx,2) to join these two aging barrier states. At a program point

in a basic block, we update the αmust
lx and βlx following the steps described in Algorithm

6.1.

The loop (line 1-7) first checks whether a memory block in αmust
lx is definitely an inclu-

sion victim (i.e. the contents of the block are not in α
may
ly after the reference r). If there

is such a block, there will be a “hole” created by removing this block from αmust
lx , since it
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Algorithm 5.2: Update αmust
lx and βlx above an inclusive level ly

Input: r, lx, ly
Result: updated αmust

lx , updated βlx
foreach memory block mlx ∈ αmust

lx do1
if the contents of mlx are definitely evicted according to α

may
ly after r then2

i← mlx mapped set number;3
j← the position where mlx is in αmust

lx (i);4
βlx ←A (βlx , i, j);5
remove mlx from αmust

lx ;6

else if the contents of mlx are possibly evicted according to α
pers
ly after r then remove mlx from7

αmust
lx ;

i← mr
lx mapped set number;8

〈β ′lx , j〉 ←U (βlx , i);9
k← the position where mr

lx is in αmust
lx (i) (>, if not found);10

if lx is inclusive then11

if mr
lx 6∈ α

may
lx then αmust

lx ←U
must

(αmust
lx ,mr

lx , j);12

else αmust
lx ←J must(U

must
(αmust

lx ,mr
lx , j),αmust

lx );13
else14

get CAC for r at lx from CHMC and CAC at lx−1;15

if CAC is always then αmust
lx ←U

must
(αmust

lx ,mr
lx , j);16

else if CAC is never then αmust
lx ← αmust

lx ;17

else αmust
lx ←J must(U

must
(αmust

lx ,mr
lx , j),αmust

lx );18

βlx ←A (β ′lx , i,max( j,k));19

was definitely in the cache Clx before the reference r. Thus, we add an aging barrier corre-

sponding to this certainly invalidated block into βlx (line 3-6). In order to guarantee safety

of the must analysis, the algorithm also (line 7) takes into account all the possibly evicted

memory blocks by removing them from the αmust
lx .

In the next steps, we first acquire an aging barrier (i, j) by applying 〈β ′lx , j〉= U (βlx , i)

(line 9). Since lx can be either inclusive or non-inclusive, line 11-18 take into account the

two possibilities, which is similar to the corresponding steps in the may analysis. A valid

aging barrier (i, j) (i.e. we have j 6= >) means there must be a “hole” in the ith cache set

within the position range [1, j], different from that in Algorithm 5.1 where j is chosen to be

the position lower bound of a possible “hole”. After updating αmust
lx , we update the aging

barrier state by performing A (β ′lx , i,max( j,k)) to add an aging barrier back to the state

(line 19): (1) If we have k ≤ j, we perform the normal update function U must , and line
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19 will add the acquired aging barrier back to the aging barrier state (since we have k ≤ j,

max( j,k) is always j, and no matter whether j is > or not, after line 19 the βlx will be the

same as the input βlx) – in the case of j 6= >, the acquired aging barrier is valid, since we

have k ≤ j, the “hole” represented by the aging barrier has not been filled yet, so after line

19, βlx becomes the same as the input βlx ; in the case of j = >, no valid aging barrier has

been acquired from the input βlx at line 9, so β ′lx was still the same as the input βlx , and after

line 19, βlx is the same as β ′lx as well as the input βlx . (2) If we have j < k = >, it means

the referenced memory block mr
lx is not in the ith set state of αmust (since k = >), and the

acquired aging barrier is valid (i.e. j 6= >); so mr
lx intends to fill the “hole” represented

by this valid aging barrier; since we have max( j,k) = k = >, A (β ′lx , i,>) will not change

the state β ′lx which represents the valid aging barrier has already been used. (3) If we have

j < k < >, it means mr
lx is definitely present in any concrete state, so no other memory

blocks will be loaded due to this reference, and we can safely guarantee there will be a

“hole” in the range [1,k], even if the “hole” that was in the range [1, j] has been filled; we

have max( j,k) = k <>, and (i,k) is an valid aging barrier; so A (β ′lx , i,k) will add the new

valid aging barrier into the state β ′lx .

5.3.4.3 Persistence Analysis

For the persistence analysis, the steps to update α
pers
lx are similar to the steps in Algo-

rithm 6.1. The differences are: (i) We set j according to the aging barrier state βlx main-

tained by the must analysis of Clx , but we do not change βlx in the steps, namely we only use

the fact that if there is a valid aging barrier available before executing the reference, there is

a “hole” within the position range [1, j]; (ii) We do not remove memory blocks from α
pers
lx ,

but for any memory block in α
pers
lx which is not in the > position yet, if its contents are not

in α
may
ly after the reference r or its contents are in a > position of α

pers
ly after the reference

r, move it to the corresponding set’s > position.

There can also be some non-inclusive caches located below the last inclusive cache
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level, but they do not suffer from any invalidation. When moving down in the cache hier-

archy, the analysis of any of them is the same as the traditional multi-level non-inclusive

cache analysis. Theoretical analysis of the approach’s safety and termination is provided

in the next section.

5.4 Theoretical Analysis of Safety and Termination

In order to prove that the proposed multi-level (inclusive) cache analysis is safe, we

need to prove the may, must, and persistence analyses of the last inclusive cache are safe,

and we also need to prove the analyses of the cache located above at least one inclusive

cache are safe.

When analyzing a cache level, we can safely use the well-defined join function of the

single-level cache may, must, or persistence analysis at a join point for the corresponding

analysis [61], so we can focus more on proving the defined update functions are safe.

5.4.1 Safe Analyses of the Last Inclusive Cache

Given the last inclusive cache level lLIC, we first prove the proposed may, must, and

persistence analyses are safe.

Lemma 5.4.1. The last inclusive cache may analysis is safe. In other words, at a program

point p, α
may
lLIC

contains all of the memory blocks that are possibly in ClLIC
when the execution

reaches p.

Proof. Since J may
LIC is J may which is safe, we only need to prove U may

LIC is safe, which we

do by mathematical induction.

Base case: At the beginning of any execution, ClLIC
does not have any valid blocks (cold

start), and the α
may
lLIC

is also empty showing no memory block is possibly in ClLIC
.

Inductive hypothesis: Before a reference r which accesses the memory block mr
lLIC

,

α
may
lLIC

contains all the memory blocks that are possibly in ClLIC
.
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Inductive step: When executing the reference r, we have two possibilities. (1) If mr
lLIC
6∈

α
may
lLIC

, mr
lLIC

is definitely not in ClLIC
(deduced from the inductive hypothesis). Based on

Lemma 5.3.1, we know that ClLIC
will be definitely accessed. Therefore, U may(αmay

l ,mr
lLIC

)

gives the safe result. (2) If mr
lLIC
∈ α

may
lLIC

, mr
lLIC

is possibly (may or may not be) in ClLIC

(given by the inductive hypothesis), so it is uncertain whether ClLIC
will be accessed. Thus,

J may(U may(αmay
lLIC

,mr
lLIC

),αmay
lLIC

) captures this uncertainty and gives the safe result. Comb-

ing (1) and (2), we conclude Lemma 5.4.1 holds.

Lemma 5.4.2. The last inclusive cache must analysis is safe. In other words, at a program

point p, the memory blocks that are contained in αmust
lLIC

are definitely in ClLIC
when the

execution reaches p.

Proof. Since J must
LIC is J must which is safe, we only need to prove U must

LIC is safe. As shown

in the definition of U must
LIC , for a memory reference r, only when mr

lLIC
6∈ α

may
lLIC

, we directly

use U must(αmust
lLIC

,mr
lLIC

); otherwise, we conservatively join the two states coming from two

possibilities (the access occurring and not occurring). Thus, as long as when mr
lLIC
6∈ α

may
lLIC

,

ClLIC
will be definitely accessed, the update function U must

LIC is safe. From Lemma 5.4.1, it

is straightforward to see that this is true.

Lemma 5.4.3. The last inclusive cache persistence analysis is safe. In other words, at a

program point p, any memory block that has been loaded into ClLIC
is in an age position of

α
pers
lLIC

which is greater than or equal to its possible maximal age when the execution reaches

p (which implies if it is possibly absent from ClLIC
, it is in a > position of α

pers
lLIC

).

Proof. This proof will be the same as the proof of Lemma 5.4.2, except we prove the

defined U pers
LIC is safe.

5.4.2 Safe Analyses of Inclusive Caches Located above One Inclusive Cache

Since we analyze all the inclusive caches in the bottom-up direction at first, we prove

the analyses of the inclusive caches that are located above the last inclusive cache are safe.
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Let lv be the second last inclusive cache level.

Lemma 5.4.4. The may analysis of Clv is safe. In other words, at a program point p, α
may
lv

contains all the memory blocks that are possibly in Clv when the execution reaches p.

Proof. As α
may
lv is updated according to Algorithm 5.1, we need to prove the steps in the

algorithm will not overestimate the age of a memory block. In the algorithm, j is calculated

and used to control the upper bound on the aging process of updating α
may
lv . Note that if

we have j ≤ j′, where j′ represents the smallest position where has a “hole”, line 7-9 will

be always safe (some blocks’ ages will be underestimated but will not be overestimated).

Based on Lemma 5.4.3, we know the last inclusive cache persistence analysis captures all

the possibly evicted memory blocks in the > positions of α
pers
lLIC

. Thus, line 4-6 will give a

j such that j ≤ j′ holds.

When α
may
lv of each point reaches the fixed-point, we also remove the memory blocks

from α
may
lv whose contents are not in the α

may
lLIC

of that point. Based on Lemma 5.4.1, we

know if a memory block is not in α
may
lLIC

, it is definitely not in the last inclusive cache, so its

contents are also invalidated at lv. Thus, α
may
lv is safely derived at each point, and Lemma

5.4.4 holds.

Lemma 5.4.5. The must analysis of Clv is safe. In other words, at a program point p,

any aging barrier (i, j) derived from βlv corresponds to a “hole” in the ith set within the

position range of [1, j], and the memory blocks contained in αmust
lv are definitely in Clv when

the execution reaches p.

Proof. As discussed in 5.3.2 concerning the definition of J function, we know the J

function ensures only the “holes” that definitely exist along either path are kept and the

function overestimates the position upper bounds of these “holes”. Since the join function

J must does not underestimate the age of a memory block, we only need to prove updating

βlv and αmust
lv are safe. We prove this by mathematical induction.
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Base case: At the beginning, βlv = β⊥, which means all the positions in all sets are

“holes”, and αmust
lv corresponds to an empty state. We have a cold start, there is no memory

blocks loaded. Therefore, the lemma holds in the base case.

Inductive hypothesis: Before a reference r which accesses the memory block mr
lv that

is mapped to the ith cache set, any aging barrier (i, j) derived from βlv corresponds to a

“hole” in the ith set within the position range of [1, j], and the memory blocks contained in

αmust
lv are definitely in Clv .

Inductive step: Based on the inductive hypothesis and Lemma 5.4.1, if a memory block

is in the current αmust
lv , but its contents are not in α

may
lLIC

after the reference, this memory block

needs to be invalidated, so a “hole” will be created. Since the must analysis captures the

maximal ages of memory blocks, adding the created “hole” into βlv will not violate the

lemma. Based on Lemma 5.4.3, the memory blocks in the > positions of α
pers
lLIC

after the

reference are possibly evicted; thus, after line 7 the lemma still holds with respect to the

updated βly and αmust
ly . When updating the states according to the rest of Algorithm 6.1,

after line 9, j has a position and if we have j 6=>, there is a “hole” within the range [1, j],

and any of the rest aging barriers derived from the used βlv , namely β ′lv , still corresponds

to a “hole” (deduced from the inductive hypothesis). There are two possibilities when

updating αmust
lv . (1) If mr

lv 6∈ α
may
lv , based on Lemma 5.4.4, we have k => and we are sure

that mr
lv is not in Clv . Based on Lemma 5.3.1, Clv will be definitely accessed due to the

reference r. Therefore, line 16 (i.e. applying U
must

which takes into account the effects

of the existence of a “hole”) can safely update αmust
lv , and that “hole” is possibly filled. In

this case, max( j,k) = > no matter what j is, so A will not change the β ′lv at line 19. (2)

If mr
lv ∈ α

may
lv , we do not know if Clv will be accessed or not, so line 17 can safely update

αmust
lv by taking into account the access occurring and not occurring. We have j = > or

j 6=>, and k => or k 6=>. If j => or k =>, max( j,k) =>, so A will not change the β ′lv

at line 19. The only case in which A will change β ′lv is when j 6=>
∧

k 6=>. In this case,

although the “hole” with the range [1, j] may be possibly filled, there is still a “hole” within
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the range [1,max( j,k)] – this is because, based on the hypothesis, mr
lv is definitely in Clv if

k 6=>, and in either case of k < j or j < k, the reference does not load a new memory block

into Clv; so after applying A on β ′lv , the resultant βlv does not violate the lemma. Thus,

after line 19, this lemma still holds with respect to the updated βlv and αmust
lv .

Lemma 5.4.6. The persistence analysis of Clv is safe. In other words, at a program point

p, any memory block that has been loaded into Clv is in an age position of α
pers
lv which is

greater than or equal to its possible maximal age.

Proof. Since J pers does not underestimate the age of a memory block, we only need to

prove this lemma holds in terms of updating, which we do by mathematical induction.

Base case: At the beginning, no memory block is loaded, and all the positions of α
pers
lv

are empty. The lemma holds.

Inductive hypothesis: Before a reference r which accesses the memory block mr
lv , any

memory block that has been loaded into Clv is in an age that is greater than or equal to its

possible maximal age.

Inductive step: When updating α
pers
lv , we first move the blocks which are possibly or

definitely invalidated to > positions according to α
pers
lLIC

and α
may
lLIC

after the reference. Since

doing so does not decrease any block’s age, the lemma still holds. Then, we get j from

the aging barrier state βlv maintained by the must analysis (but we do not change βlv).

There are two possibilities to continue updating. (1) If mr
lv 6∈ α

may
lv , based on Lemma 5.4.4,

we know mr
lv is not in Clv; and based on Lemma 5.3.1, Clv will be accessed due to the

reference r. According to the definition of U
pers

, when j = >, it is U pers and it will not

underestimate the possible maximal ages of the blocks; when j 6=>, no matter what k is, it

will never increase the ages of the blocks that are already greater than or equal to j, so we

need to prove in this case the possible maximal ages of these memory blocks are actually

not greater than these unchanged ages: since j 6=>, there is definitely a “hole” within the

position range [1, j], so even Clv is accessed and mr
lv is not in Clv , the ages of the blocks

that are behind this “hole” will not be increase, which means the possible maximal ages
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of the memory blocks which are already greater than or equal to j will not be increase;

from the inductive hypothesis, we know that before this reference, for a memory block, the

position where it is in α
pers
lv is the upper bound of its possible maximal age position; thus,

even though the ages of the memory blocks that are already greater than or equal to j are

unchanged after applying U
pers

, they are still not less than the possible maximal ages of

these memory blocks, based on the arguments above. (2) If mr
lv ∈ α

may
lv , we do not know if

Clv is accessed or not, so we safely join the two states corresponding to the access occurring

and not occurring. Thus, the lemma holds with respect to the updated α
pers
lv .

Theorem 5.4.7. The proposed may, must, and persistence analyses of the inclusive caches

in the bottom-up direction are safe.

Proof. Since we have proven the analyses of the last inclusive cache are safe (Lemma 5.4.1,

Lemma 5.4.2, and Lemma 5.4.3), we only need to prove the analyses of the rest inclusive

caches in the bottom-up direction are safe by mathematical induction.

Base case: The analyses of Clv are safe, where lv is the second last inclusive cache level.

Inductive hypothesis: The analyses of all the inclusive caches that are located beneath

Cly are safe, where ly is an inclusive level above the last inclusive level lLIC.

Inductive step: Let us assume the next inclusive level located beneath ly in the top-down

direction is li
y. Following the proofs of Lemma 5.4.4, Lemma 5.4.5, and Lemma 5.4.6, we

can prove the may, must, and persistence analyses of Cly are safe, as long as the analyses of

Cli
y

are safe. Since the inductive hypothesis gives the analyses of Cli
y

are safe, the analyses

of Cly are safe.

5.4.3 Safe Analyses of Non-Inclusive Caches

After the analyses of the inclusive caches are completed, we start from l1 and analyze

all the non-inclusive caches in the top-down direction. Let us assume, for a non-inclusive

cache level lz, lp
z is the previous cache level in the top-down direction in the cache hierarchy
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when z > 1 (lp
z can be either inclusive or non-inclusive), and li

z is the first inclusive cache

level that is beneath lz if there is one (i.e. Cli
z

directly includes Clz).

Lemma 5.4.8. The may analysis of Cl1 is safe. In other words, at a program point p, α
may
l1

contains all the memory blocks that are possibly in Cl1 when the execution reaches p.

Proof. Since Cl1 is always accessed for a reference, we just need to prove line 12 can safely

update α
may
l1

each time, which implies we prove j should always satisfy j ≤ j′, where j′

represents the smallest position where has a “hole” (in which case, some blocks’ ages

will be underestimated but will never be overestimated). Following the proof of Lemma

5.4.4, we can see j set by the loop (line 4-6) satisfies j ≤ j′, since the persistence analysis

of Cli
1

has already been safely performed (given by Theorem 5.4.7). Thus, Lemma 5.4.8

holds.

Lemma 5.4.9. The must analysis of Cl1 is safe. In other words, at a program point p,

any aging barrier (i, j) derived from βl1 corresponds to a “hole” in the ith set within the

position range of [1, j], and the memory blocks contained in αmust
l1

are definitely in Cl1 when

the execution reaches p.

Proof. Following the proof of Lemma 5.4.5, we can prove the lemma holds by using math-

ematical induction. The difference is: since Cl1 is always accessed for a reference, we only

use line 16 to update αmust
l1

each time. Following that proof, we can prove it safely updates

βl1 and αmust
l1

, as long as the may and persistence analyses of Cli
1

are safe, which is true

based on Theorem 5.4.7. Thus, Lemma 5.4.9 holds.

Lemma 5.4.10. The persistence analysis of Cl1 is safe. In other words, at a program point

p, any memory block that has been loaded into Cl1 is in an age position of α
pers
l1

which is

greater than or equal to its possible maximal age.

Proof. Similarly, following the proof of Lemma 5.4.6, we can prove this lemma holds.

Theorem 5.4.11. The proposed may, must, and persistence analyses of the non-inclusive

caches in the top-down direction are safe.
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Proof. We prove this theorem by mathematical induction.

Base case: The analyses of Cl1 are safe.

Inductive hypothesis: The analyses of all of the non-inclusive caches located above Clz

are safe, where lz is a non-inclusive cache level and z > 1.

Inductive step: When updating the abstract cache states of Clz , we need to derive the

CAC at lz for a reference. As described in [61], for a reference, the CAC at lz can be safely

derived if the CHMC and CAC at lp
z are known. Based on Theorem 5.4.7 and the inductive

hypothesis, we know, from l1 to lp
z , no matter whether a level is inclusive or non-inclusive,

it is safely analyzed. By taking into account the effects of filtering accesses, the CHMC

and CAC at lp
z can be safely derived, so that the CAC at lz can be safely derived. If lz is

located beneath the last inclusive cache level lLIC, Clz does not suffer from any invalidation,

so the unmodified analyses of Clz will be safe. On the contrary, if lz is located above lLIC,

we use the methods described in 5.3.4 to analyze Clz; following the previous proofs, we

can also prove the analyses are safe. Thus, combing these two cases, we can conclude this

theorem holds.

Theorem 5.4.12. The proposed approach to analysis of multi-level inclusive caches is safe.

Proof. We can directly conclude this Theorem holds based on Theorem 5.4.7 and Theorem

5.4.11.

5.4.4 Termination of the Analysis

In order to prove the proposed multi-level inclusive cache analysis will terminate, we

need to prove the aging barrier state domain ABS is a partially ordered set with a finite

height; and we need to prove the joining and updating of the aging barrier states are mono-

tonic at a program point during the iterations at one level. Since the number of sets and the

associativity of a cache are both finite, based on the Definition 5.3.3 and Definition 5.3.4,

it is trivial to see ABS is finite and partially ordered. Also, we have seen the join function
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J is monotone with respect to the partial ordering defined in Definition 5.3.4. Thus, we

need to prove the aging barrier state updating is also monotone.

Lemma 5.4.13. Given an aging barrier state β ′ which is updated by a reference from β ,

β v β ′ always holds.

Proof. When updating β , first we have 〈β ′′, j〉 = U (β , i), where i is fixed for a reference

in a cache. Therefore, we have β v β ′′ according to the definition of U . Then, we have

β ′ = A (β ′′, i,max( j,h)). According to the definition of A : if max( j,h) = >, we have

β ′ = β ′′, so β v β ′′ = β ′ holds; if max( j,h) = j 6= >, we have β ′ = β , since the partial

ordering v is reflexive, so β v β ′ holds; if max( j,h) = h 6= >, we have |β ′(i)| = |β (i)|

and since the only difference between β (i) and β ′(i) is in β ′(i) we have j = minc(β (i))

replaced by h which is max( j,h), so β v β ′ holds.

Theorem 5.4.14. The proposed multi-level inclusive analysis approach terminates in finite

iterations at each level.

Proof. Since the analyses of the last inclusive cache are not affected by other factors, they

will terminate. The analyses of a cache located above at least one inclusive level are af-

fected by its aging barrier state and the abstract cache states of some safely analyzed caches.

Although aging barriers can slow down the age increasing, the abstract cache states at this

level are still updated along an ascending chain. Based on Lemma 5.4.13, we know the

aging barrier states are also updated along an ascending chain. Since all the domains are

finite partially ordered sets, the proposed analysis will terminate.

5.5 Evaluation

The objective of this chapter is to tighten the WCET estimation in the presence of

inclusive caches. We evaluate the proposed approach and compare with the approach pro-

posed in [64]. The experiments are performed using our research prototype tool, which is

described in Appendix A.
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Due to the limitations of our current tool, we only take into account the timing effects of

multi-level caches on the WCET estimation and do not consider the effects of other micro-

architectural components like pipelines and branch predictors, so we assume there are no

timing anomalies. Therefore, a reference that is classified as NC can be safely treated as

a AM when used to estimate the WCET. However, if the timing anomalies are considered,

we will gain more precision using the proposed approach, since it can safely classify some

references as AM compared to the approach in [64]. We leave this as future work.

Our experiments are carried out on the set of benchmarks maintained by the Mälardalen

WCET research group [114], and they are compiled for MIPS R3000 processor using gcc-

3.4.4. Since the approach proposed in [64] only considers strict multi-level inclusive caches

(i.e. it does not consider mixed inclusive and non-inclusive cache levels), we carry out the

experiments on a three-level cache hierarchy and configure L2 and L3 to be inclusive. The

parameters of the cache at each level are shown in Tab. 6.1. Moreover, we assume every

needed information can be found in the main memory with a 200-cycle latency.

Table 5.1: 3-Level Inclusive Cache Parameters

Level Cache Capacity Block Size Associativity Latency
L1 2KB 8B 4-way 1-cycle
L2 8KB 32B 8-way 10-cycle
L3 16KB 64B 8-way 80-cycle

The experimental results are shown in Tab. 5.2. For a benchmark, WCETtop-dw is

derived by using the method proposed in [64], and WCETbot-up is derived by using the

method proposed in this chapter. The WCET estimation is reported in clock cycles. The

precision improvement is calculated by WCETtop-dw
WCETbot-up

−1. We also report the computation time

overhead in seconds, along with the reported WCET. The experiments are performed on a

Linux machine with a 1.2GHz quad-core processor and 12GB memory.

We sort Tab. 5.2 in descending order of the precision improvement. From the results,

we can see that the bound can be tightened about 12.2% on average. In some cases, the

improvement is more than 20%, e.g. up to 57.3% is gained in the case of fibcall and up to
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44.4% is gained in the case of insertsort. For some benchmarks, the improvement rate is not

that substantial (less than 3%), e.g. only 2.7% is gained in the case of ludcmp and only 2.4%

is gained in the case of adpcm. We find most of these benchmarks contain nested loops

and/or are context-sensitive. The advantage of the proposed method may become larger if

the persistence analysis is multi-leveled to handle the nested loops [120] and contexts are

taken into account in the inter-procedural analysis. Furthermore, as mentioned above, our

prototype tool does not analyze other micro-architectural features than multi-level caches

for the present. Since the proposed approach can classify some references as AM while

the method in [64] cannot, we would expect more precision gains if timing anomalies are

considered. Although these techniques are not integrated in our tool yet, the improvement

is still significant. Even in some cases the improvement rate is less than 3%, thousands of

overestimated cycles are reduced (e.g. up to 12400 clock cycles are reduced in the case of

adpcm). However, it should be noted that the proposed approach is standalone and can be

integrated with other techniques without any changes.

From the results, we can see the computation time overhead differences between the

two methods are within a few seconds in most cases. The biggest difference is about

93 seconds in the case of nsichneu. Since this difference is just a small portion of the

overheads, which are 6.4 and 7.9 minutes respectively, we believe the computation time

overhead is acceptable.

5.6 Conclusion and Future Work

In this chapter, we propose an approach that can safely and more precisely analyze

multi-level inclusive caches for WCET estimation. The approach first analyzes all the

inclusive levels in the bottom-up direction and then analyzes the rest non-inclusive levels in

the top-down direction. Although bottom-up sounds counter-intuitive considering the cache

levels are accessed in the top-down direction, we show that it is actually very suitable for

analyzing inclusive caches. In order to capture the effects of the invalidations caused by an
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Table 5.2: Experiment Results of Estimated WCET and Computation Time Overhead

Method in [64] Method in This chapter Precis.
Benchmark Ovhd. WCETtop-dw Ovhd. WCETbot-up Improv.

fibcall 0 7250 0 4610 57.3%
insertsort 0 18349 0 12709 44.4%
recursion 0 6942 0 4982 39.3%

bs 0 10979 0 8579 28.0%
fir 0 28046 1 22406 25.2%

sqrt 0 19662 0 15742 24.9%
janne cmplx. 0 11367 0 9247 22.9%

cnt 0 43138 1 35778 20.6%
ns 0 45731 0 38131 19.9%

duff 0 23169 1 19609 18.2%
prime 0 31690 0 27890 13.6%
edn 3 303483 4 272123 11.5%

expint 0 35855 0 32775 9.4%
qurt 0 41122 1 37922 8.4%

statemate 17 404050 31 377550 7.0%
lcdnum 0 18939 0 17819 6.3%

fdct 1 92089 1 88329 4.3%
minver 5 111053 5 106533 4.2%
select 3 63744 3 61344 3.9%

compress 13 299514 14 288514 3.8%
cover 9 187579 10 182259 2.9%

ludcmp 3 87526 3 85206 2.7%
qsort exam 3 69903 5 68063 2.7%

adpcm 41 522619 42 510219 2.4%
ndes 10 737997 11 728637 1.3%

bsort100 0 287104 1 281904 1.8%
st 6 380532 5 374572 1.6%

jfdctint 1 99865 1 98465 1.4%
matmult 0 513672 0 508032 1.1%

crc 1 95794 0 95274 0.5%
lms 5 1226776 6 1221496 0.4%

nsichneu 383 2985648 476 2985088 0.02%
average 12.2%

inclusive level, we propose a concept of aging barrier. Aging barriers can safely slow down

the increase of memory blocks’ ages, and we show how to integrate them into the must and

persistence analyses to gain more precision. From the experiment results, we can observe

the proposed approach can tighten the bound by 12.2% on average. In the future, we want
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to extend the approach to take into account the effects of data references and inter-core

interferences, and we also want to enhance our tool to consider the interactions between

multi-level caches and other micro-architectural features.
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Chapter 6

Precise Multi-Level Inclusive Cache Analysis for WCET Estimation

Most of the current approaches attempt to separately analyze each cache level of a

cache hierarchy, usually starting from the topmost level and moving downward. For multi-

level non-inclusive caches, this analysis style does not have a large impact on the precision,

since the interactions between different cache levels in such a hierarchy are only related

to the memory access filtering behavior which appears in a top-down direction. However,

for multi-level inclusive caches, such an analysis style may have a big influence on the

precision, because some blocks may be invalidated by lower inclusive levels (i.e., the inval-

idation behavior appears in a bottom-up direction). Due to the unknown underlying inval-

idation behavior, when analyzing an upper level, conservative decisions have to be made

in order to ensure safety [64]. In order to reduce the number of conservative decisions,

some approaches are proposed to separately analyze all the inclusive levels in a bottom-up

direction (i.e. Chapter 5). However, as shown in this chapter, this bottom-up approach may

not perform well when the cache size is relatively small compared to the program size.

In this chapter, we propose an approach that can precisely analyze multi-level inclusive

caches, even in the case that the ratio of cache size to program size is low. The main idea

is to analyze a multi-level inclusive cache as a whole following its concrete behavioral

semantics, instead of analyzing it in a level-by-level manner.

The main contributions of this chapter are: (1) We define a concrete operational se-

mantics which formally describes how a multi-level inclusive cache changes its state when

a memory reference occurs. (2) Based on the abstract interpretation of this concrete se-

mantics, we propose an approach that analyzes a multi-level inclusive cache as a whole by

integrating three analyses (i.e., must, may, and persistence). (3) We evaluate the proposed

approach on a set of benchmarks, and the evaluation results show significant precision
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improvements when the ratio of cache size to program size is low, compared to the state-

of-the-art approaches. Our approach has been published in [13].

The rest of the chapter is organized as: Section 6.1 describes the background on cache

analysis; Section 6.2 gives the system model; Section 6.3 states why multi-level inclusive

cache analysis is challenging; Section 6.4 presents the proposed approach to multi-level in-

clusive cache analysis; Section 6.5 proves the proposed approach is safe and can terminate;

Section 6.6 evaluates the proposed approach; and Section 6.7 concludes this chapter.

6.1 Background

First, we introduce the terminologies and notations used in this chapter. Given a refer-

ence r to a memory block m, the effect of this reference on the ACS θ t , where t is either

must, may, or persistence, is defined by an update function U t : Θt×M→Θt , where Θt is

the set of all the ACSs of the cache (i.e. θ t ∈Θt), and M is the set of all the memory blocks

w.r.t. the cache block size (i.e. m ∈ M). In order to safely combine information at a join

point during the analysis on the CFG, a join function J t : Θt ×Θt → Θt is also defined.

The definitions of the update and join functions can be found in [53, 76].

Single-level caches are always accessed by each memory reference, so we only need to

consider the effects of memory reference sequences in the analysis. However, in the case

of multi-level caches, it is also important to consider the effects of other cache levels, in

particular, cache access filtering and memory block invalidation. For example, if we treat

a possible access at a level as always happening, the analysis may become unsafe, since

doing so may underestimate the set reuse distances1 of memory blocks [61].

For a reference r, a cache access classification (CAC) at a cache level l is used to

represent the possibility that l will be accessed [61]. Let θ
t,i
l,r denote the ACS at this level

immediately before r, and let θ
t,o
l,r denote the ACS at this level immediately after r. Let mr

l

1In [61], the set reuse distance between two memory references to the same block at a cache level is
defined as the relative age of the memory block when the second reference occurs.

128



denote the memory block w.r.t. the cache block size at l containing the information needed

by r. If the CAC is always (A), the access will always occur, so r will always affect the

ACS:

θ
t,o
l,r = U t(θ t,i

l,r,m
r
l )

On the other hand, if the CAC is never (N), the access will never happen, so the ACS at l

is not affected by r:

θ
t,o
l,r = θ

t,i
l,r

If the CAC cannot be either A or N, it is uncertain (U), which means the access may or

may not happen. In order to ensure safety, the updates of the ACS due to U accesses need

to take into account the two possible cases (access occurring and not occurring) by joining

them:

θ
t,o
l,r = J t

access not occurring︷︸︸︷
(U t(θ t,i

l,r,m
r
l ), θ

t,i
l,r )︸ ︷︷ ︸

access occurring

As described in [61], for a reference r that is possible to access a cache level (i.e. its

CAC is not N at this level), if r can be safely classified as AH at this level, r will never need

to access all the lower levels, namely its CAC is N at any lower level; if r can be safely

classified as AM at this level, r is also possible to access the next lower level, namely its

CAC at the next lower level is the same as the CAC at this level (i.e. A or U). Note that if a

reference always/never accesses a cache level in reality, but its CAC at the level is U in the

analysis, the analysis is still safe but may not give a tight result.

6.2 System Model

In this chapter, we focus on a generalized cache hierarchy model, in which the inclusion

property is enforced at some cache level(s). The model has n cache levels, represented by

L = {l1, · · · , ln}. Each cache level is either inclusive or non-inclusive2. Let inc : L →
2Note that it has no meaning for L1 cache to be inclusive/non-inclusive, i.e., it can be either one.
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{true, false} be an auxiliary function that returns true if the level is inclusive and false

otherwise. The inclusive cache hierarchy model C is a two-tuple 〈L, inc〉.

Although we do not consider exclusive caches in the model, we can easily add them

into our analysis by using the approach proposed in [64]. The exclusive cache levels can be

collapsed by concatenating them to the end of the upper level to form a single level for the

analysis, as long as they all have the same number of cache sets and the same cache block

size.

For a cache level lx (where 1≤ x≤ n), we assume that the cache is set associative, and

LRU (Least Recently Used) replacement policy is used. The size of a cache block can be

different at different cache levels, and it is assumed the block size does not increase as the

level goes up. It is also assumed the capacity decreases as the level goes up.

We also assume the time to access a cache level is bounded and predictable, which can

be achieved by using deterministic interconnects to connect the caches, like TDMA buses

[122]. Fig. 6.1 gives an example of the model focusing on a single core and all the cache

levels that can be affected by this core in a multi-core architecture.

L3 inclusive

L2 inclusive

L1 …. L1

L2 inclusive

….
L1 …. L1 

P P P P

Figure 6.1: An example of the system model: only the cache levels that can be affected
by the first core are considered, i.e. L = {l1, l2, l3} and inc(l1) = false, inc(l2) = true, and
inc(l3) = true.

In this chapter, we focus only on how to analyze multi-level caches in the presence of

invalidations caused by the inclusion enforcement, so we simply consider instruction ref-

erences in terms of a single processor (i.e. no data references and inter-core interferences).
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This work can serve as a basis for analysis of multi-level data or unified caches, that enforce

the inclusion property, in terms of a multi-core processor.

6.3 Problem Statement

In the case of multi-level non-inclusive cache analysis, the CAC for a reference r at a

cache level lx can be derived from the CHMC and CAC for r at lx−1 (x > 1 is assumed,

since l1 is always accessed, i.e. the CAC is A at l1), and the cache behavior at any level

will not be affected by any lower cache level. Thus, the cache hierarchy can be analyzed

level-by-level in a top-down direction.

However, in the case of analyzing cache hierarchies containing inclusive caches, the

CAC for r at lx cannot be safely derived from CHMC and CAC for r at lx−1. The reason

is the behavior of lx depends not only on the behavior of lx−1, but also on the invalidation

behavior induced by some lower inclusive cache level(s): When a memory block is evicted

from a lower inclusive cache level, all the contents that belong to this memory block need

to be invalidated from its upper cache levels (these invalidated memory blocks are called

inclusion victims).

Example: Fig. 6.2 shows a 3-level inclusive cache, where L1 is 2-way set associative,

L2 is 4-way set associative, and L3 is 4-way set associative (at each level, only one set is

shown). We assume L1 has the smallest cache block size and L3 has the biggest, so a block

in L1 is a sub-block of some block in L2 and that block in L2 is a sub-block of some block

in L3. For a memory block m in L3, let ṁ denote a m’s sub-block in L2, and let m̈ denote

a ṁ’s sub-block in L1. For example, we have m̈a ⊂ ṁa ⊂ ma. If the next reference needs

the information that is in mx (mx is also mapped to the shown set of L3), the oldest ma in

that set needs to be evicted. The eviction of ma will also invalidate m̈a in L1 and ṁa in

L2 to maintain the inclusion property. Due to the invalidation, m̈b in L1 can live longer,

and depending on which sub-block of mx is needed by the reference, there may be some

“holes” left in L1 and L2.
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Figure 6.2: Invalidation due to the maintenance of the inclusion property of L3

Due to the possible invalidation behavior and the induced consequences (i.e., some

blocks may live in the cache longer, but some blocks may live in the cache shorter – being

invalidated instead of being evicted), the traditional CAC derivation method for multi-level

non-inclusive cache analysis becomes unsuitable for multi-level inclusive cache analysis.

At a cache level, it is challenging to safely classify a reference as AH or AM without

knowing the behavior of lower inclusive cache level(s).

Since safely and tightly determining the CAC (i.e. trying to derive A or N instead of U)

for a reference at a cache level relies on the safe CHMC at the upper levels, the approach

proposed in [64] decides to classify the CAC for every reference at any level (except for the

L1 which is always accessed) as U. In this way, although the safety is ensured, the tightness

of the analysis may suffer considerably.3

A naive method may involve refining the ACSs of upper levels when finishing a lower

inclusive level analysis, which also refines the CHMC and CAC for a reference at these lev-

els. However, such a method may not ensure the monotonicity so that it may not guarantee

termination.

The approach proposed in Chapter 5 can have the CACs for some references at some

levels classified as A instead of U. However, it cannot have the CAC for any reference at

the inclusive levels classified as N, since it analyzes all of the inclusive levels in a bottom-

3The approach proposed in [64] also changes every reference’s AM CHMC into NC at any level, and
may also change some references’ AH or PS CHMC into NC at a level depending on the analysis of lower
inclusive levels.
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up direction (i.e. when analyzing an inclusive level, the ACSs of its upper levels remain

unknown). Moreover, as the ratio of the cache size at an inclusive level to the program

size decreases, its ability to safely classify the CAC as A instead of U at this level also

decreases.

Thus, how to precisely analyze multi-level inclusive caches is still a very challenging

problem. Specifically, we need to find ways to safely determine the A or N instead of U

CACs for as many references as possible at a cache level.

6.4 Precise Multi-Level Inclusive Cache Analysis Based on Abstract Interpretation

The approach proposed in this chapter is based on abstract interpretation which is a

framework for deriving sound analyses (i.e., the results are sound approximations) [9]. In

order to make use of abstract interpretation, we first need to define the concrete semantics.

The concrete semantics for single-level caches and multi-level non-inclusive caches have

been given in [53] and [78], respectively. In this section, we use an operational semantics

to describe how multi-level inclusive caches change their states when a reference occurs.

Based on the abstraction of this concrete semantics, we propose an approach that can more

precisely analyze multi-level inclusive caches due to its ability to determine A or N CACs

for memory references at a cache level. Since a cache level in an inclusive cache hierarchy

can be affected by two behaviors coming in two directions, i.e. the memory access filtering

behavior appearing in a top-down direction and the invalidation behavior appearing in a

bottom-up direction, the intuition behind the approach is to analyze a multi-level inclusive

cache as a whole instead of level-by-level in isolation so as to make both behaviors available

at any cache level4.

4Level-by-level approaches can only make one of these two behaviors available when analyzing a cache
level, so conservative decisions have to be made concerning the other unknown behavior.
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6.4.1 Concrete Semantics

Since we focus only on instruction references, we just give a concrete operational se-

mantics to the multi-level inclusive instruction caches. The semantics related to data refer-

ences and dirty blocks can be added (we leave this as our future work).

The state s̄ of a multi-level inclusive cache 〈L, inc〉 is a n-tuple (recall that L= {l1, · · · , ln}).

Each tuple component is a cache state slx of the cache level lx and they are ordered by the

level numbers: s̄ = 〈sl1, · · · ,sln〉.

Given a cache level lx, let clx denote its capacity, let blx denote its cache block size, and

let klx denote its associativity. Therefore, the cache at this level has dlx =
clx

blx×klx
cache sets.

The cache state slx of this cache level is a mapping:

slx : {1, · · · ,dlx}→
(
{1, · · · ,klx}→Mlx

)

where Mlx is the set of all of the memory blocks w.r.t. blx , and we also assume there is

an element I ∈ Mlx which denotes the memory block is invalid. The cache state maps a

cache set number to a cache set state and the cache set state is also a mapping that maps a

logical position (ordered by LRU ages) to a memory block. For a reference r, let mr
lx ∈Mlx

denote the memory block w.r.t. blx containing the information needed by r. We have an

auxiliary function set : Mlx → {1, · · · ,dlx} which gives us the cache set number to which

mr
lx is mapped.

When a reference r occurs, the multi-level inclusive cache carries out a sequence of

actions that may change the state of a cache level intermittently. For a multi-level inclusive

cache 〈L, inc〉, let s̄ = 〈sl1, · · · ,sln〉 denote the cache hierarchy state before r, and let s̄′ =

〈s′l1 , · · · ,s
′
ln〉 denote the state after r. The operational semantics is described as follows:

1. [Search Cache Levels] Starting from lx = l1, check whether the needed information

is at lx:

∃p ∈ {1, · · · ,klx} : slx(set(mr
lx))(p) = mr

lx
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If it is true (i.e. cache hit at lx), stop searching and go to step (2). Otherwise (i.e.

cache miss at lx), if x < n, go to the next cache level (i.e. increment x) to continue

searching; else (i.e. x is n which means the needed information is absent from the

whole cache hierarchy), increment x (i.e. x becomes n+ 1 which denotes the main

memory) and go to step (3).

2. [Update LRU Ages] Change the logical position (i.e. the LRU age) of mr
lx from p to

1 in the cache set it is mapped to, and increment the positions of other blocks which

were smaller than p. The resultant cache state s′lx is:

∀i ∈ {1, · · · ,dlx} : s′lx(i) =



slx(i) if i 6= set(mr
lx)

[1 7→ mr
lx ,

q 7→ slx(i)(q−1)|q = 2 · · · p, otherwise

q 7→ slx(i)(q)|q = p+1 · · ·klx ]

When the updating is completed, go to step (3).

3. [Move Upwards or Terminate] If 2≤ x≤ n+1, decrement x and go to step (4). Oth-

erwise, terminate (and send the needed information to the processor).

4. [Find New Position] Find the smallest logical position p where slx(set(mr
lx))(p) = I,

if there is any. Otherwise, p is klx . Go to step (5).

5. [Load Memory Block] Load the memory block mr
lx into slx(set(mr

lx))(p) to replace

the previous memory block m̂lx in that position. Go to step (6).

6. [Invalidate Memory Blocks] If inc(lx) = false or m̂lx = I, go back to step (2). Oth-

erwise, for all cache levels located above lx, check if any block in their states is a
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sub-block of m̂lx , and invalidate it if so:

∀y ∈ {1, · · · ,x−1},∃i ∈ {1, · · · ,dly},∃q ∈ {1, · · · ,kly} : sly(i)(q)⊆ m̂lx ⇒ sly(i)(q) = I

When the invalidation is finished, go back to step (2).

Let S̄ = Sl1 × ·· ·× Sln denote the set of all the states of a multi-level inclusive cache,

where Slx (1≤ x≤ n) denotes the set of all the states of the cache level lx. Let R denote the

set of all the references the program can generate. We define a function f : R× S̄→ 2L× S̄

as:

f (r, s̄) = 〈{l1, · · · , lz}, s̄′〉

where s̄′ is semantically updated from s̄ due to the reference r and lz is the last cache level

being updated by step (2) (i.e. 1≤ z≤ n) during the process. We can also lift the f function

to deal with a sequence of references π = (r1, · · · ,rh), i.e. we sequentially apply f to each

reference in π with its prior state, and the result consists of the levels updated by rh and the

state at rh. The collecting semantics cs : R→ 2L×2S̄ is defined as:

cs(r) =
⋃

π∈Πr

⋃
s̄∈S̄0

f (π, s̄)

where S̄0 is the set of all the initial states, and Πr is the set of all the possible program ref-

erence sequences that reaches r. Note that here we use a loose notation to avoid cluttering:

We treat the second component of f (π, s̄) (i.e. a state) as a singleton, and we also treat
⋃

can realize the set union of the first and second components respectively.

6.4.2 Abstract Semantics-Based Approach

Based on the concrete semantics, we propose an approach which attempts to analyze

the cache levels together. Given a multi-level inclusive cache 〈L, inc〉, we define its abstract
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cache hierarchy state domain Ω as:

Ω = Φl1×·· ·×Φln

where Φlx (1≤ x≤ n) is the abstract state domain for the cache level lx. Before giving the

definition of Φlx and the semantic functions on Φlx , we want to present the approach first in

order to give a general idea. To this end, we assume the abstract state domain Φlx and the

operations on Φlx meet the conditions:

• From an abstract state φlx ∈Φlx , we can safely derive a set of memory blocks that are

definitely in the cache.

• From an abstract state φlx ∈Φlx , we can safely derive a set of memory blocks that are

possibly in the cache.

• From an abstract state φlx ∈ Φlx , we can safely derive a set of memory blocks that

may be out of the cache after being loaded into the cache.

• An update function U : Φlx ×Mlx → Φlx can safely update the abstract states in the

presence of possible “holes” caused by invalidations.

• A join function J : Φlx×Φlx→Φlx can safely join the abstract states in the presence

of possible “holes” caused by invalidations.

• An invalidate function I : Φlx×2Mlx →Φlx can safely perform invalidations on the

abstract states.

Note that the first three conditions mean that we can safely derive the CHMC for a refer-

ence at a cache level lx from its φlx . Let us use an auxiliary function chmc : Φlx ×Mlx →

{AH, AM, PS, NC} to do this. In addition, we have another auxiliary functions pout : Φlx→

2Mlx to acquire an over-approximated set of memory blocks that may be out of the cache

after being loaded into the cache.
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We also define a function domain Ψ that captures all the mappings from references to

CACs at all the cache levels:

Ψ = R→
(

L→{U, A, N}⊥
)

In order to ensure the analysis update function monotone, we establish a lattice on the lifted

set of CACs {U, A, N}⊥ = {U, A, N}∪{⊥} where ⊥ means there has not been any CAC

yet, and we also define a least upper bound operator t, as shown in Fig. 6.3. This ensures

that if the CAC for a reference at a cache level becomes U, it will never be changed. A

semantic function F : Ψ×R×L×{U, A, N}→Ψ is defined as:

F (ψ,r, l,CAC) = ψ

[
r 7→ ψ(r)[l 7→ CACtψ(r)(l)]

]

which derives the least upper bound of all possible CACs for a reference. Instead of having

an abstract element of Ψ at each program point, we have a global abstract object ψ ∈Ψ for

the whole program which is initialized as ∀r ∈ R, l ∈ L : ψ(r)(l) =⊥.

U

A N

⊥

t A N U ⊥
A A U U A
N U N U N
U U U U U
⊥ A N U ⊥

Figure 6.3: CAC lattice and least upper bound operator

At a join point of CFG, we use a join function J : Ω×Ω → Ω to combine the

abstract cache hierarchy states. Given two abstract states ω1 = 〈φ1,1, · · · ,φn,1〉 ∈ Ω and

ω2 = 〈φ1,2, · · · ,φn,2〉 ∈Ω, the join function J : Ω×Ω→Ω is defined as:

J (ω1,ω2) = 〈J (φ1,1,φ1,2), · · · ,J (φn,1,φn,2)〉
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namely it independently combines each level’s abstract states.

An update function U : Ω×Ψ×R→Ω×Ψ is used to take into account the effect of a

reference r on the abstract hierarchy state and the ψ abstract object. The update function is

defined based on the concrete operational semantics regarding how a multi-level inclusive

cache changes its states when a reference occurs, as described in Section 6.4.1. The steps

to perform this update function are given in Algorithm 6.1.

Algorithm 6.1: Definition of the update function U

Input: ω = 〈φ1, · · · ,φn〉, ψ , r
Output: ω ′ = 〈φ ′1, · · · ,φ ′n〉, ψ

x← 1 ;1
CAC← A ;2
repeat3

ψ ←F (ψ,r, lx,CAC) ;4
CHMC← chmc(φlx ,m

r
lx) ;5

if CAC = A then6
if CHMC = AH then CAC← N ;7
else if CHMC = AM then CAC← A ;8
else CAC← U ;9

else if CAC = U then10
if CHMC = AH then CAC← N ;11
else CAC← U ;12

else CAC is unchanged (i.e. N) ;13
x← x+1;14

until x > n ;15
x← n ;16
ω ′ = ω ;17
repeat18

CAC← ψ(r)(lx) ;19
if CAC = A then φ ′lx ←U (φ ′lx ,m

r
lx) ;20

else if CAC = N then φ ′lx ← φ ′lx ;21
else φ ′lx ←J (U (φ ′lx ,m

r
lx),φ

′
lx)22

if inc(lx) then23
PO← pout(φ ′lx) ;24
foreach 1≤ y < x do25

PO′← /0 ;26
foreach mlx ∈ PO do27

PO′← PO′∪{mly ∈Mly |mly ⊆ mlx} ;28

φ ′ly ←I (φ ′ly ,PO′) ;29

x← x−1;30
until x = 0 ;31

The first loop (lines 3 – 15) abstracts the first step of the concrete operational semantics.

It starts from the cache level l1 and moves downwards through L in sequence to check if
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a cache level lx will be updated. Line 4 safely approximates the first component of the

collecting semantics cs for a reference r (given cs(r) = 〈Lr, S̄r〉 where Lr is the set of all the

cache levels that can be updated due to r, if we have lx ∈ Lr, then safety means we should

have ψ(r)(lx) 6= N when the analysis reaches its fixed-point). Lines 5 – 13 performs the

same CAC derivation as described in [61]. Different from the traditional multi-level cache

analysis method, we do not use the resultant CAC to update this cache level’s state directly

but we use it to derive the least upper bound for the reference’s CACs at this level.

The second loop (lines 18 – 31) begins from the last cache level ln and moves upwards

through L in sequence to carry out updating. It first acquires the least upper bound of the

CACs at a cache level lx (line 19) and updates the level’s abstract state φlx according to the

acquired CAC5. The abstract cache level state updating (lines 20 – 22) uses the traditional

method described in [61]. After updating the state, it checks whether lx is an inclusive level,

and tries to invalidate the memory blocks in the abstract cache states of the levels located

above lx if it is inclusive (lines 23 – 29). Line 24 ensures that the set of memory blocks that

cause invalidations at upper levels is over-approximated, and lines 26 – 28 extracts all the

sub-blocks w.r.t. the cache block size at an upper level. This loop abstracts the behavior of

step (3) and partial behavior of step (6) of the concrete operational semantics. The rest of

the behavior of the steps is abstracted in the U and I functions.

6.4.3 Abstract Domain for A Cache Level

According to the conditions introduced in Section 6.4.2 for the abstract cache level state

domain, it is actually to perform the three analyses (i.e. the may, must, and persistence) on

each level at the same time. Therefore, we define the abstract cache state domain Φlx for a

cache level lx as:

Φlx = Θ
may
lx ×Θ

must
lx ×Θ

pers
lx ×∆lx

5If the acquired CAC is A or N, it means the CAC for this reference at this level is always the same (A or
N) during the analysis iterations.
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where Θ
may
lx is the set of all the ACSs in terms of may analysis of the cache level lx in

isolation; likewise, Θmust
lx and Θ

pers
lx are that in terms of must and persistence analysis,

respectively. Note that the Θ
may
lx and Θmust

lx we use are consistent with the ones defined in

[53], namely:

Θ
may
lx = Θ

must
lx = {1, · · · ,dlx}→

(
{1, · · · ,klx}→ 2Mlx

)

However, there are different approaches to safe cache persistence analysis, in which differ-

ent abstract domains are used [76, 73]. No matter which approach is used, for a cache set

i, there is an additional logical position >lx ≡ klx +1. Given a θ
pers
lx ∈ Θ

pers
lx , θ

pers
lx (i)(>lx)

is an over-approximated set of memory blocks that are possibly evicted after being loaded

into this cache set. The last component domain ∆lx is defined as:

∆lx = {1, · · · ,dlx}→ {1, · · · ,klx ,>lx}

An element in the domain ∆lx is used to capture the minimum logical position in which

there may be an invalidated memory block for each cache set.

For simplicity, let us use Φ directly in the following without its subscript lx. Three

semantic functions need to be defined as described in Section 6.4.2.

Given two abstract states φ1 = 〈θ may
1 ,θ must

1 ,θ pers
1 ,δ1〉 ∈Φ and φ2 = 〈θ may

2 ,θ must
2 ,θ pers

2 ,δ2〉 ∈

Φ, the join function J : Φ×Φ→Φ is defined as:

J (φ1,φ2) = 〈J may(θ may
1 ,θ may

2 ),J must(θ must
1 ,θ must

2 ),J pers(θ pers
1 ,θ pers

2 ),δ⊥〉

where J may is the traditional join function used for single-level cache may analysis (so

are J must and J pers), and δ⊥ ∈ ∆ is defined as ∀i ∈ {1, · · · ,dlx} : δ⊥(i) =>lx .

Given a set PO of possibly invalidated memory blocks, the invalidate function I :

Φ×2M→Φ is defined in Algorithm 6.2. It (lines 7 – 10) removes any possibly invalidated
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memory block from the must and persistence components and puts the removed block into

the corresponding> position. It (lines 4 – 6) also captures the minimum logical position in

which there may be an invalidated memory block for each cache set. Note that we do not

remove any block from the may component since a block in PO may not cause invalidation.

Algorithm 6.2: Definition of the invalidate function I

Input: φ = 〈θ may,θ must ,θ pers,δ 〉, PO
Output: φ ′ = 〈θ may′ ,θ must ′ ,θ pers′ ,δ ′〉
φ ′← φ ;1
δ ′← δ⊥ ;2
foreach m ∈ PO do3

if m ∈ θ may′(i)( j) then4
if j < δ ′(i) then5

δ ′(i) = j ;6

if m ∈ θ must ′(i)( j) then7

remove m from θ must ′(i)( j) ;8

if m ∈ θ pers′(i)( j) then9

remove m from θ pers′(i)( j) and put it into θ pers′(i)(>) ;10

According to the concrete operational semantics, we know that if a memory block in

the logical position p of a cache set is invalidated, loading a new block into this cache

set will not increment the logical positions of the blocks which are greater than p. When

updating an abstract state, if we do not consider this behavior, it will not affect the safety

but only the precision of the must and persistence analyses (both analyses stay safe as

long as the logical positions of memory blocks are not underestimated). However, without

considering this behavior we can have an unsafe may analysis, since it is required not to

overestimate the logical positions of memory blocks in the may analysis. Therefore, we

extend the traditional update function U may to U
may

: Θmay×M×∆→ Θmay for the may

analysis to take into account any possible invalidation behavior:

U
may

(θ may,m,δ ) =


U may(θ may,m) if p≥ j

θ may[set(m) 7→ ε] otherwise
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where

p = δ (set(m))
∧

j =


h if m ∈ θ may(set(m))(h)

> otherwise

∧

ε =

[
ι1 7→ {m},

ιi 7→ θ may(set(m))(ιi−1)|i = 2 · · · p,

ιp+1 7→ θ may(set(m))(ιp)∪ (θ may(set(m))(ιp+1)\{m}),

ιi 7→ θ may(set(m))(ιi)\{m}|i = p+2 · · ·k
]

If there is no invalidation possible in this cache set (i.e. p = >), or if m is in θ may and

its logical position is not behind the minimum position p where an invalidated memory

block may reside, using the traditional U may will not overestimate the logical positions of

memory blocks. Otherwise, we need to consider there may be a “hole” behind p (including

p) that needs to be filled first; so we can only increment the logical positions of the memory

blocks until p, and keep the positions of other blocks unchanged (excluding m which will

be moved to the first logical position if it is in the current θ may). Based on this, given an

abstract state φ = 〈θ may,θ must ,θ pers,δ 〉 ∈Φ, we define the update function U : Φ×M→Φ

as:

U (φ ,m) = 〈U may
(θ may,m,δ ),U must(θ must ,m),U pers(θ pers,m),δ⊥〉

where U must and U pers are the traditional update functions for must and persistence anal-

ysis, respectively.

In Chapter 5, an abstract domain called aging barrier is proposed to improve precision.

Therefore, Φ can be extended by including that domain as a component domain (and also

extend the update functions for must and persistence analyses). However, there are two

reasons why we do not include this domain: (1) it is not necessary for safety of the analysis;

(2) it may not be useful in the absence of data references.
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6.4.4 Concretization

The set of concrete cache hierarchy states represented by an abstract cache hierarchy

state ω = 〈φl1, · · · ,φln〉 where φlx = 〈θ
may
lx ,θ must

lx ,θ pers
lx ,δlx〉 (1≤ x≤ n) can be derived by a

concretization function conΩ : Ω→ 2S̄. This concretization function is defined as:

conΩ(ω) = · · ·×
(

γ
may
lx (θ may

lx )∩ γ
must
lx (θ must

lx )∩ γ
pers
lx (θ pers

lx )
)
×·· ·

where γmay, γmust , γ pers are the well-defined concretization functions in [53] for the may,

must, and persistence abstract states respectively. For an abstract cache level state, the set

of concrete cache level states is derived independently of other levels. A concrete cache

level state should satisfy the may, must, and persistence meanings of the abstract cache

level state, so set intersection is used to guarantee this.

The meaning of the global abstract object ψ ∈ Ψ is given by another concretization

function conΨ : Ψ→
(

R→ 2L
)

that is defined as:

conΨ(ψ) =
[
r ∈ R 7→ {l ∈ L|ψ(r)(l) 6= N}

]

For each reference r, this concretization function determines a set of cache levels that may

be accessed by r. Given a cache level l, if we have ψ(r)(l) 6= N (i.e. A or U), r may access

l and l is in the derived set of cache levels for r.

6.4.5 Discussion on Data References

Since most of the inclusive caches are unified caches, data references need to be taken

into account eventually. As always, one difficulty related to data references is to precisely

derive a set of possibly referenced memory addresses for each dynamic load/store instruc-

tion [77, 73]. In addition, we need to consider which write policy is used in the cache

hierarchy. For example, if write-back policy is used, a dirty block needs to be written into
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a lower level when it is evicted, which changes the cache state at that level. Thus, we need

to safely classify whether a memory block is dirty (like always, never, or uncertainly dirty)

and take into account the effect of eviction of dirty blocks on lower cache level states.

6.5 Theoretical Analysis of Safety and Termination

Theorem 6.5.1. The proposed approach to multi-level inclusive cache analysis is safe.

Proof. Given a reference r, the collecting semantics cs where cs(r) = 〈Lr, S̄r〉, the derived

global abstract object ψ , and the derived abstract cache hierarchy state ω at r, if the analysis

is safe, it should satisfy the following condition:

Lr ⊆ conΨ(ψ)(r)
∧

S̄r ⊆ conΩ(ω)

We prove this by mathematical induction.

Base case: At the beginning of an execution, no memory block is loaded and the first

reference needs to access all the cache levels. The abstract cache hierarchy state at the

entry point derived by the analysis is empty. By the definition of the function U the first

reference is certainly classified as AM at each cache level, so the ψ maps the first reference

to A at each cache level. The condition holds.

Inductive hypothesis: Let T be the set of all the predecessor references of r. In the

last iteration of the analysis, we have ∀t ∈ T : Lt ⊆ conΨ(ψ)(t)
∧

S̄t ⊆ conΩ(ω
′) where

cs(t) = 〈Lt , S̄t〉. For simplicity, let us assume r only has one predecessor t, so we have

ω =U (ω ′,ψ, t). If r has more than one predecessor, we can use the J function, which is

safe by construction, to combine the abstract cache hierarchy states. Therefore, we need to

prove ω ′ updated by t is safe and ψ updated by r is also safe.

Inductive step: When updating ω ′, since the CAC for t at each level is safe (given by

the hypothesis Lt ⊆ conΨ(ψ)(t)), updating the components of the last level in ω ′ will be

safe. Let us assume the last level is inclusive: Since its components are safely updated, the
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set of possibly evicted blocks will be overestimated. According to the definition of the I

function which remove blocks in the must and persistence state components, over-removal

in these two state components made by the I function will not make the analysis unsafe.

As described in Section 6.4.3, the update function U can safely update an abstract cache

level state. By using mathematical induction on levels, we can prove the component for

each level in ω ′ can be safely updated. Therefore, the ω ′ updated by t is also safe, i.e. the

abstract cache hierarchy state ω is safe. Thus, we have S̄r ⊆ conΩ(ω). When updating

ψ(r), r’s CHMC at each level is derived from the ω which is safe as proven above. Since

we have S̄r ⊆ conΩ(ω), the CHMC for r at each level is safe, so is the deduced CAC. The

F function uses the least upper bound operator to derive the reference’s possible CAC.

Thus, the ψ updated by r is safe, i.e. Lr ⊆ conΨ(ψ)(r).

In order to prove the proposed approach terminate, we need a well-defined partial order-

ing on each abstract domain. Given two abstract cache hierarchy states ω1 = 〈φ1,l1 , · · · ,φ1,ln〉

and ω2 = 〈φ2,l1, · · · ,φ2,ln〉, the partial ordering �Ω on the the abstract cache hierarchy state

domain Ω is defined as:

ω1 �Ω ω2 ⇐⇒ φ1,l1 �Φ φ2,l1

∧
· · ·
∧

φ1,ln �Φ φ2,ln

where�Φ on the abstract cache level state domain Φ is defined naturally as the conjunction

of the orders on the corresponding components in the Θmay, Θmust , Θpers, and ∆ respec-

tively. The partial orderings on the Θmay, Θmust and Θpers abstract cache state domains are

already well-defined, so we define the partial ordering �∆ on the domain ∆. Given two

elements δ1 and δ2 of the domain ∆, the partial ordering �∆ on the domain ∆ is defined as:

δ1 �∆ δ2 ⇐⇒ ∀i ∈ {1, · · · ,d} : δ1(i)≥ δ2(i)

We also need to define the partial ordering on the domain Ψ. Given two elements ψ1
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and ψ2 of the domain Ψ, the partial ordering �Ψ on the domain Ψ is defined as:

ψ1 �Ψ ψ2 ⇐⇒ ∀r ∈ R,∀l ∈ L : ψ1(r)(l)�CAC ψ2(r)(l)

where �CAC on the CAC domain is defined by the lattice as shown in Fig. 6.3.

Theorem 6.5.2. The proposed approach to multi-level inclusive cache analysis terminates

in finite iterations.

Proof. The abstract cache hierarchy state domain Ω and the Ψ domain are finite and par-

tially ordered, so if both J and U functions are monotone, the proposed analysis is guar-

anteed to terminate in finite iterations.

The J function only applies the monotone join functions of the may, must, and per-

sistence analyses independently to the corresponding components of two abstract cache

hierarchy states, so it is monotone by construction.

The U function is composed of four functions F , I , U , and J : (1) For any refer-

ence, the F function uses the t operator on the reference’s all possible CACs to derive a

least upper bound. Thus, given ψ1�Ψ ψ2, for any reference r at a cache level l with its CAC

c, we have F (ψ1,r, l,c) �Ψ F (ψ2,r, l,c). (2) The I function removes blocks only from

θ must and θ pers of an abstract cache level state. Thus, given φ1 �Φ φ2 and PO1 ⊆ PO2,

we can easily verify the resultant θ must
1 from I (φ1,PO1) and the resultant θ must

2 from

I (φ2,PO2) have the relation: θ must
1 �must θ must

2 ; also the resultant θ
pers
1 and θ

pers
2 have the

relation: θ
pers
1 �pers θ

pers
2 . Since the θ

may
1 and θ

may
2 are not changed by the I function

(i.e. θ
may
1 �may θ

may
2 still holds) and PO1 ⊆ PO2, we can also easily verify the resultant δ1

and δ2 have the relation: δ1 �∆ δ2. (3) The U function is composed of the U
may

function

and the well-defined monotone update functions U must and U pers. Thus, the U func-

tion is monotone as long as the U
may

function is monotone. Given a memory block m,

θ
may
1 �may θ

may
2 , and δ1 �∆ δ2, we can verify U

may
(θ may

1 ,m,δ1)�may U
may

(θ may
2 ,m,δ2),

since δ1 �∆ δ2 means we have δ1(set(m))≥ δ2(set(m)) such that age increasing in θ
may
2 is
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more conservative by the definition of the U
may

function. (4) The J function is monotone

as shown above. Since the functions F , I , U , and J are all monotone, the U function

is monotone.

6.6 Evaluation

In this section, we evaluate the approach proposed in this chapter and also compare

with the state-of-the-art approaches that can deal with inclusion enforcement at some levels

and are proposed in [64] and Chapter 5. We use the research prototype tool described

in Appendix A to perform the experiments. The evaluations are carried out on a set of

benchmarks (as shown in Tab. 6.2) maintained by the Mälardalen WCET research group

[114], and they are compiled for MIPS R3000 processor using gcc-3.4.4. First, we describe

the evaluation setup and also some assumptions in the experiments which nevertheless do

not affect the validity of the evaluation. Then, we present the evaluation results showing

that the proposed approach improves the precision, and we also show the computational

overhead associated with the evaluation.

Due to the limitations of our current tool, we only take into account the timing effects

of multi-level inclusive instruction caches and do not consider data references for now as

argued in Section 6.2. We also do not consider the effects of other micro-architectural

features like pipelines and branch predictors, so we assume there are no timing anomalies.

Therefore, a memory reference that is classified as NC can be safely treated as a AM when

used to estimate the WCET.

We carry out the experiments on a two-level cache hierarchy and configure L2 to be

inclusive. The fixed parameters of the cache hierarchy are shown in Tab. 6.1. Moreover,

we assume every needed information can be found in the main memory with a 100-cycle

latency.

Three experiments are performed on each benchmark under different cache capacity

configurations. Let size(L1) denote the capacity of L1 cache, and let size(L2) denote the
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Table 6.1: Fixed Parameters of Two-Level Cache Hierarchy

Level Block Size Associativity Latency
L1 8B 2-way 1-cycle
L2 16B 4-way 10-cycle

capacity of L2 cache. Let us assume that L2 cache size is always four times bigger than

that of L1 cache, namely we have size(L1) = size(L2)
4 . For a benchmark bm, let size(bm)

denote the code size of this benchmark. The cache size configurations for each benchmark

are shown in Tab. 6.2, whose criteria are described as follows:

Large: L2 cache size is not smaller than the code size, and it also satisfies size(L2) ≥

2× size(bm)> size(L2)
2 .

Medium: L2 cache size is not bigger than the code size, and it also satisfies size(L2) ≤

size(bm)< 2× size(L2).

Small: L2 cache size is not bigger than half the code size, and it also satisfies size(L2) ≤
size(bm)

2 < 2× size(L2).

Tab. 6.3 shows the experimental results. For a benchmark, WCET1 is derived by us-

ing the approach proposed in [64], WCET2 is derived by using the approach proposed in

Chapter 5, and WCET3 is derived by using the approach proposed in this chapter. The

WCET estimation is reported in clock cycles. The precision improvement compared to the

approach proposed in [64] is calculated by WCET1
WCET3

− 1. Likewise, the precision improve-

ment compared to the approach proposed in Chapter 5 is calculated by WCET2
WCET3

− 1. We

also report the computation time overhead in seconds, along with the reported WCET. The

experiments are performed on a Linux machine with a 1.2GHz quad-core processor and

12GB memory.

As we can observe from the results, the approach proposed in this chapter dominates

the other two approaches in most cases. Under the large cache size configuration, the

approach proposed in this chapter performs almost the same as the approach proposed in
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Table 6.2: Large, Medium, and Small Cache Size Configurations for Each Benchmark

Benchmark Code Size
Large Medium Small

L1 L2 L1 L2 L1 L2
bs 320B 256B 1KB 64B 256B 32B 128B

insertsort 440B 256B 1KB 64B 256B 32B 128B
janne 324B 256B 1KB 64B 256B 32B 128B
cnt 944B 512B 2KB 128B 512B 64B 256B

expint 888B 512B 2KB 128B 512B 64B 256B
fir 600B 512B 2KB 128B 512B 64B 256B
ns 588B 512B 2KB 128B 512B 64B 256B

prime 556B 512B 2KB 128B 512B 64B 256B
qurt 1328B 1KB 4KB 256B 1KB 128B 512B

select 1580B 1KB 4KB 256B 1KB 128B 512B
compress 3564B 2KB 8KB 512B 2KB 256B 1KB

edn 3576B 2KB 8KB 512B 2KB 256B 1KB
jfdctint 2580B 2KB 8KB 512B 2KB 256B 1KB

lms 2588B 2KB 8KB 512B 2KB 256B 1KB
ludcmp 2276B 2KB 8KB 512B 2KB 256B 1KB
minver 3052B 2KB 8KB 512B 2KB 256B 1KB
ndes 3392B 2KB 8KB 512B 2KB 256B 1KB

adpcm 7612B 4KB 16KB 1KB 4KB 512B 2KB
statemate 10296B 8KB 32KB 2KB 8KB 1KB 4KB
nsichneu 40036B 32KB 128KB 8KB 32KB 4KB 16KB

Chapter 5: For only a few benchmarks, WCET3 is lower than WCET2 but the precision

improvement is only within 3%. However, both the approaches perform better than the

approach proposed in [64]. This is expected and reasonable, since the approach proposed

in [64] does not try to classify any access as A or N instead of U at a lower level than L1.

A striking difference appears under the medium and small configurations. Under both

configurations, the approach proposed in this chapter gives above 10% improvement in

most cases. For some benchmarks, the precision improvement is very significant (over

100%). Due to this huge improvement, we also analyze some small benchmarks by hand

to find out the reasons. For example, under the medium configuration, for insertsort, the

approach proposed in this chapter can achieve more than 170% improvement compared to

the other two approaches. The reason for this is explained as follows: insertsort has two

nested loops, and the total size of the two nested loops is 228 bytes which is smaller than
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Table 6.3: Experimental Results: WCET Estimates and Computation Time Overheads

Benchmark Configuration
Approach in [64] Approach in Chapter 5 Approach proposed WCET1

WCET3
-1 WCET2

WCET3
-1

WCET1 Overhead WCET2 Overhead WCET3 Overhead

bs
Large 4827 0 4027 0.1 4027 0.1 19.87% 0.00%

Medium 7357 0 6857 0 3757 0.1 95.82% 82.51%
Small 10079 0 9579 0 6679 0 50.90% 43.42%

insertsort
Large 17229 0.1 15929 0.2 15929 0.2 8.16% 0.00%

Medium 187559 0 186359 0.1 68959 0.1 171.99% 170.24%
Small 187559 0 186359 0.1 110859 0.1 69.19% 68.10%

janne
Large 5863 0 4963 0.1 4963 0.1 18.13% 0.00%

Medium 20577 0 20077 0.1 15077 0.1 36.48% 33.16%
Small 33767 0 33267 0 24167 0 39.72% 37.65%

cnt
Large 27176 0.4 25176 0.8 25176 0.7 7.94% 0.00%

Medium 362188 0.2 358308 0.4 277508 0.6 30.51% 29.12%
Small 537178 0.1 533298 0.3 289198 0.3 85.75% 84.41%

expint
Large 30737 0.2 29537 0.4 29337 0.3 4.77% 0.68%

Medium 183462 0.1 171262 0.2 109162 0.3 68.06% 56.89%
Small 474762 0.1 473162 0.2 322262 0.2 47.32% 46.83%

fir
Large 15643 0.2 14443 0.4 14443 0.5 8.31% 0.00%

Medium 196536 0.1 170586 0.2 136786 0.3 43.68% 24.71%
Small 380736 0.1 379636 0.1 213936 0.1 77.97% 77.45%

ns
Large 33601 0.3 31601 0.4 31601 0.4 6.33% 0.00%

Medium 164491 0.1 162591 0.2 162291 0.2 1.36% 0.18%
Small 1473161 0.1 1472305 0.2 972305 0.2 51.51% 51.42%

prime
Large 38044 0.3 36644 0.5 36644 0.4 3.82% 0.00%

Medium 190664 0.1 189164 0.2 185064 0.3 3.03% 2.22%
Small 1690694 0.1 1689194 0.2 612594 0.1 175.99% 175.74%

qurt
Large 43705 3.3 40905 6.2 39897 5.4 9.54% 2.53%

Medium 175156 1.3 168176 2.5 150276 2.8 16.56% 11.91%
Small 182356 1.0 179556 2.0 114056 1.5 59.88% 57.43%

select
Large 43264 3.0 42264 5.5 41064 6.6 5.36% 2.92%

Medium 237114 1.0 236194 1.8 168594 3.2 40.64% 40.10%
Small 237114 0.5 202594 1.1 153394 1.7 54.58% 32.07%

compress
Large 217433 13.0 213333 25.2 212933 26.7 2.11% 0.19%

Medium 1624044 5.1 1614444 9.5 1472344 11.7 10.30% 9.65%
Small 1624044 2.9 1614444 5.5 1299144 6.7 25.01% 24.27%

edn
Large 217583 19.1 211483 25.8 211483 35.6 2.88% 0.00%

Medium 740873 5.7 734663 9.4 602663 9.8 22.93% 21.90%
Small 2360263 2.8 2354263 5.3 2254963 5.3 4.67% 4.40%

jfdctint
Large 42825 11.9 42225 14.7 42125 20.9 1.66% 0.24%

Medium 164895 3.2 164295 4.8 48195 4.1 242.14% 240.90%
Small 265895 1.9 197895 3.2 107895 1.8 146.44% 83.41%

lms
Large 480987 8.9 479187 18.0 479187 16.2 0.38% 0.00%

Medium 10438520 4.7 10414720 8.8 10410720 10.4 0.27% 0.04%
Small 25358756 2.7 25047856 5.5 21404296 8.7 18.48% 17.02%

ludcmp
Large 40885 3.9 39285 7.2 39285 6.8 4.07% 0.00%

Medium 61245 2.4 59645 4.3 59645 4.5 2.68% 0.00%
Small 293163 1.4 292263 2.8 290063 3.8 1.07% 0.76%

minver
Large 56314 6.7 53914 11.9 53914 12.9 4.45% 0.00%

Medium 73759 3.4 71159 6.1 70759 7.3 4.24% 0.57%
Small 228073 2.1 224333 3.9 215233 5.7 5.97% 4.23%

ndes
Large 204676 12.1 202376 21.6 202076 25.4 1.29% 0.15%

Medium 2967930 5.6 2926910 10.0 2926010 14.4 1.43% 0.03%
Small 5615987 3.2 5497527 6.4 4845877 11.0 15.89% 13.45%

adpcm
Large 388500 105.1 385600 199.5 384300 233.0 1.09% 0.34%

Medium 1262808 37.4 1251888 71.3 1127392 111.2 12.01% 11.04%
Small 1640818 24.9 1600638 49.9 1524568 45.3 7.63% 4.99%

statemate
Large 102633 124.0 96733 230.9 96533 233.6 6.32% 0.21%

Medium 159710 54.5 153150 93.9 133530 143.8 19.61% 14.69%
Small 160220 33.1 153560 58.5 119560 112.0 34.01% 28.44%

nsichneu
Large 610498 3023.7 610198 6327.7 608598 8880.6 0.31% 0.26%

Medium 1096788 897.3 1096688 1491.0 1088088 5675.8 0.80% 0.79%
Small 1144988 528.6 1144888 887.3 1138288 3725.9 0.59% 0.58%
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the L2 cache size under the medium configuration which is 256 bytes; thus, if a reference

in the loops cannot be classified as L1 AH, it should at least be classified as L2 PS if not

L2 AH. While the approach proposed in this chapter achieves this (i.e. it gives L2 AH or

L2 PS to the references in the loops if they cannot be classified as L1 AH), the other two

approaches fails to give such L2 classifications to the references in the loops (they assign

L2 NC to them).

When applying the approach proposed in this chapter, an interesting phenomenon is

that a smaller cache size configuration may result in a tighter estimate (namely bs, qurt,

select, compress, and statemate). As observed from the results of bs benchmark, the calcu-

lated bound under the large cache size configuration (4027 clock cycles) is higher than that

under the medium cache size configuration (3757 clock cycles). The reason for such a phe-

nomenon is as follows: The code size in the loop of bs is 208 bytes which is smaller than

256 bytes, so most of the loop memory blocks are at least persistent if not always in both

L1 and L2 caches under the large configuration; whereas, most of the blocks are persistent

in L2 cache under the medium configuration, but their sub-blocks will be evicted from L1

cache along with the loop iterations (since L1 cache size under the medium configuration

is only 64 bytes and the shortest path in the loop involves 128 bytes). Therefore, there are

several references which are classified as L1 PS & L2 PS under the large configuration, and

are classified as L1 AM & L2 PS under the medium configuration. Given such a reference

under the large configuration, L1 PS & L2 PS means that the corresponding L2 block is

not in the θ must
l2

and its L2 CAC is U; and it cannot bring the corresponding L2 block into

the θ must
l2

; thus, its subsequent references to the same L2 block can only be classified as

L2 PS (if not L1 AH) but not L2 AH; namely, such subsequent ones can add additional

main memory access latencies (100 clock cycles) to the total estimate6. On the contrary,

such a reference under the medium configuration is classified as L1 AM & L2 PS, so its

L2 CAC is A which enables it to bring the corresponding L2 block into the θ must
l2

; some of

6If a reference is not classified as L1 AH and is classified as L2 PS, it can contribute at most one main
memory access latency even it is in a loop.
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its subsequent references to the same L2 block can be classified as L2 AH instead of L2

PS. Thus, the number of L1 misses under the medium one is proportional to the number of

the iterations and can be much more than that under the large one; however, the number of

overestimated L2 misses under the medium one can be less than that under the large one.

Given the loop bound is only 4 and the difference between the latency of L2 access and

main memory access is big, this phenomenon occurs. This phenomenon also shows the

approach proposed in this chapter can tightly analyze multi-level inclusive caches.

Compared to the other two approaches, the approach proposed in this chapter seems to

require more computation time, especially in the case of nsichneu benchmark (the biggest

one we use). This is because the approach proposed in this chapter needs to perform more

iterations due to the CACs for many references at L2 changing from A or N to U.

6.7 Conclusion

In this chapter, we propose an approach that can safely and more precisely analyze

multi-level inclusive caches for WCET estimation. We first define a concrete operational

semantics for multi-level inclusive caches. Based on this concrete semantics, the proposed

approach analyze a multi-level inclusive cache as a whole by integrating three analyses

together. We evaluate the proposed approach using a set of benchmarks. From the experi-

mental results, we can observe the proposed approach can significantly tighten the WCET

bound under relatively small cache size configurations, compared to state-of-the-art ap-

proaches.

153



Chapter 7

Cache-Related Preemption Delay Analysis for Multi-Level Inclusive Caches

CPS software usually consists of many hard real-time tasks running on a single proces-

sor, e.g. brake control task and engine control task may run on the same ECU in a auto-

motive vehicle. Many such systems employ preemptive scheduling strategies, under which

a task may be frequently preempted by other higher priority tasks. When executing these

higher priority tasks (preempting tasks), the states of many underlying micro-architectural

components are often “polluted”. Therefore, additional overhead on the preempted task’s

execution time is expected due to the state “pollution”. Since caches have significant impact

on the variation of execution time, most of the overhead is due to cache state “pollution”,

which is referred to as cache-related preemption delay (CRPD).

CRPD analysis has been studied with respect to single-level caches extensively. As

embedded processors are increasingly equipped with cache hierarchies nowadays, CRPD

analysis deserves a study in terms of multi-level caches. However, in the presence of multi-

level caches, CRPD analysis becomes much more challenging since the amount of intra-

task interference may be changed by preemption [104]. Therefore, it becomes unsafe to

estimate CRPD without considering the interrelations between different levels.

In [104], CRPD analysis in the context of multi-level non-inclusive caches has been

investigated. Since cache hierarchies of different types may have different behaviors even

for the same memory reference sequence, CRPD analysis for multi-level non-inclusive

caches may not be fit for multi-level inclusive caches. Therefore, in this chapter, we first

study the distinctions between non-inclusive and inclusive cache hierarchies in order to see

why and how the effect of preemption can be different; then we propose an approach which

can safely analyze CRPD in the context of multi-level inclusive caches. To the best of our

knowledge, this is the first time to analyze CRPD in terms of multi-level inclusive caches.
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The main contributions of this chapter are: (1) We identify the challenges of analyzing

CRPD in the context of multi-level inclusive caches, compared to the multi-level non-

inclusive caches; (2) We present a tight upper bound on how many times the classification

of a reference may be changed in a loop, and we also prove the bound is safe; (3) We

propose a “watermark” method based on the persistence analysis to safely estimate the

amount of inter-task interference made by a preempting task; (4) We propose a calculation

method to safely estimate CRPD in the presence of multi-level inclusive caches.

The rest of this chapter is organized as: Section 7.1 states why CRPD analysis for multi-

level inclusive caches is a hard problem; Section 7.2 describes the system model; Section

7.3 presents the proposed approach to CRPD analysis for multi-level inclusive caches; and

Section 7.4 concludes this chapter.

7.1 Problem Statement

Cache analysis for WCET estimation usually only takes into account intra-task inter-

ference to derive an upper bound on cache misses. This upper bound on cache misses may

not be safe if inter-task interference is also possible. Therefore, CRPD analysis needs to

bound the number of additional cache misses caused by inter-task interference.

CRPD analysis for single-level caches (without loss of generality, let us focus on A-

way set associative caches with LRU replacement policy) relies on a concept of “useful

cache blocks” (UCBs)1[123]. At a program point, a UCB only captures the first references

to a memory blocks after that program point. The number of UCBs at a program point

serves as an upper bound on the additional cache misses when preemption happens at this

program point. This upper bound is safe (although may not tight) since (1) a single-level

1They are called “useful cache blocks” due to a historical reason, although they represent the memory
blocks in these cache blocks are “useful”. The name is coined in [94] which studies direct-mapped caches:
At a program point, a cache block is “useful” only if it may contain a memory block that the first reference to it
after this program point along some path can be a cache hit. Since a memory block can only stay in one cache
block in direct-mapped caches, the “usefulness” of a memory block can be inherited by the corresponding
cache block.
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cache is always accessed, so the amount of intra-task interference to a memory block will

not changed by preemption; (2) after the first reference to a memory block beyond the

preemption point, the memory block will become the youngest and its LRU age can only

be affected by intra-task interference. Therefore, in terms of single-level caches, the first

reference to a memory block beyond the preemption point can be treated as a “firewall”

to prevent the inter-task interference from affecting the LRU age of the memory block

afterwards. As a result, after the first reference to a memory block beyond the preemption

point, any further reference to this memory block would have the same cache hit/miss

classification (CHMC) as that in the absence of preemption.

However, as stated in [104], only considering the effect of inter-task interference on the

first references to a memory block may not be safe in terms of multi-level caches. While

L1 is always accessed, the other lower cache levels are usually not be accessed by every

memory reference. Compared to the case where there is no preemption, some references

may need to access the lower cache levels in the presence of preemption. Therefore, the

amount of intra-task interference to a memory block at a lower level may be increased due

to the preemption. Due to the possibility that the amount of intra-task interference to a

memory block can change, we cannot treat the first reference to the memory block at a

cache level as the “firewall” to stop the effect of preemption on the memory block’s LRU

age afterwards. This phenomenon is referred to as the indirect effect of preemption in [104].

CRPD analysis for multi-level non-inclusive caches has been studied in [104]. How-

ever, non-inclusive cache hierarchies have less strict inclusion properties from inclusive

cache hierarchies2, which induces different interactions between cache levels. Since multi-

level inclusive caches enforce strict inclusion property, when a memory block is evicted

from a lower inclusive level, it also needs to invalidate its contents at any upper level. This

invalidation behavior can make CRPD analysis for multi-level inclusive caches challeng-

2Multi-level inclusive caches require that the contents at upper cache levels must be a subset of the con-
tents at lower levels, while multi-level non-inclusive caches allow duplicated contents existing at cache levels
but do not strictly enforce the inclusion property
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ing. For instance, when analyzing CRPD in terms of multi-level non-inclusive caches,

given a sequence of references to a memory block after a preemption point, except for the

first reference whose L1 behavior needs further analysis, we can safely inherit the others’

L1 behavior as what they were classified in the absence of preemption [104]. However,

when analyzing CRPD in terms of multi-level inclusive caches, due to the possible in-

validation behavior, it may become unsafe to do such an inheritance without any further

analysis. An example is shown in Fig. 7.1, in which a two-level inclusive cache with L2

ma mc

mamc mb md

mx

introduced by
preempting task

ma mc

mamc mb md

md ma

mbmd mc ma

ma md

mbmd mc ma

mx ma

mbmx mc ma

ma mx

mbmx mc ma

md mx

mcmd mx mb

ma md

mxma md mc

ma md ma

ma md ma

L1 hit L1 hit

L1 hit L1 miss

Figure 7.1: L1 behavior inheritance is affected by invalidation behavior

being inclusive is used. For simplicity, we assume the cache block sizes are the same and

the memory blocks ma, mb, mc, md , and mx are mapped to the same sets at these two lev-

els. The upper part of the figure shows the states of the cache hierarchy in the absence of

preemption. From the figure, we can observe that the second reference to ma is a L1 cache

hit. However, when an preemption happens before the first reference to ma and introduces

another memory block mx into the cache hierarchy, the second reference to ma cannot be

L1 cache hit anymore. This is because when md is referenced, it evicts ma from L2 cache,

which invalidates ma in L1 cache.

Therefore, the problem is how to adapt the approach to CRPD analysis for multi-level

inclusive caches in order to derive a safe and precise estimate.
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7.2 System Model

In this chapter, we focus on a two-level inclusive cache model, which can be found

in many commercial multi-core processors. In the model, L2 cache is inclusive which

means the contents of L1 is always a subset of the contents of L2. At each cache level, we

assume that the cache is set associative – let AL1 denote the associativity of L1 cache and

let AL2 denote the associativity of L2 cache. We also assume LRU (Least Recently Used)

replacement policy is used. The size of a cache block can be different at different cache

levels, and it is assumed the cache block size does not increase as the level goes up. It is

also assumed the capacity decreases as the level goes up.

As mentioned in previous chapters, we also assume the time to access a cache level is

bounded and predictable, which can be achieved by using deterministic interconnects to

connect the caches, like TDMA buses [122].

In this chapter, we focus only on how to analyze CRPD in the context of multi-level

caches which can suffer invalidations caused by the inclusion enforcement, so we simply

consider instruction references in terms of a single processor (i.e. no data references and

inter-core interferences). This work can serve as a basis for CRPD analysis of multi-level

inclusive data or unified caches in terms of a multi-core processor.

Given a task τ , we use the approach proposed in Chapter 6 to perform the multi-level

inclusive cache analysis of this task. Therefore, for a reference, we can obtain its cache

hit/miss classification (CHMC) at both cache levels. As usual, CHMC includes always

hit AH, always miss AM, persistent PS, and non-classified NC. However, as shown later

in Section 7.3, the inter-task interference due to the preemption may not only affect AH

and PS references, but also AM references, namely AM classification may not hold in the

presence of preemption. Therefore, we use the bottom-up approach proposed in Chapter

5 (only the may analysis of L2 inclusive cache) to categorize some references as definitely

always miss DAM, since when classifying AM references, that approach does not rely on

the contents of L1 cache.
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Since CRPD analysis is after the WCET analysis, given a reference r, we assume r

has the following attributes as shown in Tab. 7.1 and these attributes are all set during the

WCET analysis. Each attribute is accessed by using “.” operator.

Table 7.1: Attributes of A Reference

Attribute Description
r.mL1 the referenced memory block by r w.r.t. the L1 cache block size
r.mL2 the referenced memory block by r w.r.t. the L2 cache block size
r.cL1 cache hit/miss classification of r at L1 cache level
r.cL2 cache hit/miss classification of r at L2 cache level

r.amust
L1 if r.cL1 is AH, r.mL1’s position in the must abstract set state; else, >L1

r.amust
L2 if r.cL2 is AH, r.mL2’s position in the must abstract set state; else, >L2

r.apers
L1 if r.cL1 is PS, r.mL1’s position in the persistence abstract set state; else, >L1

r.apers
L2 if r.cL2 is PS, r.mL2’s position in the persistence abstract set state; else, >L2

r.amay
L1 if r.cL1 is not AM, r.mL1’s position in the may abstract set state; else, >L1

r.amay
L2 if r.cL2 is not AM, r.mL2’s position in the may abstract set state; else, >L2

Note that >L1 = AL1 +1 and >L2 = AL2 +1.

Moreover, we assume the task τ can only be preempted by one task τ̂ . In the case of

multiple preemptions due to preempting tasks, we can directly extend this work by using

the preempting task composition approach proposed in [124].

7.3 CRPD Analysis for Multi-Level Inclusive Caches

Since the CRPD estimate is often used together with the WCET estimate in schedula-

bility analysis, we do not need to derive a sound standalone CRPD estimate. Instead, as

long as the derived WCET + CRPD is safe, we can guarantee the schedulability analysis

is sound [103]. Therefore, our approach to CRPD analysis is similar to the method pro-

posed in [104], namely we only consider how to bound the number of additional L1/L2

cache misses due to the effect of preemption on the always hit (AH) and persistent (PS)

references (i.e., they refer to the definitely and persistently cached memory blocks).
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7.3.1 Preempted Task Analysis

Given the preempted task τ and a two-level inclusive cache hierarchy, we use the ap-

proach proposed in Chapter 6 to derive the WCET estimate and the references classified as

L1/L2 AH/PS . At a program point, if a reference is classified as L1/L2 AH/PS, they con-

tribute much less than other references to the WCET estimate. However, when preemption

introduces interference of other tasks, the reference’s L1/L2 AH/PS classification may not

hold.

Note that due to the inclusion property, if a reference is classified as L1 AH, it implies

this reference is also L2 AH. Since the concept of persistence only makes sense in loops,

we also assume that if a reference is classified as PS, it implies this reference is in a loop.

As stated in Section 7.1, when analyzing CRPD in terms of a multi-level cache, a

method only based on the traditional UCB concept may underestimate the additional cache

misses. Therefore, at a program point, we need to use a new concept to capture what

references beyond this program point may be influenced by the preemption-introduced in-

terference such that they may contribute more to the execution time. As we argued above,

we only focus on how to make WCET + CRPD sound, so the references of interest should

be “positively” classified by the WCET analysis, and these references can be categorized

into 7 types as shown in Tab. 7.2.

Table 7.2: 7 Types of Positively Classified References

Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7
L1 AH PS AM NC PS AM NC
L2 AH AH AH AH PS PS PS

Note: L1/L2 PS implies the reference is located in a loop.

Definition 7.3.1. A positive reference is a reference that is classified as one of the 7 types

shown in Tab. 7.2, i.e., its referenced memory block is definitely/persistently in L2 cache

when the reference occurs.
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Definition 7.3.2. Given a positive reference, if we cannot ensure its L2 “positiveness” in

the presence of preemption, we call this positive reference declined.

Therefore, a declined positive reference contributes at least a L2 cache miss penalty to

the CRPD estimate. Due to the inclusion property, if a positive reference in type 1, type 2,

or type 5 is declined, it can also contribute a L1 cache miss penalty to the CRPD estimate.

7.3.1.1 Bound on Times A Positive Reference Can Be Declined

Before presenting how to gather the positive references at a program point, we want to

derive an upper bound on how many times such a reference may be “declined”. If a positive

reference is not in a loop, it is straightforward to see it can only be declined once since it

can only be executed once. The problem emerges when a positive reference is in a loop, in

which case the positive reference can be executed many times.

In [104], the number of times a positive reference in a loop can be declined has been

studied in the context of multi-level non-inclusive caches3. In that case, the bound depends

on the number of sets and associativities of L1 and L2 caches. However, we find that

bound in the context of multi-level non-inclusive caches may not be suitable for multi-

level inclusive caches. One important difference is: in the context of inclusive caches, the

amount of intra-task interference to a memory block may be reduced due to the preemption

at L1/L2; but in the context of non-inclusive caches, the amount of intra-task interference

will not change at L1 and the amount cannot be reduced at L2.

For example, consider the situation shown in Fig. 7.2. In the example, we suppose

L2 cache is fully associative and L1 cache is 2-way set associative with 4 cache sets. The

cache block size at L1 is a quarter of the cache block size at L2. Since the cache block

size at L1 is smaller than that at L2, given a memory block m in terms of L2 cache, we use

mi to denote the ith sub-block of m in terms of L1 cache. Therefore, each sub-block of a
3Although not stated explicitly, we can find one implication in this study is that the cache block sizes are

the same at both L1 and L2 caches. However, in this work, we do not impose this restriction.
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Figure 7.2: The amount of intra-task interference may be reduced due to preemption.
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L2 memory block is mapped to the corresponding L1 cache set (e.g., m1
a is mapped to the

first L1 cache set and so forth). Let us also assume the preemption introduces one memory

block mx into the cache hierarchy (mx is called an evicting cache block in the literature). As

we can observe, the introduced mx causes less amount of intra-task interference to ma in L2

cache, specifically the references to mc and md do not access L2 cache since the needed sub-

blocks can be found in L1 cache. The result of this phenomenon is: The reference to some

information in m4
a can be classified as L1 AM and L2 AM in the absence of preemption, the

reference may hit both caches in the presence of preemption.

Now we need to consider when a memory reference r at a program point p in a loop is

classified positively by the cache analysis method in Chapter 6, whether r can maintain its

“positiveness” in the presence of preemption. In order to facilitate the presentation, let us

define what we mean by “a conflicting memory block of r.mL2” and also “a memory block

is demanded on a path”.

Definition 7.3.3. A conflicting memory block of r.mL2 is a memory block other than r.mL2

that is mapped to the same L2 cache set as r.mL2.

Definition 7.3.4. A memory block is demanded on a path – some information in this mem-

ory block is needed by some reference occurring on the path.

Lemma 7.3.5. For a memory reference r at a program point p in a loop, if r is a positive

reference (i.e., r.mL2 is definitely or persistently in L2 cache at p), then at least one of the

following two cases holds.

Case A: There are fewer than AL2 distinct conflicting memory blocks of r.mL2 demanded

on any cyclic path p p.

Case B: If there is a cyclic path p p on which there are at least AL2 distinct conflicting

memory blocks of r.mL2 demanded, there is at least one reference to r.mL2 classified

as L1 AM at some program point q (q 6= p) on the path.
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Proof. We prove the statement

r is a positive reference =⇒ Case A
∨

Case B

by contraposition, namely we are to prove

¬Case A
∧
¬Case B =⇒ r is not a positive reference

We have ¬Case A as “there are at least AL2 distinct conflicting memory blocks of r.mL2

demanded on some cyclic path p p in the loop”. We also have ¬Case B as “given any

cyclic path p p on which there are at least AL2 distinct conflicting memory blocks of

r.mL2 demanded, there is no reference to r.mL2 classified as L1 AM at any program point

q 6= p on the path”.

Let us assume some path p p on which there are at least AL2 distinct conflicting

memory blocks of r.mL2 demanded is ρ . According to ¬Case B, there is no reference other

than r to r.mL2 classified as L1 AM on ρ . Due to the inclusion property, at least AL2 + 1

distinct memory blocks needs to appear in the corresponding L2 cache set. Therefore, at

least one memory block, say mz, among these distinct memory blocks is not definitely/per-

sistently in L2 cache at the end of the path ρ (i.e. p since the path ρ is cyclic). Therefore,

we have: (1) If mz is r.mL2, it means r.mL2 is not definitely/persistently in L2 cache at p,

so r is not a positive reference. (2) If mz is not r.mL2, since mz is not in L2 cache at p (i.e.

the beginning of the path ρ) and mz is demanded on the path ρ , after mz is first referenced

on the path, mz will become the youngest in the cache set, namely it is possible that mz is

younger than r.mL2 at this point. Since the must and persistence analyses are safe, in the

abstract set states of the must and persistence analyses, r.mL2 should not be younger than

mz at this point. Since there is no reference to r.mL2 classified as L1 AM at any program

point q 6= p on the path, r.mL2 cannot be put into the first position of the abstract set states.

Therefore, at the end of the path ρ , r.mL2 is still treated as possibly older than mz. Since
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mz is safely classified as “not definitely/persistently in L2 cache at p”, r.mL2 should also be

classified as “not definitely/persistently in L2 cache at p” with respect to the safety of the

analyses. Therefore, r is not a positive reference.

Theorem 7.3.6. Given a positive reference r at a program point p in a loop, if Case A

holds, it can suffer at most one L2 cache miss in the presence of preemption.

Proof. We prove this statement by contradiction. Let us assume r can suffer at least two L2

cache misses in the presence of preemption. After r’s first L2 cache miss, r.mL2 becomes

the youngest memory block in the corresponding cache set. Since r can suffer at least

another L2 cache miss, it means r.mL2 will be evicted from L2 cache. Therefore, there are

at least AL2 conflicting memory blocks of r.mL2 demanded on some path p p, which

means Case A does not hold. Therefore, we reach a contradiction.

As shown above, when there exists inter-task interference, we cannot guarantee AM

classifications safe anymore. If only Case B holds for a positive reference in a loop, Case

B may not hold in the presence of preemption since L1 AM may not hold, which means

the reference’s “positiveness” may not hold. Therefore, the number of times that a positive

reference r at a program point p in a loop L may be declined is given by dec(L ,r) which

is defined as:

dec(L ,r) =


1 if cmb(L ,r.mL2)< AL2

lb(L ) otherwise

where cmb(L ,r.mL2) overestimates the maximum distinct conflicting memory blocks of

r.mL2 demanded on any cyclic path p p in the loop L , and lb(L ) gives the loop bound

of L . While lb(L ) can be manually input or estimated by other techniques which is not

in the scope of study, cmb(L ,r.mL2) is defined as:

cmb(L ,r.mL2)= |{m|m∈L
∧

m 6= r.mL2
∧

m is mapped to the same L2 cache set as r.mL2}|

which calculates in the loop how many memory blocks other than r.mL2 are mapped to
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the same L2 cache set as r.mL2. Since only a subset of these memory blocks is demanded

on any cyclic path in the loop, cmb(L ,r.mL2) over-approximates the number of distinct

conflicting memory blocks of r.mL2 demanded on any path p p.

7.3.1.2 Useful Positive References

As stated in Section 7.1, at a program point, instead of memory blocks that may be

referenced beyond the point, we need to focus on positive references that may appear after

this point in the context of multi-level caches. Therefore, we use the term “useful positive

references” (UPRs) instead of UCBs to capture the possible CRPD contributors.

Definition 7.3.7. At a program point, a useful positive reference (UPR) is a positive refer-

ence that is reachable from the program point.

Similar to how to capture UCBs at a program point, we use a backward-flow analysis

to capture UPRs at the point. The domain DUPR of the analysis is defined as:

DUPR = R+→ (2R
+
×B)⊥

where R+ is the set of all the positive references in the preempted task, B = {true, false},

and (2R
+×B)⊥ denotes the product domain 2R

+×B is lifted by adding a bottom element

⊥. Given an element α ∈ DUPR and a positive reference r ∈ R+ at a program point with

α(r) 6= ⊥, the first component of α(r) is denoted by α(r)1 which is an overestimated set

of references that may have negative effect on the “positiveness” of r only in the presence

of preemption (potential additional intra-task interference to r in L2 cache), and the second

component of α(r) is denoted by α(r)2 which gives whether the first component can be

expanded at the program point.

Let R denote the set of all the references in the preempted task, so we have R+ ⊆ R.

The update function UUPR : DUPR×R→ DUPR of the backward-flow analysis is used to

take into account the effects of a reference on the useful positive references. The function
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is defined as:

UUPR(α,r) =



α if r 6∈ R+∧r.cL2 6= DAM

α[r′ 7→ 〈α(r′)1, false〉|r′.mL2 = r.mL2] if r 6∈ R+∧r.cL2 = DAM

α[r 7→ 〈 /0, true〉] if r ∈ R+∧r.cL1 6= AH

α[r 7→ 〈 /0, true〉, otherwise

r′ 7→ 〈α(r′)1∪{r},α(r′)2〉|

α(r′)2 = true
∧

r′.mL2 6= r.mL2
∧

r.amay
L2 ≥

min(r′.mL2’s must and pers ages at r)]

where “r′.mL2’s must age at r” is the position where the memory block r′.mL2 is in the

abstract set state of the must analysis corresponding to where r is occurring, and similarly

“r′.mL2’s persistence age at r” is the position where the memory block r′.mL2 is in the

abstract set state of the persistence analysis corresponding to where r is occurring. If

r′.mL2 is not definitely cached at r, its must age is>L2, so the min function returns “r′.mL2’s

persistence age at r”.

The definition of the update function UUPR has four pieces. The updating of state α

depends on whether the reference r is a positive reference and its cache behavior. If r is

not a positive reference, when performing WCET analysis, it cannot be classified as never

accessing L2 cache, so its effect on aging the definitely/persistently cached memory blocks

has been taken into account. Even if in reality r does not access L2 cache in the absence

of preemption but accesses L2 cache in the presence of preemption, the “positiveness” of

r′ that is a positive reference after r will not be affected by r. When r.cL2 is classified

as DAM, its referenced memory block r.mL2 will definitely become the youngest memory

block in the corresponding cache set. Therefore, r serves as a boundary beyond which we

stop increasing the potential additional intra-task interference to any positive reference to

r.mL2. To indicate that we stop expanding the potential interference set for a reference r′,
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we set the α(r′)2 as false.

If r is a positive reference, we need to track its potential additional intra-task interfer-

ence from this point during the backward-flow analysis, so we set α(r)1 as an empty set and

set α(r)2 as true. If r.cL1 is classified AH, the WCET analysis treats it as never accessing

L2 cache. Therefore, if the AH classification may not hold in the presence of preemption, it

may access L2 cache so that it may cause additional intra-task interference to the following

positive references. However, if r’s may age is less than the must or persistence ages of a

memory block referenced by a positive reference, the effect on aging this memory block

has been taken into account. Therefore, for a positive reference, we only track the AH ref-

erences whose referenced memory blocks have never affected the must or persistence ages

of the memory block referenced by this positive reference.

The join function JUPR : DUPR×DUPR→DUPR is used to merge information at a join

point in the backward-flow analysis (namely at a branching point of the program). The

function is defined as:

JUPR(α1,α2) =
[
r 7→



⊥ if α1(r) =⊥
∧

α2(r) =⊥

α1(r) if α1(r) 6=⊥
∧

α2 =⊥

α2(r) if α1(r) =⊥
∧

α2 6=⊥

〈α1(r)1∪α2(r)1,α1(r)2∨α2(r)2〉 otherwise

]

where we use set union to combine the potential interference set for each positive reference

and use boolean OR operation to combine the indicators.

7.3.2 Preempting Task Analysis

When deriving the CRPD estimate, we need to know how much interference a pre-

empting task can maximally cause to the preempted task. Therefore, we need to find an

approach to over-approximate the amount of interference caused by the preempting task
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(i.e. the maximum number of used cache blocks) in the context of multi-level inclusive

caches.

The approach used in [104] first performs the may analysis of the preempting task on

the multi-level non-inclusive cache. The maximum number of cache blocks used in each

cache set at each cache level can be overestimated by the number of memory blocks in

the corresponding abstract set state of may analysis at the exit point of the preempting

task. This approach is sound, because memory blocks can only be evicted from a cache

level in a multi-level non-inclusive cache. However, since there may be invalidations in

multi-level inclusive caches, the amount of interference may be under-approximated if only

considering how many memory blocks are in the abstract set state of may analysis.

Instead of the exact inter-task interference contents, we are only concerned about how

much aging in each cache set at each cache level is maximally caused by the preempting

task. Therefore, we can achieve this through checking the possible “watermarks” in each

cache set due to loading the memory blocks of the preempting task. For a cache set, the

maximal “watermark” can be interpreted as the maximum number of cache blocks ever

used in that cache set by the preempting task.

To this end, we propose to use the abstract states of the persistence analysis at the exit

point of the preempting task. Given the preempting task τ̂ , let β τ̂
L1 (resp. β τ̂

L2) denote the

abstract L1 (resp. L2) cache state of the persistence analysis at the exit point. For a memory

block m in L1 cache, we have the over-approximated amount of interference caused by τ̂

in this cache set as:

ecbτ̂
L1(m)=


AL1 if β τ̂

L1(i)(>L1) 6= /0

max{ j|β τ̂
L1(i)( j) 6= /0} otherwise

where m is mapped to the ith set

For the memory block m, which is mapped to the ith cache set, the ecbτ̂
L1 function (named

after the traditional “evicting cache blocks”) gives AL1 if the >L1 position has memory

blocks, which means the preempting task uses all the cache blocks in the ith set; otherwise,
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the function gives the biggest position which is mapped to a non-empty set of memory

blocks by the abstract state β τ̂
L1. Note that if the preempting task τ̂ never used the ith cache

set of L1 cache, { j|β τ̂
L1(i)( j) 6= /0} would be an empty set; and we define max /0 = 0. The

corresponding ecbτ̂
L2 function can be defined in the same manner.

7.3.3 CRPD Estimation

When we complete the analyses of the preempted task τ and the preempting task τ̂ ,

we can estimate the CRPD by counting how many positive references may be declined

at each program point. The maximum number of possibly declined positive references

multiplied by the corresponding miss penalties is the CRPD estimate. The algorithm is

given in Algorithm 7.1.

At a program point p, given the computed UPR state α and the computed inter-task

interference functions ecbτ̂
L1 and ecbτ̂

L2, we estimate the CRPD crpdp by checking each

positive reference to see if it can preserve its “positiveness”. The estimated CRPD is stored

in a variable crpdp which may be increased by one or more L1 cache reload times tL1

and/or L2 cache reload times tL2 for a positive reference.

We start checking each positive reference r having the smallest potential interference

set (e.g. a positive reference r whose α(r)1 = /0 will be processed first) (line 2). Since a

positive reference r may be executed multiple times, line 4 – line 5 derive the upper bound

on the number of times r may be declined. Recall that dec(L ,r) gives the number of

possible declination of r if r is in the loop L . We use variables agemust
L1 , agemust

L2 , agepers
L1 ,

and agepers
L2 to capture the must and persistence ages of the referenced memory blocks in

the presence of preemption (line 6 – line 12). If α(r)1 6= /0, there are cyclic dependencies

since r has the smallest potential interference set. We break this cycle by pessimistically

assuming every potential interference in the set may cause the ages to increase (line 8 –

line 9). If α(r)2 = true, r has not met a DAM reference to r.mL2 yet. Therefore, it may be

affected by the inter-task interferences. We overestimate the must and persistence ages by
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Algorithm 7.1: Estimate the CRPD at a program point p of τ preempted by τ̂

Input: p, α , ecbτ̂
L1, ecbτ̂

L2
Result: crpdp
crpdp← 0 ;1
repeat2

get r whose α(r)1 has the fewest elements ;3
num← 1;4
if r is in a loop L then num← dec(L ,r) ;5
agemust

L1 ← r.amust
L1 and agemust

L2 ← r.amust
L2 ;6

agepers
L1 ← r.apers

L1 and agepers
L2 ← r.apers

L2 ;7
if α(r)1 6= /0 then8

agemust
L2 ← agemust

L2 + |α(r)1| and agepers
L2 ← agepers

L2 + |α(r)1| ;9

if α(r)2 = true then10
agemust

L1 ← agemust
L1 + ecbτ̂

L1(r.mL1) and agemust
L2 ← agemust

L2 + ecbτ̂
L2(r.mL2) ;11

agepers
L1 ← agepers

L1 + ecbτ̂
L1(r.mL1) and agepers

L2 ← agepers
L2 + ecbτ̂

L2(r.mL2) ;12

if r.cL1 = AH
∧

r.cL2 = AH then13
f lag← false ;14
if agemust

L1 > AL1
∧

agemust
L2 ≤ AL2 then15

crpdp← crpdp + tL1 ;16
f lag← true ;17

else if agemust
L2 > AL2 then18

crpdp← crpdp +(tL1 + tL2)×num ;19
f lag← true ;20

foreach r′ with r ∈ α(r′)1 do21
remove r from α(r′)1 ;22
if f lag = true then23

if r′.cL2 = AH then r′.amust
L2 ← r′.amust

L2 +1 ;24
else r′.apers

L2 ← r′.apers
L2 +1 ;25

else if r.cL1 = PS
∧

r.cL2 = AH then26
if agepers

L1 > AL1
∧

agemust
L2 ≤ AL2 then27

if p is in the same loop L as r then crpdp← crpdp + tL1 ;28
else if agemust

L2 > AL2 then29
if p is in the same loop L as r then30

if num 6= 1 then crpdp← crpdp + tL1× (num−1)+ tL2×num ;31
else crpdp← crpdp + tL1 + tL2 ;32

else crpdp← crpdp + tL1× (num−1)+ tL2×num ;33

else if r.cL2 = AH then34
if agemust

L2 > AL2 then crpdp← crpdp + tL1×num ;35
else if r.cL1 = PS

∧
r.cL2 = PS then36

if agepers
L1 > AL1

∧
agepers

L2 ≤ AL2 then37
if p is in the same loop L as r then crpdp← crpdp + tL1 ;38

else if agepers
L2 > AL2 then39

if p is in the same loop L as r then40
if num 6= 1 then crpdp← crpdp +(tL1 + tL2)× (num−1) ;41
else crpdp← crpdp + tL1 + tL2 ;42

else crpdp← crpdp +(tL1 + tL2)× (num−1) ;43

else if r.cL2 = PS then44
if agepers

L2 > AL2 then45
if p is in the same loop L as r then46

if num 6= 1 then crpdp← crpdp + tL2× (num−1) ;47
else crpdp← crpdp + tL2 ;48

else crpdp← crpdp + tL2× (num−1) ;49

α(r)←⊥ ;50
until ∀r ∈ R+ : α(r) =⊥ ;51
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adding the number of memory blocks introduced by τ̂ .

Next we compute the possible contribution of r to CRPD estimate according to the type

of r (shown in Tab. 7.2). The case of Type 1 (i.e. L1 AH and L2 AH) is considered in line 13

– line 25. Since a positive reference of this type may also cause an additional L2 intra-task

interference to other positive references, we use a f lag to indicate whether this additional

intra-task interference is possible to happen. If the condition agemust
L1 > AL1

∧
agemust

L2 ≤ AL2

holds, r may not be L1 AH due to the preemption. Thus, this positive reference is possible

to contribute an additional tL1 to crpdp. Since it may access L2 cache in the presence

of preemption, the f lag is set true to indicate it may increase the amount of intra-task

interference to some other references. If the condition agemust
L2 >AL2 holds, r may not be L1

AH and L2 AH due to the inclusion property. Thus, we add tL1+ tL2 by the number of times

r may be declined to crpdp. Similarly, the f lag is set true to indicate its negative impact on

the “positiveness” of some other references. Since r may be in other positive references’

potential interference sets, we remove it from these sets (line 21 – line 25). If the f lag was

set true, when we remove r from other positive references’ potential interference sets, we

also increase the corresponding memory block age by 1 to take into account r’s effect.

The case of Type 2 (i.e. L1 PS and L2 AH) is considered in line 26 – line 33. If the

condition agepers
L1 > AL1

∧
agemust

L2 ≤ AL2 holds, r may suffer an additional tL1 only if p is in

the same loop as r (i.e. the loop L ) and the preemption occurs at p during the iterations

other than the first iteration (recall that PS classification implies the reference is in a loop).

This is because if p is out of the loop L , the WCET analysis has already taken into account

an L1 cache miss for r. If the condition agemust
L2 > AL2 holds, we need to take into account

the additional tL1 + tL2 for one possible declination multiplied by the declination bound. If

p is in the loop L , even if num is 1, we would also need to add tL1 + tL2 to crpdp once,

since the preemption may happen at p during the iterations other than the first iteration; if

num is not 1 (i.e. the loop bound), we add delays to crpdp which correspond to that not

considered by the WCET analysis. If p is not in the loop, the delays that added to crpdp
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include one more tL2 than tL1, since the WCET analysis has already considered one L1

cache miss for r due to L1 PS classification.

The cases of Type 3 (i.e. L1 AM and L2 AH) and Type 4 (i.e. L1 NC and L2 AH)

are considered in line 34 – line 35. In both cases, the WCET analysis treats all the r’s L1

accesses as cache misses. Thus, we only need to consider the possible additional delays to

reload r.mL2 into L2 cache when the condition agemust
L2 > AL2 holds.

The case of Type 5 (i.e. L1 PS and L2 PS) is considered in line 36 – line 43. If the

condition agepers
L1 > AL1

∧
agepers

L2 ≤ AL2 holds, it (line 37 – line 38) is the same as that

considered in line 27 – line 28 in the case of Type 2. If the condition agepers
L2 > AL2 holds, it

(line 39 – line 43) is also similar to that considered in line 29 – line 33 in the case of Type

2, except we add one less tL2 to crpdp when p is not in the loop L or p is in the loop but

num is not 1. This is because the WCET analysis has taken into account one L2 cache miss

for r which is in the loop L .

The cases of Type 6 (i.e. L1 AM and L2 PS) and Type 7 (i.e. L1 NC and L2 PS) are

considered in line 44 – line 49. Other than the WCET analysis has treated all the r’s L1

accesses as cache misses, the rest is much similar to that considered in line 39 – line 43 in

the case of Type 5.

In the end, we mark r as processed (line 50), and the for-loop processes the next positive

reference whose potential interference set is empty.

7.4 Conclusion and Future Work

In this chapter, we investigate how to bound CRPD in the context of multi-level inclu-

sive caches. We show that there are different challenges in CRPD analysis for inclusive

cache hierarchies, so the traditional methods of CRPD analysis for single-level caches and

non-inclusive cache hierarchies cannot be used directly. In order to analyze CRPD for

multi-level inclusive caches, we propose to use a concept of useful positive references.

At a program point, the set of reachable useful positive references is derived through a

173



backward-flow analysis. We define two functions (the update function and the join func-

tion) for this backward-flow analysis. For a positive reference in a loop, we give an upper

bound on the number of times this reference may not preserve its “positiveness”. We also

propose a “watermark” method to analyze the preempting task in the context of inclusive

cache hierarchies. In the end, we describe how to derive the CRPD estimate according to

the performed analyses.

In the future, we plan to complete this study by evaluating our approach on a set of

benchmarks and we also plan to investigate the effect of CRPD on the schedulability anal-

ysis of fixed-priority scheduling algorithms (e.g. rate-monotonic) in the context of multi-

level inclusive caches.
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Chapter 8

Conclusion

In this thesis, we have studied how to analyze and verify CPS software using static

analysis. Since CPS software must be analyzed at a level of abstraction that captures details

of the computational platform, we focus on its low-level code. Two types of properties are

investigated – one type is of numeric values and the other one is of timing.

In terms of numeric analysis, we choose to perform value-set analysis (VSA) on the

low-level code of CPS software. We extend the original strided-interval domain to more

precisely track the set of structured numbers, and also define the operations on this ex-

tended strided-interval domain. In order to achieve generic VSA, we present the syntax

and concrete semantics of an intermediate language, which can be used to encode the in-

structions of different instruction set architectures. We define the abstract semantics for the

intermediate language, and discuss how to use it in VSA.

In terms of timing analysis, we focus on how to safely and precisely derive the worst-

case execution time (WCET) and preemption delay for a task in the presence of single-level

or multi-level caches. Since most of the execution time of a task is spent in loops, we need

to perform safe and precise cache persistence analysis. We identify the sources of pes-

simism of state-of-the-art approaches for cache persistence analysis and propose methods

to eliminate these sources in order to improve the analysis precision. When the task runs

on a processor equipped with multi-level inclusive caches, invalidations between cache

levels may happen, which make precise WCET estimation much harder. We propose two

approaches to improve the precision of the WCET estimation in the presence of inclusive

cache hierarchies and also prove the proposed methods are still safe. In addition, CPS

software usually consists of multiple tasks which are scheduled in a preemptive manner.

Therefore, we also investigate how to bound the cache-related preemption delay for a task
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due to interferences introduced by other tasks.

As stated in the introduction, analysis and verification of CPS software is very challeng-

ing. When analyzing CPS software in its low-level form, different properties may require

the consideration of different underlying hardware details. For functional property verifi-

cation, we may only consider the semantics of each instruction, and there can be a generic

approach applied to different underlying hardware architectures, namely we may not care

about how a value is computed but what the value may be. For non-functional property

verification, we need to take into account different micro-architectural features and their

interactions during the computation. Therefore, for one specific micro-architectural fea-

ture, we may need one method to take into account this feature; and for a processor with

multiple features, we need to compose a specific approach to perform the analysis.

In the future, we plan to study how to utilize value analysis to verify many numeric

properties of control software. We also plan to take into account more micro-architectural

features in the timing analysis.

176



Appendix A

Software

The static analyzer we are developing is called “Vandalizer” (Vanderbilt anali(y)zer).

The main components that have already been developed include:

• Program Representation

– The binary is manipulated and disassembled using BFD library.

– Each instruction is represented according to the encoding (see Chapter 3).

– Two types of graphs are built for the binary.

* A control-flow graph is built for each procedure (see [18]).

* A context-sensitive call graph is built for the program (see [125]).

– A dominator tree is built for identifying loops (see [126, 127]).

• Program Analysis

– Worklist algorithm is used to derived fixed-points.

– Data values of a location can be derived (see Chapter 3).

– Multi-level cache behavior can be analyzed (see Chapter 5 and 6).

* LRU replacement policy is currently supported (see [53] and Chapter 4).

– Implicit path enumeration is used to derive WCET (see [83]).

* ILP in AMPL is generated (any solver which supports AMPL can be used).
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[16] Daniel Kästner and Stephan Wilhelm. Generic Control Flow Reconstruction from

Assembly Code. In Proceedings of the Joint Conference on Languages, Compilers

and Tools for Embedded Systems: Software and Compilers for Embedded Systems,

LCTES/SCOPES ’02, pages 46–55, 2002.

[17] Bjorn De Sutter, Bruno De Bus, Koen De Bosschere, P Keyngnaert, and B Demoen.

On the Static Analysis of Indirect Control Transfers in Binaries. In Proceedings of

the International Conference on Parallel and Distributed Processing Techniques and

Applications, 2, CSREA Press, Las Vegas, 2000, 1013-1019, 2000.

[18] H. Theiling. Extracting Safe and Precise Control Flow from Binaries. In Proceedings

of the Seventh International Conference on Real-Time Systems and Applications,

RTCSA ’00, pages 23–, 2000.

[19] Johannes Kinder, Florian Zuleger, and Helmut Veith. An Abstract Interpretation-

Based Framework for Control Flow Reconstruction from Binaries. In Proceedings

of the 10th International Conference on Verification, Model Checking, and Abstract

Interpretation, VMCAI ’09, pages 214–228, 2009.

[20] Andrea Flexeder, Bogdan Mihaila, Michael Petter, and Helmut Seidl. Interproce-

dural Control Flow Reconstruction. In Kazunori Ueda, editor, Programming Lan-

guages and Systems, volume 6461 of Lecture Notes in Computer Science, pages

188–203. 2010.

[21] Johannes Kinder and Dmitry Kravchenko. Alternating Control Flow Reconstruc-

tion. In Proceedings of the 13th International Conference on Verification, Model

Checking, and Abstract Interpretation, VMCAI’12, pages 267–282, 2012.

180



[22] Thomas Reinbacher and Jörg Brauer. Precise Control Flow Reconstruction Using

Boolean Logic. In Proceedings of the Ninth ACM International Conference on Em-

bedded Software, EMSOFT ’11, pages 117–126, 2011.

[23] Edd Barrett and Andy King. Range and Set Abstraction Using SAT. Electron. Notes

Theor. Comput. Sci., 267(1):17–27, October 2010.

[24] Patrick Cousot and Radhia Cousot. Static Determination of Dynamic Properties

of Generalized Type Unions. In Proceedings of an ACM Conference on Language

Design for Reliable Software, pages 77–94, 1977.

[25] T. Hickey, Q. Ju, and M. H. Van Emden. Interval Arithmetic: From Principles to

Implementation. J. ACM, 48(5):1038–1068, September 2001.
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