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CHAPTER 1 INTRODUCTION 

	

1.1 Background of vocal fold modeling 

Voice production process, or phonation, involves aerodynamic interaction of a turbulent 

glottal jet flow and a pair of three-dimensional (3D) vocal folds stretched between the laryngeal 

cartilages. The pulsatile airflow is responsible for activating and sustaining the vocal fold 

vibration, and the oscillation pattern of the vocal folds in turn modulates the airflow. This 

dynamic interaction determines various voice characteristics (e.g., modal voice, breathiness, 

creakiness, and falsetto) [1]. Statistics show that approximately 7.5 million people in the United 

States have a type of voice disorder [2]. These disorders are debilitating and can lead to 

discomfort, pain, poor work performance, social withdrawal, and even long-term disability. An 

advanced computational model of the fluid–structure interaction (FSI) during phonation will find 

extremely useful applications in the medical research, diagnosis, and treatment of these 

disorders. For fundamental medical research, the stresses and strains in the tissue calculated from 

the computational model can be used to correlate with the changes observed in epithelial 

morphology, tissue permeability, and inflammatory gene expression, and will thus lead to new 

explanations for the cause of acute phonotrauma [3]. For clinical diagnosis, including the 

nonlinear tissue properties allows researchers to model a wide range of vocal fold dynamics 

including large deformations and abnormal vibrations, and computational modeling can be 

combined with high-speed laryngoscopic imaging techniques to analyze vibratory patterns of the 

vocal folds and determine the specific disease [4]. For clinical treatment, the computational 

modeling of phonation can be used to predict and improve the outcome of implants (e.g., 

medialization thyroplasty) [5], surgically altered larynges (e.g., injection laryngoplasty) [6,7], 
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engineered vocal fold tissues [8,9], and artificial larynges [10].  For these applications, a high-

fidelity simulation tool is needed to accurately account for the time-dependent interaction 

between the 3D airflow and the soft tissue dynamics. 

1.2 Physiology, in vivo study methods, and physical models 

Anatomically, the vocal fold consists of a pair of soft tissue folds stretched symmetrically 

and horizontally across the larynx, which is located in the anterior neck below the epiglottis and 

above the trachea.  The gap between the two folds is called glottis, which is open during 

breathing for air going into and out of the body. The vocal tract superior to the glottis is called 

the supraglottis while the inferior is subglottis. During phonation, or voice production, the vocal 

fold is adducted to close up the glottis, and as the subglottal pressure is above certain threshold, 

the glottis is forced open; but subsequently, the pressure in the glottis drops once the airflow 

goes through due to the Bernoulli effect and the glottis closes up again because of elastic 

rebound of the vocal fold tissue. Such an opening-closing cycle is thus established, which leads 

to sustained vocal fold vibration on order of 100 Hz and subsequent audible sound. Other than 

the unsteady glottal aerodynamics, vibration of the vocal fold also largely depends on the 

structure and material properties of the tissue. Generally, from a biomechanical perspective, the 

vocal fold could be divided into three major layers, from superficial to deep, i.e., the mucosa, the 

vocal ligament, and the underlying muscle [11]. The vocal fold mucosa is closely related to the 

vibratory function to produce sound. It can be further divided into the superficial layer called 

epithelium and the most superficial layer of the lamina propria (SLP), which is mostly composed 

of loosely arranged fibers of collagen and elastin. Deep to the mucosa layer is the vocal ligament, 

which consists of the intermediate and deep layers of the lamina propria (LLP and DLP) with 

increased rigidity. The vocal ligament is primarily composed of elastin and collagen that are 
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roughly parallel to the vocal fold edge, providing support to the vocal fold and adhesion between 

its multiple layers. The deepest layer among those three layers is the vocalis muscle, which is 

merely movable compared with mucosa vibration. Such a layered structure and inhomogeneous 

elastic properties affect the vocal deformation and shape of glottis for the airflow.   

Previous studies on phonation and vocal fold vibration include in vivo measurements, ex 

vivo experiments and computational modeling. All of these methodologies have their own 

advantages in studying the biomechanics of the vocal fold, and together they have provided in-

depth understanding of physical process of phonation. 

Substantial in vivo measurements have been done on human and animal subjects to study 

phonation directly. There is a large volume of literature describing these measurements [12,13]. 

In general, in vivo experiments can yield important data regarding acoustic characteristics such 

as the frequency spectrum and amplitude of sound, aerodynamic quantities such as pressure and 

flow rate, and vibratory characteristics of the glottis through high-speed imaging approaches. 

These data provide critical input for modeling through either physical experiments or 

computational models. However, in vivo studies have rather limited applications in 

understanding details and depth of phonation, due to difficulty in instrumentation and special 

issues related to human and animal subjects. For example, high-speed imaging observation is 

limited to superior views, the medial surface and inferior region are inaccessible. Therefore, only 

superior side of the vocal fold deformation is visible; in addition, other details of the FSI system, 

such as flow field, interior tissue displacement, and stress distribution within the tissue, are all 

unavailable through in vivo experiments.  

Ex vivo studies include experiments using excised larynges or physical models 

constructed with engineering materials.  Excised larynges have main advantages over physical 
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models because of their actual geometric representation and tissue properties. Both human 

cadaver and animal laryngeal samples have been used in previous studies [14–17]. Due to the 

symmetry of vocal fold vibration in normal phonation, often half a larynx is used in the 

experiment and is attached to a transparent, solid surface. Visualization and measurements for 

the flow and vocal fold displacement could be performed from not only the subglottal direction 

but also the sagittal direction. However, excised larynges may be prone to tissue dehydration and 

shrinkage, which will lead to changes in the geometry and tissue properties; in addition, excised 

larynges are not amenable to systematic parameter studies such as the effects of size, shape, and 

material properties. 

Physical models, especially those using synthetic materials to represent the elastic vocal 

fold tissue, have been developed in past few years. Both static models [18] and self-oscillating 

models were constructed in the experiment, which may consist of either a homogeneous material 

or several layer structures [19,20]. In comparison with excised larynges, these physical models 

could be used to systematically study the effects of geometrical and material parameters on vocal 

fold deformation and flow behavior, thus allowing in-depth understanding of the vocal fold 

dynamics. 

1.3 Computational modeling for vocal fold vibrations 

As an alternative method to experimental studies, computational modeling has the 

advantages of low cost, short completion time, providing details of information, and ability to 

simulate idealized situations. Therefore, computational modeling has been commonly used in 

engineering design as a routine predictive and optimization tool. In the context of phonation, 

various computational models have been created to model the interaction between the airflow 

and vocal fold tissue. In early stages, discrete or lumped-mass systems were created to 
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understand onset of phonation [21,22].  In these models, the vocal fold is simplified to two or 

more mass blocks connected to elastic springs, and the Bernoulli equation or other simplified 

flow equations are used to model the airflow.  Despite its simplicity, such models can capture 

self-induced oscillations and have been used extensively to understand basic effects of governing 

parameters such as subglottal pressure and tissue stiffness, and also to investigate characteristic 

behavior of normal and abnormal phonation, e.g., chaotic vibration and vocal fold polyps [22].   

With the development of high-performance computing hardware and software, 

continuum-mechanics based computational models are being increasingly used for vocal fold 

modeling. For example, both two-dimensional (2D) and 3D finite-element models have been 

developed to simulate the vocal fold deformation [23–25]. These models were used to investigate 

continuous and more realistic deformation of the vocal fold, vocal fold impact stress, vocal fold 

adduction and abduction, and other characteristics [23–25]. In addition to linear elasticity that 

was often assumed for mechanical behavior of the vocal fold tissue, anisotropic and 

inhomogeneous behaviors are sometimes also incorporated into the computational models to 

represent more realistic properties of the tissue.   

For the FSI modeling, the finite-element model of the vocal fold needs to be coupled with 

a flow model. Due to the sophisticated laryngeal anatomy and high Reynolds number (around 

3000 based on the flow speed, air viscosity and glottal opening), the flow is undoubtedly three-

dimensional and very likely turbulent. Therefore, in FSI models, usually at least 2D viscous 

flows are simulated to obtain the pressure and shear stress distributions on the vocal fold surface. 

In some early studies, simulations were typically performed at much lower Reynolds numbers or 

the flow was not well resolved; so there was limited report about the vortex pattern in the flow, 

even though the vortex structures in the flow are believed to be very important for quality of 
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voice [26]. More recently, high-resolution simulations have been frequently used in the FSI 

modeling of the vocal fold. Previous works include Luo et al [27,28], Zheng et al [29], 

Thompson et al [30], Cook and Luc Mongeau et al [31] and Zhang et al [19]. Using high-

performance simulation, these studies have reported the vortex structures in the flow and their 

interaction with the vocal fold.    

As modern medical imaging technology is being rapidly advanced, internal anatomy of 

human bodies can be viewed with unprecedented details using noninvasive approaches such as 

computed tomography (CT) and magnetic resonance imaging (MRI). Such imaging modalities 

can provide high resolution and 3D geometry of internal space, including that of the larynx. The 

images generated by these techniques could be used to develop more sophisticated computational 

models that have much realistic representation of the anatomy.  Compared with the previous 

computational models that are based on greatly simplified geometries (even for many 

continuum-based models), anatomy-based models are a significant step closer to patient-specific 

and high-fidelity modeling of phonation, which is eventually needed for clinical care of voices of 

individual patients. Some recently work, e.g., Xue et al [32] and Mittal et al [33], provide 

insights into the development towards such medical imaging based models of the larynx.  

It is noted that only a brief summary of literature is provided here to set up the context of 

the present study. More details about the development and improvement of vocal fold modeling 

can be found in review papers of Alipour et al [34] and Mittal et al [35]. 

1.4 General research areas identified 

As discussed earlier, a large number of studies have been devoted to development of 

computational modeling of vocal fold vibration, and significant advancement has been made in 

recent years.  However, many problems remain unanswered.  In particular, we have identified the 
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following three areas of research and we plan to address them in the current study and also in the 

future work: 1) modeling of the 3D unsteady glottal jet flow, 2) nonlinear deformation of the 

tissue during vocal fold vibration, and 3) development of high-fidelity and patient-specific 

models.  These areas are described in the following subsections. 

1.4.1 Modeling of the 3D glottal jet flow 

The 3D glottal flow contains rich information about voice (e.g., frequency, loudness, 

noisiness, and quality), and studying the fundamental flow behavior is critical to unravel the 

information and to better understand the complex process of voice production. The presence of 

3D vortices and turbulence in the supraglottal region has indeed been reported by a number of 

laboratory experiments performed using in-vitro physical models of the larynx and excised 

larynges. However, it is still not clear what spatial and temporal characteristics these 3D vortices 

have and how the characteristics are affected by the complex geometry of the larynx and also by 

the time-varying shape of the glottis. The lack of knowledge of the 3D vortices thus creates room 

for application of fine-resolution simulation of the flow via direct numerical simulations (DNS) 

or large eddy simulations (LES).  

By more accurately simulating the vortices in the glottal flow, we will gain better 

understanding how these vortices affect the flow separation from the vocal fold surface and the 

aerodynamic pressure distribution that sustains the vocal fold vibration.  In addition, the detailed 

flow information will provide a valuable database for the future acoustic analysis of voice. That 

is, the incompressible flow field (which is often assumed for FSI modeling of the vocal fold due 

to low Mach number of the flow) generated from the flow simulations can be supplied to an 

acoustics solver based on the Lighthill analogy to study the effect of the unsteady vortices on the 

sound field and to understand the fundamental physics of the sound generation in the larynx.  
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1.4.2 Nonlinear tissue deformations 

There has been limited study on the role of nonlinear tissue mechanics in vocal fold 

vibration.  Generally, nonlinearity in this problem could be caused by contact of the medial 

surface of the two folds, and also by large displacement and large deformation of the vocal fold 

tissue.  Note that even though vocal fold deformation is small during normal phonation, the 

tissue can experience large deformation during the adduction and abduction processes where the 

vocal folds are either brought together and split open.  In addition, active regulation of the voice 

may cause significant vocal fold lengthening (to increase the pitch) or excessive displacement 

(e.g., loud voice).  Furthermore, insertion of the implant in some vocal fold surgery, e.g., 

medicalization thyroplasty, is intended to cause the tissue have significant displacement for 

proper positioning.  The nonlinear material behavior intuitively should play an important role in 

these situations, but quantitative and rigorous studies are needed. In fact, some recent 

experimental work on the material properties of the vocal folds has focused on characterizing the 

nonlinear behaviors of the lamina propria (the mucosa and vocal ligament), including the 

hyperelasticity and viscoelasticity [36–38]. In our study, we are particularly interested in how the 

material properties affect the vibratory characteristics of the vocal folds such as the fundamental 

frequency and vibration patterns such as the vertical wave propagation of the so-called mucosal 

wave.  

1.4.3 Development of high-fidelity and patient-specific models 

Although modern medical imaging provides a great approach to obtain the actual 3D 

geometry of the larynx, research effort is still needed in order to address many issues related to 

how to address uncertainties in various imaging modalities and how to effectively combine the 

imaging process with computational modeling. The available imaging approaches can be very 
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different in term of spatial resolution, contrast between the tissue and the cartilages, tissue 

preparation procedure, artificial deformation introduced during tissue preparation, and length of 

scan.  Therefore, when constructing a computational model, one needs to be well aware of the 

capabilities and limitations of the imaging approach and the specific process.  

Another issue related to patient-specific modeling is that even if high-fidelity anatomy 

could be reconstructed, there are still other unknown modeling parameters, for example, the 

elastic properties of the tissue material of each individual patient that is being modeled. 

Therefore, either simplifying assumptions have to be made, or some parameter identification 

approach must be used to estimate those parameters.   

Finally, model validation for patient-specific models is a challenging task, as we have to 

answer questions like what characteristics should be used for validation and how the quantitative 

information can be measured in a study that involves both phonation experiment and imaging of 

the larynx.  To our knowledge, these issues have rarely been explored and would be worthwhile 

to investigate extensively.  

1.5 Thesis overview 

This work is focused on using computational models to investigate some of the basic 

questions outlined in the previous section. With the understanding that many specific studies 

would be needed to answer those questions completely, we point out that this work only 

represents a preliminary step towards understanding of 3D vocal fold vibration/glottal flow and 

ultimate development of an efficient, high-fidelity, and subject-specific computational tool that 

could be used for clinical applications.  

The remaining thesis is divided into four chapters. In Chapter 2, we present a 2D study of 

the role of finite tissue strain in the FSI of the vocal fold; in Chapter 3, we describe the tissue 



	 10	

preparation approach for medical imaging of the excised rabbit larynges; in Chapter 4, we 

present a 3D subject-specific model and validation based on the imaging data and reconstructed 

larynx; in Chapter 5, we discuss a further study on nonlinear material behavior and effectiveness 

of a reduced-order model. It should be pointed out that materials of several chapters in this thesis 

are directly taken from previously publications which I have coauthored. Specifically, Chapter 2 

is from “Chang, S., Tian, F-B, Luo, H., Doyle, J.F., Rousseau, B. (2013) The role of finite 

displacements in vocal fold modeling. Journal of Biomechanical Engineering. 135(11):111008”; 

Chapter 3 is from “Novaleski, C.K., Kojima, T., Chang, S., Luo, H., Valenzuela, C.V., Rousseau, 

B. (2016) Non-stimulated rabbit phonation model: Cricothyroid approximation. Laryngoscope. 

doi: 10.1002/lary.25559”; and Chapter 4 is from “Chang, S., Novaleski, C.K., Kojima, T., 

Mizuta, M., Luo, H., Rousseau, B. (2015) Subject-specific computational modeling of evoked 

rabbit phonation. Journal of Biomechanical Engineering. 138(1):011005.” 
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CHAPTER 2 ROLE OF THE NONLINEAR MECHANICS IN VOCAL 

FOLD VIBRATION  

 

2.1 Introduction 

Computational modeling of vocal fold vibrations is an important tool for studying the 

vocal fold dynamics and the physical process of voice production. In such a tool, a vocal fold 

model is typically coupled with an airflow model to simulate the fluid-structure interaction (FSI) 

during phonation. Recently, continuum mechanics based computer models have gained 

popularity compared to the earlier simple but nevertheless insightful lumped-mass models, e.g., 

two-mass models with connective springs [21,22]. In the continuum models, the vocal fold tissue 

is treated as a continuously deformable medium using classical solid mechanics theory, which 

allows the deformations of the vocal fold to be captured in more detail. In a recent work, Alipour 

et al. [34] have given a broad review of computational phonation in which they discussed 

extensively existing modeling techniques, primary research findings, and also the validation 

efforts.  

Among many previous studies that have developed continuum models of the vocal fold, 

small deformations are often assumed for the vocal fold [23,28,29]. The rationale for this 

assumption is that during normal phonation, the displacement of the vocal fold is on order of 1 

mm, which is much smaller compared to the characteristic length of the vocal fold, which is 

around 1 cm [12]. Thus, the strain is only approximately 10% for normal phonation. This 

assumption makes the model computation very efficient since the linear elasticity theory based 

on small deformations involves a linear strain measure and also a linear stress–strain 

relationship. In some recent work, nonlinear models have been adopted for the vocal fold. For 
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example, Pickup and Thomson [39] and Smith and Thomson [40] used a hyperelastic Ogden 

tissue model in their study of the geometric effect of the laryngeal configuration on the vocal 

fold dynamics. As a separate line of effort, Zhang et al. [36] and Chan et al. [41] have worked on 

characterization of the nonlinear tissue properties and the effect of the nonlinear properties on the 

fundamental frequency of the vocal fold. Despite these efforts, a quantitative study on limitation 

of the linear assumption is still rare, especially in the context of fluid–structure interaction. 

Further study thus may be necessary in order to develop accurate computational models that may 

find clinical applications. 

In solid mechanics, several sources could introduce nonlinearity into the dynamics of a 

structure. Typical examples include geometric nonlinearity, contact mechanics, and material 

nonlinearity [42]. For a general solid experiencing arbitrary deformations, sometimes even when 

the strain is small, the displacement and accompanying rotation of some parts of the body can be 

large. A classic example is a cantilever beam bent under the transverse load, where the free end 

of the beam can go through large displacement and rotation even if the local strain anywhere in 

the beam is small. Such large displacement and rotation would lead to nonlinear formulation of 

the strain due to the significant change to the body configuration, a term referred to as geometric 

nonlinearity in solid mechanics [42]. Therefore, in some cases the large displacement 

formulation should be used for structural analysis even when the strain is only above 5%. As 

mentioned earlier, the vocal fold tissue may be around or somewhat exceeding this limit during 

normal phonation, and thus, it would be worthwhile to investigate its geometric nonlinear effect. 

Contact mechanics is involved in the vocal fold dynamics due to collision of the two 

folds at their medial surfaces. This effect has been included in many previous studies, e.g., Refs. 

[24,28,43], to investigate the impact stress on the vocal fold. Since contact mechanics is 



	 13	

essentially a nonlinear process and it largely depends on the local geometry of the two surfaces 

[44], a small error relative to the overall dimension of the vocal fold could lead to significant 

change in the displacement of the local contact area and, therefore, less accurate prediction of the 

impact stress. Furthermore, although the gap between the two vocal folds, i.e., the glottis, is 

small as compared to the size of the vocal folds, the airflow largely depends on the width and 

shape of the glottis, and the flow may in turn affect the pressure distribution on the vocal folds. 

However, it is not yet clear whether the error due to the small displacement assumption would 

increase or not in the context of nonlinear fluid-structure interaction. A careful investigation of 

the issues described here would provide useful information on modeling errors and, thus, be 

helpful for future development of accurate vocal fold models. 

We emphasize that the current discussion is still within the scope of the small-strain 

assumption. In real situations, large deformations (and thus large strains) of the vocal fold can 

happen as well, for example, due to substantial local deformation, lengthening of the vocal folds, 

or insertion of an implant. The large strain could lead to a nonlinear stress-strain relationship, 

i.e., material nonlinearity as referred to in solid mechanics, and it is beyond the scope of this 

work. 

In this work, we will use a two-dimensional larynx model to study the effect of finite 

displacements on the characteristics of the vocal fold vibration and those of the glottal flow. The 

problem formulation and the theoretical background of geometric nonlinearity will be described 

in Sec. 2.2. Results and discussion will be provided in Sec. 2.3. Concluding remarks will be 

given in Sec. 2.4. 
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2.2 Model description and the numerical approach 

2.2.1 Model setup  

The two-dimensional vocal fold model is shown in Figure 2.1, where the setup is similar 

to the one in Luo et al. [27]. A pair of vocal folds of identical properties are placed in a straight 

rectangular channel representing the passageway of the airflow. The channel length and height 

are L = 12 cm and H = 2 cm, respectively. The channel walls are rigid, but the vocal folds are 

elastic and can go through plane-strain deformations (i.e., deformation in the xy-plane only). 

Although the vocal fold tissue is known to be anisotropic and inhomogeneous [13], here we 

simplify the problem by considering an isotropic and homogeneous tissue model. The tissue 

properties include the density ρs = 1 g/cm3, Young’s modulus E = 40 kPa, and Poisson’s ratio νs 

= 0.3. These properties are within the ballpark of previous computational models [23,24,27]. 

The airflow is driven by a constant subglottal pressure Psub at the inlet on the left end of 

the channel, and it varies from 0.5 to 0.8 kPa, and the outlet pressure Pout is set to be zero. The 

air is assumed to be Newtonian and incompressible, and its density and viscosity are, 

respectively, ρf  = 0.001 g/cm3 and µ = 2 × 10−4 Pa . s. The governing equations for the flow are 

the unsteady incompressible Navier–Stokes equations 

             ,	 																																																																																		(1)	

where vi is the velocity component, p is the pressure, ρf is the density, and ν is the kinematic 

viscosity. No-slip and no-penetration boundary conditions are imposed at the channel walls and 

also at the vocal fold surfaces. At the inlet and outlet, the normal shear stress is set to zero. 
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Figure 2.1 A 2D model for studying the role of geometric nonlinearity in the vocal fold dynamics 

	

The vocal fold tissue is assumed to be governed by a linear constitutive law, which is a 

suitable assumption when the strain is small. However, depending on whether the solid structure 

experiences significant displacement and significant rotational deformations (e.g., greater than 

5%), the stress and strain measures are different. Two formulations are considered here. One of 

them is the commonly adopted small-displacement formulation, in which the stress σij is linearly 

proportional to the strain εij by the relationship [42]. 

, ,	 																																																					 (2)	

where G = E / (2 + 2νs) is the shear modulus and C11, C22, and C12 are the elasticity constants 

determined from E and νs [42]. The strain is also a linear function of the displacement, that is, 

                                                                                                              (3) 
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The other formulation assumes that the displacement and rotation are no longer small, 

and the strain measure becomes a nonlinear function of the displacement, which is termed 

geometric nonlinearity [12]. Using the Lagrangian formulation, the strain can be written as  

                                                                                              (4) 

where Xi refers to a material point in the reference configuration (or the undeformed state). Note 

that compared with Eq. (3), Eq. (4) has higher-order terms from products of the linear 

deformation components. Such a formulation incorporates the nonlinear effect caused by rotation 

of entire or part of the body, e.g., the rigid body-type rotation near the free tip of a cantilever 

beam when the displacement is large. In the case of vocal fold deformation, such rotational effect 

could happen to the vocal fold, if its cross section is viewed as a cantilever beam with the medial 

surface as the free end and the subglottal pressure as the load. Equation (4) also takes into 

account the finite deformation, if any, at the contact area during vocal fold impact. In the present 

work, we consider a simple material behavior, where the stress–strain formulation is the same as 

Eq. (2) except that the notation of the second Piola–Kirchhoff stress [42] Sij would be used in 

place of σij.  

Henceforth, we will refer to the first formulation as model I and the second as model II. 

Note that the present coupled flow-vocal fold system is overall a nonlinear system no matter 

which constitutive law is being used. Furthermore, the contact mechanics as discussed earlier 

adds another source of nonlinearity to the vocal fold dynamics in both models. 

2.2.2 Numerical method 

The numerical simulation is performed using the fluid–structure interaction package 

ADINA 8.8 (ADINA R&D Inc., Watertown, MA). This finite-element package has been 
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previously used for vocal fold modeling [39,40,45]. A triangular mesh of 12,850 nodes and 

24,576 elements is used to discretize the flow domain shown in Figure 2.1. Finer resolution is 

employed within the glottis and around the vocal fold surfaces. A triangular mesh of 385 nodes 

and 288 elements is used to discretize each vocal fold. For the transient analysis, a composite 

second-order method is adopted for the flow, while the Bathe integration method is chosen for 

the solid. The iterative solution option is chosen for the fluid-structure coupling. Descriptions of 

these choices can be found in the ADINA documentation. The time step is Δt = 0.02 ms, which 

leads to about 250 steps for a vibration cycle of approximately 5 ms. The mass-damping 

coefficient and the stiffness-damping coefficients are chosen to be 0.015 and 0.0002, 

respectively, for the vocal folds. A minimum gap of 0.2mm is assumed for the glottal gap. The 

two vocal folds are assumed to be in contact when they approach this specified limit. For the 

contact dynamics, the built-in penalty function is applied, which prevents the vocal folds from 

penetrating each other.  

A grid convergence test is done for model II with Psub = 0.7 kPa. In the test, the number 

of mesh elements is doubled, and the simulation result is compared with that from the baseline 

simulation. The comparison shows that the differences of the two simulations in the glottal gap 

width, the oscillation frequency of the vocal folds, and the impact stress (definitions of these 

quantities will be given later) are only 2.64%, 0.1%, and 5.69%, respectively. Therefore, the 

original mesh is deemed acceptable for this work. Note that as the vocal folds move, the mesh 

will deform correspondingly, which is done automatically in ADINA. However, manual mesh 

regeneration and simulation restart are necessary in some cases, e.g., Psub = 0.8 kPa, since the 

mesh distortion becomes severe. To make sure that the simulations are acceptable, a similar grid 

convergence test was done for these cases. The result shows that after mesh refinement, the 
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change in the glottal gap width is less than 9% (i.e., much smaller as compared with the 

difference we will report between model I and model II) and the vibration behavior of the vocal 

fold does not vary significantly. 

2.3 Results and discussions 

In the current study we set the subglottal pressure Psub to be 0.5, 0.6, 0.7, and 0.8 kPa. 

Further increase of Psub would cause the mesh quality to deteriorate quickly and would require 

extensive manual mesh adjustment. For each value of Psub, we run model I and model II 

separately; then, we collect the statistics after onset of the vocal fold vibration is established. The 

simulations were typically run for 100–200 vibration cycles, and it takes 60–100 cycles to reach 

steady vibration. It was determined that steady vibration has been achieved when the averaged 

gap width over 20 cycles does not change significantly. The statistics are collected over 20 

cycles during steady vibration. We will discuss the vibration characteristics, the impact stress at 

the medial surfaces, and the flow behavior for each model. 

2.3.1 Frequency and mode of vocal fold vibration  

An eigenmode analysis is first performed for the current vocal fold model. The analysis 

will help us discuss the vibration pattern of the vocal folds induced by the flow. Figure 2.2 shows 

the lowest four eigenmodes along with the corresponding eigenfrequencies. These modes are 

qualitatively similar to those of a three-layer, two-dimensional vocal fold model used by Luo et 

al. [27]. In addition, the spectrum of the eigenfrequencies is also close to that in Luo et al. [27]. 

That is, the lowest frequency is near f1 = 100 Hz, the second and the third frequencies f2 and f3 

are both roughly twice that of f1, and the fourth frequency f4 is roughly four times that of f1. 

Therefore, using the single-material model does not change the characteristics of the vocal folds 

qualitatively.  
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Figure 2.2 The lowest four eigenmodes of the current vocal fold model. (a) The first 

mode at f1 = 86.9 Hz, (b) the second mode at f2 = 192.2 Hz, (c) the third mode at f3 = 217.5 Hz, 

and (d) the fourth mode at f4 = 372.9 Hz. The dashed line is for the rest shape, and the solid line 

is for deformed shape. 

 

Figure 2.3 shows a typical time history of the glottal gap width, defined as the smallest 

gap between the two vocal folds projected along the y-direction for both the transient period 

(Figure 2.3(a)) and later established vibration (Figure 2.3(b)). In this figure, Psub = 0.6 kPa and 

model II is used. It can be seen that the vocal folds first oscillate at a lower frequency and then a 

higher-frequency mode appears and finally takes over. A further inspection shows that these two 

frequencies are, respectively, close to the first and the second eigenfrequencies. Therefore, the 

current vocal folds go through a modal transition during the onset of vibration. This result is 

consistent with the report in Luo et al. [28]. 

y
x
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Figure 2.3 The time history of the glottal gap width for model II with Psub = 0.6 kPa.  

(a) Initial transition period and (b) the established vibration. 

 

The dominant vibration frequency of the vocal folds during steady vibration is tabulated 

in Table 2.1 for both model I and model II. The frequency is calculated based on the y-

displacement of a point on the medial surface (shown in Figure 2.4(a)). It can be seen that except 

for the case of model I at Psub = 0.8 kPa, the frequency in all other cases is near the second 

eigenfrequency f2 = 192.2 Hz. Furthermore, the results from model I and model II are very close 

to each other. However, at Psub = 0.8 kPa the two models have significantly different results. The 

frequency from model II remains near f2, but the frequency from model I is higher and is actually 

closer to the third eigenfrequency f3 = 217.5 Hz.  

 

Table 2.1 Dominant vibration frequency of the vocal folds as simulated using the two models 

Psub (kPa) 0.5 0.6 0.7 0.8 
Model I: f (Hz) 201.2 201.4 203.8 220.9 
Model II: f (Hz) 198.7 202.6 202.5 202.3 

 

We further examine the vibration patterns shown in Fig. 4 for the cases of Psub = 0.6–0.8 

kPa. It can be seen that at Psub = 0.6 and 0.7 kPa, both model I and model II produce a pattern 
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that is similar to the second mode, albeit the amplitude of vibration is greater in model II. The 

case with Psub = 0.5 kPa, not shown here, is similar to that of Psub = 0.6 kPa except that the 

amplitude of vibration is smaller. At Psub = 0.8 kPa, the vibration from model II still has a 

second-mode pattern, and the amplitude becomes further increased as compared to that for Psub = 

0.7 kPa. However, for model I the vibration pattern at this higher subglottal pressure resembles 

the third eigenmode shown in Figure 2.2(c), and this result is consistent with the oscillation 

frequency of this case. In this particular pattern, the inlet and the exit of the glottal gap 

open/close alternatingly, and the maximum width of the glottis is, thus, always limited. This gap 

width effect will be further discussed later. To explain a plausible cause for the behavior of 

model I at Psub = 0.8 kPa, we note that the second eigenmode and the third eigenmode of the 

present vocal fold model are close to each other in terms of the frequency (192.2 Hz and 217.5 

Hz, respectively). Furthermore, the temporal/spatial variations of the pressure in the glottis could 

allow either oscillation pattern to actually take place. Therefore, the present coupled fluid-

structure system may have two stable periodic orbits that are close to each other, and it could be 

possible that due to change of Psub or system description (i.e., linear versus nonlinear strain), the 

system settles down to a different orbit (vibration state). 
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Figure 2.4 The vibration pattern of the vocal folds simulated by model I (a), (b), and (c) and 

model II (d), (e), and (f). The subglottal pressure is (a) and (d) Psub= 0.6 kPa, (b) and (e) Psub = 

0.7 kPa, and (c) and (f) Psub = 0.8 kPa. The solid line and dashed line represent the open and 

closed phases, respectively. The circle shown in (a) is the marker point that will be used in the 

PSD analysis. 

	

Figure 2.5 shows the power spectrum density (PSD) analysis of the steady oscillation of 

the y-displacement of a point on the medial surface (shown in Figure 2.4(a)) for Psub = 0.7 and 

0.8 kPa. It can be seen that in all cases except model I at Psub = 0.8 kPa that the power spectrum 

is dominated by the single frequency that is close to the second mode frequency f2. For model I 

at Psub = 0.8 kPa, the third mode is dominant as discussed earlier, but the second mode is also 

(b) (c)

(f)(d) (e)
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significant. The PSD result in the cases of Psub = 0.5 and 0.6 kPa is not shown here since their 

frequency component is similar to that in the case of Psub = 0.7 kPa. 

 

	

	

Figure 2.5 The PSD analysis of the oscillation of a point at the medial surface for Psub = 0.7 and 

0.8 kPa. The two dashed lines indicate the eigenfrequencies f2 and f3. 

	

2.3.2 Gap width, waveform, and impact Stress 

Figure 2.6(a) shows the relationship between the maximum glottal gap width and 

subglottal pressure for both model I and model II. In general, the glottal gap width increases 

when the subglottal pressure is raised, which is consistent with previous studies [13]. An 

exception is in the case of model I with Psub = 0.8 kPa. As discussed earlier, this case has a 

different vibration mode that leads to a smaller gap width. The figure shows that model II 
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consistently gives a greater magnitude of the gap width than model I. For Psub between 0.5 and 

0.7 kPa, the difference between the two models is less than 0.1 mm, but it still represents about 

15% of increase for model II. At Psub = 0.8 kPa, the difference between the two models is clearly 

large. Figure 2.6(b) shows the waveform of the gap width at Psub = 0.6 kPa. We see that the 

waveforms have almost the same profile for the two models since the vocal folds are vibrating at 

the same mode at this pressure. However, the closed phase, or the contact time, of the vocal folds 

in model II is approximately 40% longer than that of model I. 

 

	

Figure 2.6 (a) The gap width during the open phase versus Psub. (b) The waveform of the gap 

width at Psub = 0.6 kPa. In both (a) and (b), the dashed line is for model I and the solid line for 

model II. 

 

The impact stress on the medial surface of the vocal folds during collision is an important 

quantity of interest, as it is likely the main contributing factor of phonotrauma [46]. Figure 2.7(a) 

shows the relationship between the impact stress and the subglottal pressure. The impact stress is 

calculated by averaging the stress during vocal fold collision at the contact area. At Psub = 0.5 

kPa, the vocal folds as predicted by model I did not reach the contact limit, and the impact stress 

is thus zero. As the subglottal pressure is raised from 0.5 kPa to 0.8 kPa, the magnitude of the 
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impact stress is increased from 0.5 kPa to 1.5 kPa, which is generally in the data range of 

previous work [43]. 

 

	

Figure 2.7 The impact stress (a) and the total contact force (per unit length in span) (b) during 

vocal fold collision. The dashed line is for model I and the solid line for model II. 

	

Comparing model I and model II, we see that model II always has greater impact stress 

than model I, and the difference is consistently around 0.4 kPa. As greater impact also leads to a 

larger contact area, we also plot the total contact force per unit span in each case. The result in 

Figure 2.7(b) shows that the contact force increases as Psub is raised, as expected. In addition, the 

difference between model I and model II becomes more pronounced at higher values of the 

subglottal pressure. At Psub = 0.8 kPa, this difference is about 1.7 N/m. A further inspection 

shows that the locations of the maximum impact at Psub = 0.8 kPa are also different between the 

two models. This result can be seen from the shape of the closed glottis in Figure 2.4. For model 

II, the greatest impact takes place in the middle of the medial surface (Figure 2.4(f)), which is 

also the case for the lower values of Psub in Figure 2.4. For model I, Figure 2.4(c) shows that the 

greatest impact instead takes place near the glottal exit. 
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2.3.3 Flow characteristics 

Figure 2.8(a) shows the flow rate Q averaged in time, from the two models. The flow rate 

increases nearly linearly with the subglottal pressure for model II. For model I, the flow rate is 

lower than that of model II for all levels of the subglottal pressure, and this result is consistent 

with the result comparison on the glottal gap width as discussed earlier. At Psub = 0.8 kPa, the 

flow rate given by model I becomes much lower than that of model II, and this result is due to 

the different vibration modes in the two models as discussed earlier. In this case, Q = 124 cm2/s 

for model II, and for model I the flow rate is only Q = 83 cm2/s. From the waveform plotted in 

Fig. 8, the flow rate in model I not only has a lower magnitude but also has a significantly 

different temporal profile than that in model II. 

 

	

Figure 2.8 (a) The time-averaged flow rate (per unit span) and (b) the waveform of the flow rate 

at Psub = 0.8 kPa. The dashed line is for model I and the solid line for model II. 

 

The vorticity plot indicates that when Psub is increased, the flow fields from models I and 

II become significantly different from each other. Figure 2.9 shows the comparison of the 

instantaneous vorticity during the maximum opening phase between the two models at Psub = 0.8 

kPa. Compared to the cases with low Psub, the jet Reynolds number, defined as Re = 3Q/2ν, is 
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higher at Psub = 0.8 kPa, and thus the flow field is more complex. In addition, at higher Psub, the 

jet becomes more asymmetric and its skewness varies from cycle to cycle. Discussed in detail in 

Luo et al. [16], these phenomena are typical for the glottal airflow, and they are present in both 

models from the figure. However, we see that the jet is clearly stronger in model II than in model 

I, as in model II the jet has longer penetration length and produces stronger vortices downstream. 

 

	

Figure 2.9 Instantaneous vorticity contours during vocal fold opening for (a) model I and (b) 

model II at Psub = 0.8 kPa. 

	

2.3.4 Further discussion 

In the present study, the subglottal pressure is no greater than 0.8 kPa and is not 

particularly high as compared with the range of the normal phonation pressure [13], and the 

deformation magnitude of the vocal folds is less than 1 mm, i.e., 10% of the size of the vocal 

folds. However, significant differences are produced by using model II in the predicted glottal 

gap width, impact stress, and flow characteristics. Note that in human phonation, the 

displacement up to 2mm has been reported for the vocal folds [46]. To investigate the source that 

has caused such differences, two additional tests are introduced where the flow is assumed to be 

absent and the load on the vocal folds is manually specified. In the first test, a single vocal fold 

identical with those in the present FSI study is considered, and a uniform and static load p is 

applied on the subglottal and medial surfaces as shown in Figure 2.10(a). In the second test, the 
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load is sinusoidal with the amplitude p and the frequency at 200 Hz, and both vocal folds are 

present so that collision would occur. For both tests, we compare the displacement of the vocal 

folds calculated from model I with that from model II. 

 

								 	 	

Figure 2.10 (a) Illustration of the load tests of the current vocal fold model. The reference point 

marked by a circle is used to measure the displacement. (b) and (c) p = Psub from the FSI 

simulation during vocal fold opening for (b) Psub = 0.6 kPa and (c) Psub = 0.8 kPa. 

	

 

Figure 2.11 Displacement of the reference point in the static load test, the dynamic load test, and 

the coupled FSI simulation. (a) The total displacement and (b) the y-displacement. 
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Figure 2.11 shows the result from the static test and the dynamic test. For comparison, we 

have also included the results from the coupled vocal-fold/flow simulation. The displacement of 

a point at the supraglottal exit as shown in Figure 2.10 is used for such comparison. The 

magnitude of the load p is raised from 0.5 kPa to 0.8 kPa, to be consistent with the subglottal 

pressure used in the FSI simulation. Both the y-displacement and the total displacement (i.e., 

both x and y components included) are shown for the reason that will be explained soon. 

Figure 2.11(a) shows that in the static test, the total displacement from model I is near 

0.6mm at p  = 0.8 kPa. Model II predicts only slightly greater deformation than model I at all 

load levels, and the difference is about 5% for p = 0.8 kPa. In the dynamic test, the relative 

difference between the two models becomes more significant than in the static test. As p is 

increased to 0.8 kPa, we see that the difference between the two models becomes more evident. 

This result can be explained since the contact of the two solid surfaces is a nonlinear function of 

the deformation and the difference between the two present structural models can be increased 

through the contact process. 

When the airflow is introduced in the simulation, the total displacement of the vocal folds 

is in general greater than those in the no-flow tests, as shown in Figure 2.11 (a). In Figure 2.10(b) 

and Figure 2.10(c) we plot the pressure over the vocal fold surface normalized by Psub for Psub = 

0.6 and 0.8 kPa. From these plots, we see that the pressure changes rapidly along the medial 

surface as expected. More importantly, the normalized pressure distribution in the case of Psub = 

0.8 kPa is significantly differently from that of Psub = 0.6 kPa. This change of loading status, 

thus, helps to explain why the displacements shown in Figure 2.11 are not linearly proportional 

to Psub for the FSI cases. At Psub = 0.8 kPa, the total displacement is near 0.9 mm, i.e., 9% of the 

size of the vocal folds, for both model I and model II. This total displacement is mostly in the x-
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direction due to the mean displacement of the vocal folds. The rotational effect and the coupling 

of the x- and y-components of deformation due to this mean displacement have been 

incorporated in the geometric nonlinear formulation, as discussed in Sec. 2.2.1. Since the y-

component of the displacement is not necessarily linearly proportional to the x-component and 

the y-component is critical in determining the glottal opening, we show a comparison of this 

component in Figure 2.11(b). In this figure, the comparisons of model I and model II in the static 

and the dynamic tests are similar to those shown in Figure 2.11(a). That is, the difference 

between the two models is more pronounced in the dynamic test where contact is present. For the 

FSI simulation, the y-displacement from model I is 0.32 mm, which is significantly smaller as 

compared to 0.49mm from model II and represents a larger difference than in the no-flow cases. 

Note in both no-flow and FSI tests, the only difference between model I and model II is that 

geometric nonlinearity of the vocal folds is included in model II. From these test results, we see 

that the error due to ignoring geometric nonlinearity in modeling the vocal fold dynamics could 

be amplified through the interaction of the vocal folds with the flow and, consequently, lead to 

significant error in the prediction of the coupled system. 

2.4 Conclusion 

We have numerically studied the flow-induced vocal fold vibration using a two-

dimensional computational model under assumption of small strains. The vocal fold tissue is 

assumed to be linearly elastic, but no restriction is required for its displacement and rotation so 

that the effect of geometric nonlinearity has been included in the model. By comparing this 

model with the previously commonly adopted small-displacement model (model I), we studied 

the effect of the finite displacement (model II) on the vocal fold dynamics and also on the glottal 

airflow. 
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The simulation result shows that model I produces consistently a smaller vibration 

amplitude for the subglottal pressure considered and, consequently, the impact stress and the 

flow rate are significantly lower than those obtained from model II. In some cases, even the 

vibration mode of the vocal fold predicted by model I is different from that by model II, e.g., for 

the subglottal pressure at 0.8 kPa in the present study. Further investigation shows that the 

nonlinear effect is significant when the contact process and in particular, the flow-vocal-fold 

interaction, are involved, both of which are sensitive to the displacement of the vocal folds. 

In the case of phonation, the width and shape of the glottis are determined by the vocal 

fold displacement, and errors in predicting the vocal fold displacement may lead to significant 

change to the glottis and, therefore, to the vocal fold collision and the glottal airflow. The present 

study is limited to two dimensions and the isotropic/homogeneous tissue properties, and the 

quantitative results reported here may not be directly applicable to the vocal models in the 

previous studies or to the real vocal fold tissue. However, it suggests that for the sake of caution, 

including geometric nonlinearity in a computational model would be preferable for an accurate 

simulation of the vocal fold dynamics. 
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CHAPTER 3 EXPERIMENTAL STUDY AND IMAGING OF THE 

LARYNX  

 

3.1 Introduction 

Laryngeal framework surgery is considered an ideal treatment approach to avoid the risks 

associated with surgery directly to the vocal folds. The objective of thyroplasty surgeries is to 

optimize voice production through modifying phonatory positioning by altering the laryngeal 

cartilages. Thyroplasty procedures include four primary classifications of medialization and 

augmentation, lateralization, relaxation, and tensing [47]. Bilateral Isshiki type IV thyroplasty, or 

cricothyroid approximation, is a technique in which the thyroid cartilage and cricoid cartilage 

approach one another. This action results in increased vocal tension, similar to engaging the 

cricothyroid muscle [48]. Type IV thyroplasty is intended to increase fundamental frequency. It 

is a common procedure for changing the vocal pitch of male-to-female transsexual patients [49] 

and vocal fold paralysis [50].  

Suturing ex vivo larynges is a useful methodological approach to refine common surgical 

procedures. Laryngeal suturing techniques in ex vivo models have examined the effectiveness of 

suture tension, force, and direction on medialization thyroplasty surgery [51] and arytenoid 

adduction [52–54]. Ex vivo laryngeal suturing also has significant value in modifying glottal 

configuration [14,17,55–58]. Alipour and Karnell [56] described a method of suturing the 

muscular processes of the arytenoid cartilages to adduct the vocal folds in canines. To vary the 

degree of ventricular gap, the researchers tensed and released sutures that were attached to the 

epiglottis. Khosla and colleagues [57] simulated vocal fold adduction by placing sutures through 
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the vocal processes of the arytenoid cartilages. To demonstrate the precision of this technique, 

the sutures were placed in the anterior-posterior and inferior-superior positions symmetrically.  

Gray and Titze [59] successfully implemented sutures and clamps to evoke in vivo 

phonation using a canine model. The posterior vocal fold process was directly sutured and the 

arytenoid cartilages were clamped together to induce vocal fold approximation. It is observed 

that while Gray and Titze’s [59] in vivo method is more representative of true vocal fold 

vibration, there is concern about inadvertently damaging the vocal fold tissue by directly suturing 

the vocal folds.  

Although numerous ex vivo experiments have sutured the cartilages of the larynx to 

simulate vocal fold vibration, such techniques make it challenging to determine the precise 

phonatory parameters that would be obtained during in vivo phonation. The purpose of the 

present study was to describe an in vivo model of a bilateral Isshiki type IV thyroplasty in a 

rabbit. Evoked in vivo phonatory output was analyzed in terms of vibratory, acoustic, and 

aerodynamic parameters. This more natural method of suturing the laryngeal cartilages promotes 

minimal disruption to the intricate structures of the vocal folds. 

3.2 Materials and methods 

3.2.1 Animals 

This study was performed in accordance with the Public Health Service Policy on 

Humane Care and Use of Laboratory Animals, National Institutes of Health Guide for the Care 

and Use of Laboratory Animals, and Animal Welfare Act (7 U.S.C. et seq.). The animal protocol 

was approved by the Vanderbilt University Institutional Animal Care and Use Committee. Six 

male New Zealand white breeder rabbits weighing 3-4 kg were used. Animals were anesthetized 

via intramuscular injections of ketamine (35 mg/kg), xylazine (5 mg/kg), and acepromazine 
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(0.75 mg/kg). To maintain anesthetic effects, ketamine (17.5 mg/kg) and acepromazine (0.375 

mg/kg) were subsequently administered as needed. Heart rate, oxygen saturation level, and 

temperature were monitored throughout the procedure to assess state of anesthesia and general 

wellbeing. 

3.2.2 Phonation procedure 

Animals were placed on an operating platform in the supine position. To prepare for 

surgery, the neck was shaved from the submentum to the chest. Local anesthesia (0.2% 

lidocaine) was administered at the surgical site and a midline incision was made from the hyoid 

bone to the sternal notch to expose the larynx and trachea. A tracheostomy was then created to 

provide a stable airway. The trachea was transected just proximal to the sternum and the lower 

portion of the trachea was suspended to the sternal fascia. A 3.5 cuffed endotracheal tube (Willy 

Rusch GmbH, Kernen, Germany) was inserted into the upper portion of the bisected trachea and 

positioned 2 cm below the glottal opening. The cuff of the endotracheal tube was inflated to seal 

off the trachea and deliver airflow. Continuous humidified airflow was delivered to the glottis 

heated at 37° C using a Gilmont Instruments flowmeter (GF-8522, Barrington, IL) and Conch 

Therm III humidifier (Hudson, RCI, Temecula, CA). A bilateral Isshiki type IV thyroplasty [48] 

was performed to simulate the action of the cricothyroid muscle. The thyroid cartilage and 

cricoid cartilage were sutured together using 3-0 Webcryl sutures (Patterson Veterinary, Saint 

Paul, MN) to approximate one another. Suture placement increased tension to the vocal folds, 

resulting in medial movement of the arytenoid cartilages and vocal fold approximation. 

Tenseness of the sutures was adjusted until there was audible phonation. Figure 3.1 is an image 

demonstrating the in vivo suture placement and approximation of the thyroid and cricoid 

cartilages.  
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Figure 3.1 In vivo type IV thyroplasty. Suture placement is shown between the thyroid 

cartilage and cricoid cartilage on both the left and right sides to elicit vocal fold approximation. 

Continuous humidified airflow was delivered to the glottis through the endotracheal tube, 

resulting in phonation. 

 

The larynx was suspended using an 11-cm Holinger-Tucker pediatric anterior 

commissure side-slotted laryngoscope (Karl Storz Endoscopy-America, Inc., El Segundo, CA). 

Three trials of vocal fold vibration were recorded using a 0-degree, 4.0-mm rigid endoscope 

coupled to a FASTCAM MC 2.1 high-speed camera (KayPENTAX, Montvale, NJ). The images 

were captured in black and white with 512 x 96 pixel resolution at a rate of 10,000 frames per 

second. To obtain acoustic measurements, three trials of phonation were recorded using a 
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Perception 170 Condenser microphone (AKG, Vienna, Austria) positioned 10 cm from the 

opening of the laryngoscope. Uninterrupted, continuous phonation was recorded for 

approximately 10-20 seconds. Recordings were digitized using Computerized Speech Lab Model 

4500 (KayPENTAX, Montvale, NJ). The most stable 1-second portion of the acoustic waveform 

was selected and analyzed to obtain mean vocal intensity sound pressure level (dB) and mean 

fundamental frequency (Hz) values. Following acoustic analyses, sound waveforms were edited 

using Cool Edit Pro v. 2.1 (Syntrillium Software, Phoenix, AZ, 2003). To improve visualization 

of the waveforms, signals were amplified and excessive noise was removed. Sound spectrograms 

were created for spectrographic feature analysis. In addition, three trials of airflow rate (ml/s) 

and subglottal pressure (cm H2O) were documented. At the end of the phonation procedure, 

humidified airflow was discontinued and the sutures between the thyroid and cricoidcartilages 

remained in place. The animals were sacrificed and larynges were harvested. 

3.3 Magnetic resonance imaging procedure 

Excised laryngeal specimens were secured in a 12 mL syringe with Fomblin 06/6 

perfluoropolyether (Solvay Solexis, Thorofare, NJ) and placed in a 38-mm inner diameter 

radiofrequency coil. Scanning sequences were performed using a Varian 9.4 Tesla horizontal 

bore imaging system (Varian Inc., Palo Alto, CA) to obtain multislice scout images in the axial, 

coronal, and sagittal imaging planes. Acquired data were reconstructed using Matlab 2012a 

(Matworks Inc., Natick, MA) using an inverse Fourier transform. Immediately following 

excision, the first laryngeal sample was immersed in 10% formalin for 48 hours for tissue 

fixation. The sample was then transferred and soaked in 3 mM Magnevist gadolinium contrast 

agent (Baylor HealthCare Pharmaceuticals Inc., Wayne, NJ) in 30 mL phosphate buffer saline 

(PBS) for 36 hours. A 3D spin echo T2-weighted scanning sequence was used with an effective 
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echo time of 15 ms, repetition time of 100 ms, and a field of view of 40.96 x 22.4 x 22.4 mm. 

The number of excitations was 4 and the matrix size was 512 x 320 x 320. Total scanning time 

was 11 hours and 24 minutes. 

3.4 Results 

Suture tenseness between the thyroid and cricoid cartilages was modified until phonation 

was audibly perceived. The vibratory characteristics of in vivo phonation were captured using 

high-speed laryngeal imaging. Figure 3.2 shows a representative high-speed montage of one 

cycle of rabbit vocal fold vibration that demonstrates both open and closed phases. The majority 

of contact between the vocal folds occurred along the middle one-third portion. Minimal vocal 

fold collision was appreciated throughout the vibratory cycles.  

 

 

Figure 3.2 Glottal cycle montage of the closing and opening phases of vocal fold vibration using 

high-speed digital imaging 

	

Acoustic signals of rabbit phonations were recorded. One-second central portions of the 

sound waveforms were selected for analysis. Across all animals, mean vocal intensity was 61.39 

dB sound pressure level (SD = 4.03). Table 3.1 displays the means and standard deviations of 

vocal intensity for individual animals across three trials. Closer examination of each trial 
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revealed that vocal intensity ranged between 56.15-68.52 dB. Additionally, acoustic analyses 

demonstrated that phonation was produced with a mean fundamental frequency of 590.25 Hz 

(SD = 80.79) across all animals. The range of fundamental frequency was between 419-728 Hz 

(Table 3.2). 

 

Table 3.1  Mean Vocal Intensity in dB Sound Pressure Level and Standard Deviations (in 

Parentheses) of Rabbit Phonation across Three Trials.	

Animal Trial 1 Trial 2 Trial 3 Averaged Trials 

1 59.23 (1.43) 62.20 (0.36) 61.11 (1.38) 60.85 (1.50) 

2 56.76 (1.39) 58.20 (1.74) 58.60 (1.27) 57.85 (0.97) 

3 64.94 (1.10) 57.65 (3.15) … 61.30 (5.15) 

4 57.91 (1.48) 56.15 (2.78) 57.26 (2.00) 57.11 (0.89) 

5 65.98 (0.86) 63.32 (1.49) 63.25 (1.47) 64.18 (1.56) 

6 64.83 (1.14) 68.52 (2.82) 67.78 (2.07) 67.04 (1.95) 

 

Table 3.2 Mean Fundamental Frequency in Hz and Standard Deviations (in Parentheses) of 

Rabbit Phonation across Three Trials. 

Animal Trial 1 Trial 2 Trial 3 Averaged Trials 

1 618.81 (4.23) 564.83 (5.87) 608.24 (1.81) 597.29 (28.61) 

2 553.64 (7.94) 560.75 (7.97) 563.15 (11.50) 559.18 (4.95) 

3 432.70 (10.93) 419.56 (2.65) … 426.13 (9.29) 

4 665.57 (17.30) 613.40 (92.91) 683.76 (20.06) 654.24 (36.52) 

5 683.15 (11.25) 603.45 (12.52) 605.92 (12.83) 630.84 (45.32) 

6 728.61 (24.14) 539.20 (179.66) 589.56 (177.67) 619.12 (98.10) 
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The same 1-second central portions of phonations were displayed as sound spectrograms. 

Spectrographic features included strong, distinctive harmonic content. Smooth, continuous 

variation in frequency was also observed. Lastly, aerodynamic measurements of airflow rate and 

subglottal pressure were documented during all trials (Table 3.3). Mean airflow rate across 

animals was maintained at 85.91 mL/s (SD = 15.19). Mean subglottal pressure was 9.00 cm H2O 

(SD = 1.54). 

 

Table 3.3 Mean Airflow Rate in mL/s, Mean Subglottal Pressure in cm H2O, and 

Standard Deviations (in Parentheses) of Rabbit Phonation. 

Animal Mean Airflow Rate Mean Subglottal Pressure 

1 69.46 (13.48) 10.67 (1.15) 

2 85.03 (0.00) 8.00 (0.00) 

3 73.79 (0.00) … 

4 85.03 (0.00) 7.33 (0.58) 

5 85.03 (0.00) … 

6 113.08 (0.00) 10.00 (0.00) 

	

Following the phonation procedure and laryngeal tissue harvest, there was evidence of 

preservation of the adducted phonatory position of the excised larynges (Figure 3.3). Different 

specimen preparations and magnetic resonance scanning sequence parameters were used. 

Magnetic resonance scans revealed that the vocal folds remained adducted and resulted in 

various outcomes related to overall image resolution, contrast between tissues, and degree of 

tissue deformation. Figure 3.4(a) shows the first ex vivo larynx after the phonation procedure 

with sutures in place, while Figure 3.4(b) displays a magnetic resonance image of the tissue 
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specimen in the axial viewing plane (80 microns). It was noted that there was evidence of tissue 

deformation following specimen fixation in formalin solution. Tissue shrinkage was 

characterized by an approximately 0.5 mm glottal gap after undergoing fixation.  

 

	

Figure 3.3 Ex vivo maintenance of vocal fold adduction.  Excised laryngeal specimen is shown 

with sutures remaining between the thyroid cartilage and cricoid cartilage approximately 19 

hours following the in vivo phonation procedure. 

	

 

Figure 3.4 Comparison of a) ex vivo larynx in the adducted phonatory position and b) magnetic 

resonance image of the larynx in the axial viewing plane 
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3.5 Discussion 

In the current study, we describe an in vivo rabbit model of a type IV thyroplasty by 

suturing the thyroid and cricoid cartilages together while delivering continuous airflow to the 

glottis to evoke phonation. In vivo phonation was captured using high-speed digital imaging, 

acoustic analysis, and aerodynamic values. Collectively, results confirm that phonation was 

successfully elicited using the type IV thyroplasty technique. Visual inspection of high-speed 

imaging indicates reduced amplitude of vocal fold vibration and only slight contact between the 

vocal folds. This suggests that the current thyroplasty procedure evokes vibration of lesser 

magnitude or stress. Acoustic analysis of rabbit phonation revealed that vocal intensity and 

fundamental frequency values obtained in the current study are consistent with previous results 

of in vivo modal intensity phonation using pulsed electrical stimulation to the laryngeal muscles 

[60,61]. Previous spectrographic analyses revealed that rabbit modal intensity phonation is 

characterized by strong harmonics and rare occurrences of aperiodicty [62]. Sound spectrograms 

of phonation in this study share similar features of this intensity of rabbit phonation. In addition, 

aerodynamic values of airflow rate and subglottal pressure are in congruence with expectations 

for modal intensity phonation in a rabbit model. 

A variety of theoretical, physical, and computational models have been developed to 

investigate the interactions between the aerodynamic and phonatory components during vocal 

fold vibration [15,24,43,63–67]. In addition to providing an aid for improving surgical 

procedures, laryngeal modeling provides accurate details of vocal fold mechanics and enhanced 

insight into the study of normal and abnormal voice production. In particular, laryngeal 

framework surgery promotes rehabilitation of voice production without performing surgery 

directly on the vocal fold tissue, thus avoiding serious complications such as scarring. The 
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current study provides a useful method of refining one type of thyroplasty procedure, type IV, 

using an in vivo animal model. 

Our laboratory’s previous experiments about acute vocal fold vibration exposure were 

evoked via electrical stimulation to the laryngeal musculature and controlled airflow to the 

glottis [68]. After the larynx is excised, phonatory adduction cannot be maintained using 

traditional neuromuscular stimulation because there is no longer neuromuscular input to the 

larynx. The present study demonstrates an alternative method of eliciting in vivo rabbit phonation 

without directly suturing the vocal folds. Following the in vivo phonation procedure, magnetic 

resonance imaging revealed that the excised vocal folds maintained the adducted phonatory 

position. 

Magnetic resonance imaging was the chosen method of scanning because of its enhanced 

ability to better distinguish soft tissue as compared to computer tomography imaging. Using the 

present technique, there can be greater examination of suture placement and tension following 

the experiment.  

In addition to preserving vocal fold adduction during ex vivo imaging, the current type IV 

thyroplasty model has implications for future computational modeling. In vivo phonation can 

allow for precise output phonatory parameters to be quantified during computer simulations. It is 

noted that the in vivo type IV thyroplasty model may not be representative of physiologic 

phonation. However, the major advantage of suturing the cartilages of the larynx in vivo is that 

precise features of vocal fold vibration can be captured within the natural three-dimensional 

environment of a living animal. 
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3.6 Conclusion 

Our current in vivo type IV thyroplasty rabbit model successfully sutured the thyroid and 

cricoid cartilages in vivo to elicit rabbit phonation. This method will allow for future 

modifications and refinements of a type IV thyroplasty with increased accuracy regarding 

phonatory output. This technique promotes the preservation of the vocal folds in the adducted 

phonatory position after excision, which may be a useful approach for future laryngeal 

microimaging and modeling experiments. 
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CHAPTER 4 SUBJECT-SPECIFIC MODELING OF THE VOCAL FOLD 

VIBRATION  

 

4.1 Introduction  

Vocal fold vibration during voice production is a result of biomechanical fluid–structure 

interaction (FSI) between the glottal airflow and the elastic tissue of a pair of vocal folds. 

Computational modeling of this interaction is useful for understanding the physics of voice, 

studying vocal fold pathology (e.g., nodules and polyps), and developing computer-based tools 

for clinical management of voice disorders [35,69]. In recent years, there have been significant 

efforts in developing advanced computational models of the vocal folds, which are driven by the 

rapid growth of computing power and also by the need for higher realism when one is trying to 

capture the features of the vocal fold dynamics for individual patients. For a comprehensive 

review of progress in vocal fold modeling, readers are referred to a recent article by Mittal et al. 

[35].  

In general, a computational model for FSI of the vocal folds includes a flow model based 

on the viscous Navier–Stokes equation for the unsteady glottal aerodynamics and a solid 

mechanics model for dynamic deformation of the soft tissue. Previously, both 1D and two-

dimensional (2D) models have been extensively used in the literature [27,43,70]. More 

expensive 3D models are also being increasingly adopted, and they may include 3D 

characteristics of the airflow, the tissue, or both [23,25,71–73] and can thus provide more details 

of the phonation process, e.g., the impact stress on the medial surface. 

With assistance from modern medical imaging technology, such as computerized 

tomography (CT), the information on the 3D anatomy of the larynx can be obtained and 
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incorporated into these computational models [33]. For example, Xue et al. [32] developed a 

subject-specific model of human phonation based on CT scans and discussed the influence of the 

anterior–posterior asymmetry on the phonation characteristics along with some interesting 3D 

flow features. Because the CT scan did not provide morphology of the interior tissue, the internal 

structure of the vocal fold in their study was based on histological data, and detailed comparison 

between simulation and subject-specific experimental results was not provided. 

In terms of cost, the 3D models are usually computationally intensive and may require 

days of simulation or even longer on high-performance computers. Therefore, there are rare 

attempts for using such models for extensive exploration in large parameter spaces. Such 

exploration may be needed for design optimization and for determining unknown model 

parameters by solving an inverse problem. As one specific example, in the computational models 

that are based on medical images, one typically has to assume population-averaged material 

properties for the tissue, even if the individual 3D morphological features can be incorporated 

into the model. The unavailability of individual material characteristics thus limits realism of a 

subject-specific model. Generally speaking, how to incorporate specific tissue properties, 

validation of individual-specific vibratory characteristics, and reducing the computational cost 

will be three of the major challenges for subject-specific models. 

In this work, we investigate the feasibility of developing subject-specific models based 

on MR images of the rabbit’s larynx and explore the use of a low-dimensional flow model to 

assist with identifying the elastic properties of the vocal fold tissues, by matching the simulated 

vibratory characteristics, with those obtained from individuals during the phonation experiment. 

We expect that both the method of parameter identification and the method of validation will be 
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instrumental for future development of 3D high-fidelity computational models with validated 

subject-specific characteristics. 

4.2 Materials and methods 

4.2.1 In vivo rabbit phonation procedure  

The animal protocol was approved by the Vanderbilt University Institutional Animal 

Care and Use Committee. Five male New Zealand white breeder rabbits were used. As 

previously described [68,74], rabbit phonation was elicited by performing a bilateral Isshiki type 

IV thyroplasty. The procedure entailed suturing the thyroid and cricoid cartilages, thus bringing 

together the vocal folds, while delivering continuous humidified airflow to the glottis. In setting 

the sutured adduction, suture tension was adjusted for each animal until audible phonation was 

produced [75]. This technique promotes the maintenance of the vocal folds in the adducted 

phonatory position for later microimaging. In vivo phonation was captured using a high-speed 

camera (KayPENTAX, Montvale, NJ) filming at 10,000 frames per second, and the acoustic and 

aerodynamic measurements were performed, including measurements of the subglottal pressure, 

the volume flow rate, and acoustic intensity. Details of the experimental setup and data collection 

can be found in Novaleski et al. [75] and Ge et al. [68], which provide methodological details 

and schematics of the experimental setup. The subglottal pressure will later serve as an input 

parameter for the computer model. 

To minimize the degree of vocal fold tissue change, phonation trials were elicited for 

only brief periods (i.e., 10–20 s per trial). These short durations were interspersed with rest 

periods in between each trial, until all data were collected, to control for the influence of external 

factors, such as changes in hydration, humidity, and other environmental effects. Presented in 

detail elsewhere [75], the data collected from trial to trial were fairly consistent. 



	 47	

4.2.2 Scanning procedure 

After the phonation procedure, the larynx was excised and high-resolution MR imaging 

was performed to obtain details of the morphology of the vocal folds in the adducted phonatory 

position. These subject-specific scans were then used to accurately replicate the individual 

rabbit’s laryngeal anatomy. Excised laryngeal specimens were secured in a 12mL syringe with 

Fomblin 06/6 perfluoropolyether (Solvay Solexis, Thorofare, NJ) and placed in a 38-mm inner 

diameter radiofrequency coil. The specimen was not doped in contrast agent and was scanned 

within several minutes after harvest. A magnetization-prepared and rapid gradient-echo imaging 

sequence was used with T2-weighted-prep with echo train length of 40, repetition time of 550 

ms, and a field of view of 32×17×17 mm3. The matrix size was 512×256×256. Total scanning 

time was 12 hrs. A Varian 9.4 T horizontal bore imaging system (Varian Inc., Palo Alto, CA) 

was used in the sequence to obtain multislice scout images in the axial, coronal, and sagittal 

imaging planes. Acquired data were reconstructed in MATLAB 2012a (MathWorks Inc., Natick, 

MA) using an inverse Fourier transform. We have not yet performed scanning of the in vivo 

sutured geometry. 

4.2.3 Model reconstruction  

The laryngeal architecture was reconstructed using manual segmentation. Based on the 

reconstructed larynx, a 3D computer model was generated to simulate the flow-induced vibration 

of the vocal folds. Figure 4.1 shows the workflow of reconstructing the laryngeal model from the 

MR images. The rabbit larynx was extracted from the MR scans as a surface mesh using the 

open-source software ITK-SNAP. The larynx included the true vocal folds, the false vocal folds, 

and a short segment of the trachea and supraglottal area. Manual segmentation was used here to 

ensure accuracy of the reconstructed geometry. The segmentation procedure was repeated by a 
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second experimenter to ensure its reliability. The extracted surface mesh originally had a stair-

step shape but was smoothed in ITK-SNAP with Gaussian image smoothing using standard 

deviation of 2.0 and approximate max error of 0.02. Then, a tetrahedral mesh for finite-element 

analysis was generated using commercial software (ANSYS ICEM, version 13.0). The 

reconstructed laryngeal geometry was approximately 1.0 cm long, 1.0 cm wide, and 1.0 cm high 

and contained around 10,000 vertex nodes and 40,000 elements. Figure 4.2 shows the 

reconstructed larynx from the posterior and superior views. In the finite-element model, all the 

exterior surfaces are fixed except that the lumen surface is free. Because the cover layer of the 

vocal fold is very thin (two elements at some locations), its geometric specification could be 

mesh-sensitive. Thus, we manually made the larynx model and its meshing symmetric. This 

treatment did not create any significant problems, since the actual vocal fold vibration was fairly 

symmetric, as observed in the high-speed video recordings. 

 

	

Figure 4.1 Workflow of model reconstruction: (a) segmentation, (b) surface mesh extraction, (c) 

mesh smoothing, and (d) the finite-element mesh 

	

The vocal fold tissue was assumed to be isotropic and governed by the Saint Venant–

Kirchhoff model with the density ρs = 1000 kg/m3 and Poisson’s ratio of 0.3. The Saint Venant–

Kirchhoff is a simplified nonlinear model which assumes a linear relationship between the stress 
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and the strain but the finite strain takes into account the nonlinear effects due to large 

displacements and large rotation, i.e., geometric nonlinearity as previously discussed for vocal 

fold modeling [67,72]. 

 

	

Figure 4.2 Reconstructed larynx geometry from (a) a posterior view and (b) a superior view, 

where the vocal fold remains in a closed position. 

	

Approximately two layers of the internal structure of the vocal fold tissues were observed 

as shown in Figure 4.3(a), and thus the vocal folds were modeled to have a two-layered setup as 

shown in Figure 4.3(b), i.e., the vocal fold cover in contact with the air and the body underneath 

the cover. Such a simplified structure has also been adopted in previously studied idealized vocal 

fold models [23,76]. Young’s modulus of each layer was later determined from the simulations. 

From previous measurements of the tissue stiffness for the human vocal fold, the body layer is 

much stiffer than the cover layer. Furthermore, the effect of the body-cover stiffness ratio has 

been investigated previously [76]. From these results, the ratio was kept above five in the current 

simulations. The thickness of the cover layer, hc, is around 1 mm. Note that in Figure 4.3, the 
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view is along the x-direction and the slice is not exactly parallel with the vocal fold (see Figure 

4.4 for the orientation of the vocal fold). Therefore, the cover layer is not as posterior as it 

appears to be in Figure 4.3. 

 

	

Figure 4.3 (a) An axial slice of the vocal fold from the MR scan, where the cover layer is marked 

out, and (b) assumption of the profile of the vocal fold cover and body in the model. 

	

4.2.4 Setup of the hybrid FSI model.  

The low-dimensional flow model in the current study is simply based on the Bernoulli 

principle of ideal flow. Nevertheless, when applying this principle, we will identify a proper 

streamline for the anatomical geometry through a 3D flow simulation of the stationary domain. 

Note that the Bernoulli principle has long been used as a simple tool by the voice community to 

study vocal fold function [12]. Previously, this 1D flow model was also combined with vocal 

fold models of higher dimensions (2D or 3D) to study the FSI of phonation and was shown to be 

capable of capturing the most basic characteristics of vocal fold vibration [19,45]. 

Extending the lumen surface of the reconstructed vocal fold in both subglottal and 

supraglottal directions as shown in Figure 4.4, we obtain an approximate domain for the airflow, 
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which is driven by the subglottal pressure at the inlet. To identify a proper streamline in the 

curved passage, the vocal fold deformation is first simulated in the absence of flow but under a 

constant pressure load on the tissue surface. Then, the stationary geometry with an open vocal 

fold was used to simulate the 3D flow through the glottis using an in-house code. Note that the 

magnitude of the vocal fold opening and the detailed variation in the glottal shape along the flow 

do not significantly affect the direction of the streamline before the glottal exit. A segment of the 

streamline was taken from the center of the glottis and was used for subsequent application of the 

Bernoulli equation. The equation and the continuity equation are 

 

                                                                                                              (5) 

where P, u, and A represent the pressure, the velocity, and the area of the cross section, 

respectively, and the subscripts represent the location of evaluation, i.e., 0 for the start of the 

streamline, 1 for the end where the flow separation takes place, and s for an arbitrary point on the 

arc in between. P0 is assumed to be the constant subglottal pressure measured from the phonation 

experiment, and P1 = 0 is simply the ambient pressure. The area of the cross section at any given 

point s will be calculated in the hybrid FSI model, based on the time-dependent deformation of 

the vocal folds. 

P0 +
1
2
ρu0

2 = P1 +
1
2
ρu1
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1
2
ρus
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Figure 4.4 Three-dimensional flow simulation in the stationary domain with an open glottis, 

where the thick curved line indicates the streamline extracted for later 1D flow model and the 

thick straight line represents a cross section perpendicular to the streamline. 

	

Decker and Thomson [45] reported that the influence of position of the flow separation 

point on the vibration frequency and displacements was small. In the current model, the 

separation point was consistently selected as the location with the minimum cross section area, 

Amin. We have tested sensitivity of the model to the flow separation point. If this location is 

near the minimum cross section area, then the vocal fold vibration is not significantly affected. 

For example, we have moved the separation point further downstream at A1/Amin = 1.1, and the 

vibration amplitude only changes by 3% and the frequency by 1%. However, if we fixed the 

location at any particular point rather than keeping it dynamically varying, the change in the 

vibration could become more evident (e.g., significantly reduced amplitude). 

The FSI simulations are performed using an in-house finite element code for soft tissue 

deformations [72]. The time step was 0.001 ms, and one vibration cycle took about 2000 time 

steps. A small gap of 0.05mm was imposed between the two medial surfaces, at which the 
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surfaces are assumed to be in contact. More than 20 vibration cycles were simulated after the 

vibration was well established, and from these cycles statistics were taken. 

4.3 Results 

4.3.1 Experimental results  

As mentioned earlier, in vivo phonation was captured using high-speed imaging and 

acoustic and aerodynamic measurements. Figure 4.5 displays images from the high-speed video 

recordings for one typical vibration cycle of sample 1. In this figure, we also illustrate the 

definition of the vocal fold length, L, which begins from the anterior commissure and ends at the 

vocal process. From the imaging sequences, sustained vibration was observed for all samples and 

the opening closing motion was fairly consistent among the samples. The vocal folds move 

mostly in the lateral direction. However, the phase differences in the longitudinal direction and 

also in the inferior–superior direction can be observed. 
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Figure 4.5 A typical vibration cycle in the evoked rabbit phonation via high-speed imaging, 

where the definition of vocal fold length, L, and the amplitude of opening, d, are shown. 

	

The time-dependent vibration amplitude at the midportion of the glottis was extracted in 

MATLAB using its image processing toolbox, and its peak value averaged from multiple 

vibration cycles, dmax, will be used later to compare with the simulation results. Table 4.1 lists the 

in vivo aerodynamic and acoustic measurements for each sample. We point out that the 

phonation frequency and intensity values are similar to those obtained from experimentally 

induced phonation using neuromuscular stimulation (rather than suture) [74,75]. Such 

aerodynamic and acoustic assessment confirms that the current elicited phonations are consistent 

with previous modal intensity phonation and that the suture tension was appropriate. 

Ld

Anterior commissure
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Table 4.1 Aerodynamic and acoustic measures with the subglottal pressure P0 (kPa), the volume 

flow rate of air, Q (cm3/s), the fundamental frequency of vibration (Hz), the acoustic intensity 

(dB), and the ratio between the vibration amplitude and the vocal fold length, dmax/L 

Sample P0 Q Frequency Intensity dmax/L 

1 1.05 33 564~618 59.2~62.6 0.088 

2 0.78 40 553~563 56.7~58.6 0.081 

3 0.72 40 419~432 56.1~57.9 0.098 

4 1.00 40 613~683 63.2~65.9 0.076 

5 0.98 50 539~728 64.8~68.5 0.081 

 

4.3.2 Simulation results  

The hybrid FSI model was constructed from the reconstructed 3D vocal fold tissue 

structure and the simplified 1D flow model as described in Sec. 4.2.4. Since the elastic properties 

of specific tissue samples are a priori unknown, in this study we adopted a trial-and-error 

approach. Note that an automated approach by solving an optimization problem is also possible 

but is not adopted here since the number of samples and the parameter space are relatively small 

in this exploratory study. 

Young’s modulus of each vocal fold layer was first chosen based on an eigenmode 

analysis of the vocal fold tissues, and a sequence of simulations of the hybrid model was then run 

with the goal of matching the normalized vibration amplitude, dmax/L, and the fundamental 

frequency with the experimental data listed in Table 4.1. Between 10 and 50 simulations were 

usually enough for each sample. The final result from the simulations is listed in Table 4.2. In the 

previous work of Thibeault et al. [77] and Rousseau et al. [78], the shear modulus of the rabbit 
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vocal fold lamina propria (within the cover layer) is between 0.2 and 20 kPa. Latifi et al. [79] 

later did uniaxial tensile testing of rabbit vocal fold tissues in the longitudinal direction and 

determined that Young’s modulus is up to 170 kPa, a result that needs to be further confirmed 

according to them. In the current study, the vocal fold is assumed to be isotropic; thus, the 

stiffness becomes higher when matching the frequency with that of the anisotropic tissue, which 

has greater stiffness in the longitudinal direction. Nevertheless, the Young’s modulus we 

obtained, around 10 kPa for the cover layer, still has the same order of magnitude as measured in 

Thibeault et al. [77] and Rousseau et al. [78]. 

 

Table 4.2 Final result from the FSI simulation including Young’s modulus of the vocal 

fold body, Eb (kPa), Young’s modulus of the cover, Ec (kPa), the normalized vibration 

amplitude, and the vibration frequency (Hz) 

Sample Eb Ec dmax/L Frequency 

1 60 12 0.0719 601 

2 80 8 0.0851 545 

3 80 8 0.0836 611 

4 90 9 0.0675 589 

5 90 9 0.0848 591 

 

Comparison of the simulation and experimental results is shown in Figure 4.6 for the 

vibration frequency and amplitude. It can be seen from these results that in general, the vibration 

frequency from the model falls within the range of measured frequency, even though the model 

frequency is slightly lower. In Decker and Thomson [45], the frequency obtained from a similar 

hybrid model (where the vocal fold geometry is idealized) is about 6% lower compared with the 



	 57	

full 3D model. Therefore, we expect that the frequency match will be better in full 3D FSI 

models, developed later based on this work. 

 

	

Figure 4.6 Comparison between the simulation result and experimental measurement: a) 

frequency; b) amplitude-to-length ratio, dmax/L. 

	

The figure also shows that the normalized vibration amplitude is generally in the range of 

experimental results, although for samples 1, 3 and 4, the simulation gives an overall smaller 

amplitude. 

Self-sustained vibration is established in all final simulation cases. Figure 4.7 shows 

typical sequences of oscillations of the glottal gap width from the experimental and model 

simulation. The gap width has been normalized by its averaged peak magnitude so that we can 

focus on the waveform only. The time is also shifted by a constant offset for easier comparison. 

It can be seen that the waveform obtained by the simulation matches that from the experiment 

reasonably well. 
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Figure 4.7 Waveform of the normalized glottal gap width from the experiment and simulation. 

 

In Figure 4.8, one typical vibration cycle is shown for the superior view of the glottis. It 

can be seen that the narrow opening of the glottis generally is consistent to that observed in the 

high-speed video recordings. As observed in the experiment, the simulated glottis has greatest 

opening amplitude and greatest impact around the midportion of the medial surface. 

 

	

Figure 4.8 A typical cycle of vibration obtained from the simulation for Sample 1. The 

anterior side is at the top in each panel. 
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4.4 Further discussion 

The current study only represents an exploratory step toward developing future subject-

specific computational models of phonation, and we focus on identification of unknown model 

parameters, and comparison of individual-specific characteristics between the model and subject. 

Both the number of subjects and number of unknown parameters in the model are very small. 

However, the result has implications to broader and more extensive study in the same direction. 

For example, the current model could be extended in a straightforward manner to incorporate an 

anisotropic tissue model [23] or hyperelastic materials [36]. Furthermore, a suite of well-

established optimization packages could be adopted to automate the procedure. We emphasize 

that in this parameter identification process, reduced-order models such as in the current study 

will be useful tools for rapid model-based predictions and for complementary analyses along 

with full 3D models. 

We envision that the general methodology developed in this work could be extended to 

the study of individual human subjects, e.g., to determine the tissue properties of the vocal fold 

in vivo and to develop corresponding 3D FSI models. However, there are several challenges in 

performing similar studies for live human subjects. In particular, the suture method cannot be 

used. Thus, performing in vivo high-resolution MR scanning in humans would require the 

development of a subject-specific task (e.g., Valsalva) that can be accomplished during the 

imaging procedure to overcome these challenges. Alternative imaging modalities (e.g., CT) may 

also be explored in future studies and used to validate the computational models generated. 

Due to the simple model adopted here, the current study is also subject to some 

limitations. First, an isotropic tissue representation has been used with a simple constitutive law 

(the Saint Venant–Kirchhoff model). Second, the flow model is based on the Bernoulli principle 
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and thus does not provide any information on vortex formation or 3D flow pattern in the 

supraglottal region. This model will need to be refined for study of vibration asymmetry, where 

the flow may become skewed and the flow separation point will be different on the medial 

surfaces of the two vocal folds. Future studies using experimental and 3D computational 

approaches are planned to advance the accuracy of such reduced-order models. 

Finally, another limitation of the current approach is that the criteria used for model 

validation are still limited to the most basic temporal and spatial variables. As the tissue model 

becomes more realistic and 3D flow is included in the full simulation, we plan to collect 

additional details of the vibratory characteristics and pursue higher levels of validation. 

4.5 Conclusion 

A combined experimental and numerical study has been performed for evoked rabbit 

phonation with the goal of exploring issues related to parameterization and validation of subject-

specific computational models. In the present study, the laryngeal anatomy was successfully 

reconstructed using MR scans. An efficient hybrid model was then created to identify the 

unknown properties of the 3D vocal fold tissue, and the model validation was based on 

comparison of individual-specific characteristics of vocal fold vibration measured from the in 

vivo phonation experiment. 

The results show that the models with identified parameters were able to match the 

vibration frequency and magnitude of individual samples. These models will be used for future 

study of full 3D models. 
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CHAPTER 5 COMPARISON OF THE REDUCED-ORDER MODEL AND 

THE FULL 3D MODEL  

 

5.1 Introduction 

In Chapter 4, a reduced-order FSI model that couples a one-dimensional flow model with 

the 3D anatomical vocal fold model based medical imaging data was utilized to describe the FSI 

process of the vocal fold. As a complementary tool to the full 3D FSI model, this reduced-order 

model was for fast model simulations and estimation of unknown model parameters. The results 

were shown to be promising. However, before this tool can be used more extensively, its 

limitation should be carefully studied.  Specifically, it would be useful to know when such a 

model has good performance and when it does not; and if it does not, what might be done to 

improve its performance.  

Previously, there has been limited study on the reduced-order FSI models and their 

comparison with full 3D models.  In [45], one such comparison was done, but the study was 

limited to mostly 2D stationary vocal folds, and so there was no comparison of the vocal fold 

vibration. In Zhang et al. [76], the authors used an experimental setup to study the effects of 

several parameters such as vocal fold layer stiffness and medial surface thickness on the 

vibration and compared the results with theoretical prediction that was based on the Bernoulli 

principle for the flow.  However, the comparison was qualitative and there was no detailed 

discussion on the vibration pattern.   

As a reduced-order model may be very useful in the development and applications of 

high-fidelity models, in this work, we aim to study its performance in a relatively broader 

parameter space.  In particular, we will use an idealized 3D vocal fold model and full 3D FSI 



	 62	

simulations to assess accuracy of the hybrid, reduced-order model based on the Bernoulli 

principle for the flow and 3D solid mechanics.  We will systematically vary the medial surface 

thickness, assumption for the tissue material behavior, and subglottal pressure for this 

investigation. 

5.2 Setup of FSI models 

An illustration of the vocal fold and flow domain could be found in Figure 5.1. A 

rectangular domain is used to represent the trachea with its walls assumed to be rigid. A pair of 

vocal folds is placed symmetrically in the domain with length L = 2 cm, width W = 1.3 cm, and 

depth D = 1 cm. Two different values are adopted for the medial surface thickness, T, a larger 

one with T=0.35 cm and a smaller one with T=0.175 cm.  The vocal fold is meshed in the 

commercial software COMSOL Multiphysics (version 4.3) with approximately 18,000 

hexahedral elements and 80,000 vertex nodes. For the boundary conditions, the left and right, 

anterior and posterior surfaces of the vocal fold, i.e., all the sides attached to the rectangular box, 

are treated as fixed surfaces, while the other surfaces in contact with airflow are free to move. 

The vocal fold is initially placed to have a small gap of 0.02 cm to enable the flow-induced 

vibration. The airflow is driven from left (inlet) to right (outlet) by a constant pressure drop 

between the subglottal pressure Psub at the inlet and reference supraglottal pressure Pout = 0 kPa at 

the outlet. The total length of the rectangular box is 12 cm and the vocal fold starts from 2 cm 

from the inlet. The flow is assumed to be incompressible and is governed by the viscous Navier-

Stokes equation in the full 3D model. 
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Figure 5.1. Illustration of the idealized vocal fold model and the computational domain used in 

this study.  

Despite the anisotropic effect and layered structures found in the real vocal fold tissue, 

the vocal fold used in this work is assumed to be isotropic and homogenous. Two tissue material 

assumptions, i.e., the Saint-Venant model as discussed in Chapter 2 and a hyperelastic, two-

parameter Mooney-Rivlin model are incorporated. The Mooney-Rivlin model is one of popular 

models for representing large deformations of soft tissues [80,81]. The strain energy density 

function for this model is given as 

W =α10 (I1 −3)+α01(I 2 −3)+K / 2(J −1)
2                                                                         (6) 

where K represents bulk modulus, α10 and α01 are empirically determined material constants, and 

J = det(F) with F standing for the deformation gradient.  In addition, I1
−

 and I2
−

 are given by 

I
−

1 = J −2/3I1; I1 = λ1
2 +λ2

2 +λ3
2

I
−

2 = J −4/3I2; I2 = λ1
2λ2

2 +λ2
2λ3

2 +λ3
2λ1

2
                                                                      (7) 

where I1, I2 are the first and the second invariants of the unimodular component of the left 

Cauchy–Green deformation tensor, and λ1, λ2, λ3 are the principle stretches of the deformation 

gradient. As a result, the constitutive relationship for the Mooney-Rivlin model is described as 
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σ ij
K = β0δij +β1Cij +β2[Cij ]

−1 +K(J −1)J[Cij ]
−1                                                                    (8) 

where σ ij
K  is the second Piola-Kirchhoff stress tensor, Cij is Cauchy-Green deformation tensor 

and the coefficients are given by 

β0 = 2α10
1
J 2/3

+ 2α01
I1
J 4/3

, β1 = −2α01
1
J 4/3

, β2 = −2α10
I1
3J 2/3

− 2α01
I2
3J 4/3

    (9) 

More detailed description about the Mooney-Rivlin model could be found in [80,81] and Tian et 

al. [82].  

 In both tissue models, the material density is 1.04 kg/m3 [23], Poisson’s ratio is 0.475, 

and mass damping is 0.05 s-1. In the Saint-Venant model, Young’s modulus is set to be E = 15 

kPa. When comparing to the Mooney-Rivlin model, it has been shown that these two models 

could be related to each other, under small-strain conditions, by the following relationships 

between the material constants 

             2(α10 +α01) =G, ν = (3K − 2G) / (6K + 2G)                                                         (10) 

where G is the shear modulus and ν is Poisson’s ratio in the Saint-Venant model. In the current 

case, α10 = 2.29 kPa and α01 = 0.25 kPa are used in the Mooney-Rivlin model to match the 

specified stiffness of the Saint-Venant model. The solid dynamics is solved through an explicit 

method with time step size Δt = 0.0025 ms, which leads to about 4000 steps for each vibration 

cycle that is approximately at 100 Hz.  The four models are summarized in Table 5.1. 

 

Table 5.1 Four vocal fold models with two medial thicknesses and material descriptions 

 T (cm) Material constants Material behavior 
Model I  0.35  α10 = 2.29, α01 = 0.25 Mooney-Rivlin 
Model II 0.35 E = 15 kPa Saint-Venant 
Model III 0.175 α10 = 2.29, α01 = 0.25 Mooney-Rivlin 
Model IV 0.175 E = 15 kPa Saint-Venant 
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5.2.1 The reduced-order FSI model 

As discussed in Chapter 4, the reduced-order model consists of a simplified flow model 

based on the Bernoulli equation and a 3D finite-element tissue model. To apply the Bernoulli 

equation in the current study, we assume that there is a straight streamline located at the center of 

the domain and running from the inlet through the glottis. At the inlet, the pressure is assumed to 

be p=Psub, and at the separation point, the pressure is assumed to be p=Pout. The separation point 

is the point where the flow starts to separate from the vocal fold surface and the pressure does 

not vary significantly in the streamwise direction.  In this study, the flow separation point is set 

to be always at the minimum cross section area calculated from the 3D deformed vocal fold. To 

apply the pressure obtained from the 1D flow model to the surface of the 3D vocal fold, we 

assume that the pressure at a point on the vocal fold surface, (x0, y0, z0), is equal to the pressure 

on the streamline at x0.  That is, the pressure within a cross section plane is constant. 

5.2.2 The full 3D FSI model 

The 3D incompressible flow is governed by Eq. (1) with fluid density 1.13 kg/m3 for 

moist air and viscosity at 5×10-5 Pa∙s (the air viscosity has been increased to the reduce the 

demand on computational cost). No-slip and no-penetration wall conditions are specified for all 

flow domain boundaries except the inlet and outlet, where either the inlet or outlet pressure is 

applied and the velocity is assumed to have a zero normal derivative. An immersed-boundary 

method is adopted for the flow simulation [27], and the FSI coupling method is described in Tian 

et al [82]. A non-uniform Cartesian grid with 320×98×72 points is used to discretize the 

rectangular box illustrated in Figure 5.1. The airflow is driven by a constant pressure difference 

between the inlet and outlet. The subglottal pressure is set to be Psub = 0.75, 1.0 or 1.25 kPa, 

which is within the range of the onset pressure for normal human phonation. 
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5.3 Results 

5.3.1 Grid convergence study 

A grid convergence study is done for Models I and III with Psub = 1.0 kPa. The non-

uniform Cartesian grid is doubled in the region around the vocal fold and also in the flow region 

immediately downstream the vocal fold. To compare with the baseline simulation, we collect the 

vibration frequency, displacement magnitude, and phase delay of two points on the medial 

surface.   

The time history of the transverse displacement from Model I is illustrated in Figure 5.2 

for a point on the medial surface at the glottal exit.  

 

 

Figure 5.2. The transverse displacement obtained from the two meshes based on Model I under 

Psub = 1.0 kPa.  

	

The comparisons on vibration frequency, amplitude and inferior-superior phase delay are 

listed in Table 5.2. The vibration amplitude is measured as the greatest displacement of one side 

of the vocal fold in transverse direction. The inferior-superior phase delay is calculated using the 
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waveform obtained from two tracing points located near the inferior or superior regions, 

respectively, on the medial surface. 

 

Table 5.2 Vibration frequency f, amplitude d, and phase delay ϕ obtained from the baseline and 

refined meshes 

 f (Hz)  d (cm) ϕ (o) 
Original mesh 138 0.067 51 
Refined mesh 141 0.070 49 

Relative difference 2.0% 4.5% 3.9% 
 

The table shows that the refined mesh simulation and the baseline simulation consistently 

provide a less than 5% difference on those three fundamental vibration characteristics. For 

Model III, the comparisons of the two meshes are similar. Therefore, the baseline mesh is 

considered to be acceptable for further investigations in this work.  

5.3.2 Vibration pattern 

Data collection is done for around ten vibration cycles after sustained vibration of vocal 

fold is obtained. The vibration characteristics are averaged over these cycles.  Since the flow-

induced vocal fold vibration is closely related to the eigenmodes of the vocal fold, we first 

compute the eigenmodes before performing the FSI simulations. The 3D vocal fold used in this 

chapter has a similar cross section as the 2D vocal fold used in Chapter 2.  Therefore, their first 

eigenmode patterns are similar to each other as well.  In the current study, for the vocal fold with 

larger T, the first eigenmode is a forward-backward motion in streamwise direction with a 

fundamental frequency of 70 Hz; the second mode is an open-close motion in transverse 

direction with a frequency of 122 Hz. For the vocal fold with smaller T, the motions from both 
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the first and the second eigenmodes are consistent with those of the vocal fold with larger T and 

have fundamental frequencies of 73 Hz and 126 Hz respectively.  

In the FSI simulations, the vocal fold usually starts to vibrate first with a streamwise-

deformation mode and then undergo transitions to a sustained, transverse-deformation vibration.  

Exceptions to this are Model III or Model IV with the reduced-order FSI simulation. In those 

cases, the vocal fold is found to be consistently vibrating in the forward-backward mode without 

mode transition. The mode transition captured in all other cases was also reported in Luo et al 

[27] using 2D vocal fold simulations.  

To further clarify the different established vibration modes, one typical vibration cycle 

under Psub = 1.0 kPa is shown in Figure 5.3 for each of the following four cases: (1) Model I with 

full 3D FSI,  (2) Model I with reduced-order FSI, (3) Model III with full 3D FSI, and (4) Model 

III with the reduced-order FSI. In the figure, the dark grey represents the original shape of the 

vocal fold, while the white region represents the deformed shape.  

 

A).   
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B).   

 

C).  

D).  
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Figure 5.3. Illustration of one typical vibration cycle obtained from two pairs of cases: Model I 

with full 3D FSI (A) and reduced-order FSI (B); Model III with the full 3D FSI (C) and reduced-

order FSI (D); all under Psub = 1.0 kPa. In each case, (a-c) are the opening phase and (d-f) are the 

closing phase of the vocal fold. 

	

For Model I, the reduce-order FSI model provides a consistent vibration pattern as 

compared with the full 3D FSI model, which is illustrated in Figure 5.3(A,B). It is apparent that 

the vocal fold motions are mostly in the transverse direction, which corresponds to the second 

eignenmode. The vocal fold collision takes place from the inferior region to the superior region 

along the medial surface and along the longitudinal has the greatest amplitude in the mid-portion. 

Moreover, the inferior vocal fold starts to open first and forms a divergent glottal shape in Figure 

5.3 from (a) to (c) during the opening phase. On the other hand, from (d) to (f) the inferior vocal 

fold closes first and is followed by the superior vocal fold, generating a divergent glottal shape. 

Such divergent-convergent glottal shape is closely related to the mucosal wave propagation 

along the medial surface and commonly discussed in previous studies [1].  Without showing in 

figures, it should be pointed out that Model II has similar consistent comparison between the full 

3D and the reduced-order models. 

The vibration pattern between the two FSI models is significantly different when Model 

III and Model IV are considered. As shown in Figure 5.3(C), when the full 3D FSI model is 

used, Model III predicts a transverse vibration mode with a high frequency of 130 Hz.  However, 

when the reduced-order FSI model is used, the mode transition cannot be found for Model III.  

Instead, as shown in Figure 5.3(D), the vocal fold moves mainly in the streamwise direction with 
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a relative low frequency of approximately 70 Hz.  The comparison of Model IV is similar to that 

of Model III. 

Unlike Model I and Model II, where the converging-diverging shape is more evident and 

vocal fold impact takes place over the entire medial surface, in Model III and Model IV the 

glottis is either straight or convergent, and the impact is more likely to appear near the superior 

region.  This result is thus consistent with [39], which reported that a large medial thickness of 

vocal fold would promote mucosal wave formation.  

5.3.3 Vibration frequency, amplitude and phase delay 

To further quantify the predictions of the reduced-order FSI model and the full 3D FSI 

model, we provide the basic phonation characteristics, e.g., vibration frequency, amplitude, 

inferior-superior phase delay, and flow rate for comparison. As discussed in [83], vocal fold 

inferior-superior phase delay has been found important in creating a convergent-divergent glottal 

configuration. The averaged values for these characteristics under different subglottal pressure 

are listed in the Table 5.3.  We point out that for Model IV with the reduced-order FSI model and 

Psub = 1.25 kPa, the vocal fold deformation becomes too large for the simulation to convergence; 

therefore, no data were collected for this case. 

 

Table 5.3 Vibration frequency f (Hz), amplitude d (cm), phase delay ϕ (°), and flow rate Q (ml/s) 

obtained from both the reduced-order model and the full 3D model 

	

  Psub (kPa) Model I Model II Model III Model IV 

f  
(Hz) 

The reduced-
order FSI 

model 

0.75 136.3 129.7 75.4 72.7 
1.00 136.8 128.2 77.9 71.8 
1.25 137.7 126.5 76.8 / 

The full 3D FSI 
model 

0.75 138.1 132.7 131.6 128.7 
1.00 138.7 132.7 134.4 126.4 
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1.25 139.4 130.0 136.2 / 

d 
(cm) 

The reduced-
order FSI 

model 

0.75 0.0846 0.0830 0.0697 0.0789 
1.00 0.1198 0.1083     0.0920 0.0928 
1.25 0.1392 0.1373 0.1240 / 

The full 3D FSI 
model 

0.75 0.0837 0.0780 0.0462 0.0680 
1.00 0.1116 0.0950 0.0705 0.1126 
1.25 0.1188 0.1014 0.0962 / 

ϕ  
(°) 

The reduced-
order FSI 

model 

0.75        37.54 28.71 -9.95 -3.92 
1.00 50.72 32.77 -9.05 0.86 
1.25 59.64 43.68 1.10 / 

The full 3D FSI 
model 

0.75 53.50 41.50 -7.82 4.47 
1.00 57.76 36.52 -9.27 -5.12 
1.25 66.30 44.20 -13.48 / 

Qmax 
(ml/s) 

The reduced-
order FSI 

model 

0.75 554 624 602 648 
1.00 804 980 830 866 
1.25 958 1306 1080 / 

The full 3D FSI 
model 

0.75 488 584 457 584 
1.00 705 886 664 934 
1.25 931 995 916 / 

 

In Table 5.3, the frequencies of sustained vibration in most cases are within the normal 

human phonation range, i.e., 80~220 Hz [84]; however, exceptions are found for Model III and 

Model IV with the reduced-order FSI model. In these cases, the sustained vibration frequencies 

are slightly lower than 80 Hz. The ratio of the vibration amplitude to the vocal fold length is 

around 10%, which is also reasonable for normal human phonation. For straightforward 

comparison, the data in Table 5.3 are organized and plotted in Figure 5.4.  
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Figure 5.4 Vibration frequency f (Hz), amplitude d (cm), phase delay ϕ (°), and flow rate Q 

(ml/s) obtained from the reduced-order model and the full 3D model 

	

From Figure 5.4(a), it is clear that given the specific model, the prediction of the 

vibration frequency between the two FSI models is generally consistent when the subglottal 
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pressure is varied.  That is, for Model I and Model II, vibration frequency of the reduced-order 

FSI model is very close to that of the full 3D FSI model for different values of the subglottal 

pressure; however, for Model III and Model IV, the reduced-order model always predicts a 

significant lower frequency (40% lower) than the full 3D model. As discussed earlier, such 

frequency disparity is associated to different vibration patterns predicted by the two FSI models 

for Model III and Model IV.  

Figure 5.4(b) shows that the reduced-order FSI model generally predicts a greater 

vibration amplitude than the full 3D FSI model in most cases. The only exception is Model IV 

with Psub = 1.0 kPa, where the full 3D FSI predicts a greater amplitude.  

Figure 5.4(c) shows that the reduce-order FSI model generally under-estimates the 

inferior-superior phase difference as the subglottal pressure is varied.  This result is true mostly 

for Model I and Model II.  For Model III and Model IV, the phase difference is small due to the 

thin thickness of the vocal fold, and the comparison between the two FSI models does not 

provide particularly meaningful results.  

The errors, or relative differences, of vibration characteristics between the reduced-order 

model and the full 3D model are also calculated, and the results are shown in Table 5.4 for all 

cases. For each specific case, the full 3D FSI result is assumed to be the reference based on 

which the relative differences are calculated. A plus sign means a relative increase in the 

prediction of the reduced-order FSI model, and a minus sign means a decrease. 
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Table 5.4 Errors in the vibration frequency, largest amplitude, phase delay, and flow rate 

obtained from the reduced-order model and the full 3D model 

 Psub (kPa) Model I Model II Model III Model IV 

f  
 

0.75 +1.3% +2.3% +43.0% +41.1% 
1.00 +1.4% +3.4% +42.0% +42.3% 
1.25 +1.2% +3.1% +42.3% / 

d 
0.75 -1.1% -6.4% -50.9% -16.0% 
1.00 -7.3% -14.0% -30.5% +17.6% 
1.25 -17.2% -35.4% -28.9% / 

ϕ  
0.75 +29.8% +30.8% -27.2% +187% 
1.00 +12.2% +10.3% +2.4% +116% 
1.25 +10.0% +1.2% +108% / 

Qmax 
0.75 -13.5% -6.8% -31.7% -11.0% 
1.00 -14.0% -10.6% -25.0% -7.3% 
1.25 -2.9% -31.3% -17.9% / 

 

From this table, the error in vibration frequency of the reduced-order FSI is within 5% for 

Model I and Model II, where the vocal fold thickness is large. However, in case of small vocal 

fold thickness as in Model III and Model IV, the error of the reduced-order FSI is approximately 

40%. This result shows the vocal fold thickness can greatly affect accuracy of the reduced-order 

model in terms of vibration frequency. A similar conclusion could be drawn in terms of vibration 

amplitude.  For Model I and and Model II with large vocal fold thickness, the error in the 

amplitude by the reduced-order model is reasonable, albeit it is increasing as Psub is raised.  

However, for Model III and Model IV with small vocal fold thickness, the error in the amplitude 

can reach as much as 50%. 

In these comparisons, the assumptions of the tissue behavior in general do not make 

significant difference. This result can be seen from Table 5.4, where the error of the reduced-

order FSI for Model I is similar to that for Model II, and the error for Model III is similar to that 

for Model IV.  However, exceptions can also be found in some cases, e.g., between Model I and 

Model II when Psub=1.25 kPa. 
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5.3.4 Waveforms of gap width and air velocity 

To study the temporal waveform of the glottal gap width, one point near the superior 

region of the medial surface is used, and its time-dependent transverse displacement is 

normalized by its greatest displacement over time.  Comparison between the full 3D FSI and the 

reduced-order FSI is given in Figure 5.5. The waveforms are also shifted in time for easy 

comparison.  

	

(a).  

(b).  

(c).  
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Figure 5.5 Comparison between the reduced-order FSI model and the full 3D FSI model in terms 

of the normalized gap width for (a) Model I, (b) Model II, and (c) Model IV with Psub = 1.0 kPa  

	

From Figure 5.5 (a) and (b), it is seen that the waveform of gap width predicted by the 

reduced-order FSI is generally close to that by the full 3D FSI simulation for Model I and Model 

II, even though the collision time in the reduced-order FSI simulation is slightly longer than that 

in the full 3D FSI simulation.  Another difference is that the reduced-order FSI model provides 

slightly lower estimates of the open quotient and the skewing quotient. When it comes to Model 

IV, the waveform of gap width is very different between the reduced-order FSI simulation and 

the full 3D FSI simulation, due to the significantly different vibration modes predicted by the 

two simulations.  Note that the result from Model III is similar to that from Model IV and thus is 

not further discussed here. 

The temporal waveform of the flow velocity in the glottis as measured on the centerline 

in the glottis is extracted and shown in Figure 5.6. Again, the waveform is shifted in time for 

easy comparison.  In these comparisons, it is seen that the reduced-order FSI model leads to a 

much wider flow phase than the full 3D FSI model, but its peak velocity is lower than that of the 

full 3D model. This result can be understood since in the reduced-order model, the viscous effect 

on the flow was ignored (so the flow has longer duration) and the flow speed is averaged across 

the glottal gap (so its amplitude is lower).  It should be pointed out that the waveforms of the two 

simulations are substantially different for Model III and IV due to different vibration pattern and 

glottal configuration.   
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(a).  

(b).  

(c).  

 

Figure 5.6 Comparison of the temporal waveform of the velocity in the glottis between the 

reduced-order FSI model and the full 3D FSI model; (a) Model I, (b) Model II, and (c) Model IV 

with Psub = 1.0 kPa  

	

5.3.5 Pressure distribution  

As described previously, the flow model in the reduced-order FSI simulation is based on 

the Bernoulli principle, which governs the pressure and velocity variations in the glottis prior to 



	 79	

the flow separation point. Therefore, accuracy of the pressure distribution on the vocal fold 

surface is a key factor to examine to understand the results completely. Take Model I under Psub 

= 1.0 kPa for example. The pressure distribution along the centerline of the domain is extracted 

at different time snapshots and is shown in Figure 5.7 for the close phase, convergent phase, 

open phase, and divergent phase. Along with the pressure distribution, the area of the cross 

section, A, is also plotted to give a sense of the glottal configuration at the moment. 

 

	

Figure 5.7 Comparison of the pressure distribution along the centerline between the reduced-

order FSI model and the full 3D FSI model for Model I with Psub = 1.0 kPa. (a) Close phase, (b) 

convergent phase, (c) open phase, and (d) divergent phase.  In each case, corresponding cross 

section area, A, is also plotted. 
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From Figure 5.7, it is shown that the reduced-order FSI model is able to predict the 

pressure distribution in the glottis well when the glottal configuration is divergent, convergent, or 

near the maximum opening phase. The reduced-order FSI model results in a steeper pressure 

slope when the vocal fold moves to the fully closed phase and the glottal gap width becomes 

small. Such difference is likely caused by the viscous effect in the full 3D FSI model. Another 

observation is that in the reduced-order FSI simulation, the location of the minimum pressure is 

always closer to the inferior region as compared to the full 3D simulation.  This result suggests 

that to further improve the accuracy of the reduced-order model, the location of the separation 

point may need to be moved downstream. 

To investigate how the vocal fold thickness plays a role in predicting the pressure 

distribution for these two FSI models, we use the case Model III with Psub = 1.0 kPa for 

illustration.  From Figure 5.8, it is shown that the reduced-order FSI model is able to capture 

overall pressure distribution in the glottis for all glottal configurations. However, considerable 

differences can be observed between the reduced-order FSI model and the full 3D model.  More 

specifically, the pressure drop in the glottis of the reduced-order model is much greater than that 

of the full 3D FSI model. As in Model I, the location of the minimum pressure from the reduced-

order FSI model is closer to the inferior region as compared with the full 3D model, which 

suggests that this point should be moved further downstream to improve the model accuracy. 
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Figure 5.8 Comparison of the pressure distribution along the centerline between the reduced-

order FSI model and the full 3D FSI model for Model III with Psub = 1.0 kPa. (a) Close phase, 

(b) convergent phase, (c) open phase, and (d) divergent phase.  In each case, corresponding cross 

section area, A, is also plotted. 

 

5.4 Conclusions 

In this chapter, we have designed an idealized vocal fold to compare predictions of two 

FSI models, i.e., a reduced-order FSI model with drastically simplified flow representation, and a 

full 3D FSI model incorporating 3D viscous unsteady flow. In both models, the vocal fold is 

represented by a 3D nonlinear finite-element model. The objective is to investigate the accuracy 

of the reduced-order FSI model as compared with the full 3D model. The medial thickness, the 
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material behavior or the constitutive law of the tissue, and the subglottal pressure are varied 

systematically during the study.  

For both the reduced-order FSI model and the full 3D FSI model, sustained vocal fold 

vibration is achieved. The results show that the medial thickness has the greatest influence on the 

performance of the reduced-order FSI model.  Specifically, when the medial thickness is large, 

the results from the reduced-order FSI model are consistent with those from the full 3D FSI 

model, including the vibration frequency, amplitude, deformation pattern, and mucosal wave 

along the vocal fold surface.  However, when the medial thickness is small, the reduced-order 

FSI model may lead to a different vibration mode and frequency than that from the full 3D FSI 

model.   

As compared with the medial thickness, other model assumptions such as the subglottal 

pressure and the tissue behavior have relatively less influence on the accuracy of the reduced-

order FSI model.  As the subglottal pressure is raised, the vocal fold generally has greater 

deformation amplitude, which was captured by both the reduced-order FSI and full 3D FSI 

models.  When the Mooney-Rivlin model is used for the tissue behavior, the vocal fold has less 

deformation as compared with the Saint-Venant model, due to the nonlinear and stiffening effect 

in the former case.  

The pressure distribution in the glottis shows that in the reduced-order FSI model, the 

pressure has a great drop along the streamline than in the full 3D FSI model.  This result suggests 

that we might need to adjust the location of flow separation in the reduced-order model to make 

it more accurate.  Further study will be needed to investigate this issue. 
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CHAPTER 6 CONCLUSIONS AND FUTURE STUDY  

	

6.1 Conclusions 

In this thesis, we have focused on computational modeling of the fluid-structure 

interaction (FSI) for vocal fold vibration during phonation. The computational setup includes 2D 

and 3D FSI models with idealized geometries, as well as anatomical geometries based on 

medical imaging. These models are developed for two goals in general. In the first goal, we aim 

to understand fundamental FSI process of phonation and thus would like to single out effects of 

certain aspect such as the role of the nonlinear tissue mechanics. Understanding of these 

fundamental effects will provide useful guidance for development of more advanced 

computational models in the future, e.g., those for clinical applications. 

In the second goal, we aim to explore the issues of developing high-fidelity, patient-

specific computational models that ultimately could be used in clinic for improved treatment of 

voice disorders. These issues include the experimental procedure to produce necessary data input 

for model development, creation and simulation of the FSI models from imaging data, handling 

of unknown model parameters, and validation of patient-specific characteristics. With these two 

goals, four specific studies were carried out in this thesis.  

In the first study, the effect of geometric nonlinearity in vocal fold modeling is 

investigated. A 2D computational model with idealized geometry is constructed, in which the 

vocal fold tissue is assumed to be simply linearly elastic. For comparison, two models, i.e., 

model I under small strains assumption and model II with large displacement and rotations 

incorporated, are applied to study the effect of the finite displacement on the vocal fold dynamics 

and glottal airflow.  Results show that vibration amplitude, impact stress, and flow rate obtained 
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from model I are consistently lower compared with model II under given subglottal pressure. In 

cases where the subglottal pressure becomes high, e.g., 0.8 kPa in the present study, the vibration 

mode of the vocal fold predicted by model I is composed of natural modes with lower 

frequencies than those of model II.  In general, the geometric nonlinear effect is amplified during 

vocal fold collision. In addition, the fluid-structure coupling further enhances the contribution 

made by geometric nonlinearity to vocal fold vibration. Although the quantitative results are 

limited to the specific models assumed in the present work, the current study suggests that 

geometric nonlinearity should be incorporated in a computational model for accurate simulation 

of the vocal fold dynamics and prediction of the impact stress.  

In the second study, a novel in vivo methodology is developed using evoked rabbit 

phonation to investigate the model development issues and meet the future need of a clinically 

useful tool.  In this study, the rabbit’s thyroid and cricoid cartilages are successfully sutured in 

vivo to elicit rabbit phonation. Aerodynamic and acoustic measurements are conducted during in 

vivo phonation as well as high-speed imaging. Afterwards, MR imaging is performed on the 

excised larynx with different scanning protocols. Results show the new approach produces 

consistent phonation characteristics with previous electrical stimulation. More importantly, the 

suture method allows the vocal fold tissue to stay in the adducted phonatory position after 

excision, which retains the vocal fold configuration during MR imaging. Given that the 

geometric features could significantly affect vocal fold vibration, the new in vivo technique 

would consequently improve quality of the computational models based on the imaging data. 

In the third study, an approach towards the development of a high-fidelity computational 

tool for surgical treatments is described. Experimental studies on evoked rabbit phonation are 

performed with both in vivo measurement and MR scanning for excised larynges. Computational 
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simulations based on reconstructed realistic laryngeal models from medical images are 

conducted for parameterized explorations and subject-specific validations. In the numerical 

approach, a hybrid model composed of simplified 1D flow solver coupled with full 3D tissue 

mechanics solver is created to estimate the unknown elastic constants of the vocal fold layers. 

Results show that the laryngeal anatomy with considerable realistic geometric features is 

successfully reconstructed from MR scans. Based on a two-layer simplification with isotropic 

tissue assumption, the individual unknown material properties are identified and shown to be 

within the range of population data.  The reconstructed computational model is validated through 

comparison with individual-specific characteristics of vocal fold vibration that are measured 

from the in vivo phonation experiment, e.g., vibration frequency, amplitude, and waveform of 

displacement. Generally, the simulated results are able to match those experimental 

measurements.  

In the fourth study, the comparison between the reduced-order FSI model and the full 3D 

FSI model is investigated using an idealized vocal fold geometry.  Effects of the subglottal 

pressure, material behavior, and medial thickness on the differences between predictions of the 

two FSI models are discussed in detail.  Results show that the reduced-order FSI model can 

successfully reproduce the results from the full 3D FSI model when the medial thickness is large; 

however, when the medial thickness is small, the reduced-order FSI model can be significantly 

different from the full 3D model.    

6.2 Future work 

This work only represents a preliminary step toward development of high-fidelity, 

patient-specific computational models that could eventually be used in clinical care of voice 
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disorders.  Substantial work will be needed from several perspectives to further advance the 

methodology of model creation and validation. 

First, the performance of the current reduced-order FSI model using the simple Bernoulli 

principle is not entirely satisfactory.  In particular, significant differences between the reduced-

order model and the full 3D model were observed when the medial thickness of the vocal fold is 

small.  In the future, we could try different approaches to estimate the location of the flow 

separation and study its effect on the model performance.  In such a study, the full 3D FSI model 

can be used as the reference for comparison and also as a tool to calibrate the separation point 

and to study the detailed flow physics, e.g., how does the flow separation depends on the glottal 

configuration and flow conditions.  We envision such a study could significantly improve 

accuracy of the reduced-order FSI model and expand its future usage. 

Second, some procedures in the process of model creation are manual and thus very time-

consuming, for example, segmentation of the vocal fold tissue from the image data and the 

identification of unknown model parameters.  In the future, advanced tools could be incorporated 

to improve efficiency of model generation.  For segmentation, there are automatic and semi-

automatic software tools available for general purposes of processing medical images.  Those 

tools could potentially be adapted in the current context to assist with reliable and accurate 

segmentation.  For parameter identification, existing optimization toolboxes and algorithms 

could be used to automate the search process.  This improvement would be very useful when 

there are more model parameters to identify and when there is a large parameter space to 

explore. 

Third, the current imaging modality requires excision of the larynx. In the future, 

alternative in vivo imaging approaches such as Computed Tomography (CT) will likely have to 
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be used. Segmentation of the images produced using these approaches, the uncertainties 

associated with the segmentation process, and their effect on the computational model will need 

to be investigated. In addition, the experimental procedure may have to be modified 

correspondingly to accommodate the imaging protocol and to collect the aerodynamic/acoustic 

measurements required for model input (e.g., flow rate and subglottal pressure) and model 

validation (e.g., vibration frequency and vocal fold displacement).   

Fourth, in order to develop computational models to predict surgical outcome of 

medialization laryngoplasty, the anatomical and biomechanical effects of the implant that is 

inserted into the paralyzed vocal fold should be incorporated in the finite-element model of the 

vocal fold. As a result, the surgically altered vocal fold will have different eigenmodes and will 

respond the aerodynamic load differently than the normal vocal fold. A fundamental study 

should be done to investigate the parameterization of the implant and how to incorporate it into a 

FSI model. Furthermore, combined experimental and computational studies are needed to 

develop and validate subject-specific computational models that include the 3D anatomy and 

geometric/material design of the implant.   

Finally, development of the computational models for human subjects is the ultimate goal 

for this line of research.  Substantial work still needs to be done regarding human imaging, image 

processing, model creation, unknown parameters, implant incorporation, and model validation.  

These tasks will require close collaboration of computational engineers, medical scientists, and 

surgeons over the next decade or two.   
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