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CHAPTER 1 

 

INTRODUCTION 

 

This dissertation presents a novel fast T2 mapping method for magnetic resonance imaging 

(MRI) that is insensitive to transmit field errors and does not suffer from artifacts common to 

conventional fast spin-echo methods. Chapter 1 will introduce the concepts required to understand 

the motivation behind and techniques described here. The first section will cover the basics of 

rapid T2 relaxometry, including its applications and challenges. Following this is a detailed 

technical introduction to the spin-echo and multiple spin-echo pulse sequences. The final section 

of this chapter will examine image reconstruction methods in MRI, from the classic Fourier model 

to so-called compressed sensing methods and beyond. By the end of this chapter, the reader should 

have an understanding of the need for accelerated T2 mapping methods as well as a solid 

foundation in current fast and conventional T2 mapping protocols. 

 The following chapter, Fast T2 Mapping with Multiple Echo, Caesar Cipher Acquisition 

and Model-Based Reconstruction (ME-CAMBREC), introduces the novel method as published in 

Magnetic Resonance in Medicine. The reprinted article illustrates ME-CAMBREC in detail and 

demonstrates its capabilities through computational, doped water phantom, and human 

experiments. This chapter theoretically compares ME-CAMBREC to a steady-state method and 

empirically compares the method to conventional fast spin-echo protocols and parallel imaging. 

 Chapter 3, Biasing Factors in ME-CAMBREC, investigates more deeply the sources of 

error in ME-CAMBREC T2 maps. In particular, it characterizes bias caused by three sources:           

i) over-regularization during reconstruction, ii) through-slice flip angle errors, and iii) multi-



2 

 

compartmental relaxation. The results presented in the chapter more clearly inform users of ME-

CAMBREC as to the method’s limitations, and identify potential pitfalls in protocol design. 

 The fourth chapter, T2 Mapping with Fitted vs. Measured B1
+: a Statistical Analysis, 

attempts to determine whether the refocusing flip angle parameter in ME-CAMBREC should be 

independently measured and used as a constraint during reconstruction. It investigates this 

interesting tradeoff from a broader view of T2 mapping, and provides a rule of thumb for the 

necessary B1
+ accuracy, precision, and efficiency needed to improve a fitted T2 map. Theoretical 

investigations of fully-sampled T2 mapping protocols are presented alongside simulations 

validating the results in ME-CAMBREC. 

After the Conclusion, in which the results of Chapters 2-4 are synthesized to form 

comments on whole-brain imaging with ME-CAMBREC, a number of Appendices are provided 

as additional references. These brief chapters derive certain probability equations used extensively 

in the dissertation and provide MATLAB (The MathWorks, Natick, MA) code for ME-

CAMBREC reconstruction. 

 

1.1: Rapid transverse relaxometry 

 

The transverse relaxation time constant in MRI, T2, has been shown to vary with tissue 

water compartmentalization (1–3). It is intuitive, then, that many disease states—particularly those 

in which local microstructure is somehow disrupted, such as multiple sclerosis (4,5) and certain 

myopathies (6–8)—present as hyperintense lesions to clinically standard T2-weighted imaging 

protocols. For example, in the presence of edema or inflammation, pockets of freely-tumbling 

extraneous water form with higher T2 (see Section 1.2.1) than the surrounding healthy tissue.        
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T2-weighted MRI of the inflamed region would show contrast between healthy and inflamed tissue, 

with the inflammation appearing brighter on the resulting image. 

The function mapping signal intensity to the exact value of T2 is unknown and 

noninvertible for T2-weighted images. Common forms of diagnostic imaging are therefore referred 

to as semiquantitative, in that they do not provide exact values of T2 on a voxel-by-voxel basis. It 

is of interest in both the clinical and research settings to be able to generate T2 maps: images which 

contain absolute values of the transverse relaxation time as a function of space. For reasons that 

will be examined throughout this chapter, conventional quantitative T2 mapping methods require 

long scan times in order to achieve appropriate image resolution and volumetric coverage. This 

section will discuss methods used for generating T2 maps in a fraction of a conventional scan’s 

duration.  

Multiple T2-weighted images, typically with varying echo time (TE), must generally be 

acquired in order to generate a single T2 map (9). In practice, these can either be acquired 

simultaneously using a multiple spin-echo (MSE) pulse sequence (10,11)—the challenges of 

which will be discussed in Section 1.2—or can be acquired one at a time, typically using fast spin-

echo (FSE, also TSE, RARE) acceleration (12). Although the pulse sequence used for FSE is 

fundamentally identical to that used for MSE imaging, it utilizes a different k-space trajectory 

which results in a different scan time. Multiple spin-echo sequences acquire a number of images 

equal to the echo train length (ETL) in a number of excitations equal to the image matrix size in 

the phase encoding direction(s) (Npe), but cannot acquire fewer images in order to reduce scan time.  

In contrast, sequences in FSE mode acquire one image in Npe/ETL excitations, and can acquire 

more than one image in succession by extending scan time. Thus, FSE protocols will result in a 

shorter scan time than MSE sequences as long as fewer than ETL images are acquired. Both MSE 
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and FSE image series contain artifact compared to single spin-echo images (see Sections 1.2.4 and 

1.3.1). While it is possible to acquire multiple images using a single spin-echo pulse sequence, this 

will require an increase in scan time by a factor of ETL compared to MSE methods, which is 

impractical in vivo. 

Although the FSE and MSE imaging modes are incompatible, both paradigms can be 

combined with a wide variety of other acceleration schemes. Section 1.3 will cover undersampling 

schemes, such as parallel imaging (13–15), compressed sensing (16), and model-based 

reconstruction, all of which can be applied to either FSE or MSE. A separate acceleration technique, 

the acquisition of multiple k-space lines per spin echo in the same manner as echo planar imaging 

(17), is called gradient and spin echo (GRASE) imaging (18) and has been applied to transverse 

relaxometry (19–21). Although GRASE provides an opportunity to accelerate acquisition beyond 

the limits of FSE alone, it has been shown to reduce image signal-to-noise ratio (SNR) by a 

predictable amount due to the necessary increase in receiver bandwidth (19). Another applicable 

method, somewhat of a hybrid between undersampling and rapid acquisition methods, is the view-

sharing family of techniques. One such method, k-space weighted image contrast (KWIC (22)), 

generates T2 maps from a single FSE k-space data set in the same way as model-based 

reconstruction. Unlike model-based reconstruction methods, KWIC generates multiple T2-

weighted images as an intermediate step between image reconstruction and T2 fitting.  

Both MSE and FSE require a long repetition time (TR) in order to prevent T1-mediated 

bias and mitigate energy deposition in irradiated tissue. A unique alternative to MSE/FSE-based 

T2 mapping is the driven equilibrium, single-pulse observation of T2 (DESPOT2) protocol (23,24). 

This variable flip-angle method utilizes steady state sequences with low flip angles and directly 

accounts for T1, causing the protocol to favor short TRs and rapid scan times. However, despite 
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significant speed advantages and the generation of a simultaneous T1 map, the complex behavior 

of short-TR, gradient-balanced pulse sequences has demanded a series of corrections and model 

extensions to account for, e.g., magnetic field inhomogeneities (25,26) and finite radiofrequency 

(RF) pulse effects (27). Ultimately, while DESPOT2 is certainly an attractive method, it is difficult 

to implement due to the swarm of articles incrementally updating the method. 

A quantitative multi-parametric mapping protocol called magnetic resonance 

fingerprinting (MRF) has generated significant interest in the MRI community (28). This method 

utilizes large image sets acquired during signal transients to fit multiple parameters, including T2. 

In order to rapidly derive information from such a large dataset, signal amplitudes are precomputed 

using, for example, the extended phase graph (EPG) algorithm (29); the MRF implementation of 

the EPG algorithm is distinct from that discussed in Section 1.2.5 due to pulse sequence differences, 

but the fundamental theory is similar. Due to the large number of images collected, the scan time 

for a Nyquist-sampled MRF acquisition ranges between 10 and 35 minutes for a single slice 

(29,30). Many acceleration techniques have been proposed to reduce this scan time, including 

compressed sensing (31) and simultaneous multi-slice imaging (32,33), and scan times shorter 

than a minute have been reported for these accelerated methods. 

While it is somewhat outside the scope of this dissertation, it is important to note that 

transverse relaxometry is frequently employed in tissues that do not present a single T2 decay time, 

such as myelinated nerve (2) and white matter (3,34). The multiexponential decay of signals from 

these tissues is taken to imply a physical separation of water compartments; in white matter, the 

short-lived signal compartment is associated with water trapped between layers of myelin (3). 

When fitting a single T2 to signals from these tissues, the multiple signal components will present 

an apparent T2 with less diagnostic specificity compared to the individual compartments’ T2 values 
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and respective signal fractions. Many tissues also partially consist of tightly bound 

macromolecular protons, which decay with such a short T2 as to be invisible to conventional 

imaging. They will, however, still affect MR signals through the magnetization transfer (MT) 

pathway (35), which is discussed in more detail in Section 1.2. 

 

1.2: Technical details of MSE and FSE sequences 

 

Section 1.2 will describe the elements of the MSE/FSE pulse sequence with sufficient 

detail to appreciate the method family’s challenges, hidden assumptions, and recent advancements. 

The pulse sequence considerations in the following sections are important both for understanding 

ME-CAMBREC and for identifying key and subtle limitations in the method, some of which are 

examined in Chapter 3: Biasing Factors in ME-CAMBREC. 

 

1.2.1: First principles: what is T2?  

 

The nuclear magnetic resonance (NMR) and magnetic resonance imaging techniques 

measure variations in induced voltage across an inductor coupled to a sample located within an 

external magnetic field. Particles within the sample that contain both a magnetic moment and 

angular momentum (i.e., quantum spin) will, unless exactly aligned with the external field, precess 

around the external field according to the Bloch equation (36), 
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where the spin magnetization 
T

x y zM M M   M  is exposed to external magnetic field B, γ is 

the gyromagnetic ratio of the particle (commonly a lone proton, or hydrogen nucleus, H+), M0 is 

the magnetization at thermal equilibrium, and T1 and T2 are the spin-lattice and spin-spin relaxation 

times, respectively. The spin-lattice relaxation time, intuitively called the longitudinal relaxation 

time, represents the time required for the spin to return to thermal equilibrium—in other words, to 

align with B, which is generally along the z-axis. According to Bloembergen, Purcell, and Pound 

(BPP) theory (37), it is dominated by energy exchange and spatial tumbling at the Larmor 

precession frequency, ω: 

 B  . [1.2] 

Note that ω is defined as a left-handed—i.e., clockwise—frequency. In contrast to T1, T2 is often 

described as a transverse relaxation time, as it manifests in the plane perpendicular to B. It 

represents the time constant for the decay of NMR signal, as the measurable signal is proportional 

to the transverse magnetization. Spin-spin relaxation is dominated by low-frequency interactions 

between spins of different precession frequency, specifically at the spins’ beat frequency, or 

precession frequency difference. Although quantum theory limits T2 to twice T1 (2T1 ≥ T2) (38), 

BPP theory and practical observation dictate a stricter relationship, with T1 ≥ T2. 

 At a given field strength, BPP theory suggests that increasing tumbling speed—in other 

words, increasing spin freedom within its microstructural compartment—leads to decreasing, then 
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increasing T1 and a monotonically increasing T2. This explains why proton NMR signals from 

macromolecules or mineral lattices, which have relatively low tumbling speeds, typically exhibit 

very short T2, on the order of microseconds (1). In contrast, so-called free water protons exhibit a 

long T2, on the order of milliseconds or, for the most unrestricted water pools, even seconds (39).  

 

1.2.2: Spin-echo sequences and T2-weighted images 

 

The term spin-echo, or Hahn echo (40), refers to both a physical phenomenon and the pulse 

sequence utilized to generate a T2-dependent signal at the echo time (TE). It contrasts with free 

induction decay (FID), as well as with more advanced echo types such as stimulated echoes which 

will be discussed in later sections. Figure 1.1 shows a schematic of the pulse sequence in its most 

fundamental form, and a detailed description of each element in the sequence follows. 

 

 

 

Figure 1.1: A schematic of the radiofrequency transmit/receive element for simple spin-echo 

sequences. Note that TE defines the echo time, which is equal to twice the duration between the excitation 

(here, 90°) and refocusing (here, 180°) pulses, and the repetition time TR defines the duration between each 

excitation pulse. Spoiler and crusher gradients, imaging gradients, pulse phases, and slice interleafs—all of 

which are important to common imaging variations of the spin-echo sequence—are not shown.  
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The sample is assumed to be in thermal equilibrium before the initial excitation at time        

t = 0. By applying a magnetic field perpendicular to the main field (B0) and rotating it at a 

frequency matching the sample’s Larmor frequency, spins in the sample can be nutated towards 

the transverse plane. This secondary field is called the radiofrequency (RF) or B1 field, and the 

nutation effect of RF pulses is commonly described by a flip angle which is proportional to the 

integrated B1 amplitude for an on-resonance pulse. The excited signal, which is proportional to the 

net transverse component of the magnetization M, is maximized when the excitation pulse flip 

angle is 90°. (It should be noted that for sequences in which TR is less than or on the order of T1, 

this is not the case, as the longitudinal magnetization immediately before excitation is reduced to 

a steady-state value.) 

After excitation, there is a delay period of time TE/2 during which subtle variations in 

precession frequency cause spins within the excited volume to dephase relative to each other. Net 

magnetization during this time rapidly decays according to a time constant T2
*, and this period of 

signal evolution is called the FID. Each isochromat accrues a phase relative to the net 

magnetization of ΔωTE/2 during this delay period. The refocusing pulse, which is described in 

more detail in the following section, would ideally then convert that phase to −ΔωTE/2 for each 

isochromat in the volume. During the next TE/2 delay time, an additional ΔωTE/2 is added to the 

spin phase after the refocusing pulse. At TE, the phase collapses to zero for all isochromats, and a 

signal echo is observed. The signal echo will be of a lower amplitude than the excited signal due 

to T2 decay.  

The distinction between T2
* and T2 is often a subtle one to students introduced to magnetic 

resonance for the first time. When considering relaxation rates, or 1/T2, one can consider a net rate 
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composed of reversible effects, such as time-invariant B0 variations within the sample, and 

irreversible effects, such as spin diffusion: 

 

*

2 2 2

*

2 2 2

1 1 1

R R R

T T T

 

 


. [1.3] 

Here the star notation denotes the total relaxation rate observed in the FID and the prime notation 

denotes a reversible component which can be unwound using a refocusing pulse. Note that T2 is 

always longer than T2
*, as the refocusing pulse enhances signal during the echo compared to an 

FID acquired at the same TE. As T2
* is susceptible to variations in observation parameters such as 

magnetic field shim accuracy, it is less specific to tissue environment, and its absolute value is 

often of reduced diagnostic importance compared to T2. (The relative nonspecificity of T2
* values 

does not imply T2
*-weighted imaging is not clinically relevant: dynamic imaging can be used to 

observe T2
* changes in response to contrast agent injection (41) or external stimulus, as in blood 

oxygen level dependent (BOLD) functional MRI (42).) 

 Assuming arbitrary flip angles for the excitation (θ1 along the x-axis) and refocusing (θ2 

along the y-axis) pulses and that each pulse is instantaneous, the transverse magnetization at TE 

can be shown to follow the isochromatic signal equation (43): 
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    . [1.4] 

Here i is the imaginary unit aligned with the y-axis and Δω is a precessing spin’s deviation from 

the frequency of the rotating frame. The first term, which has dephased for a time TE, represents 

an FID from the excitation pulse. The last term—which has dephased for TE/2, is aligned with the 
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x-axis, and contains both T2 and T1 information—represents the FID from the refocusing pulse. 

The central term represents a true spin echo. When θ1 = 90° and θ2 = 180° as in Figure 1.1, the 

equation reduces to a familiar exponential decay,  

   2/

0

TE T
M t TE M e



   . [1.5] 

The nonintuitive and admittedly intense trigonometry and T1-T2 cross-terms in Equation 1.4 

represent the different coherence pathways a signal contains after a series of RF pulses. Each 

additional pulse grows the number of terms in the signal equation geometrically. This will be 

discussed further in Sections 1.2.4 and 1.2.5, which cover multiple spin echo pulse sequences and 

their numerical signal models. 

 Because imaging protocols demand a series of excitations in order to fully sample k-space, 

a long TR is often used in T2-weighted spin-echo protocols in order to reduce the amount of T1 

information in the excited magnetization. If TR is chosen on the order of T1, M0 in Eq. [1.4] and 

[1.5] must be replaced by a reduced function of M0, RF pulse timings and flip angles, and T1. The 

corrected signal’s sensitivity to T1 monotonically decreases as TR grows larger, but this comes at 

a scan time cost. 

 

1.2.3: The refocusing pulse 

  

The previous section described a refocusing pulse as a transmitted radiofrequency signal 

which reverses the phase of affected spins, causing them to come into focus (i.e., form an echo) at 

time TE. The concept of coherence pathways was also introduced. The following section will 

expand on this foundation while investigating the practical limitations of refocusing pulses. 
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 In practice, refocusing pulses never act as perfect 180° pulses. Although transmit field (B1
+) 

variation and attenuation obviously contribute to erroneous flip angles, main field variation also 

contributes to transmit error—B0 deviation leads to a spurious z-component of the effective 

magnetic field in the rotating frame, altering magnetization behavior during nutation. Furthermore, 

as slice selection in MRI is performed through the use of magnetic field gradients, amplitude 

modulated slice-selective refocusing pulses are inherently imperfect. Figure 1.2 shows an RF pulse 

with amplitude envelope shaped like the centermost five lobes of a sinc function. (In common 

parlance, this would be termed a soft or shaped pulse, or more specifically, a sinc pulse.) Although 

the pulse is certainly selective to a range of frequencies, its response in the lower panel does not 

have an ideal rectangular shape. Moreover, doubling the amplitude from a nominal 90° pulse to a 

nominal 180° pulse does not in any way provoke a doubled response. In fact, the pulse profile 

changes considerably, becoming sharper in the center and less uniform throughout. 

 A few techniques attempt to avoid the issues caused by selective refocusing pulses. One 

obvious workaround is to perform volumetric—i.e., 3D—imaging protocols. While this is 

advantageous from a noise variance perspective, it requires a significant increase in scan time, as 

a second phase encoded dimension is introduced. Another alternative is single-slice imaging, 

where slice-selective excitation is used in conjunction with nonselective refocusing. While this is 

SNR-inefficient compared to 3D and multi-slice protocols, it is a simplifying condition which is 

attractive in many cases. A slice-selective refocusing pulse with double or triple the excitation 

pulse’s spatial width can also be employed as a compromise between single-slice and multi-slice 

acquisition schemes (44). This provides enhanced flip angle uniformity within the excited slice 

while still providing a response dropoff within the imaging volume. This particular solution to the 
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slice profile problem generally requires gaps between acquired slices, preventing volumetric 

coverage in a single scan. 

 

 

Figure 1.2: A sinc-shaped RF pulse and its flip angle profile for two nominal flip angles. Note that the 

flip angle profiles in the bottom panel have dramatically different characteristics both inside the selected 

slice and in the side lobes. The only difference between the two pulses which provided the profiles was a 

simple 2x amplitude scale factor. 

 

Regardless of the extent of slice profile nonuniformity, a refocusing pulse with flip angle 

< 180° will generate signal in the same manner as an excitation pulse, which then decays as an 

FID signal according to T2
*. This signal is generally minimized through the use of spoiler or 

crusher gradients (45). These gradient lobe pairs, which have the same polarity but flank the 

refocusing pulse on each side, dephase and rephase only the signal pathway which was in the 

transverse plane both before and after the refocusing pulse. Thus, signal excited by the refocusing 

pulse is only exposed to the latter gradient lobe, and is spoiled away due to excess dephasing. The 

case of multiple gradient-crushed refocusing pulses is more complicated, but briefly described as 
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part of a larger discussion on echo trains in Section 1.2.4. It is common to apply the crusher 

gradients in the slice-select direction; imaging voxels are largest in this direction, so spins dephase 

over a larger angle for a given gradient amplitude-time product. 

Refocusing pulses are almost always assumed to be instantaneous. This assumption holds 

as long as the refocusing pulse duration (usually on the order of microseconds for hard pulses and 

milliseconds for shaped pulses) is much shorter than the T2 of the sample. This criterion is 

paradoxically both true and false for many biological tissues. Tissues evaluated by conventional 

imaging methods have bulk T2 values larger than a few milliseconds, or they would not be visible 

to those conventional methods. However, many of these MR-visible tissues are in constant 

exchange with MR-invisible protons, such as those associated with macromolecules (1,35). To 

these spins, refocusing pulse durations are decidedly not instantaneous, and more involved models 

are needed to study the spins’ responses. Generally, integrated RF power (i.e., RF energy) predicts 

the response of very short-lived spins more closely than integrated RF amplitude (i.e., flip angle), 

and this response is a magnetization saturation, or monotonically decreasing M. The exchange of 

saturated (M ≈ 0) macromolecular protons with excited MR-visible protons causes a reduced 

effective signal in the excited pool; this is called magnetization transfer (35) contrast. 

 

1.2.4: The echo train; or, why echo trains are not merely series of spin-echoes 

  

Multiple spin echo pulse sequences generally use the Carr-Purcell-Meiboom-Gill (CPMG) 

framework (10,11). In this method, refocusing pulses are played out every time interval equal to 

TE, positioned equidistant to the surrounding echoes. Furthermore, the excitation pulse phase and 
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refocusing pulse phase are shifted 90° with respect to each other in order to ensure flip angle errors 

do not induce accumulating signal phase deviation (11). 

 The intuitive nature of CPMG sequences should not be mistaken as fundamental simplicity. 

A number of confounding factors affect acquired CPMG signals and provide implementation 

challenges. First and perhaps most significantly, the inclusion of at least three RF pulses in an echo 

train will generate stimulated or indirect echoes (46), which have been shown to bias fitted T2 

values (47–49). Stimulated echoes result from coherence pathways which involve the 

magnetization being first excited, then stored on the longitudinal axis by a second pulse, and finally 

returned to the transverse plane at half-amplitude by a third pulse. It is worth noting that 

conventional crusher gradients do not dephase stimulated echoes, as both a left- and right-crusher 

is experienced by the coherence pathway. Alternative crusher schemes exist which somewhat 

alleviate indirect echo contribution to CPMG signal (9), but an ideal gradient-crushed solution 

would require geometrically-increasing crusher amplitude, which is not practical due to gradient 

strength limitations. Furthermore, these methods are not compatible with optimized RF phase 

schemes such as the one presented by Meiboom & Gill (11). Signal models which include the 

effects of indirect echoes are described in detail in the following section. Although a somewhat 

subtler point, multiple spin echo pulse sequences generally have a smaller contribution of J-

coupling to transverse relaxation due to their shorter echo spacing (50). This causes tissues with 

significant lipid fractions, such as adipose tissue, to appear bright on MSE images compared to 

single spin-echo images. 

 Multiple spin echo sequences are frequently limited by energy deposition, or specific 

absorption rate (SAR). It is intuitive that a series of large-amplitude refocusing pulses will deposit 

more heat in tissues than small-angle steady state or single spin-echo pulse sequences. Interleaved 
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multi-slice acquisitions are particularly egregious in this regard, as they transmit a number of 180° 

pulses equal to the echo train length (ETL) multiplied by the number of slice interleafs. This SAR 

limitation can reduce the scan time-efficiency of multi-slice MSE acquisitions compared to other 

protocols, and therefore extend scan times. 

 

1.2.5: Modeling the multiple spin-echo signal 

  

Conventional MSE sequences must contend with indirect echo signal contamination. 

Including the effects of indirect coherence pathways in signal calculations will, therefore, generate 

more robust estimates of T2 when a series of images is fitted to the signal model. These effects can 

be calculated using straightforward Bloch equation simulation for each isochromat in a               

voxel (51,52), but this is extremely computationally expensive: full Bloch simulation demands 

numerically solving a series of simultaneous ordinary differential equations (Eq. [1.1]) for each 

isochromat and each refocusing pulse. Computationally tractable alternatives are therefore 

commonly employed. The two alternatives to Bloch simulation most critical to this dissertation 

are the extended phase graph (EPG (46,53)) and echo generating function (GF (54,55)) methods. 
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Figure 1.3: A schematic representation of the extended phase graph (EPG) model for one spin-echo. 

Interpulse periods are represented by signal decay according to T1 and T2 and +1 dephasing (upward 

diagonal lines in a, superscripts in b). Radiofrequency pulses perform trigonometric transforms on 

magnetization, mixing transverse and longitudinal coherences for each dephasing level. An echo is formed 

when spins in the M-
1 coherence channel rephase to the M0 channel. Note that there is no consideration of 

an isochromat’s specific precession frequency. 

 

In brief, the EPG method treats each dephasing level, rather than each isochromat or each 

coherence pathway, as a separate entity, and assumes uniform phase throughout the acquisition. 

When slice-selective refocusing is used, the deviation in flip angle across the profile is occasionally 

corrected for by discretizing the profile and then summing across it (56–58). Figure 1.3 

demonstrates the idea of tracing coherence pathways using trigonometric transforms, such as those 

apparent in Eq. [1.4]. The superscript of each magnetization describes the amount of dephasing 

that a pathway has experienced in units of the phase accrued during one interpulse period—i.e., 
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one echo spacing. (It should not be surprising, then, that the EPG model requires uniform 

dephasing through each interpulse period. Fluid flow and modulated crusher gradients violate the 

assumptions of the model.) Magnetization in the M+
0 coherence pathway represents a signal echo. 

Example curves generated by the EPG signal equation can be found in Figure 1.4. 

The GF formulism is a noniterative signal calculation method, making it even more 

computationally efficient than the EPG model. However, in order to eliminate the need for 

recursive calculations, the model makes additional assumptions about the signal. Specifically, GF 

calculations treat measured echo amplitudes as the only nonzero coefficients in an infinite series; 

in other words, they assume that the echo train is sampled until the signal decays to zero. This will 

not generally be the case, particularly for tissues with very long T2 such as CSF or for Rice-

distributed magnitude signals, which decay towards the (nonzero) mean of a Rayleigh distribution. 

Taken together with the EPG and Bloch simulation methods, GF simulations represent another 

point on a spectrum of techniques with varying accuracy and computational speed. 

 

 

Figure 1.4: Sample curves generated by the EPG model. Stimulated echoes (blue curve) cause 

oscillations throughout the echo train which are particularly egregious at early TEs. 
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1.3: Image reconstruction 

 

Image reconstruction in MRI typically involves the organization of data into a spatial 

frequency domain called k-space, which is then converted into a tomographic image through a 

Fourier transform. A brief derivation of this approach from first principles follows. Assumptions 

in the derivation—some of which are notably violated by conventional accelerated imaging 

techniques—are clearly stated. 

 

1.3.1: Fourier reconstruction 

 

The spatial frequency vector k is defined such that 

    , 2t t  r k r , [1.6] 

where  , t r  is the gradient-induced phase of a spin at position r and time t in the rotating frame 

of reference. Expanding this into integral form using the definition of the (clockwise) Larmor 

frequency (Eq. [1.2]) provides 

      
0

, 2 ,
t

gt t       r k r B r ,  [1.7] 

where Bg is the magnetic field in the z direction induced by magnetic field gradients. As these 

gradients are linear in space, the function Bg can be separated into the dot product of the gradient 

waveform g and the spin’s position, 

    
0

2
t

t      k r g r ,  [1.8] 

and if the spins are assumed stationary, k has the closed-form solution: 
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It is possible to generate k values for every acquired sample during an imaging pulse sequence, 

and importantly, it is also possible to generate an arbitrary k through modulation of the gradient 

waveforms. This is, in the briefest sense, the objective of all MRI pulse sequences. 

  The receiver coil detects the integrated magnetization across its sensitive volume, V. If the 

detected signal at time t is S and the magnetization in the absence of imaging gradients is M, that 

signal will be described by  
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Equation [1.10] is a Fourier transform from r-space to k-space. Conventional image reconstruction 

algorithms utilize this relationship to generate images through the inverse Fourier transform by 

redefining S as a function of k and dropping the time dependence of M: 

     2i

V

S M e  

 
k r

k r r .  [1.11] 

In practice, a series of k positions are sampled in rapid succession. These series can be rows 

oriented orthogonal to the k-space axes (Cartesian sampling), pass through the k origin (radial 

sampling), or take on more abstract shapes, such as spirals. These various techniques are dubbed 

readout patterns, or simply readouts. 

 Accelerated imaging methods such as fast spin-echo (12), echo planar imaging (17), and 

Look-Locker imaging (59) acquire multiple series of k positions—multiple readouts—per 

excitation in a temporal echo train. This reduces scan time by a factor equal to the number of 

readouts collected per excitation, but simultaneously violates the assumptions inherent to the 

Fourier reconstruction model in Eq. [1.11]. Point spread function-like blurring and the obscuration 
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of small image features (60) follow from the violated assumptions. Figure 1.5 demonstrates this 

phenomenon graphically. 

 

 

 

Figure 1.5: Artifact in FSE reconstruction. The original image (c) is acquired in a 32-echo train (a) in 

two acquisitions. This leads to amplitude modulation in k-space (b), which when reconstructed using the 

inverse Fourier transform, generates a blurred image with inaccurate signal values (d). In practice, acquiring 

an accurate image would take 32 times longer than acquiring the blurred image in panel (d). 
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 The artifacts caused by Fourier reconstruction of rapidly-acquired data are a direct result 

of the assumption that all k-samples were collected at the same time after excitation (i.e., echo 

time). If instead of assuming M is time-invariant, we allow M to vary with time, a discretized 

version of Eq. [1.11] can be created as a more accurate MRI signal equation: 

   2
,TE n li

n l n

l

S M e
 


k r

r   [1.12] 

where n is the index of a sample gathered at time TEn and k-position kn, and l is a spatial index. 

Unfortunately, this equation alone cannot be used for image reconstruction if accelerated 

acquisition techniques are employed; by the definition of an accelerated acquisition, there is 

insufficient data to fully characterize M at each echo time. Reconstruction approaches which solve 

the inverse problem of Eq. [1.12], or a variant thereof, are therefore said to reconstruct images or 

parameter maps from undersampled data. 

 

1.3.2: Reconstructing undersampled images 

 

In the previous sections, it was claimed that undersampling in MRI can be used to acquire 

images in a fraction of the time of conventional scans. However, solving the inverse problem of 

Eq. [1.12], or alternatively reconstructing images using the Fourier simplification (Eq. [1.11]) in 

conjunction with sub-Nyquist sampling, is a nontrivial challenge which demands further 

introduction before approaching the original work presented in Chapters 2-4. The following 

section will provide an overview of undersampled reconstruction techniques. 

 Perhaps the most straightforward family of undersampled imaging methods is partial-

Fourier reconstruction (61–63). This methodology utilizes the conjugate symmetry of real signals’ 

Fourier transforms in order to reduce the amount of data collected by up to one-half. In practice, 
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slightly more than half of k-space is sampled in order to correct for nonzero and nonuniform phase 

in image space. While this approach is straightforward, it provides a maximum acceleration factor 

less than 2 unless combined with other acceleration methods, such as in half-Fourier acquisition 

single-shot turbo spin-echo (HASTE (64)). This hybrid method combines the FSE readout with 

partial-Fourier reconstruction in order to acquire T2 weighted images within a single excitation. 

Reconstructed images from HASTE are blurred, as all FSE images are, and are inaccurate in the 

presence of phase errors, similar to other partial-Fourier techniques. 

 The most widespread undersampled reconstruction technique is the family of methods 

referred to as parallel imaging; in particular, sensitivity encoding (SENSE (14)) and generalized 

autocalibrating partially parallel acquisitions (GRAPPA (15)). These methods utilize multiple 

receiver elements distributed in space. As each receiver element is sensitive to a distinct portion 

of the imaging volume, data collected by an ensemble of these elements are inherently spatially 

encoded. The synergistic information between receiver elements can be used to reconstruct images 

from samples of every second k-space line (acceleration factor R = 2), every third line (R = 3), etc. 

The acceleration factor can theoretically be as high as the number of receiver elements, but in 

practice, it is limited by overlap in the coil sensitivity profiles. Greater overlap reduces 

reconstruction quality and maximum practical acceleration factor, as the reconstruction problem 

becomes ill-posed. A related approach to parallel imaging is simultaneous multi-slice imaging (65), 

which uses the same principles to separate images acquired from multiple slices in the same 

readout. These images are acquired through pulse sequences that employ multiband RF pulses, 

and conventionally demand large peak RF power. 
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 Another widely used, fast MRI technique that relies on undersampling is compressed 

sensing reconstruction (16). In compressed sensing applications, a regularization is used alongside 

the iterative image reconstruction least-squares problem, 
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where Ψ is the regularization function. The colloquial definition of compressed sensing demands 

that Ψ be the L1-norm of a sparsifying transform, such as the gradient magnitude for many medical 

images, as this guarantees convexity of the cost function. Compressed sensing is an attractive 

technique due to its straightforward nature, but it cannot be directly applied to MR parameter 

mapping. The problem convexity granted through use of the L1-norm does not apply if M  is 

assumed to be a nonlinear function of MR parameters, and it is unknown how image bias induced 

by any given sparsifying regularization might propagate into parameter maps. Thus, generating 

parameter maps through iterative image reconstruction demands a subtly different brand of 

accelerated imaging protocol: the model-based reconstruction. 

 

1.3.3: Model-based reconstruction 

 

Model-based reconstruction techniques such as the one presented in this manuscript can be 

considered the quantitative-imaging counterpart to compressed sensing. The use of nonlinear 

reconstruction algorithms to directly fit MR parameters to k-space data dates to at least 1994, when 

Tong & Prato published an article in which T1 was fitted to fast low-angle shot (FLASH) data 

acquired in less than 3 seconds (66). Although this method was complicated by issues arising from 

B1
+ errors, it serves as an early example of model-based reconstruction, and similar T1 mapping 
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methods utilizing radial Look-Locker acquisition schemes have been published in the past three 

years (67–69). 

The current wave of model-based reconstruction methods interested in fitting T2 began 

with a paper by Kai Tobias Block, Martin Uecker, and Jens Frahm in 2009 (70). Their work 

demonstrated that a radially-acquired FSE dataset could be used to directly generate a T2 map in a 

fraction of the time it would take to acquire multiple fully-sampled T2-weighted images. These 

authors have since published a plurality of the model-based reconstruction of T2 literature. In 2011, 

Uecker and Frahm—this time with Tilman Sumpf—adapted the 2009 paper to a Cartesian    

readout (71). While this work was similar to ME-CAMBREC, it did not utilize an indirect echo-

compensated signal model at the time. It was later adapted to include the echo generating function 

(GF) model in an article published in late 2014, making the updated method contemporary to ME-

CAMBREC. A 2016 paper by Block and Noam Ben-Eliezer presented a comparable method 

utilizing Bloch simulation signal models and a radial readout (52). 

 Chuan Huang, Ali Bilgin, and Maria Altbach independently developed a similar protocol 

during this wave of literature. Their method was called the reconstruction of principal component 

coefficient maps (REPCOM) in a 2012 paper (72) and curve reconstruction via principal 

component analysis-based linearization with indirect echo compensation (CURLIE) in a follow-

up article published in 2013 (57). These methods utilized an intermediate principal component 

space between k-space and the final T2 map, while CURLIE employed the extended phase graph 

algorithm to correct for indirect echo pathways. Both methods required radial acquisition schemes. 

 More general reconstruction frameworks, typically presented without a specific signal 

model, have been proposed for accelerated MR parameter mapping (73–76). These frameworks 

often focus on particular sparsity transforms in the parametric (i.e., TE) dimension, and can be 
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considered to belong to both the compressed sensing and model-based reconstruction families of 

methods. While these techniques represent an intriguing approach to model-based reconstruction, 

they can be difficult to implement for any particular signal model due to their abstract presentation 

in literature. Furthermore, any complications that might arise from a specific implementation—for 

example, indirect echo-compensated T2 mapping—appear to be left as exercises for the reader. 

 As of the acceptance of the manuscript reprinted in Chapter 2, there were no published 

model-based reconstruction methods which both i) corrected for stimulated and indirect echo 

pathways, in contrast to Block’s 2009 paper, and ii) directly fit T2 maps to k-space data, in contrast 

to the CURLIE method. Thus, the development of ME-CAMBREC using the extended phase 

graph algorithm represented a novel and important contribution to the contemporary literature. The 

simultaneous development of Sumpf’s GF-based technique (55)—and subsequent inception of 

Ben-Eliezer’s Bloch simulation-based method (52)—demonstrate that there is significant interest 

in accelerated T2 mapping methods using model-based reconstruction. It is the purpose of this 

dissertation to demonstrate and thoroughly investigate the ME-CAMBREC method with the 

overarching goal of determining its challenges and advantages in the context of the cornucopia of 

accelerated imaging techniques.  
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CHAPTER 2 

 

FAST T2 MAPPING WITH MULTIPLE ECHO, CAESAR CIPHER ACQUISITION AND 

MODEL-BASED RECONSTRUCTION (ME-CAMBREC) 

 

This chapter is adapted with permission from an article published in Magnetic Resonance 

in Medicine issue 73, March 2015, by Christopher L. Lankford, Richard D. Dortch, and Mark D. 

Does. 

 

2.1: Introduction 

 

The fast spin echo (FSE) pulse sequence is widely used in MRI due to its ability to quickly 

acquire high-resolution T2 weighted images which are relatively insensitive to spatial magnetic 

field variations (12). However, when FSE is used for quantitative T2 mapping, image artifacts 

caused by amplitude modulation in the phase-encoded direction of k-space, particularly in the 

presence of B1 field variations, can induce significant errors in estimated relaxation time values. 

The sensitivity to B1 field variation can be addressed through use of the extended phase graph 

(EPG) algorithm (46,53), and model-based reconstruction of parametric images such as T2 maps 

from k-space data can inherently eliminate acceleration-induced artifacts in FSE images (57,70). 

This work integrates these ideas into a fast and B1-insensitive method for T2 and proton density 

mapping. 

The EPG algorithm for calculating echo amplitudes (53) has received attention recently for 

its ability to compensate for indirect- or stimulated-echo pathways in multiple spin-echo 
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acquisitions, such as those used for FSE (77–79), T2 mapping (56,80), or multi-exponential T2 

analysis (81,82). These coherence pathways occur as a result of refocusing flip angles that deviate 

from 180°, which may be by design (77–79) or due to in-plane field variations or slice profile 

effects. Prasloski et al. have also used the EPG algorithm for analysis of combined gradient and 

spin-echo imaging (20), which provided accelerated T2 mapping at a predictable signal-to-noise 

ratio cost (19), but the EPG analysis remained decoupled from the reconstruction problem. 

In most Fourier-reconstructed fast T2 mapping methods, two general approaches are used 

to provide both acceleration and sensitivity to T2. In the first, multiple acquisitions are made using 

a single (usually center-out) k-space trajectory prepared by a spin echo period to provide T2 image 

contrast. In the second method, the k-space trajectory is altered (83) (or data is reordered, such as 

in view-shared protocols (22,84)) from one image to the next in order to weight the center of k-

space differently without extending the echo train. Here the former is referred to as an echo-

prepared (EP) acquisition and the latter as a variable trajectory (VT) acquisition. While EP 

techniques waste information before or after the echo trains, each VT image will have a unique set 

of artifacts which will compound when fitting T2 maps. As both of these acquisition strategies are 

tailored to the requirements of Fourier-reconstructed images, a novel “Caesar cipher” acquisition 

strategy—named after the famed emperor’s method of encoding text by wrapping the alphabet 

modulo its length—which is more suited to the proposed model-based reconstruction algorithm 

was developed. The proposed method is referred to as “Multiple Echo, Caesar cipher Acquisition 

and Model-Based REConstruction” (ME-CAMBREC). 
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2.2: Theory 

 

ME-CAMBREC simultaneously fits three parameters on a voxelwise basis—the relaxation 

time constant T2, refocusing pulse flip angle , and the complex transverse magnetization 

immediately after excitation, M+. First, NQ fast spin echo k-space pseudo images Qj (kro, kpe) (with 

unique effective echo time indexed by j, j = 1 to NQ) are acquired in a number of echo trains, NT, 

less than the number of phase-encoded lines in Q, depending on the desired acceleration factor. 

(Note than when NT = Npe, the number of points in the phase encoded direction, the acquisition 

requires the same scan time as a non-accelerated multiple spin-echo pulse sequence.) Since all 

points along the readout direction of a given line occur in the same echo and are therefore assumed 

to have the same T2 weighting, Q can be Fourier transformed in one dimension to create hybrid-

space images Hj (x, kpe). The ensemble of points corresponding to a certain spatial position, x0, in 

the read direction—i.e., all phase encoded points kpe across all NQ pseudo images for a given x = 

x0—are collected in a vector Sx0 (indexed by n) and paired with vectors t and kpe, the echo times 

and phase encode k-values at which Sx0 were collected, respectively. Figure 2.1 demonstrates this 

data transformation in graphical form. Additionally, a reference image, I, is generated by inverse 

2D Fourier transform of the Q1 image, i.e. the k-space image with the shortest effective echo time, 

I = F2D
-1{Q1} = Fpe

-1{H1}. This reference image is used in the model-based reconstruction as an 

initial guess, as part of a regularization penalty, and to threshold the parameter maps a priori. For 

each row of data (i.e., each value of x0), voxels with magnitude < z % of the maximum of |I (x0, y)| 

are not fitted and constrained to zero. 
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Figure 2.1: Data sorting and preparation. Fast spin echo k-space images Q are transformed into a hybrid 

space H, from which parameter map reconstruction occurs row-by-row. A reference image I is also 

generated through simple Fourier reconstruction of the earliest effective echo time data. 

 

 

Once the vector Sx0 has been constructed for a given image row, M+, T2, and  are fitted 

simultaneously using the cost function 
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where EPG(∙) represents the extended phase graph calculation, l  is an index corresponding to y 

position (l = 1 to L), and p is the regularization function, defined below, which is weighted in the 
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cost by λ. The parameter ,c lC  is the complex coil sensitivity at position l of the cth receive coil 

element of an NC coil array.  

The regularization is a fractional variation constraint designed to penalize added sharpness 

in the fitted M+ over the reference image I: 
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The spatial difference taken in the penalty function makes this regularization similar in spirit to 

total variation constraint, but with the following important distinctions: 1) the use of a blurred 

reference image, I, which will reduce the penalty burden in regions of genuine spatial variation of 

M+, 2) the normalization by the sum of the values of M+ or I, which is required due to the different 

scaling of the reference image caused by signal decay before the first echo, and 3) the usage of a 

2-norm rather than a 1-norm, for ease of computation. The behavior of this regularization is 

intuitively straightforward. When the penalty weighting factor λ is close to zero, noise 

amplification from phase encoded lines acquired near the end of the echo train causes significant 

image degradation. As the weighting factor increases, the M+ image becomes increasingly similar 

to a scaled version of I. The regularization used here is not intended to be optimal, but rather as an 

intuitive use of a priori knowledge regarding the M+ map. Further study may find alternate 

regularization strategies that provide better performance, such as a sparsity constraint over some 

transform of the data. 

Optimal tuning of λ is a nontrivial process. Here, a nonlinear L-curve (85) approach was 

used, where the optimal λ is selected as the point where a marginal increase in penalty weighting 

begins to induce a notable increase in solution residuals. Mathematically speaking, the value of λ 
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chosen is the value that maximizes the curvature, κ, of a log-residual vs. log-penalty graph 

parameterized by λ: 

                  
 3/2 2 12

2 2

1

1

T

r

p r r

pp H pr

p

 










 
                 

 

. [2.3] 

This equation was adapted from literature (86), correcting for typographical errors. Here r is the 

sum-squared residual term and p is the scalar penalty term from Eq. [2.1] and [2.2]. The gradient 

vector with respect to model parameters β is defined as p , and H is the Hessian (second 

derivative) matrix of the entire cost function. By plotting κ against λ, an optimal value for λ can be 

estimated; in the following, a single value of λ was selected for each image using a small sample 

of the image rows. 

ME-CAMBREC also uses a novel acquisition scheme to further reduce noise amplification. 

Unlike Fourier reconstruction, which introduces artifacts related to the properties of a k-space 

amplitude modulation function, image noise in model-based reconstructions will be amplified at 

any spatial frequencies not sampled at early echo times. It is, therefore, disadvantageous to acquire 

the high spatial frequency lines of Cartesian k-space at the end of every echo train. Instead of using 

either the EP or VT methods to provide T2 contrast, ME-CAMBREC provides T2 contrast by 

sampling phase encoded lines in a Caesar cipher-like (CC) pattern. This trajectory can be 

considered an application of the rotated rapid acquisition relaxation enhanced methodology (87) 

to a center-out framework. In this acquisition strategy, the first echo train(s) acquire a center-out 

image (Q1). The next pseudo images (Qj, j = 2, 3, …) are acquired by pushing the entire trajectory 

down the echo train and moving the last phase encode lines—those which would require the echo 

train to be extended if they were acquired in center-out order—to the beginning of the echo train. 
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For example, given the first trajectory kpe=0,-1,1,-2,2 the second trajectory is kpe=2,0,-1,1,-2, the 

third is kpe=-2,2,0,-1,1, and so on, as shown in Figure 2.2. Acquiring fewer pseudo-images than 

the echo train length provides accelerated acquisition compared to conventional multiple spin echo 

imaging. 

 

 

 

 

Figure 2.2: Artifact and k-space trajectory. The upper portion of the figure represents the acquired echo 

train from shot to shot as effective echo time increases; the solid line is a center-out acquisition common to 

most FSE schemes, while the dashed line demonstrates a later TEeff using the given acquisition strategy. In 

the echo-prepared image, blurring (but not ghosting) is present. Both types of artifact exist in other sampling 

schemes, with the proposed Caesar cipher acquisition clearly being unsuited to Fourier-based reconstruction. 
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2.3: Methods 

 

2.3.1: Computational experiments 

 

The ME-CAMBREC method was compared to analysis of Fourier-reconstructed images 

using previously established trajectories, namely the EP and VT methods. The computational 

phantom used for each experiment was as follows. A 128 (Nro)  128 (Npe) Shepp-Logan phantom 

with intensity values ranging from 0.8 to 1 was used as a proton density map; each compartment 

of that map had its own uniform T2, ranging from 60-500 ms; a flip angle map varying smoothly 

across the image over 110-130° was used for all EPG-based analysis, and a similar map varying 

from 170-190° was used for exponential model fitting. A four-shot (NT = 4NQ) mock acquisition 

using each trajectory was performed with the following parameters: echo spacing (ESP) = 10 ms, 

echo train length (ETL) = 32 echoes, effective echo time (TEeff) = 10, 90, 170, 240 ms for CC and 

EP, TEeff = 10, 40, 90, 160 ms for VT. (The VT acquisition scheme used lower effective echo 

times because it is not suited to acquiring the kpe = 0 line after the halfway point of the echo train; 

doing so would require an outside-in type trajectory.) Since NT = 4NQ = 16 = Npe/8, the acceleration 

rate, R, for all mock acquisitions was equal to 8. Noise was added to the data at a magnitude image 

signal to noise ratio (SNR) of 15 for the median intensity voxels of the Shepp-Logan phantom, 

which represents about the lowest SNR permissible for quantitative imaging. The ME-CAMBREC 

reconstructions were regularized using optimal weighting levels (see the Fitting Algorithm section). 

The resultant parameter maps were compared to the actual underlying parameters as were 

reconstructed maps using data with median SNR = 30, 60, and 120. Additionally, parameter maps 

from Fourier-reconstructed voxel-wise fitting to the extended phase graph and exponential models 
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were created for comparison using both EP and VT trajectories. Error metrics were calculated root-

mean-square (RMS) errors relative to known values, reflecting parameter estimate variance more 

than bias error at low SNR and the opposite at high SNR. 

In order to compare the proposed method to a more disparate fast T2 mapping protocol, 

DESPOT2 (23), the Cramer-Rao lower bound of the variance of T2 was calculated for both ME-

CAMBREC and a sample implementation of DESPOT2 (88) using the same Shepp-Logan 

phantom. The mean coefficient of variation of T2 estimates (defined as the Cramer-Rao bound 

divided by the true value) across an image row was calculated. Additionally, since each method 

will have unique noise characteristics and scan times, these were accommodated in an overall 

calculation of SNR efficiency (i.e., T2 SNR per unit root scan time). The DESPOT2 acquisitions 

simulated the following parameters: spoiled gradient-recalled echo: TR = 11.7 ms, flip angles = 

4° and 15°, receiver bandwidth = 15.6 kHz; steady-state free precession: TR = 3.7 ms, flip angles 

= 15° and 55°, receiver bandwidth = 62.5 kHz. Both methods assumed a 256  256 in-plane matrix, 

with DESPOT2 acquiring 128 points in the third dimension and ME-CAMBREC acquiring this 

many 2D slices. Scan parameters for ME-CAMBREC were adapted from the human imaging 

protocol (see Human Experiments), with the receiver bandwidth adjusted to 36.6 kHz to acquire 

the new matrix size in the same echo spacing. Simplifying assumptions for DESPOT2 included 

instantaneous approach to steady state, no compressed sensing/partial Fourier acceleration, and a 

priori knowledge of confounding factors such as off-resonance/flip angle maps which are often 

measured in practice. 
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2.3.2: Phantom experiments 

 

An eight-tube phantom containing copper sulfate and manganese chloride solutions (T2 

range: approximately 15ms-150ms) was imaged on a 4.7 T/31 cm Agilent/Varian (Santa Clara, 

CA) DirectDrive MRI system equipped with a single element volume coil (NC = 1, Eq 2.1) using 

CC, EP, and VT k-space sampling methods. A multiple spin echo pulse sequence with constant 

gradient dephasing in every inter-echo period was used with the following parameters: matrix size 

= 64 (Nro)  64 (Npe), ETL = 16 echoes; TEeff = 5, 25, 45, and 60 ms for CC and EP and 5, 15, 25, 

and 30 ms for VT; refocusing flip angle = 120°; NQ = 4; NT = 16; ESP/TR = 5/2500 ms; slice 

thickness = 2 mm; refocusing pulse width = 5 mm. It should be noted that this wide refocusing 

pulse width would require a 1.5 mm gap between slices if the acquisition were performed in multi-

slice mode, although only one slice was acquired here. These data were subjected to ME-

CAMBREC (CC) and Fourier-reconstructed EPG analysis (EP, VT). The T2 maps resulting from 

these protocols were compared to EPG analysis of a fully-sampled multiple spin-echo dataset 

acquired using the same scan parameters and double the echo train length. The errors were 

calculated as relative errors of the mean of each sample tube, reflecting systematic bias and artifact 

more than noise characteristics. 

 

2.3.3: Human experiments 

 

The brain of a healthy volunteer was imaged on a 3.0-T Philips (Best, NL) Achieva MRI 

system using an 8-element head coil (NC = 8, Eq 2.1) and a multiple spin-echo pulse sequence with 

uniform echo spacing and constant gradient dephasing in every inter-echo period. The following 
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sequence parameters were used: ETL = 32, ESP/TR = 10/2500 ms, slice thickness = 5 mm 

(excitation)/15 mm (refocusing), in-plane resolution = 2  2 mm2, number of averaged 

acquisitions = 1, SENSE acceleration factor = 1, and image matrix = 105 (Nro)  105 (Npe). This 

resulted in a scan time of 4m 23s. (The slice gap required if a user wished to perform this scan in 

multi-slice mode would be 5 mm.) Coil sensitivity maps (Cc in Eq 2.1) were estimated from the 

first echo image using a cubic polynomial basis. Two fully sampled multi-echo image sets were 

acquired, one using refocusing pulse flip angles prescribed at 120° and the other at 180°, in order 

to compare EPG methods to exponential decay fitting. These data were sub-sampled into datasets 

emulating CC, EP, and VT acquisition schemes, each with NQ = 4, NT = 16 (≈ Npe/6.6) and ETL = 

26 (to roughly match the matrix size of 105). The CC ordered sub-sample used TEeff = 10, 80, 150, 

and 210 ms; for VT, TEeff = 10, 40, 60, and 110 ms; for EP, TEeff = 10, 20, 30, and 50. The EP 

TEeffs were low in order to prevent extending the echo train and substantially changing the total 

scan time between protocols. These sub-sampled data represented an R = 6.6 acceleration 

compared with the fully sampled data. These data were analyzed in a similar manner to the 

phantom studies, specifically focusing on a heterogeneous rectangular region of interest (ROI) 

containing both white matter and deep gray matter, but excluding cerebrospinal fluid due to its 

long T2. For all accelerated methods, error was defined as the difference between estimated T2 

values and those estimated from fully sampled data. Error metrics were tabulated as RMS errors 

over a heterogeneous region, reflecting both noise and artifact. For comparison, previously 

published (21) T2 values of the dominant signal component of various brain regions have also been 

presented. 

ME-CAMBREC was also compared to the sensitivity encoding (SENSE) method of 

parallel imaging acceleration (14). The same coil sensitivity maps were used for ME-CAMBREC 
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and SENSE. ME-CAMBREC was performed using fully-sampled data reduced by a factor R ≈ 2 

(NQ = 13, NT = 52 ≈ Npe/2). The ME-CAMBREC T2 map was compared to one resulting from 

voxelwise EPG fitting of 32 SENSE-reconstructed images with acceleration factor R = 2. In turn, 

ME-CAMBREC was performed on a data subset which was both undersampled in k-space (R = 2, 

i.e. all odd kpe lines were excluded) and undersampled in the echo dimension (NQ = 13, NT = 26) 

for a total acceleration factor of roughly R = 4. This “sub-Nyquist” ME-CAMBREC reconstruction 

was compared to purely accelerating in the k-spatial dimension (SENSE, R = 4) and purely 

accelerating in the echo dimension with R ≈ 4 (ME-CAMBREC, NQ = 7, NT = 28 ≈ Npe/4). 

 

2.3.4: Fitting Algorithm 

 

For fitted voxels, initial guesses for M+ (real and imaginary values) were taken from the 

image I, T2 was initialized to a linearized least-square estimate for all points in S where kpe = 0, 

and  was initialized to the prescribed value. For all cases, T1 was constrained to 1s, and the 

intensity threshold, z, was set to 5 %. 

An iterative nonlinear least-squares solver (lsqnonlin in MATLAB (The MathWorks, 

Natick, MA)) was used to minimize the cost function. In order to accelerate the computation of 

each iteration, the gradient of the cost-function with respect to model parameters was calculated 

using a direct analytical formulation of the penalty gradient and a computational shortcut for the 

gradient of the sum squared residual: 
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where rn
* is the complex conjugate of the residual at index n, and β represents any of the fitted 

parameters. This shortcut is enabled through the knowledge that each reconstruction parameter β 

only appears in the equations of a single spatial point a. An extension of this equation into a second 

differential order can be used to expedite calculation of the cost function’s Hessian matrix as well, 

for use in determining the optimal regularization level. The entire algorithm allows for fitting one 

image row in 15-30 seconds on standard personal computer hardware, but this should not be 

considered an optimized reconstruction time. 

 

2.4: Results 

 

2.4.1: Computational experiments 

 

Table 2.1 summarizes the root-mean-squared error (εrms) of all three reconstructed 

parameter maps from simulated data, excluding cerebrospinal fluid-like regions with very long T2 

(500ms) which would otherwise dominate error calculations. The errors presented were for data 

with median SNR = 60. Propagation of error laws dictate that parameter estimate variance should 

decrease at least linearly with the standard deviation of the image noise, but Figure 2.3 shows a 

diminishing return in total RMS error due to inherent bias in the estimators. Model-based 

reconstruction of CC k-space encoded data (i.e., ME-CAMBREC) performed well relative to 

Fourier-reconstructed protocols. Perhaps unsurprisingly, the simple echo-prepared, exponential fit 

FSE protocol demonstrated high sensitivity to T2 and the lowest error when near-perfect refocusing 

was simulated.  
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Table 2.1: RMS error of reconstruction in a computational phantom. Results from the computational 

study utilizing four FSE images (at SNR = 60) for each method. The labels, such as Fourier-EPG + EP, 

denote the method of reconstruction (Fourier transform or model-based fitting), the decay model used in 

the fit (EPG or exponential, EXP), and the k-space view ordering (CC, EP, or VT). ME-CAMBREC 

provided lower RMS errors in T2 estimates than any other method except echo prepared FSE fit to an 

exponential decay curve. 

Recon. + Acq. εrms, M+ (a.u.) εrms, T2 (ms) εrms,  (°) 

Model-Based + CC 

(ME-CAMBREC) 

0.21 8.3 22.0 

Fourier-EPG + EP 0.15 15.7 21.7 

Fourier-EPG + VT 0.16 14.0 17.4 

Fourier-EXP + EP  0.05 7.6 - 

Fourier-EXP + VT  0.05 10.8 - 

 

 

ME-CAMBREC was discovered to have an SNR efficiency (i.e., T2 SNR per unit root scan 

time) 2.4 times higher than that of a previously published four-angle implementation of DESPOT2. 

This was primarily due to the sensitivity of multiple spin-echo sequences compared to steady-state 

sequences. 

 

2.4.2: Phantom experiments 

 

Figure 2.4 shows T2 maps (top) and relative errors (bottom) from the phantom experiments 

for different acquisition and analysis protocols. ME-CAMBREC performed well across the range 

of T2s, with relative errors of less than 5%. Although any EPG analysis of the CuSO4 solutions (T1 
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≈ T2) in the presence of imperfect refocusing will result in a small bias in the T2 estimates(56), 

Figure 2.4 shows that the unknown T1 does not result in additional error or artifact in ME-

CAMBREC maps. As was the case in the computational study, accelerated Fourier-reconstructed 

EPG analysis performed poorly for certain T2s, especially short ones such as those of tubes 4 and 

7. T2 was underestimated by both Fourier FSE methods, in some cases by more than 30%. Severe 

artifact was also present in both Fourier-based T2 maps. 

 

 

 

Figure 2.3: RMS Errors in estimated T2 vs SNR for various FSE methods. Legend keys refer to the 

acquisition trajectory (EP or VT) and the fitting model (EPG or exponential, EXP). EXP fits were applied 

to data refocused using 170-190° pulses; all others were applied to 110-130° refocused data. As SNR 

increases, ME-CAMBREC and other accelerated protocols approach a lower error limit due to estimate 

bias. In practice, ME-CAMBREC demonstrates better T2 accuracy than most Fourier-reconstructed 

methods at both high and low SNR. 
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Figure 2.4: Reconstructed T2 maps in a physical phantom. In short T2 regions such as tubes 4 and 7, 

Fourier-based fast T2 mapping methods either underestimate (c) or overestimate (d) high spatial frequency 

signal, resulting in blurring and edge enhancement respectively. While the proposed nonlinear 

reconstruction method has decreased stability for short T2s relative to long T2s, as visible in tube 7 of (b), 

the overall error remains consistently low (e). All accelerated methods used 1/4th of the full dataset. 

 

2.4.3: Human experiments 

 

Figure 2.5 shows T2 maps from the in vivo human brain imaging. The upper left frame 

shows a T2 map generated from the fully sampled 120° refocused multiple spin echo sequence. 

Each of the other frames shows a T2 map derived from a sub-set of the data which could be acquired 
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in less than 1/6th the time; panels b-d were taken from the 120° refocused scan and panels e-f used 

data refocused by 180° pulses. As in the phantom experiments, ME-CAMBREC generated a T2 

map most closely resembling that of the fully sampled dataset. The middle and lower panels of Fig 

2.5, those corresponding to Fourier-reconstructed images, show enhanced artifact such as blurring 

and asymmetry compared to the maps from fully sampled data and ME-CAMBREC. Unlike in the 

computational experiment (Table 2.1), fitting in vivo high-refocusing flip angle data to the 

exponential model (Fig 2.5e-f) did not provide better error rates than the proposed method; these 

error rates were similar to those of maps fitted to the EPG model. 

Table 2.2 quantitatively compares the T2 estimates of various cerebral structures made 

using accelerated Fourier-based T2 mapping methods, ME-CAMBREC, fully-sampled data and 

values from literature. Fully sampled data from the present study agreed well with literature values, 

showing no systematic bias. ME-CAMBREC accelerated at R = 6.6 underestimated T2 relative to 

the fully sampled data, but differences were comparable in absolute value to those between the 

fully sampled data and literature. Similar absolute differences in estimated T2 resulted from 

Fourier-reconstruction of R = 6.6 EP-trajectory data. The R = 6.6 VT-trajectory data 

underestimated T2 with somewhat greater absolute differences to fully sampled data. In all cases, 

voxelwise paired t-tests indicated that differences between fully sampled data from the present 

study and all accelerated acquisitions were statistically significant. 
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Figure 2.5: Reconstructed T2 maps in healthy human brain. The pink rectangle in the top-left fully 

sampled image (a) denotes the ROI used to measure RMS error. Note the asymmetry and systematic 

overestimation of T2 in Fourier-reconstructed EP protocols (c,e) as well as the edge enhancement and 

ghosting artifacts visible in the Fourier-reconstructed VT protocols (d,f). All accelerated methods used 

1/6.6th of the full dataset (NT = 16); data fit to the exponential model was acquired with a prescribed 

refocusing flip angle of 180° and was compared to a fully sampled dataset at that flip angle. All other images 

were derived from data acquired using a prescribed flip angle of 120°. 
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Table 2.2: Mean T2 values of various brain regions from literature, fully sampled data, and 

accelerated methods.  All results shown used the EPG model in the T2 estimation. In all cases, voxelwise 

paired t-tests indicated that differences between fully sampled data from the present study and all 

accelerated acquisitions were statistically significant. Values from literature were estimated from Figure 6 

in Zhang, et al. MRM 2015 (21). 

                                          ROI mean T2 (ms) 

 Fully Sampled Accelerated, R = 6.6 

 Literature  Present Study 
ME-CAMBREC  

(R = 6.6) 

Fourier-EP  

(R = 6.6) 

Fourier-VT 

(R = 6.6) 

Corpus Cal., Genu 68.2 68.7 66.7 72.3 67.7 

Corpus Cal., Splenium 80.4 84.7 80.4 84.2 77.7 

Cortical Grey Matter 80.0 84.1 81.3 86.5 74.1 

Insular cortex 85.6 83.8 82.0 81.2 74.4 

Thalamus 65.6 68.0 66.3 70.6 60.2 

      

 

 

The comparison between ME-CAMBREC and SENSE acceleration/EPG fitting is 

presented in Figure 2.6. At acceleration factor R = 2, the methods are comparable, with SENSE 

performing better in regions with little aliasing and worse in regions with more intense aliasing. 

At higher acceleration rates (R = 4), ME-CAMBREC outperformed SENSE as visible in the left 

halves of panels e-f. Panel d shows reaching R = 4 acceleration by combining sub-sampling in k-

space and the echo dimension by a factor of 2 each provided a poorer result than ME-CAMBREC 

with R = 4. That is, one can in principle combine traditional parallel acceleration with ME-

CAMBREC, but for this case at least, acceleration by ME-CAMBREC alone was superior. 
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Figure 2.6: T2 maps from ME-CAMBREC and EPG fitting to SENSE images. The left side of each 

panel is a relative difference between the given T2 map and the EPG-fit, fully-sampled, 180° refocused T2 

map. Panels b, d, and e are ME-CAMBREC reconstructions, while panels c and f are T2 maps from EPG 

fitting to SENSE-reconstructed images. At acceleration factor 2, SENSE provides better T2 maps than ME-

CAMBREC in regions with little aliasing and worse maps in regions with more severe aliasing (b,c). ME-

CAMBREC scales better to higher acceleration factors than SENSE (e,f). Acceleration by the sub-Nyquist 

sampling of k-space combined with sub-sampling the echo dimension (d) showed a poorer result than 

acceleration by sub-sampling the echo dimension alone (e). 

 

 

2.5: Discussion 

 

In experimental environments designed to test noise propagation (computational), artifact 

and systemic error (phantom), and a combination of the two (human), ME-CAMBREC performed 

at least comparably to the best conventional FSE methods tested. Noise propagation was kept 
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similar to Fourier-reconstructed exponential fitting (Table 2.1 and Figure 2.3), despite significant 

artifact reduction (Figure 2.4). The in vivo implementation, where both noise and artifact can 

contribute to significant errors, gave the greatest advantage over the other accelerated T2 mapping 

methods tested. Visually, all ME-CAMBREC images presented here contain smearing artifacts in 

the phase encode direction which are not smooth in the readout direction, apparently caused by the 

row-by-row nature of the reconstruction. It is possible that extending the algorithm to jointly fit 

multiple rows with 2D regularization could alleviate this shortcoming at the cost of computational 

complexity. There is also an apparent underestimation of T2 when averaged across regions of 

interest (Table 2.2) which can be seen in VT Fourier reconstruction fitted to the EPG model as 

well. This may imply that the artifact is caused by noise amplification at moderate spatial 

frequencies interacting with the EPG fitting. However, the quantitative errors of these artifacts and 

underestimation remain lower than those of Fourier-reconstructed fitted T2 values. While ME-

CAMBREC bias, like that of Fourier-based accelerated methods, limits accuracy at high SNR 

(Figure 2.3), deeper control over regularization-induced bias as compared to image artifact permits 

T2 bias to be a somewhat tunable parameter, able to be traded off for estimate precision.  

For high acceleration factors, each of the studies presented demonstrated that Fourier-

reconstructed EPG fitting induces high errors in T2 maps. This is not surprising, since the EPG 

model is a three-parameter model involving oscillating signal behavior: when fitting to a small 

subset of effective echo times, sensitivity to oscillations (θ) and decay (T2) must be traded off 

through the selection of a proximate or disparate set of time points. However, the disagreement 

between the computational and human studies regarding the expected error of EP-FSE when fit to 

the exponential model is less parsimonious. The computational study suggests that EP-FSE may 

be a better option than model-based reconstruction when near ideal refocusing pulses are realized. 



48 

 

As this is a Fourier reconstructed approach, though, the results of EP-FSE will be heavily 

dependent on the imaging subject’s sensitivity to artifact, which has been shown to rely on many 

additional factors such as feature size and echo train length (60). The large feature size of elements 

of the Shepp-Logan phantom, combined with the slowly varying underlying T2 distribution, likely 

contributed in large part to the apparent superiority of the EP-FSE protocol. 

In all experiments, ME-CAMBREC performed at or above the standards of conventional 

FSE T2 mapping at a given acceleration factor (from 4 in the phantom experiments to 8 in the 

computational experiments). However, a wide variety of other fast T2 mapping methods exist. The 

proposed method was directly compared to DESPOT2 by way of SNR efficiency, but no 

experiments were performed to test other aspects of the method which may or may not be limiting 

factors. For example, DESPOT2 can provide single-slice parameter maps at a slightly faster rate 

than ME-CAMBREC, although at lower precision due to differences in sensitivity. It should also 

be noted that DESPOT2 is typically run as a 3D protocol while extending ME-CAMBREC to 3D 

would be nontrivial. The model-based reconstruction would have to be applied simultaneously in 

multiple dimensions, both enabling acceleration in a second spatial dimension and creating new 

challenges in computational stability. 

Accelerating using parallel imaging provided excellent results in the case of small 

acceleration factors (R = 2), as Fig 2.6c shows, but at higher acceleration factors (R = 4) generally 

provided poor results compared to ME-CAMBREC. Using ME-CAMBREC itself as a parallel 

imaging reconstruction method by sampling k-space in the same sub-Nyquist pattern across all 

pseudo-images provided lower quality results than purely undersampling in the echo dimension 

(Fig 2.6d-e). This is somewhat intuitive, since the number of echoes acquired is typically many 

times larger than the number of elements in a receive array, allowing more degrees of freedom in 
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that dimension. Readers should note that undersampling k-space in a unique sub-Nyquist pattern 

between pseudo images (e.g., all even k-space lines for one image and all odd lines the next) is 

essentially equivalent to Nyquist-sampled ME-CAMBREC, since all data are fitted simultaneously. 

Another accelerated T2 mapping method which should be considered is view-shared 

projection-reconstruction (22,84), such as k-space weighted image contrast (KWIC). One primary 

advantage KWIC maintains over the ME-CAMBREC is motion insensitivity due to the repeated 

sampling of the center of k-space. Otherwise, however, KWIC is still somewhat vulnerable to 

high-spatial frequency image artifact and requires more scan time: the typical KWIC scan requires 

32 echo trains, while the highest-accelerated method proposed here used only 16 excitations. 

Variations on PR-FSE have included a model-based reconstruction (70), which shares certain 

benefits of ME-CAMBREC with the motion insensitivity and data redundancy of KWIC. While 

this is certainly advantageous from a problem conditioning perspective, the Cartesian approach 

used by ME-CAMBREC can be used to separate reconstruction into Nro independent inverse 

problems, simplifying the computation considerably. Ultimately, this trade-off allows ME-

CAMBREC easier implementation and quicker reconstruction at the cost of parameter SNR 

relative to radial methods.  

One other fast T2 mapping protocol, curve reconstruction via principal component-based 

linearization with indirect echo compensation (CURLIE), uses PR-FSE, a model-based 

reconstruction, and the extended phase graph model (57). Although appearing at first glance to be 

very similar to ME-CAMBREC, CURLIE uses training data to effectively remove artifact from 

images using linear decompositions, then performs a voxelwise fitting to the EPG model. Thus, 

compared to the proposed method, CURLIE has major computational advantages, but applies an 

intermediate principal component-space rather than attempt to directly fit k-space signal to an 
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underlying model. In the same vein, compressed sensing-based protocols which utilize sparse 

spaces in the parametric (TE) dimension (74) or a similar “model dictionary” dimension (73) can 

theoretically be used with the EPG model for accelerated T2 mapping, especially when combined 

with a pseudo-random acquisition scheme. 

Implementing ME-CAMBREC for volumetric coverage will present challenges for two 

reasons. As presented here, ME-CAMBREC used wider refocusing pulses compared to the 

excitation pulse, thereby requiring a slice gap if one wanted to implement a multi-slice acquisition. 

In principle, this limitation can be overcome by incorporating the known RF profiles into the 

reconstruction model, similarly to prior work (56). Also, under certain circumstances, multi-slice 

multiple spin echo acquisitions may be limited by specific absorption rate (SAR). However, ME-

CAMBREC does offer the ability to use low-angle refocusing pulses without sacrificing image 

quality or quantitative accuracy, and this feature may be exploited to reduce the stringency of SAR 

limits or accelerate further by extending echo trains at the cost of added T1 bias. 

Finally, it should be noted that ME-CAMBREC as presented does not accommodate or 

account for multi-compartmental transverse relaxation, as is known to occur in cerebral white 

matter due to the presence of myelin (3) and will occur whenever individual voxels include partial 

volume averaging of two or more tissues with widely different T2. One would expect this to be a 

particular problem in brain regions neighboring cerebrospinal fluid, although Figures 2.5 & 2.6 

and a cursory analysis of data therein did not indicate any widespread problem. Extension of ME-

CAMBREC to account for multi-compartmental transverse relaxation would likely be SNR-

limited and non-trivial to make effective. ME-CAMBREC will face similar challenges/limitations 

when motion or physiological noise sources significantly alter the signal from the model, although 

further study is necessary to assess such challenges. 
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2.6: Conclusions 

 

The work presented here has demonstrated a novel regularized model-based reconstruction 

algorithm for generating T2 maps from undersampled multi-echo data, such as those acquired via 

FSE sequences. A Cartesian acquisition scheme which is better tailored to its advantages than 

previously established k-space trajectories was also proposed and evaluated. The proposed method, 

dubbed Multiple Echo, Caesar cipher Acquisition and Model-Based REConstruction (ME-

CAMBREC) generated T2 maps with low error in computational, phantom, and human studies, 

and was demonstrated to be more efficient than a comparably accelerated non-FSE relaxometry 

protocol (DESPOT2). While other accelerated methods may have particular advantages, such as 

motion insensitivity, the ease of implementation of ME-CAMBREC combined with its 

demonstrated accuracy and precision, make it a potentially valuable tool in both research and 

clinical environments. 

  



52 

 

CHAPTER 3 

 

BIASING FACTORS IN ME-CAMBREC 

 

3.1: Introduction 

 

 In the previous chapter, it was shown that multiple echo, Caesar cipher acquisition and 

model-based reconstruction (ME-CAMBREC) T2 maps are quantitatively similar to those 

constructed by fitting fully sampled multi-echo images to the extended phase graph (EPG) model. 

Despite the method’s promising results for acceleration factors up to and including R=6, the 

sources of T2 estimate error in ME-CAMBREC are not well understood. It is therefore the 

objective of this chapter to examine a number of the method’s assumptions and, through simulation, 

determine the most prominent sources of T2 bias in ME-CAMBREC. The remainder of this section 

is an overview of potentially biasing assumptions in ME-CAMBREC. (Note that this chapter does 

not cover the influence of T1 constraint. Lebel and Wilman showed that the EPG signal model is 

not highly sensitive to T1 (56), and a comparable model-based reconstruction method was recently 

shown to be insensitive to this source of bias (55).)  

One of the assumptions utilized in ME-CAMBREC is slice-profile uniformity. As ME-

CAMBREC is an accelerated 2D imaging method, the ability to acquire multiple slices in the same 

repetition time (TR) is critical—thus, interleaved slice-selective radiofrequency (RF) pulses must 

be employed. Slice-selective pulses are inherently nonuniform due to the necessary flip angle fall-

off outside the slice. In the previous chapter, double-wide refocusing pulses were employed to 

improve uniformity inside the excited slice (44), but this precludes the acquisition of contiguous 
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slices and will not entirely eliminate the contribution of profile effects to T2 error. It is therefore 

important to investigate the effect of slice profile on reconstructed T2 maps, and furthermore, to 

determine if a smaller refocusing pulse width could be used without sacrificing T2 accuracy. 

 Transverse relaxation mapping through ME-CAMBREC also assumes a single-

compartment decay model, which is not the case in tissues such as white matter (3,34), nor in 

voxels with partial-volume signal averaging. Two broad types of multi-compartment decay models 

have been applied to brain tissue: multiple water compartment models, such as the myelin water 

model of white matter, and macromolecular pool models (35,89). While the former will affect 

single-compartment estimates of T2 such as those of ME-CAMBREC, the latter will reduce initial 

excited signal (90,91), M+, but not the measured T2—all off-resonance saturation occurs outside 

the echo train. 

Another source of T2 error in ME-CAMBREC is introduced by design in the form of 

regularization bias. When the M+ regularization factor, 𝜆, is small, noise amplification in the image 

reconstruction process will degrade image quality. On the other hand, over-regularization (i.e., 

when 𝜆 is large) will introduce bias to all fitted parameters. The following chapter will therefore 

simulate the effects of under- and over-regularization, as well as address the unanswered questions 

regarding slice profile and multi-compartmental relaxation effects on measured T2 values. 

 

3.2: Methods 

 

In all of the following simulations, the true values for T2 (or signal fraction, in the case of 

multi-compartment relaxation) were positioned within a computational phantom at varying feature 

sizes, as shown in Figure 3.1. Features of width between 1 and 96 voxels, the full object width 
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within a 128-point field of view, were simulated in order to determine the effects of biasing factors 

on image elements of varying size. All simulations used the EPG signal model, and assumed an 

acquisition train of 32 echoes spaced 8 ms apart. Retrospective undersampling was performed in 

the Caesar-cipher pattern (92) with eight four-shot fast spin echo (FSE) pseudoimages, 

corresponding to a total acceleration factor R = 4. 

 

 

Figure 3.1: The computational phantom used for regularization and slice profile experiments. The T2 

value changed from 80 ms to 100 ms in features of varying size, with the largest feature representing the 

entire object and the smallest feature a single voxel. A similar phantom was used for the multi-

compartmental decay experiments, but the features of varying size represented regions of multi-

compartmental decay rather than a different single-compartment T2 value. The T2 values used were also 

different in the multi-compartmental experiments. 

 

3.2.1: Regularization bias 

 

In order to determine the nature of regularization artifact in ME-CAMBREC, image 

profiles were reconstructed with regularization parameters between 10-4 and 102 (in arbitrary units). 

The phantom T2 was 80 ms with features in which T2 = 100 ms, as in Figure 3.1. In order to avoid 

converging to the exact solution and better represent an actual measurement, complex Gaussian 

noise was added with magnitude standard deviation equal to 1% of M+, corresponding to an image 

signal-to-noise ratio (SNR) ≈ 100. 
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3.2.2: Slice profile effects 

 

The Bloch equations were solved to generate flip angle profiles for a slice-selective 

refocusing scheme (five-lobed sinc shape; full-width, half-max (FWHM) = 1x and 2x excitation 

width). The profiles were discretized to 400 isochromats of individual bandwidth equal to 1/100th 

the excitation FWHM, as in (56), and the slice-resolved EPG simulation was used in forward 

simulations. In order to characterize the bias caused by ME-CAMBREC’s assumption of uniform 

flip angle, reconstructions of data from slice-selective refocused (1x and 2x width) simulations 

were compared to those of uniformly-refocused (e.g., through hard-pulse refocusing) simulations. 

The phantoms used were identical to those in the previous section and Figure 3.1. As slice profile 

shape and therefore uniformity is highly dependent on flip angle, this was repeated for peak flip 

angles of 140, 180, and 220 degrees, as well as for two acceleration factors, R=2 and R=4. The 

regularization parameter was set to zero for all reconstructions in this experiment. In addition to 

T2 map evaluation, reconstructed refocusing pulse flip angle (θ) maps were compared to θ values 

obtained through fully-sampled EPG fitting. 

 

3.2.3: Multi-compartmental relaxation 

 

Simulated images were calculated with T2 pairs of 15/80, 30/250, and 80/1000 ms. These 

three pairs were chosen to roughly represent the two T2 values observed in white matter, partial-

volume averaging between fat and muscle, and partial-volume averaging between brain tissue and 

cerebrospinal fluid (CSF), respectively. These circumstances were chosen in order to evaluate 

conditions in which the apparent T2s—the biased T2s determined by single-compartment 
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analysis—were moderate compared to the echo spacing (white matter), on the order of the echo 

spacing (muscle), and long compared to the echo train (CSF). The signal fractions of myelin water, 

fat, and CSF were arbitrarily assigned a value of 20% within the image features of varying size, 

and 0% outside the features. In addition to properly reconstructed images, under- and over-

regularized reconstructions were computed in order to determine the combined effects of varying 

regularization and model inconsistency. Each ME-CAMBREC reconstruction was compared to 

the apparent T2s obtained by fitting fully-sampled simulated data to the (one-compartment) EPG 

model.  

 

3.3: Results 

 

3.3.1: Regularization bias 

 

The reconstruction profiles at five values of 𝜆 are shown in Figure 3.2. For the lowest two 

values of 𝜆, T2 was biased within features of moderate size. Higher levels of regularization 

generated artifacts in the T2 maps at the edges of the object, leading to gross overestimation of T2 

in these regions at the highest levels of regularization. Inside the object, features of larger size were 

found to be more accurate as regularization increases, while smaller features were intuitively more 

biased. As observed previously, T2 noise decreased between the lowest value of 𝜆 and the optimal 

value, 𝜆 = 0.05. The overall trend of model-based reconstructions to spread artifact to surrounding 

voxels is visible in the red curves in the upper row of panels; negative T2 bias in the T2 = 100 ms 

feature was accompanied by a positive T2 bias outside the feature. 
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Figure 3.2: T2 reconstructions at various 𝜆 values. Each curve represents a phantom with a different-

sized T2 = 100 ms feature. The horizontal axis represents the voxels within a 96-point object in a 128-point 

field of view. As regularization increases, larger features become more accurate and noise decreases to a 

minimum, but smaller features lose accuracy and, most prominently, T2 is highly overestimated at the 

object’s edges. 

 

3.3.2: Slice profile effects 

 

The quality of reconstructed T2 maps was found to be highly dependent on refocusing pulse 

slice width, and less dependent on transmitted flip angle. Figure 3.3 shows a significant decrease 

in T2 map accuracy when moving from double-width (bottom row) to single-width refocusing 

(middle row). At the same acceleration factor, T2 estimates from single-width refocused 

simulations had large noise-like variations as well as systematic overestimation of T2; at lower 

acceleration factors, single-width refocused simulations experienced less noise-like variation, but 

the systematic overestimation remained. 
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Figure 3.3: ME-CAMBREC T2 reconstructions as a function of refocusing pulse qualities. The true 

T2 values are 80 ms and 100 ms. At a low acceleration factor (R=2, top row), refocusing pulses with slice 

width equal to the excitation width provided reasonable but overestimated T2 values. Single-width pulses 

provided more erratic and flip angle-dependent results at higher acceleration factors (R=4, middle row). 

Refocusing pulses twice the width of the excitation pulse (bottom row) provided accurate T2 values when 

fit using ME-CAMBREC’s isochromatic refocusing model. 
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It should be noted that fitted flip angles showed artifactual in-plane variation when the 

refocusing pulse width matched the excitation pulse width. The θ maps in Figure 3.4 and the 

corresponding T2 maps in Figure 3.3 (center column) demonstrate artifacts with similar shape, 

demonstrating the covariance of the ME-CAMBREC joint reconstruction. Mean reconstructed flip 

angles were similar to the apparent flip angles observed by fitting fully-sampled images to the 

(isochromatic) EPG model. For example, a double-wide refocusing pulse with peak flip angle 220° 

provided data that fitted to an isochromat experiencing θ = 139.8° pulses; the average ME-

CAMBREC reconstructed flip angle was θ = 139.9°, a 0.07% difference. 

 

 

Figure 3.4: Flip angle reconstructions of selectively-refocused simulated data. The true peak flip angle 

was 180°, corresponding to an apparent flip angle of 138.2° for a refocusing pulse of equal width to the 

excitation pulse (left and middle) and 152.1° for a refocusing pulse twice that width (right). There is 

artifactual in-plane variation when using single-width refocusing pulses, but not when using double-width 

pulses. 

 

3.3.3: Multi-compartment relaxation 

 

Multi-compartment features in ME-CAMBREC did not in general match the fully-sampled 

estimates of apparent T2, which are represented by the dotted lines in Figure 3.5. Over-regularized 

reconstructions (right column) were biased both within regions with multiple decay compartments 
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and outside those regions, and this bias was highly dependent on feature size. For under- and 

moderately-regularized reconstructions, T2 maps were more accurate and demonstrated less spatial 

variation when the apparent T2 was within the range of maximal pulse-sequence sensitivity; i.e., 

when T2 was much larger than the first echo time, yet much smaller than the last. For example, the 

short muscle-like T2 (30 ms, compared to 8 ms echo spacing) caused sizable fluctuations in panel 

d of Figure 3.5, and the long CSF-like T2 (1000 ms, compared to the final echo time at 256 ms) 

caused bias in panel h that was feature-size dependent. It should be noted, though, that the bias in 

features with CSF-like partial volume averaging did not strongly affect accuracy outside the 

feature. Each under- and moderately-regularized reconstruction slightly underestimated the fully-

sampled apparent T2 in voxels with multiple decaying species.  
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Figure 3.5: ME-CAMBREC T2 reconstructions of underlying multi-compartmental signals. The 

dotted lines mark the value of the apparent (single-compartment) T2 for each two-compartment feature. 

Over-regularization (c,f,i) causes large feature size-dependent bias. For tissues like white matter with 

apparent T2 within the range of sensitivity (a-c), ME-CAMBREC performs well with moderate 

regularization. Regions containing apparent T2 values outside the sensitive range (all of d-f and the two-

compartment features in g-i) were significantly less accurate, producing spatial variations in T2 (d-e) or 

feature size-dependent T2 bias (g-h).  
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3.4: Discussion 

 

The relationship between over-regularization and sharp overestimation of T2 at the edge of 

the object is intuitive. As regularization in ME-CAMBREC forces similarity between the M+ map 

and the first pseudoimage, which is a center-out, Cartesian fast spin-echo image, reconstructing 

using a large value of 𝜆 will effectively constrain M+ to a blurred image. This blurring manifests 

as a gradual falloff in M+ at the edges, which forces an increase in fitted signal longevity (i.e., T2) 

in those regions to compensate and better match the observed k-space data. This causes T2 to be 

overestimated at sharp edges in the M+ map. It is noteworthy that this artifact does not occur at 

edges in the T2 map, but at edges in M+, or more specifically, in the first pseudoimage. The 

relationship between regularization quality and the quality of the first pseudoimage also implies a 

need to ensure a fairly large refocusing pulse flip angle, θ. Low-θ signal decay includes stimulated 

echoes and accompanying oscillations, and will cause sharp edges in the first pseudoimage’s 

attenuation function. In turn, this will cause ghosting in the pseudoimage and all reconstructed 

maps. While the over-regularization artifact may seem innocuous when many imaging targets are 

deeper than the outermost voxels, such as in brain imaging where these artifacts would manifest 

within subcutaneous fat and CSF, Figure 3.5 more clearly shows the dangers of over-regularization. 

When model inconsistencies such as multi-compartmental behavior are smoothed through 

regularization, feature size-dependent bias will occur. Regularization weight should thus be kept 

below levels which induce noticeable edge enhancement in the T2 map. 

Using refocusing pulses equal in width to the excitation pulse, while necessary to acquire 

contiguous slices in one repetition time, comes at a large cost in ME-CAMBREC and is not 

recommended. In addition to a general overestimation of T2 caused by stimulated echoes at the 
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edge of the slice (44), spatial variation is introduced into the T2 maps. Although this spatial 

variation is not larger than practical noise variations for low acceleration factors—compare Figure 

3.2 and the top row of Figure 3.3—a moderate acceleration factor combined with single-width 

refocusing introduces computational instabilities to the reconstruction. This is most notable in 

image lines with small features, potentially due to these lines’ dependence on accurate high-spatial 

frequency information. 

A recent study (58) suggested that the fitted flip angles from EPG analysis do not exactly 

correspond to measured transmit field (B1
+) or flip angle maps. Although ME-CAMBREC flip 

angle maps did correspond well to those fitted to the isochromatic EPG model, they did not match 

the average flip angle calculated as the inner product of the excitation profile and refocusing flip 

angle profile. The difference between the apparent (to EPG analysis) flip angle and average flip 

angle was over 10% for a single-wide refocusing pulse with peak θ = 180°. Interestingly, this 

deviation dropped to <2% for the double-wide refocusing pulse. 

ME-CAMBREC performed poorly when reconstructing multi-compartment signals 

containing long T2 values, such as CSF, or when the signal decays away quickly compared to the 

echo spacing, such as in muscle. In the former case, T2 estimates outside the long-T2 feature were 

accurate, but estimates of the long T2 were biased in a feature size-dependent manner. The muscle-

like computational phantom required extensive regularization to reconstruct a smooth profile, as 

visible by the overestimation of T2 at the edges of Figure 3.5e, and regardless of regularization 

level, feature size-dependent bias existed in the T2 maps. In contrast, the white matter-like T2 was 

biased by <2 ms in a size-independent manner when reconstructed with optimal regularization. 

For an undersampled model-based reconstruction method like ME-CAMBREC, this is often 

within the practical noise level (55,57). 
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It is well-known that a multiple spin echo-based T2 mapping method will be most sensitive 

to T2 values between the pulse sequence’s first and last echo times. As model-based reconstruction 

methods can potentially spread the error from poorly fit voxels to nearby voxels, one might expect 

ME-CAMBREC and similar protocols (52,55,57,70,72,75) to experience large bias at the edge of 

CSF-contaminated regions, in which the T2 is ill-determined. However, Figure 3.5g-h shows this 

is not the case: although the CSF-contaminated T2 is erroneous in a feature size-dependent manner, 

the adjoining T2 = 80 ms region is estimated accurately. It is reasonable to assume this result 

applies to other model-based methods; an important exception is the generating function family of 

methods (55), as these utilize a model which is violated by the truncation of the echo train before 

signal decay is complete (54). A similar argument can be made from Figure 3.5e, with the caveat 

that ME-CAMBREC is less sensitive to the short T2 of muscle than the moderate T2s found in 

brain, and therefore requires more regularization and, in practice, higher SNR. 

The general underestimation of apparent T2—compared to voxelwise EPG analysis, the 

dotted lines in Figure 3.5—in regions with multi-compartmental decay is not immediately intuitive. 

One possible explanation is that the undersampling pattern inherent to ME-CAMBREC is causing 

the spuriously large first echoes (at least, compared to a true single-compartment decay) to present 

as an increase in low-spatial frequency signal during early echoes. This could cause an 

overestimation of M+ and a corresponding underestimation of signal longevity—particularly a 

spatially uniform or slowly-varying underestimation as seen in Figures 3.5b and e. 

This analysis did not investigate the effects of T1 constraint bias. Although this has been 

studied previously for simple cases of erroneous constraint (56), the effects of biexponential T1 

relaxation on the EPG fitting algorithm—such as can be seen in the presence of a macromolecular 

pool (93)—have not been previously considered. Due to the high-θ MSE pulse sequence’s overall 
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insensitivity to T1, it is not expected that this effect plays a large role in signal determination, but 

this should be explicitly investigated in the future. 

 

3.5: Conclusions 

 

This chapter has qualitatively characterized a number of biasing factors in T2 maps 

generated by ME-CAMBREC, including regularization bias, slice profile nonuniformity, and 

multi-compartmental decay. The results show that image quality is best preserved by ensuring 

regularization is not unduly weighted, as this can cause edge enhancement in T2 maps. The risks 

of using narrow refocusing pulses in order to acquire contiguous slices were clearly presented—

such protocols will overestimate T2 and may cause computational instability at moderate 

acceleration factors. ME-CAMBREC was shown to provide accurate, though slightly 

underestimated, apparent T2 values for multi-compartmental signals, provided the apparent T2s are 

well-defined by the user’s choice of echo time and echo train length. When a voxel does present a 

compartment with an impractically long T2, such as that of cerebrospinal fluid, the contaminated 

voxels will be assigned biased T2 estimates, but the T2 of surrounding voxels will be estimated 

accurately. 
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CHAPTER 4 

 

T2 MAPPING WITH FITTED VS. MEASURED B1
+: A STATISTICAL ANALYSIS 

 

 This chapter is adapted from an article in the late stages of preparation which is to be 

submitted to Magnetic Resonance in Medicine. Its authors are Christopher L. Lankford and      

Mark D. Does. The sections specifically pertaining to ME-CAMBREC have been added for greater 

depth.  

 

4.1: Introduction 

 

Accurate T2 mapping with a multiple spin echo imaging sequence requires accounting of 

stimulated echoes from indirect signal pathways (49,53,94), which typically employs the joint 

fitting of T2 and refocusing flip angle, θ. Useful signal models for such analysis include the 

extended phase graph model (EPG (20,46,53,56,81)), the echo generating function (GF (54,55)), 

and the Bloch equations (51,52,58). For an appropriate multiple spin echo sequence, each of these 

models can be used to determine the echo magnitude from a voxel given four input values: 

equilibrium magnetization (M0), the relaxation time constants T1 and T2, and the refocusing pulse 

flip angle (θ). Due to the relatively weak T1-dependence of multiple spin-echo signals, T1 is 

generally fixed to an approximate value and subsequently ignored (20,51,52,55–58,81,92). This 

leaves three unknown parameters to be jointly fitted from the measured echo magnitudes; 

alternatively, one can independently measure θ from a B1
+ mapping method (95–99) and then fit 
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only M0 and T2. To date, there is no clear analysis of the advantages/disadvantages of these two 

options. 

It is well-known that constraining some parameters in a joint fit will generally improve the 

precision of the remaining fitted parameters, potentially at the cost of imparting bias. Note that 

even with a biased fitted parameter, the mean-squared error, 
2

2T , which is the sum of an estimate’s 

variance and squared bias, may actually decrease overall (100). Constraint of the θ parameter 

should therefore be considered in the analysis of multiple spin echo data. The objective of this 

work is to quantify and characterize the relationships between the accuracy and precision of T2 

from multiple spin echo data, computed with and without independent measurements of θ. 

 

4.2: Theory 

 

When simultaneously estimating a vector of tissue parameters, z, from a Gauss-distributed 

signal vector, s, one can use the Cramér-Rao Lower Bound (CRLB) to estimate the covariance 

matrix of z, 

  
1

1T


 SzΣ J Σ J  , [4.1] 

where J is the signal model Jacobian matrix populated by values of  s z  values, and Σs is the 

covariance matrix of the signal noise. In most cases, Σs reduces to an identity matrix scaled by the 

noise variance of the measured signal (
2 s ). The variance of a particular fitted parameter (e.g., 

2

2

T̂
 ) can be extracted from the relevant diagonal element of Σz. 

For an unbiased estimate, the mean-squared error ( 2 ) of a given parameter is equal simply 

to its variance (e.g., 
2 2

2 2

ˆ ˆT T
  ). However, when one element of z (e.g., θ) is constrained to an 



68 

 

independently measured value (e.g., a flip angle estimate, ̂ ), the mean-squared error of each of 

the remaining fitted parameters includes more than the variance caused by noise in s. The 

approximation used here for the mean-squared error of 2T̂  is 

     
0 2 0 22 ,2 2

2
21

2 2 2 2
ˆ ˆ, , 2 2ˆT T
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T T


   



  
    

 
S J J ,  [4.2] 

where the bar notation denotes the average estimate of a parameter, and the subscripts of matrices 

in the leftmost term imply a selection of only the columns and/or rows corresponding to the given 

parameters. The leftmost term is the constrained CRLB of the variance of an unbiased 2T̂  given an 

accurate θ constraint. The middle term is the propagation of noise from the flip angle estimate, ̂ , 

to the T2 estimate, 2T̂ . The rightmost term represents the squared bias in 2T̂ caused by bias in ̂ . In 

general, constraint of θ will decrease the leftmost term relative to the comparable term in Eq. [4.1], 

but will result in nonzero values of the middle and rightmost terms depending on the precision and 

accuracy of ̂ , respectively. Thus, to reduce the value of 
2

2

T̂
  by constraining ˆ  , ̂  must be 

sufficiently precise and accurate. A derivation of Eq. [4.2] is presented in Appendix 2. 

 

4.3: Methods 

 

In order to evaluate the effects of using independent measures of refocusing pulse flip angle 

in T2 fitting, Equations [4.1] and [4.2] were evaluated for a variety of scenarios. In all cases, 

calculations were performed using tissue parameters similar to those found in human brain at 

clinical field strengths (T1 = 1000 ms, T2 = 80 ms). All calculations used the extended phase graph 

(EPG) algorithm as the underlying signal model with T1 constrained to the true value of 1000 ms. 
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To evaluate the partial derivative terms in the Jacobian matrix, a forward difference approximation 

was used with a step size 1 × 10−6 times the parameter value. The partial derivative 2
ˆT    was 

estimated by fitting T2 without added image noise and performing a center-difference 

approximation across the true value, taking ˆ 1    . 

Two different echo train lengths were investigated, corresponding to the extremes of 

common T2 mapping protocols. The first was a 32-echo protocol with echo spacing                      

(ESP) = 10 ms, and the second was a four-echo protocol with ESP = 30 ms. In each case, two 

refocusing schemes were evaluated: i) a nonselective, rectangular refocusing pulse, and ii) a five-

lobed sinc-shaped slice-selective pulse with FWHM 2× that of the excitation pulse. For the 

simulations of slice-selective refocusing, the flip angle profile was calculated through numerical 

solution of the Bloch equations for each nominal flip angle, θ. Although the forward simulation 

employed a Bloch-simulated slice profile, both profile-corrected and uncorrected T2 fitting 

methods were considered in the analysis. 

 

4.3.1: The effect of θ constraint on 2T̂  precision 

 

The propagation of noise from an unbiased measure of the flip angle to the estimate 2T̂  was 

evaluated for all tested protocols (4- and 32-echo, non- and slice-selective refocusing, with and 

without profile correction) and with various actual flip angles. Equation [4.1] was used to calculate 

2

2

T̂
  when jointly fitting T2, M0, and θ, and Eq [4.2] was used for the same purpose when θ was 

constrained to an unbiased estimate, ̂ . (Note that the third term of Eq. [4.2] was equal to zero in 

this scenario, as ̂  and therefore 2T̂  were unbiased.) The standard deviation of noise added to the 
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signal was set as σs = 0.01 × M0; thus, the image signal-to-noise ratio was SNRs  ≜ M0/σs = 100. 

Calculations were repeated for θ values over the range [90°, 180°] and with ˆSNR


 = 25, 50, 100, 

and ∞. The resulting 2T̂  precision, reported as 
2T̂

SNR , scales linearly with SNRs  as long as the 

ratio ˆSNR SNR
 s  is constant, and thus the chosen SNRs  value is arbitrary within the regime of 

the approximation. 

 

4.3.2: The effect of θ constraint on 2T̂  accuracy 

 

If the independent measure of flip angle is biased, then the resulting estimate of T2 will 

also be biased, and this effect is captured by the third term of Eq [4.2]. Values of  2
ˆT   were 

calculated by estimating 2T̂  using ̂  = [90°, 180°] for four different values of θ: 90°, 120°, 150°, 

and 175°. As above, this was repeated for all tested protocols (4- and 32-echo, non- and slice-

selective refocusing, with and without profile correction). Next, the level of θ-bias was determined 

at which independently-measured and jointly-fitted θ resulted in the same 
2

2

T̂
 . This evaluation was 

performed with nonselective refocusing pulses only; including slice selective refocusing would 

simply add an independent and predictable bias to 2T̂  related to the definition of the flip angle as 

peak θ rather than apparent or average θ, as briefly discussed in Chapter 3. 
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4.3.3: Monte Carlo simulations 

 

In order to validate calculations of 
2

2

T̂
  using Eqs [4.1] and, in particular, [4.2], Monte Carlo 

simulations were performed in which 2T̂  was fitted from noisy multiple spin echo data and, where 

relevant, constrained to a noisy and/or biased ̂ . Gaussian noise was added to the simulated signals 

and flip angle estimates at levels corresponding to SNRs  = 100 and ˆSNR


 = 100, respectively. 

Both unbiased ( 150 )     and biased ( 155 ;  150 )      scenarios were tested. The 32-

echo, nonselective refocusing protocol was used. Each calculation was repeated 10,000 times with 

independent realizations of noise, and 
2

2

T̂
  values were compared to those predicted by Equations 

[4.1] and [4.2]. 

 

4.3.4: θ constraint in ME-CAMBREC 

 

 The predicted precision and accuracy changes for fully-sampled T2 maps generated through 

θ constraint were compared to T2 maps from θ-constrained ME-CAMBREC. Simulated 

pseudoimages assumed phase-encoded matrix size = 128, ETL = 32, and 8 pseudoimages, for an 

acceleration factor R = 4. Slice-selective refocusing pulses with FWHM double that of the 

excitation pulse were simulated. The T2 values and spatial configurations in Figure 3.1 were taken 

as underlying truth—T2 was equal to 80 ms and 100 ms. Noise was added to the images at a level 

consistent with SNRs  = 200, which for R = 4 should provide T2 maps of comparable quality to 

fully-sampled images with SNRs  = 100. Reconstructions were repeated for fitted-θ and for three 

θ-constrained protocols: i) ˆ
peak  , the peak flip angle; ii) ˆ

avg  , the average flip angle through 
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the slice; and iii)  ˆ 20 sinavg pex    , an erroneous flip angle estimate that varied across image 

space in the phase-encoded direction. (For brevity, xpe is defined as +π at the right edge and –π at 

the left edge.) The true flip angle was  150  135peak avg       . 

 

Table 4.1: Monte-Carlo simulation results. Equations [4.1] and [4.2] underestimate Monte-Carlo 

simulations by < 1.5%. 

 Monte-Carlo  Eq. [4.1] or [4.2] 

      
2T̂

 (ms)   
2T̂

 (ms) 

Joint fit     1.138   1.121 

150         0.952   0.944 

155 ;  150          1.376   1.367 

 

 

 

 

Figure 4.1: Example multiple spin-echo signals resulting from imperfect refocusing. This example 

used T2 = 80 ms and a nonselective refocusing pulse with flip angle θ = 120°. 
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4.4: Results 

 

Figure 4.1 shows example multiple-spin echo signals calculated for the 4- and 32-echo 

protocols, using θ = 120°. The effect of imperfect refocusing is apparent in the signal oscillations 

relative to a smooth exponential decay. These signal oscillations enable the joint fitting of T2 and 

θ. The results of the Monte-Carlo simulations, presented in Table 4.1, demonstrate close agreement 

between simulated and predicted fitting errors. Across all simulations, the root mean squared errors 

of 2T̂  predicted by Eq. [4.1] or [4.2] matched those from the simulations to within < 1.5%. 

 

4.4.1: Effect of θ constraint on 2T̂  precision 

 

Figure 4.2 shows the 
2T̂

SNR  resulting from various constrained and jointly-fitted protocols 

for SNRs  = 100. For the 32-echo protocol, the predicted improvement in 
2T̂

SNR  through θ 

constraint was more pronounced when slice-selective refocusing pulses were assumed. In fact, for 

nonselective refocusing protocols with well-calibrated transmit fields (θ > 165°), as might be the 

case for single-slice experiments, Fig 4.2a shows that the benefit of θ constraint was minimal even 

in the presence of a noiseless flip angle estimate. In contrast, for a slice-selective protocol, Figs 

4.2c and e demonstrate an increase in 
2T̂

SNR  by up to ≈ 30% can be attained through θ constraint. 

In the extreme case of a four-echo protocol, poorly calibrated refocusing (θ = 90°), and ˆSNR


 = 

SNRs , 
2T̂

SNR  was predicted to triple by constraining θ. For any of the tested scenarios, 
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constraining θ increased 
2T̂

SNR  as long as ˆ 1 2SNR SNR

  s , and 

2T̂
SNR increased with 

increasing values of ˆSNR


. 

Other observations from Figure 4.2 include that the optimal refocusing flip angle for 

multiple spin echo T2 measurement was at or near 180°, both for jointly fitted and independently 

measured θ. However, for the 4-echo, joint-fitted protocol, 
2T̂

SNR  is roughly independent of θ for 

θ > 140°. Also, while slice-selective refocusing imposes a modest penalty on 
2T̂

SNR , correcting 

for the known slice profile had little effect on 
2T̂

SNR  except when θ was near 180°. 

 

4.4.2: Effect of θ constraint on 2T̂  accuracy 

 

Figure 4.3 shows the biased estimator  2
ˆT  . The curves have a generally logarithmic 

shape, indicating that overestimation of θ—i.e., constraint to a value that is higher than the true 

flip angle—was found to generate less bias in 2T̂  than underestimation of θ. Nonselective 

refocusing or profile correction provided an unbiased 2T̂  if ̂  was unbiased, as expected. 

Assuming a uniform slice profile when in fact a slice-selective refocusing pulse was employed 

resulted in a biased 2T̂ , but this was primarily due to the definition of θ as the peak flip angle rather 

than the average flip angle across the slice. For example, with θpeak = 175°, the average flip angle 

over the slice was ≈ 154°. Constraining the fit with the average flip angle (not shown) provided an 

approximately accurate value for 2T̂ . 
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Figure 4.4 compares the 2T̂  variance, bias, and mean-squared error of various selectively-

refocused protocols where θpeak = 150°. The variance in 2T̂ , 
2

2

T̂
 —whether θ was constrained or 

jointly fitted with T2—is independent of ̂  bias ( )  , and is thus constant between the two 

panels. When ̂  was constrained to θavg + 1°, bias was dominated by variance, and the T2 mean-

squared error was reduced for ˆSNR


 > 40. This result was similar to the rule of thumb discovered 

in Fig 4.2 of ˆ 1 2SNR SNR

  s . When ̂  was constrained to θavg + 5°, T2 bias dominated variance, 

and 
2T̂

  was not reduced by θ constraint under any circumstances. Even so, constraint reduced T2 

variance compared to joint-fitted protocols when ˆSNR


 > 40. 

The maximum permissible θ bias at which constraining θ results in a lower 
2T̂

  than 

achievable through joint-fitting is presented in Fig 4.5 as a two-dimensional function of ˆSNR


 and 

SNRs . Note that the maximum permissible bias is largely a function of SNRs  but goes to zero 

when ˆSNR


 ≲1 2 SNR s , in agreement with the results in Fig 4.2. There is also little difference in 

this threshold between the 4- and 32-echo protocols, despite stark difference in the biases between 

these two protocols (Fig 4.3). 
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Figure 4.2: The effect of θ constraint on 2T̂  precision. In general, constraining θ when 

ˆ 1 2SNR SNR

  s  resulted in higher 

2T̂
SNR  compared to jointly fitting T2 and θ. 
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Figure 4.3: The biased estimator function  2
ˆT  . The true T2 value was 80 ms. Generally, 

overestimation of the refocusing pulse flip angle produced less T2 bias than underestimation of θ. 
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Figure 4.4: Variance, bias, and mean-squared error of 2T̂ . A relatively small bias in   (panel a) allows 

constraint to decrease 
2T̂

  as long as ˆSNR


 was greater than a critical value. When   bias is increased 

(panel b), 
2T̂

  is dominated by bias, and θ constraint will never reduce overall error. The actual flip angle 

was 150°. 

 

 

 

Figure 4.5: Critical   bias at which 
2T̂

  can no longer be reduced by θ constraint. At high SNRs , 

very little bias can be tolerated before mean-squared error suffers relative to jointly fitting θ and T2. 
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4.4.3: ME-CAMBREC simulations 

 

Figure 4.6 shows the results of the ME-CAMBREC simulations. Constraining θ decreased 

noise in the reconstructed 2T̂  profile, as expected. Constraining θ to the peak value within the slice 

(150°) introduced T2 bias similar to that predicted by Figure 4.3. When using the average flip angle 

across the profile (Figure 4.6d), 2T̂  is accurate. The spatially varying constraint (Figure 4.6e) 

provided a 2T̂  profile with spatially varying bias, as might be predicted by Figure 4.3 for a 

voxelwise analysis. No additional errors caused by the model-based reconstruction were apparent 

in any of the reconstructions. 
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Figure 4.6: θ constraint in ME-CAMBREC. T2 noise is reduced by a factor of roughly 2 when 

constraining θ to a noiseless value in ME-CAMBREC, which is a greater reduction in T2 noise than 

predicted by Equation 4.2. Bias is introduced when the flip angle is erroneously constrained to the peak 

value (c). Constraint to the average value (d) provides accurate results, which is consistent with results 

presented in Chapter 3 regarding slice profile effects. Constraining θ to an erroneous spatial function (e) 

causes T2 estimate bias to follow that function’s error; no anomalous errors specific to ME-CAMBREC or 

model-based reconstruction appeared in constrained-θ reconstructions. 
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4.5: Discussion 

 

The results demonstrate the potential to improve the precision of T2 mapping by 

independently measuring the refocusing pulse flip angle rather than including it as a free parameter 

in the fitting. However, the circumstances under which measuring rather than fitting θ is beneficial 

depends on a number of factors, including the SNR of both the multiple spin echo images and the 

B1
+ map, whether a single or multi-slice protocol is required, and to what extent 2T̂  accuracy (and 

not merely precision) is important. 

In order to improve 2T̂  precision by measuring rather than jointly fitting θ, the independent 

estimate ̂  must have an SNR ≳ 50% as high as that of the spin echo image at TE = 0 (compare 

solid line and square symbols in Fig 4.2). For the 32-echo nonselective refocusing case, with ˆSNR


 

= SNRs  (+ symbols in Fig 4.2a) and θ = 150°, constraining θ = ̂  results in ≈ 22% increase in 

2T̂
SNR . However, the estimate ̂  comes at a cost of acquisition time, which could also be used to 

increase the 
2T̂

SNR  through signal averaging. From data presented by Park et al. (101), using the 

Bloch-Siegert shift method of B1
+-mapping, ˆSNR



 ≥ SNRs  can be obtained in the same scan time 

as the multiple spin echo measurement (conservatively estimated from Fig 4 in (101)). In this case, 

it would be better to simply double the number of averaged excitations of the spin echo acquisition, 

which would increase 
2T̂

SNR  by 2 . However, B1
+ maps are typically smooth functions, and so 

in practice a low-resolution (and, consequently, higher SNR) map is probably sufficient. For 

example, using a B1
+ map acquired in 1/4 the scan time of the multiple spin echo acquisition would 

result in ≈ 30% increase in 
2T̂

SNR (see Fig 4.2a) at the cost of only a 25% longer scanning time. 
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For low flip angle refocusing pulses (θ ≤ 140°) the benefits in 2T̂  precision from 

constraining θ are similar for nonselective and selective refocusing schemes; they are also 

indifferent to whether the a slice profile is corrected (compare different rows of Figure 4.2). 

However, for larger flip angles (140° ≤ θ ≤ 180°), the benefit diminishes substantially for the 32-

echo, nonselective refocusing case. The reason for this effect is that as θ increases toward 180°, 

the covariance between ̂  and 2T̂  decreases toward zero for nonselective protocols, making joint-

fitting more effective. For a slice-selective protocol, the variation in θ across the slice mitigates 

this effect—in other words, stimulated echoes are never removed entirely from the signal—and 

some benefit in constraining θ remains. Thus, for a single-slice protocol, which is amenable to 

good flip angle calibration, there may be little benefit to independently measuring θ. However, for 

multi-slice protocols or even 3D protocols where a sizable variation in θ over the volume is 

unavoidable, acquiring a low resolution B1
+ map may be beneficial for the precision of 2T̂ . 

An additional factor in determining whether to measure or jointly fit θ relates to bias. Given 

an unbiased estimate of θ, the above analysis of precision tells the whole story. However, if the 

B1
+ mapping is inaccurate, then the bias in   will result in bias in 2T̂ . Figure 4.3 demonstrates 

that this effect is greater with fewer echoes and lower refocusing pulse flip angles. A more 

complete characterization of measurement error then is the mean squared error, 
2

2

T̂
 . As apparent 

from Figure 4.5, for SNRs  ≈ 40 (a typical level for in vivo quantitative MRI),   must be accurate 

to within ≈ 6% for its use in T2 fitting to lower 
2

2

T̂
 , and this requirement becomes more demanding 

as SNRs  increases. While numerical studies indicate the potential for several methods to map B1
+ 

to within ±2% (101,102), experimental evaluations of such methods to accurately measure large 

flip angles remain to be done. 
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Even in cases where the bias in   is above the threshold in Fig 4.5, certain applications 

may benefit from the reduction in variance over the loss in accuracy. Note the reduction in variance 

that occurs in general when ˆSNR


 ≳ ½ SNRs  holds under diverse circumstances, including those 

in which ̂  is biased. Furthermore, as shown in Fig 4.3, constraining θ to a value greater than the 

true value will introduce less bias than using an underestimated ̂ . In fact, for 32-echo protocols 

with nonselective refocusing pulses and θ ≳ 150°, simply constraining θ = 180° will provide up to 

30% improvement in 
2T̂

SNR  at the cost of < 5 ms error in 2T̂  (for true T2 = 80 ms). This primitive 

approach is therefore an alternative strategy for situations in which the calibration can be assumed 

to be reasonably accurate. In the case of extremely accurate calibration (θ > 170°) constraint 

provides little benefit to 32-echo, nonselective protocols (Fig 4.2a). Interestingly, the θ > 140° 

regime of 4-echo protocols shows little improvement in joint-fitted 
2T̂

SNR  as the flip angle 

approaches 180°. This implies that accurate calibration of B1
+ is not important to T2 mapping using 

these protocols in conjunction with stimulated echo correcting models.  

Contrariwise, there might be cases in which the inaccuracy caused by θ-bias is far more 

significant than the potential precision gain. One example could potentially be model-based 

reconstruction methods such as ME-CAMBREC which use IEC models (52,55,57,92). In these 

applications, model inconsistencies can lead to spatial distortions such as ghosting, which can 

seriously degrade fitted T2 maps. This was, however, not the case in the ME-CAMBREC 

simulations presented here: noise and bias presented independently of each other and of spatial 

considerations in Figure 4.6. In fact, the precision of ME-CAMBREC measures of T2 showed more 

improvement relative to voxelwise analysis than predicted—SNRT2 nearly doubled when 

constraining θ rather than the ≈30% increase predicted by Figure 4.2c. How flip angle errors, 
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parameter constraint, and other model inconsistencies (e.g., coil sensitivity errors) may interact in 

practice is still an unanswered question and a potential topic of further investigation. 

A recent article by McPhee and Wilman (58) presented similar studies to the work 

presented here. The authors of that paper concluded that using the EPG algorithm in conjunction 

with improper slice profile correction (i.e., a single profile that scaled with θ, rather than a 

recalculated profile for every flip angle) provided inaccurate T2 values when flip angle was 

constrained. However, they also discovered that constraining θ improved T2 precision when using 

a Bloch simulation-based fitting method in Monte-Carlo simulations, which agrees with the results 

in Figure 4.2. The authors reported similar T2 accuracy and precision between joint-fitted and 

constrained-θ methods in vivo using double angle B1
+ mapping with ˆSNR


 ≈ 20; although they 

did not report a value for SNRs , they noted that all reported regions of interest had SNRs  > 30, 

which implies a ˆSNR


/ SNRs  ratio < 0.66 and is near the approximate break-even point of ˆSNR


/

SNRs ≈ 0.5. It should be noted that the EPG signal model used here did not assume a single slice 

profile in the case of slice-selective pulses, and therefore has more in common with the Bloch-

simulation method evaluated by McPhee (58) than the EPG-based methods presented there.  

 

4.6: Conclusions 

 

When using IEC models in T2 mapping applications, constraining the refocusing pulse flip 

angle parameter, θ, to a measured value (̂ ) was shown to efficiently improve T2 estimate precision 

when ˆSNR


 ≳ ½ SNRs . Previous work suggests this is practically achievable through the Bloch-

Siegert shift and Phase Sensitive methods (99,101,102). The potential improvement in 
2T̂

SNR  
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increased as the refocusing pulses became progressively more imperfect, for example as θ 

decreased or slice profile effects became more pronounced. The resulting T2 bias induced through 

θ-constraint was quantified in Figure 4.3 and an upper limit for statistically beneficial bias was 

presented in Figure 4.5. Due to the unknown accuracy of many B1
+ mapping methods at high 

values of θ, it is not clear whether these upper limits are practically achievable; nevertheless, 

certain applications—including ME-CAMBREC, based on the results in Figure 4.6—may favor 

more precise estimates of T2 at the cost of accuracy.   
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CHAPTER 5 

 

CONCLUSION 

 

 

The method presented in Chapter 2—Multiple Echo, Caesar-Cipher Acquisition and 

Model-Based REConstruction (ME-CAMBREC)—can be used in vivo to generate T2 maps 

consistent with those generated through fully-sampled means, but in less than 1/6th the scan time. 

Although ME-CAMBREC benefits from acquisition using multi-channel coil arrays, it is not 

directly compatible with currently-available parallel imaging packages (Figure 2.6). Care should 

be taken when selecting the regularization parameter, as feature size-dependent T2 bias can present 

itself at high regularization factors (Figure 3.2, 3.5). Regularization is weighted too heavily when 

sharp edge enhancements are visible in the T2 map. If acceleration factors greater than R = 2 are 

desired, double-wide refocusing pulses should be employed in order to limit computational 

instability and resulting T2 bias (Figures 3.3, 3.4), despite the fact that this requires the use of slice 

gaps. 

Multiple spin echo-based T2 mapping methods, including ME-CAMBREC, can under 

certain circumstances benefit from constraining the refocusing flip angle (θ) to a measured value. 

Figure 4.2 shows that T2 precision is increased when ̂  is constrained to a sufficiently precise 

( ˆSNR

≳ ½ SNRs ) value, especially when slice-selective refocusing pulses are employed. While 

the increase in precision is often efficient compared to acquiring multiple signals and averaging 

them, the T2 bias caused by erroneous constraint dominates noise effects when ̂  is biased by less 

than 10°. This ̂  bias threshold is less than the difference between the peak and average θ of 
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double-wide slice selective pulses. Thus, in order to reduce mean-squared error by θ constraint, 

considerations for slice profile effects must be made during θ-mapping and/or T2 fitting. 

One consideration that is difficult to present in a general sense is the effect of practical 

energy deposition (SAR) limits on whole-brain ME-CAMBREC. As multi-slice FSE imaging 

demands a large number of high-amplitude pulses in rapid succession, it is not surprising that ME-

CAMBREC protocols will typically require extending TR beyond the duration of acquired echo 

trains, reducing scan time efficiency. Although extending the refocusing pulses in time will 

proportionally decrease their deposited energy, this generally comes at the cost of extended echo 

spacing or increased receiver bandwidth, both of which reduce the SNR of acquired pseudoimages. 

It is therefore most practical to decrease the echo train length in order to reduce SAR and improve 

scan efficiency. However, it is important to note that reducing ETL in ME-CAMBREC reduces 

the acceleration factor compared to a fully-sampled MSE protocol, as the acceleration factor is R 

= ETL/NQ, or the ratio of the echo train length to the number of pseudoimages. NQ has a practical 

lower limit of 4 pseudoimages in order to sufficiently sample the signal curve’s oscillations (which 

contain B1
+ information) and decay (which contains T2 information). Thus, as SAR limitations 

become tighter and ETL is decreased to compensate, the advantage of ME-CAMBREC compared 

to other accelerated imaging protocols—for example, parallel imaging (see Fig 2.6)—is 

substantially diminished. On the other hand, in a scenario where SAR is not a limiting factor (e.g., 

low field strength), the fact that ME-CAMBREC requires slice gaps to avoid computational 

instability (Fig 3.3) will cause full-coverage T2 mapping protocols to have doubled scan time 

compared to a profile-corrected method with the same acceleration factor. It is therefore important 

to recognize that ME-CAMBREC should only be used when SAR limitations are strict enough to 

prevent whole-volume coverage in a single scan, but not so strict as to require a severely reduced 
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echo train length—say, 8 echoes. The exact “minimum ETL” at which ME-CAMBREC should be 

used depends on the number of elements in the receiver array, as this defines the practical 

acceleration factors parallel imaging can achieve.  

Another consideration that was not highlighted in the previous chapters was the issue of 

coil sensitivity mapping for multi-channel receive coils. Corrupted coil sensitivity maps can cause 

large errors in estimated M+ and, therefore, T2. In the previous sections, these maps were estimated 

from ME-CAMBREC data via the first pseudoimage, to which coil sensitivity maps were fitted as 

polynomial functions of space. As this pseudoimage contains blurring and, in the presence of 

imperfect refocusing pulses, ghosting, the estimated coil sensitivity maps were inherently 

erroneous. Independent measures of C might improve measures of T2 if these measures are 

sufficiently accurate and precise, but these accuracy and precision thresholds are currently 

unknown. An analysis similar to that used in Chapter 4 could be used to determine if independent 

measures of C would be beneficial to fitted T2 maps, and may even demonstrate that ME-

CAMBREC could fit C during the reconstruction step as additional free parameters.   

ME-CAMBREC was designed with ease of implementation in mind. This was the primary 

motivation behind the choice to use Cartesian-readout FSE instead of radial FSE, which is 

commonly used by other model-based reconstruction algorithms due to the disproportionate 

oversampling of the center of k-space (52,57,70). Section 2.5 noted that these radial protocols 

often require more excitations than ME-CAMBREC—and ironically present higher acceleration 

factors, R, due to the larger number of excitations required for radial Nyquist sampling—but this 

oversampling provides computational stability that is attractive compared to ME-CAMBREC. On 

the other hand, ME-CAMBREC and Sumpf’s Cartesian model-based reconstruction algorithms 

(55,71) can simply apply a Fourier transform in the readout direction, while radial protocols must 
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perform the iterative reconstruction on both dimensions simultaneously. It is not clear how these 

competing effects—the oversampled k-space origin and the shift to 2D iterative reconstruction—

interact to determine the most stable readout for model-based reconstruction. This should be 

investigated from both a statistical and algorithmic perspective in the future. 

Bias in T2 estimates caused by common sources of error in ME-CAMBREC was estimated 

to be on the order of 5 ms in many cases (see Table 2.2 and Figures 3.2, 3.3, and 3.5). This should 

be taken as a lower limit for practical T2 detection accuracy in ME-CAMBREC, with this limit 

increasing in size as relative noise variance increases. This means that ME-CAMBREC may not 

be an ideal diagnostic tool in, for example, demyelinating diseases in which single-compartment 

apparent T2 changes by only a small amount. This study found the theoretical deviation from 

demyelination to be on the order of 5-10 ms (compare the baseline to the dotted line in Figure 

3.5b; this is the approximate deviation in T2 caused by the presence of myelin), and recent work 

showed that T2 changes in early multiple sclerosis were approximately 10 ms (103).   
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APPENDIX 1 

 

DERIVATION OF THE CRAMÉR-RAO LOWER BOUND 

 

 This section is adapted from the article “On the inherent precision of mcDESPOT” 

published in Magnetic Resonance in Medicine 69 (2013) by Christopher L. Lankford and Mark D. 

Does (104). It derives the free and constrained CRLB used in Chapters 2 and 4. 

The so-called score vector, v, which is the relative rate of change of the signal likelihood 

function, f, with respect to model parameters, z, is 
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When f is multivariate Gaussian, v can be reduced to 
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or, in matrix form as a column vector, 

 1T v J r  [A1.3] 

where J is the Jacobian matrix as traditionally defined for the true signal g(z), Σ is the diagonal 

covariance matrix of the added noise, and r is a column vector of noise values. Note that since the 

expectation of additive noise is zero, the expectation of the score vector is a zero vector. The 

covariance matrix of the score vector v, also known as the Fisher information matrix, is then 

calculated as follows: 
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where the symbol  E   represents the expectation operation over the likelihood function f with 

respect to y. Furthermore, the covariance of v with the estimate vector ẑ can be calculated as: 
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Because the estimate ẑ  is not directly dependent on underlying parameters z, the order of 

differentiation and integration can be reversed, leaving 
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Substituting Equation A1.6 into the multivariate Cauchy-Schwarz inequality results in a 

formal statement of the Cramer-Rao bound: 
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Note that Equation A1.7 states that the distribution of an estimate is inversely proportional to the 

model’s squared sensitivity to the estimated parameter, which is a generalization of the well-

known propagation of error theorem to a possibly biased set of estimates given multiple random 

points of data. In a further, potentially more significant parallel to the propagation of error theorem, 

the uncertainty in parameter estimates defined by the CRLB scales inversely with SNR. 

Due to the fact that the FIM is purely a function of the true signal and noise variance, 

information content is unaffected by the choice of estimator. Thus, information is conserved even 

when the contrast of the estimate is enhanced; the multiplication by ˆE[ ] z z  causes biased 

estimates which enjoy greater contrast than their unbiased counterparts to receive a proportional 

penalty to random deviation. Only by constraining covarying parameters to a priori values and 
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eliminating their respective elements from the FIM before inverting—or by decreasing the 

problem dimensionality in any similar manner—can estimate precision truly be improved. Stated 

mathematically, the conditional covariance matrix of the parameters in free
ˆ ˆz z  (those which 

remain unconstrained) is the Schur complement of the covariance matrix block pertaining to the 

constrained parameters (105): 
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and  cons free
ˆ ˆ ˆ

T
z z z , implying that uncertainty in free parameter estimates is reduced according 

to the parameter’s squared covariance with other parameters (Σf,c). 
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APPENDIX 2 

 

DERIVATION OF EQUATION 4.2 

 

The mean squared error of 2T̂  when using the constraint ˆ   is well approximated by 

Equation [4.2]. The derivation of this formula is presented below. By definition, the mean-squared 

error for an estimate of T2 that uses an independently-estimated refocusing pulse flip angle, ̂  is 
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where E is the expectation operator and the other elements are defined in Section 4.2. Assuming s 

and ̂  are independent random variables, the expectation operation can be separated into two 

stages,  
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where the expectation symbol’s subscript defines the random variables over which integration is 

implied. It is conventional to separate mean-squared error into two parts: the contribution caused 

by an estimate’s variance and that caused by its bias. In order to achieve this, the term  2
ˆT   is 

introduced as 

    2 2
ˆ ˆˆ ,T E T  

 S
s . [A2.3] 

In other words,  2
ˆT   is the average estimate of T2 for a given constraint, ˆ  , and is not a 

function of noise in the multiple spin echo signals, s. Adding and subtracting this term within Eq. 

[A2.2] provides  
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The cross-term in Eq. [A2.4] vanishes due to the definition in Eq. [A2.3], resulting in 
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The first term inside the expectation over ̂  is the variance in 2T̂  caused by noise in s for a given 

value of ̂ . In most practical cases, this term has only a weak dependence on ̂ , and so it can be 

approximated by the CRLB independently of ̂  as 
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For brevity, it is defined here as 
2

2

ˆ ,T


S
. Thus, equation [A2.5] reduces to the approximation 
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From here, the same procedure used for expanding Eq. [A2.1] can be applied to the second 

term of Eq. [A2.7]. To do so, we define two new average parameter terms, 
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and then 

      ˆ2 2 2
ˆˆ ˆ, ,T E T E E T


      

    S Ss s .  [A2.9] 

Then, adding and subtracting  2T   inside the squared term in Eq [A2.7] results in 
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Here (unlike in Eq. [A2.4]) the cross-term is not zero in general; however, for practical values of 

   and SNRs , it is much smaller than either the variance term 
2

2

ˆ ,T


S
 or the squared T2 bias, 

  
2

2 2T T  , and can be neglected. The first term is, by definition, the variance of a function of 

a single random variable and can be approximated using linear propagation of error as, 
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This term represents the propagation of noise in the measurement of ̂  to the estimate 2T̂ . The 

third term is the squared-bias of the average T2 estimate (as defined by Eq [A2.9]), and results 

from bias in the measurement of θ. Thus, in summary, the mean squared error in 2T̂  when using 

an independent measure of refocusing pulse flip angle, ̂ , is approximated as the sum of three 

terms, 
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including (first term) the propagation of noise from the spin echo images, (second term) the 

propagation of noise from the flip angle measurement, and (third term) the squared bias in 2T̂  

resulting from the bias in ̂ . 
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APPENDIX 3 

 

ME-CAMBREC RECONSTRUCTION MATLAB SCRIPT 

  

The following script requires the function pmri_poly_sensitivity by Fa-Hsuan Lin 

(Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 2004), written 

August 24th, 2004. 

 

function [M0_output,T2_output,B1_output]=... 
    mecambrec_recon_multislice_ver093(data,noise,info,varargin) 
% ME-CAMBREC image reconstruction function v. 0.93 
% Author: Chris Lankford 
% Date: Sep 29, 2016 
%  
% [M0,T2,B1]=mecambrec_recon(data,noise,info,flipangle,lambda); 
%  
% Outputs:  
% M0, a complex matrix of excited magnetization values (pe x ro x nslice) 
% T2, a real matrix of fitted T2 values in seconds (pe x ro x nslice) 
% B1, a real matrix of fitted refocusing pulse flip angles in degrees 
% (pe x ro x nslice) 
%  
% Inputs: 
% data, an array of data generated by feeding the first output of the  
%       GPI function 'ReadPhilips' into GPI function 'SaveMAT'. 
% noise, an array of noise samples generated by feeding the second output 
%       of the GPI function 'ReadPhilips' into GPI function 'SaveMAT'. 
% info, a struct of accompanying information generated by the MATLAB 
%       function 'loadSIN'. 
% flipangle, the nominal flip angle 
% lambda, the reconstruction regularization weighting parameter 

  
%Ensure data is as expected 
if length(size(data))>5 
    error('Unexpected data format: data should have only 5 dimensions.'); 
end 

  
%Extract array size information 
num_coils=size(data,1); 
num_pseudoimg=size(data,2); 
num_slices=size(data,3); 
pe_size=size(data,4); 
ro_size=size(data,5)/2; 
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%TEMPORARY-FEB 2016; hopefully will be replaced with more black-box logic 
designated_flip_angle=varargin{1}; 
lambda=varargin{2}; 
lambda=lambda*num_coils*num_pseudoimg*rms(data(:)).^2; 

  
%Extract important parameters as variables, and clear the memory of the big 
%inputs (noise covariance and info struct) 
ETL=info.tse_factor.vals; 
ESP=info.tse_echo_spacing.vals*1e-3; 
clear info 
noise_covar=cov(noise.'); 
clear noise 

  
%generate list of effective echo times for each pseudoimage 
%this logic is hardcoded into the CAMBREC patch 
efftes=zeros(num_pseudoimg,1); 
efftes(1)=1; 
efftes(2)=2; 
for ii=3:num_pseudoimg 
    efftes(ii)=3+(ii-3)*floor((ETL-2)/(num_pseudoimg-2)); 
end 

  
%generate the base acquisition map that will be rotated modulo echo train 
%length after the first pseudoimage is acquired 
%this logic is hardcoded into the CAMBREC patch 
base_acqecho=zeros(pe_size,1); 
for ii=1:(pe_size/ETL/2) 
    base_acqecho(((pe_size/2 + 1):(pe_size/ETL/2):end) + ii-1)=1:ETL; 
    base_acqecho(((pe_size/2):(-pe_size/ETL/2):1) + 1-ii)=1:ETL; 
end 
base_acqecho=squeeze(base_acqecho); 

  
%rotate modulo echo train length 
for ii=1:num_pseudoimg 
    acqecho(:,ii)=mod(base_acqecho + (efftes(ii)-1),ETL); 
end 
acqecho(acqecho==0)=ETL; 

  
%generate accompanying pelist 
pelist=repmat(squeeze((-pe_size/2):(pe_size/2 - 1)) , [1 num_pseudoimg]); 

  
%Next few sections are data reconfiguration... 

  
%transform data into hybrid space (IFFT_ro) 
data=ifftshift(ifft(fftshift(data,5),[],5),5); 

  
%account for dc offset correction by multiplying all data by either -1 or 
%1, alternating between phase encode lines (this is the same as performing 
%an extra/one-less FFTSHIFT in the phase encode direction) 
data=data.*permute(repmat([-1 1],[ro_size*2,pe_size/2,num_coils, ... 
    num_pseudoimg,num_slices]),[3 4 5 2 1]); 

  
%remove oversampling in readout direction 
data=data(:,:,:,:,round(1/2*ro_size + 1):round(3/2*ro_size)); 
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%create coil index vector, pevector, acqechovector 
coilnum=zeros(num_coils*numel(pelist),1); 
for coil=1:num_coils 
    coilnum((coil-1)*numel(pelist) + (1:numel(pelist)))=coil; 
end 
pevector=repmat(pelist(:),[num_coils,1]); 
acqechovector=repmat(acqecho(:),[num_coils,1]); 

  
%ready output arrays 
M0_output=zeros(pe_size,ro_size,num_slices); 
T2_output=zeros(pe_size,ro_size,num_slices); 
B1_output=zeros(pe_size,ro_size,num_slices); 

  

  
%%%%%%%% Loop across slices 
for slice_counter=1:num_slices 

     
    %Shouldn't have any problems, but just in case... 
    clear coilsens_mask 
    clear coilsens_nomask 
    clear coilsens 

     
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %Next few sections are estimation of coil sensitivity maps... 

  
    %create reference image for each coil from first-pseudoimage data 
    refimgs=squeeze(... 
        ifftshift(ifft(fftshift(data(:,1,slice_counter,:,:),4),[],4),4)); 
    if num_coils==1 
        refimgs=permute(refimgs,[3 1 2]); 
    end 
    refreconimg=squeeze(sqrt(sum(abs(refimgs).^2./ ... 
        repmat(diag(noise_covar),[1,pe_size,ro_size]),1))); 

  
    %create masks from data 
    fitting_mask=refreconimg > 0.1*max(refreconimg(:)); 

  
    %create sensitivity maps 
    if num_coils==1 
        coilsens(1,1:size(refreconimg,1),1:size(refreconimg,2))=1; 
    else 
        for coil=1:num_coils 
            [coilsens_mask(:,:,coil),coilsens_nomask(:,:,coil)]=... 
                pmri_poly_sensitivity( squeeze(refimgs(coil,:,:)), 3,... 
                'mask', fitting_mask); 
            coilsens(coil,:,:)=permute(coilsens_nomask(:,:,coil)/... 
                max(max(abs(fitting_mask.*coilsens_nomask(:,:,coil)))),... 
                [3 1 2]); 
        end 
    end 
    mask3d=permute(repmat(fitting_mask,[1 1 num_coils]),[3 1 2]); 
    coilsens(~mask3d)=1; 

     
    coilsens=coilsens*exp(-1i*pi/4);%This is for scaling the penalty 
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    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
    %Finally, call the ME-CAMBREC recon code line-by-line 
    M0=zeros(ro_size,pe_size); 
    R2=zeros(ro_size,pe_size); 
    B1=zeros(ro_size,pe_size); 
    for imgcol=1:ro_size 
        signalvector=permute(squeeze(data(:,:,slice_counter,:,imgcol)),... 
            [3 2 1]); 
        %data now is {pe, pseudoimg, coil} to match vectors above 
        signalvector=signalvector(:); 

  
        if max(fitting_mask(:,imgcol))>0 
            [M0(imgcol,:),R2(imgcol,:),B1(imgcol,:)]=... 
                mecambrec_parallel_subfunc(double(signalvector),pevector,... 
                acqechovector,coilnum,... 
                double(squeeze(coilsens(:,:,imgcol).')),... 
                double(diag(noise_covar)),fitting_mask(:,imgcol).',... 
                double(ESP),double(designated_flip_angle),... 
                double(lambda)); 
        end 
        if mod(imgcol,5)==0 
            num_fitted_cols=nnz(max(fitting_mask(:,:),[],1)>0); 
            num_fitted_cols_to_here=nnz(max(fitting_mask(... 
                :,1:imgcol),[],1)>0); 
            fprintf('Slice %d, %2.1f%% complete...\n',... 
                slice_counter,100*num_fitted_cols_to_here/num_fitted_cols); 
            if mod(imgcol,10)==0 
                figure(1);imagesc(abs(1./R2'));axis image off; 
                caxis([0 .2]); 
                drawnow; 
            end 
        end 
    end 

     
    %tweak data for presentability and store in output variables 
    R2=R2'; 
    M0=M0.'; 
    B1=B1'; 
    T2=1./R2; 
    T2(isnan(T2))=0; 
    T2(T2==inf)=0; 
    badmask=T2<(ESP*1.5); 
    M0_output(:,:,slice_counter)=M0.*~badmask; 
    T2_output(:,:,slice_counter)=T2.*~badmask; 
    B1_output(:,:,slice_counter)=B1.*~badmask; 
    save('MECAMBREC_inprogress.mat','M0_output','T2_output','B1_output'); 
    fprintf('Slice %d complete...\n',slice_counter); 
end 
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function [M0,R2,B1]=mecambrec_parallel_subfunc(k_signal,pelist,acqecho,... 
    coilnum,coilsen,coilnoise,mask,ESP,desig_flip,varargin) 

  
if nargin>9 
    lambda=varargin{1}; 
else 
    lambda=0; 
end 

  
acqecho=int16(acqecho); 
pelist=int16(pelist); 
coilnum=int16(coilnum); 

  
if size(coilnoise,1)==size(coilnoise,2) 
    %Noise covariance matrix rather than noise variance vector 
    psiinv=inv(coilnoise); 
    weights=diag(psiinv); 
    weights=weights(coilnum); 
    weights=repmat(weights(:),2,1); 
elseif size(coilnoise,1)==1 || size(coilnoise,2)==1 
    psiinv=1./coilnoise; 
    psiinv=psiinv(:); 
    weights=psiinv(coilnum); 
    weights=repmat(weights(:),2,1); 
    psiinv=diag(psiinv); 
else 
    error('Coil noise covariance must be a square matrix or a vector'); 
end 

  
numpts=length(mask); 
coilnum=coilnum-(min(coilnum)-1); 

  
%Create a best-guess for T2 from kpe=0 data and the receive coil with 
%maximum signal 
[~,maxind]=sort(abs(k_signal).*logical(0==mod(pelist,numpts))); 
maxind=maxind(end); 
coil_used_for_est=coilnum(maxind); 

  
guess_decay=abs(k_signal(logical(0==mod(pelist,numpts)) & ... 
    logical(coilnum==coil_used_for_est))); 
guess_echoes=double(acqecho(logical(0==mod(pelist,numpts)) & ... 
    logical(coilnum==coil_used_for_est))); 
even_t=ESP*guess_echoes(logical(mod(guess_echoes,2)==0)); 
odd_t=ESP*guess_echoes(logical(mod(guess_echoes,2)==1)); 
even_decay=guess_decay(logical(mod(guess_echoes,2)==0)); 
odd_decay=guess_decay(logical(mod(guess_echoes,2)==1)); 
guess_X=[ones([length(even_t) 1]), zeros([length(even_t) 1]), -even_t(:)]; 
guess_X=[guess_X;[zeros([length(odd_t) 1]),... 
    ones([length(odd_t) 1]), -odd_t(:)]]; 
guess_Y=log([even_decay(:);odd_decay(:)]); 
guess_b=(guess_X'*guess_X)\guess_X'*guess_Y; 
T2_guess=1/guess_b(3); 
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% create a k-space vector using a roughly inside-out path 
for ncoil=int16(1:max(coilnum(:))) 
    k0_coil=zeros([numpts 1]); 
    last_echo=int16(1); 
    for pe=int16(0:max(pelist)) 
        viable_points=(mod(pe,numpts)==mod(pelist,numpts)) &... 
            (acqecho>=last_echo) & (coilnum==ncoil); 
        [sorted_viable_acqecho,indices1]=... 
            sort(double(acqecho).*viable_points); 
        sorted_signal=k_signal(indices1); 
        myindex=find(sorted_viable_acqecho,1); 
        last_echo=sorted_viable_acqecho(myindex); 
        k0_coil(pe+1)=sorted_signal(myindex); 
    end 
    last_echo=int16(1); 
    for pe=int16(-1:-1:min(pelist)) 
        viable_points=(mod(pe,numpts)==mod(pelist,numpts)) &... 
            (acqecho>=last_echo) & (coilnum==ncoil); 
        [sorted_viable_acqecho,indices1]=... 
            sort(double(acqecho).*viable_points); 
        sorted_signal=k_signal(indices1); 
        myindex=find(sorted_viable_acqecho,1); 
        last_echo=sorted_viable_acqecho(myindex); 
        k0_coil(mod(pe,numpts)+1)=sorted_signal(myindex); 
    end 

  
    img_coil(:,ncoil)=ifftshift(ifft(k0_coil)); 
end 

  
img0=diag(conj(coilsen)*psiinv*img_coil.')./... 
    diag(conj(coilsen)*psiinv*coilsen.');     

  
%Roughly account for first-echo decay, for sake of scaling 
scalefactor=1/getsignal(1,1,T2_guess,desig_flip,0,ESP,1); 
init_M0=scalefactor*img0; 

  
initmask=mask; 

  
init_M0_i=imag(init_M0(initmask)); 
init_M0_r=real(init_M0(initmask)); 
init_R1=ones(size(init_M0_r)); 
init_R2=1/T2_guess*ones(size(init_M0_r)); 
init_B1=desig_flip*ones(size(init_M0_r)); 
indices=find(initmask); 

  
M0_r=zeros(numpts,1); 
R2=zeros(numpts,1); 
B1=zeros(numpts,1); 
M0_i=zeros(numpts,1); 

  
options=optimset('Jacobian','on','TolFun',1e-16,'TolX',1e-20,'MaxIter',... 
    25,'MaxFunEvals',100,'Display','off'); 

  
signal_r=real(k_signal); 
signal_i=imag(k_signal); 
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if ~isempty(indices) 
    initguess=[init_M0_r(:); init_M0_i(:); init_R2(:); init_B1(:)]; 
    lb=[-inf*ones(size(init_M0_r)), -inf*ones(size(init_M0_i)),... 
        .25*ones(size(init_R2)), 10*ones(size(init_B1))]; 
    ub=[inf*ones(size(init_M0_r)), inf*ones(size(init_M0_i)),... 
        1/ESP*ones(size(init_R2)), 179.98*ones(size(init_B1))]; 
    %179.8 is the limit to ensure forward differences are still < 180 
    %degrees, for stability. 

     
    %Here's where the work gets done 
    recon_fit=lsqnonlin(@model_recon_cost_function_lsq,initguess,lb,ub,... 
        options,pelist,acqecho,coilnum,coilsen,ESP,signal_r,signal_i,... 
        init_R1,indices,numpts,weights,lambda,init_M0); 
    B1(indices)  =recon_fit((3*length(indices)+1):(4*length(indices)));     
    M0_r(indices)=recon_fit((0*length(indices)+1):(1*length(indices))); 
    M0_i(indices)=recon_fit((1*length(indices)+1):(2*length(indices))); 
    R2(indices)  =recon_fit((2*length(indices)+1):(3*length(indices))); 
end 
M0=M0_r(:)+1i*M0_i(:); 

  
function [return_cost, varargout]=model_recon_cost_function_lsq(... 
    params,pelist,acq_echo,coilnum,coilsens,esp,signal_r,signal_i,... 
    R1_guess,indices,total_points,weights,lambda,fourier_M0) 
sqrtweights=sqrt(weights); 
numpts=length(params)/4; 
M0_r=params((0*numpts+1):(1*numpts)); 
M0_i=params((1*numpts+1):(2*numpts)); 
R2  =params((2*numpts+1):(3*numpts)); 
B1  =params((3*numpts+1):(4*numpts)); 
R1=R1_guess; 

  
if nargout>1 
    jac=zeros([2*length(signal_r)+2*(total_points-1),length(params)]); 
    if nargout>2 
        hessiant=zeros(length(params)); 
        hessiany=zeros(length(params)); 
    end 
end 

  
M0=M0_r(:)+1i*M0_i(:); 
true_M0=zeros([total_points 1]);true_M0(indices)=M0; 
norm_decay_curves=zeros(max(acq_echo),numpts); 
decay_curves=zeros(max(acq_echo),numpts,max(coilnum)); 
total_space=zeros(max(acq_echo),total_points,max(coilnum)); 

  
%penalty calculations 
fourier_diff_r=real(diff(fourier_M0))./real(fourier_M0(2:end) +... 
    fourier_M0(1:(end-1))); 
fourier_diff_i=imag(diff(fourier_M0))./imag(fourier_M0(2:end) +... 
    fourier_M0(1:(end-1))); 
real_diff=real(diff(true_M0))./real(true_M0(2:end) + true_M0(1:(end-1))); 
imag_diff=imag(diff(true_M0))./imag(true_M0(2:end) + true_M0(1:(end-1))); 
penalty=[(real_diff(:)-fourier_diff_r(:));... 
    (imag_diff(:)-fourier_diff_i(:))]; 
penalty_zero_mask=isnan(penalty); %takes care of difference between zeros. 
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penalty(penalty_zero_mask)=0; 

  
if nargout>1 %Calculation of penalty gradients/hessian 
    for ii=1:numpts 
        if (indices(ii)<total_points)&&(~penalty_zero_mask(indices(ii))) 
            jac(2*length(signal_r)+indices(ii),0*numpts+ii)=... 
                sqrt(lambda)*(-2)*real(true_M0(indices(ii)+1))/... 
                (M0_r(ii)+real(true_M0(indices(ii)+1)))^2; 
                %real, ii to the next 
            jac(2*length(signal_r)+(total_points-1)+indices(ii),... 
                1*numpts+ii)=... 
                sqrt(lambda)*(-2)*imag(true_M0(indices(ii)+1))/... 
                (M0_i(ii)+imag(true_M0(indices(ii)+1)))^2; 
                %imag, ii to the next 
            if nargout>2 
                hessiany(0*numpts+ii,0*numpts+ii)=... 
                    2*4*real(true_M0(indices(ii)+1))/... 
                    (M0_r(ii)+real(true_M0(indices(ii)+1)))^3*... 
                    penalty(indices(ii)); 
                hessiany(1*numpts+ii,1*numpts+ii)=... 
                    2*4*imag(true_M0(indices(ii)+1))/... 
                    (M0_i(ii)+imag(true_M0(indices(ii)+1)))^3*... 
                    penalty(total_points-1+indices(ii)); 
                if (ii+1<=length(indices))&&((indices(ii)+1)==... 
                        indices(ii+1)) 
                    %cross term of 2nd derivative term 
                    hessiany(0*numpts+ii,0*numpts+ii+1)=... 
                        2*2*(M0_r(ii+1)-M0_r(ii))/... 
                        (M0_r(ii+1)+M0_r(ii))^3*... 
                        penalty(indices(ii)); 
                    hessiany(0*numpts+ii+1,0*numpts+ii)=... 
                        2*2*(M0_r(ii+1)-M0_r(ii))/... 
                        (M0_r(ii+1)+M0_r(ii))^3*... 
                        penalty(indices(ii)); 
                    hessiany(1*numpts+ii,1*numpts+ii+1)=... 
                        2*2*(M0_i(ii+1)-M0_i(ii))/... 
                        (M0_i(ii+1)+M0_i(ii))^3*... 
                        penalty(total_points-1+indices(ii)); 
                    hessiany(1*numpts+ii+1,1*numpts+ii)=... 
                        2*2*(M0_i(ii+1)-M0_i(ii))/... 
                        (M0_i(ii+1)+M0_i(ii))^3*... 
                        penalty(total_points-1+indices(ii)); 
                end 
            end 
        end 
        if (indices(ii)>1)&&(~penalty_zero_mask(indices(ii)-1)) 
            jac(2*length(signal_r)+indices(ii)-1,0*numpts+ii)=... 
                sqrt(lambda)*(2)*real(true_M0(indices(ii)-1))/... 
                (M0_r(ii)+real(true_M0(indices(ii)-1)))^2; 
                %real, previous to ii 
            jac(2*length(signal_r)+(total_points-1)+indices(ii)-1,... 
                1*numpts+ii)=... 
                sqrt(lambda)*(2)*imag(true_M0(indices(ii)-1))/... 
                (M0_i(ii)+imag(true_M0(indices(ii)-1)))^2; 
                %imag, previous to ii 
            if nargout>2 
                hessiany(0*numpts+ii,0*numpts+ii)=... 
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                    hessiany(0*numpts+ii,0*numpts+ii) + ... 
                    2*-4*real(true_M0(indices(ii)-1))/... 
                    (M0_r(ii)+real(true_M0(indices(ii)-1)))^3*... 
                    penalty(indices(ii)-1); 
                hessiany(1*numpts+ii,1*numpts+ii)=... 
                    hessiany(1*numpts+ii,1*numpts+ii) + ... 
                    2*-4*imag(true_M0(indices(ii)-1))/... 
                    (M0_i(ii)+imag(true_M0(indices(ii)-1)))^3*... 
                    penalty(total_points-1+indices(ii)-1); 
            end 
        end 
    end 
end 

  
%Forward model 
for ii=1:numpts 
    norm_decay_curves(:,ii)=getsignal(1,1/R1(ii),1/R2(ii),B1(ii),... 
        0,esp,max(acq_echo)); 
    for ncoil=1:max(coilnum) 
        decay_curves(:,ii,ncoil)=coilsens(indices(ii),ncoil)*... 
            M0(ii)*norm_decay_curves(:,ii); 
        total_space(:,indices(ii),ncoil)=decay_curves(:,ii,ncoil); 
    end 
end 

  
k_decay=fft(fftshift(total_space,2),[],2); 
%uncentered theoretical k-space data 

  
%Calculate cost 
theo_signal=zeros(size(pelist)); 
for ii=1:length(pelist) 
    theo_signal(ii)=k_decay(acq_echo(ii),1+mod(pelist(ii),total_points),... 
        coilnum(ii)); 
end 
cost=(theo_signal(:)-(signal_r(:)+1i*signal_i(:))); 
return_cost=[([real(cost);imag(cost)].*sqrtweights);sqrt(lambda)*penalty]; 

  
if nargout>1 %Calculate jacobian 
    step=1e-5; 
    for ii=1:numpts 
        decay_inc_R2=M0(ii)*getsignal(... 
            1,1/R1(ii),1/(R2(ii)*(1+step)),B1(ii),0,esp,max(acq_echo)); 
        decay_inc_B1=M0(ii)*getsignal(... 
            1,1/R1(ii),1/R2(ii),B1(ii)*(1+step),0,esp,max(acq_echo)); 
        delM_delM0r=1*norm_decay_curves(:,ii); 
        delM_delM0i=1i*norm_decay_curves(:,ii); 
        delM_delR2=(decay_inc_R2.'-M0(ii)*... 
            norm_decay_curves(:,ii))/(R2(ii)*step); 
        delM_delB1=(decay_inc_B1.'-M0(ii)*... 
            norm_decay_curves(:,ii))/(B1(ii)*step); 
        if B1(ii)==180 
            delM_delB1=zeros(size(delM_delB1)); 
        end 
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        sensitivities_for_this_point=coilsens(indices(ii),coilnum).'; 
        %get ready for fft-ish operation, so fftshift the current point 
        phaseconst=... 
            -1i*2*pi/double(total_points)*... 
            (mod(double(indices(ii))-ceil(double(total_points)/2),... 
            double(total_points))-1);  
        delS_delM0r=... 
            sensitivities_for_this_point.*delM_delM0r(acq_echo).*... 
            exp(phaseconst*mod(double(pelist),total_points)); 
        delS_delM0i=... 
            sensitivities_for_this_point.*delM_delM0i(acq_echo).*... 
            exp(phaseconst*mod(double(pelist),total_points)); 
        delS_delR2=... 
            sensitivities_for_this_point.*delM_delR2(acq_echo).*... 
            exp(phaseconst*mod(double(pelist),total_points)); 
        delS_delB1=... 
            sensitivities_for_this_point.*delM_delB1(acq_echo).*... 
            exp(phaseconst*mod(double(pelist),total_points)); 

         
        jac(1:(2*length(signal_r)),0*numpts+ii)=... 
            [real(delS_delM0r);imag(delS_delM0r)].*sqrtweights; 
        jac(1:(2*length(signal_r)),1*numpts+ii)=... 
            [real(delS_delM0i);imag(delS_delM0i)].*sqrtweights; 
        jac(1:(2*length(signal_r)),2*numpts+ii)=... 
            [real(delS_delR2);imag(delS_delR2)].*sqrtweights; 
        jac(1:(2*length(signal_r)),3*numpts+ii)=... 
            [real(delS_delB1);imag(delS_delB1)].*sqrtweights; 

         

         
        if nargout>2 
            decay_dec_R2=M0(ii)*getsignal(... 
                1,1/R1(ii),1/(R2(ii)*(1-step)),B1(ii),0,esp,max(acq_echo)); 
            decay_dec_B1=M0(ii)*getsignal(... 
                1,1/R1(ii),1/R2(ii),B1(ii)*(1-step),0,esp,max(acq_echo)); 
            decay_inc_R2B1=M0(ii)*getsignal(... 
                1,1/R1(ii),1/(R2(ii)*(1+step)),B1(ii)*(1+step),0,... 
                esp,max(acq_echo)); 
            decay_dec_R2B1=M0(ii)*getsignal(... 
                1,1/R1(ii),1/(R2(ii)*(1-step)),B1(ii)*(1-step),0,... 
                esp,max(acq_echo)); 

             
            del2M_delR22=(decay_inc_R2.'+decay_dec_R2.'... 
                -2*M0(ii)*norm_decay_curves(:,ii))/(R2(ii)*step)^2; 
            del2M_delB12=(decay_inc_B1.'+decay_dec_B1.'... 
                -2*M0(ii)*norm_decay_curves(:,ii))/(B1(ii)*step)^2; 
            del2M_delR2delB1=(decay_inc_R2B1.'-decay_inc_R2.'-... 
                decay_inc_B1.'... 
                +2*M0(ii)*norm_decay_curves(:,ii)-decay_dec_R2.'... 
                -decay_dec_B1.'+decay_dec_R2B1.')/2/(B1(ii)*step)/... 
                (R2(ii)*step); 
            if B1(ii)==180 
                del2M_delB12=zeros(size(del2M_delB12)); 
                del2M_delR2delB1=del2M_delB12; 
            end 
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            del2M_delM0rdelR2=real(delM_delR2)/M0_r(ii); 
            del2M_delM0idelR2=1i*imag(delM_delR2)/M0_i(ii); 
            del2M_delM0rdelB1=real(delM_delB1)/M0_r(ii); 
            del2M_delM0idelB1=1i*imag(delM_delB1)/M0_i(ii); 

             
            del2S_delM0rdelR2=sensitivities_for_this_point.*... 
                del2M_delM0rdelR2(acq_echo).*... 
                exp(phaseconst*mod(double(pelist),total_points)); 
            del2S_delM0idelR2=sensitivities_for_this_point.*... 
                del2M_delM0idelR2(acq_echo).*... 
                exp(phaseconst*mod(double(pelist),total_points)); 
            del2S_delM0rdelB1=sensitivities_for_this_point.*... 
                del2M_delM0rdelB1(acq_echo).*... 
                exp(phaseconst*mod(double(pelist),total_points)); 
            del2S_delM0idelB1=sensitivities_for_this_point.*... 
                del2M_delM0idelB1(acq_echo).*... 
                exp(phaseconst*mod(double(pelist),total_points)); 
            del2S_delR22     =sensitivities_for_this_point.*... 
                del2M_delR22(acq_echo).*... 
                exp(phaseconst*mod(double(pelist),total_points)); 
            del2S_delB12     =sensitivities_for_this_point.*... 
                del2M_delB12(acq_echo).*... 
                exp(phaseconst*mod(double(pelist),total_points)); 
            del2S_delR2delB1 =sensitivities_for_this_point.*... 
                del2M_delR2delB1(acq_echo).*... 
                exp(phaseconst*mod(double(pelist),total_points)); 

             
            %Hessian calculation 
            hessiant(0*numpts+ii,2*numpts+ii)=... 
                2*sqrtweights'.*[real(del2S_delM0rdelR2);... 
                imag(del2S_delM0rdelR2)]'*... 
                return_cost(1:(2*length(signal_r))); 
            hessiant(2*numpts+ii,0*numpts+ii)=... 
                hessiant(0*numpts+ii,2*numpts+ii); 
            hessiant(0*numpts+ii,3*numpts+ii)=... 
                2*sqrtweights'.*[real(del2S_delM0rdelB1);... 
                imag(del2S_delM0rdelB1)]'*... 
                return_cost(1:(2*length(signal_r))); 
            hessiant(3*numpts+ii,0*numpts+ii)=... 
                hessiant(0*numpts+ii,3*numpts+ii); 
            hessiant(1*numpts+ii,2*numpts+ii)=... 
                2*sqrtweights'.*[real(del2S_delM0idelR2);... 
                imag(del2S_delM0idelR2)]'*... 
                return_cost(1:(2*length(signal_r))); 
            hessiant(2*numpts+ii,1*numpts+ii)=... 
                hessiant(1*numpts+ii,2*numpts+ii); 
            hessiant(1*numpts+ii,3*numpts+ii)=... 
                2*sqrtweights'.*[real(del2S_delM0idelB1);... 
                imag(del2S_delM0idelB1)]'*... 
                return_cost(1:(2*length(signal_r))); 
            hessiant(3*numpts+ii,1*numpts+ii)=... 
                hessiant(1*numpts+ii,3*numpts+ii); 
            hessiant(2*numpts+ii,2*numpts+ii)=... 
                2*sqrtweights'.*[real(del2S_delR22);... 
                imag(del2S_delR22)]'*... 
                return_cost(1:(2*length(signal_r))); 
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            hessiant(3*numpts+ii,3*numpts+ii)=... 
                2*sqrtweights'.*[real(del2S_delB12);... 
                imag(del2S_delB12)]'*... 
                return_cost(1:(2*length(signal_r))); 
            hessiant(2*numpts+ii,3*numpts+ii)=... 
                2*sqrtweights'.*[real(del2S_delR2delB1);... 
                imag(del2S_delR2delB1)]'*... 
                return_cost(1:(2*length(signal_r))); 
            hessiant(3*numpts+ii,2*numpts+ii)=... 
                hessiant(2*numpts+ii,3*numpts+ii); 
        end 

         
    end %Looping over fitted image points   
    varargout{1}=jac; 
    if nargout>2 
        hessiany=hessiany+2/lambda*... 
            jac((2*length(signal_r)+1):end,:)'*... 
            jac((2*length(signal_r)+1):end,:); 
        hessiant=hessiant+... 
            2*jac(1:(2*length(signal_r)),:)'*jac(1:(2*length(signal_r)),:); 
        beta=4/lambda^2*(jac((2*length(signal_r)+1):end,:)'*... 
            return_cost((2*length(signal_r)+1):end))'/... 
            (hessiant+lambda*hessiany)*... 
            (jac((2*length(signal_r)+1):end,:)'*... 
            return_cost((2*length(signal_r)+1):end)); 
        t=sum(return_cost(1:(2*length(signal_r))).^2); 
        y=1/lambda*sum(return_cost((2*length(signal_r)+1):end).^2); 
        q=t/lambda/y; 
        kappa=q/(1+q^2)^(3/2)*(q*(lambda*beta)^-1*y - (q+1)); 
        varargout{2}=kappa; 
%         save analytic_jac 
    end 
end %calculating jacobian, and return from here 

  
function echo_amp = getsignal(M0,T1,T2,flip_angle,prepTEs,TE,ETL) 
    % Computes the normalized echo decay curve for a MR spin echo 
    % sequence with the given parameters. 
    % 
    % ETL: Echo train length (number of echos) 
    % flip_angle: Angle of refocusing pulses (degrees) 
    % TE: Interecho time (seconds) 
    % T2: Transverse relaxation time (seconds) 
    % T1: Longitudinal relaxation time (seconds) 
    % M0: Signal density (a.u.) 
    % prepTEs: T2-prep duration, must be an odd integer 
    ETL=double(ETL); 

     
    flip_angle=flip_angle*pi/180; 

     
    % Initialize magnetization phase state vector (MPSV) 
    flip_angle_exc=90*pi/180; 
    M=zeros(3*(ETL+prepTEs),1); 
    M(1)=exp(-(TE/2)/T2)*sin(flip_angle_exc); %excited F1 
    M(3)=(1-(1-cos(flip_angle_exc))*exp(-(TE/2)/T1)); %excited Z 
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    % Compute relaxation matrix 
    T_r=relaxmat(ETL+prepTEs,TE,T2,T1); 
    % Initialize vector to track echo amplitude 
    echo_amp=zeros(1,ETL); 
    % Compute flip matrix 
    [~,T_p]=flipmat(flip_angle,ETL+prepTEs); 

     
    % Perform flip-relax sequence ETL-1 times 
    for x=1:(ETL+prepTEs) 
        % Perform the flip         
        % Record the magnitude of the population 
        % of F1* as the echo amplitude 
        % and allow for relaxation 
        if x>prepTEs 
            M=T_p*M; 
            echo_amp(1,x-prepTEs)=abs(M(2,1))*exp(-(TE/2)/T2); 
        elseif x==ceil(prepTEs/2) 
            M=T_p*M; 
        end 
        % Allow time evolution of magnetization between pulses 
        M=T_r*M; 
    end 
    echo_amp=echo_amp*M0; 
    return 

  
function [T_1,T_p] = flipmat(alpha,num_pulses) 
    % Computes the transition matrix that describes the effect of the 
    % refocusing pulse on the magnetization phase state vector. 

  
    % Compute the flip matrix as given by Hennig (1988), but corrected by 
    % Jones (1997) 
    T_1=[cos(alpha/2)^2,sin(alpha/2)^2,-1i*sin(alpha);... 
        sin(alpha/2)^2,cos(alpha/2)^2,1i*sin(alpha);... 
        -0.5i*sin(alpha),0.5i*sin(alpha),cos(alpha)]; 
    % Create a block matrix with T_1 on the diagonal and zeros elsewhere 
    T_p=spalloc(3*num_pulses,3*num_pulses,9*num_pulses); 
    for x=1:num_pulses 
        T_p(3*x-2:3*x,3*x-2:3*x)=T_1; 
    end 
    return 
  

 

 
function T_r = relaxmat(num_states,te,t2,t1) 
    % Computes the relaxation matrix that describes the time evolution of 
    % the magnetization phase state vector after each refocusing pulse. 

  
    % Create a matrix description of the time evolution as described by 
    % Hennig (1988) 
    T_r=zeros(3*num_states,3*num_states); 
    % F1* --> F1 
    T_r(1,2)=exp(-te/t2); 
    % F(n)* --> F(n-1)* 
    for x=1:num_states-1 
        T_r(3*x-1,3*x+2)=exp(-te/t2); 
    end 
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    % F(n) --> F(n+1) 
    for x=1:num_states-1 
        T_r(3*x+1,3*x-2)=exp(-te/t2); 
    end 
    % Z(n) --> Z(n) 
    for x=1:num_states 
        T_r(3*x,3*x)=exp(-te/t1); 
    end 
    T_r=sparse(T_r); 
    return 

 

 


