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Introduction 

I.1 Specific Aims 

Primary and metastatic liver cancers are a considerable and increasing U.S. and 

global health concern. Patients presenting with hepatic tumors are preferably treated with 

surgical resection which has a record of long-term patient survival. While resection has 

proven effective and can be potentially curative, constraints associated with risk and patient 

suitability narrow the population of patients eligible to receive this approach to only around 

10-30%. More local therapies, such as thermal ablation, have received increased indications 

for use in recent years including the treatment of surgically unresectable malignancies. A 

combination of recent advances in neoadjuvant care, therapeutic options, and improved 

patient selection criterion have improved the survival rate of patients receiving primary 

ablative treatments for hepatic cancers to be comparable to the clinical standard set by 

surgical resection. As they inherently target internal structures, the efficacy of ablation 

methods is highly reliant on accurate localization and targeting of subsurface anatomies 

during a procedure, as inaccurate delivery can lead to incomplete treatment and local 

recurrence. 

This dissertation advances image-guided hepatic microwave ablation by developing 

methods which provide enhanced procedural planning and intraoperative tumor localization. 

A true multiphysics framework is developed herein which utilizes patient-specific 

therapeutic predictive modeling and advanced surgical navigation methodologies. The 

guidance approach applied in this work creates a spatial mapping between information-rich 

preoperatvely acquired image data and the state of the patient during therapy. This 
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registration is further enhanced by the application of a biomechanical model which corrects 

for soft-tissue deformation that occurs peri-operatively. This approach allows physicians to 

effectively navigate to a targeted lesion by using the registered and corrected preoperative 

image data for intraoperative guidance. Furthermore, this work develops and presents a 

proof-of-concept for image-data driven patient-specific predictive modeling of microwave 

ablation. This is the first work to demonstrate a model-based therapeutic and guidance 

framework for hepatic ablation procedures. The results demonstrate the feasibility of such a 

multiphysics approach and represent a significant advancement towards a more 

comprehensive model-predictive paradigm for an important image-guided therapeutic 

process in use today. 

The primary objective of this dissertation was to advance image-guided hepatic 

microwave ablation by developing methods which provide enhanced procedural planning 

and intraoperative anatomical localization. The following tasks were accomplished to meet 

this goal: 1) methods were developed to address variations in image-to-physical registration 

data quality which can present between cases and physicians, 2) a deformation correction 

method was applied within the context of image-to-physical registration for image-guided 

microwave ablation, 3) a procedural model of hepatic microwave ablation procedures was 

developed, and 4) these methods were evaluated within the scope of phantom and clinical 

data. The results and applications presented in this work represent an important advancement 

in the field of image-guided hepatic microwave ablation. The breadth of this dissertation was 

defined by the following specific aims. 

I.1.1 Aim 1: Advances in Image-Guidance Techniques 

The first aim of this project was to improve upon current image-guided liver surgery 
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(IGLS) techniques by developing a sparse surface data resampling method to normalize the 

quality and extent of intraoperatively collected IGLS data. Further, a procedure for creating 

clinically-inspired ground truth phantom data was developed. This human-to-phantom data 

framework provides a valuable methodology for current and future IGLS methods 

validation. Its use within this study allowed for the characterization of the accuracy and 

variation associated with current IGLS localization methods as well as the newly developed 

data resampling approach. 

I.1.2 Aim 2: Application of Deformation Correction to Image-Guided Ablation 

 The second aim of this project was to apply multiphysics modeling for 

comprehensive guidance in image-guided hepatic microwave ablation. A retrospective, best-

fit model of microwave ablation was developed and applied alongside current rigid and 

deformation correction IGLS registration methods. The combined methods were evaluated 

within a series of clinically-relevant deformable hepatic ablation phantoms and represent the 

first application and evaluation of a combined procedural modeling and enhanced image-

guidance approach for hepatic microwave ablation procedures. 

I.1.3 Aim 3: Prospective Computational Modeling of Microwave Ablation 

 The final aim of this project was to develop a truly prospective patient-specific 

model of microwave ablation procedures. The method developed in this aim modified the 

previous approach developed in Aim 2 by approximating patient-specific tissue properties 

based from a prior quantitative medical imaging of tissue fat content. The model was 

evaluated with observed ablation extent and temperature profiles within a series of agar-

albumin ablation phantoms and represents an advancement towards image-data driven 
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patient-specific predictive procedural modeling. 

I.2 Dissertation Overview 

This dissertation begins in Chapter II with an introduction to the clinical significance 

of liver cancers, image-guidance techniques, and the fundamental basis and current research 

trends for hepatic microwave ablation procedural modeling. A thorough description of the 

common methods used throughout the aims of this project are presented in Chapter III, 

including patient and phantom data collection and image-to-physical registration. The 

following chapters of this dissertation go into detail regarding the previously defined specific 

aims. Chapter IV describes the development and results of the human-to-phantom data 

framework and surface data resampling method. Chapter V describes the development of a 

retrospective, best-fit microwave ablation model and its application alongside current IGLS 

techniques in phantom image-guided microwave ablation procedures. Chapter VI defines a 

methodology which further develops the microwave ablation model from Chapter V into a 

truly prospective approach which exploits quantitative medical imaging of organ fat content. 

Finally, Chapter VII presents the overall contributions and conclusions of this dissertation 

and suggests future directions for investigation. 
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Background 

II.1 Clinical Significance and Management 

 Primary and metastatic liver cancers are an increasing U.S. and global health 

concern. With an estimated 145,000 cases annually, colorectal cancer is the 3rd most 

diagnosed cancer in the U.S [1]. Additionally, upwards of 35% of colorectal cancer patients 

at the time of surgery and 70% in the lifespan of their disease are estimated to present with 

liver metastases [2-7]. When combined with an annually estimated 40,000 new diagnoses of 

primary liver cancer, liver tumors are present in greater than 5% of U.S. cancer diagnoses 

each year [1]. Furthermore, when considering the lifespan of these diseases and mortality, 

liver tumors contribute to greater than 10% of annual cancer-related deaths in the U.S. [1]. 

Additionally, although less common, metastatic liver cancer can arise from primary breast, 

esophageal, stomach, pancreatic, lung, kidney, skin, and other cancers. Globally, over 

782,000 primary liver cancer and 1.36 million colorectal cancer patients are diagnosed 

annually, contributing to over 1.23 million deaths [8].  

Preferably, patients presenting with primary and metastatic hepatic tumors are treated 

with surgical resection [9-10] due to a record of long-term patient survival (e.g. providing 

five-year survival of 44-50% in patients with metastatic colorectal cancer [11]). Recent 

advances in surgical approach have expanded the indications for hepatic resection to include 

patients with more complex disease and therefore improved patient eligibility. Additionally, 

more complex procedures (e.g. two-stage hepatectomy [12], multi-segment resection [13-

14], and ablation assisted resection [12-14]) are now being performed. These advances are 

in part due to improvements in procedural safety and the application of advanced image-
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guidance and surgical navigation techniques. Such methods aim to provide accurate 

localization of relevant anatomical structures for the real-time guidance of surgical 

procedures. Treatment selection for hepatic tumors requires the consideration of multiple 

factors such as the number and distribution of lesions, accessibility of vascular control, the 

presence of extrahepatic disease, and the expected residual volume of functional liver. While 

resection has proven effective and can be potentially curative, more aggressive approaches 

risk impairing normal liver function which can lead to post-operative liver failure [15]. With 

these considerations, only between 10-30% of patients are eligible for surgical resection [16-

17]. 

Loco-regional therapies, such as thermal ablation, have received increased 

indications for use in neoadjuvant roles, ablation assisted resection, and for the treatment of 

unresectable hepatic malignancies [18-30] and can be performed in open, laparoscopic, or 

percutaneous settings. While radiofrequency ablation (RFA) is the most common ablative 

therapy used clinically, it has presented a relatively high local recurrence rate (12-39%) when 

compared to microwave ablation (MWA) (6-8.8%) [20-24]. Additionally, in matched cohort 

studies, patients receiving MWA saw improved survival compared to those receiving RFA 

[21-22]. Furthermore, MWA has received considerable interest due to its larger spatial extent 

of power distribution, penetration through charred tissues, and ability to ablate up to and 

around large vessels [21-22, 31]. Due to advances in neoadjuvant care, therapeutic options, 

and improved patient selection criterion, the 5-year survival rate for patients receiving 

ablation treatments for hepatic colorectal cancer metastases has improved from 18.9% in 

2000 to 53.3% in 2014 [29]. More recent studies specifically concerning MWA treatment 

presented 4-year survival rates of 58.3% when treating colorectal cancer metastases and 

79.4% for other pathologies [18] and median survival of 38.3 months for hepatocellular 
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carcinoma and 36.3 months for colorectal cancer metastases [19]. 

II.2 Image-Guidance 

 As they inherently target internal structures, the efficacy of ablation and resection 

procedures is highly reliant on accurate localization and targeting of subsurface anatomies 

during a procedure, as inaccurate delivery can lead to incomplete treatment and local 

recurrence [32]. As such, ablations are generally performed using image-guidance (e.g. 

traditionally intraoperative ultrasound imaging (iUS) or computed tomography (CT)) to 

assist in tumor localization and probe placement. Image-guidance, in medicine, is a broad 

term which has come to encompass the use of imaging modalities which augment the 

delivery of therapy and can be utilized in any of the following distinct ways: planning, 

assessment, targeting, and monitoring [33]. Planning and assessment are generally 

perioperative applications of image-guidance. Planning in image-guidance has come to 

encompass the use of imaging data to diagnose, determine patient suitability, and to develop 

a procedural plan. Assessment entails the use of postoperative medical imaging (either 

immediately or in follow-up) to gauge the success of therapeutic delivery. Targeting and 

monitoring applications of image-guidance are utilized during therapeutic delivery. 

Targeting is the use of imaging to improve the localization and efficacy of therapeutic 

delivery (e.g. ablation antenna, biopsy needle, or resection plane). Ideal targeting systems 

provide clear localization of the tumor, procedural hardware, and other relevant critical 

anatomy in real-time [34-36]. For the purposes of ablation, physicians rely heavily on 2D 

iUS for targeting; however, techniques have been described for more workflow cumbersome 

modalities such as intraoperative CT and MRI [37]. Monitoring in image-guidance describes 

imaging to observe the impact of a procedure during application. MRI and US techniques 
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have both been described for visualizing the thermal fronts associated with ablation, however 

MRI is currently the only imaging modality with well-validated temperature monitoring for 

temperatures exceeding 50°C [38].  

However, with these methods, real-time localization, monitoring, and assessment are 

still extremely limited in the operating room. Advanced surgical navigation approaches have 

been used to create a spatial mapping between surgical instrumentation and imaging data to 

improve visualization of anatomical structures. These techniques allow for the tracking of 

surgical tools in the operating room and viewing of their predicted location in the 

information-dense preoperative image data. The following sections discuss the historical 

development of surgical navigation for image-guidance within the liver and current state-of-

the-art techniques. 

II.2.1 Rigid Registration and Image-Guided Liver Surgery 

 Several studies have investigated image-to-physical registration methods for 

application in IGLS. Rigid registration techniques were first developed to align 

preoperatively acquired image data to a representation of physical space in the operating 

room. This alignment has generally been achieved using point-based or surface-based 

methods. For point-based rigid registration methods, corresponding points are acquired in 

both image and physical space. These points may represent particular anatomical landmarks 

or artificial fiducial markers. Such point-based registration methods provide an optimal rigid 

body transformation that aligns the corresponding points but are therefore highly influenced 

by the accuracy of demarcating points (i.e. fiducial localization error (FLE)). These point-

based techniques are not readily applicable in soft-tissue registration scenarios such as the 

liver, where precise surface features are absent. 
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For surface-based rigid registration methods, corresponding surfaces, rather than 

points, are aligned. Often iterative in nature, these algorithms search to minimize an objective 

function that is typically defined by a measure of residual closest point distance between the 

two surfaces. For example, the iterative closest point (ICP) algorithm conducts a series of 

point-based registrations, determining a new point correspondence at each iteration and 

continuing until the selected objective function is minimized [39]. Such methods are limited 

in their ability to determine true surface correspondence and are therefore dependent on a 

reasonable initial orientation.  

Cash et al. described a method of rigid registration for IGLS that determines an initial 

rigid image-to-physical alignment through a point-based fiducial registration that was then 

followed by a surface-based ICP registration [40]. However, this method was still influenced 

and hindered by the identification of anatomical fiducials in soft-tissue (i.e. FLE) [41]. A 

current clinical protocol for surface-based rigid registration in IGLS was introduced by 

Clements et al. [42]. This salient-feature weighted ICP rigid image-to-physical registration 

utilizes homologous anatomical features that can be identified in both image and physical 

space (e.g. the falciform ligament, left and right inferior ridges, and round ligament) to bias 

point correspondence estimation at each iteration of the ICP registration. The biased 

weighting scheme is dynamic through iterations of the algorithm allowing the anatomical 

features to produce a robust initial alignment while providing support to the digitized organ 

surface in later iterations. With this method, correspondence is estimated using a 

conventional closest point operator with a weighting scheme which biases correspondence 

between points identified to belong to homologous features. The algorithm provides a rigid 

transformation which minimizes the distance between the surface of a 3D model generated 

from preoperative imaging and the digitized intraoperative organ surface data. 
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II.2.2 Image-Guided Ablation Procedures 

 Recent applications of such work to image-guided ablation procedures have 

reported enhanced localization of tumors and improved accuracy of ablation antenna 

placement in open [43-47] and laparoscopic procedures [48-50]. These methods have 

employed a variety of electromagnetic (EM) tracking and image-to-physical registration 

methods to provide enhanced image-guidance. Sindram et al. intraoperatively tracked the 

real-time position and orientation of an ablation antenna and iUS image plane using optical 

[45] and later EM-tracking strategies [48]; presenting the physician with an enhanced 3D US 

image with visualization of the ablation antenna tip. In a study by Hammill et al., MWA 

antennas were placed using iUS-guidance with optical tracking. Rigid image-to-physical 

feature-based registration was used to display the tracked iUS and ablation antenna within 

the preoperative image space [46]. In a similar study, Banz et al. determined image-to-

physical space registrations to visualize optically tracked intraoperative tools in relation to 

preoperative imaging data using landmark-based and iUS vessel-based alignment strategies 

[47]. Recently, such methods have been applied to the laparoscopic environment using EM-

tracked enhanced US guidance [49] and optical tracking with landmark based image-to-

physical registration [50]. These techniques have presented greater efficiency in MWA 

antenna placement and higher procedural success in comparison to purely iUS guided prior 

studies. However, to date, image-guided ablation methods providing image-to-physical 

registration have been limited to rigid registration approaches, which neglect soft-tissue 

deformations that occur from organ mobilization during procedures and can cause substantial 

registration error [51]. EM-tracking methods avoid this issue by limiting tracking to the real-

time position of surgical tools and iUS imaging. However, when compared to image-to-

physical registration the EM-tracking approach limits the subsurface information that is 
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provided and loses efficacy when targeting lesions in cirrhotic patients or in those with 

chemotherapy-induced hyperechogenicity associated with steatosis, both which can 

compromise ultrasound lesion visualization [52-54]. 

II.2.3 Deformation Correction 

 A 2005 review by Hawkes et al. identified critical limitations of rigid-based 

registrations in soft tissue environments [51]. In the surgical and laparoscopic settings, the 

organ is first separated from abdominal ligamenture and often mobilized for surgical 

presentation by posteriorly placing supportive packing material. These changes in support 

manifest as deformations (i.e. global shape changes) when comparing the organ in imaging 

data to the intraoperative state. Several model-based soft-tissue deformation correction 

approaches have been presented in the literature for image-to-physical registration for 

hepatic resection. For example, Lange et al. published an algorithm using thin-plate splines 

to deform preoperatively acquired vessels to intraoperative vessels acquired from tracked 

iUS [55]. More recently, Hu et al. presented a method using coherent point drift to nonrigidly 

register vessel landmarks, such as bifurcations [56]. Alternatively, other approaches have 

concentrated on achieving surface-based deformation correction methods. Miga et al. 

proposed a biomechanical model for neurosurgery driven by laser range scan (LRS) surface 

acquisition which was validated with residual surface error [57]. Cash et al. introduced a 

linear elastic model approach to incrementally apply closest point boundary conditions to 

deform a preoperative organ model to intraoperatively collected sparse surface data 

following rigid registration [58]. Dumpuri et al. then improved upon these methods by 

applying a surface Laplacian based filter to improve the determination of boundary 

conditions [59]. Rucker et al. described an inverse approach which optimizes boundary 
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conditions described by a parameterized posterior displacement field, based on the reality of 

organ deformation during operative mobilization, to minimize the residual error between the 

intraoperatively collected anterior surface digitization and the deformed model surface [60]. 

More recently, Heiselman et al. expanded upon the work of Rucker et al. by reformulating 

the application of boundary conditions to a control point strategy which allows for multiple 

independent support surfaces to be designated [61]. Both methods have demonstrated 

effective correction of soft-tissue deformation in phantom and clinical applications for 

hepatic resection [60-64]. 

II.3 Procedural Planning Methods 

 For planning ablation procedures, MWA device manufacturers currently provide 

2D specifications for generating expected ablation volumes given specific power and time 

settings. These estimates are empirically derived from ablations observed within ex vivo 

animal tissue. In doing so, these models ignore the influence of patient-specific anatomical 

variation, tissue heterogeneity, cross-patient differences in disease state, and tissue perfusion. 

As a result, the manufacturer specifications are often larger and more uniform than clinically 

observed ablations [65-66]. Moreover, there is often no integration of these 2D predictions 

with the 3D patient images, placing burden on the physician to mentally reconstruct and 

compare complex volumes. The development of clinically accurate, computational models 

of MWA procedures presents a powerful alternative to the ablation zone estimates provided 

by manufacturers and a lower-cost, less cumbersome alternative to interventional imaging 

strategies. 

Computational models of MWA employ numerical methods to solve the differential 

equations governing electromagnetic wave propagation, power deposition, and biological 
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heat transfer and have been investigated within the literature for two distinct purposes: (1) 

assisting the optimization of ablation hardware design [67-71] and (2) more recently towards 

the eventual development of patient-specific treatment planning [72-76]. For clinical 

application, research into these approaches seeks to provide more accurate and reliable 

estimates of personalized procedures for the purposes of planning, guidance, and assessment. 

When considering the shortcomings of the manufacturer provided estimates, computational 

models tailored to an individual could incorporate specifications for geometric, dielectric, 

and thermal properties of the tissue. Sensitivity studies performed on models of 2.45 GHz 

MWA have expressed the extensive influence that these tissue properties have on MWA 

models, especially the dielectric properties and the rate of blood perfusion [77-78]. Recent 

studies at both 915 MHz and 2.45 GHz frequencies have incorporated tissue properties that 

vary as a function of temperature as derived from experimental measurements [74-76] or due 

to dynamic changes in tissue water content and blood perfusion [79-83].  

However, an inherent shortcoming in these models is that they neglect the variation 

in material properties that can occur between patients. A recent study in MWA antenna 

design concluded that there is a need for more accurate and comprehensive modeling of 

dielectric and thermal tissue properties [71]. Presently, patient-specific organ material 

properties are unavailable in a clinical setting. As such, these various models of tissue 

properties are often derived from experimental conditions in ex vivo animal tissue. 

Furthermore, there is clear variation when considering patients presenting with other 

common disease states such as cirrhosis or fatty liver disease [84-85]. Therefore, a need 

exists for modeling frameworks that account for patient-specific variations in the state of 

organ tissue and disease.  One possibility is to use MRI [86] or US [87] methods to non-

invasively measure quantities that could be correlated to material property changes (e.g. 
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varying liver fat content may significantly affect dielectric and thermal properties). 

Therefore, there exists potential that a priori knowledge of organ disease state, such as this, 

may be used to facilitate predictive modeling of thermal ablation. 

The following sections will discuss the foundational basis for the computational 

modeling of microwave ablation, modeling approaches in the literature, approaches to 

determining relevant material properties, and preoperative planning methods. 

II.3.1 Computational Modeling of Microwave Ablation 

 Computational models of MWA employ numerical methods to solve the 

differential equations governing electromagnetic wave propagation, power deposition, and 

biological heat transfer and can be used to predict the volume of tissue damage induced 

during therapy. Tissue damage is a function of temperature and length of exposure. 

Therefore, accurate prediction of temperature development and distribution is crucial. 

Thermal development is a product of the deposition of microwave energy within the tissue 

and subsequent heat transfer to neighboring tissue. The following text will review the 

computational framework used to approximate these phenomena and the resulting tissue 

damage. 

II.3.1.1 Electromagnetic Wave Propagation 

 The motion and absorption of microwaves in tissue is governed by Maxwell’s 

equations (presented in both differential and phasor form): 

∇ ∙ 𝐸⃑ =  
𝜌

𝜀
 

  
Eq. II.1 

∇ ∙ 𝐻⃑⃑ =  0 
 Eq. II.2 
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∇ × 𝐸⃑ =  −
𝜕𝐵⃑ 

𝜕𝑡
 ∇ × 𝐸⃑ = −𝑗𝜔𝜇𝐻⃑⃑  Eq. II.3 

∇ × 𝐻⃑⃑ =  𝜎𝐸⃑ +  𝜀
𝜕𝐸⃑ 

𝜕𝑡
 ∇ × 𝐻⃑⃑ = 𝑗𝜔𝜀𝑐𝐸⃑  Eq. II.4 

where 𝐸⃑  [V/m] is the electric field strength, 𝐻⃑⃑  [A/m] is the magnetic field strength,  𝜌 [C/m2] 

is the free charge density, 𝜔 [rad/s] is the angular frequency of the electromagnetic wave, 𝜀 

[F/m] is the permittivity, and 𝜇 [H/m] is the permeability. Eq. II.1, II.3, and II.4 may be 

combined under the assumption that no initial charge is present within the medium to arrive 

at the electromagnetic wave equation – which describes the propagation of electromagnetic 

waves through a medium (presented in both differential and phasor form).  

(∇2 − 𝜇𝜀
𝜕2

𝜕𝑡2
) 𝐸⃑ = 0 (∇2 +  𝜔2𝜇𝜀𝑐)𝐸⃑ = 0 Eq. II.5 

Eq. II.5 describes the propagation of electromagnetic waves through a medium. The 

absorption of electromagnetic power in tissue is a function of electrical conductivity σ [S/m] 

and dielectric permittivity ε [F/m]. Electromagnetic energy deposition in a medium is 

characterized by the medium’s loss tangent, which is defined as σ/ωε. The medium is 

considered to be a low loss material, i.e. one that does not absorb much energy from a 

propagating wave, when σ/ωε << 1. A medium is considered lossy when σ/ωε ~ 1, in which 

case the material absorbs a large amount of energy from propagating electromagnetic waves. 

The loss tangent of a material may further be lumped together as a single, complex valued 

number known as the complex permittivity: 

𝜀𝑐 =  𝜀𝑟 − 𝑗
𝜎

𝜔𝜀0

 Eq. II.6 

where 𝜀𝑟 is the real relative permittivity of the material and 𝜀0 is the permittivity of free space. 

Most organ tissue is considered lossy and in soft tissue particularly, both 𝜎 and 𝜀 have been 

shown to vary with frequency, temperature, and water content. Therefore, for the 
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development of a wholly accurate ablation model it is important to characterize a tissue’s 

electromagnetic properties. 

II.3.1.2 Biological Heat Transfer 

For modeling of thermal development and heat transfer the temperature profile in 

tissue is most often solved using Pennes bioheat equation: 

𝜌𝑐
𝜕𝑇

𝜕𝑡
=  ∇ ∙ 𝑘∇𝑇 + 𝑄 − 𝑄𝑝 +  𝑄𝑚 Eq. II.7 

where 𝜌 [kg/m3] is mass density, c [J/kg·K] is specific heat capacity, k [W/m·K] is thermal 

conductivity, T [K] is temperature, Q [W/m3] is heat generation due to absorbed 

electromagnetic energy, Qp [W/m3] is heat loss due to perfusion, and Qm [W/m3] is metabolic 

heat generation. Heat loss due to perfusion is calculated as follows: 

𝑄𝑝 =  𝜔𝑏𝑙𝑜𝑜𝑑𝑐𝑏𝑙𝑜𝑜𝑑(𝑇 − 𝑇𝑏𝑙𝑜𝑜𝑑) Eq. II.8 

where 𝜔𝑏𝑙𝑜𝑜𝑑 [kg/m3·s] is the blood perfusion rate, 𝑐𝑏𝑙𝑜𝑜𝑑 [J/kg·K] is the specific heat capacity 

of blood, and 𝑇𝑏𝑙𝑜𝑜𝑑 [K] is the blood temperature, 310.15°K (37°C). Metabolic heat generation 

is often assumed to be negligible. Heat generation due to the absorbed electromagnetic 

energy is computed directly from the electric field distribution: 

𝑄 =  
1

2
𝜎|𝐸|2 Eq. II.9 

Specific absorption rate (SAR) is often reported in the literature and is Q normalized by 

tissue density. Both 𝑘 and 𝑐 vary with temperature and water content. Therefore, 

characterization of these properties is essential to the accurate prediction of temperature. 

II.3.1.3 Prediction of Tissue Necrosis 

Thermally-induced tissue damage is a function of both instantaneous temperature and 

thermal history. Reviews of methods used for quantifying tissue damage due to hyperthermia 
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exist in the literature [88-90]. The Arrhenius damage integral can be used to estimate the 

degree of damage to cells in tissue experiencing hyperthermia: 

α = ∫ 𝐴𝑒𝑥𝑝 (−
𝐸𝑎

𝑅𝑇(𝑡)
) 𝑑𝑡

𝑡

0

 Eq. II.10 

where α is the degree of damage at a given time, A [1/s] is a frequency factor, 𝐸𝑎 [J/mol] is 

the activation energy required to damage tissue, R [J/mol·K] is the universal gas constant, 

and T(t) [K] is the temperature history of the tissue. Values of 𝐸𝑎 have been experimentally 

measured for various tissues [89]. The fraction of damaged tissue can then be determined by: 

𝜃𝑑 = 1 −  𝑒−𝛼 Eq. II.11 

In current models, critical temperature isotherms (55-60°C) are often used in lieu of 

Eq. II.10-11 as these contours often correspond with the visible treatment zone. Incorporation 

of more advanced tissue damage models, such as the Arrhenius damage integral, can further 

improve predictive modeling efficacy.  

II.3.2 Current Ablation Modeling Research 

The following section discusses computational models of MWA of varying 

complexities. The simplest model of MWA derives tissue temperature directly from a steady 

state solution to electromagnetic energy deposition by neglecting transient material 

properties and thermal contributions from metabolism, conduction, and perfusion in Eq. II.7 

as follows: 

𝑄 =  𝜌𝑐
𝜕𝑇

𝜕𝑡
 Eq. II.12 

With this method, a steady-state solver is used to solve the electromagnetic problem 

and determine energy deposition (often precomputed for a generic geometry as SAR) and 

resistive heating in tissue, Q, from which determining the temperature is straightforward. 
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The deposition of electromagnetic energy has been reported to be the major contributor to 

heat transfer in thermal ablation techniques. This method is attractive for situations which 

require a fast solution (i.e. when a first-order approximation is appropriate). SAR models are 

often used during optimization and validation of thermal ablation antenna in ex vivo tissue 

[67-71, 91-92]. 

More complex models of MWA incorporate thermal conduction and blood perfusion 

in the bioheat equation (Eq. II.7), which has been shown to have a large impact on ablation 

zone extent [81-83]. The simplest implementations of this method assume that tissue material 

properties remain at steady-state throughout simulation [93-95]. By holding tissue properties 

constant, these models are only coupled in one dimension. Therefore, as before, the 

electromagnetic problem is solved once to establish the electric field and is not required to 

be updated. Consequently, temperatures obtained from these models are unrealistically large 

in comparison to experimentally recorded temperatures since tissue properties have been 

found to change as a function of temperature (e.g. which lead to a dynamically changing 

electric field in vivo) [79-80]. Although predicted temperatures are large, the geometric 

extent of predicted ablation zones correlate with ablation zones observed in ex vivo 

procedures which is likely due to variability in the methods used to predict tissue necrosis. 

As tissue water content decreases from evaporation at higher temperatures, the tissue 

becomes less lossy. Therefore, microwave penetration depth is increased and less energy is 

absorbed near the antenna. While these models do address perfusion and large-vessel 

conduction, further work involving in vivo studies is certainly needed for accurate model 

development.  

Going further, sensitivity studies have highlighted the extensive influence that tissue 

properties have on computational MWA models [77-78]. More comprehensive models of 
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ablation have been presented which incorporate dynamic changes in tissue properties based 

on instantaneous temperature [74-76, 96-97] or tissue water content [92, 96]. Ji and Brace 

created temperature-dependent models of dielectric properties after measuring experimental 

values of ex vivo bovine tissue undergoing 2.45 GHz MWA. These empirically-derived 

temperature-dependent property models showed improvement when deployed within a 

computational model of MWA and compared to existing linear and static property models 

[75]. Deshazer et al. observed similar improvement in a comparable ex vivo study performed 

at 915 MHz but concluded that further investigation is needed to effectively model dielectric 

properties in this dynamic environment [74]. Liu and Brace then expanded on the previous 

work of [75] by adding in a tissue thermal mechanics component to account for tissue 

shrinkage that occurs with protein denaturing [76]. Yang et al. presented a model which 

incorporated dynamic changes in tissue properties from empirical formulae based on water 

content [92]. Their model presents a function to compute water content from instantaneous 

temperature and provides good correlation with experimentally measured temperatures and 

ablation zone extent. Cavagnaro et al. compared tissue property models based on 

instantaneous temperature and tissue water content and found that temperature-dependent 

property models should be utilized for high power ablations [96]. 

II.3.3 Hepatic Tissue Properties 

 Other groups have reported the sensitivity of MWA model results to material 

property values. Studies at both clinical frequencies of ablation have attempted to model 

tissue properties from experimental measurements. The following section discusses material 

property values, their dynamic nature, and property models that have been applied within the 

literature. 
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Dielectric material properties (i.e. relative permittivity and electrical conductivity) of 

normal and cancerous hepatic tissues have been reported in the literature. Stauffer et al. 

reported dielectric properties of HCC, mCRC, and normal hepatic tissue excised from human 

subjects – finding that relative permittivity and conductivity in tumors were 12% and 24% 

higher than in normal tissue respectively [85].  O’Rourke et al. measured dielectric properties 

of healthy and malignant human liver tissue, both ex vivo and in vivo. Their results agree 

with [85] indicating that dielectric properties are higher in malignant tissue when measured 

ex vivo [98]. However, in vivo measurements showed no significant differences in dielectric 

properties. Tissue dielectric properties are also temperature dependent due to protein and 

water content. Proteins in tissue denature at temperatures above 60°C causing irreversible 

changes to dielectric properties. Dielectric property changes as a function of temperature 

have been measured for temperatures below 60°C [99-100]. Relative permittivity decreases 

with temperature: -0.2/°C and -0.1/°C at 915 MHz and 2.45 GHz respectively [99-100]. 

Electrical conductivity increases with temperature: 1.33/°C and 0.4/°C at 915 MHz and 2.45 

GHz respectively [99-100]. Brace reported measurements of dielectric properties taken 

during RF ablation of ex vivo tissue that showed a sharp decline (~50%) at temperatures 

nearing 100°C – likely due to water vaporization [80]. At higher temperatures, which are 

regularly reached during thermal ablation, it is difficult to isolate the cause of changes to 

dielectric properties. Changes in dielectric properties have also been reported as a function 

of tissue water content [101]. Hepatic tissue becomes less lossy as water evaporates, resulting 

in greater microwave penetration and lower SAR.  

Thermal material properties (i.e. blood perfusion rate, density, specific heat capacity, 

and thermal conductivity) have been measured and reported in the literature. Tissue density 

is assumed to be constant with temperature. However, for procedures where the temperature 
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exceeds 100°C tissue density may be adjusted to account for water vaporization and tissue 

desiccation [99]. Specific heat capacity for various tissues has been reported [99]. 

Haemmerich et al. measured specific heat of bovine liver as a function of temperature up to 

85°C and found it to increase by up to 18% at high temperature [102-103]. Thermal 

conductivity has been measured as a function of temperature in ex vivo bovine liver and 

increased slightly with temperature at a rate of 0.00033/°C [104]. Changes to thermal 

conductivity at higher temperatures have not been presented. 

From Eq. II.8, heat loss by blood perfusion is proportional to the difference between 

inflow blood temperature and tissue temperature. Many models in the literature consider 

blood perfusion constant up until 60°C above which perfusion is assumed to cease due to 

collagen shrinkage in capillary walls. Schutt and Haemmerich showed that in hepatic RFA 

the choice of blood perfusion model substantially impacts the model-predicted ablation zone 

geometry [81]. Furthermore, differences in vasculature of tumor and healthy tissue likely 

introduce differences in blood perfusion. The Pennes bioheat equation (Eq. II.7) does not 

account for heat loss due to blood flow in large vasculature, i.e. the “heat sink effect”. 

Thermal ablations performed near these vessels are susceptible to heat transfer due to bulk 

blood flow. At this point in the literature, computational models of MWA have generally 

been investigated within phantom or ex vivo tissue and have neglected to account for tissue 

perfusion. 

II.3.4 Preoperative Planning Methods 

 Preoperative planning techniques for MWA may be used to facilitate the 

selection of risk-averse optimal antenna placements and trajectories by the physician. Zhai 

et al. (2008) presented a preoperative planning method for percutaneous MWA [72] which 



22 

 

 

allows for surgeons to iteratively adjust antenna position and trajectory within a 3D 

visualization of patient anatomy rendered from preoperative imaging. At each iteration, the 

SAR profile is solved with an analytical approximation based on input power parameters 

[105]. Temperature and cell death are then approximated directly from the SAR profile. The 

resulting necrotic field is then reconstructed within the 3D visualization, resulting in a 

manual determination of antenna placement. During the MWA procedure, the physician is 

provided with trajectory angle, puncture location on the skin, and penetration depth of the 

antenna to achieve the planned ablation. However, validation was limited. Results of the 

preoperative ablation prediction were manually registered to the postoperative follow-up CT 

and compared - providing no inclination of incurred registration error. 

Liu et al. (2013) presented an intraoperative planning method for hepatic MWA based 

on EM-tracked iUS and ablation antenna [106]. During the procedure, the physician selects 

4 anatomical landmarks from the 3D iUS imaging and then manually selects the 

corresponding locations from the preoperative CT to determine an image-to-physical 

registration. The plan for MWA antenna placement is then optimized such that: (1) the entire 

tumor and margin are covered by the necrotic zone, (2) the number of required ablations is 

minimized, (3) the number of insertions is minimized, and (4) critical structures are avoided. 

The predicted ablation zone is assumed to be ellipsoidal with major and minor axes defined 

by experimental observations [107-108]. Results presented a statistically higher success rate 

compared to procedures targeted only with 2D iUS. 

Berber (2015) presented patient outcomes following laparoscopic MWA using the 

Covidien Emprint Ablation System and planning application (Medtronic, Minneapolis, MN, 

USA) [109]. Patient preoperative CT images are loaded into the planning software and target 

lesions are manually labeled within a 4-panel multiplane view. An ablation zone label is then 
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automatically generated which encompasses the target lesion and a safety margin – given 

desired input power, tissue type, and procedural time. The elliptical contours defining the 

ablation zone may be adjusted manually, in which case procedural time adjusts accordingly. 

The relationship between ablation zone size, power, and time in a given tissue type are 

empirically predetermined. Additionally, the physician may adjust the MWA antenna 

between a set of trajectories which would provide the same ablation zone outcome – which 

in the case of the Covidien Emprint Ablation System is assumed to be purely spherical. No 

additional guidance is provided to further enhance MWA delivery. 

II.4 Summary  

Improved procedural efficacy and therapeutic outcomes have been presented from 

studies investigating preoperative planning and advanced navigational methods for MWA. 

Herein, we will advance current IGLS methods and show that soft-tissue deformation 

correction can be applied to image-guided MWA procedures to improve the accuracy and 

efficiency of intraoperative localization of internal anatomy and probe placement when 

compared to rigid registration methods. In addition, we will present a method for 

computational modeling of MWA which assumes patient-specific material properties from 

a priori quantitative medical imaging. This method will allow for more accurate predictive 

modeling of clinical MWA procedures by accounting for variation in material properties 

between patients. Furthermore, we present an initial study in which a retrospective 

computational model of MWA is integrated within the surgical navigation framework to 

evaluate the combined errors associated with localization and modeling. Moving forward, 

while providing anatomical localization is the principal feature of the applied navigational 

methods, it is equally interesting to extend biophysical modeling methods, such as predictive 
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MWA modeling, into the image-guidance domain. 
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Methodology 

The methods presented in the following sections describe the common supportive 

methods and techniques used throughout the aims of this project. In overview, these sections 

detail the protocols used to collect clinical IGLS data, the hardware and software required to 

create various phantom datasets, and the registration methods used to provide image-to-

physical alignment. 

III.1 Patient Data Collection 

III.1.1 Patient Geometric Model Construction 

 Preoperative patient image data for hepatic surgical navigation procedures 

typically consists of contrast-enhanced CT or MRI images from which relevant anatomical 

structures can be identified. Within this dissertation, segmentation of image-data (for both 

patient and phantom data) was performed using ITK-SNAP [110] which allows for both 

manual and semi-automated segmentation. During segmentation, the location of anatomical 

features of interest (e.g. artificial fiducial markers, the liver surface, tumors, and vasculature) 

can be identified. The segmentation process results in the generation of a binary mask of the 

particular anatomical feature (e.g. the bounding liver surface) which can then be used to 

generate a 3D surface using an implementation of the marching cubes algorithm [111] in the 

Visualization Toolkit (VTK) [112]. The surface is then smoothed with a radial basis function 

implemented by the FastRBF Toolbox (Farfield Technologies, Christchurch, New England) 

and input into a custom mesh generator (SPMESH) to create a mesh of tetrahedral elements 

with approximately 4 mm spacing [113]. Figure IV.2 presents an example segmented and 
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meshed patient liver before (red) and after (blue) the application of deformation. 

This meshed, preoperative patient geometric model is designed to predict how tissue 

deforms when subjected to appropriate boundary conditions representing the intraoperative 

organ state. The model assumes that the liver is an isotropic solid described by the 3D 

Navier-Cauchy equation: 

∇ (
𝐸

2(1 + 𝑣)(1 − 2𝑣)
∇ ∙ 𝑢) + (

𝐸

2(1 + 𝑣)
∇2𝑢) + F = 0 

Eq. III.1 

where E is Young’s modulus, v is Poisson’s ratio, u is the displacement vector, and F is the 

distribution of applied body forces. The Galerkin weighted residual method is applied using 

linear Lagrange basis functions on the tetrahedral geometric mesh to make solvable the linear 

system of partial differential equations: 

[𝐾]{𝑑} =  {𝑓} Eq. III.2 

where 𝐾 is a 3n x 3n global stiffness matrix, 𝑑 is the vector of nodal displacements, and 𝑓 is 

the vector containing boundary conditions and body force contributions. Equation III.2 can 

then be solved to resolve the unknown nodal displacements. 

III.1.2 Intraoperative Tracking and Digitization 

In this dissertation, an NDI Polaris Spectra (Northern Digital, Waterloo, ON, Canada) 

camera system in conjunction with an OR cart system running either NDI Track (Northern 

Digital, Waterloo, ON, Canada) or ExplorerTM Liver (Analogic Corporation, Peabody, MA) 

localization software were used to localize instrumentation in physical space with a high 

degree of accuracy (<0.5 mm [114]). The passive dual-camera system detects the location of 

geometric patterns of hyper-reflective spheres by emitting infrared light and detecting the 

reflections, from which the 3D location is triangulated. As such, the system requires 

unobstructed line of sight between tools and the camera. Different patterns of spheres can be 



27 

 

 

attached to different tools, allowing several tools to be identified and tracked simultaneously. 

The Polaris Spectra, a tracked manual stylus, and tracked ultrasound probe are presented in 

Figure III.1. 

 

Figure III.1. Example setup of image-guidance hardware. 

(Left) A Polaris Spectra camera system and OR cart. (Right, top) A 

passively tracked manual-stylus used for surface data collection and 

organ interrogation. (Right, bottom) A passively tracked ultrasound 

probe. 
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During surgery, following organ mobilization, the physician can utilize the tracked 

stylus to manually digitize the organ surface and particular salient anatomical features (e.g. 

the left and right inferior ridges and the attachment of the falciform ligament). This 

digitization creates a sparse 3D point cloud representing the spatial location of the organ 

surface and features within the OR which can then be used to drive image-to-physical 

registration methods. Example intraoperative sparse surface digitizations are presented in 

Figure IV.5.A with reference to the preoperative organ model. 

III.2 Phantom Data Generation 

 Various phantom models were used throughout each of the aims of this 

dissertation for both image-to-physical registration and MWA model validation. In Chapter 

IV, a polyvinyl alcohol (PVA) hepatic phantom was used to replicate the elastic properties 

of tissue to validate image-to-physical registration methods. In Chapters V-VI, an agar-

albumin phantom was used to provide a permanent thermal history following microwave 

ablation within the phantom.  

PVA phantom data were acquired consistent with the previously reported study by 

Rucker [60] and in the dissertation of Pheiffer [115]. The creation of a deformable hepatic 

PVA phantom begins by combining 7% w/v suspension of hydrolized PVA powder (Flinn 

Scientific, Batavia, IL) with cold water and heating to 80°C. After heating, 10% w/v glycerol 

(Fisher Scientific, Pittsburgh, PA) is added until the mixture is clear and achieves a low 

viscosity. Next, the container is tightly sealed to reduce dehydration and the gel is cooled to 

room temperature while being thoroughly mixed on a magnetic stir plate. Polymerization of 

the cryogel phantom is achieved by subjecting the mixture to a series of freeze-thaw cycles 

where the cryogel is cooled to -37°C over a 12-hour period and then gradually returned to 
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room temperature over the next 12 hours. The phantom utilized within Chapter IV was given 

a hepatic shape by pouring the cryogel into a liver-shaped mold prior before the freeze-thaw 

cycle. Additionally, 47 internal plastic beads were incorporated into the phantom prior to the 

freeze-thaw cycle to serve as ground truth registration targets. The phantom was imaged with 

CT in various arrangements, providing the outer boundary of the phantom surface and the 

coordinate of each internal target. 

The creation of an ablation phantom begins by combining 1.5 wt% agar-agar powder 

(Thermo Fischer Scientific, Waltham, MA) with purified water and gradually heating while 

being continuously stirred on a hot plate until boiling. After the gel has exceeded 60°C, 

vegetable shortening (Crisco, The J.M. Smucker Company, Orrville, OH) can be introduced 

to achieve a desired fat content. The solution is then cooled below 55°C with continuous 

stirring before adding 50 wt% liquid egg white (Break Free Liquid Egg Whites, The Kroger 

Company, Cincinnati, OH) and stirring for 1 minute. The phantom utilized within Chapter 

V was given a hepatic shape by pouring the agar gel into a liver-shaped mold, while the 

phantoms utilized within Chapter VI were set within a 1L cube. Following ablation, the 

phantom can be imaged with T2-weighted MRI to acquire the 3D extent of the ablation 

lesion. Additionally, the phantom can be sectioned along the centerline of the ablation 

antenna to provide a mock-histology view of the ablation lesion. 

III.3 Image-to-Physical Registration 

Two methods of image-to-physical registration were heavily utilized throughout this 

work: a conventional rigid registration method and a nonrigid registration approach which 

corrects for deformation. Rigid registration methods are currently the standard method used 

in commercial navigation systems. It is an essential OR requirement that these methods are 
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fast, however they rely on the assumption that the transformation from image to physical 

space is completely rigid. Therefore, these methods can behave poorly when used in the 

presence soft-tissue deformation. The rigid registration approach used throughout this work 

was initially presented by Clements [42] and is presented in Figure III.2. This salient-feature 

weighted iterative closest point registration utilizes homologous anatomical features to bias 

point correspondence estimation within an iterative closest point registration. This biased 

weighting scheme preferentially favors alignment of preoperatively designated anatomical 

features with corresponding intraoperatively designated features. This algorithm provides a 

coordinate transformation that minimizes the residual error between the preoperative and 

intraoperative organ surface data and is evaluated within Chapters IV and V of this work. 

 

Figure III.2. Flowchart detailing the salient-feature weighted iterative closest 

point rigid registration algorithm of Clements [42]. First, features are identified from 

the preoperative image and digitized from the intraoperative organ surface. Next, closest 

points are determined for each point in physical space to the corresponding image data. 

A point-based registration is then performed. New closest points are determined and 

point-based registrations performed until the error tolerance is met. 
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To better account for intraoperative soft-tissue deformations, a nonrigid, model-

based approach first described by Rucker [60] was utilized in Chapters IV and V of this 

work. This deformable registration applies the previously described patient geometric organ 

model within an inverse approach to rapidly minimize the difference between the model 

surface and the intraoperative surface data. The original method by Rucker [60] defines a 

posterior polynomial displacement field which provides a precomputed distribution of 

volumetric displacements to the biomechanical model. In the OR, an optimization is utilized 

to actively reconstruct these boundary conditions along with simultaneous updates to the 

physical space transformation until the shape of the preoperative organ surface matches the 

intraoperative counterpart. A modification to this method which introduced tangential 

components to the polynomial displacement field is presented in Chapter IV of this work. A 

further modification which reformulates the application of boundary conditions to a control 

point strategy [61], rather than a polynomial surface, is presented in Chapter V. 



Chapter IV 
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Normalizing Sparse Surface Data for 

Image-to-Physical Registration 

IV.1 Summary and Contributions 

In this chapter, a novel method (i.e. a human-to-phantom data framework) was 

introduced that allows for the development and testing of image-to-physical registration 

algorithms in the presence of deformation with internal targets for quantifying error and 

representing realistic clinical data acquisition. Furthermore, this chapter presents a surface 

data resampling method which was verified within this human-to-phantom data framework 

and was found to significantly improve registration accuracy. The work herein was 

motivated by an observation of variability in the extent, uniformity, and the degree of noise 

associated with a series of clinical sparse liver surface digitizations acquired during IGLS 

procedures in a separate study [62]. The overall intent of this chapter was to investigate the 

degree to which such variation in operative sparse surface data collection influences the 

application of existing surface-based rigid registration [42] and deformation correction [60] 

methods for IGLS. 

In this human-to-phantom data framework, clinically acquired sparse organ surface 

digitizations collected from patients enrolled in an ongoing study at Memorial Sloan 

Kettering Cancer Center (MSKCC) were affinely transformed and applied as collection 

patterns to the surface of a well-characterized deformable hepatic phantom. These clinically 

acquired data provide a realistic pattern and distribution of surface data that is not otherwise 

attainable outside of the OR. The deformable hepatic phantom provides pristine image data, 

including quantifiable internal targets, in both a "preoperative" undeformed state and an 

"intraoperative" deformed state. Thus, image-to-physical registration can be simulated by 
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registering the "preoperative" phantom image-data to the clinical surface data which has been 

applied to the "intraoperative" phantom surface. The accuracy of these registrations can then 

be quantified from the registration-predicted and ground-truth internal target locations. 

Furthermore, this framework allows for a large population of clinically-relevant registration 

scenarios to be rapidly created by applying various clinical collection patterns and simulated 

digitization noise to the "intraoperative" phantom surface. In summary, this human-to-

phantom data framework provides a significant advancement towards the rapid, early stage 

verification of image-to-physical registration methods for IGLS by providing a wealth of 

clinically-relevant data in a fully characterized phantom environment, avoiding the burden 

that would be required to collection such comprehensive data clinically. 

Furthermore, the surface data resampling method established in this chapter serves 

to normalize surface data quality across different cases and physicians. In this work, its 

application is shown to improve the accuracy and reproducibility of the investigated IGLS 

registration approaches. In brief, the method works by fitting an approximated surface to 

intraoperative surface digitizations using the method of [116] and then produces a more 

uniform sampling of the underlying organ surface. Overall, the results of using this method 

in the human-to-phantom data framework were very encouraging and it has since been 

applied in a clinical perception study [64]. 
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IV.2 Improving registration robustness for image-guided liver surgery in a 

novel human-to-phantom data framework 

The work in this chapter is reprinted, with permission, from: 

J.A. Collins, J.A. Weis, J.S. Heiselman, L.W. Clements, A.L. Simpson, W.R. Jarnagin, and 

M.I. Miga, “Improving registration robustness for image-guided liver surgery in a novel 

human to phantom data framework,” IEEE T Med Imaging, vol. 36, no. 7, pp. 1502-1510, 

2017. (© 2017 IEEE) 

Abstract 

In open image-guided liver surgery (IGLS), a sparse representation of the 

intraoperative organ surface can be acquired to drive image-to-physical registration. We 

hypothesize that uncharacterized error induced by variation in the collection patterns of 

organ surface data limits the accuracy and robustness of IGLS registration. Clinical 

validation of such registration methods is challenged due to the difficulty in obtaining data 

representative of the true state of organ deformation. We propose a novel human-to-phantom 

validation framework that transforms surface collection patterns from in vivo IGLS 

procedures (n=13) onto a well-characterized hepatic deformation phantom for the purpose 

of validating surface-driven, volumetric nonrigid registration methods. An important feature 

of the approach is that it centers on combining workflow-realistic data acquisition and 

surgical deformations that are appropriate in behavior and magnitude. Using the approach, 

we investigate volumetric target registration error (TRE) with both current rigid IGLS and 

our improved nonrigid registration methods.  Additionally, we introduce a spatial data 

resampling approach to mitigate the workflow-sensitive sampling problem. Using our 

human-to-phantom approach, TRE after routine rigid registration was 10.9 ± 0.6 mm with a 
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signed closest point distance associated with residual surface fit in the range of ± 10.0 mm, 

highly representative of open liver resections.  After applying our novel resampling strategy 

and improved deformation correction method, TRE was reduced by 51%, i.e. a TRE of 5.3 

± 0.5 mm.  The work reported herein realizes a novel tractable approach for the validation 

of image-to-physical registration methods and demonstrates promising results for our 

correction method. 

IV.2.1 Introduction 

Image-guided liver surgery (IGLS) aims to improve surgical precision by providing 

intraoperative guidance of instrumentation. True IGLS requires (1) full volumetric 

preoperative imaging, (2) the ability to localize instrumentation in physical space, (3) a 

method of image-to-physical space registration, (4) a method to correct for intra-procedural 

organ changes, and (5) a display of instrumentation position in accordance to preoperative 

imaging. A problem central to IGLS is the task of registration in the soft-tissue environment; 

where organ shape changes that occur between preoperative imaging and intraoperative 

presentation create significant challenges to the guidance environment. The overall utility of 

IGLS methods fundamentally hinges on the accuracy of the image-to-physical space 

mapping. In addition, and not often discussed, there is a fundamental challenge that consists 

of acquiring sufficient extent and quality of geometric data such that guidance updates are 

accurate while not compromising the workflow of procedural care.  IGLS embodies this 

demanding and often vexing problem. 

 In IGLS workflow (for both open and laparoscopic indications), the anterior 

surface of the organ and some salient features are routinely available (i.e. falciform ligament 

and inferior ridges [62, 117]).  Digitization technologies for acquiring these surfaces are still 
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somewhat limited [118].  Tracked ultrasound imaging is commonly used and allows for 

major vasculature to be digitized during surgery [119].  Both surface and ultrasound 

registration approaches are being pursued for commercial IGLS purposes. Surface-based 

registration techniques typically rely on an iterative approach with an estimated surface 

correspondence and assume that surfaces being registered share a high degree of similarity 

[39-42].  When considering ultrasound-based approaches, these typically rely on local 

alignments between CT-rendered and ultrasound-identified vasculature.  With each of these 

approaches, of course, alignments can be compromised by deformations from pre-to-

intraoperative organ shape changes, respiration, liver mobilization, and resection [120-122].  

In recognition of this, ongoing efforts have been made towards soft-tissue deformation 

correction in IGLS using these modalities of geometric data.  For example, in [123] an elastic 

registration technique is used in combination with ultrasound vasculature data to nonrigidly 

correct for deformations.  In our work, we have concentrated on approaches that minimize 

differences between surfaces extracted from the preoperative imaging and those gathered 

intraoperatively.  Our approaches use patient-specific biomechanical models to nonrigidly 

align the data [42, 60, and 62] (adding very sparse subsurface data, i.e. tumor centroid 

location in [60], has also been pursued). 

 When considering sparse surface data digitization for IGLS, registration has been 

performed using manual swabbing with a tracked probe [124], laser-range scanning [40], 

ultrasound [62, 125-126], time of flight imaging [127], stereoscopic imaging [128-129], and 

conoscopic holographic surface scanning [130]. Recently, we did a comprehensive study 

comparing registration results using swabbing, laser range scanning, and conoscopic 

holographic scanning in [131].  While results indicated better performance from non-contact 

digitization methods, challenges of integration into the operating room still persist which is 
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why manual surface swabbing is still the only commercial IGLS surface-based approach in 

use today. 

 Regardless of the sparse-data source, data collection is commonly contingent on 

the surgeon’s ability to acquire data within a surgical procedure.  As a result, variability in 

density, uniformity, extent, and degree of noise (either from the modality of measurement or 

physician technique) all affect registration but have received limited study.  This is largely 

due to the extreme challenge of needing extensive bystander acquisition capabilities to assess 

and record data within the operating room. Going further, the resources for validation 

precipitate an even more excessive clinical burden, i.e. intraoperative volumetric imaging 

and a series of consenting patients. The encumbrance of intraoperative volumetric validation, 

either with partial volume methods such as tracked intraoperative ultrasound [62] or full 

volumetric imaging methods such as computed tomography or magnetic resonance imaging 

[37, 125], is considerable and adds impetus for a new way to characterize methods rapidly. 

Therefore, we present a novel human-to-phantom validation framework which aims to 

bypass the burden of such cumbersome clinical data acquisition. 

 In the work presented herein, routine intraoperative patient data associated with 

conventional IGLS were collected to study the influence of variability in organ surface 

acquisition. This study has been motivated by the observation of a high degree of variation 

in the spatial pattern and density of surface data in a series of intraoperative procedural 

acquisitions (Fig. IV.1). The aim of this study was to characterize the influence that these 

variations have on IGLS accuracy using both conventional rigid and our improved nonrigid 

registration methods. While we report on the characterization of our particular approach, the 

framework described herein has broader impact by demonstrating how clinical workflow 
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data can be combined with a realistic phantom for rapid methodological prototyping. 

 

 Briefly described, in the human-to-phantom validation framework, the surface 

collection patterns of a series of clinical surface data were individually transformed and 

applied to a well-characterized hepatic deformation phantom designed to have deformations 

similar to the OR.  This allows the replication of multiple independent surface collections 

while facilitating the measurement of full volumetric shift with CT imaging and distributed 

CT-visible targets, thus providing ground truth data for accuracy and reproducibility 

assessment. Such complete and discrete ground-truth data is typically unavailable in clinical 

data and has become a major obstacle in the quantitative assessment of registration accuracy. 

In addition, we use the novel framework to assist in designing a spatial data resampling 

Fig. IV.1. Manual surface swabbing results 

collected within the Explorer
TM
 Liver navigation 

system. Digitized surface and feature data are 

presented for 4 clinical cases following an initial 

rigid alignment generated by the salient feature 

registration algorithm of Clements et al. [42]. 

Data representing the falciform, left inferior 

ridge, right inferior ridge, and anterior organ 

surface are presented in red, blue, green, and 

white respectively. (© 2017 IEEE) 
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strategy that demonstrates dramatic improvements in both rigid and nonrigid registration 

results. We conclude by discussing the methods and results of our study to understand the 

influence of data collection on registration accuracy in IGLS. 

IV.2.2 Methodology 

IV.2.2.1 Overview of Experimental Design 

 The methods of this study are designed to accomplish three goals: first, create a 

novel human-to-phantom data framework for extensive use in IGLS methodological 

validation; second, develop a resampling approach which improves the accuracy and 

variance of IGLS registration methods; third, perform an analysis to systematically study the 

impact that variations in organ surface data quality have on IGLS registration methods. 

IV.2.2.2 Patient Data Collection 

 Patients were consented and enrolled in an ongoing prospective study of 

deformation correction for IGLS approved by the Memorial Sloan Kettering Cancer Center 

(MSKCC) Institutional Review Board. Thirteen patients undergoing open liver resection at 

MSKCC are presented within this study. Prior to surgery, contrast enhanced CT images were 

acquired of each patient as part of routine clinical management. 3D anatomical models of 

the liver, tumors, and vasculature were generated using surgical planning software (Scout™ 

Liver, Analogic Corporation, Peabody, MA). Following this processing, the preoperative 3D 

model was loaded into a surgical navigation system (Explorer™ Liver, Analogic 

Corporation, Peabody, MA). During surgery, after organ mobilization, the surgeon manually 

swabbed anatomical surfaces with an optically tracked stylus. This digitization creates a 

sparse 3D point cloud representing the organ surface and salient anatomical features. A 
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visualization of intraoperative surface collection is presented in Fig. IV.1. 

IV.2.2.3 Phantom Data Collection 

 Phantom data were acquired consistent with a previously reported study by 

Rucker et al. [60]. Briefly, a compliant hepatic phantom was created to mimic clinical organ 

deformation based on our experience in a previously reported 75 patient multi-center clinical 

trial [59]. The phantom consisted of water, 7% by volume polyvinyl alcohol, and 10% by 

volume glycerin that was subjected to a 12-hour freeze-thaw cycle to develop stiffness [132]. 

The phantom incorporated 47 subsurface plastic beads, which served as ground truth target 

locations. Similarly to clinical cases, a preoperative CT scan of the phantom in an 

undeformed state was acquired to generate an organ model and to identify target locations. 

Intraoperative organ deformation was replicated by altering support at the posterior phantom 

surface (Fig. IV.2). An intraoperative CT scan of the deformed phantom was captured to 

acquire the true deformed organ surface, volume, and target locations. Salient anatomical 

feature regions (falciform ligament and inferior ridges) were designated from the 

intraoperative CT. 

IV.2.2.4 Human-to-Phantom Data Preparation 

 Thirteen clinically acquired surface datasets (II.B) were applied as collection 

patterns to the hepatic deformation phantom (II.C) to observe the effect of intraoperative 

organ surface digitization on registration accuracy. Furthermore, randomized sinusoidal 

noise was applied to these collection patterns to simulate the natural periodic level of contact 

that occurs during manual organ swabbing (i.e. compressing into or lifting off the surface) – 

resulting in easily generated, unique, and realistic digitizations of the intraoperative phantom 
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surface. 

 The clinical surface data were aligned to the intraoperative phantom data using 

rigid salient feature weighted registration [42]. This registration aligned the phantom and 

clinical data according to the salient features, but differences in organ size and extent 

remained. We should also note that others are also following this approach [133]. Following 

initial rigid alignment, the finite iterative closest point registration method by Kroon [134] 

incorporated scale and skew into the optimization of a transformation matrix, providing an 

affine registration which accounts for differences in data extent and organ size. Following 

alignment and scaling of the clinical and phantom intraoperative surfaces, the clinical surface 

data were projected to their closest point on the intraoperative phantom CT, producing 

thirteen clinically representative surface digitizations of the CT documented deformed 

phantom surface. 

  

Fig. IV.2. The CT segmented preoperative and 

intraoperative phantom surfaces are presented in 

red and blue respectively. The differences in 

surfaces highlights the volumetric deformation 

undergone in the simulated phantom data. (© 

2017 IEEE) 
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Intraoperative phantom CT 
(IV.2.2.3) 

Intraoperative patient 

surface digitization (IV.2.2.2) 
Patient data transformed and projected to 

intraoperative phantom surface (IV.2.2.4) 

Develop and apply random noise to the 

projected points (IV.2.2.4), creating a 

clinically sampled phantom surface 

digitization. 

Fig. IV.3. Structure of the proposed human-to-phantom data set presented in flowchart 

form. Human data is aligned, scaled, and projected onto the intraoperative phantom CT 

surface. Randomly defined sinusoidal waveforms are generated and applied to the 

projected data to simulate collection noise. Noise patterns are applied independently to 

the surface and feature data. The right and center columns serve as examples of surface 

digitization with and without applied noise. (© 2017 IEEE) 
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 Next, realistic noise was added to the phantom collections along the spatial 

trajectory associated with the particular clinical swab. To accomplish this, randomized 

sinusoidal waveforms were generated for each simulated phantom surface and feature 

designation (Fig. IV.3). Independent noise was applied in the normal and tangential 

directions for each data point as follows: 

𝑁̂ = (sin(2𝜋𝑠𝑓1 + 𝜑1) + a ∙ sin(2𝜋𝑠𝑓2 + 𝜑2) + 𝑅) ∗ 𝑑̂ Eq. IV.1 

where 𝑁̂ is the vector of applied noise, 𝑑̂ defines the normal or tangential directions at each 

data point, 𝑓𝑖 is a randomly assigned low frequency (between 0-10 Hz in qualitative 

accordance with clinical swabbing), 𝜑𝑖 is a randomly assigned phase shift (between 0-2π), a 

is a randomly assigned amplitude (between 0-5), and R is uniform pseudorandom noise. 

Applying smoothly varying noise in the spatial order of clinical collections mimicked the 

pattern of noise associated with intraoperative data collection. The amplitude of noise was 

established by curve fitting each clinical data swab and averaging the residual error in the 

directions normal and tangential to the organ surface. The RMS amplitudes of noise in the 

normal (0.9 mm) and tangential (1.8 mm) directions were specified by the average noise 

measured across the whole clinical data set. Each application of random noise to a clinical 

surface data pattern results in an independent simulated surface digitization of the 

intraoperative phantom. To ensure adequate characterization, we used this strategy to 

simulate 50 phantom surface data acquisitions with independent randomized noise added for 

each of the 13 clinical cases (Fig. IV.4).  With the above process realized, any organ surface 

data pattern taken intraoperatively could be transformed with noise onto our 3D deformation 

phantom system, thus allowing for a quantitative assessment of its impact on any proposed 

registration scheme in the presence of realistic deformations.  
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Apply resampling to data 

Rigid registration 

Nonrigid registration 

Output TRE 

Output TRE 

Human data (n=13) 

Human-to-phantom dataset 

Rigid registration 

Nonrigid registration 

Output TRE 

Output TRE 

Apply random sinusoidal 
noise pattern 

50 Iterations 

A. 

B. 

C. 

D. 

Fig. IV.4. Schematic of the proposed study. For 

a given clinical case (n=13), surface data is 

aligned, scaled, and projected onto the 

intraoperative phantom CT surface with a 

randomly determined noise pattern (A). Our rigid 

and nonrigid registration methods are applied, 

while quantifying subsurface TRE (B). The 

simulated surface is then resampled (C) and 

registrations are recalculated (D). This process is 

repeated with 50 different applications of noise 

per clinical case – creating 50 independent 

surface acquisitions for each of the (n=13) clinical 

organ surface digitization patterns. (© 2017 

IEEE) 
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IV.2.2.5 Surface Data Resampling 

In our experience with OR-amenable IGLS processes, surface data collection varies 

with real-world surgeon use.  To improve robustness in light of this variability, we propose 

a resampling approach and test its impact using our novel human-to-phantom framework. 

To begin, we assume that the anterior organ surface, where the sparse surface data were 

collected, may be treated as a bounded, continuous, and unique surface of the form: 

𝑧 = 𝑓(𝑥, 𝑦) Eq. IV.2 

This assumption reduces dimensionality, thus decreasing complexity and 

computational burden. To improve consistency regardless of initial raw data orientation in 

Cartesian space, a 3D least squares plane was fit to the raw data and a rigid registration was 

determined which transforms the least squares plane to the 𝑥 − 𝑦 plane by aligning its normal 

to the 𝑧 axis. A discrete grid was fit to the transformed raw data using a joint interpolation 

and approximation method [116]. The approach fits locally to the transformed raw data using 

barycentric interpolation as follows: 

𝑓(𝑥, 𝑦) =  ∑𝜆𝑖𝑓(𝑥𝑖 , 𝑦𝑖)

3

𝑖=1

 
Eq. IV.3 

where the height at a location within the triangular grid, 𝑓(𝑥, 𝑦), is reconstructed as a linear 

combination of the heights at the vertices of an encompassing triangle, 𝑓(𝑥𝑖 , 𝑦𝑖), weighted by 

the ratio of area within the triangle, 𝜆𝑖, where each vertex contributes to the queried location. 

The approach then regularizes the grid with a discrete approximation of the Laplacian using 

the finite difference method for a given grid node as follows: 

∇2𝑓(𝑥, 𝑦) =  
𝑑2𝑧

𝑑𝑥2
+ 

𝑑2𝑧

𝑑𝑦2
= 0 

Eq. IV.4 

∇2𝑓(𝑥, 𝑦) ≈  
1

ℎ2
 (𝑓(𝑥 − ℎ, 𝑦) + 𝑓(𝑥 + ℎ, 𝑦) + 𝑓(𝑥, 𝑦 − ℎ) + 𝑓(𝑥, 𝑦 + ℎ) − 4𝑓(𝑥, 𝑦)) 

Eq. IV.5 

where 𝑓(𝑥, 𝑦) is a nodal height value and ℎ is the grid spacing. Next, a weighting scheme was 
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applied which sampled the surface more densely in areas local to the raw surface data. 

Weighting in this manner increases the influence of well-fit areas of the resampled surface 

on our nonrigid correction method. The strategy was composed of (1) a sparse set of points 

set at 5 mm spacing underlying the full extent of the surface and (2) a dense set of points set 

at 0.25 mm spacing within a specified capture radius, 1 mm, of the raw surface data. 

Parameter values were established through a parametric sweep. Finally, the fitted surface 

was trimmed, such that it represents a single region accurately bounded by the outer contour 

of the raw data, using a dilate-and-fill image processing procedure. 

IV.2.2.6 Rigid Registration 

For the purposes of image-to-physical registration, rigid alignment was determined 

using a salient feature weighted iterative closest point registration [42], specifically designed 

for liver anatomy and used in a commercial IGLS system. More specifically, salient feature 

registration utilizes homologous anatomical features to bias point correspondence estimation 

at each iteration. The biased weighting scheme preferentially favors alignment of 

preoperatively designated anatomical features with corresponding intraoperative surface 

data, producing a robust initial alignment that provides support to successive digitization of 

the remainder of the organ surface. Correspondence is estimated using a conventional closest 

point operator. The algorithm provides a coordinate transformation that minimizes residual 

error between preoperative and intraoperative organ surface data. 

IV.2.2.7 Nonrigid Registration 

When modeling nonrigid behaviors, we employ a linear elastic biomechanical model 

of the preoperative organ described previously [60].  Large deformations and more 
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sophisticated constitutive models are possible; however, applying a rigid registration 

followed by smaller nonrigid deformations is a first order deformation correction approach 

which, when considering localization errors and tracking accuracy, is appropriate. The 

benefit of a nonlinear corotational finite element formulation (one nonlinear approach for 

accounting for large deformations) yielded no statistical difference in our previous work 

[60].  It is likely that geometric and material nonlinearities will be needed in the future as 

instrumentation integration matures but our present framework does represent a step forward 

in providing significant localization improvement over rigid registration.  In addition, the 

use of a linear model allows for pre-computation strategies for providing fast intraoperative 

nonrigid registration for real time use.  The patient-specific geometric model assumes that 

the liver is an isotropic solid described by the 3D Navier-Cauchy equation: 

∇ (
𝐸

2(1 + 𝑣)(1 − 2𝑣)
∇ ∙ 𝑢) + ∇ ∙ (

𝐸

2(1 + 𝑣)
∇𝑢) = 0 

Eq. IV.6 

E is Young’s modulus, v is Poisson’s ratio, and u is the displacement vector. We solve the 

system of partial differential equations (PDE) by applying the Galerkin weighted residual 

method using linear Lagrange basis functions on tetrahedral finite elements. Displacement 

boundary conditions are employed on the posterior liver surface to simulate the impact of 

liver mobilization and packing.  On remaining surfaces, the natural stress-free boundary 

condition is employed.  Potential posterior displacement surfaces can be designated a priori 

and allow for pre-computation strategies for fast model correction.  We embed this model 

within a novel nonrigid registration framework.  In the surgical setting, the organ is first 

mobilized from abdominal connective tissue and packed with supportive material for 

presentation. These changes in support manifest as deformations, i.e. global shape changes, 

in comparison to the preoperative organ configuration. The algorithm we employ to correct 
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for these deformations is an improved form of the nonrigid registration method introduced 

by Rucker et al. [60]. The method assumes a predetermined support surface based on 

operative approach, in this case the posterior surface of the liver. A parameterized posterior 

displacement field is iteratively computed to minimize residual error between the 

intraoperatively collected anterior surface data and the deformed model surface. The result 

is a reconstructed volumetric prediction of the deformed organ based on the preoperative 

biomechanical model and sparse intraoperative surface data. With respect to modifications 

to the method presented in Rucker et al., posterior support surfaces were allowed to move 

only in the direction of the posterior surface normal [60]. In this paper, we employ an 

improved extension to the posterior surface parameterization to include tangential 

displacements as well. Thus, the set of parameters used to generate our nonrigid fitting is: 

𝑃 =  {𝑐𝑛̅ , 𝑐𝑡̅1, 𝑐𝑡̅2, 𝑡𝑥, 𝑡𝑦 , 𝑡𝑧, 𝜃𝑥 , 𝜃𝑦, 𝜃𝑧} Eq. IV.7 

where  𝑡𝑥, 𝑡𝑦, 𝑡𝑧, 𝜃𝑥 , 𝜃𝑦 , 𝜃𝑧 are the traditional translational and rotational components associated 

with rigid body registration, and 𝑐𝑛̅ , 𝑐𝑡̅1, 𝑐𝑡̅2 are the control parameters for the posterior surface 

conditions for the normal and the newly added two tangential components.  The control 

parameters are associated with a bivariate polynomial that systematically deploys boundary 

conditions to the entire support surface in a given iteration.  The methodology has 

incorporated the salient feature weighting throughout and traditional elastic energy 

constraints for controlled deformations.  Following Rucker et al., the Levenberg-Marquardt 

algorithm was employed to reconstruct the optimal parameter set to fit acquired surface data.  

IV.2.2.8 Experimental Design 

To evaluate the accuracy and robustness of surface-based IGLS registration methods as a 

function of surface collection pattern, density, and noise level, we conducted an extensive 
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study with our novel human-to-phantom IGLS validation framework. An overview of the 

simulation design is presented in Fig. IV.4. In this simulation, for each clinical surface 

collection pattern (i.e. one of the n=13 cases reported herein), surface data were aligned, 

scaled, and projected onto the intraoperative phantom CT surface (as described in II.D). For 

each clinical pattern, 50 distinct surface digitizations were created by temporally applying 

distinct random sinusoidal noise patterns, resulting in a total of 650 independent, clinically 

representative digitizations of the intraoperative phantom surface. Our rigid (II.F) and 

nonrigid (II.G) registration methods were used to determine predictions of the intraoperative 

subsurface target locations. Our resampling approach (II.E) was applied to the simulated 

surface collections. Similarly, the resampled data were used to drive rigid and nonrigid 

registration to form predictions of the intraoperative subsurface target locations. This 

analysis was repeated with increasing levels of noise (base, 2x, 4x, and 8x). Notably, any 

surface-based registration, rigid or nonrigid, can be evaluated using this novel validation 

approach while requiring no additional clinical effort. 

 It is important to emphasize that all simulated surface digitizations of the human-

to-phantom data set exist on the same phantom which underwent mock OR deformation 

documented within a CT imaging unit. Furthermore, subsurface beads embedded within the 

hepatic phantom and tracked throughout deformation provided true positions of targets for 

the evaluation of registration accuracy. For this study, target registration error (TRE) serves 

as the primary measurement of accuracy. Deformed target locations extracted from the mock 

intraoperative CT serve as the observed, true locations of targets. TRE is calculated as the 

Euclidean distance between the model predicted and true observed target locations. 

 The Wilcoxon rank-sum test was used to determine significance in differences 

between registration results between the 4 categories of results: raw data rigid registration, 
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raw data nonrigid registration, resampled data rigid registration, and resampled data nonrigid 

registration.  The Wilcoxon rank-sum test tested the null hypothesis that the distributions of 

average TRE for given methods were equivalent with a significance level of α = 0.05. 

IV.2.3 Results 

IV.2.3.1 Phantom and Resampling Suitability 

Clinically acquired organ surface digitizations (i.e. Fig. IV.5.A) were applied to the 

hepatic deformation phantom (i.e. Fig IV.5.B) to observe the impact that clinically-relevant 

variation in organ surface digitization has on IGLS registration accuracy and variance. As 

Fig. IV.5.B demonstrates, the ability of the proposed method to transform clinically collected 

surface data as a template for surface acquisition on the hepatic phantom is quite appropriate. 

In each set shown (left, and right column of Fig. IV.5.A-B), regional point density and 

acquisition pattern are preserved from clinical to phantom surface. The base amount of 

applied noise resulted in measured noise within the simulated surfaces of approximately 1.0 

± 0.7 mm. Fig IV.5.C shows the resampling treatment of the data from each case using 

methods described in II.E. The overall fit of the resampled surface to the raw input data had 

a residual closest point error of 1.5 ± 1.3 mm. 
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A. 

B. 

C. 

Fig. IV.5. Surface digitizations from two cases are presented. Anterior 

organ surface, falciform, left inferior ridge, and right inferior ridge data 

are presented in white, red, blue, and green respectively. (A) Surface data 

from clinical studies collected with an optically tracked stylus. Surface 

data are overlaid on the preoperative organ model following rigid 

registration. (B) Examples of the human-to-phantom data set following 

translation of the clinical surface data from (A) onto the hepatic 

deformation phantom – used to simulate clinical collection patterns and 

sampling. (C) A representation of the spatial data resampling approach 

applied to the human-to-phantom data in (B). Areas of high density and 

sparse surface points present as the bright white and gridded white points 

respectively. For (B) and (C), surface data are overlaid on the 

intraoperative phantom CT model. (© 2017 IEEE) 
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A qualitative analysis of the degree and pattern of deformation within the phantom 

is presented in Fig. IV.6. Rigid registration results are displayed for a representative clinical 

data registration in Fig. IV.6.A and its hepatic phantom counterpart data in Fig. IV.6.B.  In 

both, the preoperative derived model surface is color-coded by the signed closest point 

distance of the rigidly registered intraoperative surface data (note that as phantom data is 

acquired from CT images, we have access to the entire surface extent). The phantom presents 

a similar pattern and magnitude of deformation to the clinical case. 

IV.2.3.2 Registration Error 

The objective of this investigation was to characterize the impact that variations in 

collected organ surface data have on surface-based IGLS registration techniques in a 

clinically-relevant manner. TRE results using both raw and resampled surface acquisitions 

were compiled following rigid and nonrigid registration. Fig. IV.7 presents a histogram of 

the average values of TRE measured from subsurface targets for each case of surface data in 

our human-to-phantom data set. The (*) represents the difference between procedural 

A. B. 

Fig. IV.6. Deformed surfaces from (A) a clinical / human data case and 

(B) the phantom case are shown. The color map illustrates the observed 

deformation in each case as the Euclidean distance between the 

preoperative and intraoperative organ anterior surfaces (in mm) 

following rigid registration. (© 2017 IEEE) 
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standard and the approach we are proposing. Fig. IV.8 presents a scatterplot which contrasts 

the raw data TRE and resampled data TRE for both rigid (blue) and nonrigid (gold) 

registration methods. With both clusters, we see a shift to the right side of the unity line 

indicating that the process of resampling serves to reduce target error. Fig. IV.8 also indicates 

that nonrigid registration consistently produces lower TRE than rigid registration. For 

reference, if the resampling method had no effect on the surface data, all points would align 

along the line of unity. Table IV.I represents the average value of TRE in a case-by-case 

manner. In the case of both raw and resampled data, nonrigid registration produced 

significantly lower TRE (p < .001). Rigid registration with resampled data (8.4 ± 0.5 mm) 

produced significantly lower TRE (p < .001) than rigid registration with raw data (10.9 ± 

0.6). Nonrigid registration with resampled data (5.3 ± 0.5 mm) also produced significantly 

lower TRE (p < .001) than nonrigid registration with raw data (6.7 ± 0.9 mm). It is 

particularly noteworthy to point out that nonrigid registration using the proposed resampling 

method resulted in significantly lower TRE (p < .001) than the current commercially 

available procedural standard method with unprocessed, raw data. For reference, rigid, and 

nonrigid registration results using the dense, full anterior surface from the intraoperative 

phantom CT also are presented in Table IV.I as a gold standard comparison. 
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Fig. IV.7. Histogram of average TRE over the 650 simulated cases 

using raw and resampled data to drive rigid and nonrigid registration. 

The asterisk denotes significant reduction in error between the current 

commercial IGLS rigid registration method (blue) and proposed 

nonrigid registration with resampled data (gold). 
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Fig. IV.8. A scatterplot of average TRE over the 650 simulated cases. 

The x-axis represents average case TRE using a simulated raw surface 

data scenario while the y-axis represents that simulated surface data after 

undergoing resampling. Rigid and nonrigid registration results are 

presented in blue and gold respectively.  
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TABLE IV.I

Average case TRE (mm) at base noise level

Case # Raw Data Resampled Data

Rigid Nonrigid Rigid Nonrigid

1 10.8 ± 0.1 7.0 ± 0.6 7.9 ± 0.1 5.8 ± 0.3

2 10.3 ± 0.1 7.4 ± 0.3 7.9 ± 0.4 5.2 ± 0.3

3 10.2 ± 0.2 7.8 ± 0.5 7.7 ± 0.1 6.2 ± 0.4

4 11.0 ± 0.1 5.5 ± 0.4 8.3 ± 0.1 5.4 ± 0.2

5 10.7 ± 0.1 5.9 ± 0.8 8.6 ± 0.1 5.6 ± 0.4

6 10.9 ± 0.1 8.3 ± 0.9 8.6 ± 0.1 5.1 ± 0.4

7 11.2 ± 0.1 6.9 ± 0.4 8.7 ± 0.4 4.8 ± 0.2

8 10.8 ± 0.1 7.7 ± 1.3 8.2 ± 0.1 4.6 ± 0.3

9 11.4 ± 0.1 5.6 ± 0.3 8.6 ± 0.1 5.2 ± 0.3

10 11.5 ± 0.1 6.9 ± 0.9 9.1 ± 0.1 4.9 ± 0.2

11 10.7 ± 0.1 6.0 ± 0.5 8.4 ± 0.4 4.9 ± 0.3

12 10.0 ± 0.1 6.2 ± 0.8 8.7 ± 0.1 5.7 ± 0.3

13 12.1 ± 0.1 6.2 ± 0.4 9.0 ± 0.1 5.3 ± 0.3

AVG 10.9 ± 0.6 6.7 ± 0.9 8.4 ± 0.5 5.3 ± 0.5

Ideal Data 

(CT)
Rigid, 6.4    &    Nonrigid, 4.7
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Table IV.II presents average TRE results for increasing amounts of noise. The 

evaluation was implemented for the base level of noise (1.0 mm) and amplifications of 2 (1.9 

mm), 4 (3.8 mm), and 8 (7.6 mm) times the base level. For all scenarios of registration 

method and surface data, TRE results were observed to increase as the noise level was 

increased. Improvement in rigid registration TRE provided by resampling was observed to 

remain at all levels of noise. At an amplification of 8 times clinically observed noise the 

improvement to nonrigid registration provided by resampling was absent.  

IV.2.4 Discussion 

 The results presented illustrate the first study designed to characterize the impact 

of varying IGLS modus operandi on rigid registration and model-based deformation 

correction methods. While prior work in the field has investigated varying methods of image-

to-physical registration and varying methods of sparse data collection, this study is novel in 

that it examines the extent to which operational differences in data collection may influence 

registration results. More explicitly, this study is novel in that it approaches the problem of 

surface-based registration by considering the registration itself as a black box and solely 

investigates how the quality of input data influences the registration output.  In addition, it 

proposes to investigate this within the context of a novel data-driven approach whereby 

applied clinically acquired surface digitization patterns are transformed to a hepatic 

deformation phantom surface for the purpose of rapid and robust systematic methodological 

TABLE IV.II

Average TRE (mm) at varying noise levels

Noise Level Raw Data Resampled Data

Rigid Nonrigid Rigid Nonrigid

Base 10.9 ± 0.6 6.7 ± 0.9 8.4 ± 0.5 5.3 ± 0.5

2x 10.9 ± 0.5 6.7 ± 0.8 8.5 ± 0.4 5.5 ± 0.3

4x 11.0 ± 0.6 6.9 ± 0.9 8.7 ± 0.5 6.4 ± 0.3

8x 11.3 ± 0.6 7.5 ± 0.9 9.1 ± 0.5 8.5 ± 0.7
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validation. This validation framework affords the study of large data sets, with true 

subsurface validation targets, that would require enormous resources to acquire clinically. 

Lastly, this novel framework provides the ability to propose and validate a resampling 

procedure which we show to improve registration robustness. Further, we discuss how the 

results of this study demonstrate that the nature and quality of the data driving registration is 

as important as the registration method itself and suggest the efficacy of our human-to-

phantom data framework. 

 The representations (shown in Fig. IV.7-8 and Tables IV.I-II) of the impact that 

variation in acquired surface pattern, density, and noise has on sparse surface-based 

registration methods in IGLS indicate that IGLS methods based on raw manually swabbed 

sparse surface data are not optimal with respect to robustness. This is of note considering our 

experience in observing that surface data collection extent and density varies across patient 

presentations and physician utilization of the IGLS system. Fig. IV.7 and Tables IV.I-II 

demonstrate the higher variance that is seen in the current nonrigid approach (Raw Nonrigid) 

in comparison to the commercial rigid registration method (Raw Rigid), i.e. we see a marked 

spread in the distribution of occurrences of the gray line as compared to the blue. This 

behavior makes it quite apparent that the nonrigid registration method is sensitive to 

variations in surface data collection via swabbing. That being said, the evaluated nonrigid 

registration method consistently outperformed rigid registration in terms of accuracy when 

using raw data (with ~39% improvement). The results from our surface resampling technique 

show our ability to systematically improve the accuracy and reproducibility of both rigid and 

nonrigid registration methods in IGLS. More specifically, when data are synthesized in a 

clinically-relevant fashion, surface resampling significantly improved registration results 

regardless of data pattern and density at reasonable levels of noise. This is dramatically 
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shown in Fig. IV.7-8 and Tables IV.I-II. The resampling strategy improved rigid and 

nonrigid registration TRE by 22.5% and 21.3% respectively. Equally striking, resampling 

combined with nonrigid registration produced a 51.5% improvement in TRE when compared 

to the current commercial rigid registration method (take note of the * in Fig. IV.7). 

 Central to the proposed framework was that the deformations induced in our 

phantom scenario have similar characteristics with the intraoperative counterpart.  In Fig. 

IV.6 we see a direct comparison between clinical signed closest point data in Fig. IV.6.A 

and the equivalent (although larger extent) for our phantom setup in Fig. IV.6.B.  To assist 

interpretation, both surfaces experience similar magnitudes in surface-to-surface misfit.  

While the phantom surface appears somewhat different than the clinical surface, the 

distribution demonstrates a general pattern that we often see within image-to-physical rigid 

registration in IGLS data. More specifically, it is observed that the anterior surface of the 

organ becomes more planar after mobilization and packing, which produces an observable 

elevation of the lateral segments while the more medial regions of the organ remain relatively 

static. In a separate extensive study looking at patterns of intraoperative model-to-OR-data 

fit, [122] also observed this behavior. Additionally, these phantom results are in accordance 

with our previous phantom studies which entailed multiple novel deformations as reported 

in [60] and a different liver phantom as in [135]. We acknowledge that the human-to-

phantom validation framework could be further strengthened with additional phantom work 

(derived from varying clinically acquired anatomy), more deformations, and more clinical 

sparse surface data patterns; and while demonstrated in past work [60, 135], all of these areas 

are an important continued direction for the future.  However, we should note that this work 

does add significantly to past contributions.  For example, in Fig. IV.6 it is demonstrated that 

the current phantom experiences a similar magnitude and a realistic pattern of deformation 
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to routine IGLS data.  In Fig. IV.5, the quality of sparse surface data is maintained between 

clinical acquisition (Fig. IV.5.A) and application to the phantom (Fig. IV.5.B).  While further 

additions as suggested above will undoubtedly improve the utility and clinical accuracy of 

our human-to-phantom validation framework, the environment we have developed has 

provided meaningful results and a potentially powerful pathway forward for validation of 

image-to-physical registration in the future. 

IV.2.5 Conclusions 

 This investigation represents a significant advancement in the understanding of 

the degree that acquired intraoperative surface data variation influences the outcome of IGLS 

sparse-data image-to-physical registration.  The work demonstrated that surface data 

resampling shows significant promise for improving the accuracy and reproducibility of 

IGLS rigid and nonrigid registration.  While further investigation is required to fully 

characterize the optimal workflow-friendly strategy for IGLS surface data collection, the 

surface resampling presented here is an advancement toward minimizing the impact of data 

collection strategy on model-updated surgical navigation systems for the hepatic 

environment. 

 While these results are important, it is also important to recognize the novelty 

and utility of the human-to-phantom framework proposed in this work.  As the field of soft-

tissue image guidance moves forward, the intraoperative validation of these approaches 

requires enormous effort either using workflow-cumbersome infrastructure such as 

intraoperative MRI [37] or lower cost but challenging measurement methods such as 

spatially localized intraoperative ultrasound [62].  The framework proposed herein creates 

controlled phantom deformation events comparable to those documented in the OR. The 



61 

 

 

evaluated registrations are driven based on intraoperative data compatible with the IGLS 

modus operandi, transformed to the mock organ surface.  This approach is unique in that it 

has the advantage of full volumetric deformation measurements in a controlled environment 

but also uses data acquired from a realistic workflow to drive alignment strategies.  We 

believe this is a significant step forward in validation design for this challenging 

environment. When comparing the study presented here with our more burdensome 

ultrasound counterpart study in [62], the compatibility of results suggests that this may 

indeed be an exciting step forward for more tractable investigations in the future.
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Deformation Correction and 

Retrospective Modeling 

V.1 Summary and Contributions 

In Chapter IV, a human-to-phantom data framework was introduced to provide 

extensive and rapid testing of image-to-physical registration methods outside of the OR. 

Here, this framework was applied to a new deformable hepatic ablation phantom, allowing 

ablation information within a series of phantom ablation procedures (e.g. ablation probe 

location and the extent of the induced necrotic zone) to effectively be used as ground-truth 

targets for registration assessment. This chapter evaluates the application of a model-based 

deformation correction method [60] within image-guided MWA in comparison to the rigid 

registration algorithm of [42]. In addition, a retrospective computational model of MWA 

was determined and deployed within the image-to-physical registration to evaluate the 

compounding errors associated with this combined therapeutic and navigational framework. 

Furthermore, by means of the human-to-phantom data framework of Chapter IV, 

registrations were evaluated with surface data representative of both open surgery (e.g. 

sparse anterior surface data from manual swabbing) and interventional radiology (e.g. full 

surface data from intraoperative imaging). 

To date, multiple studies reported in the literature have taken rigid registration 

approaches to image-to-physical registration for image-guidance during hepatic ablation 

procedures. However, until the work presented in this chapter, none have addressed the 

challenges imposed by soft-tissue deformation. The results herein demonstrate, in an initial 

phantom experiment, a significant advancement in the field of image-guided hepatic 

microwave ablation. While future work is necessary to apply this modeling and navigational 
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framework as a prospective, targeting approach, the deformation correction method applied 

in this study is certainly an advancement toward improved localization. Going further, this 

work extends the concept of ‘model correction’ to include a new biophysical domain, namely 

the deposition of ablative energy, and its corresponding thermal evolution. This combined 

mechanics and energy framework represents a first study in a more comprehensive model-

predictive paradigm for an important image-guided therapeutic process in use today. 
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V.2 Application of multiphysics modeling for comprehensive guidance in 

hepatic microwave ablation 

The work in this chapter appears in: 

J.A. Collins, J.S. Heiselman, L.W. Clements, and M.I. Miga, “Application of Multiphysics 

modeling for comprehensive guidance in hepatic microwave ablation.” In preparation. 

Abstract 

While numerous methods have been presented which provide varying degrees of 

intraoperative tumor localization for hepatic microwave ablation procedures, soft-tissue 

deformation represents a considerable source of error for current applications. With this 

study, we propose that model-based deformation correction methods can be applied within 

image-guided microwave ablation procedures to improve the accuracy and efficiency of 

intraoperative tumor localization and antenna placement. Furthermore, computational 

modeling of microwave ablation can be integrated within the navigational environment to 

provide more advanced guidance. In this work, we compare a surface-driven, model-based 

deformation correction method to a clinically-relevant rigid registration approach within a 

deformable hepatic ablation phantom. In addition, we employ a retrospective model of 

microwave ablation following registration – allowing for an evaluation of the fidelity of the 

combined therapeutic and navigational framework. When driving registrations with 

radiological intervention-inspired full surface data, the deformation correction method (2.5 

± 1.1 mm) improved average ablation antenna registration error by 58.9% compared to rigid 

registration (5.6 ± 2.3 mm) and on average improved volumetric overlap between the 

modeled and ground-truth ablation zones from 67.0 ± 11.8 % (rigid) to 85.6 ± 5.0 % 

(corrected). Furthermore, when using surgically-inspired sparse surface data, the 
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deformation correction improved registration error by 38.3% and volumetric overlap from 

64.8 ± 12.4 % (rigid) to 77.1 ± 8.0 % (corrected). This work demonstrates, in an initial 

phantom experiment, an advancement toward improved procedural navigation in image-

guided hepatic microwave ablation procedures. 

V.2.1 Introduction 

 Loco-regional therapies, such as thermal ablation, have received increased 

indications for use in neoadjuvant roles, ablation assisted resection, and for the treatment of 

unresectable hepatic malignancies [18-30]. While radiofrequency ablation (RFA) is the most 

common ablative therapy used clinically, it has presented a relatively high local recurrence 

rate (12-39%) when compared to microwave ablation (MWA) (6-8.8%) [20-24]. 

Additionally, in matched cohort studies, patients receiving MWA saw improved survival 

compared to those receiving RFA [21-22]. Furthermore, MWA has received considerable 

interest due to its larger spatial extent of power deposition, penetration through charred 

tissues, and ability to ablate up to and around large vessels [21-22, 31]. Due to advances in 

neoadjuvant care, therapeutic options, and improved patient selection criterion, the long-

term survival of patients receiving ablation treatments for hepatic colorectal cancer 

metastases has improved significantly in recent years [18, 22, 29], and in smaller tumors (≤ 

3 cm) is comparable to the clinical standard of surgical resection that offers five-year survival 

of 44-50% in patients with metastatic colorectal cancer [11]. 

 As the procedural process inherently targets internal structures, the efficacy of 

ablation is highly reliant on accurate localization and targeting of these subsurface diseased 

tissues during a procedure, as inaccurate delivery can lead to incomplete treatment and local 

recurrence [32]. As such, ablations are generally performed using image-guidance (e.g. 
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intraoperative ultrasound imaging (iUS) or computed tomography (CT)) to assist in tumor 

localization and probe placement. However, with these methods, real-time localization, 

monitoring, and assessment are extremely limited [38]. Advanced surgical navigation 

approaches have been used to create a spatial mapping between surgical instrumentation and 

imaging data to improve visualization of anatomical structures. Recent applications of such 

work to image-guided ablation procedures have reported enhanced localization of tumors 

and improved accuracy of ablation antenna placement in open [43-47] and laparoscopic 

procedures [48-50]. These methods have employed a variety of electromagnetic (EM) 

tracking and image-to-physical registration methods to provide enhanced image-guidance. 

However, to date, image-guided ablation methods providing image-to-physical registration 

have been limited to rigid registration approaches, which neglect soft-tissue deformations 

that occur from organ mobilization during procedures and can cause substantial registration 

error [51]. EM-tracking methods avoid this issue by limiting tracking to the real-time 

position of surgical tools and iUS imaging. However, when compared to image-to-physical 

registration the EM-iUS approach limits the subsurface information that is provided and 

loses efficacy when targeting lesions in cirrhotic patients or in those with chemotherapy-

induced hyperechogenicity associated with steatosis, both which can compromise ultrasound 

lesion visualization [52-53]. 

 Several model-based soft-tissue deformation correction approaches have been 

presented in the literature for image-to-physical registration for hepatic resection. For 

example, Lange et al. published an algorithm using thin-plate splines to deform 

preoperatively acquired vessels to intraoperative vessels acquired from tracked iUS [55]. Hu 

et al. presented a method using coherent point drift to nonrigidly register vessel landmarks, 

such as bifurcations [56]. Alternatively, other approaches have concentrated on achieving 
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surface-based deformation correction methods. Rucker et al. described an inverse approach 

which optimizes boundary conditions described by a parameterized posterior displacement 

field, based on the reality of organ deformation during operative mobilization, to minimize 

the residual error between the intraoperatively collected anterior surface digitization and the 

deformed model surface [60]. More recently, Heiselman et al. expanded upon the work of 

Rucker et al. by reformulating the application of boundary conditions to a control point 

strategy which allows for multiple independent support surfaces to be designated [61]. Both 

surface-based methods have demonstrated effective correction of soft-tissue deformation in 

phantom and clinical applications for hepatic resection [60-64]. 

 Current clinical standards for ablation procedural planning entail geometric 

estimates of expected ablation zone size and shape provided by device manufacturers based 

on experimental measurements taken from ex vivo animal tissue. As such, these predictions 

ignore patient-specific anatomical and physiological variation, potential tissue 

heterogeneity, tissue perfusion, and differences in disease state that may be present. 

Accordingly, such estimates have been observed to overpredict size and result in more 

homogenous shape when compared to clinical ablation outcomes [65-66]. Predictive, 

biophysical modeling of MWA presents a strong alternative to the manufacturer-provided 

estimates of ablation outcome by utilizing numerical approaches to solve the physical 

governing equations defining energy deposition and heat transfer. Recent approaches have 

focused on treating tissue properties as a function of temperature [74-76]. However, these 

models have generally been characterized within ex vivo animal tissue or simulation and 

inherently overlook variation that can present between patients due to differences in tissue 

properties [74-76] related to perfusion [79-83] or disease state (e.g. cirrhosis or fatty liver 

disease [84-85]). As a result, there is a further need for prospective MWA modeling 



68 

 

 

approaches which address the differences in tissue properties that can occur on a patient-to-

patient basis. Furthermore, these ablation estimates and models are often presented as either 

tables or contours rather than being fully integrated with patient imaging data, therefore 

posing a challenge for physicians when planning procedural approach. As such, the 

integration of advanced surgical navigation methods with accurate, prospective MWA 

modeling presents a powerful alternative to the current clinical standard for ablation planning 

and execution. 

 Based on our existing image-guidance work for surgical resection [60-64], we 

propose that soft-tissue deformation correction methods can be applied to image-guided 

MWA to improve the accuracy and efficiency of intraoperative tumor localization and probe 

placement. Furthermore, we suggest that computational modeling of MWA can be integrated 

within the surgical environment for guidance purposes using these advanced image-to-

physical registration methods. As an initial step, we present a hepatic deformation phantom 

experiment designed to evaluate the accuracy of ablation probe localization when using the 

deformation correction method of [61] in comparison to a clinically-relevant rigid 

registration method [42]. Additionally, we present a retrospective model of microwave 

ablation which we combine with our image-to-physical registration strategies, allowing us 

to quantify and distinguish the errors associated with the MWA model and image-to-physical 

registration methods. To our knowledge, this is the first study to evaluate the combined errors 

associated with localized procedural modeling and image-guidance methods for hepatic 

MWA procedures. While providing anatomical localization is the principal feature of a 

model-based deformation correction strategy, it is equally interesting to extend biophysical 

modeling methods into this domain and determine their contribution to fidelity relative to 

procedural ground truth. 
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V.2.2 Methods 

V.2.2.1 Overview of Validation Study 

 In this study a deformable hepatic phantom constructed of albumin suspended in 

agar was treated with 915 MHz microwave ablation (ST antenna, Perseon, Salt Lake City, 

UT) creating a visible ablation lesion. The ablated phantom was imaged using T2-weighted 

MRI, from which the phantom boundary, ablation zone, antenna tip, and antenna insertion 

point were segmented in the initial “pre-deformation” pose of the phantom. Next, support 

blocks were inserted beneath the phantom to change the underlying posterior support surface 

shape as well as to shift the ablation. The phantom was then re-imaged in this “post-

deformation” state, providing the same information as before but in this new deformed pose. 

This two-step process effectively provided all procedural delivery information and ablation 

physical outcomes in a ‘before’ and ‘after’ deforming event. 

 Image-to-physical registration was then performed by registering the initial pre-

deformation image to the mock operating room/interventional suite (OR/IS) surface 

digitization of the organ generated from the post-deformation imaging data (surgical/OR 

setting utilizing partial surface data, interventional/IS setting utilizing full surface data).  This 

experimental setup allowed the ablation information to effectively be used as a geometric 

target for registration assessment.  In addition, a retrospective model of the MWA procedure 

(i.e. a model of antenna power deposition and thermal distribution) was simulated in the pre-

deformation pose given the antenna location segmented from MRI. Together, these 

experiments allow the investigation of how well a computationally-modeled, deformation-

corrected ablation prediction performed versus the ground truth ablation extent and location 

(i.e. the evaluation of a model-based therapeutic and localization system). The experiment 
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included a total of 3 ablations present in 8 image-to-physical registration scenarios.  

V.2.2.2 Summary of Image-to-Physical Registration Methods 

 Two methods of image-to-physical registration were evaluated in this study: a 

conventional rigid registration and a nonrigid registration approach which corrects for 

deformation. Rigid registration methods are currently the standard method used in 

commercial navigation systems for image-to-physical registration. These methods are very 

fast, an essential requirement in the OR, but they rely on the assumption that the 

transformation from image to physical space is purely rigid and therefore could have poor 

behavior when deformation is present. The rigid registration method used in this study 

iteratively seeks to align the anterior organ surface and salient anatomical features in the pre-

deformation image to the analogous sparse surface and feature data designated in physical 

space. These data are synthesized from the post-deformation image data in this experiment, 

although in a typical clinical case, the sparse surface and feature data would be collected by 

the physician in the operating room with an optically tracked stylus.  Typical data collection 

involves the acquisition of 3D points over the mock anterior liver surface, and specific 

features (falciform, round ligament, and inferior ridges). To mimic the quality of data 

available in a clinical setting, a sparse clinical collection pattern was taken of the anterior 

liver phantom surface in its post-deformation state.  We should note that this distribution was 

extracted from the image volume data rather than acquired from conventional image-

guidance instrumentation (details are in section II.G). With respect to the details of the rigid 

registration, these are described in Clements et al. [42] and its clinical efficacy has been 

reported in subsequent work [60-64]. 

 To better account for intraoperative deformations in the image-to-physical 



71 

 

 

alignment, the second method of registration evaluated in this study was a nonrigid, model-

based approach designed to account for soft-tissue deformations. This deformable 

registration method seeks to minimize the difference between the surface generated from the 

segmented image volume of the preoperative image and the sparse anterior surface data 

acquired in the mock intraoperative physical space. Briefly, the technique manipulates a set 

of surface control points distributed across the model surface in areas of anticipated 

deformation. Perturbations of the control points provide a precomputed distribution of 

volumetric displacements to the biomechanical model.  Intra-procedurally, optimization 

ensues iteratively with an active boundary condition reconstruction with simultaneous rigid 

parameter update until the preoperative organ shape matches the intraoperative counterpart.  

Optimization is performed using the Levenberg–Marquardt algorithm. The details of this 

method have been reported by Heiselman et al. [61]. 

V.2.2.3 Microwave Ablation Model 

 We utilize a 2D axially-symmetric computational model developed within 

COMSOL Multiphysics (COMSOL Inc, Burlington, MA) and Matlab 2017b (The 

Mathworks Inc, Natick, MA) to retrospectively model microwave ablation with the 915 MHz 

Perseon Short-tip (ST) antenna within an agar-albumin phantom. These retrospective models 

were then registered to their known locations in image space, simulating a preoperatively 

determined procedural plan. Following image-to-physical registration, we can then evaluate 

the accuracy of the registered ablation model when compared to the ground-truth ablation 

zone. 

 The electromagnetic wave equation was implemented to describe the propagation 

of electromagnetic waves through the mock soft-tissue phantom. 
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(∇2 + 𝜔2𝜇𝜀𝑐)𝐸⃑ = 0 Eq. V.1 

where 𝜔 [rad/s] is the angular frequency of the electromagnetic wave, 𝜇 [H/m] is the 

permeability, 𝜀𝑐 is the complex permittivity, and 𝐸⃑  [V/m] is the electric field strength. 

Penne’s bioheat transfer equation was employed to describe the temperature evolution and 

heat transfer. 

𝜌𝑐
𝜕𝑇

𝜕𝑡
=  ∇ ∙ 𝑘∇𝑇 + 𝑄 − 𝑄𝑝 

Eq. V.2 

where 𝜌 [kg/m3] is mass density, c [J/kg·K] is specific heat capacity, k [W/m·K] is thermal 

conductivity, T [K] is the instantaneous temperature, Q [W/m3] is heat generation, and Qp 

[W/m3] is heat loss due to perfusion. Perfusion was not implemented within the phantom and 

as a result was excluded from the model. Heat generation within the phantom, Q, was 

modeled as a function of the rate of microwave energy absorption, as such: 

𝑄 =  
1

2
𝜎‖𝐸‖2 

Eq. V.3 

where 𝜎 [S/m] is the electrical conductivity. 

An electromagnetic wave transparent boundary condition was applied at the outer 

edges of the modeling domain to prohibit microwave reflection. 

𝑛⃑ × (∇ × 𝐸⃑ ) − 𝑗𝑘𝑛⃑ × (𝐸⃑ × 𝑛⃑ ) = 0 Eq. V.4 

where 𝑛⃑  is the direction normal to the boundary and k is the wave number. In addition, 

external boundaries where set to a fixed temperature (room temperature). Internal boundaries 

between the phantom and ablation antenna simulated saline cooling within the antenna with 

a convective heat flux condition. 

𝑛⃑ ⋅ (−𝑘∇𝑇) = ℎ ⋅ (𝑇 − 𝑇𝑒𝑥𝑡) Eq. V.5 

where 𝑛⃑  is the normal vector to the element, k [W/m·K] is the thermal conductivity, h 

[W/m2·K] is the heat transfer coefficient, T [K] is temperature, and Text is the saline 
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temperature (room temperature). 

 To simulate biological ablation, a mock cell necrosis was approximated as a 

function of protein denaturation and was estimated at each time step by the Arrhenius 

damage integral: 

α = ∫ 𝐴𝑒𝑥𝑝 (−
𝐸𝑎

𝑅𝑇(𝑡)
) 𝑑𝑡

𝑡

0

 
Eq. V.6 

where α is the degree of damage at a given time, A [1/s] is a frequency factor, 𝐸𝑎 [J/mol] is 

the activation energy required to denature the protein within the phantom, R [J/mol·K] is the 

universal gas constant, and T(t) [K] is the phantom temperature history. The estimated 

fraction of denatured protein was then calculated by: 

𝜃𝑑 = 1 − 𝑒−𝛼 Eq. V.7 

V.2.2.4 Phantom Property Reconstruction 

The model described in Part V.2.2.3 was retrospectively fit to ground truth data from 

mock histology of our phantom from which ablation extent could be determined.  The 

computational model fitting framework is based on a nonlinear optimization approach where 

a parameter set defining the dielectric and thermal properties of the phantom domain within 

the finite element model is iteratively chosen to maximize the overlap between the model-

predicted and observed ablation zones. 

𝑃 = [ 𝜎, 𝜀, 𝑘, 𝑐] Eq. V.8 

where 𝜎, 𝜀, 𝑘, and 𝑐 are the electrical conductivity, relative permittivity, thermal conductivity, 

and specific heat capacity of phantom respectively. The objective function is defined by the 

degree of overlap between the model-predicted and observed ablation zones as such: 

Ω =  1 − 
𝑁𝑇𝑃

𝑁𝑇𝑃 + 𝑁𝐹𝑃 + 𝑁𝐹𝑁

 
Eq. V.9 
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where Ω signifies the ratio of the intersection and union of the model-predicted and observed 

ablation zones. For this framework, we use the Nelder-Mead downhill simplex method to 

optimize the parameter set (Eq. V.8) by minimizing the objective function (Eq. V.9). The 

Nelder-Mead algorithm is a heuristic search approach used to solve nonlinear optimization 

problems without requiring derivative information.  

V.2.2.5 Agar-Albumin Hepatic Deformation Phantom 

The deformable hepatic phantom used in this study consisted of a combination of 

purified water, 1.5 wt% agar-agar powder (Thermo Fischer Scientific, Waltham, MA), and 

50 wt% liquid egg whites (Break Free Liquid Egg Whites, The Kroger Company, Cincinnati, 

OH). Liquid egg whites were used to produce a permanent visual history of the thermal 

induced ablation lesion, similar in nature to the ablation lesions which form in tissue. Egg 

whites contain around 10% ovalbumin protein dissolved in 90% water with nearly no 

carbohydrate or fat content. Thermal denaturing of the ovalbumin protein leads to 

aggregation which causes optical scattering and a large reduction in the T2 relaxation 

coefficient of the material. The resulting ablation lesions were imaged using T2-weighted 

MRI and visually observed with mock histology by sectioning the phantom along the midline 

of the ablation antenna and backlighting the section (As seen in Figure V.1.B-C). 

To create the phantom, powdered agar-agar was thoroughly mixed with water and 

heated to boiling on a hot plate while being continuously stirred to produce a 1.5% agar gel. 

The solution was then cooled to <60°C with continuous stirring before adding the liquid egg 

whites. This cooling ensured that no protein denatured prematurely. The mixture was then 

mixed for 1 minute and then poured into the phantom mold to allow the gel to set. A plaster 

negative derived from contrast-enhanced CT imaging of a patient liver was used as the 
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phantom mold to produce a hepatic phantom with clinically-relevant anatomical structure 

(Fig. V.1).  

V.2.2.6 Applied Deformations 

The proposed modeling and registration framework was evaluated across a range of 

clinically-relevant organ deformations. In open surgery, deformations occur due to the 

introduction of packing material beneath and around the organ following mobilization of the 

organ from surrounding anatomy. These changes between diagnostic and intraprocedural 

presentation incur shape change.  To impose soft tissue deformations, silicone support blocks 

A. B. 

C. 

1 cm 

1 cm 

Fig. V.1. (A) Agar-albumin phantom liver in its pre-deformation state. 

A Microwave ablation antenna is seen inserted into the right lobe. (B) 

Mock-histology of an ablation within the agar-albumin phantom. The 

outer ablation contour, ablation antenna tip location, and ablation 

antenna shaft are clearly visible. (C) Slice from the T2-weighted MRI of 

the ablation zone from which the outer ablation contour, ablation antenna 

tip location, and ablation antenna shaft were segmented. 
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(roughly 20-30 mm thick) were inserted beneath varying areas of the phantom. Figure V.2 

provides an example of the extent of deformation induced in the phantom. In total, 4 unique 

applications of deformation were applied to the phantom. In case 1, support material was 

placed beneath the lateral superior right lobe, raising the largest volume of the phantom. In 

case 2, support material was added beneath both the lateral superior and inferior right lobe, 

causing the right lobe to rise and rotate about the falciform ligament. In case 3, support 

material was inserted beneath the lateral inferior right lobe and the left lobe, causing the 

medial area of the liver to sag. Finally, in case 4 support material was inserted beneath the 

lateral inferior right lobe, causing it to rise. 

V.2.2.7 Data Collection 

T2-weighted MRI scans were acquired for each state of phantom deformation (i.e. 1 

Fig. V.2. Representation of the degree of deformation achieved in the 

deformable hepatic ablation phantom. The colormap represents the 

signed surface error after rigidly registering the pre- and post-

deformation phantom image segmentations. The ablation antenna shafts 

are presented as white lines and ablation zones as green volumes. In total, 

4 applications of deformation were applied and imaged within the 

phantom. 
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pre-deformation image set and 4 post-deformation image sets). 3D models were generated 

from each set of images using ITK-SNAP [136]. Salient feature regions were manually 

designated from the surface of each model. To date, these image-to-physical registration 

methods have been clinically implemented using sparse digitizations of the anterior organ 

surface attained intraoperatively. Within this study, we present and compare results 

following registration using (1) IS-inspired full surface data, (2) OR-inspired sparse surface 

data, and (3) resampled sparse surface data using the resampling method presented by 

Collins et al. [63]. 

Sparse anterior surface data, akin to what would be available clinically, were 

generated using a method similar to the human-to-phantom data described by [63]. Briefly, 

sparse surface data gathered from actual clinical cases (an IRB approved study at Memorial 

Sloan Kettering Cancer Center in [62]) were rigidly registered to our mock phantom image 

volume in its deformed state.  This was accomplished using the weighted salient feature 

registration method of Clements et al. [42]. Once initialized, an affine registration was 

performed to account for any differences in organ size between the clinical and phantom 

data. Next, the clinical surface data were projected to their closest points on the deformed 

phantom surface, resulting in unique realistic sparse anterior surface designations for each 

case. However, unlike the method of [63], no additional noise was added to these synthesized 

sparse surface data. All synthesized designations had an extent of organ coverage between 

25-30% which is within the range of typical clinical data acquisition [61, 133].   It should be 

noted that the above process could be performed in the reciprocal workflow allowing for a 

second set of novel conditions.  In total, this created 8 registration scenarios (the original 4 

cases from section II.F and the 4 reciprocal instances) for the results herein, each with an 

independent set of simulated physical space data to drive the registrations. 
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V.2.2.8 Analysis 

 Two methods of image-to-physical registration were compared in this study: (1) 

the salient feature weighted iterative closest point rigid registration method by Clements et 

al. [42] and (2) the deformable control point nonrigid registration method by Heiselman et 

al. [61]. Average target registration error (TRE) was used as the primary quantification of 

registration accuracy. A total of nine targets were measured across the three ablations in each 

image-to-physical registration scenario: (a) the antenna tip locations, (b) the antenna 

insertion points on the phantom surface, and (c) the centroids of the MRI-segmented ablation 

zones. Average TRE for a registration scenario was calculated as the average distance 

between corresponding points in the registered image and physical data sets. This metric 

measures the accuracy of the registration methods evaluated in this study exclusively, 

independent of the MWA modeling. 

 The positive predictive value (PPV) was used to evaluate volumetric accuracy of 

the predictive MWA model. PPV was calculated by the following equation: 

PPV =  
𝑁𝑇𝑃

𝑁𝑇𝑃 + 𝑁𝐹𝑃

 
Eq. V.10 

Where NTP is the volume of the model-predicted ablation zone overlapping with the 

observed ablation zone and NFP is the volume of the model-predicted ablation zone which 

does not overlap with the true ablation zone. We present the metric of PPV in this study for 

two separate purposes: (1) to quantify the predictive capability of the MWA model without 

compounding registration error and (2) to evaluate the accuracy of the combined registration 

and MWA modeling framework. 

To singularly evaluate the accuracy of the MWA model, the model-predicted ablation 

zones were directly compared to the mock histology. This comparison was made assuming 



79 

 

 

perfect registration after manually aligning the ablation antenna tip and shaft from the model 

space with the corresponding locations in the mock histology image space. The outer 

ablation contours from each space were then revolved to create 3D volumes which were then 

compared by calculating the PPV. The combined registration and modeling framework 

accuracy was also evaluated by computing the PPV following image-to-physical registration 

of the model-predicted ablation zone. Inaccuracies in both the image-to-physical registration 

methods and MWA modeling contribute to the error encompassed by this metric. 

A t-test was used to determine significance in differences between the distributions 

of average TRE and PPV resulting from each evaluated registration method (α = 0.05). 

V.2.3 Results 

V.2.3.1 Microwave Ablation Model 

 Model-predicted temperature maps for each of the 3 ablations with the agar-

albumin deformation phantom are presented in Fig. V.3 alongside contours defining the 

observed and model-predicted ablation zone extents (as black and dashed red lines 

respectively). These results are under the condition of perfect localization which was 

achieved by manually aligning the observed and modeled ablation antennas. The degree of 

ablation zone overlap for this condition presented as the positive predictive value is on 

average 96.3 ± 0.3%. The observed transverse and axial ablation zone dimensions gathered 

from mock histology were 20.1 ± 1.0 and 31.6 ± 1.2 mm respectively. Model-predicted 

ablation zone transverse and axial dimensions were 19.9 ± 1.8 mm and 29.9 ± 0.6 mm 
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respectively (differing from the mock histology by 4.2% and 5.3% respectively).  

V.2.3.2 Image-to-Physical Registration 

Target registration errors resulting from rigid registration and deformation correction 

approaches applied to the 8 image-to-physical registration scenarios within the deformable 

hepatic ablation phantom are presented in Fig. V.4 for full surface data (top), and sparse 

surface data (bottom), in blue/yellow and grey/orange, respectively. Average TRE results 

from driving the registrations with full surface, sparse surface, and resampled sparse surface 

data are tabulated for both methods of registration in Table V.I.  

Fig. V.3. Model-predicted temperature maps, observed (black line), 

and model-predicted (red dashed line) ablation zones are presented for 

each case of ablation with the Perseon ST antenna within the agar-

albumin hepatic deformation phantom. The observed ablation zone 

extent was gathered from mock-histology and used to drive the 

retrospective inverse MWA model. It is important to note that each 

ablation occurred in a different area of the phantom with varying tissue 

thickness and antenna depth. 

°C 

1 cm 
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Fig. V.4. Histograms of the target errors resulting from the two 

methods of registration applied to the 8 image-to-physical registration 

scenarios within our agar-albumin deformation phantom. Results of the 

rigid registration using the weighted salient feature ICP method of 

Clements et al. [42] are presented in blue/grey. Results of the 

deformation correction method of Heiselman et al. [61] are presented in 

yellow/orange. (Top) Results from registering with IS/full surface data. 

(Bottom) Results from registering with OR/sparse surface data.  
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Table V.I. Average and standard deviation target registration error are

presented for each source of surface data and each evaluated method of

registration.

Average Target Registration Error [mm]

Rigid registration Deformation CorrectionSurface 

Data

Full 5.6  2.3 2.5  1.1

Sparse 6.0  2.3 3.7  1.4

Resampled 4.9  2.1 3.8  1.3

Fig. V.5. Distributions of the volumetric overlap of observed and 

predicted ablation zones represented by the positive predictive value. 

The box and whiskers represent the mean, median, upper and lower 

quartiles, maximum, and minimum PPV for the rigid registration method 

of Clements et al. [42] in blue/grey and the deformation correction 

method of Heiselman et al. [61] in yellow/orange. Presented results are 

from registering with full surface data (blue/yellow) and sparse surface 

data (grey/orange). 
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 Distributions of the volumetric overlap (represented by PPV) resulting from the 

rigid registration and deformation correction methods using full and sparse surface data are 

presented in Fig. V.5 in blue/yellow (full data) and grey/orange (partial data) respectively. 

Average PPV results from driving the registrations with full surface, sparse surface, and 

resampled sparse surface data are presented for both methods of registration in Table V.II. 

Fig. V.6 presents the PPV plotted as a function of the average TRE for the corresponding 

ablation antenna for each method of registration as well as for the perfectly localized model 

(i.e. TRE of 0 mm). Results depicted in Fig. V.6 are from driving the registration methods 

with full surface data. 

  

Table V.II. Average and standard deviation volumetric overlap are presented

as the positive predictive value for each source of surface data and each

evaluated method of registration. Additionally, the positive predictive value is

presented for the case of perfect localization to distinguish model error from

registration error.

Average Positive Predictive Value [%]

Rigid registration Deformation CorrectionSurface 

Data

Full 67.0  11.8 85.6  5.0

Sparse 64.8  12.4 77.1  8.0

Resampled 69  11.1 75.1  6.5

Perfect 

Localization
96.3  0.3
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Fig. V.6. The positive predictive value is presented for each registered 

ablation (24 total) as a function of the average target registration of the 

corresponding ablation antenna. Antenna TRE was calculated as the 

average error of the antenna tip, insertion point, and ablation centroid. 

Results of the rigid registration method of Clements et al. [42] are 

presented in blue and the deformation correction method of Heiselman 

et al. [61] are presented in yellow. MWA model results in the condition 

of perfect registration (manual alignment) are presented for comparison 

in red. Presented results are from registering with full surface data. 
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 Fig. V.7 presents an example of the retrospective ablation model following rigid 

registration and deformation correction using sparse anterior surface data. In each panel, the 

green ellipse and line represent the ground truth ablation zone and antenna pose respectively. 

The modeled ablation zone following rigid registration is presented in (A) and magnified in 

(B). The MWA model result following deformation correction is presented in (C) and 

magnified in (D).  

V.2.4 Discussion 

 In this study, we presented the first effort to evaluate deformation correction 

methods for image-guided microwave ablation in the liver. Further, we coupled retrospective 

Fig. V.7. An example of ablation model predictions following registration with sparse 

anterior surface data. In each panel, green represents the ground truth ablation zone as 

observed in MRI. The rigidly registered ablation model is presented in (A) and detailed 

views in (B). The registered ablation model following deformation correction is 

presented in (C) and detailed views in (D). Additionally, in each panel the registered 

ablation antennas are indicated by lines with color corresponding to the registration 

method. 

A. B. 

C. D. 
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modeling of the ablation procedure with these surgical navigation techniques, allowing us to 

quantify the magnitude of error that would be associated with a combined modeling and 

surgical navigation approach. We evaluated these methods within a deformable hepatic 

ablation phantom which allows for comprehensive validation with both individual point 

targets and volumetric overlap of predicted and ground-truth ablation zones. To our 

knowledge, this combined evaluation is a unique contribution to the literature. 

 The example visualization of the rigid registration and deformation correction 

algorithms on ablation antenna positioning (Fig. V.7) indicate that the deformation 

correction method provides considerable improvement to the rigid registration approach 

when soft-tissue deformation is present. In addition, the quantitative results of the ablation 

antenna point target errors (Fig. V.4 and Table V.I) indicate that the deformation correction 

algorithm of [61] represents a significant improvement over the rigid registration results of 

[42] (p < .001). Furthermore, the point target errors presented in Fig. V.4 and Table V.I 

demonstrate that a more complete source of surface data (e.g. using the full surface data often 

available in IS) for driving the registration provides further improvement to the deformation 

correction algorithm when compared to the sparse surface driving data that is available in 

the OR (p < .001). It is also interesting to note that the source of surface data had much more 

profound impact on the deformation correction method than on the rigid registration. This 

observation qualitatively represents the degree to which soft-tissue deformation impacts the 

maximum achievable accuracy of rigid registration approaches. 

 In addition to reporting the antenna point target errors in Fig. V.4 and Table V.I, 

the volumetric error associated with the retrospectively modeled ablation zones have been 

presented in Fig. V.5 and Table V.II. Again, these results demonstrate improved localization 

by our deformation-corrected method and Fig. V.7 visualizes clearly better fidelity when 
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comparing the overlap of the red ablation on ground truth green (rigid registration) to that of 

the overlap of the blue ablation on the same ground truth (deformation corrected). As with 

the point target errors, we see that for each data source (Table V.II) the deformation 

correction method of [61] significantly outperforms the rigid alignment method of [42] (p < 

.001). 

 Fig. V.3 and Table V.II present the maximum volumetric accuracy of the 

retrospective ablation modeling utilized within this study under the condition of perfect 

localization. Furthermore, Fig. V.6 presents these results in comparison to the modeled 

ablation zones following registration. These novel results represent the decline in model-

predictive capacity (-5.95% / mm, p < .001, r = .93) that is associated with localization error 

in a combined surgical navigation and modeling framework. 

 This study is not without its limitations. In this investigation we employ an 

inverse-model approach to reconstruct phantom-specific properties to retrospectively model 

the ablation outcome, which limits its immediate clinical applicability. However, there is 

precedence for determining disease state and approximating tissue properties from 

preoperative imaging using MRI [86] or ultrasound [87]. Another limitation is that neither 

the phantom nor the retrospective model include tissue perfusion which has been shown to 

have an impact on ablation outcome clinically [79-83] but is difficult to achieve in a phantom 

setting. We also note that the relatively low rigid registration results achieved in this study, 

as compared to prior phantom studies, indicate that the degree of applied soft-tissue 

deformation was less than previously achieved such as in [60]. This is in large part due to 

the nature of the agar-albumin phantom which is prone to shearing when subjected to large 

deformations. However, we suggest that the 20-30 mm of deformation that was achieved in 

this study was adequate for understanding the relative performance under assumptions of 
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rigid versus nonrigid deformation-corrected alignment. Furthermore, the sparse data 

resampled results showed improvement to the rigid registration method. However, this was 

not the case for the deformation correction methods. This is largely because the simulated 

sparse surface data did not include digitization noise (i.e. the sparse surface data was selected 

directly from the MRI surface) which the resampled method was specifically designed to 

reduce. 

 In summary, our results suggest that this application is a significant advancement 

in the field of hepatic image-guided ablation, as soft-tissue deformation is a considerable 

limitation to current rigid registration-based approaches. While EM-iUS methods [48-49] 

take a purely intraoperative imaging approach to this soft-tissue deformation problem, they 

fail to provide additional information concerning relevant critical anatomy, a common desire 

given the availability of preoperative imaging data. Furthermore, EM-iUS approaches are 

restricted to US-visible tumors, which further restricts its applicability to image-guided 

ablation when considering non-echogenic tumors that present due to disease state or 

following neoadjuvant therapy [52-54]. Other studies have reported targeting accuracy of 

ablation antennas on the order of 5 – 10 mm, with the current best being a median accuracy 

of 4.2 mm [49]. In comparison, our presented method of deformation correction has 

produced favorable accuracies of 2.5 ± 1.1 mm and 3.7 ± 1.4 mm when using full (IS) and 

sparse (OR) surface data respectively. 

V.2.5 Conclusions 

 The objective of this work was to quantify the localization and volumetric 

accuracy of a model-based deformation correction method when applied to image-guided 

hepatic MWA. Evaluation of the applied method shows significant improvement in 
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localization accuracy when compared to a clinically-relevant rigid registration approach. 

Furthermore, we incorporate a retrospective model of MWA into the navigational 

framework, providing an important evaluation of the interplay between localization accuracy 

and volumetric overlap of predicted and ground-truth ablation zones. While future work is 

necessary to apply this modeling and navigational framework as a prospective, targeting 

approach, the deformation correction method applied in this study is certainly an 

advancement toward improved localization in hepatic MWA procedures. Going further, this 

work extends the concept of ‘model correction’ to include a new biophysical domain, namely 

the deposition of ablative energy, and its corresponding thermal evolution. This combined 

mechanics/energy framework represents a first study in a more comprehensive model-

predictive paradigm for an important image-guided therapeutic process in use today. 
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Image Data-Driven Prospective 

Microwave Ablation Model 

VI.1 Summary and Contributions 

To date, predictive models of MWA have largely been evaluated within ex vivo 

bovine tissue samples. As such, these studies have assumed that material properties remain 

consistent across specimens and have recently taken an approach which emphasizes how this 

baseline property set changes during a procedure as a function of temperature. However, it 

is likely a poor assumption that material properties remain constant across patients, 

especially when considering the vast array of organ disease states that can present clinically. 

Accordingly, this study presents the first approach for approximating patient-specific 

baseline material properties from a priori knowledge of organ disease state.  

 In this work, a prospective implementation of the best-fit microwave ablation 

model introduced in the previous chapter was developed. This model was initially deployed 

within an inverse modeling framework to determine the thermal and electrical conductivities 

of a series of ablation phantoms based on observations of ablation extent and verified by 

comparing model-predicted and observed procedural temperature measurements. After 

verifying the application of the inverse model for reconstructing phantom material 

properties, the inverse model was used to construct a model of these phantom material 

properties as a function of phantom fat content in a separate series of phantoms with varying 

levels of added fat. In this second series of phantoms, the phantom fat content was measured 

with a clinically-relevant quantitative MRI imaging sequence. Next, a leave-one-out 

validation study was performed to evaluate the predictive capacity of the constructed 
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material property model by comparing the model-predicted ablation zones to their ground 

truth counterparts. This work demonstrates, as a proof of concept, that physical modeling 

parameters can be linked with quantitative medical imaging to improve the utility of 

procedural modeling for hepatic MWA. 



92 

 

 

VI.2 Toward image-data driven predictive modeling for guiding thermal 

ablative therapy 

The work in this chapter appears in: 

J.A. Collins, J.S. Heiselman, L.W. Clements, J.A. Weis, D.B. Brown, and M.I. Miga, 

“Toward image-data driven predictive modeling for guiding thermal ablative therapy,” IEEE 

T Med Imaging. In submission. 

Abstract 

Accurate prospective modeling of microwave ablation procedures can provide 

powerful planning and navigational information to physicians. However, patient-specific 

tissue properties are generally unavailable and often vary based on factors such as relative 

perfusion and state of disease. Therefore, a need exists for modeling frameworks that account 

for variations in tissue properties. In this study, we establish an inverse modeling framework 

to reconstruct a set of tissue properties that best fit the model-predicted and observed ablation 

zone contours in a series of phantoms of varying fat content. We then create a model of these 

tissue properties as a function of fat content and perform a comprehensive leave-one-out 

evaluation of the predictive property model. Furthermore, we validate the inverse-model 

predictions in a separate series of phantoms that include co-recorded temperature data. This 

model-based approach yielded thermal profiles in close agreement with experimental 

measurements in the series of validation phantoms (average root-mean-square error of 4.8 

K). The model-predicted ablation zones showed compelling overlap with observed ablations 

in both the series of validation phantoms (93.4 ± 2.2%) and the leave-one-out cross validation 

study (86.6 ± 5.3%). These results demonstrate an average improvement of 17.3% in ablation 

zone overlap when comparing the presented property-model to the predicted properties based 
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on phantom component volume fractions. In summary, these results demonstrate accurate 

model-predicted temperatures and ablation zones based on image-driven determination of 

tissue properties. The work demonstrates, as a proof of concept, that physical modeling 

parameters can be linked with quantitative medical imaging to improve the utility of 

predictive procedural modeling for MWA. 

VI.2.1 Introduction 

 Thermal ablation techniques have become a viable treatment approach in the 

management of anatomically non-resectable liver malignancies [18-20]. While many 

ablation modalities exist, microwave ablation (MWA) has had considerably increased 

interest for hepatic procedures in recent years over its counterparts. The most notable 

benefits when comparing to the main competing modality, radiofrequency ablation, are that 

MWA creates a large spatial extent of power distribution, can penetrate through charred 

tissues, and has the capacity to ablate up to and around large vessels [21-22, 31, 137]. 

 Regarding performance, the success of a complete ablation with acceptable 

margins is heavily reliant on accurate planning and guidance. Ablation procedures are often 

performed using image guidance to assist in probe placement, intraoperative localization of 

the target, and for postoperative evaluation of the ablated necrotic zone. When using 

traditional methods of guidance such as ultrasound and computed tomography (CT), the 

ability to monitor thermal lesion development throughout the procedure is significantly 

limited [38]. Methods using MR thermometry have generated considerable interest although 

challenges of MR-compatibility, availability, and considerable cost exist [138]. Patient-

specific predictive modeling of ablation procedures has been proposed to improve treatment 

planning as an alternative to direct thermal monitoring [139]. 
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For ablation procedural planning, MWA device manufacturers currently provide 2D 

specifications for generating expected ablation volumes given specific power and time 

settings. These estimates are empirically derived from ablations observed within ex vivo 

animal tissue. In doing so, these models ignore the influence of patient-specific anatomical 

variation, tissue heterogeneity, and tissue perfusion. As a result, the manufacturer 

specifications are often larger and more uniform than clinically observed ablations [65-66]. 

Moreover, there is often no integration of these 2D predictions with the 3D patient images, 

placing burden on the physician to mentally reconstruct and compare complex volumes. The 

development of clinically accurate, patient-specific computational models of MWA 

procedures presents a powerful alternative to the ablation zone estimates provided by 

manufacturers and a lower-cost, less cumbersome alternative to interventional imaging 

strategies. 

 Computational models of MWA employ numerical methods to solve the 

differential equations governing electromagnetic wave propagation, power deposition, and 

biological heat transfer and have been investigated within the literature for two distinct 

purposes: (1) assisting the optimization of ablation hardware design [67-71] and (2) more 

recently towards the eventual development of patient-specific treatment planning [72-76]. 

For clinical application, research into these approaches seeks to provide more accurate and 

reliable estimates of personalized procedures for the purposes of planning, guidance, and 

assessment. When considering the shortcomings of the manufacturer provided charts, 

computational models tailored to an individual could incorporate specifications for 

geometric, dielectric, and thermal properties of the tissue. Sensitivity studies performed on 

models of 2.45 GHz MWA have reflected the extensive influence that these tissue properties 

have on MWA models, especially the dielectric properties, specific heat, and the rate of 
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blood perfusion when present [77-78]. Recent studies at both 915 MHz and 2.45 GHz 

frequencies have incorporated tissue properties that vary as a function of temperature as 

derived from experimental measurements [74-76] or due to dynamic changes in tissue water 

content and blood perfusion [79-83]. However, an inherent shortcoming in these models is 

that they neglect the variation in material properties that can occur between patients. A recent 

study in MWA antenna design concluded that there is a need for more accurate and 

comprehensive modeling of dielectric and thermal tissue properties [71]. Presently, patient-

specific dielectric and thermal properties are generally unavailable in a clinical setting. As 

such, these various models of tissue properties are often derived from experimental 

conditions in animal tissue. Furthermore, there is clear variation between patients presenting 

with other common disease states such as cirrhosis or fatty liver disease [84-85]. Therefore, 

a need exists for modeling frameworks that account for patient-specific variations in the state 

of organ tissue.  One possibility is to use MRI methods to non-invasively measure quantities 

that could be correlated to material property changes, e.g. quantification of varying liver fat 

content [86] may determine dielectric properties. We propose that a priori knowledge of 

organ disease state can be used to facilitate predictive modeling of thermal ablation. 

 In this work, we propose a novel approach to modeling microwave ablation 

procedures that uses quantitative medical imaging to estimate the dielectric and thermal 

properties of tissue.  The paper begins with the development of a methodology to determine 

thermal and electrical tissue material properties from an inverse modeling approach and 

reports the fidelity of those predictions within the context of temperature measurements.  

Once achieved, in a separate series of phantoms with varying fat content, material properties 

were determined via the inverse modeling approach. These reconstructed properties were 

then fit to a material property model as a function of phantom fat content, as measured with 
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a clinically-relevant MRI fat quantification imaging sequence. A leave-one-out cross 

validation study was then performed which used the constructed material property model to 

estimate phantom material properties in a prospective implementation of the ablation model. 

The model-predicted ablation zones were then compared to their observed gross histology 

counterparts for validation purposes. The material property model developed in this study 

specifically focused on phantom fat content because it was easily controllable and 

quantifiable for the purposes of this proof of concept study and remains clinically-relevant 

when looking at common patient presentations [86]. However, we note that there are 

additional quantitative medical imaging methods that could complement this work (e.g. 

electrical conductivity imaging [140]). 

VI.2.2 Methods 

The objective of this study is to develop a predictive modeling framework for hepatic 

MWA that estimates tissue properties based on quantitative medical imaging of fat content 

to better account for patient-specific property variation and more accurately predict ablation 

outcome prior to treatment.  In this work, we present a rigorous proof-of-concept to begin to 

determine the fidelity of such an approach for therapeutic intervention technologies.  The 

following subsections detail the methods used to collect experimental phantom data 

(VI.2.2.1-3), develop our MWA model (VI.2.2.4-7), and experimentally validate our MWA 

model and phantom property models (VI.2.2.8-9). 

VI.2.2.1 Phantom Testing Environment 

 For this study, a heat-sensitive gel phantom was constructed consisting of liquid 

egg whites, vegetable shortening, and the remainder with agar gel. Egg whites consist of 
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approximately 90% water and 10% dissolved protein. The denaturing of ovalbumin protein 

within the egg whites provides a visualization of thermal damage within the phantom. 

Thermal denaturation of the protein causes aggregation, leading to optical scattering. This 

denaturation causes the thermal lesion to be clearly visible when prepared in mock histology. 

Vegetable shortening was used to introduce a controllable variability to the thermal and 

electrical properties of the phantom. Table VI.I demonstrates the general reduction in 

thermal and electrical properties of vegetable shortening compared to the other phantom 

components. The ranges of fat included within this study were chosen to represent the 

clinical presentation of fatty liver disease (i.e. 5-10% of liver weight).  

 To make this agar-albumin-fat phantom, 1.5 wt% agar powder (Thermo Fisher 

Scientific, Waltham, MA) was mixed with an appropriate volume of purified water. The 

solution was then heated gradually until boiling on a hot plate while being continuously 

stirred. After the agar gel had exceeded 60°C, the desired amount of vegetable shortening 

was introduced (Crisco, The J.M. Smucker Company, Orrville, OH). Once heated, the 

solution was then cooled below 55°C with continuous stirring, at which point 50 wt% liquid 

egg white (Break Free Liquid Egg Whites, The Kroger Company, Cincinnati, OH) was added 

and mixed thoroughly for 1 minute. The mixture was then poured into the phantom mold 

and began to solidify once cooled below 35°C. Note that the liquid egg white solution must 

Table VI.I. Dielectric and thermal properties of the agar-albumin-fat phantom

components as reported in the literature.

Agar-albumin Phantom

Agar-water gel 

(1.5%)

Vegetable 

Shortening
Liquid Egg Whites

σ [S/m] 0.05 – 0.4 [141] 1.04 x10-5 [145] 1 [149]

ε 67 – 84 [142] 2.53 – 2.665 [146] 50.2 [149]

c [J/Kg-K] 3900 [143] 1670 [147] 3414 [150]

k [W/m-K] 0.5 – 0.55 [144] 0.155 – 0.170 [148] 0.522 [150]
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be added when the temperature of the agar gel is below 60°C to avoid prematurely denaturing 

the ovalbumin protein. 

 A cubic acrylic box with a volume of 1L served as both the phantom mold and 

enclosure during the ablation procedures. The lid to the enclosure incorporated a series of 

holes, centered 5 mm apart, along the midline of the phantom to enforce consistent placement 

of the ablation antenna and, if present, temperature sensors. During each experiment, the 

ablation and temperature sensors were positioned within the phantom using these guides and 

rigidly fixed in position at measured depths. 

 In total, 6 agar-albumin phantoms with no fat were created for the inverse model 

validation study (section VI.2.2.8) and 15 agar-albumin-fat phantoms of varying fat 

percentages were created for the phantom material property model study (section VI.2.2.9). 

VI.2.2.2 Ablation Data Collection 

As depicted in Fig. VI.1, a 915 MHz Perseon ST microwave ablation antenna was 

inserted into the center of each phantom to a recorded depth. For the no-fat phantoms, two 

two-channel Luxtron 812 (LumaSense technologies, Santa Clara, CA) fiber optic 

temperature sensors in conjunction with 4 STB fiberoptic probes were used to record 

temperatures at a rate of 2 samples per second and in the range of 0 to 120°C. The system is 

reported to be accurate within ± 0.5°C and is immune to interference from radiofrequency, 

microwave, and electromagnetic induction. Continuous power of 60 W was applied for 15 

minutes (MicroThermX, Perseon Medical, Salt Lake City, UT). Finally, mock histology was 

attained by sectioning the phantom along the midline of the MWA antenna. A 2D 

representation of the ablation zone was then segmented from a photograph (Fig. VI.2). 

Measurements of the transverse and axial extents of each ablation zone were taken from the 
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segmented mock gross histology. 

  

Fig. VI.1. Diagram of the experimental setup and model geometry for 

ablation with the Perseon ST microwave ablation antenna within an agar-

albumin phantom. 
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VI.2.2.3 MRI Fat Quantification 

 MRI examination of each phantom was achieved with a 3T Intera Achieva MR 

scanner (Philips Healthcare, Netherlands). Following ablation, a commercially available fat 

quantification sequence (mDixon Quant) was used to acquire fat fraction images of each of 

the 15 phantoms for the phantom material property model study (Philips Healthcare, 

Netherlands). The mDixon Quant fat quantification protocol has a reported accuracy of ± 

3.5% and reproducibility of ± 1.4% [151]. For each phantom, 53 slices were acquired with 

Fig. VI.2. Sample backlit mock histology of 

ablation zone (cut along the axis of the Perseon 

ST antenna) following an ablation at 60 W for 15 

minutes in an agar-albumin phantom.  
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3.12 mm spacing and in-plane resolution of 1.56 × 1.56 mm. 

VI.2.2.4 Computational Model 

We implemented a 2D axially-symmetric finite element model using COMSOL 

Multiphysics (COMSOL Inc, Burlington, MA) and Matlab 2017b (The Mathworks Inc, 

Natick, MA) to simulate electromagnetic wave propagation and heat transfer in an agar-

albumin phantom with the 915 MHz Perseon Short-tip (ST) antenna (Perseon Medical, Salt 

Lake City, UT). The development and absorption of electromagnetic waves radiating from 

the antenna within the phantom, when assuming no initial existing charge, is described by 

the electromagnetic wave equation. 

(∇2 + 𝜔2𝜇𝜀𝑐)𝐸⃑ = 0 Eq. VI.1 

where 𝜔 [rad/s] is the angular frequency of the electromagnetic wave, 𝜇 [H/m] is the 

permeability, 𝜀𝑐 is the complex permittivity, and 𝐸⃑  [V/m] is the electric field strength. Heat 

transfer and the resulting temperature history were solved using Pennes’ bioheat equation. 

𝜌𝑐
𝜕𝑇

𝜕𝑡
=  ∇ ∙ 𝑘∇𝑇 + 𝑄 − 𝑄𝑝 + 𝑄𝑚 

Eq. VI.2 

where 𝜌 [kg/m3] is mass density, c [J/kg·K] is specific heat capacity, k [W/m·K] is thermal 

conductivity, T [K] is temperature, Q [W/m3] is heat generation due to absorbed 

electromagnetic energy, Qp [W/m3] is heat loss due to perfusion, and Qm [W/m3] is metabolic 

heat generation. Metabolic heat generation (Qm) and perfusion (Qp) were not present within 

the phantom and were therefore excluded from the model. Heat generation from power 

deposition by the applied electric field was calculated by  

𝑄 =  
1

2
𝜎‖𝐸‖2 

Eq. VI.3 

where 𝜎 [S/m] is the electrical conductivity. 
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VI.2.2.5 Boundary Conditions 

A first order electromagnetic scattering condition was applied to the exterior of the 

phantom to limit the reflection of outgoing waves by simulating a transparent boundary. 

𝑛⃑ × (∇ × 𝐸⃑ ) − 𝑗𝑘𝑛⃑ × (𝐸⃑ × 𝑛⃑ ) = 0 Eq. VI.4 

where 𝑛⃑  is the direction normal to the boundary and k is the wave number. Boundaries along 

the exterior of the phantom were set to a fixed room temperature (20 [°C]). Saline cooling 

of the Perseon ST antenna was simulated as a convective heat flux condition along the inner 

boundary of the antenna as follows 

𝑛⃑ ⋅ (−𝑘∇𝑇) = ℎ ⋅ (𝑇 − 𝑇𝑒𝑥𝑡) Eq. VI.5 

where 𝑛⃑  is the normal vector to the element, k [W/m·K] is the thermal conductivity, h 

[W/m2·K] is the heat transfer coefficient, T [K] is temperature, and Text is the saline 

temperature (20 [°C]). 

VI.2.2.6 Modeling Tissue Damage 

 Thermally-induced tissue damage is a function of both instantaneous temperature 

and thermal history. For this study, the Arrhenius damage integral was used to estimate 

protein denaturation as a proxy to cell death within the phantom [152]. The degree of damage 

in tissue experiencing hyperthermia was calculated from 

α = ∫ 𝐴𝑒𝑥𝑝 (−
𝐸𝑎

𝑅𝑇(𝑡)
) 𝑑𝑡

𝑡

0

 
Eq. VI.6 

where α is the degree of damage at a given time, A [1/s] is the frequency factor, 𝐸𝑎 [J/mol] 

is the activation energy required to damage the mock tissue, R [J/mol·K] is the universal gas 

constant, and T(t) [K] is the temperature history of the mock tissue. The parameters 𝐸𝑎 

(2.8819× 105 [J/mol]) and A (1.8769× 1041 [1/s]) are mock tissue dependent and were 
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calibrated to maximize correspondence between thermal history and ablation zone contour 

fit in the validation phantom set. The fraction of damaged tissue was then determined by 

𝜃𝑑 = 1 − 𝑒−𝛼 Eq. VI.7 

VI.2.2.7 Discretization 

 The ablation antenna and temperature sensor locations (when present) within the 

phantom were recorded in each experiment and incorporated into the model geometry as 

presented in Fig. VI.1. Four temperature sensors were used to record thermal history in each 

experiment of the validation phantom set with two pairs located at 5 and 15 mm transversely 

at varying recorded depths (observe the 4 sensor locations in Fig. VI.1). These locations were 

added within the model geometry to allow for direct comparison between model-predicted 

and observed temperatures at a given time. The model was discretized as a free triangular 

mesh with maximum element sizes of 0.15 and 2 mm for the antenna and phantom 

respectively. An implicit multifrontal massively parallel sparse direct solver (MUMPS) 

within COMSOL Multiphysics was used to solve both the stationary electromagnetic and 

transient bioheat transfer problems [153-154]. The model was solved with a continuous input 

power of 60 W and frequency of 915 MHz at 15 s time steps to the final solution at 15 min. 

VI.2.2.8 Model Validation Study 

 To evaluate the fidelity of our model accuracy, a series of 6 agar-albumin 

phantoms with no fat were created and ablation and thermal history data were collected as 

described in sections VI.2.2.1-2. The MWA model described in sections VI.2.2.4-7 was then 

employed in an inverse fashion to determine a set of phantom electrical and thermal 

properties which best match the model-predicted ablation zone to the observed ablation zone 
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(Fig. VI.3). The thermal history data collected in each case were then compared to the model-

predicted temperatures at those locations to validate the accuracy of the proposed phantom 

property reconstruction method.  

Properties defining the electrical and thermal behavior of the phantom were 

reconstructed by deploying the MWA model within a nonlinear optimization scheme. This 

inverse modeling approach iteratively selected values for a parameter set, Eq. VI.8, to 

maximize the overlap between the observed ablation zone and the result of the model (as the 

Jaccard similarity coefficient, Eq. VI.9-10). 

𝑃 = [𝜎, 𝑘] Eq. VI.8 

In Eq. VI.8, σ and k are the electrical and thermal conductivities respectively. These 

properties were selected for our model as they directly proportional to the electrical and 

thermal contributions to the bioheat equation (Eq. VI.2-3). Initial values for the parameter 

set, as well as other properties used in the model but not reconstructed in the optimization, 

Kelvin 

Fig. VI.3. Model-predicted temperature maps, observed (solid black line), and model-

predicted (red dashed line) ablation zones are presented for each case of ablation with 

the Perseon ST antenna at 60 W for 15 minutes within the base agar-albumin phantom 

used for the model validation study. The observed ablation zone contour was collected 

from mock-histology and used to drive the inverse MWA model.  

1 cm 



105 

 

 

were estimated to be the average weighted linear combination of the corresponding phantom 

components across the phantom data set (Table VI.I). 

The degree of overlap between the observed and model-predicted ablations was 

quantified by the Jaccard similarity coefficient and used to define the objective function in 

the optimization. First, binary masks representing the true and model-predicted ablation 

zones were generated. Given these masked images, the number of pixels in the model-

predicted ablation zone overlapping with the observed ablation zone (NTP), the number of 

voxels in the model-predicted ablation zone which did not overlap with the observed ablation 

zone (NFP), and the number of voxels in the observed ablation zone which did not overlap 

with the model-predicted ablation zone (NFN) were used to calculate the similarity metric: 

Jaccard =  
𝑁𝑇𝑃

𝑁𝑇𝑃 + 𝑁𝐹𝑃 + 𝑁𝐹𝑁

 
Eq. VI.9 

The Jaccard similarity metric ranges from 0 (no overlap) to 1 (perfect match). 

Therefore, the objective function for the optimization was as follows: 

Ω =  1 − 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 Eq. VI.10 

The Nelder-Mead downhill simplex algorithm was used to optimize the parameter 

set for each phantom based on the minimization of the objective function in Eq. VI.10 [154-

155]. The algorithm uses a direct search method to solve multidimensional unconstrained 

problems without requiring derivative information. Therefore, the approach can handle non-

smooth or noisy objective functions but can take many iterations to converge. The search 

algorithm was employed until a minimum first-order optimality measure of 0.01 was 

reached. 

VI.2.2.9 Phantom Property Model Study 

 The goal of the above validation study was to validate that our inverse modeling 
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strategy coupled to quantitative ablative data could be used to determine material properties.  

The objective of the phantom material property model study was to use that methodology to 

develop a functional model relating quantitative MR imaging to physical ablation modeling 

parameters.  To accomplish this, a model of phantom material properties as a function of 

phantom fat content (measured by the quantitative MR fat imaging protocol described in 

section VI.2.2.3) was constructed using the previously described inverse modeling strategy. 

 Next, a leave-one-out cross validation study was performed to characterize this 

model of phantom material properties as a function of MR-measured fat content. This was 

achieved by holding out one phantom experiment from the 15 agar-albumin phantoms of 

varying fat content and using optimized property values from the remaining 14 phantoms to 

create a linear regression model. The held-out data was then prospectively evaluated to 

quantify predictive accuracy.  Cycling through each data set as a target provides a measure 

of the predictive capability of the image data-driven material property model.  As before, the 

model-predictive accuracy was calculated using the Jaccard similarity metric (Eq. VI.9). 

VI.2.3 Results 

VI.2.3.1 Model Validation Study 

Model-predicted temperature maps for each of the 6 agar-albumin ablation phantoms 

included in the model validation experiment are presented in Fig. VI.3 alongside contours 

defining the observed and model-predicted ablation zone extents (as black and dashed red 

lines respectively).  The degree of ablation zone overlap is presented in Table VI.II as the 

Jaccard similarity coefficient (averaging 93.4 ± 2.2%). The average observed transverse and 

axial dimensions attained from mock histology following ablation were 18.2 ± 1.4 mm and 
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31.0 ± 1.2 mm respectively. Modeled ablation zone diameters differed from observed 

diameters by 3.3% on average while lengths differed by an average of 3.5%. Additionally, 

the reconstructed phantom properties are presented in Table VI.III.  

  

Table VI.II. Jaccard similarity coefficients representing the overlap between

the observed and model-predicted ablation zones and root mean square

temperature error for each experimental case.

Agar-albumin Phantom

Jaccard similarity 

coefficient (%)

Root-mean-square 

temperature error (K)Case #

1 95.1 4.1

2 90.9 4.8

3 96.1 4.2

4 90.6 4.3

5 93.5 5.8

6 94.3 5.6

Average 93.4 ± 2.2 4.8

Table VI.III. Optimized electrical and thermal conductivities for each

experimental case of the base agar-albumin phantom in the model validation

study.

Agar-albumin Phantom

Electrical conductivity 

(σ [S/m])

Thermal conductivity 

(k [W/m-K])Case #

1 0.57 0.67

2 0.44 0.34

3 0.58 0.62

4 0.58 0.67

5 0.54 0.47

6 0.50 0.62

Average 0.53 ± 0.05 0.56 ± 0.13
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Fig. VI.4 presents the thermal history observations for each temperature sensor in 

each phantom in the model validation experiment compared to the model-predicted 

temperatures at those locations presented as markers and lines respectively. The average 

root-mean-square (RMS) error with respect to the observed and model-predicted 

temperatures for each phantom are presented in Table VI.II (averaging 4.8 K).  

VI.2.3.2 Phantom Property Model Study 

The optimized and property-model-predicted values of electrical and thermal 

conductivity are presented as orange and blue markers respectively in Fig. VI.5. The orange 

dashed line represents a linear fit to the full set of 15 optimized properties as a function of 

measured fat content. The values of electrical (p > .05, r = -.32) and thermal conductivity (p 

< .05, r = -.76) were found to decrease with fat content at rates of 0.74% and 2.61% 

respectively.  

Fig. VI.4. Observed and model-predicted temperatures as a function of time for the 

base agar-albumin phantom. Observed temperatures at the four sensor locations are 

represented by markers while model-predicted temperatures are represented by solid 

lines of corresponding color. 
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Fig. VI.5. Determined values of electrical conductivity and thermal 

conductivity as a function of the MRI measured fat fraction for each of 

the 15 agar-albumin-fat phantom cases. The optimized value for a given 

case is represented by an orange marker. While the predicted value for 

each case from the leave-one-out study is presented in blue. The orange 

dashed line represents a linear fit to the optimized values. 
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Fig. VI.6 presents the percentage overlap between the modeled and observed ablation 

zones for the 15 agar-albumin-fat phantoms evaluated within the leave-one-out cross 

validation study represented by a box and whisker chart of the distributions of the Jaccard 

similarity coefficient. Results are presented using the optimized property values for each 

case in orange (averaging 90.2 ± 3.8%), the predicted property values from the leave-one-

out cross validation in blue (averaging 86.6 ± 5.3%), and the estimated property values from 

the phantom component volume fractions (i.e. the initial guesses for the optimization) in 

grey (averaging 69.3 ± 9.7%).  

 

Fig. VI.6. Percentage overlap between modeled and observed ablation 

zones for the 15 agar-albumin-fat phantom cases represented by the 

Jaccard similarity coefficient. Results using the optimized (orange), 

leave-one-out predicted (blue), and fat-fraction estimated (grey) are 

presented. The box and whiskers represent the mean, median, upper and 

lower quartiles, outliers, maximum, and minimum Jaccard similarity 

coefficient from each modeling approach. 
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VI.2.4 Discussion 

 Based on the work presented in this study and in the literature, tissue thermal and 

electrical properties are an important factor in the development of therapeutic ablation zones 

and therefore play an important role in the accuracy and reproducibility of predictive MWA 

models [77-78, 84-85]. It is also equally apparent that these tissue properties can vary across 

patients and are impacted by disease state [84-85]. To date, these variations in tissue 

properties as a function of patient-specific conditions have been excluded from approaches 

to predictive modeling of thermal ablation procedures and current state-of-the-art therapeutic 

applications [67-76]. With this study, we presented two objectives: (1) we developed an 

inverse modeling approach for reconstructing phantom properties using ablation extent data 

and (2) we used that reconstruction approach to construct a phantom property model that 

was then used to predictively estimate tissue properties as a function of quantitative medical 

imaging of fat content. These methods were tested within an agar-albumin-fat ablation 

phantom and were shown to predict ablation temperatures and volumetric extent with a high 

degree of accuracy. 

VI.2.4.1 Model Validation Study 

The objective of this study was to introduce and validate the inverse modeling 

approach to phantom property reconstruction from ablation extent data. Ablation zone 

overlap measurements presented in Table VI.II and visually in Fig. VI.3 indicate a strong 

volumetric agreement between observed and model-predicted ablation zones in the model 

validation study (averaging 93.4 ± 2.2%). These results show that the inverse modeling 

framework was able to provide accurate prediction of the margins achieved during ablation 

by optimizing the phantom properties for the case of the baseline phantom (i.e. no fat 
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content). Further, as the maximization of the ablation zone overlap was employed as the 

objective function in the optimization, it is satisfying to observe a good model-fit correlation. 

Of greater interest, results presented in Fig. VI.4 and Table VI.II illustrate the 

correspondence between the observed and model-predicted temperatures at each of the 4 

temperature sensors (average RMS error 4.8 K). As these data were purely bystander, and 

not utilized in the optimization, the results more appropriately serve as an independent 

indication of the ability of the modeling framework to reconstruct phantom properties by 

fitting ablation zone outcomes. Analyzing heating near the active region of the antenna, 

within the zone of the largest electromagnetic energy deposition (which we expect to occur 

at the sensor represented by the blue marker/line in Fig. VI.4 for each case), we see very 

rapid heating within the first 5-7 minutes of the procedure which the model often under 

predicts before correcting by the final time point. In Eq. VI.3, electromagnetic energy 

deposition is proportional to the value of electrical conductivity (σ). Cases C-D in Fig. VI.4 

present the greatest rate of heating out of the 6 cases, and accordingly resulted in the 

reconstruction of the largest values of σ (Table VI.III). Contrasting these results to the more 

gradual temperature profiles associated with the distant temperature sensors (red, black, and 

green), we observe that heating far from the ablation antenna is dominated by heat transfer 

rather than electromagnetic energy deposition and that model-predicted temperatures 

throughout the procedure are more consistent (particularly for black and green, which are 

the farthest sensors from the active region of the ablation antenna). 

VI.2.4.2 Phantom Property Model Study 

 The purpose of this study was to evaluate a material property model where 

phantom properties were estimated based on quantitative imaging of phantom fat content 
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using a leave-one-out cross validation approach. Phantom properties for each of the 15 cases 

were determined using the property reconstruction framework outlined in the model 

validation study and are represented by the orange markers in Fig. VI.5. While temperature 

data were not present for the phantom cases evaluated, the average ablation zone overlap 

following optimization (90.2 ± 3.8%) was in accordance with the results presented in the 

model validation study. The leave-one-out cross validation evaluation of the proposed 

property model resulted in ablation zone overlap of an average 86.6 ± 5.3%. The estimated 

properties for each case in this evaluation are represented by blue markers in Fig. VI.5. 

Furthermore, these results represent a 17.3% increase in ablation zone overlap when 

compared to a separate material property model based on determining property values from 

the phantom component volume fractions in Table VI.I as seen in Fig. VI.6. 

 Based on the phantom component volume fractions, it is expected that both the 

electrical and thermal conductivity would decrease with the addition of fat to the phantom. 

This expectation was realized by the property reconstructions from our inverse model 

solutions (Fig. VI.5) which were used to construct the phantom property model. However, 

only the thermal conductivity was found to have a statistically significant relationship with 

fat content. Additionally, using linear regression, the ablation zone areas (from mock 

histology) of the agar-albumin-fat phantoms were found to significantly increase with fat 

content (p<.05, r = .86). These results clearly demonstrate that the addition of fat altered the 

behavior of the phantom and resulted in varying ablation outcome. When considering the 

clinical application of these results, this could have considerable impact. As an example, 

when one considers the links between fatty liver disease and hepatocellular carcinoma, the 

likelihood of patient-specific variability in material properties is high and adds credence to 

the proposed material property model framework [84-85]. Furthermore, we believe that the 
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utilization of the agar-albumin-fat phantom as a surrogate for human liver tissue in this study 

is adequate as the reconstructed properties are within the range presented clinically [84]. 

 In total, 5 material properties (ρ, ε, c, σ, and k) are present within the governing 

equations to the model (Eq. VI.1-3). The conduction and electromagnetic energy deposition 

terms are the major contributing factors to the thermal solution of the model and are directly 

proportional to the thermal (k) and electrical (σ) conductivities respectively (i.e. the two 

properties reconstructed in the model). To reduce the dimensionality of the property 

reconstruction problem, we assume that density (ρ), relative permittivity (ε), and specific 

heat (c) remain constant with changes in fat content. 

VI.2.4.3 Limitations 

 We acknowledge that the phantom work herein could be further strengthened by 

incorporating in vivo processes such as perfusion. Additionally, the current approach 

reconstructs homogenous steady-state properties for the phantom which could be enhanced 

with the introduction of nonlinear temperature-dependent representations of properties as 

others have investigated in the literature [74-75]. It is also important that we identify the 

challenges to clinical workflow that are introduced. To establish this property model 

approach, a significant series of clinical data would be required with nonroutine preoperative 

quantitative imaging to determine fat content and necessary postoperative imaging to assess 

ablation outcomes. Furthermore, the quantitative fat imaging will be required for any case 

seeking to utilize the developed property model prospectively. However, there is precedence 

for additional required imaging for diagnostic purposes and we suggest that the results of 

this study show considerable promise for the approach as well as point to potential further 

efforts at additional imaging that could lead to better model predictions of ablative therapy. 
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VI.2.5 Conclusions 

 The objective of this work was to develop and experimentally validate a 

predictive numerical model of microwave ablation procedures with the 915 MHz Perseon 

ST antenna where patient-specific tissue properties are estimated based on preoperative 

quantitative MR fat imaging. Procedures were performed in an agar-albumin-fat phantom 

and were validated with experimental temperature and ablation zone data. While further 

work is necessary to apply this method to clinical MWA treatment planning, the property 

model approach provided herein is an advancement toward patient-specific predictive 

modeling of MWA procedures. 
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Summary and Future Directions 

VII.1 Summary of Research 

This dissertation presented studies that evaluated methodologies and techniques to 

provide enhanced treatment planning and intraoperative localization for image-guided 

microwave ablation of hepatic tumors. A true multiphysics framework is developed herein 

which utilizes patient-specific predictive procedural modeling and advanced surgical 

navigation methodologies for delivery. This is the first work to demonstrate a model-based 

therapeutic and guidance framework for hepatic microwave ablation procedures. The results 

of which demonstrate the feasibility of such an approach and represent a significant 

advancement towards a more comprehensive modeling paradigm for an important image-

guided therapeutic process. 

In Chapter IV, a validation framework was introduced that allows for the testing of 

image-to-physical registration algorithms within a series of clinically-realistic data. This 

human-to-phantom data framework can generate a large population of realistic registration 

scenarios, which enables rapid, early stage validation of registration methods in a fully 

characterized phantom environment while avoiding the burden of collecting such 

comprehensive data clinically. In addition, Chapter IV presents a surface data resampling 

method which was validated within the human-to-phantom data framework and was found 

to significantly improve registration accuracy and reproducibility. 

In Chapter V, aspects of the previous human-to-phantom data framework were 

applied to a new deformable hepatic ablation phantom. This work evaluated the efficacy of 

rigid registration and model-based deformation correction methods for image-to-physical 
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registration in image-guided hepatic ablation procedures. In addition, a retrospective model 

of microwave ablation was developed and deployed within the navigational framework to 

assess the realistic error associated with a combined model-based therapeutic and guidance 

system. This work extends the concept of ‘model correction’ to include a new biophysical 

domain, namely the deposition of ablative energy and its corresponding thermal evolution. 

Chapter V demonstrates, in an initial phantom experiment, an advancement toward improved 

procedural navigation in microwave ablation procedures. 

In Chapter VI, the retrospective model of MWA developed in Chapter V was further 

developed into a truly predictive procedural model which approximates relevant tissue 

properties from quantitative medical imaging of the state of organ disease (e.g. organ fat 

content). To date, fully predictive models of MWA have largely assumed tissue properties 

from empirical measurements in ex vivo animal tissue and have therefore ignored any 

anatomical or pathological differences which may present between patients. The results of 

this chapter demonstrate accurate model-predicted temperatures and ablation zone extents. 

This chapter demonstrates, as a proof of concept, that patient-specific modeling parameters 

can be linked with quantitative medical imaging techniques to improve the predictive 

capacity of procedural modeling. 
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VII.2 Future studies 

VII.2.1 Ablation Model Improvements 

 The models developed in Chapters V and VI of this work make many 

assumptions that will not necessarily hold true when transitioning from the highly controlled 

phantom environment. Of particular interest are model development of perfusion and 

convective blood flow (e.g. larger vasculature) which have been shown to have a large 

influence on ablation zone morphology [81-82]. Model improvements may also be achieved 

by further developing the image-driven tissue property model outlined in Chapter VI. The 

current property model is specifically designed for use with the agar-albumin-fat phantom 

utilized within this work. Future work will need to address changes in phantom or tissue 

accordingly and ensure appropriate sample size to provide adequate statistical power.  

Furthermore, the models developed within this work are 2D-axisymmetric by design 

and neglect patient-specific geometries. The methods used to develop patient-specific 

biomechanical models in Chapter III may be employed to generate patient-specific 

microwave ablation models. However, this transition from 2D to 3D will introduce 

significantly more degrees of freedom within the model and therefore considerably greater 

computational burden. Similarly, the work in this dissertation only addresses single 

ablations. It is also of interest to investigate models of serial and simultaneous ablation, as 

these are common clinical procedures. Simultaneous ablations are typically performed with 

ablation antenna aligned parallel to one another to facilitate improved power deposition. 

Currently, research into non-parallel antenna configurations has been limited. An accurate, 

3D computational model of ablation could be used to better understand these more complex 

ablation scenarios. 
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VII.2.2 Human-to-Phantom Validation Framework 

The human-to-phantom data framework introduced in Chapter IV provides a 

valuable early-stage validation method for sparse surface driven image-to-physical 

registration techniques. Further improvements to the framework can be implemented by 

adding additional phantom deformation experiments and clinical sparse data patterns. 

Furthermore, this framework can be developed into a standard for registration validation. 

Currently, plans are being developed to leverage this validation framework to create a sparse 

surface data challenge that will encourage research groups to test their IGLS methods on 

common data and be provided with quantitative assessment. In this challenge, teams will be 

provided with several common sparse surface data sets representing collection of anterior 

surface data from a hepatic phantom in its deformed state as well as a mesh of the phantom 

in an undeformed state. The teams will then be asked to align the surface data and the mesh 

for each case. Once achieved, the teams will be provided with TRE values based on internal 

targets distributed throughout the phantom. 

VII.2.3 In vivo Validation 

The phantom data used throughout this dissertation has many features which make it 

highly desirable from a validation perspective. However, the ultimate goal of this research 

should be to proceed into clinical care. Recent studies have been performed that investigate 

the application of IGLS methods for open hepatic resection in [62, 64]. A similar study to 

those of [46, 62] would provide ablation antenna tracking data and could attain ground-truth 

ablation extent data from postoperative imaging. This clinical data would allow for the 

retrospective analysis of the microwave ablation model by comparing the model solution in 

the registration-predicted location to that ground-truth ablation zone from imaging. This 
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experiment would be similar in structure to the phantom experiment of Chapter V but would 

require a significant effort to achieve. The data acquired in such a study would contribute to 

further development of the microwave ablation model (as described above) as well as a better 

understanding of the sensitivity of the modeling framework to more clinically-relevant 

localization error which is difficult to recreate in a phantom testing environment. 

VII.2.4 Impact of Medical Imaging 

 Medical imaging currently provides a wealth of information to physicians for 

diagnostic and treatment selection purposes. In chapter VI, as a proof-of-concept, we further 

utilized medical imaging data to develop and evaluate an image data-driven predictive 

modeling framework for hepatic microwave ablation, a common image-guided procedure in 

use today. The following section will discuss the suitability of the quantitative imaging used 

in this dissertation as well as other potentially complimentary imaging methods for this 

proposed image data-driven modeling paradigm. 

 Nonalcoholic fatty liver disease (NAFLD) is caused by an excessive buildup of 

fat in the liver and can lead to nonalcoholic steatohepatitis (NASH) when inflammation and 

tissue damage occur. NAFLD and NASH can further lead to the scarring of liver tissue, or 

cirrhosis (a common comorbidity to HCC). Studies have suggested that NAFLD and NASH 

directly promote the development of primary hepatic cancers independent of the presence of 

cirrhosis [156]. Furthermore, dielectric properties relevant to predictive microwave ablation 

modeling have been shown to vary predictably with tissue water [157] and fat [158] content. 

Therefore, there is precedence for basing an ablation material property model on liver water 

or fat content. As previously described in this work, quantitative medical imaging (e.g. 

mDixon quant MRI sequence) can be used to non-invasively measure liver water and fat 
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content. 

Tissue perfusion has also been shown to have a large impact on ablation outcome 

both in simulation and clinically [79-83]. Intravoxel incoherent motion (IVIM) MRI and 

dynamic contrast-enhanced (DCE) MRI and CT methods have been developed to estimate 

perfusion and blood volume in tissue. Furthermore, these methods have been utilized to 

monitor radiofrequency ablation procedures [159] and to quantify NAFLD [160] and 

cirrhosis [161]. A phantom material property model was developed in chapter VI of this 

work that correlated phantom properties to measurements of phantom fat content acquired 

with the mDixon quant MRI sequence. Accordingly, these methods of perfusion imaging 

have the potential to be used to provide a quantifiable alternative to fat or as a compliment 

to the existing model. 

Finally, MRI [138, 162-163] and US [164] thermometry methods have been 

developed for monitoring local temperature changes during thermal therapies (e.g. 

radiofrequency or microwave ablation). These methods allow for the real-time, dynamic 

mapping of temperatures and estimation of thermal dose and can therefore assist in accurate 

therapeutic delivery. However, challenges currently exist to MR-compatibility of ablation 

hardware, MRI availability, and the considerable added cost [138]. Currently, work towards 

the clinical implementation of ultrasound thermometry for monitoring thermotherapies 

remains a proof of concept [164]. The predictive modeling methods presented within this 

work are intended to serve as an alternative to direct thermal monitoring. However, limited 

MR or US thermometry data could be incorporated within the ablation model in an inverse 

fashion to better predict volumetric outcome following therapy. 
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VII.2.5 Realization of the Predictive and Navigational Framework 

The individual aims of this dissertation have laid the groundwork a biophysical 

model-based predictive and navigational framework for the delivery of hepatic microwave 

ablation. The previous subsections have highlighted additional contributions that can be 

made to each aim of this work. However, the ultimate goal is to deliver a fully developed 

planning and guidance framework for clinical use.  

In this section I will outline the major components of this theoretical planning and 

guidance framework. The system will incorporate data from (1) multimodal medical imaging 

(e.g. MRI, CT, iUS), (2) guidance (e.g. optical or EM tracking), and (3) computational 

modeling of both the predicted ablation outcome and for intraoperative deformation 

correction. The ultimate goal of this system will be to utilize preoperative medical imaging 

to provide accurate predictive modeling of the ablation procedure which is then realized 

intraoperatively through advanced image-guidance techniques.  

Looking forward, in a theoretical procedure, a patient would first be imaged with the 

current standard medical imaging protocol. An additional scan would then be gathered to 

quantify some physical state of organ disease (e.g. quantification of organ fat or water 

content, level of perfusion, or stage of cirrhosis). A 3D model of the patient’s organ would 

then be generated from these medical images for preoperative use in procedural modeling 

and intraoperative use in deformation correction. Patient-specific material properties would 

then be estimated from the quantitative medical images. A predictive modeling framework 

would then be employed within an optimization scheme to define an optimal procedural 

scenario to ablate the targeted lesion while sparing healthy tissue and ensuring adequate 

margins. This predictive model would provide the ablation antenna tip and trajectory 

information that would then be used intraoperatively to achieve this optimal ablation 
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scenario. During treatment, organ surface data would be collected and used to achieve an 

image-to-physical registration (e.g. with the rigid registration and deformation correction 

methods outlined in this dissertation). Next, under image-guidance, the physician would 

deploy the ablation antenna(s) to the targeted location and trajectory to achieve the 

preoperatively defined ablation. The antenna location would then be confirmed with 

intraoperative ultrasound before delivering ablative therapy. 

VII.3 Concluding Remarks 

This dissertation has laid the groundwork for a model-based predictive and 

navigational therapeutic approach for image-guided hepatic microwave ablation. This work 

is the first to address (1) patient-specific tissue properties when modeling MWA in a 

predictive capacity and (2) to use a model-based correction approach to provide enhanced 

intraoperative image-guidance. Further advances to this work will ultimately lead to an 

improved procedural planning routine that can be deployed alongside advanced surgical 

navigation methods to improve the efficacy of hepatic microwave ablation procedures. 
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