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ABSTRACT

The consistent relationship between socioeconomic status (SES) and health has been

widely covered in both the popular media and in scientific journals. These articles, both

popular and scientific, draw strongly upon conventional explanations, that physical health

inequalities are caused by material disadvantage directly (e.g., access to medical care;

Hummer, Rogers, & Eberstein, 1998) or indirectly (e.g., chronic environmental stress;

Baum, Garofalo, & Yali, 1999; McEwen & Stellar, 1993). Such explanations account

for differences between those who have resources and those who do not, but they do not

account for the finely stratified health differences that exist across the entire range of SES

(see Gottfredson, 2004, for discussion of additional limitations and contradictions).

Recent theories to explain the SES-health gradient have grappled with limitations and

contradictions of early models, and have implicated very different pathways to explain the

gradient. For example, articles in differential epidemiology have argued that individual

differences, such as personality and cognitive ability, are the ‘fundamental cause’ of the

gradient, acting through genetic sources (Arden et al., 2016; Marioni et al., 2014). Alter-

natively, variants of the allostatic load theory (McEwen & Stellar, 1993), like the Risky

Family model (Repetti, Taylor, & Seeman, 2002) implicate the early home-environment.

Surprisingly, very little research has applied behavior genetic modeling to understanding

the sources of the SES-health gradient.

The purpose of this paper is to narrow the scope of fundamental causes, by explicitly

untangling the sources of variance associated with the gradient. Specifically, we decom-

pose the gradient into genetic (a2), shared-environmental (c2), and non-shared environ-

mental (e2) pathways, using data from the National Longitudinal Survey of Youth 1979.

Monozygotic-twin, dizygotic-twin, full-sibling, half-sibling, and cousin pairs from recently

validated kinship links are used in the current study (n= 4018 pairs; J. L. Rodgers et al.,

2016).
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Our findings have decomposed the relationship between SES and health into its bio-

metrical components. Our results differed by health construct. Mental health’s relationship

with SES is primarily explained by the shared-environment, which is consistent with the

Risky Family model of the gradient. The relation of physical health relationship with SES

is primarily explained by genetic effects.
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Chapter 1

Introduction

The relationship between socioeconomic status (SES) and health has been widely cov-

ered in the popular media; within the last year,1 the Atlantic, Time Magazine, and the New

York Times have all featured the SES-health gradient at length. Both popular and scientific

articles draw strongly upon conventional explanations that material disadvantage directly

(e.g., access to medical care; Hummer et al., 1998) or indirectly (e.g., chronic environmen-

tal stress; Baum et al., 1999; McEwen & Stellar, 1993) causes physical health inequalities.

Such explanations account for differences between those who have resources and who have

not.

Those situational explanations, however, do not account for the finely stratified health

differences that exist across the entire range of SES (see Gottfredson, 2004, for an exten-

sive discussion). They do not distinguish between mental and physical health, and even

assume that the pathways are the same. In some cases, mental health is treated as a me-

diator, rather than as an outcome (Adler et al., 1994). Further, these explanations do not

explain why greater access to health care (Siddiqi & Hertzman, 2007; Steenland, Henley,

& Thun, 2002), accounting for rates of morbidity and mortality (Steenland et al., 2002),

and improved education (Conti, Heckman, & Urzua, 2010) steepen the gradient instead of

flattening it.

Recent theories have grappled with limitations and contradictions of early models and

have implicated very different pathways to explain the gradient. For example, articles

in differential epidemiology have argued that individual differences, such as personality

and cognitive ability, are the ‘fundamental cause’ of the gradient, acting through genetic

sources (Arden et al., 2016; Marioni et al., 2014). Alternatively, variants of the allostatic

load theory (McEwen & Stellar, 1993), like the Risky Family model (Repetti et al., 2002)

1as of the time of this writing, 2015-2016
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implicate the early home-environment. These theory-driven pathways align with behavior

genetic models, which decompose relationships into genetic and environmental sources.

Surprisingly, very little research has applied behavior genetic modeling to understanding

the sources of the SES-health gradient. To the best of the author’s knowledge, only one

paper exists that explicitly attempts to do so (Lichtenstein, Harris, Pedersen, & McClearn,

1993, discussed in a later section).

The purpose of this paper is not to advocate for a specific fundamental cause of the gra-

dient. Instead, the purpose of this paper is to narrow the scope of fundamental causal

explanations, by explicitly analyzing and untangling the sources of the gradient using

biometrical modeling. Specifically, I will decompose the gradient into genetic (a2) and

shared-environmental (c2), and non-shared environmental (e2) sources, using data from the

National Longitudinal Survey of Youth 1979.

1.1 The SES-health gradient and its causes

The positive relationship between socioeconomic status and health (Adler et al., 1994;

Antonovsky, 1967; Collins, 1926) is remarkably consistent across place, time, and method

of assessment (Oakes & Rossi, 2003; Singh-Manoux, Marmot, & Adler, 2005). Conven-

tional explanations of the gradient fall into three broad domains: (1) social causation, (2)

social selection, and (3) social confounds (Adler et al., 1994; Adler & Ostrove, 1999; Adler

& Stewart, 2010).

1. Social Causation theories argue that an individual’s social standing affects their health

(e.g., through allostatic load, Baum et al., 1999; McEwen & Seeman, 1999; McEwen

& Stellar, 1993, however see Matthews, Gallo, and Taylor, 2010).

2. Social Selection theories contend that health affects people’s abilities to climb the

social ladder (e.g., social drift, J. W. Fox, 1990, see Rodgers, B. & Mann 1993 for

methodology critiques).
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3. Social Confound theories assert that a third variable causes health and wealth to

covary, instead of either causally influencing the other (e.g., cognitive ability, Got-

tfredson, 2004; Gottfredson & Deary, 2004).

Many theories, such as intergenerational transmission (Haas, 2006) and reciprocal influ-

ences (Smith, 1999) involve multiple domains. Accordingly, multiple pathways could be

in play – either simultaneously or sequentially. Or, multiple theories, and thus different

pathways could simultaneously explain specific health-wealth relationships. I note that

many theorists (notably, Adler et al., 1994; Adler & Ostrove, 1999; Adler & Stewart, 2010)

assert that Social Causation and Selection theories act exclusively through the environment,

whereas Social Confound theories act exclusively through genes. However, these concep-

tualizations were developed outside of a behavior genetic framework, and thus lack some of

the nuance and insight from current behavior genetics research. I discuss mapping current

theory onto behavior genetic modeling in a later section.

1.2 Social Causation

Social Causation theories vary on two dimensions: baseline (abundance vs depriva-

tion),2 and pathway (direct vs indirect) (Wagstaff & Doorslaer, 2000). On the baseline di-

mension, the baseline outcome (i.e., health) is improved by abundance (e.g., more wealth)

or it is harmed by deprivation (e.g., poverty). Does being poor lead to worst health or does

being rich lead to better health? The pathway dimension illustrates how far apart the cause

and effect can be, and how many steps it takes to get from cause to effect (i.e., few versus

multiple. Direct pathways connect cause and effect in a few steps (typically, one or two;

e.g., improved wealth allows greater access to medical care, which improves health; Hum-

mer et al., 1998), whereas indirect pathways connect cause to effect in multiple steps (e.g.,

poverty leads to living in areas with more stressors, whereby the increasing stress levels

2Wagstaff and Doorslaer (2000) note that the theoretical distinctions between these dimensions have not
be fully articulated in the literature
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reduce health).

1.2.1 Direct Models

The Absolute Income Hypothesis (W. Evans, Wolfe, & Adler, 2012; Keynes, 1936) is

a direct abundance model, where increased wealth allows individuals to buy better health

(through, e.g., improved access to healthcare). The deprivation equivalent model is the Ab-

solute Deprivation Hypothesis or Poverty Hypothesis, where decreased wealth costs indi-

viduals health because they are unable to buy health goods (e.g., health insurance). The dis-

tinction between these models is subtle and has not been clearly articulated in the literature;

the abundance models assume that wealth positively influences baseline health, whereas

deprivation models assume that lack of wealth negatively influences baseline health.

Variants on these direct models include the Relative Income Hypothesis (Duesenberry,

1967), which suggests that relative increases in wealth allow individuals to buy better

health. Similarly, the Relative Status Hypothesis suggests that relative increases in status

(e.g., wealth, prestige) allow individuals to purchase health. The Relative Status Hypothe-

sis is the broadest of the direct abundance models as it allows SES gains in rank as well as

wealth. I direct readers to Lynch et al. (2004) for discussion on the mixed empirical support

for direct models, and note that US samples show the most support. These direct models

have distinct implications for interventions (see, W. Evans et al., 2012, for discussion).

1.2.2 Indirect Models

Indirect models of Social Causation argue that rather than SES directly influencing

health, SES places individuals in environments that in turn influence health. In the majority

of models, this indirect influence of health is linked to stress (Adler, 2013), conceptualized

both as life events requiring adaptation and as a state where perceived demands exceed their

coping abilities. Under allostatic load theory (Baum et al., 1999; McEwen & Stellar, 1993),

these environmental stresses of poverty cause “wear and tear on the body” that accumulate

4



over an individual’s lifetime. Although longitudinal evidence for this effect in adulthood

is mixed (Matthews et al., 2010), evidence from childhood is not. Specifically, the Risky

Families model identifies early childhood environments created by violence, overt aggres-

sion, or neglect as sources of poor health across the lifespan (Repetti et al., 2002). Children

of poverty are at greater risk for those household stressors (e.g., Dodge, Pettit, & Bates,

1994; Yoshikawa, Aber, & Beardslee, 2012). Moreover, there is evidence that the effects of

poverty on later health are mediated by childhood exposure to early environmental stresses

(G. W. Evans & English, 2002).

1.3 Social Selection

Social Selection theories reverse the causal arrow – instead of SES causing health out-

comes, health causes changes in SES. The theories in this area can be partitioned into two

mechanisms of action: drift and stunting (Haas, 2006). In drift-based theories, individuals

with poorer health slowly drift into lower and lower socioeconomic classes. This down-

ward shift can be the result of discrimination (Ameri et al., 2015), reduced employment

(Marwaha & Johnson, 2004), and decreased personal wealth (Chirikos & Nestel, 1985).

For example, early longitudinal research on schizophrenia observed between-generation

drift and within-generation drift (Goldberg & Morrison, 1963). At their first hospital ad-

mission, patients with schizophrenia held similar status jobs to patients with diagnoses

of other than schizophrenia (predominantly “anxiety states”). At follow-up (between one

and four years later), patients with schizophrenia had a noticeable within-person decline

in job status, whereas patients with other diagnoses had no such decline. In drift models,

individuals move down the social ladder.

The other mechanism is stunting, where poor health during critical periods of devel-

opment negatively impact an individual’s ability to meet key economic/educational mile-

stones, such as learning to read or graduating high school. For example, findings from the

Bucharest Early Intervention Project suggested that deprivation during the first two years of
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life permanently impaired cognitive development (Nelson et al., 2007). In the longer term,

stunting prevents individuals from accumulating status, and thereby inhibits their social

mobility.

Lately, these theories have become less popular in the psychology and other behavioral

science literature. For example, recent reviews by Adler and Stewart (2010) have explicitly

dismissed social selection, whereas other reviews have implicitly dismissed them through

omission (e.g., Adler, 2013; Braveman & Gottlieb, 2014) or brief coverage (e.g., W. Evans

et al., 2012). Although social selection is commonly dismissed as the cause of the gradi-

ent, clearly there are subsets of individuals for whom these theories apply. Moreover, the

selection effects might be of more importance depending on context – perhaps within the

contemporary developing world and in the yesteryears of the developed world.

1.4 Social Confound

Unlike Social Causation and Social Selection theories, Social Confound theories argue

that a third variable causes health and wealth to covary, instead of either causally influ-

encing the other. Predominantly, the third variables identified are individual differences in

personality and cognitive ability (Deary, 2010; Deary, Weiss, & Batty, 2010). Although

many individual differences are linked with SES and health (Chapman, Roberts, & Duber-

stein, 2011; Deary et al., 2010), I will focus the discussion on cognitive ability3 and consci-

entiousness4 because their relationships are the most investigated and best understood for

both SES and health.
3“[Cognitive ability] is a very general mental capability that, among other things, involves the ability

to reason, plan, solve problems, think abstractly, comprehend complex ideas, learn quickly, and learn from
experience. It is not merely book-learning, a narrow academic skill, or test-taking [ability]. Rather, it reflects
a broader and deeper capability for comprehending our surroundings ‘catching on’, ‘making sense’ of things,
or ‘figuring out’ what to do” (Gottfredson, 1997).

4“Conscientiousness is defined as the propensity to follow socially prescribed norms for impulse control,
to be goal directed, to plan, and to be able to delay gratification” (Roberts, Jackson, Fayard, Edmonds, &
Meints, 2009).
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1.4.1 Individual Differences and SES

Conscientiousness and cognitive ability are consistently associated with composite mea-

sures of SES (Chapman, Fiscella, Kawachi, & Duberstein, 2010; Hernstein & Murray,

1994) and its components (education, occupation, income; Ng, Eby, Sorensen, & Feldman,

2005; Strenze, 2007). Given that I am interested in these associations as confounds rather

than mediators in causation and selection models, I focus exclusively on how cognitive

ability and conscientiousness influence SES.5 As is the case with many outcomes, cog-

nitive ability and conscientiousness indirectly influence the components of SES through

decision-making and various behaviors. These behaviors and decisions are numerous, so I

briefly review them here.

Education and academic performance. Individuals with higher cognitive ability per-

form better in classes and attain higher levels of education (Deary, Strand, Smith, & Fer-

nandes, 2007; Strenze, 2007), even within the highest percentiles of ability (Kell, Lubin-

ski, & Benbow, 2013). Similarly, self-ratings of conscientiousness predict performance in

medical school (Lievens, Ones, & Dilchert, 2009) and teacher-ratings of conscientiousness

predicted higher levels of education attainment (Lleras, 2008). I direct readers to Deary

and Johnson (2010) and Kuncel, Ones, and Sackett (2010) for treatment of the relationship

between individual differences and education.

Occupation and specialization. Cognitive ability predicts later occupational attainment,

where higher ability individuals tend to obtain more prestigious occupations (Strenze,

2007). Performance on the GRE varies by intended graduate major (Education Testing

Services, 2016); Physical Science graduate majors had the highest overall scores (309),

although Science Engineering graduate majors scored highest in Quantitative Reasoning

(159), and Arts and Humanities majors scored highest in Verbal Reasoning (157). More-

5Discussions and research concerning the causes of these associations, especially for cognitive ability’s
association with SES are controversial. In many instances (e.g., Jensen, 1969b), they devolve into heated
public debates (Alfert, 1969a, 1969b; Davies, 1969; Jensen, 1969a, 1969c) Even the direction of the causal
arrow is controversial. I note that these controversies are predominantly social/political in nature, rather than
scientific.
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over, the differences in domains of verbal and quantitative ability at age 13 are predictive of

specializing in the humanities or the sciences 30 years later (Kell et al., 2013). Less work

has been done on the relationship between conscientiousness and later occupation. Consci-

entious individuals tend to seek out investigative occupations (e.g., scientists, statisticians,

doctors; Judge, Higgins, Thoresen, & Barrick, 1999), and this tendency appears to indi-

rectly influence later occupation through vocational interests (Woods & Hampson, 2010).

I direct readers to Schmidt and Hunter (2004) and Major, Johnson, and Deary (2014) for

treatment on the relationship between individual differences and occupation.

Income and employment. Cognitive ability and conscientiousness are consistently iden-

tified as the most effective measures in personnel selection (e.g., Behling, 1998). Higher

levels of conscientiousness are positively associated with job attendance (Judge, Martoc-

chio, & Thoresen, 1997), performance (Dudley, Orvis, Lebiecki, & Cortina, 2006), reten-

tion (Eskreis-Winkler, Shulman, Beal, & Duckworth, 2014), promotion, and salary (Ng

et al., 2005). Similarly, cognitive ability predicts job performance (Ree & Earles, 1992;

Schmidt & Hunter, 2004), salary (Ng et al., 2005; Strenze, 2007), and training performance

(Ree & Earles, 1990), among others.

1.4.2 Differential Epidemiology

Conscientiousness and cognitive ability consistently predict health (Gottfredson & Deary,

2004; Hampson, Goldberg, Vogt, & Dubanoski, 2007), and do so across the lifecourse, in-

cluding the ultimate measure of health – longevity (Batty, Deary, & Gottfredson, 2007;

Jackson, Connolly, Garrison, Leveille, & Connolly, 2015; Roberts, Kuncel, Shiner, Caspi,

& Goldberg, 2007). Cognitive ability’s effect on longevity does not vary in strength across

most causes of death (Christensen, Mortensen, Christensen, & Osler, 2016). Although

health can impact cognitive ability and personality (e.g. traumatic brain injury Catroppa,

Anderson, Morse, Haritou, & Rosenfeld, 2008; Mandleberg & Brooks, 1975; Rochat et al.,

2010), I focus exclusively on how these individual differences influence health. Primarily,
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they do so in two ways. First, cognitive ability and conscientiousness indirectly influence

health through decision-making and various behaviors. Conscientiousness is consistently

associated6 with health-related behaviors (such as risky driving, physical activity, violence,

tobacco use, etc., Bogg & Roberts, 2004), which partially mediates its relationship with

health (Lodi-Smith et al., 2010). Cognitive ability is also associated with health-related

behaviors (Gottfredson, 2004, but see Garrison and Rodgers, 2016), and is linked to health

literacy (Beier & Ackerman, 2003). Indeed, cognitive ability accounts for much of the rela-

tionship between education and health behaviors (Cutler & Lleras-Muney, 2010). Second,

cognitive ability is an indicator of overall “system integrity” (Deary, 2012; Lubinski, 2009).

System integrity is a “general latent trait of a well-functioning body” (Gale, Batty, Cooper,

& Deary, 2009), and reflects how efficiently the human body handles complex systems.

“Well-wired” individuals would be more intelligent and healthier on average than “poorly-

wired” individuals. This construct may be related to allostatic load – perhaps “well-wired”

individuals are more able to endure environmental stresses.

1.5 Linking Gradient Theories to Environmentality and Heritability

In the previous sections, I have reviewed the three broad theories on causes of the SES-

Health gradient (i.e., Social Causation, Social Selection, and Social Confounds). Thus far,

linkages of theory to biometrical modeling have been sparse by design. I have noted that

many theorists (notably, Adler et al., 1994; Adler & Ostrove, 1999; Adler & Stewart, 2010)

assert that Social Causation and Selection theories act exclusively through the environment,

whereas Social Confound theories act exclusively through genes.

However, these conceptualizations were developed outside of a behavior genetic frame-

work, and thus lack some of the nuance and insight from current behavior genetics research.

In reality, some of the specific theories map nicely onto biometrically-informed conceptu-

6This association is positive for health protective behaviors like physical activity, and negative for risky
behaviors like violence
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alizations of gene and environmental influences (e.g., the Risky Families Model onto the

shared-environment, Repetti et al., 2002), moreso than other theories. Thus, this section

will review the biometrically-informed conceptualizations of gene and environmental in-

fluences. I will not link every theory to its biometrical source, but I will illustrate a select

few.

1.5.1 Environmentality

In behavior genetics, the proportion of variance in a trait that is not due to genes is

environmentality (the analog for heritability). These environmental influences can be di-

vided into shared- and non-shared environmental experiences. The shared-environment, in

a biometrical sense, consists of experiences shared by siblings, whereas the non-shared-

environment consists of experiences not shared by siblings. These experiences can also

be conceptualized as between- and within-family experiences. The shared-environment is

exclusively made from between-family experiences. These between-family experiences re-

sult in family members becoming more similar to one another than genetic similarity alone

would predict. Classic examples of shared-environmental experiences include parental dis-

cord, divorce, and socioeconomic status. Shared experiences do not exclusively arrive by

means of parents. They can also include sibling shared-experiences, or even twin-specific

(e.g., shared placenta) experiences (Neale & Maes, 2004).

The non-shared environment has two sources of non-shared experiences: objective and

effective (Goldsmith, 1993; Turkheimer & Waldron, 2000). Objective sources are within-

family influences, where explicit differences within a family result in non-shared experi-

ences. These experiences include:

• activities (such as trips to the museum, J. L. Rodgers, Rowe, & May, 1994),

• education environments (like the classroom, Vernon, Jang, Harris, & McCarthy,

1997),
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• parenting behaviors (including discipline, McGuire, Dunn, & Plomin, 1995),

• peer groups,

• sibling interactions, or family structure (e.g., birth order, Rowe, Rodgers, & Meseck-

Bushey, 1992).

In contrast, “effective” experiences are between-family experiences, where a shared-event

leads to unique experiences. These common experiences include parental discord, divorce,

and socioeconomic status.7 Early behavior genetic work misattributed these between-

family sources of non-shared experiences as exclusively shared-environmental. Superfi-

cially, two children within a household will both experience poverty.8 However, those two

hypothetical children experience that same moment of poverty at different stages of devel-

opment, which in turn has the potential to differentially impact them. The majority of non-

shared environmental variance comes from these between-family experiences (Turkheimer

& Waldron, 2000).

1.5.2 Heritability

Heritability reflects the extent to which genetic differences contribute to observed indi-

vidual differences (see Visscher, Hill, & Wray, 2008, for a broad review). Environmentality

– its analog – has been discussed above and reflects the extent that environmental differ-

ences contribute to observed individual differences. Heritability estimates can vary by age

(Bergen, Gardner, & Kendler, 2007), vary by cohort (Silventoinen, Kaprio, Lahelma, &

Koskenvuo, 2000), be moderated by the environment (e.g., Turkheimer, Haley, Waldron,

D’Onofrio, & Gottesman, 2003), and do not reflect extreme environments (only those typi-

cal within a population). Most, if not all, human behaviors are heritable, but those same be-

7Note that these are the same experiences as listed as examples of shared-environmental experiences.
8When subjects are of the same developmental age as is the case with twins, between-family sources of

the environment cannot be distinguished from shared-environmental sources. This can hold in cases where
there are no age effects.
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haviors can also have large environmental influences (most often non-shared, Turkheimer,

2000).

There are two types of heritability:

• Broad heritability, which encompasses all genetic variance, including non-additive

and nonlinear processes such as dominance and epistatic effects; and

• Narrow heritability, which focuses on additive genetic variance.

In non-human animal experiments, the majority of genetic variance is additive (Neale &

Maes, 2004). Additive genetic effects reflect the “sum of the average effects of individual

alleles”. Accordingly, early models of heritability in humans only incorporated the addi-

tive components. Methodological advancements have incorporated other genetic variance

components, including dominance and epistatic interactions (Lykken, McGue, Tellegen, &

Bouchard, 1992). Regardless, classic genetic models focus on narrow heritability, as does

this paper. For more on modeling heritability, see Neale and Maes (2004).

(Mis)Interpreting Heritability. Unlike environmental influences, heritability is prone to

be misinterpreted. Such misconceptions can be construct specific, such as SES (Rowe &

Rodgers, 1997), or they can be universal to all constructs. Visscher et al. (2008) reviewed

five common misconceptions of heritability.

1. “Heritability is the proportion of a phenotype that is passed on to the next generation”

2. “High heritability implies genetic determination”

3. “Low heritability implies no additive genetic variance”

4. “Heritability is informative about the nature of between-group differences”

5. “A large heritability implies genes of large effect”

I will discuss misconception #2 because of its relevance to Social Causation, and I direct the

reader to Visscher et al. (2008) for more thorough explanations of all the misconceptions.
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Genetic determination is not implied by high heritability. (Nor does low heritability

imply the absence of genetic causation.) Rather, high heritability suggests that parents with

a specific trait are likely to pass that trait onto their offspring. Misconceptions about genetic

determination lead one to assume a strong link between genes and outcome, either directly

(i.e., genetic fixity; Dennett, 2015) or indirectly (i.e., innate capacity; Lewontin, 1991).

Such attitudes can do more harm than good when it comes to human behavior, as they

imply that heritable outcomes cannot be influenced by social policy (Goldberger, 1979).9

Yet, contrary to these attitudes, medical/policy interventions can affect fully-heritable

disorders. For example, phenylketonuria (PKU) is a genetic metabolic disorder, where

phenylalanine cannot be metabolized by the liver (Fölling, 1934; National Institutes of

Health, 2000). Without treatment, phenylalanine accumulates in the tissue and blood; in-

fants with the disorder fail to reach developmental milestones, suffer from brain abnormal-

ities, and tend to have severe intellectual disabilities. The symptoms of PKU can be drasti-

cally reduced by monitoring phenylalanine levels and restricting the amount of phenylala-

nine consumed (e.g., soy beans, whale, nuts). Prior to widespread screening in the 1960s,

the symptoms of PKU were fully heritable; now, the expression of PKU is almost fully en-

vironmental (Plomin, DeFries, & McClearn, 1990) because it can be controlled by dietary

behaviors.

1.6 Prior Work

Some studies have decomposed SES-Health differences into between- and within-family

variance (e.g., Monden, 2010; Søndergaard et al., 2012, 2013). They found sizable between-

family variance. For example, 20% of education and self-assessed Health was explained by

between-family variance (Monden, 2010), and education and all-cause mortality (Søndergaard

et al., 2012) hazard ratios were reduced by 10-40% when controlling for between-family

9Goldberger (1979) went so far as to advocate that no one estimate heritability as it does more harm than
good.
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variance. These studies use components of SES, but not the overall construct; nevertheless,

these findings are suggestive of shared-environmental effects and/or genetic effects. Be-

cause this method aggregates shared-environmental and genetic effects, I cannot eliminate

theories that suggest genetic pathways (Social Confound theories) or shared-environmental

pathways (Social Causation theories).

To date, Lichtenstein et al. (1993) is the only identified study that decomposes the SES-

Health gradient into its biometrical sources of variance. They used the Swedish Adop-

tion/Twin Study of Aging (SATSA; n = 785 pairs), and identified 398 twin pairs that were

raised apart, as well as 387 twin pairs raised together, ranging in age from 26 to 86 in

1984. The raised-together twins were matched on age, gender, and county of birth. 82% of

raised-apart twins were separated before their 5th birthday. The primary reasons for sepa-

ration were parental health (e.g., parental illness, parental death) or “economic problems.”

This cross-sectional analysis used multiple components of SES:

• Material resources (Index of modern conveniences, homeownership, savings etc.),

• Perceived standard of living,

• Education (4 levels, with a maximum of university attendance), and

• Occupational status;

and two measures of health:

• Number of organ systems affected by a chronic health problem, (SUMILL; Harris,

Pedersen, McClearn, Nesselroade, & Plomin, 1992), and

• Self-rated health (4 items, including retrospective reports).

They identified a moderate genetic covariance (mean ra = .5) across all components of

SES and health. The environmental effects were inconsistent. Lichtenstein et al. (1993)

found a shared-environmental effect in self-rated health, but not in the SUMILL, whereas
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non-shared environmental effects were small (mean |re| = .07), but the direction of these

effects was inconsistent. The inconsistency of their results might be due to limitations

of their study. They did not create a composite measure of SES, instead relying on the

components. This method has its merits, but it does not allow researchers to test broad

theories about causes of the gradient. The authors did not address potential selection effects

caused by health- or wealth-related twin separations, or survivor effects given the age of

the subjects (agemean = 58.6, according to Harris et al., 1992, who also noted that these

measures were influenced by age). Regardless, their results were a promising first step into

identifying the sources of the gradient, and helped motivate the current study.
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Chapter 2

Current Study

To summarize, the current study examines the relationship between socioeconomic sta-

tus and health, using biometrical modeling and data from a nationally representative sam-

ple, the National Longitudinal Survey of Youth 1979 (NLSY79; described later). This

examination extends the SES-health gradient literature in several key ways. First, I decom-

pose the relationship between SES and health into genetic and environmental components,

using a national probability sample, and thus have findings that are representative of all lev-

els of socioeconomic status. Second, I employ a dataset with kinship pairs, a more general

representative of those in U.S. families, which naturally accounts for more levels of relat-

edness than traditional twin or adoption designs. Third, I distinguish between mental and

physical health in these analyses, and provide analytic results from each domain separately

and also a combined analysis of both domains together. Finally, I evaluate various theories

within the context of these result, identifying ones that are inconsistent with my empirical

results.

The results from Lichtenstein et al. (1993) are my only basis for making predictions.

However, Lichtenstein et al. (1993) is a fairly old and data-limited sample. In general, they

support a genetic component and possibly a shared-environmental component influencing

the bivariate relationship between SES and physical health. They provide no guidance for

mental health. Therefore, rather than making specific predictions, I will discuss the broad

analytic plan employed in this paper.

First, I will conduct univariate analyses on SES, physical, and mental health. The best

fitting models will be determined by series of nested model comparisons. The univariate

results from the best fitting models will guide model fitting for later stages. Second, I

will conduct bivariate analyses on SES with physical health, and SES with mental health.
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These models will be guided by the univariate results. Specifically, all tests of whether

a correlation has a heritable component are contingent on both variables having heritable

components at the univariate level. For example, if SES does not have a heritable compo-

nent, then there can be no common heritable component between SES and any measure of

health. This same logic applies to shared-environmental components. Again, the best fit-

ting models will be determined by series of nested model comparisons. Finally, a trivariate

model will be run, linking SES, physical health, and mental health. The best fitting bivari-

ate models will be merged to create this trivariate model. Again, the best fitting model will

be determined by a series of nested model comparisons.
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Chapter 3

Method

3.1 Model

3.1.1 Assumptions

There are five major modeling assumptions that behavior genetic models employ in

path diagrams. Neale and Maes (2004, pg. 114) summarized them succinctly:

1. “No genotype-environment correlation, i.e., latent genetic variables [(a)] are uncor-

related with latent environmental variables [(c)] and [(e)];”

2. “No genotype environment interaction, so that the observed phenotypes are a linear

function of the underlying genetic and environmental variables;”

3. “Random mating, i.e., no tendency for like to marry like, an assumption which is im-

plied by fixing the covariance of the additive genetic deviations of [...] full sib[ling]s

to 0.5[Cov]a,” half siblings to .25Cova, and cousins to .125Cova;

4. “Random placement of adoptees, so that the rearing environments of separated twin

pairs are uncorrelated;” and

5. Equal environments, siblings of different levels of relatedness (full siblings vs half

siblings) are equally exposed to “environmental events of etiologic importance” (Kendler,

Neale, Kessler, Heath, & Eaves, 1993).

All assumptions but random adoption placement were relevant to the behavior genetic mod-

els employed in this paper.
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3.1.2 Specification, Estimation, and Missing Data

All models were specified using Mplus (version 7.4, Muthén & Muthén, 2014), and

estimated using full information maximum likelihood (FIML) to account for missing data.

The univariate ACE model specification is illustrated with the path diagram in Figure 3.1.

Sample Mplus syntax, adapted from Prescott (2004), is provided in section C.1 of Appendix

C. The bivariate correlated factors ACE model specification is illustrated with the path

diagram in Figure 3.2. The diagram is simplified to only include one member of the kin

pair. Sample Mplus syntax is provided in section C.2 of Appendix C.

3.1.3 Terminology

Throughout this paper, I refer to the covariance between genetic factors (cova), the

genetic correlation (ra), and the heritability of the (phenotypic) correlation. These terms

are related, but not identical constructs. The covariance between genetic factors describes

the degree of overlap between the genetic variance in PCS with the genetic variance SES.

The genetic correlation reflects the correlation between PCS and SES that is attributable to

the covariance between genetic factors. The heritability of the correlation is the proportion

of correlation between PCS and SES that is attributable to the covariance between genetic

factors.

Similarly, I refer to the covariance between shared-environmental factors (covc), the

shared-environmental correlation(rc), and the environmentality of the (phenotypic) corre-

lation. Again, these terms are related, but not identical constructs. The covariance be-

tween shared-environmental factors describes the degree of overlap between the shared-

environmental variance in MCS with the shared-environmental variance SES. The shared-

environmental correlation reflects the correlation between MCS and SES that is attributable

to the covariance between shared-environmental factors. The environmentality of the cor-

relation (between SES and MCS) is the proportion of correlation between MCS and SES
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that is attributable to the covariance between shared-environmental factors.

SES1 SES2

c1 a1e1 c2a2 e2

λ a1λ c1λ e1 λ a2 λ c2 λ e2

MZ = 1.0

FS = 0.5

HS = 0.25

CS = 0.125

1

Figure 3.1: Path diagram illustrating model specification for a univariate ACE model.
a, additive genetic factor; λ a, additive genetic loading; c, shared-environmental factor;
λ c, shared-environmental loading; e, non-shared-environmental factor; λ e, non-shared-
environmental loading; SES1,2, socioeconomic measure for kin 1 and kin 2; MZ, monozy-
gotic twins; FS, full siblings; HS, half siblings; CS, cousins.
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SES1PCS1

cSESaSES eSEScPCS aPCSePCS

cova

covc

Figure 3.2: Path diagram illustrating model specification for a bivariate correlated fac-
tors ACE model. The diagram is simplified to only include one member of the kin pair.
a, additive genetic factor; λ a, additive genetic loading; cova covariance between additive
genetic factors; c, shared-environmental factor; λ c, shared-environmental loading; covc
covariance between shared-environmental factors; e, non-shared-environmental factor; λ e,
non-shared-environmental loading.

3.2 Subject Characteristics

The National Longitudinal Survey of Youth 1979 dataset (NLSY79) (described else-

where in Garrison & Rodgers, 2016), is based on a nationally representative household

probability sample. The NLSY79 was jointly sponsored by the U.S. Bureau of Labor

Statistics and the U.S. Department of Defense. On December 31, 1978, 12,686 adoles-

cents were sampled within a household probability sample from 8,770 households. The

initial sample consisted of three subsamples:

• a cross-sectional household probability sample of 6,111 non-institutionalized adoles-

cents residing in the United States on December 31st of 1978;

• a separate over-sampled civilian subsample of 5,295 racial minorities and disadvan-

taged whites;
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• a representative sample of 1,280 youth serving in the U.S. Military on September

30th, 1978.

In the two civilian samples, subjects’ birthdates ranged from January 1, 1957 to December

31, 1964, and were between the ages of 14 and 21 on December 31, 1978; military subject’s

birthdates ranged from January 1, 1957 to December 31, 1961, and were between 17 and 21

years old. Participants were surveyed annually until 1994, and then surveyed biennially to

the present. Two waves of planned attrition occurred, due to budgeting restrictions. After

the 1984 interview, all but 201 randomly selected members of the military sample were

dropped. After the 1990 interview, all 1,643 disadvantaged whites from the oversample

were dropped. Note that because there are no siblings within the military subsample, it

is irrelevant for the current research, as all military respondents are screened out of the

analyses by the requirement of having siblings within the sample. More information about

the sampling process and the data can be found on the Bureau of Labor Statistics (BLS)

website: http://www.bls.gov/nls/nlsy79.htm

To conduct this study using the requisite within-family information, I require kinship

pairs. In the original NLSY79 survey, there was no explicit identification of level of sibling

relatedness. NLSY79 twins, full siblings, half siblings, and adoptive siblings were dis-

tinguishable indirectly from respondent and maternal information about birthdates and the

biological father(s). In 2006, the survey included explicit indicators of the level of sibling

relatedness. Our research team has recently completed a multi-year project to reliably and

validly identify the kinship pairs (J. L. Rodgers et al., 2016), using both indirect and direct

ascertainment of kinship relatedness.

3.2.1 Sample Selection

Monozygotic-twin, dizygotic-twin, full-sibling, half-sibling, and cousin pairs (who lived

together in the same household in 1979) are used in the current study. Table 3.1 provides

sample sizes for each level of kinship-relatedness, which varied because they are approxi-
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mately representative of the distribution of kinship pairs in the population.

Throughout the text, I refer to two samples in the NLSY79: Full Sample, and National

Probability Subsample. The Full Sample consists of all three subsamples described in

the previous section (i.e., a cross-sectional household probability sample, a separate over-

sampled civilian subsample of racial minorities and disadvantaged whites, and a represen-

tative sample of youth serving in the U.S. Military). The National Probability Subsample

consists only of the cross-sectional household probability subsample.

Table 3.1: Number of Kinship Pairs by Level of Relatedness in the Full Sample

Kinship Number of Pairs

Cousin 96
Half Sibling 297
Full Sibling 4,006
MZ Twin 11

3.3 Health Measures

The NLSY respondents were given a health “module,” a battery of health questions,

at age 40. Administration began in 1998, when the oldest respondents (i.e., those born in

1957 and 1958) reached age 40. The module continued to be administered biennially until

the youngest respondents reached age 40 in 2006. Approximately half of subjects took the

Health 40 module at age 41. The 40+ module included:

• a 7-item version of Center for Epidemiological Studies Depression Scale, (CES-D;

see Levine, 2013, for psychometric properties)

• questions on family history and health care history,

• the 12-Item Short Form Health Survey (SF-12; Ware, Kosinski, & Keller, 1995), and

• a health ailment checklist.
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More details about these health modules can be found here: https://www.nlsinfo

.org/content/cohorts/nlsy79/topical-guide/health

I selected two measures for health: the physical component summary score of the SF-

12 (PCS), and the mental component summary score of the SF-12 (MCS). Higher scores

correspond to greater health. I focused on these two measures because they are established

scales with documented psychometric properties and are norm-referenced. The other mea-

sures were created/adapted for use in the NLSY79, and have no external validation.

3.3.1 Physical Component Summary

PCS scores varied by sex and race.1 These differences were significant, but not large in

magnitude. Univariate t-tests were conducted without assuming equal variances by adjust-

ing degrees of freedom with the Welch-Satterthwaite formula. Average scores for women

(51.4, SD = 8.7) were significantly lower than average scores for men (52.6, SD = 7.3);

t(8216.49) = −6.88, p < .001. Black respondents (51.3, SD = 8.4) and Hispanic respon-

dents (51.8, SD = 8.1) had significantly lower average scores (t(8379.9) =−5.54, p< .001)

than non-Black, non-Hispanic respondents (52.5, SD = 7.8). Throughout this paper, race

has been dictomized into a minority status variable. These two groups consist of (0) Non-

Black, Non-Hispanic respondents; and (1) Black and/or Hispanic respondents. Whenever

possible, I have reverted to the traditional three group variable denoted as race.

Figure 3.3 characterizes the distribution of PCS, grouped by sex and race with smoothed

density plots. As noted, although the group differences are significant, they do not differ

greatly in magnitude.

1Race was defined by the original investigators based on a combination of self-identification, interviewer-
report, and inference from household reports (Ward & Burich, 1978). This method resulted in three groups:
Hispanic, Black, and non-Black-non-Hispanic respondents.
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Figure 3.3: Density Plot of SF-12: Physical Health at Age 40 by Sex and Race

3.3.2 Mental Component Summary

MCS scores varied by sex, but not race. Figure 3.4 characterizes the distribution of

MCS, grouped by sex and race with smoothed density plots. Average scores for women

(51.9, SD = 8.9) were significantly lower than average scores for men (54.0, SD = 7.7);

t(8294.65) = −11.76, p < .001. The Black respondent mean (53.0, SD = 8.7) and His-

panic respondent mean (52.9, SD = 8.7) did not differ significantly (t(8351.06) = 0.18,

p = 0.86) from the non-Black-non-Hispanic respondent mean (52.9, SD = 8). Although

sex differences were significant, they were not large in magnitude.
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Figure 3.4: Density Plot of SF-12: Mental Health at Age 40 by Sex and Race

3.3.3 Normality

The distributions of both PCS and MCS were highly negatively skewed (see Figures 3.3

and 3.4), and were not normally distributed; see the QQplots in Figure 3.5. I transformed

the SF-12 measures using Box-Cox transformations (Box & Cox, 1964).2 The transformed

variables’ QQplots are displayed in Figure 3.6, and were much closer to normal. Analy-

ses using the untransformed variables gave very similar heritability estimates, albeit with

poorer model fits.

2I used the powerTransform function from the car package (J. Fox & Weisberg, 2010), which employs a
maximum-likelihood adaptation of Box-Cox to estimate a transformation that normalizes a distribution.
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Figure 3.5: QQplots of raw score PCS and MCS
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Figure 3.6: QQplots of transformed PCS and MCS

3.3.4 Heritability, Past Studies

There is limited information on the heritability of the SF-12. The Danish Twin Reg-

istry collected PCS and MCS from the SF-12 (Johnson et al., 2010; Steenstrup, Pedersen,

Hjelmborg, Skytthe, & Kyvik, 2013) at age 45 (SD = 13.7). It is unclear whether the scale

was translated into Danish, or the authors relied upon the fact that 86% of Danes speak

English (European Commission, 2012). PCS and MCS distributions were skewed in the

same manner as our sample (Johnson et al., 2010; Steenstrup et al., 2013). Median values
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for PCS (55.9) and MCS (54.4) were comparable to non-minorities in the NLSY79 sam-

ple (PCSmedian = 55.3, MCSmedian = 55.6). Neither Johnson et al. (2010) nor Steenstrup

et al. (2013) reported univariate ACE estimates. However, Johnson et al. (2010, Figure 3)

illustrated the variance components for PCS moderated by educational attainment. At a 7th

grade education, a2 was 0.63 for men (0.76 for women), c2 was 0.02 (0.02), and e2 was

0.36 (0.22). At high school education, a2 was 0.43 for men (0.58 for women), c2 was 0.04

(0.03), and e2 was 0.53 (0.39). At more than 4 years of education beyond highschool, a2

was 0.15 for men (0.23 for women), c2 was 0.07 (0.05), and e2 was 0.78 (0.71).

Steenstrup et al. (2013) provided enough information to derive univariate values, using

Falconer’s formula (1952). The following calculations are for subjects between ages 35-54.

For MCS, a2 was 0.17 for men (0.31 for women), c2 was 0.09 for men (−0.01), and e2 was

0.73 for men (0.69). Given that the samples were derived from Nordic populations and I

am unable to provide confidence intervals for these calculations, I consider these findings

to be only partially informative for our US sample – at least slightly suggestive of an AE

model for PCS and an ACE model for MCS.

3.4 Socioeconomic Status

I constructed an SES measure from the NLSY79 based on Myrianthopoulos and French

(1968) and used more recently by Turkheimer et al. (2003). Each subject was given an

aggregate score based on the mean of their total net family income, education, and oc-

cupation quantile scores. Subjects with missing data were not excluded – instead, their

aggregated scores were created from their non-missing components. Higher scores corre-

spond to higher socioeconomic status.

SES was computed for the same year as the Health 40 module. The mean SES for

wave Health 40 was 52.1 (SD = 21.8). The distribution of this index by race and sex is

illustrated in Figure 3.7. Average scores for women (52.8, SD = 21.9) were significantly

higher than average scores for men (51.3, SD = 21.6); t(7322.04) = 2.87, p < .001. Black
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respondent means (47.9, SD = 21.7) and Hispanic respondent means (48.2, SD = 21.6)

were significantly lower than the mean for non-Black-non-Hispanic respondents (56.1, SD

= 21.1), t(7325.12) = −16.07, p < .001.
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Figure 3.7: Density Plot of SES Index at Health 40 by Sex and Race

3.4.1 Heritability

I found no instances of Myrianthopoulos and French’s 1968 system decomposed into

its biometric components. However, recent reviews in economics provide evidence for both

genetic (a2 ≈ .5) and shared-environment effects (c2 ≈ .1) for the components commonly

used in SES composites (Benjamin et al., 2012), as do findings in psychology (Plomin &

Bergeman, 1991; Rowe, Vesterdal, & Rodgers, 1998). Moreover, Lichtenstein et al. (1993)

found evidence for genetic and environmental effects for their multiple components of SES.
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Chapter 4

Results

In the full sample, the observed correlation between SES and the non-linearly rescaled

PCS was 0.2 (the correlation for raw PCS was 0.2), whereas the observed correlation be-

tween SES and the transformed MCS was 0.08 (raw MCS was 0.11). Table 4.1 displays the

correlation matrix for the Full Sample NLSY79 (see Table 4.2 for the National Probability

Subsample correlation matrix). The diagonal indicates the sample size for each variable,

and upper triangle reveals the number of respondents with viable scores for both respective

variables. Kinship correlations are presented in Tables A.1 - A.5 in Appendix A. Because

of the data missingness, all models were estimated using full information maximum likeli-

hood (FIML). FIML was restricted to subjects with the same levels of relatedness employed

in the models.

Table 4.1: Correlations and Sample Sizes, in Full Sample

SES PCS MCS

SES 8465 8402 8402
PCS 0.198* 8402 8402
MCS 0.083* -0.006 8402

Table 4.2: Correlations and Sample Sizes, in National Probability Subsample

SES PCS MCS

SES 4789 4755 4755
PCS 0.213* 4755 4755
MCS 0.089* -0.055* 4755
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4.1 Univariate Results

Table 4.3 reports the estimated variance components and model fit statistics for univari-

ate ACE models of SES, PCS, and MCS, controlling for sex and minority status. I have

included TLI and CFI in our summary statistics, but I did not use them to evaluate model

fit because they penalize models heavily for complexity (Marsh, Hau, & Grayson, 2005).

4.1.1 SES

The best fitting model for the heritability of SES, controlling for minority status and

sex, was an ACE model. In general, model fit statistics were excellent. The χ2 test of the

overall model was not significant (p = 0.19), indicating good model fit. RMSEA indicated

that the model fit closely (0.01, 90% CI [0, 0.03]) and that perfect fit could not be rejected.

SRMR was below .07, also indicating good model fit.

Minority status and sex accounted for 4% of the total variance in SES. After adjusting

for minority status and sex, a2 = 48% (p < .001; 95% CI [.20, .87]), c2 = 12% (p < .001;

95% CI [.1, .34]), and the non-shared environment accounted for the remainder, e2 = 40%

(p < .001; 95% CI [.25, .60]).

4.1.2 PCS

The best fitting model for the heritability of PCS was an AE model. It was statistically

indistinguishable from an ACE model (χ2(1) = 0, p = 1.00) because the c2 estimate was

zero in both models. In general, model fit statistics were good. Without controlling for

covariates in the AE model, the χ2 test of model fit (p = 0.35) was not significant and

RMSEA (0.01, 90% CI [0, 0.03]) could not reject perfect fit. SRMR (0.07) was on the

higher side, but still approximately .07. Controlling for covariates in the AE model, the χ2

test of model fit (p = 0.02) was significant and RMSEA (0.02, 90% CI [0.01, 0.04]) could

reject perfect fit, but not close fit. SRMR was lower (0.04) and below the .07 threshold.
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For consistency, I have reported the fits and estimates for the AE model with covariates in

Table 4.3. Taken together, the models paint a consistent finding of an AE model.

The variance estimates between the models with and without covariates were not sig-

nificantly different. Minority status and sex accounted for 1% of the total variance in PCS.

After adjusting for minority status and sex, a2 = 17% (p < .001; 95% CI [.11, .25]),

whereas the non-shared environment accounted for the remainder, e2 = 83% (p < .001;

95% CI [.76, .90]).

4.1.3 MCS

The best fitting model for MCS was a CE model. It was statistically indistinguishable

from an ACE model (χ2(1) = 0, p = 1.00) because the a2 estimate was zero in both models.

The χ2 test was not significant (p = 0.26), indicating good model fit. RMSEA indicated

that the model fit closely (0.01, 90% CI [0, 0.03]) and that perfect fit could not be rejected.

SRMR was below .07, also indicating good model fit.

Minority status and sex accounted for 2% of the total variance in MCS. After adjusting

for minority status and sex, the shared environment (c2) accounted for 9% (p < .001; 95%

CI [.06, .13]) of the variance in MCS, while the non-shared environment accounted for the

remainder, e2 =91% (p < .001; 95% CI [.87, .95]).
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Table 4.3: Estimates and Fit Statistics of Best Fitting Univariate Models

ACE SES AE PCS CE MCS

A 0.48 0.17

p(A) 0 0

C 0.120 0.089

p(C) 0.004 0.000

E 0.40 0.83 0.91

p(E) 0 0 0

p(ChiSqM) 0.195 0.018 0.258

ChiSqM DF 35 36 36

p(ChiSqBaseline) 0 0 0

ChiSqBaseline DF 28 28 28

CFI 0.99 0.85 0.97

TLI 0.99 0.88 0.98

p(RMSEA) <.05 1 1 1

RMSEA 90CI LB 0.00 0.01 0.00

RMSEA 0.014 0.024 0.012

RMSEA 90CI UB 0.028 0.035 0.026

SRMR 0.025 0.043 0.029

4.2 Bivariate Results

Both meaningful genetic and shared environmental variance exist in the measure of

SES. The question remains whether the genetic variance in PCS and the shared-environmental

variance in MCS overlap with the equivalent variance source in SES. Thus, a series of
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correlated-factors models were run to identify the best fitting models of the relationship

between SES and a single measure of health. All models controlled for minority status and

sex.

4.2.1 Bivariate models of SES and PCS

A nested model comparison found that allowing the genetic effects to covary improved

the fit of the model dramatically; p(χ2(1)< .001). Model fit statistics are provided in Table

4.4 and were generally good. Although the χ2 test of model fit was significant (p < .001),

RMSEA (0.03, 90% CI [0.03, 0.04]) indicated close fit. SRMR = 0.05 was low and below

the .07 threshold. Standardized model parameter estimates are displayed in Figure 4.1 with

standard errors in parentheses.

After adjusting for minority status and sex, the estimated parameters for SES were a2

= 49% (p < .001; 95% CI [.21, .88]), c2 = 9% (p = 0.04; 95% CI [.002, .33]), e2 = 42%

(p< .001; 95% CI [.27, .62]). The estimated parameters for PCS were a2 = 11% (p< .001;

95% CI [.05, .19]) and e2 = 89% (p < .001; 95% CI [.82, .97]). Unadjusted a2, c2, and

e2 estimates can be found by squaring the factor loadings in Figure 4.1. The bivariate

estimates were nearly identical to the univariate estimates.

The estimated covariance between the genetic components of SES and PCS was 0.65 (p

< .001) [0.31, 0.99], which means that 65% of the genetic influence was common to both

measures. I calculated the genetic correlation (r̂a) between SES and PCS with path tracing

rules (Wright, 1923, 1934).

r̂a = βPCS,aPCS ∗ψaPCS,aSES ∗βSES,aSES (4.1)

r̂a = 0.32∗0.65∗0.68 = 0.14 (4.2)

I found that the genetic correlation (r̂a) was 0.14, 95% CI [0.12, 0.16]. Consequently,

the proportion of the latent phenotypic correlation (r̂ = 0.16) attributable to genetics was
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0.91, 95% CI [0.73, 1]. As a more conservative test, I substituted the latent phenotypic cor-

relation with the observed correlation between SES and PCS in the full sample (r = 0.2);

the proportion explained by genetics was 0.73, 95% CI [0.59, 0.81]. Both proportions in-

dicated that a large component of the gradient was heritable, and the remaining phenotypic

variance was explained by the non-shared environment.

SESPCS

ESESASES CSESAPCSEPCS

0.68(0.12) 0.29(0.14)
0.64 (0.07)

0.32(0.06)0.94(0.02)

0.65(0.17)

Figure 4.1: Correlated Factors of SES and PCS
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Table 4.4: Bivariate Model Fit for PCS and SES

Parameters 18

ChiSqM Value 188.00

ChiSqM DF 86

p(ChiSqM) 0

p(ChiSqBaseline) 0

CFI 0.91

TLI 0.92

RMSEA 90CI LB 0.03

RMSEA 0.03

RMSEA 90CI UB 0.04

p(RMSEA) <.05 1

SRMR 0.05

4.2.2 Bivariate models of SES and MCS

A nested model comparison found that allowing the shared-environmental effects to

covary improved the fit of the model dramatically, p(χ2(1)< .001). Model fit statistics are

provided in Table 4.5 and were generally excellent. The χ2 test of model fit was not signif-

icant (p = 0.05), and RMSEA (0.02, 90% CI [0, 0.02]) could not reject perfect fit. SRMR

= 0.03 was low and below the .07 threshold. Standardized model parameter estimates are

displayed in Figure 4.2 with standard errors in parentheses.

After adjusting for minority status and sex, the estimated parameters for SES were a2

= 46% (p < .001; 95% CI [.18, .86]), c2 = 13% (p < .001; 95% CI [.1, .35]), e2 = 42%

(p < .001; 95% CI [.26, .61]). The estimated parameters for MCS were c2 = 8% (p < .001;
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95% CI [.05, .12]) and e2 = 92% (p < .001; 95% CI [.88, .95]). Unadjusted a2, c2, and

e2 estimates can be found by squaring the factor loadings in Figure 4.2. I note that the

bivariate estimates were nearly identical to the univariate estimates.

The covariance between the shared-environmental components of SES and MCS was

0.79 (p = 0.01; 95% CI [0.2, 1]), which means that 78.8% of the shared-environmental in-

fluences was common to both measures. I calculated the shared-environmental correlation

(r̂c) between SES and MCS with path tracing rules (Wright, 1923, 1934).

I found that the shared-environmental correlation r̂C = 0.08, 95% CI [0.06, 0.1]. Con-

sequently, the proportion of the latent phenotypic correlation (r̂ = 0.06) explained by the

shared-environmental correlation was 1, 95% CI [0.97, 1]. As a more conservative test,

I substituted the latent phenotypic correlation with the observed correlation between SES

and MCS in the full sample (r = 0.08); this proportion explained by the shared environment

was 0.95, 95% CI [0.69, 1].

SES MCS

ESESASES CSES CMCS EMCS

0.66(0.12) 0.35(0.12)
0.63 (0.07)

0.29(0.03) 0.95(0.01)

0.79(0.3)

Figure 4.2: Correlated Factors of SES & MCS

37



Table 4.5: Bivariate Model Fit for MCS and SES

Parameters 18

ChiSqM Value 108.00

ChiSqM DF 86

p(ChiSqM) 0.05

p(ChiSqBaseline) 0

CFI 0.98

TLI 0.98

RMSEA 90CI LB 0

RMSEA 0.02

RMSEA 90CI UB 0.02

p(RMSEA) <.05 1

SRMR 0.03

4.3 Trivariate Results

Combining the bivariate models, I examined the influence of SES on both mental and

physical health. A series of nested model comparisons found the following:

• allowing the shared-environmental effects between mental health and SES to covary

improved the fit of the model (p(χ2(1))< .001);

• allowing the genetic effects between physical health and SES to covary improved the

fit of the model (p(χ2(1))< .001);

• allowing the genetic effects between physical health and SES to covary after already

38



covarying the shared-environmental effects between mental health and SES improved

the fit of the model (p(χ2(1))< .001); and

• allowing the shared-environmental effects between mental health and SES to covary

after already covarying the genetic-environmental effects between physical health

and SES improved the fit of the model (p(χ2(1))< .001).

Notably, in sensitivity analyses the effect on the χ2 contribution from MZ twins was

disproportionately high across all models. For example, in the final model, they contributed

40% of the total χ2 (132.590 of 330.13), even though there were only 11 pairs (0.27%) of

4018. This proportion mismatch motivated us to run additional models, where I excluded

MZ twins from the analysis. In the spirit of transparency, I have reported those results

here as well, and note when the two model results differ. Model fit statistics are provided

in Table 4.6 and were excellent. Fits were universally improved by the exclusion of MZ

twins, but the estimates themselves did not differ greatly.
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Table 4.6: Trivariate Model Fits

Without Twins With Twins

Parameters 24 27

ChiSqM Value 197 330

ChiSqM DF 111 153

p(ChiSqM) 0 0

p(ChiSqBaseline) 0 0

CFI 0.94 0.88

TLI 0.94 0.89

AIC 58471 58630

BIC 58622 58800

aBIC 58545 58714

RMSEA 90CI LB 0.019 0.029

RMSEA 0.024 0.034

RMSEA 90CI UB 0.030 0.039

p(RMSEA) <.05 1 1

SRMR 0.035 0.050

4.3.1 With MZ Twins

Model fit statistics were generally good. Although the χ2 test of model fit (p < .001)

was significant, RMSEA (0.03, 90% CI [0.03, 0.04]) indicated close fit. SRMR = 0.05 was

low and below the .07 threshold.

After adjusting for minority status and sex, the estimated parameters for SES were a2

= 48% (p < .001; 95% CI [.21, .85]), c2 = 9% (p = 0.03; 95% CI [.01, .32]), e2 = 43%
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(p< .001; 95% CI [.28, .62]). The estimated parameters for PCS were a2 = 11% (p< .001;

95% CI [.05, .19]) and e2 = 89% (p < .001; 95% CI [.82, .96]). The estimated parameters

for MCS were c2 = 9% (p < .001; 95% CI [.05, .12]) and e2 = 91% (p < .001; 95% CI [.88,

.95]). Standardized model parameter estimates are displayed in Figure 4.3 with standard

errors in parentheses. Unadjusted a2, c2, and e2 estimates can be derived by squaring the

factor loadings.

The covariance between the genetic components of SES and PCS was 0.66 (p < .001;

95% CI [0.32, 1]). I calculated the genetic correlation (r̂a) between SES and PCS with

path tracing rules (Wright, 1923, 1934). I found that the genetic correlation (r̂a) was 0.15,

95% CI [0.12, 0.16]. Consequently, the proportion of the latent phenotypic correlation

(r̂ = 0.16) attributable to genetics was 0.91, 95% CI [0.73, 1]. As a more conservative

test, I substituted the latent phenotypic correlation with the observed correlation (r = 0.2)

between SES and PCS in the full sample; the proportion explained by genetics was 0.74,

95% CI [0.59, 0.81]. Both proportions indicated that a large component of the gradient was

heritable, and the remaining proportion was explained by the non-shared environment.

The covariance between the shared-environmental components of SES and MCS was

0.95 (p = 0.04; 95% CI [0.06, 1]). I found that the shared-environmental correlation (r̂C)

was 0.08, 95% CI [0.06, 0.1]. Consequently, the proportion of the latent phenotypic corre-

lation (r̂ = 0.06) explained by the shared-environmental correlation was 1, 95% CI [0.97,

1]. As a more conservative test, I substituted the latent phenotypic correlation with the

observed correlation (r = 0.08) between SES and MCS in the full sample; this proportion

explained by the shared environment was 0.96, 95% CI [0.7, 1].
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SESPCS MCS

ESESASES CSESAPCSEPCS CMCS EMCS

0.68(0.12) 0.29(0.13)
0.64 (0.06)

0.33(0.06)0.94(0.02) 0.29(0.03) 0.95(0.01)

0.66(0.17) 0.95(0.45)

Figure 4.3: Correlated Factors of SES, Physical Health, & Mental Health at Age 40

4.3.2 Without MZ Twins

Model fit statistics were generally excellent. Although the χ2 test of model fit (p <

.001) was significant, RMSEA (0.02, 90% CI [0.02, 0.03]) indicated close fit. SRMR was

low (0.04) and below the .07 threshold.

After adjusting for minority status and sex, the estimated parameters for SES were a2

= 49% (p < .001; 95% CI [.37, 64]), c2 = 8 % (p < .001; 95% CI [.04, .15]), e2 = 42%

(p< .001; 95% CI [.34, .52]). The estimated parameters for PCS were a2 = 10% (p< .001;

95% CI [.05, .19]) and e2 = 90% (p < .001; 95% CI [.82, .97]). The estimated parameters

for MCS were c2 = 8% (p < .001; 95% CI [.05, .12]) and e2 = 92% (p < .001; 95% CI [.88,

.95]). Standardized model parameter estimates are displayed in Figure 4.4 with standard

errors in parentheses. Unadjusted a2, c2, and e2 estimates can be derived by squaring the

factor loadings.

The covariance between the genetic components of SES and PCS was 0.65 (p < .001;

95% CI [0.37, 0.94]). I calculated the genetic correlation (r̂a) between SES and PCS with

path tracing rules (Wright, 1923, 1934). I found that the genetic correlation (r̂a) was 0.14,

95% CI [0.12, 0.16]. Consequently, the proportion of the latent phenotypic correlation (r̂

= 0.16) attributable to genetics was 0.88, 95% CI [0.72, 0.98]. As a more conservative
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test, I substituted the latent phenotypic correlation with the observed correlation between

SES and PCS in the full sample (r = 0.2); the proportion explained by genetics was 0.73,

95% CI [0.59, 0.81]. Both proportions indicated that a large component of the gradient was

heritable, and the remaining proportion was explained by the non-shared environment.

The covariance between the shared-environmental components of SES and MCS was 1

(p < .001; 95% CI [0.89, 1]). I found that the shared-environmental correlation (r̂C) was

0.08, 95% CI [0.06, 0.1]. Consequently, the proportion of the latent phenotypic correlation

(r̂ = 0.06) explained by the shared-environmental correlation was 1, 95% CI [0.94, 1]. As

a more conservative test, I substituted the latent phenotypic correlation with the observed

correlation between SES and MCS in the full sample (r = 0.08); this proportion explained

by the shared environment was 0.96, 95% CI [0.71, 1].

SESPCS MCS

ESESASES CSESAPCSEPCS CMCS EMCS

0.69(0.05) 0.28(0.05)
0.64 (0.03)

0.32(0.06)0.94(0.02) 0.29(0.03) 0.95(0.01)

0.65(0.14) 1(0.06)

Figure 4.4: Correlated Factors of SES, Physical Health, & Mental Health at Age 40 (with-
out MZ twins)

4.3.3 Model Differences

Model fits were noticeably improved on all indices with the exclusion of MZ twins.

The only notable parameter difference was the shared-environmental covariance between

SES and mental health. The MZ twin model estimated a correlation of 0.95 (p = 0.04),

whereas the MZ-less model provided an estimated shared-environmental correlation of 1
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(p < .001). Practically, the magnitude of the effect did not change, only the precision of

the estimate. With MZ twins, the 95% confidence interval was [0.06, 1], whereas without

MZ twins, the 95% confidence interval was [0.89, 1].
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Chapter 5

Discussion

This article presents a biometrical decomposition of the bivariate relationship between

SES and Health – often called the SES-health gradient – for both mental and physical health

at age 40. The identified general pathways of influence of the SES-Health gradient differ by

aspect of health. SES links to mental health through the shared-environment. In contrast,

SES links to physical health through genetic and non-shared environmental pathways.

For physical health, our results are consistent with the Lichtenstein et al. (1993) general

finding of a genetic pathway linking physical health and SES. In this study, the genetic

pathway explained the bulk of the gradient, even using the most conservative proportion I

could devise by substituting the latent phenotypic correlation with the observed correlation.

For mental health, however, my findings diverge. I observed no genetic effect and instead

found the shared-environment explain practically all of the mental health gradient at age

40. Again, this relationship held even when using the most conservative proportion I could

devise.

5.1 Physical Health

Across models, I consistently found genetic variance to underlie the gradient for phys-

ical health. This percentage ranged from 70% genetic and 30% non-shared environment in

conservative calculations to 90% genetic and 10% non-shared environment in more tradi-

tional calculations. The consistency of this finding was comparable to those of Lichtenstein

et al. (1993)’s Nordic sample (they found 67% genetic variance) – even though they used

a different type of sample, twins raised apart – lends more support to this result.These re-

sults suggest that Adler and Stewart (2010) and Gottfredson (2004) are both correct – the

environment matters as do genes, but the nature of the health outcome is critical.
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As discussed in the (Mis)interpreting heritability section, this finding does not mean

that the gradient is fixed or cannot respond to intervention. On the contrary, the high pro-

portion of genetic variance simply identifies the source of overlap between SES and health

as emergent from biological sources. Both gene-environment interaction and epigenetic

sources provide many explanations for why such genetic overlap does not imply determin-

istic outcomes.

5.2 Mental Health

Across models, I consistently found the shared-environment to be the primary source

of the gradient for mental health at age 40. This percentage ranged from 90% shared-

environment and 10% non-shared environment in conservative calculations to 100% shared

environmental in more traditional calculations. Regardless of the method of calculation, the

consistency of the result indicates that the shared-environment explains practically all of the

small correlation between SES and mental health, suggesting that early experiences in the

home may be important influences on the mental health aspect of the gradient. This result

maps cleanly onto indirect models of Social Causation (and Selection). Further research

is needed to explicitly test the specific theories within Social Causation, such as whether

early home stressors mediate the mental health gradient (Repetti et al., 2002).

5.3 Theoretical Implications

Theorists (notably, Adler et al., 1994; Adler & Ostrove, 1999; Adler & Stewart, 2010)

assert that Social Causation and Selection theories act exclusively through the environment,

whereas Social Confound theories act exclusively through genes. Using their framework,

the genetic effect of physical health with SES provides definitive support for Social Con-

found theories and all but eliminates Social Causation (and Selection) theories; whereas

the shared-environmental effect of mental health with SES maps onto Social Causation

(and Selection) theories, accordingly eliminating Social Confound explanations. Such an
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interpretation may be overly simplistic.

In reality, the relationship between SES and health is dynamic, temporal – in other

words, complex. For example, schizophrenia is often used as an illustration of selec-

tion (Goldberg & Morrison, 1963). Accordingly, theories of selection would predict that

schizophrenia is not heritable and predominantly explained by environmental sources. Yet,

schizophrenia is heritable (estimates range from 64% to 89%, National Institute of Mental

Health’s Genetics Workgroup, 1998; Tsuang, 2000). How can SES-health gradient theory

and behavior genetics appear so incompatible? They are not. The estimates given by behav-

ior genetics refer to distal causes, whereas the gradient theories we have refer to proximal

causes. Instead, we ought to think of these two pieces as giving predictions at different

points in the causal stream. The proximal causes are conditioned on distal causes. For

example, given an individual genetically predisposed to developing schizophrenia, Social

Selection theories predict the following chain of events:

• The at-risk individual experiences schizophrenia, then

• a downward drift into poverty occurs;

whereas Social Causation theories predict an alternative chain of events:

• The at-risk individual experiences poverty, then

• onset of schizophrenia occurs (i.e., a decline in health).

In both models, the distal cause, (e.g., genetic predisposition toward schizophrenia), is

a necessary step in the causal stream. However, in neither model, is having the genetic

predisposition sufficient. In the Causation Model, being vulnerable to schizophrenia is in-

sufficient without exposure to poverty; whereas in the Selection Model, being vulnerable

to schizophrenia is insufficient without the actual onset of schizophrenia. In other words,

only if the distal cause is present, can the proximal causes proposed by Selection, Cau-

sation, and Confounding theories be relevant within the causal stream. It is in this sense
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that I suggest interpreting the findings presented in this paper. The illustration above used

schizophrenia – the logic holds for all heritable traits. However, Adler and others have

framed genetic effects as caused by third variables. There are many traits with substan-

tial heritabilities that could be “third variable” more proximate causal influences on health.

Accordingly, more research should be dedicated to identifying what these third variables

are. A reasonable starting point would be examining whether (and which) individual dif-

ferences in personality and cognitive ability explain the identified genetic overlap. Recent

work by Arden et al. (2016) and Trzaskowski et al. (2014) both identify that genes are a

large source of covariation for health and wealth with intelligence. The next step would be

to test whether those common genetic sources are common to one another, using models

and analytic approaches similar to those in the current study.

If individual differences in personality are the third variables at the heart of the gradient,

then recent advances in research on personality change and growth-mindset interventions

can potentially provide the groundwork for larger scale interventions (e.g., Hudson & Fra-

ley, 2015; Magidson, Roberts, Collado-Rodriguez, & Lejuez, 2014; Paunesku et al., 2015).

Just as the impact of PKU can be circumvented with changes in diet, the gradient can

potentially be affected by adapting personality change interventions. As a result, the ge-

netic proportion of the gradient should decline with time because post-intervention, there

would be more homogeneity in people acting in health-preserving and wealth-generating

manners.

5.4 Caveats and Conclusions

5.4.1 Measures

Health. The measures of health are not diagnosis-specific, but are overall measures

of health. Accordingly, specific diagnoses may have different distributions of genetic

and environmental influences, which may in turn map onto different theoretical pathways.
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For example, although mental health symptoms (e.g., depressive symptomatology; Byers,

Levy, Kasl, Bruce, & Allore, 2009) and many mental health diagnoses (Burt, 2009) have a

shared-environmental component, genetic influences vary – specifically, depressive symp-

tomatology (Byers et al., 2009) may lack a genetic influence, whereas clinical diagnoses of

major depressive disorder have a well-established genetic component (Sullivan, Neale, &

Kendler, 2000). Thus, depressive symptomatology may share variance through the shared-

environment, whereas major depressive disorder may share variance through various ge-

netic confounds. Again, further research is needed to untangle the mechanisms for more

disorders to determine whether these findings generalize beyond general health.

SES. There is no definitive measure for socioeconomic status – although numerous task

forces have attempted to create such a measure (e.g., Saegert et al., 2006). Many studies

referenced throughout this paper have employed a single component of SES (e.g., house-

hold income, education, etc.), and used it as a proxy for the entire construct. Other studies,

notably (Lichtenstein et al., 1993), report results using multiple components of SES. Com-

bined, these studies cast a nomological net, allowing us to understand the interrelated nature

of SES. This paper’s purpose, however, was to understand the biometrical underpinnings

of the SES-health gradient – not the SES-components-gradient. Thus, I made a deliberate

choice to focus on the higher-level construct. Hence, I employed an overall index (similar

to the indices in Myrianthopoulos & French, 1968; Turkheimer et al., 2003), rather than

to conduct repeated analyses on multiple components of SES, as did Lichtenstein et al.

(1993). Further research is needed to examine which components of SES contribute to the

overall relationship between SES and health.

5.4.2 Modeling

Assumptions. Like all work in behavior genetics, these biometrical models impose sim-

plifying assumptions. We explicitly assumed no interaction between genotype and envi-

ronment. Robustness checks that we did not report here did not find gene-by-environment
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interactions; however, as discussed previously, genetic distal causes may interact with en-

vironmental proximal causes. Indeed, recent work by Adler (2013) has acknowledged that

genetics (particularly, epigenetics) may be important elements underlying the gradient. Fu-

ture work that explicitly models gene-by-environment interactions could do much to further

untangle the gradient, beyond our initial decompositions presented herein.

The models assumed random mating. However, partners tend to marry and mate with

individuals alike on many characteristics (Buss, 1985), including SES (Watkins & Mered-

ith, 1981) and health (Meyler, Stimpson, & Peek, 2007). Accordingly, the genetic similarity

between kin may be higher than what we modeled. Thereby our heritability estimates may

be deflated and our estimates of environmentality may be inflated. Particularly, the inflation

of the shared-environmental influence may explain why the proportion of the mental health

gradient was larger than typical estimates in the literature. Other designs, such as inter-

generational designs or the inclusion of spouses can untangle the influence of non-random

assortment (e.g., Cardon, Fulker, & Jöreskog, 1991; Heath & Eaves, 1985). Moreover,

simulation studies find that typical levels of non-random mating are not large enough to

drastically impact biometrical models (Fernando & Gianola, 1990), as do analytic deriva-

tions (Reeve, 1961).

Finally, the major assumption of equal environments assumed that siblings of different

levels of relatedness (full siblings vs half siblings) are equally exposed to “environmental

events of etiologic importance” (Kendler et al., 1993). When equal environments are incor-

rectly assumed, genetic effects will be overestimated. Much of the debate over the validity

of the equal environments assumption focuses on differential treatment between monozy-

gotic and dizygotic twins, and accordingly, tests of equal environments use twin-specific

situations, including misdiagnosis of zygosity (Matheny, 1979). Our sample included a

wider range of kin relationships. We assumed that monozygotic twins, full-siblings, half-

siblings and cousins were treated the same with respect to both etiological precursors of

later health and SES. However, fairy tales such as Cinderella (step-siblings, Grimm, 1955)
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or Ye Xian (half-siblings, Louie, 1982) and sagas such as Harry Potter (cousins, Rowl-

ing, 1997) provide us with illustrations of differential treatment. Still, for the equal en-

vironments assumption to be violated, the differential experiences must be of etiological

influence to either later SES or later health – not merely being differentially treated with

respect to those constructs. Although this is a complicated domain, we do note that our

estimates using multiple levels of kin pairs were similar to those with twins of varying

zygosity (Lichtenstein et al., 1993).

Alternative Approaches. Alternative modeling approaches such as Cholesky models

impose more assumptions – mainly temporal ordering. We explicitly focused on a cross-

sectional snapshot of the USA, which inhibited us from imposing a direction. We rec-

ommend that future papers employ this family of models to untangle the direction of the

relationship between SES and health, though remaining in a behavior genetic framework.

5.4.3 Design

Our findings offer a snapshot of the United States population at age 40, between 1998

and 2006, as portrayed by the NLSY79 data. The effects may vary by age. The shared

environment (and the theories explained by the shared environment) may be a more potent

influence on the gradient for younger individuals because their childhood experiences are

more salient. I plan to replicate and incorporate repeated measures once the BLS finishes

collecting health at age 50 in 2016 (and releases it by 2020). At that point, I can explicitly

untangle whether the environmental influences are driven by selection or causation.

5.4.4 Final Remarks

This paper decomposed the relationship between socioeconomic status and health into

its biometrical components. The results differed by measure of health. Physical health’s

relationship with SES was primarily explained through genes, whereas mental health’s rela-

tionship with SES was primarily explained through the shared environment. If we interpret
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these findings through the genes versus environment framework that theorists (notably,

Adler et al., 1994; Adler & Ostrove, 1999; Adler & Stewart, 2010) impose, then these

results imply the following:

• the physical health gradient is a product of Social Confounding, and is caused by

third variables, such as intelligence and personality;

• the mental health gradient is a product of Social Causation, and suggests that socioe-

conomic status causes disparities in mental health.

Such an interpretation is overly simplistic. Rather, the results suggest that there are

genetic precursors common to both physical health and SES, and that there are shared-

environmental influences common to both mental health and SES. These genetic precur-

sors do not necessarily imply that third variables are the cause of the SES-physical health

gradient. Just as these shared-environmental influences do not necessarily imply that so-

cioeconomic status causes disparities in mental health. We integrate Adler and Stewart

(2010)’s interpretations with behavior genetics to conclude the following: At age 40,

• the physical health gradient has genetic precursors, that potentially are explained by

third variables, such as intelligence and personality;

• the mental health gradient has shared environmental sources, and are suggestive of a

social causation model.
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Appendix A

Appendix: Kinship Correlations

Table A.1: Kinship Correlations and Sample Sizes (indivs), for MZ Twins, Full-Siblings,
Half-Siblings, and Cousins (∗p < .05)

SES 1 SES 2 PCS 1 PCS 2 MCS 1 MCS 2

SES 1 7168 6300 7107 6250 7107 6250
SES 2 0.382* 7168 6250 7107 6250 7107
PCS 1 0.197* 0.128* 7107 6202 7107 6202
PCS 2 0.128* 0.197* 0.089* 7107 6202 7107
MCS 1 0.070* 0.009 0.014 0.029* 7107 6202
MCS 2 0.009 0.070* 0.029* 0.014 0.093* 7107

Table A.2: Kinship Correlations and Sample Sizes (indivs), for MZ Twins (r= 1; ∗p < .05)

SES 1 SES 2 PCS 1 PCS 2 MCS 1 MCS 2

SES 1 20 18 20 18 20 18
SES 2 0.49* 20 18 20 18 20
PCS 1 0.38 0.27 20 18 20 18
PCS 2 0.27 0.38 0.49* 20 18 20
MCS 1 -0.50* -0.57* -0.61* -0.48* 20 18
MCS 2 -0.57* -0.50* -0.48* -0.61* 0.63* 20

Table A.3: Kinship Correlations and Sample Sizes (indivs), for Full-Siblings (r= .5; ∗p <
.05)

SES 1 SES 2 PCS 1 PCS 2 MCS 1 MCS 2

SES 1 6512 5730 6461 5688 6461 5688
SES 2 0.391* 6512 5688 6461 5688 6461
PCS 1 0.202* 0.133* 6461 5646 6461 5646
PCS 2 0.133* 0.202* 0.092* 6461 5646 6461
MCS 1 0.065* 0.012 0.010 0.036* 6461 5646
MCS 2 0.012 0.065* 0.036* 0.010 0.083* 6461
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Table A.4: Kinship Correlations and Sample Sizes (indivs), for Half-Siblings (r= .25)

SES 1 SES 2 PCS 1 PCS 2 MCS 1 MCS 2

SES 1 477 404 470 399 470 399
SES 2 0.217* 477 399 470 399 470
PCS 1 0.175* 0.053 470 396 470 396
PCS 2 0.053 0.175* 0.042 470 396 470
MCS 1 0.148* 0.003 0.088 -0.052 470 396
MCS 2 0.003 0.148* -0.052 0.088 0.140* 470

Table A.5: Kinship Correlations and Sample Sizes (indivs), for Cousins (r= .125; ∗p< .05)

SES 1 SES 2 PCS 1 PCS 2 MCS 1 MCS 2

SES 1 159 148 156 145 156 145
SES 2 0.164* 159 145 156 145 156
PCS 1 -0.020 0.097 156 142 156 142
PCS 2 0.097 -0.020 -0.032 156 142 156
MCS 1 0.102 -0.024 0.076 0.054 156 142
MCS 2 -0.024 0.102 0.054 0.076 0.195* 156
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Appendix B

Appendix: National Probability Subsample Replication

In the spirit of reproducability, I replicated the final model using the National Proba-

bility Subsample, which consists of the cross-sectional household probability subsample

described earlier. Model fit statistics were generally excellent. Although the χ2 test of

model fit (p < .001) was significant, RMSEA (0.04, 90% CI [0.03, 0.05]) indicated close

fit. SRMR was low (0.05) and below the .07 threshold.

After adjusting for minority status and sex, the estimated parameters for SES were a2

= 33.61% (p < .001; 95% CI [.05, .86]), c2 = 19.79% (p < .001; 95% CI [.05, .45]), e2 =

46.61% (p < .001; 95% CI [.28, .70]). The estimated parameters for PCS were a2 = 7.96%

(p < .001; 95% CI [.02, .18]) and e2 = 92% (p < .001; 95% CI [.84, 1]). The estimated

parameters for MCS were c2 = 6.67% (p < .001; 95% CI [3, 12]) and e2 = 93% (p < .001;

95% CI [.89, .98]). Standardized model parameter estimates are displayed in Figure B.1

with standard errors in parentheses. Unadjusted a2, c2, and e2 estimates can be derived by

squaring the factor loadings.

The estimated covariance between the genetic components of SES and PCS was 1.0

(p < .001; 95% CI [0.61, 1]). I calculated the genetic correlation (r̂a) between SES and

PCS with path tracing rules (Wright, 1923, 1934). I found that the genetic correlation

(r̂a) was 0.16, 95% CI [0.12, 0.18]. Consequently, the proportion of the latent phenotypic

correlation (r̂ = 0.18) attributable to genetics (the heritability) was 0.86, 95% CI [0.67,

0.97]. As a more conservative test, I substituted the latent phenotypic correlation with the

observed correlation between SES and PCS in the national probability subsample (r = 0.21);

the proportion explained by genetics was 0.74, 95% CI [0.57, 0.83]. Both proportions

indicated that a large component of the gradient was heritable, and the remaining proportion

was explained by the non-shared environment.
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The covariance between the shared-environmental components of SES and MCS was

0.76 (p = 0.01; 95% CI [0.22, 1]). I found that the shared-environmental correlation (r̂C)

was 0.08, 95% CI [0.05, 0.1]. Consequently, the proportion of the latent phenotypic corre-

lation (r̂ = 0.07) explained by the shared-environmental correlation was 1, 95% CI [0.72,

1]. As a more conservative test, I substituted the latent phenotypic correlation with the ob-

served correlation between SES and MCS in the national probability subsample (r = 0.09);

this proportion explained by the shared environment was 0.94, 95% CI [0.58, 1].

SESPCS MCS

ESESASES CSESAPCSEPCS CMCS EMCS

0.56(0.17) 0.43(0.11)
0.66 (0.08)

0.28(0.07)0.95(0.02) 0.26(0.05) 0.95(0.01)

1(0.2) 0.76(0.28)

Figure B.1: Correlated Factors of SES, Physical Health, & Mental Health at Age 40 (with-
out MZ twins in the National Probability Subsample)
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Appendix C

Appendix: Annotated Mplus Syntax

C.1 Univariate Model

USEVAR are

!Outcomes

H_1

H_2

!Covariates

Male_1

Male_2

RACE_1

!Grouping Variable on level of relatedness

g;

!specify the kinship groups

grouping=g( 1=R1

!2=R.75

3=R.5

!4=R.375

5=R.25

6=R.125

!7=R.0625

!8=R0
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);

DEFINE: ! Link level of relatedness to group

if (R==1) then g=1; !MZ Twins

!if (R==.75) then g=2; !Ambig Twins

if (R==.5) then g=3; !Full Sibs (Includes DZ twins)

!if (R==.375) then g=4; !Ambig Sibs

if (R==.25) then g=5; !Half Sibs

if (R==.125) then g=6; !Full Cousins

!if (R==.0625) then g=7; !Ambig Cousins

!if (R==0) then g=8; !Unrelated Housemates

! Define Outcome of Interest

H_1= MCS_1;

H_2= MCS_2;

! Restrict Analysis to Full Cousins(6), Half Siblings(5),

!! Full Siblings(3), MZ twins (1); Needed for Smart Missing

Data

useobservations = (g eq 6 OR g eq 5 OR g eq 3 OR g eq

1);!

ANALYSIS:

MODEL=NOCOVARIANCES;

ITERATIONS = 25000;
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MODEL: !set up values for all groups

H_1@0; H_2@0; !fix residual variances to zero

A1 BY H_1*.5 (a1); A2 BY H_2*.5(a1); !additive genetic

loadings

C1 BY H_1*.5 (12); C2 BY H_2*.5 (12); !common envt

loadings

E1 BY H_1*.8 (13); E2 BY H_2*.8 (13); !specific envt

loadings

!Control for Covariates

H_1 on MALE_1 (sex); H_2 on MALE_2 (sex);

H_1 on RACE_1 (race); H_2 on RACE_1 (race);

!fix latent variable means=0

[A1@0 A2@0];

[C1@0 C2@0];

[E1@0 E2@0];

!fix latent variable vars=l

A1@1 A2@1 ;

C1@1 C2@1 ;

E1@1 E2@1;

!latent variable covs
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C1 WITH C2@1; !Shared Environment

E1 WITH E2@0; !Non-Shared Environment

A1 WITH C1-C2@0; A2 WITH C1-C2@0;

A1 WITH E1-E2@0; A2 WITH E1-E2@0;

C1 WITH E1-E2@0; C2 WITH E1-E2@0;

! Set Genetic Covariance based on kin group

MODEL R1:

[H_1 H_2] (m); !means can vary by group

A1 WITH A2@1;

MODEL R.5:

[H_1 H_2] (m5); !means can vary by group

A1 WITH A2@0.5;

MODEL R.25:

[H_1 H_2] (m25); !means can vary by group

A1 WITH A2@0.25;

MODEL R.125:

[H_1 H_2] (m125); !means can vary by group

A1 WITH A2@0.125;

OUTPUT: STDyx TECH1 TECH3 TECH4 CINTERVAL;
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C.2 Bivariate Correlated Factors Model

USEVAR are

!Outcomes

H_1

H_2

SES_1

SES_2

!Covariates

Male_1

Male_2

RACE_1

!Grouping Variable on level of relatedness

g;

!specify the kinship groups

grouping=g( 1=R1

!2=R.75

3=R.5

!4=R.375

5=R.25

6=R.125

!7=R.0625

!8=R0

);
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DEFINE: ! Link level of relatedness to group

if (R==1) then g=1; !MZ Twins

!if (R==.75) then g=2; !Ambig Twins

if (R==.5) then g=3; !Full Sibs (Includes DZ twins)

!if (R==.375) then g=4; !Ambig Sibs

if (R==.25) then g=5; !Half Sibs

if (R==.125) then g=6; !Full Cousins

!if (R==.0625) then g=7; !Ambig Cousins

!if (R==0) then g=8; !Unrelated Housemates

!Define Outcome of Interest

!Health

H_1= MCS_1;

H_2= MCS_2;

!SES

SES_1= S_40_1;

SES_2= S_40_2;

! Restrict Analysis to Full Cousins(6), Half Siblings(5),

!! Full Siblings(3), MZ twins (1); Needed for Smart Missing

Data

useobservations = (g eq 6 OR g eq 5 OR g eq 3 OR g eq
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1);!

ANALYSIS:

MODEL=NOCOVARIANCES;

ITERATIONS = 25000;

MODEL:

! Create Latent Factors

!Genetic Effect for SES

aSES1 BY SES_1;

aSES2 BY SES_2;

!Shared Environment Effect for SES

cSES1 BY SES_1;

cSES2 BY SES_2;

!Non-Shared Environment Effect for SES

eSES1 BY SES_1;

eSES2 BY SES_2;

!Genetic Effect for Health

aH1 BY H_1;

aH2 BY H_2;
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!Shared Environment Effect for Health

cH1 BY H_1;

cH2 BY H_2;

!Non-Shared Environment Effect for Health

eH1 BY H_1;

eH2 BY H_2;

!Control for Covariates

!Male

H_1 on MALE_1 (sexh); H_2 on MALE_2 (sexh);

SES_1 on MALE_1 (sexs); SES_2 on MALE_2 (sexs);

!Minority Status

H_1 on RACE_1 (raceh); H_2 on RACE_1 (raceh);

SES_1 on RACE_1 (races); SES_2 on RACE_1 (races);

!residual variances

SES_1@0 SES_2@0; !residual variances on SES to zero

H_1@0 H_2@0; !residual variances on H to zero

!BIOMETRIC COMPONENTS

!!SES

aSES1 BY SES_1*.2 (a1); aSES2 BY SES_2*.2 (a1);
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cSES1 BY SES_1*.2 (c1); cSES2 BY SES_2*.2 (c1);

eSES1 BY SES_1*.8 (e1); eSES2 BY SES_2*.8 (e1);

[aSES1@0 cSES1@0 eSES1@0 aSES2@0 cSES2@0 eSES2@0];

!fix latent means to 0

aSES1@1 cSES1@1 eSES1@1 aSES2@1 cSES2@1 eSES2@1; !fix

latent variances to 1

!!Health

aH1 BY H_1*.1 (a2); aH2 BY H_2*.1 (a2);

cH1 BY H_1*.1 (c2); cH2 BY H_2*.1 (c2);

eH1 BY H_1*.8 (e2); eH2 BY H_2*.8 (e2);

[aH1@0 cH1@0 aH2@0 cH2@0 eH1@0 eH2@0]; !fix latent

means to 0

aH1@1 cH1@1 aH2@1 cH2@1 eH1@1 eH2@1; !fix latent

variances to 1

!CORRELATIONS AMONG BIOMETRIC COMPONENTS

!!SES

!Cross-Loadings

aSES1 WITH cSES1-eSES2@0;

aSES2 WITH cSES1-eSES2@0;

cSES1 WITH eSES1-eSES2@0;

cSES2 WITH eSES1-eSES2@0;
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!Environment

cSES1 WITH cSES2@1;!Shared Environment

eSES1 WITH eSES2@0;!Non-Shared Environment

!!Health

!Cross-Loadings

aH1 WITH cH1-cH2@0;

aH2 WITH cH1-cH2@0;

cH1 WITH eH1-eH2@0;

cH2 WITH eH1-eH2@0;

!Environment

cH1 WITH cH2@1; !Shared Environment

eH1 WITH eH2@0; !Non-Shared Environment

!!SES with Health

!Cross-Loadings

aSES1-aSES2 WITH cH1-cH2@0;

cSES1 WITH aH2@0; cSES2 WITH aH1@0;

cSES1-cSES2 WITH aH1-aH2@0;

eSES1-eSES2 WITH aH1-aH2@0;

!A Corr

!aSES1-aSES2 WITH aH1-aH2@0; !No Cor
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aSES1 WITH aH1 (a1a2); aSES2 WITH aH2 (a1a2);

!C Corr

!cSES1-cSES2 WITH cH1-cH2@0;!No Cor

cSES1 WITH cH1 (c1c2); cSES2 WITH cH2 (c1c2);

!E Corr

eSES1-eSES2 WITH eH1-eH2@0; !No Cor

!eSES1 WITH eH1*.5 (e1e2); eSES2 WITH eH2*.5

(e1e2);

! Set Genetic Covariance based on kin group

MODEL R1:

[SES_1 SES_2] (m1); !means can vary by group

[H_1 H_2] (m2); !means can vary by group

aSES1 WITH aSES2@1; aH1 WITH aH2@1;

MODEL R.5:

[SES_1 SES_2] (m1r5); !means can vary by group

[H_1 H_2] (m2r5); !means can vary by group

aSES1 WITH aSES2@0.5; aH1 WITH aH2@0.5;

MODEL R.25:
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[SES_1 SES_2] (m1r25); !means can vary by group

[H_1 H_2] (m2r25); !means can vary by group

aSES1 WITH aSES2@0.25; aH1 WITH aH2@0.25;

MODEL R.125:

[H_1 H_2] (m2r125); !means can vary by group

[SES_1 SES_2] (m1r125); !means can vary by group

aSES1 WITH aSES2@0.125; aH1 WITH aH2@0.125;

! total correlations; allows us to get a confidence interval

NEW (rAsh); !Correlation Attributable to Genetics, using

path tracing

rAsh=a2*a1*a1a2;

rAsh<1;

NEW (rCsh); !Correlation Attributable to Shared

Environment, using path tracing

rCsh=c2*c1*c1c2;

rCsh<1;

OUTPUT: STDyx TECH1 TECH3 TECH4 CINTERVAL;
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