
Correlation Matrices in Cosine Space 

 

By 

Alexandria Ree Hadd 

 

Thesis 

Submitted to the Faculty of the 

Graduate School of Vanderbilt University 

in partial fulfillment of the requirements 

for the degree of 

MASTER OF SCIENCE 

in  

Psychology 

December, 2016 

Nashville, Tennessee 

 

Approved: 

Joseph L. Rodgers, Ph.D. 

Kristopher J. Preacher, Ph.D. 

Andrew J. Tomarken, Ph.D. 

 

 

 

 

 



ii 
 

 

 

 

 

 

 

 

 

 

To Kirsten with timeless love.  



iii 
 

TABLE OF CONTENTS 

 

Page 

DEDICATION.…………………………………………………………………………………... ii 

LIST OF FIGURES.…………………………………………………………………………….. iv 

LIST OF TABLES…………………………………………………………………………….…. v 

INTRODUCTION.………………………………………………………………………………. 1 

 

Chapter 

 

1. The 3x3 Cosine Space of Correlation Matrices……………………………………………… 3 

The Space of Correlation Matrices………………………………………………………. 3 

The 3x3 Correlation Space………………………………………….…………………… 4 

The 3x3 Cosine Space…………………………………………………………………… 6 

 

2. Cosine Spaces for Higher Dimension Correlation Matrices………………………………... 11 

Reproducing the 3x3 Cosine Space with 4x4 Correlation Matrices……………………. 11 

4x4 Cosine Spaces Within the Tetrahedron…………………………………………….. 14 

Banded Cosine Spaces and Those Spaces That Do Not Subset 3x3 Cosine Space…….. 15 

Cosine Space in Higher Dimensions……………………………………………………. 20 

 

3.  Application of the 3x3 Cosine Space to Correlation Matrix Generation…………………... 22 

Methods of Generating Random Correlation Matrices…………………………………. 22 

Demonstration Simulation……………………………………………………………… 23 

Results of Simulation Study……………………………………………………………. 24 

Summary of Simulation Findings………………………………………………………. 29 

 

4. Discussion and Conclusion…………………………………………………………………. 31 

 

 

REFERENCES…………………………………………………………………………………. 33 

 



iv 
 

LIST OF FIGURES 

 

Figure                    Page 

1. The 3x3 correlation space……...……………………………………………………………… 5 

2. The 3x3 cosine space…………………………………………………………………...……... 8 

3. Random sampling from [-1,1]3………………………………………………………………. 10 

4. Transformation of the points in [-1,1]3 to [0,180]3…………………………………….…….. 10 

5. 4x4 correlation matrices with two variables constrained to equality…………………..…….. 12 

6. 4x4 correlation matrices with one variable uncorrelated with other variables.………...……. 13 

7. Subsets of the 4x4 cosine space that are subsets of the regular tetrahedron……….………… 15 

8. 4x4 banded correlation matrices and correlation space……………………………………… 16 

9. 4x4 banded cosine space………………………………………………………………..….… 17 

10. Subsets of the 4x4 cosine space that are not subsets of the tetrahedron…………...……..… 18 

11. 6x6 correlation matrices such that only pairs of items correlate ………………………...… 20 

12. Distribution of correlations across four correlation matrix generation methods (𝑝 = 3)....... 25 

13. Distribution of eigenvalues across four correlation matrix generation methods (𝑝 = 3)....... 26 

14. Distribution of correlations across four correlation matrix generation methods (𝑝 = 6)......  27 

15. Distribution of eigenvalues across four correlation matrix generation methods (𝑝 = 6)....... 28 

 

 

 

 

 



v 
 

LIST OF TABLES 

 

Table                Page 

1. General properties of correlation and cosine spaces for 𝑝𝑥𝑝 correlation matrices………...… 21 

2. The proportion of the hypercube occupied by correlation and cosine spaces……………….. 21 

 

 



1 
 

INTRODUCTION 

 

In the introduction of their article, The Shape of Correlation Matrices, Rousseeuw and 

Molenberghs (1994, p.276) asserted that “the correlation coefficient is one of the most frequently 

used statistical tools.” Correlations and correlation matrices are foundational concepts in all 

disciplines that use statistical analysis, including psychology, genetics, and finance. Diversity in 

the potential applications of the correlation leads to similar diversity in potential interpretations; 

the correlation coefficient can be variously interpreted as a mean, a ratio, a cross product, and 

through several trigonometric functions (Rodgers & Nicewander, 1988). Of particular interest is 

one of the trigonometric interpretations. Specifically, in person space – where 𝑁 individuals 

define the axes of an N-dimensional space, and centered or standardized scores on variable 

vectors are plotted on these axes – the correlation between two variables X1 and X2 can be 

expressed as 

𝑟12 = cos 𝜽𝟏𝟐      (1) 

where 𝜽𝟏𝟐 is the angle between the centered/standardized variable vectors X1 and X2. (Box, 1978, 

documents Fisher’s reliance on this person space in the development of his statistical insights.) 

Rousseeuw and Molenberghs (1994) expanded on the geometric literature for the 

correlation coefficient. The authors demonstrated the three-dimensional closed surface that 

summarizes the space of true 3x3 correlation matrices – the 3x3 correlation space. This space 

provides insight for understanding individual correlation matrices, as well as the relationships 

among the correlations within a correlation matrix.  Using the 3x3 correlation space as a starting 

point, in this thesis I accomplish three things. In Chapter 1, I show how their space can be 

usefully re-portrayed using the cosine formulation of the correlation coefficient – into the so-
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named 3x3 cosine space. This reportrayal carries forward the strengths of the 3x3 correlation 

space for understanding individual correlation matrices, but also provides insight into the 

correlation space itself. In Chapter 2, I discuss how the 3x3 cosine space can provide insight into 

the shape of cosine (and correlation) spaces in higher dimensions. I give particular attention to 

the cosine space of 4x4 correlation matrices as a case study before considering properties of 

higher dimension cosine (and correlation) spaces. Third, I give a practical demonstration of the 

utility of 3x3 cosine space in generating random correlation matrices with a relatively high 

frequency of extreme correlations – that is, correlation matrices near the boundary of the 

correlation/cosine space. 

Throughout the thesis, I refer to the space originally envisioned by Rousseeuw and 

Molenberghs as the correlation space, and the transformation of this space by the cosine function 

as the cosine space. Technically, both spaces are “correlation spaces,” as correlations are cosines 

of angles. I could instead refer to the so-called correlation space as the [-1,1] space, the linear 

axis space, or the R&M space (or any combination of such descriptors of the space), and I could 

refer to the so-called cosine space as the angle space, the [0,180] space, the nonlinear axis space, 

or the transformed space. For ease, I simply refer to these spaces as the correlation spaces and 

cosine spaces respectively for correlation matrices of given dimension. 
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CHAPTER 1 

 

THE 3x3 COSINE SPACE OF CORRELATION MATRICES 

 

The Space of Correlation Matrices 

Correlations among a set of variables (e.g., X1, X2, … Xp) are typically summarized in a 

correlation matrix 𝑹. Let 𝑹 be a square matrix of order 𝑝; the rows and columns of 𝑹 indicate the 

variables being correlated, and the entries 𝑟𝑖𝑗 in 𝑹 are correlation coefficients between pairs of 

variables Xi and Xj with three necessary properties: 

(i)  𝑟𝑖𝑗 = 𝑟𝑗𝑖          (i.e., 𝑹 is symmetric) 

(ii) 𝑟𝑖𝑗 = 1 if 𝑖 = 𝑗     (i.e., the diagonals of 𝑹 are 1)  

(iii)−1 ≤ 𝑟𝑖𝑗 ≤ 1 if 𝑖 ≠ 𝑗        (i.e., the off-diagonals of 𝑹 are correlation coefficients) 

These three properties are necessary for 𝑹 and are simple to check, but they are not sufficient. To 

be a true correlation matrix, 𝑹 must also be positive semidefinite (PSD). As such, we add a 

fourth property to 𝑹 that ensures it is a PSD matrix: 

(iv) 𝜆1, 𝜆2, … 𝜆𝑝 ≥ 0 where 𝜆𝑖, 𝑖 = 1, 2, … , 𝑝 are the eigenvalues of 𝑹.  

This fourth property is equivalently satisfied by ensuring that the determinants of 𝑹 and all 

principle minor submatrices of 𝑹 are nonnegative. (Matrices with all positive 𝜆𝑝 and positive 

determinants for the principle minor submatrices are said to be positive definite, or PD). Matrices 

that satisfy the first three properties are called pseudo-correlation matrices (𝑹∗), with the subset 

of 𝑹∗ also satisfying the fourth property being true correlation matrices (𝑹). Non-PSD pseudo-

correlation matrices cannot occur under typical data circumstances; they may occur through 

pairwise deletion of variables or use of tetrachoric or polychoric correlations (Knol & Berger, 

1991), but matrices constructed from complete, quantitative data must be true correlation 
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matrices. (Note that Rousseeuw and Molenberghs frame the PSD condition in terms of 

determinants of 𝑹∗. This framing suffices for the 3x3 case, and aids in providing the equation for 

the boundary of the correlation space, but I define the PSD condition with eigenvalues of 𝑹∗ to 

facilitate expansion of the PSD condition to higher orders of 𝑝, where calculation of 

determinants of the principle minor submatrices of 𝑹∗ becomes increasingly cumbersome.)  

Because of the symmetry and unit diagonal of 𝑹∗, only the upper-triangular portion of the 

matrix need be represented. A shorthand for 𝑹∗ is obtained by half-vectorization of 𝑹∗ , that is, 

concatenating the rows of the upper-triangular portion of 𝑹∗ to form an ordered 𝑛 = (𝑝(𝑝 −

1))/2-tuple, 𝒓∗, which uniquely identifies the original pseudo-correlation matrix (also referred to 

as the vecp or vech operator; Browne & Shapiro, 1986). Note that 𝑝 is the dimension of 𝑹∗and 𝑛 

is the dimension of the set of 𝑹∗ (i.e., 𝒓∗ ∈ [−1,1]𝑛). For example, the matrix 

𝑹∗ = [

1 −.23 . 04 −.14
−.23 1 . 35 . 05
. 04 . 35 1 −.06
−.14 . 05 −.06 1

] 

can be uniquely identified by the ordered sextuple 𝒓∗ = (−.23, .04, −.14, .35, .05, −.06) ∈

[−1,1]6. This shorthand will prove useful in depicting the subset of 𝑹 within the set of all 𝑹∗ in 

three dimensions. 

 

The 3x3 Correlation Space 

The correlations among three variables, X1, X2, and X3, produce a correlation matrix 𝑹 of 

order 𝑛 = 𝑝 = 3, which can be represented in the ordered triple 𝒓 = (𝑟12, 𝑟13, 𝑟23). The set of all 

possible 𝒓 within the cube [-1,1]3 is depicted in Figure 1, and is the subject of Rousseeuw and 

Molenberghs’ (1994) article. 
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Figure 1. The 3x3 correlation space. The larger point (𝑟12 = .3, 𝑟13 = −.6, 𝑟23 = −.3) lies within 

the correlation space and corresponds to a true correlation matrix 𝑹 . The smaller point (𝑟12 =

−.7, 𝑟13 = .8, 𝑟23 = .8) lies outside the correlation space, and corresponds to a non-PSD pseudo-

correlation matrix 𝑹∗. 

 

The convex shape, described as an elliptical tetrahedron or an elliptope (Chai, 2014) 

meets the edges of the cube at four of the eight corners, and has diagonal lines across the six 

cube faces. Slicing parallel to any face of the cube, the shape evolves from a diagonal line to 

ellipses to a perfect circle, before reversing back to ellipses, then a diagonal line along the 

opposite face from which it started. In the case of 3x3 correlation matrices, the shape of true 

correlation matrices (i.e., the set of all 𝑹) occupies approximately 61.7% of the cube. Practically 

speaking, any 𝒓∗ generated randomly and uniformly from the [-1,1]3 cube has a 61.7% chance of 

corresponding to a true correlation matrix. An 𝒓 closer to the surface of the 3x3 correlation space 

corresponds to an 𝑹 that has closer-to-zero eigenvalues or, alternatively stated, has near-linear 

dependency among the three variables.  

Recently, Waller (2016) used the 3x3 correlation space to demonstrate the geometry of 

fungible correlation matrices. Fungible correlation matrices are 𝑹∗ that, given a pre-specified set 
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of regression coefficients, will produce identical R-squared values for a linear regression model. 

The 3x3 correlation space can be used to visualize the set of all 3x3 𝑹∗ (or 𝑹, if desired) that are 

fungible for a given set of coefficients and R-squared. Such 𝑹∗ form a cross-sectional plane 

across the [-1,1]3 cube. 

 Rousseeuw and Molenberghs (1994) generated Figure 1 by graphing the equation that 

forms the boundary of the shape (Hubert, 1972); this boundary coincides with the set of all 𝑹 

that have at least one 𝜆𝑖 = 0, and where det(𝑹) = 0, which implies that 

𝑟12
2 + 𝑟13

2 + 𝑟23
2 − 2𝑟12𝑟13𝑟23 = 1    (2) 

Although interesting and informative, the elliptical tetrahedron of the R&M correlation 

space in Figure 1 is not geometrically intuitive.  There are advantages to defining a correlation 

space with more immediate familiarity and defined mathematical properties. Below I present 

such a space, first demonstrated by Chai (2014) in a paper that explored methods of sampling 

from R&M space using various distributions. Although there is overlap in the treatment of the 

correlation space presented here and Chai’s, the current emphasis is on the graphical 

demonstration of this new space and development and application of several properties of this 

space and potential insights this space provides for higher dimension spaces. 

 

The 3x3 Cosine Space 

I begin with a comment on graphical presentation, and then present a transformation that 

is advantageous for portraying the correlation space. A useful graphing technique to plot the 

boundary of the correlation space is to plot enough points 𝒓 that satisfy the equation for the 

boundary to visually outline the space. The method employed here involves randomly generating 

two of the correlations (e.g., 𝑟12 and 𝑟13) uniformly (e.g., from the interval [-1,1], for the 
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correlation space) and solving for the third correlation (𝑟23 using Equation (2) to generate a given 

𝒓. Note that, for a given choice of 𝑟12 and 𝑟13, there are two possible 𝑟23 values (Hubert, 1972): 

𝑟23 = 𝑟12𝑟13 + √(1 − 𝑟12
2)(1 − 𝑟13

2) and 𝑟23 = 𝑟12𝑟13 − √(1 − 𝑟12
2)(1 − 𝑟13

2). To generate a 

given 𝒓, I randomly select one 𝑟23 value. 

The graphical technique aside, it is worth reiterating that, at a very basic level, 

correlations are cosines on angles. Just as correlations can be generated from the [-1,1] interval, 

correlations can also be generated as cosines of angles that range from 0 to 180 degrees. (Note 

that a perfect mapping would transform the interval [-1,1] of correlations to the interval [180,0] 

of angles. For ease of reading, I use [0,180] and make graphical adjustments where necessary.) 

Further, the transformation of correlations from the [-1,1] interval to cosines of angles from the 

[0,180] interval is not a linear transformation. In other words, the shape of 3x3 correlation 

matrices in cosine space is not expected to match the shape of correlation matrices in 3x3 

correlation space. 

To portray the cosine space, I developed the following graphical routine, implemented in 

the software system R. Rather than randomly generating two correlations and solving for a third 

to plot a given point 𝒓, I implemented the following algorithm: 

Step 1. Generate two angles, 𝜃12 and 𝜃13, randomly and uniformly from the interval [0, 

180]. 

Step 2. Convert the angles to correlations (𝑟12 and 𝑟13 respectively) and solve for the third 

correlation (𝑟23) using Equation (2) to generate a given 𝒓. 

Step 3. Convert all three correlations back to angles and plot the ordered triple.1 

                                                           
1 It is not necessary to convert from angles to correlations and then back to angles to produce the cosine space. After 

generating 𝜃12 and 𝜃13, the two possible values for 𝜃23 are 𝜃23 = |𝜃12 − 𝜃13| and 𝜃23 = 180 − |𝜃12 + 𝜃13 − 180|. 
To emphasize the relationship between cosine space and correlation space, I convert from angles to correlations and 

back again, and do so again in Chapter 2. 
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When repeated a sufficiently large number of times, the above algorithm generates enough 𝒓 on 

the boundary of the space to produce a visual representation of the 3x3 cosine space. This visual 

representation is shown in Figure 2. Such a graphical technique is useful for portraying complex 

surfaces in 3-dimensional space without explicit graphing of (perhaps intractable) equations, and 

will be utilized similarly in Chapter 2. 

 

 

Figure 2. The 3x3 cosine space. The space occupied by 3x3 correlation matrices in cosine space 

is a regular tetrahedron embedded within a [0,180] cube. 

 

Certain features are immediately apparent from visual inspection of this revised space. 

First, the axes no longer range from -1 to 1, as they now represent increments on angles, and thus 

range from 0 to 180 degrees. Second, the shape of this cosine space is a regular 3-simplex, 

commonly referred to as a tetrahedron. The faces of the tetrahedron are four equilateral triangles, 

and visually the shape looks like a three-sided pyramid with a triangular base. Third, the shape 

exactly matches the one independently described by Chai (2014). 

Using one of several volume formulas for a regular 3-simplex (e.g., see Stein, 1966), it is 

easily confirmed that this space takes up exactly one-third of the [0,180] cube. This result 
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compares to the (approximately) 61.7% of the space occupied by the set of all 𝑹 in the [-1,1]3 

cube. The shape is, however, closely related to the shape of the 3x3 correlation space. The shape 

still meets the surface of the cube at four of the eight corners, and touches each cube face with a 

single diagonal line. The rounded edges of the correlation shape have become lines, and the 

“puffy” appearance of each face has flattened. Slices of the space parallel to any cube face would 

now produce a diagonal line, then rectangles, then eventually a square, before reversing back to 

rectangles, and then a diagonal line along the opposite face. In terms of correlation coefficients 

spaced uniformly from -1 to 1, the cosine space involves stretching the correlation space axes 

nonlinearly, which neutralizes the curvature of the correlation space. As a result, the cosine space 

compresses the interior points of the cube compared to the 3x3 correlation space. Chai (2014) 

presented a similar transformation of the 3x3 correlation space, but used the sine function instead 

of the cosine function, and noted the nonlinear (but one-to-one) mapping from an axis system 

uniformly defined on [-1,1] to one defined uniformly on angles from [0,180].  

Figures 3 and 4 demonstrate in another way the relationship between the 3x3 correlation 

space and the 3x3 cosine space, i.e., the impact of the nonlinear transformation of the axes. In 

Figure 3, points are randomly sampled along [-1,1]3 in a light grey scattercloud and are 

uniformly generated across each of the three axes in dark grey. Once these points are converted 

to their appropriate [0,180]3 counterparts with the arccosine function, the scattercloud clusters in 

the middle of the cube and the dark grey points cluster in the middle of their respective axes. In 

other words, random, uniform sampling in the 3x3 correlation space produces non-uniform 

sampling in the 3x3 cosine space, and vice versa. This sampling consequence helps explain the 

seemingly peculiar reduction (by nearly one half) in the volume of the 3x3 correlation space 
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taken up by PSD correlation matrices in 3x3 cosine space. The same infinite set of 𝒓 occupies 

both spaces, but the set is more densely packed into the middle within the cosine space. 

 

 

Figure 3. Random sampling from [-1,1]3. 

 

Figure 4. Transformation of the points in [-1,1]3 to [0,180]3. Uniform sampling from [-1,1]3 

produces non-uniform sampling from the transformed [0,180]3. 
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CHAPTER 2 

 

COSINE SPACES FOR HIGHER DIMENSION CORRELATION MATRICES 

 

 In Chapter 1, the 3x3 cosine space for correlation matrices – which takes the form of a 

regular tetrahedron – was demonstrated graphically, and properties of the cosine space were 

discussed. In this chapter, I first use graphical methods to demonstrate how higher dimension 

cosine spaces for correlation matrices, when constrained, can be visualized. I discuss properties 

of these constrained spaces with particular emphasis on 4x4 correlation matrices. I then discuss 

some general properties of both correlation and cosine spaces in higher dimensions. 

 This chapter uses a similar graphical technique to the one employed in Chapter 1 to 

visual cosine spaces for correlations. However, rather than generating points randomly across the 

surface of each cosine space, I generate points randomly within the space until the space is 

saturated sufficiently to visualize its shape.  

 

Reproducing the 3x3 Cosine Space with 4x4 Correlation Matrices 

Because we can only render visuals up to three dimensions, I begin by projecting from 

the 4x4 cosine space (which occupies a [0,180]6 hypercube, see Table 1) into the 3x3 cosine 

space.  There are two ways to induce the 3x3 cosine space as a subspace within the 𝑛 = 6 cosine 

space occupied by 𝑹 of order 𝑝 = 4. The first way is to impose perfect correlation between two 

of the four variables in 𝑹. Without loss of generality, the cosine space of 4x4 𝑹 of the form 

specified in Figure 5A will occupy a regular tetrahedron, as in the unrestricted 3x3 cosine space 

(Figure 5B). While 𝒓 generated from Figure 5A pervade the entire regular tetrahedron, it should 

be noted that all 𝑹 constructed in this way will have at least one zero eigenvalue because of the 
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perfect linear dependency between the first and second variables (Figure 5C). Points on the 

surface of the tetrahedron in Figure 5B will have at least one additional zero eigenvalue. 

 

 

A.   [

1
1 1
𝑟1 𝑟1 1
𝑟2 𝑟2 𝑟3 1

]              B. 

 

C.  

Figure 5. 4x4 correlation matrices with two variables constrained to equality, up to linear 

transformation. In (A), the first two variables are perfectly correlated (𝑟21 = 1); this constrains 

the remaining entries in 𝑹, such that only three of the six correlations are unrestricted. (B) 

demonstrates points generated across the cosine space occupied by matrices of the form in (A). 

(C) demonstrates the first (blue), second (green), third (red), and fourth (black) eigenvalues of 

50,000 𝑹 generated using (A). The fourth eigenvalue is always zero for matrices of this 

construction. 

 

 The second way to generate the regular tetrahedron as a subspace within the 6-

dimensional space occupied by 4x4 𝑹 is to allow one variable to be uncorrelated with the 
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remaining three variables (Figure 6B). Without loss of generality, these matrices will be of the 

form in Figure 6A. Unlike matrices of the form in Figure 5A, 4x4 𝑹 constructed by Figure 6A 

can be PSD or strictly PD, but necessarily have at least one eigenvalue of one (Figure 6C). 

 

 

 

A. [

1
𝑟12 1

𝑟13 𝑟23 1
0 0 0 1

]                B.  

C.  

Figure 6. 4x4 correlation matrices with one variable uncorrelated with other variables. In (A), the 

fourth variable is uncorrelated with the other three variables (𝑟41 = 𝑟42 = 𝑟43 = 0), which 

produces the tetrahedron similarly formed in the unrestricted 3x3 cosine space. (B) demonstrates 

points generated across the cosine space occupied by 𝑹 of the form in (A). (C) shows the first 

(blue), second (green), third (red), and fourth (black) eigenvalues of 50,000 𝑹 generated using 

(A). Each 𝑹 has at least one eigenvalue of one, as either the second or third eigenvalue. 

 

Similarly, the regular tetrahedron can be imposed from higher dimension correlation 

matrices by setting all but three variables to be uncorrelated or by constraining some variables to 
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equality such that only three unique variables are present in 𝑹 of order 𝑝. Just as in the 4x4 case, 

these higher dimension 𝑹 will have multiple zero eigenvalues (if 𝑹 is a higher-dimension 

extension of Figure 5A) or multiple one eigenvalues (if 𝑹 is a higher-dimension extension of 

Figure 6A). 

 

4x4 Cosine Spaces Within the Tetrahedron 

In the previous section, I demonstrated that, if a fourth variable is added to the 3x3 𝑹, 

such that this fourth variable is uncorrelated with any of the other three variables, the resulting 

cosine space is exactly the regular tetrahedron observed in the 3x3 cosine space. However, if the 

fourth variable is correlated with the other three variables by magnitudes greater than zero, the 

resulting 3-dimensional cosine space will be a subset of the tetrahedral space. Figure 7 shows 𝒓 

generated across the resulting 3-dimensional cosine spaces when the fourth variable is restrained 

to correlations of 𝑟 = .3, .6, and .9 with the other three variables in assorted combinations. As the 

magnitudes of the correlations in the fourth row of 𝑹 increase, the cosine space for respective set 

of possible 𝑟 reduces. This phenomenon is similar to that observed by Hubert (1972) and Olkin 

(1981) in the range restriction literature: as the magnitudes of correlations 𝑟13 and 𝑟23 increase, 

the potential values for 𝑟12 are necessarily limited. Likewise, we see the same phenomenon when 

inspecting horizontal and vertical cross-sections of the 3x3 cosine space: slices at the extremes of 

the cube produces rectangles with less area than slices towards the center of the cube. Finally, the 

convexity of the produced cosine spaces is preserved in the slices of these higher dimensions, but 

the spaces are no longer polyhedrons; that is, curvature is introduced in these constrained 4x4 

cosine spaces. 
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  𝑟14 = 𝑟24 = 0.3  𝑟14 = 𝑟24 = 0.6  𝑟14 = 𝑟24 = 0.9 

 

𝑟34 = 0.3 

 

 

 

 

𝑟34 = 0.6 

 

 

 

 

𝑟34 = 0.9 

 

 

Figure 7. Subsets of the 4x4 cosine space that are subsets of the regular tetrahedron. Points 

randomly generated across the cosine spaces for 4x4 correlation matrices such that 𝑟14 = 𝑟24 = 

.3, .6, and .9 across the three columns, respectively, and 𝑟34 = .3, .6, and .9 across the three rows, 

respectively. The 3x3 cosine space is superimposed in grey. Axes represent increments on angles 

(in degrees) corresponding to the correlations shown. 

 

Banded Cosine Spaces and Those Spaces That Do Not Subset 3x3 Cosine Space 

The previous section explored subsets of the 4x4 cosine space that were also subsets of 

the 3x3 cosine space. Indeed, the cosine spaces of all 4x4 𝑹 such that a given variable is fixed to 

pre-specified correlations with the other three variables will produce a cosine space, in that 
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particular slice, that is a subset of the 3x3 cosine space. However, not all possible subsets of the 

4x4 cosine space will produce subsets of 3x3 cosine space. A simple example is that of the 4x4 

banded cosine space.  

Banded correlation matrices are 𝑹 such that only consecutive variables are allowed to 

correlate, as in Figure 8A, and all other correlations are fixed to 0. Rousseeuw and Molenberghs 

(1994) studied 4x4 banded correlation matrices because they can be visually portrayed in 3-

dimensional space. The 3x3 correlation space (i.e., the set of all 𝒓) for banded 4x4 correlation 

matrices is shown in Figure 8B. The “puffy” figure when sliced across its length and width 

produces ellipses. The shape touches the top and bottom of the cube directly in the center at a 

single point; a horizontal slice halfway through the cube (where 𝑟32 = 0) produces a square. 

Between the endpoints and the midway square, horizontal slices produce squares with rounded 

edges, with sharper edges observed closer to the center. 

 

 

 

A. [

1
𝑟21 1

0 𝑟32 1
0 0 𝑟43 1

]          B. 

 

 

 

Figure 8. 4x4 banded correlation matrices and correlation space. (A) The form of 4x4 banded 

correlation matrices. (B) The correlation space occupied by 4x4 correlation matrices of the form 

in (A). 
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Similar to their methodology for producing the 3x3 correlation space, Rousseeuw and 

Molenberghs (1994) plotted the boundary of the shape by graphing the equation corresponding 

to a zero determinant for the 4x4 banded correlation matrix: 

(1 − 𝑟21
2 )(1 − 𝑟43

2 ) = 𝑟32
2      (3) 

As in Chapter 1, I departed slightly from Rousseeuw and Molenberghs (1994) by generating 𝑟21 

and 𝑟43 randomly and uniformly from the interval [-1,1] and solving for 𝑟32 using (3) to produce 

points 𝒓 on the surface of the shape shown in Figure 8B. From here, I implemented the algorithm 

described in Chapter 1 to develop the cosine space by generating 𝜃21 and 𝜃43 and solving for the 

𝑟32 using Equation (3). Sampling a great many times from the boundary, I produced the 4x4 

banded cosine space (Figure 9). 

 

 

 

A.                                                                    B. 

 

 

 

Figure 9 4x4 banded cosine space. (A) and (B). The banded 4x4 cosine space viewed from two 

different rotations. 

  

The cosine space for 4x4 banded correlation matrices shares many features in common 

with its counterpart in correlation space. The convex shape touches the top and bottom of cube at 

precisely the center of the cube faces and retains the square at the midway horizontal slice. The 

shape also shares similarities with the 3x3 cosine space tetrahedron (Figure 2); the cosine 
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transformation flattens some of the “puffiness” of the banded space. However, unlike the 3x3 

cosine space, the 4x4 banded cosine space does not produce as tidy a geometric figure, and some 

curvature remains in the shape. Finally, from Figure 9 it is clear that the 4x4 banded cosine space 

is not a subset of the 3x3 cosine space.  

When the non-consecutive variables are fixed to values other than zero, the cosine space 

occupied by such 4x4 𝑹 decreases in volume and increases in curvature as the magnitude of the 

correlations increases (see Figure 10). Again, these spaces are not subsets of the regular 

tetrahedron, but neither are they subsets of the 4x4 banded cosine space. 

 

 

 

A.                                                 B.                                                 C.  

 

 

Figure 10. Subsets of the 4x4 cosine space that are not subsets of the tetrahedron. Points 

randomly generated across the cosine spaces for 4x4 banded 𝑹 with correlations between non-

consecutive variables set to 𝑟 = .3, .6, and .9 for (A), (B), and (C) respectively. These cosine 

spaces are neither subsets of the 3x3 cosine space nor the 4x4 banded cosine space. Axes 

represent increments on angles (in degrees) corresponding to the correlations shown. 

  

When only three variables in the 4x4 correlation matrix are allowed to freely correlate, 

and the correlations with a fourth variables are fixed, the cosine spaces are subsets of the 

tetrahedron in 3x3 cosine space. However, when all four variables are allowed to freely correlate 

in some way – in other words, when the constraints on the 4x4 correlation matrix do not all occur 

in the same row and column – then the resulting space will not be a subset of the 3x3 cosine 

space. This observation extends to higher dimensions: if only three variables are allowed to 
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freely correlate – with the rest of 𝑹 having numerical constraints – then the resulting 3-

dimensional cosine space will be a subset of the regular tetrahedron. If other patterns of fixed 

correlations are used to reduce the space of the 𝑝 𝑥 𝑝 matrix from 𝑛 dimensions to three 

dimensions, then the resulting space does not have to be a subset of the tetrahedron.  

As previously stated, horizontal and vertical slices of the 3x3 cosine space will produce 

rectangles, with the largest-area rectangle (in fact, a square) observed when slicing the figure at 

90 degrees on any axis. However, no slice of the tetrahedron on any axis will produce a 2-

dimensional subset that spans [0,180]2. Practically, this means that no value can be chosen for 

one correlation in a 3x3 𝑹 such that any possible combination of values for the other two 

correlations in 𝑹 will produce a PSD matrix. This phenomenon can occur, however, for spaces 

that are not subsets of the tetrahedron, such as the 4x4 banded cosine space. Figure 9C shows 

that the 4x4 banded cosine space does span [0,180]2 if sliced at 𝜃32 = 90 degrees (i.e., 𝑟32 = 0). 

Conceptually, this makes sense: if 𝑟32 is zero, then there is no dependency between the first two 

variables and the last two variables in the 4x4 banded 𝑹. Similarly, if a 6x6 𝑹 were constrained 

such that 𝑋1 and 𝑋2, 𝑋3 and 𝑋4, 𝑋5 and 𝑋6 were each allowed to pairwise correlate, and all other 

correlations were fixed to 0, the resulting 3-dimensional cosine space would span [0,180]3 

(Figure 11); that is, the three correlations would be independent, and any values for the three 

correlations would produce a PSD 𝑹. 
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A. 

[
 
 
 
 
 
1
𝑟12 1

0 0 1
0 0 𝑟34 1

0 0 0 0 1
0 0 0 0 𝑟56 1 ]

 
 
 
 
 

           B. 

 

Figure 11. (A) A 6x6 𝑹 such that the separate pairs of variables may correlate and all other 

correlations are fixed to 0. (B) The cosine space occupied by all 𝑹 of the form in (A) spans 

[0,180]3; all possible values for 𝑟12, 𝑟34, and 𝑟56 will produce a 6x6 PSD 𝑹. Axes represent 

increments on angles (in degrees) corresponding to the correlations shown. 

 

Cosine Space in Higher Dimensions 

The simplex structure of the 3x3 cosine space may be informative for understanding the 

space of correlation matrices in higher dimensions, although the cosine space in higher 

dimensions is not an n-simplex (Chai, 2014). The set of all 𝑝-dimensional correlation matrices – 

plotted using either correlation or angle units – occupies a convex shape in an 𝑛 = 𝑝(𝑝 − 1)/2-

hypercube (Chai, 2014). Further, from the pattern of vertices exhibited by correlation spaces for 

3x3 and 4x4 correlation matrices, a general pattern for the number of vertices for a 𝑝 𝑥 𝑝 matrix 

can be deduced (Table 1). Note that, if the cosine space in higher dimensions were an n-simplex, 

the number of vertices in n dimension of the space would be 𝑛 + 1, rather than  

2𝑝−1, which, above three dimensions, will be larger than 𝑛 + 1. The ratio between the number of 

vertices of the correlation space and the number of vertices of the hypercube in which it resides 

is 
1

2

(𝑝−1)(𝑝−2)/2
; this relationship results in a quick reduction of the volume of the correlation and 

cosine spaces as the size of the correlation matrix increases (Bohm & Hornik, 2014; Table 2). In 

all dimensions, the percent of the hypercube volume occupied by the cosine space is less than the 

percent occupied by the corresponding correlation space. 
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𝑝 𝑛 # of vertices 

(𝑛-hypercube) 

# of vertices 

(correlation space) 

1 0 1 1 

2 1 2 2 

3 3 8 4 

4 6 64 8 

5 10 1,024 16 

⋮ ⋮ ⋮ ⋮ 
𝑝 𝑛 = 𝑝(𝑝 − 1)/2 2𝑛 2𝑝−1 

Table 1. General properties of correlation (and cosine) spaces for 𝑝 𝑥 𝑝 correlation matrices. 

 

𝑝 Proportion of hypercube 

 Correlation Cosine 

2 1.00000000 1.000000 

3 0.61685027 0.333333 

4 0.18277045 0.033323 

5 0.02200445 0.000845 

6 0.00094952 0.000005 

7 0.00001328 <.000001 

Table 2. The proportion of the hypercube occupied by correlation and cosine spaces. Proportions 

for correlation spaces are reproduced from Bohm and Hornik (2014). Proportions for cosine 

spaces are approximated using rejection sampling in R for 1,000,000 pseudo-correlation matrices 

per matrix size.   

 

 Further, the space of correlation matrices in higher dimensions must have a diagonal 

edge along each hypercube face, corresponding to the degenerate cases of perfect (negative or 

positive) association among variables. Simply put, the face of a hypercube is the potential 

combination of two correlations (say, 𝑟𝑥𝑤 and 𝑟𝑥𝑣) after the other correlations in the matrix have 

been defined as either -1 or 1 (in the case of correlation space), or 180 or 0 (in the case of cosine 

space). Given the specified values of the other correlations, either 𝑟𝑥𝑤 = 𝑟𝑥𝑣 or 𝑟𝑥𝑤 = −𝑟𝑥𝑣, 

depending on the pattern in the correlation matrix, which produces the diagonal line observed in 

the hypercube.   
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CHAPTER 3  

 

APPLICATION OF THE 3X3 COSINE SPACE TO CORRELATION MATRIX 

GENERATION 

 

The tetrahedral shape of the cosine space in three dimensions adds to a rich history of 

geometric interpretations of correlation coefficients and their derivatives (see, e.g., Glass & 

Collins, 1970; Thomas & O’Quigley, 1993; Trosset, 2005). Further, the simple geometric shape 

has advantageous properties for sampling. Specifically, Rocchini & Cignoni (2000) developed an 

algorithm for sampling randomly from a tetrahedron within a cube. Because random, uniform 

sampling across angles in cosine space will produce correlation matrices whose elements tend to 

be more extreme (i.e., a larger proportion of correlations near -1 and 1, and hence minimum 

eigenvalues closer to zero) and less homogenous, sampling from the tetrahedron in 3x3 cosine 

space may be advantageous for methods of generating random correlation matrices. 

 

Methods of Generating Random Correlation Matrices 

 Monte Carlo studies in economics, genetics, and quantitative methods often require the 

generation of a large number of random correlation matrices (Hardin, Garcia, & Golan, 2013). 

Because of the PSD constraint on correlation matrices, the task of generating random 𝑹 is 

nontrivial. The simplest method to implement – the rejection method, which involves generating 

a random 𝑹∗ and “rejecting” it if it is not PSD – quickly becomes infeasible as 𝑝 becomes large 

(Bohm & Hornik, 2014; Numpacharoen & Atsawarungruangkit, 2012). 

 Since the late 1960s, methods for generating random 𝑹 with given eigenvalues (e.g., 

Chalmer, 1975), expected means (Marsaglia & Olkin, 1984), or factor structure (e.g., Tucker, 
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Koopman, & Linn, 1969) have been proposed. Following these early developments, emphasis 

has shifted to the generation of random 𝑹 without specified structure. In effect, these newer 

methods attempt to generate 𝑹 uniformly across the uniform [-1,1] correlation space of order 𝑝. 

 However, these methods can fail to generate correlation matrices that uniformly cover the 

correlation space or the range of correlations: methods may produce homogenous 𝑹 or 𝑹 with 

too many near-zero off-diagonal elements (i.e., matrices with small magnitude correlations). 

Although such generated 𝑹 have properties that suit some research goals, it may be advantageous 

to generate matrices more uniformly across the correlation space – or even with an increased 

density of correlations near -1 and 1. Most recently, generation methods have begun to take 

advantage of the significant advances in computing power of recent decades, allowing 

researchers to generate more extreme and more variable correlation matrices, and provide users 

with more control over the distribution of correlations in generated 𝑹 (e.g., see Numpacharoen & 

Atsawarungruangkit, 2012; Lewandowski, Kurowicka, & Joe, 2009). However, these methods 

can still be computationally inefficient – or worse, produce non-PSD 𝑹∗ on occasional iterations 

due to high dimensionality and numerical instability. To this end, sampling randomly from the 

tetrahedron in 3x3 cosine space can be advantageous because such sampling is fast and does not 

require optimization or other mathematical techniques which may become unstable. 

 

Demonstration Simulation 

To demonstrate how sampling from 3x3 cosine space can be used to increase the 

frequency of extreme correlation matrices in practice, 𝑹 of order 𝑝 = 3 and 𝑝 = 6 were 

explored. To generate matrices of both sizes, four different methods were used: 1) the rejection 

method, which generates 𝑹∗and tests if it is PSD; 2) the rcorrmatrix function in R, based on the 
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generation method in Joe (2006) using partial correlations; 3) the TT’ method, which generates a 

matrix T whose 𝑝 rows are points on the surface of a unit hypersphere of arbitrary dimension; 

and 4) the TT’ method in which some correlations are generated first randomly across the 

tetrahedron in 3x3 cosine space (hereafter referred to as the “cosine method”) using the Rocchini 

and Cignoni (2000) tetrahedron sampling routine. For 𝑝 = 3 (𝑛 =  3), all three off-diagonal 

elements could be generated from one point from 3x3 cosine space. For 𝑝 = 6 (𝑛 = 15), six 

correlations were generated from two independent draws from 3x3 cosine space. The first draw 

determined how the first three variables correlated with each other, and the second draw 

determined both how the last three variables correlated with each other as well as constrained the 

potential values of the remaining nine correlations (those correlations between the first three and 

last three variables). Both the TT’ and cosine methods employed here assumed T to be a square 

matrix. Because the rejection method samples uniformly from the [−1,1]𝑛 hypercube, and keeps 

only those 𝑹∗ which are elements of the correlation space, this generation method should most 

closely sample randomly and uniformly from the correlation space, and thus can serve as a 

control of sorts for the generation methods. For each method of order 𝑝, the eigenvalues and off-

diagonal elements of 10,000 randomly generated 𝑹 were compared. 

 

Results of Simulation Study 

The results for the 𝑝 = 3 condition (Figures 12 and 13) show the distributions of 

correlations and eigenvalues respectively for each of the four generation methods. The cosine 

method and the TT’ method performed similarly, with both methods generating correlations 

more uniformly across the [-1,1] range of correlations than either the rcorrmatrix method or the 

rejection method. The rcorrmatrix method performed similarly to the rejection method, 
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suggesting the rcorrmatrix method samples randomly and uniformly from the 3x3 correlation 

space. Alternatively, the presence of a higher frequency of correlations near -1 and 1 for the 

cosine and TT’ methods indicates non-uniform sampling from the 3x3 correlation space, despite 

the more uniform distribution of correlation coefficients; instead, the cosine and TT’ methods are 

oversampling random 𝑹 with greater linear dependency among the three variables, and hence 

such 𝑹 correspond to 𝒓 nearer to the boundary of the correlation space. 

 

 

Figure 12. Distribution of correlations across the four generation methods for 𝑹 of order 𝑝 = 3. 
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Figure 13. Distributions of the first (red), second (grey), and third (blue) eigenvalues for the four 

generation methods for 𝑹 of order 𝑝 = 3. 

 

The distributions of eigenvalues across the four generation methods supports the findings 

from the distributions of correlations. All methods have modal eigenvalues near two, one, and 

zero for the first, second, and third eigenvalues respectively, with similar patterns of skewness 

across the four methods. However, the cosine and TT’ method produce minimum eigenvalues 

closer to zero with more frequency than the rcorrmatrix and rejection methods. Further, the 

distributions of the first eigenvalue for the TT’ and cosine methods are somewhat more 

leptokurtic than the distributions for the rcorrmatrix and rejection methods, with the TT’ method 

being somewhat more “peaked” near two than the cosine method. 

For 𝑝 = 6, the rejection and rcorrmatrix methods produce similar distributions of 

correlations (Figure 14), as observed for the 𝑝 = 3 condition. Again, this suggests that the 

rcorrmatrix method samples uniformly from the 6x6 correlation space. However, the TT’ method 

does not produce a similar distribution of correlations to the cosine method, as in the 𝑝 = 3 
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condition; instead, the TT’ method produces a distribution of correlations more similar to the 

rejection and rcorrmatrix methods, with somewhat larger tails of the distribution. 

 

 

Figure 14. Distribution of correlations across the four generation methods for 𝑹 of order 𝑝 = 6. 
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Figure 15. Distributions of the eigenvalues for the four generation methods for 𝑹 of order 𝑝 = 6. 
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Summary of Simulation Findings 

 The goal of the Chapter 3 was to demonstrate how the 3x3 cosine space could be applied 

to methods of generating random correlation matrices. Four generation methods, including a new 

method that samples randomly from 3x3 cosine space as an initial step, were used to generate 

random 𝑹, and the distributions of correlations and eigenvalues from these correlation matrix 

samples were compared. Overall, the findings from the study supported the hypotheses. 

Specifically, the cosine method produced correlations closer to the extremes with higher 

frequency (and, hence, produced more variable correlation distributions) than either the rejection 

method or the rcorrmatrix method. In both the 𝑝 = 3 and 𝑝 = 6 conditions, the rcorrmatrix and 

rejection methods performed similarly. 

One seemingly surprising result of the simulation is the behavior of the TT’ method 

across conditions. For 𝑝 = 3, the TT’ method performed similarly to the cosine method, 

although the cosine method is meant to sample more correlations near -1 and 1 (and more 𝑹 near 

the boundary of the correlation space) than the TT’ method. However, for 𝑝 = 6, the TT’ method 

performed comparably to the rcorrmatrix and rejection methods, indicating fewer extreme 𝑹 

were generated than the cosine method. These results may be explained by the increase in the 

number of columns of T from three to six between the two conditions; the TT’ method has been 

shown to produce varying distributions of correlations, with less extreme correlations and more 

homogenous 𝑹 associated with more columns of T (Botha, Shapiro, & Steiger, 1988). For few 

columns of T, the TT’ method may well oversample near the boundary of the correlation space. 

Conversely, further increases in the number of columns of T than were used in this study may 

produce less extreme correlations and 𝑹 than either the rcorrmatrix or rejection methods. 
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Another surprising result is the scarcity of eigenvalues near two for the cosine method for 

𝑝 = 6. While the other three methods have eigenvalues that spread generally across the range of 

potential eigenvalues (for 𝑝 = 6, the range of observed eigenvalues across generation methods 

was approximately [0,4.5]), the cosine method was more likely to produce a larger first 

eigenvalue and smaller second, third, etc. eigenvalues. This phenomenon may be a result of the 

oversampling from extreme correlations; as correlations nearer to -1 and 1 are generated, the 

correlation matrix is more likely to have a near-zero eigenvalue. On average, this smaller last 

eigenvalue may be compensated for by a larger first eigenvalue, which would have the observed 

effect of forcing the distribution of the first eigenvalue further to the right. Another possible 

explanation involves the method by which sampling from the 3x3 cosine space was 

implemented. For 𝑝 = 6, two independent draws from 3x3 cosine space were performed to 

generate more extreme 𝑹. If, however, only one draw from 3x3 cosine space was conducted 

before implementing the rest of the TT’ algorithm, the distribution of correlations and 

eigenvalues may look different. 

Finally, it is worth noting the change in the distribution of correlation coefficients 

between the 𝑝 = 3 and 𝑝 = 6 conditions for all four generation methods – particularly for the 

rejection method. Because this method most closely samples randomly and uniformly from the 

correlation space of a given size, that the distribution of correlations for the rejection method 

changes depending on 𝑝 indicates that the distribution of correlations across the correlation space 

also depends on 𝑝. 
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CHAPTER 4 

 

DISCUSSION AND CONCLUSION 

 

In the present work, I sought to explore the properties of correlation matrices and the 

space they occupy when correlations are interpreted as cosines of angles. Chapter 1 generated 

this cosine space for 3x3 correlation matrices, identified the shape of the cosine space as a 

regular tetrahedron, and discussed properties of the 3x3 cosine space. Chapter 2 expanded on the 

findings from Chapter 1 by first investigating 4x4 cosine spaces before expanding the scope of 

interest to higher dimension correlation matrices. Finally, Chapter 3 demonstrated how the 3x3 

cosine space can be used to randomly generate correlation matrices with more extreme 

correlation coefficients – and hence more linear dependency – than other generation methods. 

There are several limitations to the current research. First, and perhaps most obvious, is 

the lack of a more complete understanding of how correlation and cosine spaces generalize 

beyond three dimensions. While some aspects of these spaces are known – for instance, the 

number of dimensions in which they exist, the number of vertices of the space, and certain 

constraints that project higher dimension spaces into subsets of known spaces (i.e., the 3x3 

cosine space) – there are many aspects of the higher dimension cosine spaces still left to 

discover. For example, although the cosine transformation linearizes the curvature of the 3x3 

correlation space, the subsets of 4x4 cosine space shown in Figures 7-10 all have varying degrees 

of curvature. Hence, it is unclear if cosine spaces in higher dimensions are flat-sided polytopes, 

or some other convex shapes with curved faces and edges. Future research may focus on such 

correlation and cosine space generalizations.  
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Relatedly, another limitation of the current project is that random sampling from cosine 

space is practical only in three dimensions. This is a limitation of both the sampling method 

(which requires a tetrahedron with known vertices) and of the knowledge of the general form of 

cosine spaces. Presently, to capitalize on the greater frequency of extreme correlation matrices in 

cosine space, sampling from 3x3 cosine space must be integrated with at least one other 

generation method. Depending on the choice of method, or the number of independent draws 

from 3x3 cosine space, the researcher may end up with markedly different structures for their 

generated correlation matrices. An ideal solution to this issue would be a known generalization 

of the cosine space as well as an efficient algorithm to sample from such a space. A more 

practical remedy would be to combine the resulting samples from several different generation 

methods until the researcher achieves the desired distribution of correlations or eigenvalues. 

Further research into efficient methods of generating correlation matrices across cosine space, or 

near the boundary of the correlation space, would benefit researchers in many fields, such as 

finance, where correlation matrices with high redundancy and near-zero eigenvalues are the 

norm (Higham, 2002). 

As a final note, future work should be done investigating how strategic cross-sections of 

higher dimensions project into 2- or 3-dimensions. Such work may shed light on the general 

form of cosine spaces in higher dimensions, but the intermediate reward is deeper understanding 

into how correlations in a given correlation matrix are interdependent. Such graphical 

demonstrations as presented in Chapter 2 may help the novice statistical student understand 

concepts such as linear dependence, restriction of range, and eigenvalues using a geometric 

rather than an algebraic approach. These topics can be abstruse – but fascinating – to even those 

with statistical predilections.  
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