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CHAPTER I

INTRODUCTION

1.1 Overview

This work concentrates on the properties of the neutron-rich nuclei in the A ∼ 100 mass

region. The results are obtained by solving the axially symmetric Hartree-Fock-Bogoliubov

equations in coordinate space on the two-dimensional (2D) lattice utilizing the basis-spline

expansion method.

The introduction section of Chapter I contains a brief description of the physics of

neutron-rich nuclei and its role in the formation of the complete nuclear structure theory.

In the same chapter we review the basic modern theoretical methods of description of the

nuclear many-body problem.

In Chapter II the formal structure of the free Nucleon-Nucleon interaction is derived

and its properties are compared to the effective interaction inside the nuclear medium. The

necessity of using the phenomenological interactions (Skyrme SLy4) instead of the effective

ones obtained by solving the Bethe-Goldstone equation is explained as well.

A detailed derivation and description of the Hartree-Fock-Bogoliubov equations is given

in Chapter III. The method of solution of the HFB problem in coordinate-space in axial

symmetry on the 2D lattice using the Basis-Splines is described. The new method of solution

of the HFB equations as the decoupled set of equations is also presented.

The parallel implementation of the HFB code using Message Passing Interface (MPI) is

given in Chapter IV.

Finally, in Chapter V we describe results obtained for the two neutron-rich chains of

104−116
36 Kr and 102−122

40 Zr isotopes. In studies of the Zr isotopes a comparison with the calcu-

lations of Stoitsov et al. of separation energies, deformations, rms-radii, pairing gaps and

neutron densities is made. The studies of the rate of convergence of the HFB observables

is also included in this Chapter. The calculations of the Kr isotope chain reveal the defor-

mation change similar as in the case of the Zirconium isotopes. The calculations for the

Kr isotopes confirmed also that the mass region of A ∼ is the area of competition between

1



various coexisting nuclear shapes.

The main conclusion ends this thesis as the Chapter VI.
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1.2 Nuclear landscape including neutron-rich nuclei

In nature there are 92 stable elements and about 300 stable isotopes [1]. About 2700

unstable isotopes can be currently obtained experimentally, all of which are radioactive and

decay by capture or emission of electrons, positrons, or alpha particles, or by undergoing

spontaneous fission.

It is very common to plot all known nuclides with the number of neutrons on the x-

axis and the number of protons of the y-axis to obtain the so-called “nuclear landscape”

or “valley of stability”. On the chart of nuclides (Fig. 1) there are depicted nuclei which

have been observed experimentally. The stable nuclei in the middle of the picture are

given by the black squares. Below and above of it (colored squares) we can find unstable

isotopes. The red lines show the magic numbers. For the light nuclei the stability line is

rather straight(N=Z). With increasing mass number the number of neutrons needs to be

larger than protons in order to balance the repulsive Coulomb force between protons. The

radioactive nuclei can decay via (red squares) beta plus process, (blue squares) beta minus

process, (yellow squares) alpha decay, and (green squares ) spontaneous fission.

By adding nucleons to a nucleus we can reach the so-called “drip line”, beyond which

the nuclei are unstable against nucleon emission (neutron emission for the neutron-dripline,

proton emission in case of the proton-dripline). The name drip-line originates from the

analogy of water dripping from a leaky faucet to a full cup. One drop above the limit can

cause water to spill over or drip out of the cup. Similarly, if too many neutrons or protons

are added to the nucleus, it will decay to the more stable one by emitting nucleons.

The experimental data up to today are only available for the nuclei relatively close to

the stability line. For many others even if they can be observed not even basic properties

such as mass, shape, half-life and the lowest excited states are known. The problem lies in

the experimental difficulties of obtaining and measuring the properties of short lived nuclear

systems.

The nuclear landscape (Fig. 1) shows only nuclei which have been obtained experimen-

tally. The theoretical calculations can go beyond that, predicting the existence of thousands

exotic radioactive nuclei (Fig. 2). This unstable area indicated in green in Fig. (2) is called

the “Terra Incognita”, meaning in Latin “unexplored land”.

3



Figure 1: The nuclear landscape. Shown are isotopes obtained experimentally. Figure by
Claes Fahlander, Nuclear Structure Group from Lund University, Sweden.

This work addresses the properties of the neutron-rich nuclei. An exploration of nu-

clei with large neutron excess is not only motivated by predicting the neutron-dripline.

Researching such nuclei is governed, among other factors, by fundamental goal of nuclear

structure physics, which is to predict the form of the effective nucleon-nucleon interaction.

The effective nucleon-nucleon (N-N) interaction (inside the nucleus) is radically different

from the free N-N interaction, and in particular depends on the neutron and proton densi-

ties (see section (2.2)). At present the precise analytical form of the nuclear Hamiltonian

is not known - it can only be approximated. There is a hope that probing nuclei under

extreme conditions will enable to achieve this goal.

The physics of neutron-rich nuclei is expected to possess radically new features, e.g. the

strong density dependence of the effective interaction between the nucleons may lead to

4



Figure 2: Nuclear landscape including the nuclei predicted theoretically (“Terra Incognita”-
green color ). Shown are also the many-body nuclear structure theories as a function of the
mass number A and the r-process path. The r-process path in the NZ-plane connects the
maximum-abundance isotopes of all the isotopic chains. Figure is From [2].

radically different nuclear symmetries and excitations.

One of the predicted new features is the change in the single-particle energy levels,

which will be shifted and re-ordered as the dripline is reached. The change will manifest

itself as the breakdown of traditional shell gaps and magicity (Fig. 3) (e.g numbers 50 and

82). These shell gaps are associated with magic numbers, which correspond to particularly

stable nuclei. The main reason for this change is the reduction in the spin-orbit interaction

strength in nuclei with the large neutron excess. Another feature of the changed structure

of the single-particle spectrum of the neutron-rich nuclei is the proximity of the neutron

Fermi level to the continuum states (Fig. 4).

One of the important feature of the neutron rich nuclei is the weak binding of the outer

nucleons, which gives rise to the very different nuclear density distributions and sizes com-

pared to the stable nuclei. In certain neutron-rich light nuclei, the wave function describing

5



Figure 3: Left: Spherical shell structure characteristic of stable nuclei. Right: Neutron
shell structure predicted for neutron-rich nuclei shows the quenching of the magic gaps at
N=82 and N=126 (from J. Dobaczewski et al., PRC53, 2809 (1996)). In the inset the red
squares represent the experimentally deduced r-process solar abundances. The theoretical
abundances are marked by green (incorporates the shell structure similar to the stable
nuclei) and blue (incorporates the shell structure with the quenched magic gaps). It is seen
that the calculations, which incorporate the shell structure characteristic for the neutron-
rich nuclei greatly improve the agreement with the experimental solar abundances (from
Pfeiffer et al. Z.Phys. A357, 235 (1997)).

the quantum state of the last neutron or neutrons, extends to large distances, well outside

the nuclear core. These last few neutrons spend most of their time far from the normal

density core of the nucleus and form a ”halo” [3]. In heavier nuclei a related phenomenon

is the large spatial extension of the neutron density compared to the proton density, which

shows up as the so-called “neutron-skin”. Its formation has some intriguing consequences;

the outer neutron skin would represent effectively a new form of nuclear matter, which in

its purest state is only found in neutron stars. The formation of a skin opens up also the

possibility of new modes of collective motion, exhibited as the oscillations of the skin against

the core, e.g. the “scissors” vibrational mode [4].

6



Figure 4: The potential wells (neutrons+protons) for the stable nucleus (left) and neutron-
rich system (right) .

Figure 5: Four different possibilities of forming the Cooper-pairs in the nucleus.

Another phenomenon which occurs in nuclei is the analog of superconductivity in solid

state physics, where a total of four classes of correlated pairs can form (Fig. 5), each of

which involves an enhanced (attractive) interaction. The phenomenon of superconductivity

is very well known in solid state physics and stems from the interaction between correlated

“Cooper” pairs of electrons of opposite spin moving in opposite directions within an ionic

lattice structure. In the heavier nuclei only the neutron-neutron and proton-proton correla-

tions are important due to the different Fermi levels [5], unlike in case of the N ≈ Z nuclei

where the Fermi levels are almost the same (Fig. 4).

The detailed understanding of the structure of exotic nuclei is intimately connected

to astrophysics, since the nucleosynthesis - which usually happens inside massive stars -

7



Figure 6: Estimates of the intensity of radioactive beams in ions/s that will be available at
RIA. From [2].

is typically taking place in regions of extreme neutron to proton ratios. The isotopes of

elements beyond Fe are formed in the neutron-capture process inside the type II supernovae,

which eject a rich flux of neutrons during their core collapse process [6]. The two main n-

capture processes for astrophysical nucleosynthesis are called the slow (s) and (r) rapid

n-capture process. In the s-process, the time τn between two successive captures of the

neutrons is much longer than the mean beta-decay lifetime τβ, where the opposite holds

for the r-process (τn << τβ) . The r-process path in the NZ-plane (Fig. 3) connects the

maximum-abundance isotopes of all the isotopic chains. During the core collapse, when the

intense neutron flux ends, a nucleus on the r-process path will beta decay back up to the

valley of stability and produce one of the stable nuclei. The determination of the r-process

path relies on the nuclear mass models, which can provide the separation energies Sn for

the neutron-rich nuclei. Thus, the properties of very neutron-rich nuclei are linked to the

8



r-process component of the solar system abundances of heavy elements (inset of Fig. 3).

These intriguing predictions can only be tested by experiments on the most neutron-rich

nuclei. A major thrust in nuclear science is physics associated with the rare isotope beams,

which address basic questions of nuclear structure, nuclear astrophysics, and fundamental

interaction physics. Intense beams of heavier neutron-rich nuclei will provide an enormous

boost to the studies of properties of exotic nuclei. Among many existing rare isotopes

research laboratories in the world are CERN ISOLDE facility [7], TRIUMF (Vancouver)

[8], NSCL at Michigan State University [9], ATLAS at the Argonne National Laboratory

[10], HRIBF at Oak Ridge National Laboratory [11]. There are also plans to build modern

large-scale facilities in Japan(RIKEN[12]), Europe(GSI[13]), and in USA(RIA[14]). RIA is

a bold new facility concept, whose capabilities will far exceed those of any other facility

known so far. Heavy ion beams of more than 400 MeV/nucleon will be available (Fig. 6).

1.3 Modern theoretical methods of description of the nuclear many-body problem

The properties of all existing and theoretically predicted nuclei can be calculated based

on various nuclear many-body theoretical frameworks. This is certainly a triumph of the

theoretical many-body nuclear science. Yet, still a lot needs to be done to achieve a complete

description of properties of the nuclear systems. In Fig. (2) the nuclear many-body theories

as the function of the mass number are shown. The area up to the mass number A ≈ 10

can be described by the family of methods called Ab initio ( Latin -“from first principles”)

methods. Currently, the Ab Initio methods unfortunately cannot be extended to describe

systems heavier than A ≈ 10. Therefore scientists utilize the shell-model methods for A >

10. After the mass region of A > 60, the shell model needs to be substituted by the density

functional theories based on the self-consistent mean-field. The Ab initio methods and the

Shell-Model can in principle be extended to a heavier regimes if more powerful computers

and algorithms are available in the future. The density-functional theory though, works

better for the relatively large mass numbers, where the concept of the average mean-field

is better justified. The classification of nuclear many-body methods can be also done from

the point of view of the NN nuclear interaction, from which the many-body Hamiltonian

is constructed. While the Ab Initio methods can use both the free NN interaction or

9



effective interaction as the input, the Shell Model and density functional theories both rely

on effective interactions (Fig. 7). In the next subsection we review the latest research for

the Ab Initio and Non Ab Initio methods.

Figure 7: Classification of the many-body theories according to the type of interaction. Fig-
ure by Witold Nazarewicz, ECT* Doctoral Training Programme, Trento, Italy, “Structure
of Heavy Nuclei”, July 14-18, 2003.

1.3.1 Ab Initio methods

Ideally, one would like to calculate properties of the A-nucleon system using the free-

space NN interaction fitted to the properties of NN scattering. Recently, many modern N-N

10



potentials have been developed, based on meson exchange theories, which fit all available

N-N scattering data and properties of the deuteron (sec: 2.1). Originally, the family of the

“Ab Initio” methods used as input the free NN interaction to calculate the properties of

the nuclei. The classification with respect to the type of the NN interaction is based on the

criterion, whether to obtain the effective interaction from the bare NN interactions a fit to

the properties of known nuclei was made. If this is so, then the method cannot be called

Ab Initio as the calculations are not carried from first principles.

No Core Shell-Model

The No Core Shell-Model Method (NCSM), is based on the concept of the independent

particle motion, which is very well known from atomic physics. Similarly, a nucleon in the

nucleus moves in the average field (mean-field) generated by the other nucleons. The atomic

nucleus, in the mean-field description is assumed to possess a shell-structure by analogy to

the electrons in the atom. This is indeed the case and can be observed experimentally by

looking at the neutron separation energies [15] and binding energies, which show preferred

magic numbers [16]. The independent-particle shell-model was first proposed by Goeppert-

Mayer and Haxel Jensen, and Suess to explain the magic numbers in nuclei [17].

In the NCSM there is no assumption of an inner core [18, 19, 20, 21]. All of the nucleons

are treated as active particles. The calculations are performed in the harmonic oscillator

basis and use the bare interaction as input. The use of the bare interaction causes too slow

convergence [22], therefore alternative faster methods need to be used. In order to overcome

these difficulties, Navratil et al. [23, 24] introduced an effective interaction which can be

derived in a systematic way from the bare NN and 3N forces. The authors start from the

one- and two-body Hamiltonian for the A-nucleon system [20]

H =
A∑

i=1

p2
i

2m
+

A∑

i<j

Vij, (1)

where m is the nucleon mass and Vij is the nucleon-nucleon interaction, which is modified by

adding and substracting the center-of-mass harmonic oscillator potential 1
2
AmΩ2R2, R =

1/A
∑A

i=1 ri. The modified Hamiltonian, depending on the harmonic-oscillator frequency Ω

11



is alternatively written as

HΩ
A =

A∑

i=1

hi +
A∑

i<j

Vij =
A∑

i=1

[
p2

i

2m
+

1

2
mΩ2r2

i

]
+

A∑

i<j

[
Vij − mΩ2

2A
(ri − rj)

2

]
, (2)

where Vij is the sum of two-body nuclear and Coulomb interaction dependent on the intrinsic

coordinates. Since solving the many-body problem in finite HO space using the free NN

interaction will cause pathological results, Navratil et al. [23] following Da Providencia and

Shakin [25], derived the model-space dependent effective Hamiltonian

H = e−SHΩ
Ae

S, (3)

where S =
∑A

i<j Sij is a two-body, anti-Hermitian operator which needs to be found. The

transformed Hamiltonian H can be expanded in terms of up to A-body clusters H = H(1) +

H(2) +H(3) . . ., where one- and two body terms are equal to H(1) =
∑A

i=1 hi, H(2) =
∑A

i<j Ṽij,

with

Ṽ12 = e−S12(h1 + h2 + V12)e
S12 − (h1 + h2). (4)

It is possible to determine the transformation operator S12 from the decoupling condition

between the model space P and Q space on the two cluster level using the projectors P and

Q with P+Q=1 requiring

Q2e
−S12(h1 + h2 + V12)e

S12P2 = 0. (5)

The resulting two-body effective interaction Ṽ12 depends on A, on the HO frequency Ω,

and on Nmax, the maximum many-body HO excitation energy [23]. It also follows that

Ṽ12 → V12 for Nmax → ∞. The approximation made by Navratil et al. [23] is to neglect

higher than the two-body clusters in the unitary transformed Hamiltonian expansion, yet

the method can generalized to include higher than two-body clusters; e.g. incorporating the

three body clusters leads to the inclusion of the three-body interaction [26].

It should be stressed that although the interaction Ṽ12 is called effective, there is no fit

involved to the properties of nuclei, which is often the case in the process of obtaining in

medium effective interactions. In that sense the NCSM can be called an “Ab Initio” method.

The NCSM calculations are limited; the heaviest calculated system so far is 12C, where

authors calculated the ground states and excited states by extracting the effective interaction
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from the “CD-Bonn” and the “Argonne-v18” potentials [23]. The NCSM calculations are

computationally very demanding, the matrix size for the 12C reached 6488004 [23]. In 2003,

Navratil et al. [26] incorporated the three-body force on the three cluster level and extended

the calculations up to 13C. A hope to extend the NSCM calculations for heavier systems

relies on faster parallel computers and developments in computer hardware and algorithms

in the future [22].

Green’s Function Monte Carlo method

The Green’s Function Monte Carlo method (GFMC) originates from the Variational

Monte Carlo (VMC) method developed by Pandharipande and collaborators in 1981 [27].

In the VMC method the many-body ground state energy is obtained by varying the trial

many-body wave-function ΦV

E =
〈ΦV |H|ΦV 〉
〈ΦV |ΦV 〉 , (6)

where H is the many body Hamiltonian with realistic two- and three body interactions,

e.g. the two-body Argonne v18 and three-body Illinois interaction IL2 [28]. The Metropolis

Monte Carlo integration is used to evaluate 〈ΦV |H|ΦV 〉. The variational function ΦV is a

very sophisticated antisymmetric vector in the spin-isospin space for the nucleus of interest.

Each component is a complex valued function of the positions of all A nucleons [22]. There

is an enormous number of components in the many-body wave-function ΦV , e.g. 3H has the

max. 24 spin-isospin states

(pnn npn nnp)⊗ (↑↑↑ ↑↑↓ ↑↓↑ ↑↓↓ ↓↑↑ ↓↑↓ ↓↓↑ ↓↓↓). (7)

The total number of components can be further reduced by using symmetries and isospin

conservation, but still we have 16, 160, 1792, 21 504, and 267 168 components for 4He, 6Li,

8Be, 10B and 12C respectively [22].

The GFMC is a more accurate method [29] and uses as the starting point the VMC

trial wave function ΦV [28]. It is a stochastic method that systematically improves on ΦV

by projecting out the lowest-energy eigenstate from ΦV using the evolution operator with

imaginary time τ = it

Φ0 = lim
τ→∞ exp[−(H − E0)τ ]ΦV . (8)
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In practice the evolution operator is very difficult to calculate. Therefore, the short-time

Green’s function for the small time step ∆τ = τ/n is used instead [29, 22]

Φ0 = {exp[−(H − E0)∆τ ]}nΦV = GnΦV . (9)

In coordinate space this results in a multidimensional integral over 3An (typically more

than 100,000) dimensions, which is done by Monte Carlo . Because of the rapid growth

of the number of spin-isospin components of the trial wave-function ΦV , the calculations

are feasible up to only A=10 [22]. These requires ≈ 10, 000 processor hours on modern

massively parallel computers, or ≈ 1016 floating point operations, for a single state [22].

Coupled Cluster Expansion method

The Coupled Cluster Expansion Method (CCE) was proposed by Coester and Kummel

in 1958-1960 [30, 31, 32] for the description of correlations in finite nuclei. In 1978 Zabolitzky

et al. [33] applied this method to 40Ca. The method is also very well known in computational

quantum chemistry [32]. In 2000, Michaila and Heisenberg[34] applied the CCE formalism

to the description of the spherical 16O nucleus using the bare NN interaction. Instead of

using the free NN interaction, Dean et al. [32] calculated the properties of 4He and 16O

using the renormalized (in terms of the G-matrix, see sec: 2.2) two-body interaction derived

from the free “Idaho-A” interaction [35].

In the CCE method the correlated many-body ground state |0̃〉 is postulated as the

expansion in terms of the n-particle n-hole (np-nh) creation and destruction operators acting

on the vacuum |0〉( n-particle Slater determinant) [34]

|0̃〉 = exp (T )|0〉, (10)

where

T = T1 + T2 + . . .+ TA (11)

is the cluster correlation operator i.e. [32]

T1 =
∑

i<ef

∑
a>ef

tai a
†
aai︸ ︷︷ ︸

1p−1h

, (12)

T2 =
∑

i,j<ef

∑

ab>ef

tab
ij a

†
aa
†
bajai︸ ︷︷ ︸

2p−2h

, (13)
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and higher order terms for T3 to TA (ef is the Fermi level). Coupled-cluster theory can

be systematically improved by increasing the number of Ti operators one computes. In the

present work of Dean et al. [32] one truncates the expansion at the 2p−2h level (two-cluster

level ) . The expectation value 〈A〉 of any operator A in the ground state |0̃〉 is equal to

〈A〉 = 〈0| exp(−T )A exp(T )|0〉, (14)

and the correlation amplitudes tai , t
ab
ij . . . are determined by solving the set of coupled non-

linear equations [22]

0 = 〈0| exp (−T )H exp (T )O†n|0〉, n ≤ A, (15)

where O†n = {1, a†aai, a
†
aa
†
bajai, . . .}. The CCE method is computationally very demanding.

The authors of Ref. [32] make use of massively parallel computers, which can provide also

a large amount of memory. In the future Dean, et al. plan to include 3p − 3h amplitudes,

incorporate the three-body interaction, and calculate properties of heavier systems.

1.3.2 Non Ab Initio methods

This section describes the standard Shell-model approach, which is one example of the

Non Ab Initio methods. In section (1.3.2) we describe another Non Ab Initio method,

namely the Hartree-Fock and Hartree-Fock-Bogoliubov theories - members of the family of

mean-field and density functional theories.

Large scale shell-model calculations

The standard Shell Model calculations, in contrast to the NCSM, start from the assump-

tion of an inert core ( LS closed shell). It means that the magic number is associated with

the filling of the orbits for a given value of the oscillator major quantum number N0 = 2n+l.

For example, we have the following shells p(N0=1), sd (N0=2), pf (N0=3) and so on (Fig.

8). The closed shell configuration can be described by a single Slater determinant, using

the Hartree-Fock method. For example, for 24
12Mg we close the p-shell (16O core) and use as

the valence space the 1d3/2, 1d5/2, 2s1/2 orbitals (Fig. 8). With such a choice of the core the

energy is relative to 16O. The choice of the inert core is successful if calculations describe

observed energy levels and transitions for the nuclei covered by the model space. Even the
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Figure 8: Single-particle energy spectrum of the nucleus with the spherical harmonic oscil-
lator potential and the spin-orbit term. Figure is from [17] .

most successful model will encounter the states attributed to the configuration outside the

model space the so-called intruder states. The intruder states start at the excitation energy

which is typical of the first excited state in the closed-shell nuclei. They are can be fully

incorporated by increasing the size of the model space. However, increasing the size of the

model space makes the calculations more time consuming ,as the computation time grows

exponentially.

The starting point for the shell model Hamiltonians is the renormalized G-matrix (Eq.

56 ) based upon modern free NN interactions [36]. For the assumed closed core, Brückner’s

G-matrix theory is used to obtain a set of Two Body Matrix Elements (TBME) for the
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chosen model space. During the calculations of the TBME, a fit to the properties of known

nuclei is involved. In that sense, the standard Shell-Model method cannot be classified as an

Ab Initio method [37]. The G-matrix approach to the nuclear interactions relies upon the

use of the harmonic-oscillator basis even in calculations for nuclei close to the dripline [36].

For nuclei far away from the valley of stability, the continuum rather than the oscillator

basis should be considered [37].

The modern shell model codes can now be routinely applied up to the lower pf-shell

(40Ca is the core) nuclei; calculations are limited by the memory requirements during the

the standard diagonalization process [38, 39].

The reach of the shell-model calculations was extended by the use of the Monte Carlo

techniques (large multidimensional integration instead of diagonalization) [40, 41, 42, 43].

Calculations over the entire region of the pf-shell are now possible. In Ref. [41] the authors

calculate various properties of nuclei from the mass region A=64-76. In particular, ground

state properties, thermal and rotational pairing properties for N=Z nuclei, Gamow-Teller

strengths and distributions e.g. 58,60,62,64Ni, γ-Soft nuclei e.g. 124Xe, ββ decay in 76Ge.

As stressed in Ref. [41], multi-h̄ω (more than one single oscillator shell) Shell Model

Monte Carlo calculations are required to properly describe the properties of the neutron-

rich nuclei. For example, the structure of light neutron-rich nuclei in the sd-shell requires

inclusion of the fp-shell orbitals for the proper description (so-called sdpf-shell, see the

calculations of the neutron-rich 32Mg and 46Ar). Multi-h̄ω calculations require increased

memory and computational cycles [41].

Nonrelativistic self-consistent mean-field

The many body Hamiltonian (Eq. 16) depends approximately on at least 3A coordinates,

where A is the mass number [44]

H =
A∑

i=1

−h̄2

2m
∇2

i +
1

2

Z∑

ij

V
(2)Coul
ij +

1

2

A∑

ij

V
(2)Nucl
ij +

1

6

A∑

ijk

V
(3)Nucl
ijk . (16)

It consists of the kinetic energy operator for the nucleons, two-body Coulomb interaction

between protons, and the two-body and three-body strong nuclear interactions . Generally,

one has to solve at least A coupled second order partial differential equations. This is
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indeed possible with the aid of modern supercomputers and doesn’t pose a problem. The

real difficulty arises in calculating the observables where one would have to calculate at least

3A dimensional integrals, which is highly impractical.

Figure 9: Illustration of the Pauli exclusion principle in the nucleus.

The remedy to this problem is a very well known single-particle description of the many-

body system, where a given particle moves in the average “mean-field” generated by the

rest of (A-1) particles. The mean-field description of the nucleus assumes that independent

nucleons move in almost unperturbed single particle orbits [46](p.36). Such an assumption

is valid under the condition that collisions among the nucleons can be neglected and replaced

by the collisions with the wall of the mean-field . This can be qualitatively explained by

considering the Pauli exclusion principle for the nucleons inside the nucleus (Fig. 9). The

scattering of nucleons to a final state below the Fermi level is forbidden by the Pauli exclusion

principle as these states are already occupied. The Heisenberg uncertainty principle between

energy and time ∆E ·∆t ≥ h̄
2

allows the non energy-conserving scatterings to unoccupied

states above the Fermi level for a short period of time. In first approximation, the scattering
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Figure 10: Shown is the pair correlation function for a gas of non-interacting spin-1/2
fermions as a function of the dimensionless distance x = kF · r. The Fermi momentum in
nuclear matter is kF = 1.3 fm−1 . Figure is from [45].

above the Fermi level at non-relativistic energies can be safely neglected. We can draw a

similar conclusion by plotting the pair correlation function for a gas of non-interacting spin-

1/2 fermions with the same spin orientation versus the relative distance r (Fig. 10). As

shown in the plot, the fermions have a tendency to repel each other at small distances due

to the “Pauli correlations”. The pair correlation probability vanishes at distance r = 0 and

is strongly suppressed up to distances of about r0 = 2 fm. As a result, the average distance

between nucleons in a nucleus is about 2.4 fm. On the other hand, at such distances the

N-N interaction between nucleons becomes weak (Fig. 12), thus the interaction between

nucleons inside nuclear medium is effectively quenched by the exclusion principle. Altough

Fig. 10 is for a free non-interacting fermion gas, similar results can be obtained for an

interacting Fermi gas and for nucleons in the shell model [47](p.248-252).

On the experimental side, the scattering experiments involving incident neutrons and

protons [15](p.139) allow also to deduce the mean free path of nucleons. It turns out that

the average distance between collisions among the nucleons is comparable with the size of

the nucleus. The Pauli exclusion principle, relatively long mean free path for nucleons, and
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consequently weak interaction at such distances attribute jointly to the smoothly varying

average potential, which is felt by the individual nucleons.

The assumption of the mean-field description greatly simplifies the calculations. The

mean-field potential can be obtained from the Hartree-Fock (HF) theory [46, 44, 48] by

solving self-consistently the HF equations

{−h̄2

2m
∇2 + ΓH(r, ρ(r))

}
φHF

n (r) +
∫

ΓEx (r, ρ(r, r′))φHF
n (r′)dr′

︸ ︷︷ ︸
hHF (r)φHF

n (r)

= EHF
n φHF

n (r). (17)

In Eq. (17) the functions φHF
n are the single-particle wavefunctions, EHF

n stands for the

single-particle energies, and potentials ΓH and ΓEx are the one-body mean-field (Fock term)

and the exchange terms respectively, extracted from the two-body V (2) and three-body V (3)

nuclear interactions. As we can see the mean-field potential depends on the density and

density matrix

ρ(r) =
F∑

j=1

φ∗j(r)φj(r), (18)

ρ(r, r′) =
F∑

j=1

φ∗j(r)φj(r
′), (19)

which is what makes Eq. (17) nonlinear in the wavefunctions φHF
n . In order to solve the

HF-equations for a given single-particle wavefunction φHF
n , one needs to know all of the

wavefunctions, which enter via densities ρ(~r) and ρ(~r, ~r
′
). The total energy of the system

in the HF theory is not a sum of the single-particle energies EHF
n , because particles are not

free. Rather, it is the expectation value of the many-body Hartree-Fock Hamiltonian HHF ,

EHF
0 = 〈ΦHF

0 |HHF |ΦHF
0 〉, (20)

HHF =
A∑

i=1

hHF (i), (21)

in the Hartree-Fock ground state |φHF
0 〉, which is a Slater determinant [46, 44, 48] . In par-

ticular, for the Skyrme forces, Eqs. (68-71), the mean-field energy functional is composed of

the kinetic energy term, the Skyrme functional term, the Skyrme spin-orbit term, Coulomb

term, and center of mass correction term [49, 50]

EHF
0 = Ekin + ESky + ESky,LS + ECoul + ECM . (22)

20



The Skyrme part of the energy is a functional (for even-even nuclei and time-reversal in-

variance) of the total density ρ and the density for protons or neutrons ρq=p,n, the total

kinetic energy density τ and the kinetic energy density τq for protons or neutrons, and the

gradients of the densities ρ and ρq

ESky(ρ, ρq, τ, τq,∇ρ . . .) =
∫
d3r

[
b0ρ(r)

2 + b1ρ(r)τ(r)− b2
2
ρ(r)∇2ρ(r) +

b3
3
ρ(r)α+2

]
(23)

−
∫
d3r

∑
α

[
b′0
2
ρ2

q + b′1ρqτq − b′2
2
ρq∇2ρq +

b′3
3
ραρ2

q

]
. (24)

In the HF theory it is assumed that the nucleons move in the average mean-field and

undergo independent particle motion. This is of course an approximation. In extracting

the mean-field potential V
(1)
NN (Eq. (17)) one neglects the so-called residual part, Hres, of

the interaction . This can be seen if we decompose symbolically the Hamiltonian from Eq.

(16) as

H = T (1) + V (1)

︸ ︷︷ ︸
Hmf

+ [V (2) + V (3) − V (1)]︸ ︷︷ ︸
Hres

≡ HHF +Hres, (25)

where the one body mean-field potential (derived from the HF theory ) V (1) was added

and subtracted. The Hartree-Fock theory describes the properties of nuclei near the line of

stability. The more accurate description requires an inclusion of the the residual part of the

Hamiltonian (Eq. 25) into the theoretical framework. This is done, for example, in:

• HF+BCS - theory (short-range part of the residual force represented as the pairing

force between nucleons) [51, 52]

• HFB -theory (“Hartree-Fock-Bogoliubov”), see chapter (III) - self-consistent mean-

field+pairing

• RPA - theory (“Random Phase Approximation”, linear response theory) [46, 48, 44]

- describes excited states.

Relativistic Mean-Field models

The biggest advantage of nuclear models based on the relativistic mean-field (RMF)

approximation is that the spin-orbit interaction arises naturally as a result of the Dirac
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structure of nucleons. In this model the, nucleus is described as a system of Dirac nucleons

which interact through the exchange of virtual mesons σ, ω, ρ3 and photons (see Table.1). In

principle one should also include into the description the contribution from the pions π0, π±

with the masses 135 MeV/c2 and 139.6 MeV/c2 respectively. In the RMF theory one works

with the parity symmetric single-particle states in a mean-field. This causes the expectation

value of the pion to vanishe, as these particles are psedoscalars. This is the reason why pion

is not included in the RMF theories. There are however attempts to include contribution

from the pions into the RMF framework by assuming that single-particle states in the mean

field are not good parity states. As a result, the expectation value of the pion field becomes

finite [53]. We review the RMF theory where single-particle states are good parity states.

The starting point is the one-boson exchange Lagrange density [54](p.4)

L = Lnucleon + Lmeson + Lcouple (26)

which consists of the free Lagrangian for the nucleon and meson fields and also the term

coupling the nucleon to the mesons. The difficulty of solving the full field-theoretic problem

Table 1: Rest masses of the selected mesons together with the spin J , parity π, and isospin
T [54].

meson Jπ T kind m[MeV/c2]
σ 0+ 0 scalar 508.194
ω 1− 0 vector 782.501
ρ3 1− 1 vector 763.000

requires several approximations. Among these is a replacement of the field operators by

their expectation values (the mean-field approximation) i.e. σ̂ → 〈σ(~r)〉 etc. The stationary

equations of motion can be derived from the Lagrange density by varying the action S =
∫
d4x L with respect to the fields [55]. This results in the Dirac equation for the nucleonic
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states in the presence of fields

HD ψi = εi ψi =⇒


m+ S + V ~σ · p

~σ · p −m− S + V






f

g




i

= εi



f

g




i

(27)

as well in the equations (Klein-Gordon) describing meson fields [54](p.3)

(−∆ +m2
σ)σ(r) = gσρs(r), (28)

(−∆ +m2
ω)ω(r) = gωρ(r), (29)

(−∆ +m2
ρ)ρ3(r) = gρ(ρn(r)− ρp(r)), (30)

−∆A0(r) = eρc(r), (31)

where ∆ ≡ ∂µ∂
µ = (∂t)

2 − ~∇2. The single particle wave-functions ψi in Eq.(27) are four-

dimensional spinors describing stationary nucleonic states with index i and single-particle

energy εi, where ~σ = (σ1, σ2, σ3) is a vector composed of Pauli spin matrices. The Potentials

S and V are defined as

S = gσσ(r), (32)

V = gωω(r) + gρρ3(r) + A0(r). (33)

The meson fields σ(r), ω(r), ρ3(r) in Eqs. (28-31) are classical fields (potentials) with the

nucleonic densities as sources, and the nucleons move freely in the mean-field generated by

the exchange of mesons and photons. The above model contains several free parameters e.g.

nucleon mass m, meson masses mσ,mω,mρ whose experimental values are known and also

coupling constants gσ, gω, gρ, which can all be fitted, altough with the large widths, to the

properties of known nuclei [54]. The set of equations (27-31) constitutes a self-consistent

problem where the many-body Dirac equations and the Klein-Gordon equations for the

meson fields are coupled via densities calculated as [54]

ρ(r) =
A∑

i=1

ψ+
i ψi =

A∑

i=1

f+
i (r)fi(r) + g+

i (r)gi(r), (34)

ρs(r) =
A∑

i=1

ψ̄iψi =
A∑

i=1

f+
i (r)fi(r)− g+

i (r)gi(r). (35)

The density ρ is the usual density, ρs is the scalar density, ρn, ρp are neutron and proton

densities and ρc is the charge density distribution.
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In order to describe properly the properties of nuclei the RMF model needs several

improvements, yet the basic assumptions and equations remain the same. In Ref. [54]

Lalazissis et al. present results for the 1315 even-even nuclei with 10 ≤ Z ≤ 98. While the

model works pretty well for nuclei close to the β stability line, it, among other things, does

not predict correctly properties in the vicinity of the neutron dripline (see secs: 5.1,5.2 ).

This is due to the very well known shortcoming of the simplistic BCS model [56] used to

describe the pairing interaction in Lnucleon.

The proper description of the exotic nuclei necessities a unified and self-consistent treat-

ment of mean-field and pairing correlations, which can be done in the Relativistic Hartree-

Bogoliubov (RHB) framework [57, 58, 59, 60, 61, 62]. In the Hartree approximation for the

self-consistent mean-field, the relativistic Hartree-Bogoliubov equations read [61, 62]



ĤD −m− λ ∆̂

−∆̂∗ −(Ĥ∗
D −m− λ)




︸ ︷︷ ︸
ĤRHB



Uk(r)

Vk(r)


 = Ek



Uk(r)

Vk(r)


 (36)

where ĥD is the single-nucleon Dirac Hamiltonian (Eq. 27), λ is the Fermi level, and m is

the nucleon mass. The generalized single-nucleon Hamiltonian ĤRHB contains two average

potentials: the self consistent mean field Γ̂ = ĤD−m−λ and the pairing field ∆̂. The column

vectors denote the quasiparticle wave functions from which the densities are calculated, and

Ek are the quasiparticle energies. Similarly as in case of solution of the set of equations (27-

31), the RHB equations are solved self-consistently, where the sources for the Klein-Gordon

equations for the meson fields are calculated from the eigenstates of the RHB equations. A

detailed description of the relativistic Hartree-Bogoliubov model for spherical and deformed

nuclei can be found in Refs. [58, 60].
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CHAPTER II

NUCLEAR HAMILTONIAN

Quoting the authors of Ref. [44] “The physical world consists of interacting many-

particle systems”. This work concentrates on the non-relativistic description of the atomic

nucleus. Such an approximation is justified by the fact the nucleon inside the atomic nucleus

moves at non-relativistic speed. This can be seen from Fig. 11, where we depict the neutron

single-particle potential for the neutron-rich 112Zr nucleus. As we compare the rest mass

of the neutron ( ≈939.5 MeV/c2) and the depth of the neutron potential we can draw

the conclusion that neutron moves with non-relativistic velocities. Therefore is valid to
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Figure 11: The neutron single-particle potential for the 112Zr isotope.

describe nuclear forces by potentials under the additional assumption that no new particles
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are created from the vacuum [47].

2.1 The free VNN nucleon-nucleon interaction .

The free N-N potential can be derived in essentially two different ways: its mathematical

structure can be inferred from general symmetry principles, as first pointed in 1941 by

Eisenberg and Wigner [63]. We follow here the treatment in the textbook by Ring and

Schuck [46]. An alternative approach is the derivation of VNN from free meson-exchange

theory. We start with a brief review of the first approach. The two body VNN nuclear

potential in coordinate representation depends on the position vectors ~r1, ~r2, momenta ~p1, ~p2,

spin vectors ~σ1, ~σ2 also on an isospin ~τ1 and ~τ2 of the two interacting nucleons

VNN ≡ VNN(~r1, ~r2, ~p1, ~p2, ~σ1, ~σ2, ~τ1, ~τ2). (37)

Potential VNN must obey several symmetries [46]:

• Permutation invariance. Invariance under an exchange of the coordinates

VNN(~r1, ~r2, ~p1, ~p2, ~σ1, ~σ2, ~τ1, ~τ2) = VNN(~r2, ~r1, ~p2, ~p1, ~σ2, ~σ1, ~τ2, ~τ1). (38)

• Translational invariance. Potential depends only on relative coordinate ~r = ~r1 − ~r2

VNN ≡ VNN(~r, ~p1, ~p2, ~σ1, ~σ2, ~τ1, ~τ2). (39)

• Galilean invariance. Potential depends only on relative momentum ~p= 1
2
(~p1 − ~p2)

VNN ≡ VNN(~r, ~p, ~σ1, ~σ2, ~τ1, ~τ2). (40)

• Isobaric invariance. Nuclear Force is independent of the charge of nucleons ( invariance

under rotation in isospin space) . Only isospin scalars are allowed

VNN ≈ ~τ1 · ~τ2. (41)

• Parity invariance. Invariance under space reflection.

VNN(~r, ~p, ~σ1, ~σ2, ~τ1, ~τ2) = VNN(−~r,−~p, ~σ1, ~σ2, ~τ1, ~τ2). (42)
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• Time reversal invariance. Physical observables do not depend on the direction of time.

VNN(~r, ~p, ~σ1, ~σ2, ~τ1, ~τ2) = VNN(~r,−~p,−~σ1,−~σ2, ~τ1, ~τ2). (43)

Only even number of products involving ~p and ~σi are allowed.

• Rotational invariance in coordinate space.

The total angular momentum of the N-N system must be conserved ( invariance under

rotation in a combined configuration and spin space, implies only scalar products) . The

only allowed scalars invariant under parity and time reversal transformation are [64]

VNN ∝ r2 = |~r|2, ~σ1 · ~σ2, ~σi · ~r, ~σi · (~r × ~p). (44)

It is valid to consider first velocity independent forces (static) [15] as the first approximation.

Such an approximation is valid at low energies. Additionally it can be assumed that force

is central (depends only of the magnitude r ≡ |~r| of the vector ~r ) . The most general

potential, which satisfies rotational, parity, isobaric (Eq. 41), and time reversal invariance

can be symbolically written as

VNN ∝



1

~σ1 · ~σ2


×




1

~τ1 · ~τ2


× f(r), (45)

where f(r) denotes arbitrary radial functions. Symbol “×” means that we have to form all

of the possible combinations. More explicitly, we can write potential VNN as [15]

VNN ≈ Vc(r) +Wc(r)~τ1 · ~τ2 + [Vsc(r) +Wsc(r)~τ1 · ~τ2](~σ1 · ~σ2),

where Vc,Wc, Vsc,Wsc are arbitrary radial functions that cannot be determined from the

invariance principles. The velocity-independent nuclear force doesn’t form a complete de-

scription of the VNN interaction . There is experimental evidence of a need to include in the

potential velocity-dependent components [44]. As we can see from Eq. 44 we have already

formed the velocity dependent component ~σi · (~r × ~p). Additionally, the requirement that

potential VNN obeys permutation invariance (Eq. 38) implies that the spin dependence

must enter symmetrically [15]

~S =
1

2
(~σ1 + ~σ2), (46)
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where ~S is the total spin. Thus, the velocity dependent term in VNN potential has the

following form

~L · ~S =
1

2
(~r × ~p)(~σ1 + ~σ2). (47)

Nucleon-nucleon scattering experiments also give a hint of the existence of non central terms.

Particularly, the measured quadrupole moment of the deuteron cannot be explained by a

central force [64]. See a candidate for the tensor force (σi ·~r) in the Eq. 44. The only possible

combination that doesn’t violate parity and time reversal invariance must be proportional

to (~r · ~σ1)(~r · ~σ2). The tensor force is usually introduced in terms of the following operator

[46]

S12 =
3(~r · ~σ1)(~r · ~σ2)

r2
− ~σ1 · ~σ2. (48)

Above considerations leave us with the velocity-dependent non central nucleon-nucleon in-

teraction that can be symbolically written as

VNN ∝



1

~σ1 · ~σ2


×




1

~τ1 · ~τ2
S12

~L · ~S




× f(r), (49)

or equivalently

VNN ≈ [Vc(r) +Wc(r)~τ1 · ~τ2] + [Vsc(r) +Wsc(r)~τ1 · ~τ2](~σ1 · ~σ2) + (50)

[VT (r) +WT (r)~τ1 · ~τ2]S12 + [VLS(r) +WLS(r)~τ1 · ~τ2](~L · ~S).

The radial functions in the Eq. 50 cannot be determined from the invariance principles.

They can be obtained from a fit to experimental data or from meson exchange theories.

In 1935, Yukawa postulated that N-N interaction can be understood by the virtual

exchange of pions; the original theory involved a scalar (spin 0) meson and was later gen-

eralized to vector mesons (spin 1). At large distances the problem can be described by

the relativistic Klein-Gordon equation for pions (spin-less particles) and relativistic Dirac

equations for nucleons [65]. One calculates the T-matrix for one-pion exchange; in the static

limit, this quantity is identical to the N-N interaction VNN(~q). By inverse Fourier transform,
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one obtains [66] the so-called one-pion exchange potential (OPEP)

VOPEP (~r, ~σ1, ~σ2, ~τ1, ~τ2) =
−g2

0

4π

(
µ

2M

)2 1

3
(~τ1 · ~τ2)

(
~σ1 · ~σ2 + S12

(
1 +

3

µr
+

3

(µr)2

))
e−µr

r
,

(51)

where µ and M are respectively the inverse Compton wavelengths of pion and nucleon, g0

stands for pion-nucleon coupling. Recently, modern N-N potentials have been developed,

based on meson exchange theories, which fit all available N-N scattering data and proper-

ties of the deutron. Among these are the “Argonne-V18” potential [63], the “Nijmegen-

potential” [67], and the “CD-Bonn potential” [68]. As a result of two meson and heavier

meson exchange, VNN becomes strongly repulsive at small distances (r ≈ 0.5fm).

2.2 Effective N-N interaction (Brückner’s G-matrix) inside the nuclear medium

The nucleon-nucleon interaction is significantly modified compared to the free N-N inter-

action. The presence of other particles in the nuclear medium allows for non-conservation

of the energy and momentum of the N-N pairs (energy and momentum can be transfered to

other particles). Another new feature compared to the two body system is that not all of

the scattering states are available. Particularly, only scattering states above the Fermi level

(En > Ef ) are allowed, as all of the states below the Fermi sea are occupied. To illustrate

the features of the N-N system inside the medium we analyze first the scattering matrix T

for two free nucleons, which is governed by the Lippman-Schwinger equation [46]

TE
~k1,~k2,~k′1,~k′2

= v̄~k1,~k2,~k′1,~k′2
+

1

2

∑

~p1,~p2

v̄~k1,~k2,~p1,~p2

1

E −
(

~p2
1

2m

)
−

(
~p2
2

2m

)
+ iη

TE
~p1,~p2,~k′1,~k′2

, (52)

where ~k1, ~k2 and ~k′1, ~k
′
2 are the momenta of the incoming and outgoing particles respectively,

and E is the total energy of the N-N system. In the summation there are no restrictions for

the momenta ~p1, ~p2 and we have conserved energy and momenta.

~k1 + ~k2 = ~k′1 + ~k′2. (53)

In the operator form Eq. 52 is often written as [46]

T = v̄ + v̄
1

E −H0

T ⇒ T =
v̄

1− v̄(E −H0)−1
. (54)
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where v̄ represents free N-N interaction (Eq. 50), and

H0 =
~p2

1

2m
+

~p2
2

2m
. (55)

In a similar way the N-N scattering inside nuclear medium is governed by the analogous

equations (Bethe-Goldstone) for an analog of matrix T so-called Brückner “G-matrix” G

[46]. We can immediately write down the equation for matrix G by substituting in the

Lippman-Schwinger (Eq. 52) plane waves with shell model states (~k1, ~k2 → m,n ), including

in summation only states above Fermi Energy (En > Ef ), and removing the restrictions for

the conservation of energy and momentum ~k1 +~k2 6= ~k′1 +~k′2. The Bethe-Goldstone equation

for Brücker’s G-matrix G has the following form [69]

GE
ab,cd = v̄ab,cd +

1

2

∑

m,n>Ef

v̄ab,mn
1

E − Em − En + iη
GE

mn,cd, (56)

where ab . . .mn and En, Em are shell-model indices and energies respectively. The potential

v̄ is a free N-N potential (Eq. (50). We can see that the effective N-N interaction can be

obtained from the bare N-N interaction if only the shell-model energies En, Em are known.

Symbolically matrix G can be written as [46]

G = v̄ + v̄
QF

E −H0

G⇒ G =
v̄

1− v̄QF (E −H0)−1
, (57)

where

QF =
∑

(m<n)>Ef

|mn〉〈mn| (58)

is a projection operator excluding occupied states (“Pauli Blocking”). The Equations 52 and

56 look very similar and one can be mislead that they posses the same properties. The fact

that energy and momentum in case of a scattering of free nucleons is conserved (“’on-shell”

scattering) and not conserved in the case of presence of medium (“off-shell” scattering)

attributes to the completely different behaviors at small distances ( |~r1 − ~r2| ≈ 0, v̄ →∞).

The “on-shell” scattering case introduces a singularity in (Eq. 54), and therefore at small

distances interaction is infinite. By contrast the matrix G remains finite, because in the

“off-shell” scattering the denominator in (Eq. 57) does not have a zero. At large distances

( |~r1 − ~r2| → ∞, v̄ → 0) both matrices have the same asymptotic behavior and go to zero
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as the potential v̄ also goes to zero. All of the mentioned asymptotic behaviors have been

illustrated in Fig. 12 [47]. Shown is the radial part, VT (r), of the free N-N tensor interaction

VT (r)S12

(see Eq. 50) and the corresponding effective interaction. We observe that both interactions

are identical at distances larger than about 1fm. However, at smaller distances, the effective

interaction (solid curve) remains finite and is much weaker than the free interaction (dotted

curve).

Figure 12: Tensor component of Reid Soft-Core potential. Shown are the effective interac-
tion (solid line) and bare N-N interaction (dotted curve) vs. distance r. Figures (a) and
(b) correspond to a different total isospin T=0,1. Plots were made at kF = 1.36 fm−1

[70, 71, 72].
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2.3 Phenomenological effective N-N interactions.

In practice solving the Bethe-Goldstone equation (56) is rather difficult and requires

several approximations. Another drawback is not too good agreement with the experimental

data even if calculations are feasible [46]. As a remedy we can use phenomenological forces,

with several free parameters that need to be adjusted to reproduce the experimental data.

One of the most widely used effective-interaction (used also by our group) is the so-called

Skyrme interaction [73]. To see how the Skyrme force can be derived it is convenient to

transform an arbitrary two body local potential to momentum space using Fourier transform

[46]

〈k|V |k′〉 =
1

(2πh̄)3

∫
e
−i
h̄

(k−k′)rV (r)d3r, (59)

where r = |~r1 − ~r2| is the relative distance, k = |~k1 − ~k2|, k′ = |~k′1 − ~k′2| are relative

momenta of two nucleons before and after collision. We know that the nuclear interaction

is short ranged. The first approximation to the potential V (r) can be then the δ function

(V (r) ≈ δ(r)) . This leads to a trivial constant dependence in momentum space. One has

to use more realistic finite range potential, which translates to a non trivial momentum

dependence. To achieve this we o expand potential (Eq. 59) in powers of momenta and

retain only terms up the second order (low momentum expansion valid at low energies) and

keep only rotationally invariant terms [46]

(2πh̄)3〈k|V |k′〉 ≈ V0 + V1(k
′2 + k2) + V2k · k′ + . . . . (60)

Using the inverse Fourier transformation, we find the equivalent potential in coordinate-

space

V (r) = V0δ(r) + V1

(
k̂2δ(r) + δ(r)k̂

′2
)

+ V2k̂
′δ(r)k̂, (61)

where the derivative operators (relative momenta) k̂ and k̂′ are defined by

k̂ =
1

2i
(∇1 −∇2), (62)

(63)

acting on the right and

k̂′ = − 1

2i
(∇1 −∇2), (64)

(65)
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Table 2: Skyrme parameters for SLy4 force[49, 76] in units of ( MeV fm3) for t0 through t3
and W0 parameters, remaining ones are dimensionless.

t0 t1 t2 t3 W0 x0 x1 x2 x3 α
-2488.913 486.818 -546.395 13777.0 123 0.8340 -0.3438 -1.0 1.3540 1/6

h̄2

2m

20.73553

acting on the left. The potential (Eq. 60) has been also supplemented by the addition of a

spin-orbit term as (note rotational invariance ) [74, 73]

~L · ~S(k,k′) ≡ iW0(~σ
(1) + ~σ(2)) · (k× k′). (66)

Finally, Skyrme[73] introduced also the three body interaction term of the very simple form

V (~r1, ~r2, ~r3) = t3δ(~r1 − ~r2)δ(~r2 − ~r3), (67)

which for even-even nuclei corresponds to a two body density dependent [74] interaction.

The Skyrme interaction contains several free parameters, which need to fitted to a bulk

properties of known nuclei (rms-radii, binding energy etc. ). The widely used form of this

density-dependent two-body effective interaction has the following form [73, 75]

V12(r) = t0(1 + x0P̂σ)δ(r) (68)

+
1

2
t1(1 + x1P̂σ)

(
k̂
′2δ(r) + δ(r)k̂2

)
+ t2(1 + x2P̂σ)k̂′ · δ(r)k̂ (69)

+ iW0(σ̂
(1) + σ̂(2)) · (k̂′ × δ(r)k̂) (70)

+
1

6
t3(1 + x3P̂σ)ραδ(r), (71)

where P̂σ is the spin-exchange operator. The first term (Eq. 68) describes the pure

δ force. The second one (Eq. 69) approximates the finite range force and the third (Eq.

70) represents a two body spin-orbit interaction. The last term introduces the density

dependence, which describes the many-body effects. The properties of the nucleons in the

nucleus are influenced by the state of other nucleons in the system. For the even-even nuclei

the three body term [46] reduces to the two-body interaction. In our recent calculations
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performed with the HFB-2D-LATTICE code we have used the so-called SLy4 force (Table.

2).
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CHAPTER III

HARTREE-FOCK-BOGOLIUBOV THEORY

The next chapter concentrates on the Hartree-Fock-Bogoliubov theory and the methods

of solution of the HFB equations in coordinate-space.

3.1 Derivation of the HFB equations

We start from the many-body Hamiltonian in the second quantization form [44]

Ĥ =
∞∑

k,l=1

〈k|t|l〉ĉ†kĉl +
1

2

∞∑

k,l,m,n=1

〈kl|v(2)|mn〉ĉ†kĉ†l ĉnĉm + (72)

1

6

∞∑

i,j,k,l,m,n=1

〈ijk|v(3)|lmn〉ĉ†i ĉ†j ĉ†kĉnĉmĉl,

where e.g. |i〉 is the single particle basis with the associated ladder operators ĉ†i , t stands for

the one-body kinetic energy operator from Eq.( 16), v̂(2) and v̂(3) are two and three body

operators (Eq. 16). The standard approach [46, 48] is to apply the Wicks’s theorem to the

Hamiltonian Eq. (72) to arrive at [48]

EHFB
0 = 〈ΦHFB

0 |Ĥ|ΦHFB
0 〉 =

∑

k,l

tklρlk +
1

2

∑

k,l,m,n

v̄
(2)
klmn

(
ρnlρmk +

1

2
κmnκ

∗
kl

)
, (73)

or equivalently

E0 =
∑

k,l

(
tklρlk +

1

2
V

(1)
kl ρlk +

1

2
∆klκ

∗
lk

)
, (74)

where we have defined the mean-field V
(1)
kl and paring field ∆kl as [48]

〈k|V (1)|m〉 ≡ V
(1)
km ≡ ∑

l,n

v̄
(2)
klmnρnl, (75)

〈kl|∆〉 ≡ ∆kl ≡ 1

2

∑
m,n

v̄
(2)
klmnκmn, (76)

The Hamiltonian H0 is expressed through the normal matrix ρlk and the pairing tensor κlk,

which on the other hand are the following contractions of the operators ĉk and ĉ†l [48, 46]

ρlk = 〈ΦHFB
0 |ĉ†kĉl|ΦHFB

0 〉 ≡ ĉ†kĉl︸︷︷︸, (77)
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κkl = 〈ΦHFB
0 |ĉlĉk|ΦHFB

0 〉 ≡ ĉlĉk︸︷︷︸, (78)

κ∗kl = 〈ΦHFB
0 |ĉ†kĉ†l |ΦHFB

0 〉 ≡ ĉ†kĉ
†
l︸︷︷︸ . (79)

The ground state energy (Eq. 74) has relatively simple form because of the application

of the Hartree-Fock-Bogoliubov transformation [77] of the operators ĉi, ĉ
†
j to the so-called

quasiparticle operators β̂i, β̂
†
j . The new quasiparticle operators define the HFB ground state

ΦHFB
0 - which is the quasiparticle vacuum state,

β̂|ΦHFB
0 〉 = 0. (80)

The Hartree-Fock-Bogoliubov transformation is canonical , therefore it preserves the com-

mutation relations of the operators ĉi, ĉ
†
j and is defined as [46]

β̂†j =
∑

k

(
Ukj ĉ

+
k + Vkj ĉk

)
, (81)

β̂i =
∑

k

(
U∗kiĉk + V ∗

kiĉ
+
k

)
, (82)

or symbolically



β̂

β̂†


 =



U † V †

V T UT







ĉ

ĉ†


 . (83)

We can easily invert the transformation in the Eqs. (81,82). After inserting the result into

the Eqs. (77,78) the matrices ρij and κij can be expressed now alternatively in terms of the

coefficients V and U

ρlk = (V ∗V T )lk, (84)

κlk = (V ∗UT )lk. (85)

The Hartree-Fock-Bogoliubov equations in the energy representation can be obtained in an

analogous way in the case of the derivation of the Hartree-Fock (HF) equations [48]. In

case of HF the energy functional depends only on the density matrix ρij. One obtains the

Hartree-Fock (HF) equations by varying the energy functional with respect to ρij

δ|ρij
[EHF

0 (ρij)− trace{Λ(ρ2 − ρ)}] = 0, (86)

where Λ is a Lagrange multiplier matrix. After variation the Hartree-Fock equation has a

very simple form

[h, ρ] = 0, (87)
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where

ĥ ≡ t̂+ V̂ (1). (88)

In case of HFB theory, the matrix ρ in Eq. (86) is generalized to the matrix <, which is

both Hermitian and idempotent

<† = <,<2 = <. (89)

The Matrix < is defined as [48, 46]

< ≡



ρ κ

−κ∗ 1− ρ∗


 . (90)

The HFB variational principle is supplemented with additional Lagrange multiplier λ, which

plays the role of the chemical potential (Fermi level ) [48, 46]

δ|<[EHFB
0 (<)− λN̂ − trace{Λ(<2 −<)}] = 0, (91)

where N̂ denotes the particle number operator, and again we arrive with the very simple

compact form of the Hartree-Fock-Bogoliubov equations

[H,<] = 0, (92)

where [48]

H ≡


h− λ ∆

−∆∗ −(h− λ)∗


 . (93)

The introduction of the another additional Lagrange multiplier is implied by the fact that

the particle number is not conserved in the HFB approximation (quasiparticle vacuum is

not an eigenstate of the particle number operator) [46, 48]. Finally, from the commutator

Eq. (92) , matrix Eq. (90) and relations Eq. (89) we can write down the Hartree-Fock

Bogoliubov equations in the energy representation [48, 46]

H


Uα

Vα


 = Eα



Uα

Vα


 , (94)

H


V ∗

α

U∗α


 = −Eα



V ∗

α

U∗α


 . (95)
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It should be noted the generalized matrix < as well as the Hamiltonian H possess the

two simultaneous eigenvectors corresponding to positive and negative quasiparticle energy,

±Eα. In Eq. (94) only the choice of the eigenvectors corresponding to the the positive +Eα

quasiparticle energies was made. It is forbidden to choose positive and negative quasiparticle

energies at the same time, otherwise it is impossible to satisfy the anti-commutation relations

for the operators β̂α and β̂†α [46].

3.1.1 HFB equations in coordinate space.

In order to solve the HFB equation on the spatial lattice the Eq. (94) needs to be

transformed from the energy representation to the coordinate representation by inserting

completeness relation of the form
∫
d3r′

∑
σ′ |r′σ′〉〈r′σ′| and closing from the left by Dirac’s

bra 〈rσ| to arrive at [78]

∫
d3r′

∑

σ′,q′




hq(r, σ, q, r′, σ′, q′) ∆q(r, σ, q, r′, σ′, q′)

−∆∗q(r, σ, q, r′, σ′, q′) −h∗q(r, σ, q, r′, σ′, q′)






U q

α(r′, σ′, q′)

V q
α (r′, σ′, q′)


 = (96)



Eq

α + λq 0

0 Eq
α − λq






U q

α(r, σ, q)

V q
α (r, σ, q)


 . (97)

The definition of the quasiparticle wavefunctions U q
α(r, σ) and V q

α (r, σ) is determined by

the normal matrix and pairing tensor from Eqs. (84) in the coordinate space, which in the

assumed basis {φα(r, σ)} are expressed in the following way [46]

ρ(rσq, r′σ′q′) =
∑

ij

ρijφi(rσq)φ
∗
j(r

′σ′q′), (98)

κ(rσq, r′σ′q′) =
∑

ij

κijφi(rσq)φj(r
′σ′q′). (99)

The above coordinate space matrices can be conveniently expressed in terms of quasiparticle

wavefunctions Uα(r, σ, q) and Vα(r, σ, q) as

ρ(rσq, r′σ′q′) =
∑
α

V ∗
α (rσq)Vα(r′σ′q′), (100)

κ(rσq, r′σ′q′) =
∑
α

V ∗
α (rσq)Uα(r′σ′q′), (101)

with the quasiparticle wavefunctions defined naturally as ( Eqs. (98-99,84) [79, 78]

Uα(rσq) =
∑

i

Uiαφi(rσq), (102)
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Vα(rσq) =
∑

i

Viαφ
∗
i (rσq). (103)

In the HFB formalism, there are two types of quasiparticle wavefunctions, Uα and Vα, which

are bi-spinors of the form

U q
α(r) =



U q

α(r, ↑)
U q

α(r, ↓)


 , V q

α (r) =



V q

α (r, ↑)
V q

α (r, ↓)


 . (104)

In the wavefunctions, the dependence on the quasiparticle energy Eα is denoted by the

index α and the isospin dependence by q for simplicity. The HFB Hamiltonian Eq.( 96) is

Figure 13: ]
HFB quasiparticle energy spectrum.

constructed from the Hermitian Hartree-Fock Hamiltonian Eq. (88) and the antisymmetric

pairing field ∆ (Eq. (76)) [46, 48]. It is possible to replace the antisymmetric pairing field

∆ with the Hermitian pairing Hamiltonian h̃ [80], and to replace the pairing tensor κ with

the pairing density ρ̃ defined as [81, 80, 82]

h̃(rσq, r′σ′q) = −2σ′∆(rσq, r′ − σ′q′), (105)

ρ̃(rσq, r′σ′q) = −2σ′κ(rσq, r′ − σ′q′). (106)

With such definitions the HFB equation( Eq. 96) can be rewritten alternatively as [81, 80,
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82]

∫
d3r′

∑

σ′,q′



hq(r, σ, q, r′, σ′, q′) h̃q(r, σ, q, r′, σ′, q′)

h̃q(r, σ, q, r′, σ′, q′) −hq(r, σ, q, r′, σ′, q′)






φq

1,α(r′, σ′, q′)

φq
2,α(r′, σ′, q′)


 = (107)



Eq

α + λq 0

0 Eq
α − λq






φq

1,α(r, σ, q)

φq
2,α(r, σ, q)


 , (108)

where the quasiparticle wavefunctions and the densities are defined in the following way

φ∗1,α(rσq) =
∑

i

Uiα(2σ)φi(r− σ, q), (109)

φ2,α(rσq) =
∑

i

V ∗
iαφi(rσq), (110)

ρ(rσq, r′σ′q′) =
∑
α

φ2,α(rσ, q)φ∗2,α(r′σ′q′), (111)

ρ̃(rσq, r′σ′q′) = −∑
α

φ∗2,α(rσ, q)φ1,α(r′σ′q′). (112)

In the present work, we use Skyrme effective N-N interactions (Chapter 2.3) in the

particle mean field Hamiltonian h, and a delta interaction in the pairing field Hamiltonian

h̃ [82]

h̃(r, σ, q, r′, σ′, q′) =
1

2
V q

0 ρ̃q(r)δ(r− r′)δσσ′δqq′ . (113)

These type of the effective interactions are diagonal in isospin space and local in position

space,

h(rσq, r′σ′q′) = δq,q′ δ(r− r′)hq
σ,σ′(r), (114)

h̃(rσq, r′σ′q′) = δq,q′ δ(r− r′)h̃q
σ,σ′(r). (115)

Thus, the HFB equation (Eq. 107) reduces to the following structure in spin-space [82]:




(hq − λq) h̃q

h̃q −(hq − λq)






φq

1,α

φq
2,α


 = Eq

α



φq

1,α

φq
2,α


 (116)

with

hq(r) =



hq
↑↑(r) hq

↑↓(r)

hq
↓↑(r) hq

↓↓(r)


 , h̃q(r) =



h̃q
↑↑(r) h̃q

↑↓(r)

h̃q
↓↑(r) h̃q

↓↓(r)


 . (117)

The quasiparticle energy spectrum is discrete for |E| < −λ and continuous for |E| > −λ
(Fig. 13) [81]. For even-even nuclei it is customary to solve the HFB equations for positive
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quasiparticle energies and consider all negative energy states as occupied in the HFB ground

state.

It is generally acknowledged that an accurate theoretical treatment of the pairing in-

teraction is essential for a description of the exotic nuclei [82, 83]. Besides large pairing

correlations, the HFB calculations have to face the problem of an accurate description of

the continuum states with a large spatial extent. All of these features represent major

challenges for the numerical solution.

There are various mean-field methods of solving the non-relativistic HFB equations.

Generally, they can be divided into two categories: lattice methods and basis expansion

methods. In the lattice approach no region of the spatial lattice is favored over any other

region: the well bound, weakly bound and (discretized) continuum states can be represented

with the same accuracy. Among the codes which solve the HFB problem on a lattice in

coordinate space using the quasiparticles we have: a 1-D (spherical) HFB code [81] and the

present 2-D (axially symmetric) code [82, 83, 84]. In the basis expansion method a wave

function is expanded into the chosen basis functions: the harmonic oscillator basis (HO)

[85], the transformed harmonic oscillator basis (THO) [79]. The HFB equations have also

been solved in coordinate space by means of the two-basis method [86] where one uses a

truncated basis composed of bound and discretized continuum states up to a a few MeV

in the continuum [87]. In an alternative approach, the HFB equations are solved on a 3-D

Cartesian mesh using the canonical-basis approach [88].

We solve the Hartree-Fock-Bogoliubov (HFB) equations for deformed, axially symmetric

nuclei in coordinate space on a 2-D lattice [82, 83]. Our computational technique (the Basis-

Spline collocation and Galerkin method) is particularly well suited to study the ground

state properties of nuclei near the driplines. It allows us totake into account high-energy

continuum states up to an equivalent single-particle energyof 60 MeV or more.

3.1.2 2-D reduction of the HFB problem for axially symmetric systems and numerical

solution .

Our goal is to reduce the Hamiltonians given by the Eq. (107) to the case of axial sym-

metry around the z-axis using cylindrical coordinates (r, φ, z). We require the Hamiltonian
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to be invariant under rotations R̂z i.e. [Ĥ, R̂z] = 0. Because rotations are generated by the

angular momentum operator ĵz via

R̂z(φ) = exp(−iφĵz/h̄), (118)

this requirement is equivalent to

[Ĥ, Ĵz(φ)] = 0̂ , (119)

where

Ĵz(φ) = h̄




−i∂φ + 1/2 0 0 0

0 −i∂φ − 1/2 0 0

0 0 −i∂φ + 1/2 0

0 0 0 −i∂φ − 1/2




, (120)

We find the simultaneous eigenstates of the operator Ĵz(φ) and Ĥ by solving the following

equation

ˆJ̃z(φ)ΨΩ(r, φ, z) = h̄ΩΨΩ(r, φ, z) , (121)

to arrive at [82]

ΨΩ(r, φ, z) =
1√
2π




ei(Ω+1/2)φ U1(r, z)

ei(Ω−1/2)φ L1(r, z)

ei(Ω−1/2)φ U2(r, z)

ei(Ω+1/2)φ L2(r, z)




, (122)

where Ω = ±1
2
,±3

2
,±5

2
, . . . is the eigenvalue of the the operator Ĵz(φ). Using that informa-

tion we simplify the eigenvalue problem (e.g Eq. (107))

ĤΩ(h̃, r, φ, z)ΨΩ(r, φ, z) = Eα,ΩΨΩ(r, φ, z) , (123)

in the following way

∑

σσ′



hq

σσ′(r, z)− λq h̃q
σσ′(r, z)

h̃q
σσ′(r, z) −hq

σσ′(r, z) + λq




Ω



φq

1,α(r, z, σ′)

φq
2,α(r, z, σ′)




Ω

= Eq
α



φq

1,α(r, z, σ)

φq
2,α(r, z, σ)




Ω

,(124)

where
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hq
σσ′(r, z) =



hq
↑↑(r, z) hq

↑↓(r, z)

hq
↓↑(r, z) hq

↓↓(r, z)


 , h̃q

σσ′(r, z) =



h̃q
↑↑(r, z) h̃q

↑↓(r, z)

h̃q
↓↑(r, z) h̃q

↓↓(r, z)


 , (125)

and

φq
1,α(r, z, σ) =



φq

1,α(r, z, ↑)
φq

1,α(r, z, ↓)


 , φq

2,α(r, z, σ) =



φq

2,α(r, z, ↑)
φq

2,α(r, z, ↓)


 . (126)

The matrix elements (turn out to be real) from the Hamiltonian Eq. (124) and corresponding

densities are calculated accordingly using cylindrical coordinates. A detailed description of

our theoretical method has been published in refs. [82, 76, 89]; in the following, we give

a brief summary. Using cylindrical coordinates (r, z, φ), we introduce a 2-D grid (rα, zβ)

with α = 1, ..., Nr and β = 1, ..., Nz (Fig. 14). In radial direction, the grid spans the region

Figure 14: 2-D grid in cylindrical coordinates.

from 0 to rmax. Because we want to be able to treat octupole shapes, we do not assume

left-right symmetry in z-direction. Consequently, the grid extends from −zmax to +zmax.

Typically, zmax ≈ rmax and Nz ≈ 2 · Nr. For the lattice representation, the wavefunctions
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and operators are represented in terms of Basis-Splines [90, 91, 50, 92, 93, 94]. B-Splines

of order M , BM
i (x), are a set (i = 1, ...,N ) of piecewise continuous polynomial sections of

order M − 1; a special case are the well-known finite elements which are B-Splines of order

M = 2. By using B-Splines of seventh or ninth oder, we are able to represent derivative

operators very accurately on a relatively coarse grid with a lattice spacing of about 0.8 fm

resulting in a lattice Hamiltonian matrix of relatively low dimension. The four components

(n = 1, ..., 4) of the HFB bi-spinor wavefunction ψn(r, z) are expanded in terms of a product

of B-Splines

ψn(rα, zβ) =
Ni∑

i=1

Nj∑

j=1

BM
i (rα)BM

j (zβ)U ij
n . (127)

For the lattice representation of the Hamiltonian, we use a hybrid method in which deriva-

tive operators are constructed using the Galerkin method [89, 93, 95]; this amounts to a

global error reduction. Local potentials are represented by the collocation method [94, 93]

(local error reduction). The numerical solution of the HFB equations results in a set of

quasiparticle wavefunctions and energies. The quasiparticle energy spectrum contains both

bound and (discretized) continuum states. We diagonalize the HFB Hamiltonian separately

for fixed isospin projection q and angular momentum projection Ω. Note that the number

of quasiparticle eigenstates is determined by the dimensionality of the lattice HFB Hamil-

tonian. For fixed values of q and Ω, we obtain 4 ·Nr ·Nz eigenstates, typically up to 1,000

MeV. Production runs of our HFB-2D-LATTICE code are carried out on an IBM-SP mas-

sively parallel supercomputer and on the local cluster computer at the ACCRE, Vanderbilt

University. We utilize MPI message passing interface. Parallelization is possible for different

angular momentum states Ω and isospins (p/n) . Details are described in Section 4.1.

3.1.3 Calculated HFB observables

Despite the fact that the quasiparticles we have introduced do not have a direct physical

meaning, we can extract physical information from them. We express the densities in terms

of quasiparticle wave-functions, which on the other hand carry physical information about

the nucleus. Of the long list of the quantities that can be calculated the most important

are:

• total binding energy Ebind(Z,N)
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In addition to the energy components in the HF theory, Eq. (22), i.e. kinetic energy

term, the Skyrme functional term, the Skyrme spin-orbit term, Coulomb term, and

center of mass correction term, the HFB energy functional is supplemented with a

pairing energy term arising from the presence of the paring Hamiltonian Eq. (113)

EHF
0 = Ekin + ESky + ESky,LS + ECoul + ECM + Epair (128)

• two-neutron separation energy

S2n(Z,N) = Ebind(Z,N)− Ebind(Z,N − 2). (129)

The two-neutron separation energy is defined as as the binding energy difference of the

two neighborhood nuclei. Note that in using this equation, all binding energies must

be entered with a positive sign. The position of the two-neutron dripline is defined by

the condition S2n(Z,N) = 0, and nuclei with negative two-neutron separation energy

are unstable against the emission of two neutrons.

• mass quadrupole moment

Qzz =
∫
d3r(3z2 − r2)ρ(r), (130)

carries information about the deformation of the nucleus. Particularly, depending on

the sign of this quantity we can have for

Qzz =





0, spherical deformation

negative, oblate deformation

positive, prolate deformation.

(131)

Depending on the the kind of the density in the Eq. (130) we can calculate; the total

mass quadrupole moment Qzz(total) for ρ = ρn + ρp, the mass quadrupole moment

for protons or neutrons Qzz(n/p) for ρ = ρn/p.

• mean-square radius

〈r2〉 =
1

N

∫
d3rρ(r)r2, (132)

for neutrons or protons 〈r2〉n/p, (ρ = ρn/p), N is the number of neutrons or protons, or

the total rms 〈r2〉total, (ρ = ρn + ρp), N is the total number of the particles.
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• average pairing gaps (Eq. 113) defined as [80, 82, 46]

〈∆q〉 = − 1

Nq

Tr(h̃qρq), (133)

for protons or neutrons.

• Fermi level (Fig. 13) λq for protons and neutrons

The above quantities are calculated using the cylindrical coordinates in Ref. [82] in case of

the axial symmetry.

3.1.4 Decoupled HFB equations.

In Ref.[96] the authors managed to decouple the HFB equations and solve the smaller

problem (diagonalization) rather than diagonalizing the full HFB Hamiltonian. The problem

that was solved in Ref.[96] in the notation of Eq.(96) is the following



ĥ
′ −∆̂

∆̂ −ĥ′






ψ̂±α,1

ψ̂±α,2


 = E±

α



ψ̂±α,1

ψ̂±α,2


 , (134)

where ĥ′ ≡ ĥ− λ (λ is the Fermi level ). The quasiparticle states denoted as ψ̂+
α,1, ψ̂

+
α,2 are

positive eigenstates and ψ̂−α,1, ψ̂
−
α,2 are negative eigenstates corresponding to E±

α ≡ ±|Eα|
respectively. We keep the Eq.(134) in the operator form as going to the specific represen-

tation is straightforward (e.g. Eq. 96). The method that was applied in Ref.[96] can be

equivalently formulated as the unitary transformation R

R = RT = R−1 =
1√
2




1 1

1 −1


 , (135)

of the Hamiltonian Eq. (134)

R



ĥ
′ −∆̂

∆̂ −ĥ′


R−1R



ψ̂±α,1

ψ̂±α,2


 = E±

αR



ψ̂±α,1

ψ̂±α,2


 . (136)

After the transformation Eq. (136) will have the following block off-diagonal form




0 ĥ′ + ∆̂

ĥ′ − ∆̂ 0






χ̂±α,1

χ̂±α,2


 = E±

α



χ̂±α,1

χ̂±α,2


 , (137)

46



where



χ̂±α,1

χ̂±α,2


 ≡ R



ψ̂±α,1

ψ̂±α,2


 . (138)

The new transformed eigenstates are called by the authors of Ref.[96] the auxiliary

functions. The next step in this derivation is to apply the transformed Hamiltonian Eq.

(137) onto the left of Eq. (137) to obtain,




(ĥ′ + ∆̂)(ĥ′ − ∆̂) 0

0 (ĥ′ − ∆̂)(ĥ′ + ∆̂)






χ̂
′
α,1

χ̂
′
α,2


 = E2

α



χ̂
′
α,1

χ̂
′
α,2


 . (139)

The new eigenstates χ̂
′
α,1 and χ̂

′
α,2 can be in general linear combinations of the negative

and positive states χ̂±α,1 and χ̂±α,2, since we lost information about the sign of the energy Eα.

We can write 

χ̂′α,1

χ̂′α,2


 = w+



χ̂+

α,1

χ̂+
α,2


 + w−



χ̂−α,1

χ̂−α,2


 , (140)

where w+ and w− are complex constants. Throughout this work we use the Hamiltonian

expressed via the hermitian pairing field h̃, Eq. (116)



ĥ
′ ˆ̃h

ˆ̃h −ĥ′






ψ̂±α,1

ψ̂±α,2


 = E±

α



ψ̂±α,1

ψ̂±α,2


 . (141)

With such a form of the Hamiltonian it is not possible to apply directly the unitary trans-

formation (Eq. 135) in order to obtain the block off-diagonal form of the Hamiltonian (Eq.

137). We have to transform first unitarily the Hamiltonian Eq. (141) to obtain opposite

signs for the pairing field ˆ̃h on the off-diagonal. In order to do so the unitary transformation

Z needs to be complex [97]

Z =
1√
2




1 1

−i i


 , (142)

Z−1 =
1√
2




1 i

1 −i


 . (143)
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After transformation we arrive at the form of the Hamiltonian suitable for applying the

real transformation R (Eq. 135).

Z



ĥ
′ ˆ̃h

ˆ̃h −ĥ′


Z−1Z



ψ̂±α,1

ψ̂±α,2


 = E±

αZ



ψ̂±α,1

ψ̂±α,2


 ⇒ (144)

⇒



ˆ̃h iĥ′

−iĥ′ −ˆ̃h


Z



ψ̂±α,1

ψ̂±α,2


 = E±

αZ



ψ̂±α,1

ψ̂±α,2


 .

Note the opposite signs next to the pairing field on the diagonal, and next to the complex

mean field on the off-diagonal. The transformation R and Z can be combined into the one

unitary transformation U

U = RZ =
1

2




1− i 1 + i

1 + i i− i


 , (145)

U−1 =
1

2




1 + i 1− i

1− i 1 + i


 . (146)

We can repeat now the steps (Eqs. 135-140) that were taken to arrive at the Eq. (139) and

apply the transformation (Eq. 145) to the Eq. (141)

U



ĥ
′ ˆ̃h

ˆ̃h −ĥ′


U−1U



ψ̂±α,1

ψ̂±α,2


 = E±

αU



ψ̂±α,1

ψ̂±α,2


 ⇒

⇒



0 (−iĥ+ ˆ̃h)

(iĥ+ ˆ̃h) 0






χ̂±α,1

χ̂±α,2


 = E±

α



χ̂±α,1

χ̂±α,2


 , (147)

where 

χ̂±α,1

χ̂±α,2


 = U



ψ̂±α,1

ψ̂±α,2


 . (148)

As expected we obtain the block diagonal form of the transformed Hamiltonian (Eq. 147)



(−iĥ+ ˆ̃h)(iĥ+ ˆ̃h) 0

0 (iĥ+ ˆ̃h)(−iĥ+ ˆ̃h)






χ̂
′
α,1

χ̂
′
α,2


 = E2

α



χ̂
′
α,1

χ̂
′
α,2


 , (149)

where again we have (Eq. 140)


χ̂′α,1

χ̂′α,2


 = w+



χ̂+

α,1

χ̂+
α,2


 + w−



χ̂−α,1

χ̂−α,2


 . (150)
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Table 3: Relative speed up factor in CPU time for diagonalization of the HFB matrix:
decoupled vs. coupled version.

isotope coupled HFB matrix size decoupled HFB matrix size speed up
22Ne 2160 1080 4.07
112Zr 4680 2340 3.78
238U 6944 3472 3.86

Since in Eq. (149) the states χ̂′α,1 and χ̂′α,2 are decoupled the problem can be diagonalized

by using the smaller matrices along the diagonal. As we will show, solving for only one of

the components is sufficient. Acting with the transformed Hamiltonian (Eq. 147) on both

sides of the Eq. (150) results in two states, one of which is

χ̂′′α,2 ≡ 1
|E±α |(iĥ+ ˆ̃h)χ′α,1 = w+χ̂+

α,2 − w−χ̂−α,2 , (151)

where we have explicitly used the minus sign for the negative energy component. Now we

construct new states

X̂+ ≡ χ̂′α,1 + χ̂′′α,2 ,

X̂− ≡ χ̂′α,1 − χ̂′′α,2 .
(152)

To evaluate the new states we express all quantities in terms of original states ψ̂±α,1, ψ̂
±
α,2

using Eq. (148)

χ̂±α,1 =
1

2

[
(1− i)ψ̂±α,1 + (1 + i)ψ̂±α,2

]
, (153)

χ̂±α,2 =
1

2

[
(1 + i)ψ̂±α,1 + (1− i)ψ̂±α,2

]
.

After inserting it into the Eq. (152) we obtain

X̂+ = w+(ψ̂+
α,2 + ψ̂+

α,1) + iw−(ψ̂−α,2 − ψ̂−α,1), (154)

X̂− = iw+(ψ̂+
α,2 − ψ̂+

α,1) + w−(ψ̂−α,1 + ψ̂−α,2) . (155)

The states X̂+ and X̂− contain the mixture of original negative and positive eigenstates

ψ̂±α . We use the relation between positive and negative [80],


ψ̂E

α,1

ψ̂E
α,2


 =




ψ̂−E
α,2

−ψ̂−E
α,1


 . (156)
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to express the states X̂+ and X̂− only in terms of positive states ψ̂+
α or negative ones ψ̂−α

X̂+ = w+(ψ̂+
α,2 + ψ̂+

α,1) + iw−(ψ̂+
α,1 + ψ̂+

α,2),

X̂− = iw+(ψ̂+
α,2 − ψ̂+

α,1) + w−(ψ̂+
α,1 − ψ̂+

α,2) ,
(157)

or

X̂+ = w+(ψ̂−α,2 − ψ̂−α,1) + iw−(ψ̂−α,2 − ψ̂−α,1),

X̂− = −iw+(ψ̂−α,2 + ψ̂−α,1) + w−(ψ̂−α,1 + ψ̂−α,2) .
(158)

From the Eqs. (157-158) we easily extract our original positive states equal to

(iw+ − w−)ψ̂+
α,1 = 1

2
(iX̂+ − X̂−) ,

(iw+ − w−)ψ̂+
α,2 = 1

2
(iX̂+ + X̂−) ,

(159)

or negative ones

(w− − iw+)ψ̂−α,1 = 1
2
(iX̂+ + X̂−) ,

(w− − iw+)ψ̂−α,2 = 1
2
(−iX̂+ + X̂−) ,

(160)

which are multiplied by a complex constant handled by normalization. We summarize here

the steps, which lead to the more effective diagonalization:

• Using the unitary transformation U in Eq. (145), construct and diagonalize only the

upper (lower ) block of the Hamiltonian, Eq. (149)

• take the obtained eigenstate χ′α,1 (χ′α,2) and generate the state χ′′α,2 (χ′′α,1), Eq. (151)

• generate the states X+ and X−, (Eq. 152)

• calculate the RHS of Eq. (159) or Eq. (160)

• take the real or imaginary part of the RHS of Eq. (159) or Eq. (160) and normalize

it.

The time saved in obtaining the eigenstates (original eigenstates) of the Hamiltonian in

Eq. (141) by diagonalizing only the upper block of the Hamiltinian in Eq. (149) is shown

in Table. (3). Studies show a gain in computation time by a factor of four. The tests

were performed for the three isotopes 22Ne,112Zr and 238U with the appropriate Hamiltonian

matrices size. The method of obtaining the original eigenstates by diagonalizing the complex

upper block of the matrix in Eq. (149) includes an extra step, which is extracting the original
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eigenstates from the complex eigenstates of the Hamiltonian in Eq. (149). This step is also

included in the timing procedure, therefore we can draw the conclusion, that finding the HFB

ground state using our HFB-2D-LATTICE code can be speeded up according to Table. (3)

almost four times. The time spent on other operations inside the program e.g. constructing

densities and mean-field Hamiltonian, which has not been included in the timing studies is

negligible compared to the diagonalization time.
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CHAPTER IV

NUMERICAL IMPLEMENTATIONS

4.1 Implementation of HFB-2D-LATTICE code on parallel computers

The numerical solution of the HFB-2D-LATTICE code requires the use of the parallel

computers due to the very time consuming calculations. Currently, we use as the method

of solution the iterative diagonalization technique, where we obtain the wave-functions and

the corresponding eigenvectors from the direct diagonalization. The size of the constructed

HFB Hamiltonian on the spatial lattice depends on the size of the 2D-grid (sec:3.1.2) . This

leads to the size of matrices of the order of 4000× 4000 for the relatively large systems (e.g.

calculations for the Zr isotope chain, see section (5.1)). The Hamiltonian matrix in 2D is

real and non-symmetric. The lack of the symmetric property is caused by the application

of the Galerkin/collocation method to represent the differential operators on the spatial

lattice [90, 91, 50, 92, 93, 94]. Therefore, we are forced to use the direct eigensolvers (Linear

Algebra Package(LAPACK95)) for general matrices. Additionally, the diagonalization needs

to be performed separately for all magnetic substates, per iteration (i.e. 22 times for the

our typical choice of the Ω=21/2) . Typically, our HFB code requires on average about

50 iterations for all of the observables to converge. It is obvious that the bottle-neck of

the performance of the our HFB code is caused by the direct diagonalization method.

Unfortunately, as of today this is the only known reliable technique that one has to use

to solve the 2D HFB problem in coordinate space using the Basis -Spline method [90, 91,

50, 92, 93, 94]. For all of the mentioned reasons, to speed up our calculations, we chose to

implement our HFB code on parallel computers.

4.1.1 MPI implementation of the HFB-2D-LATTICE code.

Currently, our 2D Basis-Spline code in coordinate space utilizes the iterative diagonal-

ization technique to obtain ground states properties. The iterations are performed until the

convergence is achieved. Below we describe the process for the iterative solution.

I. Construct the quasiparticle Hamiltonian (Eq. 124) ĤΩ(ρ, ρn,p, ρ̃, ρ̃n,p, τ, τn,p, λn/p),
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which depends on various densities and the Fermi levels λn/p for each angular mo-

mentum number Ω . Perform diagonalization separately for neutrons and protons for

each Ω and obtain the quasiparticle energies EΩ,n and wave-functions ΦΩ,n.

II. Calculate the following quantities:

• add up the partial densities {ρΩ, ρ
Ω
n,p, ρ̃Ω, ρ̃

Ω
n,p, τΩ, τ

Ω
n,p} and calculate the total

densities ρ, ρn,p, ρ̃, ρ̃n,p, τ, τn,p

• average pairing gaps ∆n,p(h̃, ρ)

• Fermi levels λn,p(∆n,p, En)

III. Check convergence comparing several observables (i.e. binding energy,pairing gaps)

from the previous two iterations. If convergence is achieved, then print output files.

If not, then go to (1).

On a multi-processors computer it is possible to parallelize the above scheme for differ-

ent angular momentum numbers Ω and different isospin ( protons/neutrons). To simplify,

the diagonalization for every angular momentum number from Ωmin = 1
2

to Ωmax is car-

ried separately for neutrons and protons by the processors labeled by (Ω − 1
2
). In general,

one needs PN=(2Ωmax + 1) processors; for example, if Ωmax = 21
2
, one needs 22 proces-

sors (neutrons+protons). In the MPI (Message Passage Interface) [98] nomenclature we

talk about processes, which have its own IDs. For simplicity, we can think about the pro-

cessors as they were the processes. The parallelization scheme we have chosen to write

the (Fortran90+MPI) parallel implementation of the Vanderbilt HFB code designates one

process (Root process(#0)) , which calculates the total densities, Fermi level and pairing

gaps. Consequently, every process labeled by Ω (including Root process ) performs a diag-

onalization and calculates partial densities (for each angular momentum number Ω). The

communication between the (Root process(#0) and the every process, which is necessary

to perform more than one iteration is provided by the MPI commands. We used “MPI

Fortran Bindings” [98], which means that MPI commands can be mixed with the Fortran

language. Below as well as in Fig. (15) we describe the parallelized process of the iterative

solution
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I. Every process (Ω):

• if the iteration number is greater than one, every process receives the total den-

sities, the average pairing gaps ∆n,p(h̃, ρ) and the Fermi levels λn,p from the Root

process by calling the subroutine rec from root(). If iteration number is equal

equal to one, every process reads the mentioned quantities from the input files

• constructs and diagonalizes the Hamiltonian ĤΩ(ρ, ρn,p, ρ̃, ρ̃n,p, τ, τn,p, λn/p) de-

pendent on various total densities and the Fermi level λn/p

• calculates the new partial densities {ρΩ, ρ
Ω
n,p, ρ̃Ω, ρ̃

Ω
n,p, τΩ, τ

Ω
n,p} from the eigen-

functions ΦΩ,n

• sends the quasiparticle energies En,Ω and the new partial densities

{ρΩ, ρ
Ω
n,p, ρ̃Ω, ρ̃

Ω
n,p, τΩ, τ

Ω
n,p} to the Root process by calling the subroutine

send to root()

II. Root process (#0):

• receives the quasiparticle energies En,Ω and the partial densities

{ρΩ, ρ
Ω
n,p, ρ̃Ω, ρ̃

Ω
n,p, τΩ, τ

Ω
n,p} from every process by calling the subroutine

rec from everybody()

• calculates the total densities ρ, ρn,p, ρ̃, ρ̃n,p, τ, τn,p from the received partial densi-

ties {ρΩ, ρ
Ω
n,p, ρ̃Ω, ρ̃

Ω
n,p, τΩ, τ

Ω
n,p}

• calculates average pairing gaps ∆n,p(h̃, ρ) for protons and neutrons

• calculates the Fermi levels λn,p(∆n,p, En,Ω) for protons and neutrons

• checks the convergence comparing chosen observables (i.e. binding energy, pairing

gaps) from the previous two iterations.

– if convergence is achieved, then print output files and stop

– if not, send the total densities {ρ, ρn,p, ρ̃, ρ̃n,p, τ, τn,p}, the Fermi levels

λn,p(∆n,p, En,Ω) and average pairing gaps ∆n,p(h̃, ρ) to the Root process for

the next iteration by calling the subroutine send to everybody(). Go to (1).
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Figure 15: Scheme of the parallelization of the HFB-2D-LATTICE code ; PN is the total
number of the available processors. The processes are enumerated from 0 . . . PN-1.

As was mentioned, there is a need of communication between the designated “Root process”

and the “Every process”. In the parallel version of our HFB code is controlled by the four

subroutines, namely (Fig. 16)

• rec from root()

• send to root()

• rec from everybody()

• send to everybody().

Each subroutine uses the nonblocking (Ref. [98]) MPI ISEND(. . .) subroutine to send the

data and the corresponding MPI IRECV(. . .) to receive. Additionally, the sending and

receiving process needs to synchronized, e.g. the “’Root process” sends a message first

to the chosen process that is ready to receive the data (calls rec from everybody). Af-

ter the selected process receives the message from the ‘’Root process” it starts to send
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Figure 16: Synchronized sending and receiving the data between the “’Root process” and
the “Every process”.

(calls send to root) the data to the ’Root process” . Similarly, the ‘’Root process” (calls

send to everybody) sends the successive portions of the data to the “’Every process” only

when the addressee received (calls rec from root) the information packet. The benefit

of the effort spent on parallelizing our HFB-2D-LATTICE code was worthwhile. For the

typical choice of the maximum angular momentum number Ωmax = 21/2 our code runs

approximately 22 times faster due to the use of 22 processors at the same time. This limits

the time spent on the calculations for one isotope from several weeks to approximately three

days [82, 95].

We perform our calculations on the NERSC IBM SP RS/6000 supercomputer and on

the cluster computer ”Vampire” at the ACCRE, Vanderbilt University. The former, named

”SEABORG” in honor of Glenn Seaborg, is a distributed memory computer with 6,080

processors. The processors are distributed among 380 compute nodes with 16 processors per
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node. Each node has available memory between 16 and 64 GBytes. The latter, ”Vampire”,

currently consists of 360 Linux compute nodes with two 2.0 GHz Xeon or Opteron processors

per node. The available memory per node ranges from 512 KB to 2 GB.
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CHAPTER V

RESULTS

We solve the Hartree-Fock-Bogoliubov (HFB) equations for deformed, axially symmetric

even-even nuclei in coordinate space on a 2-D lattice utilizing the Basis-Spline expansion

method. Results are presented for the neutron-rich Zirconium and Krypton isotopes up to

the two-neutron dripline. These isotopes are from the mass region of A ∼ 100, which has

been of interest for a long time to nuclear structure physicists as an area of competition be-

tween various coexisting nuclear shapes (well-deformed prolate, oblate, or spherical) [99]. In

particular, we calculate binding energies, two-neutron separation energies, normal densities

and pairing densities, mean square radii, quadrupole moments, and pairing gaps.

5.1 Calculations for Zr isotope chain .

In this section we study the ground state properties of neutron-rich Zirconium nuclei

(Z = 40) up to the two-neutron dripline [95, 100]. The isotope chain calculations start from

the 102Zr isotope up to the dripline nucleus, which turns out to be 122Zr. The Zirconium

isotopes are known to possess a rapidly changing nuclear shape when the neutron number

changes from 56 to 60 [101]. We find that a spherical ground state shape is preferred

over a prolate shape starting from the 114Zr isotope up to the dripline nucleus 122Zr. Very

large prolate quadrupole deformations (β2 = 0.42, 0.43, 0.47) are found for the 102,104,112Zr

isotopes, in agreement with recent experimental data. Two theoretical approaches are

presented and compared: a) a 2-D lattice method using Basis-Spline technology (hereafter

referred to as HFB-2D-LATTICE), and b) an expansion in a 2-D harmonic oscillator (HFB-

2D-HO) and transformed harmonic oscillator basis (HFB-2D-THO) [79].

120Sn isotope - fitting the pairing strength.

In all calculations we utilize the SLy4 Skyrme force [102, 103] and a zero-range pairing

force with a strength parameter V0 = −187.1305 (HFB-2D-LATTICE code), and V0 =

−187.1000 (HFB-2D-THO code) with an equivalent single particle energy [104, 82] cutoff

58



parameter of εmax = 60 MeV.

The pairing strength V0 has been adjusted in both codes to reproduce the measured

average neutron paring gap of 1.245 MeV in 120Sn [81], as can be seen from Table 4.

Table 4: Results for 120
50Sn. Comparison of results obtained from the HFB-2D-LATTICE

code (first row) with HFB-2D-THO results (second row) and the experiment (third row).
The columns display binding energies (BE), intrinsic quadrupole moments for neutrons
and protons (Qn,Qp), rms-radii (rn,rp), average pairing gaps (∆n,∆p), pairing energy for
neutrons (PEn), and Fermi levels (λn, λp).

BE(MeV) Qn(fm2) Qp(fm
2) rn(fm) rp(fm)

-1019.26 0.29 0.12 4.725 4.590
-1018.22 0.00 0.00 4.728 4.593
-1020.54 - - - -

∆n(MeV) ∆p(MeV) PEn(MeV) λn(MeV) λp(MeV)

1.244999 0.0 -10.24 -7.98 -8.16
1.245469 0.0 -10.26 -7.99 -11.13

1.245 - - - -

In Table 4 we compare the results from the two HFB codes for the 120
50Sn isotope. All

observables agree very well. The apparent “disagreement” in the proton Fermi level λp is

really an artifact: the pairing gap vanishes at the magic proton number Z = 50 resulting in

an ill-defined Fermi energy. The two codes use different prescriptions for calculating λp in

the trivial case of no pairing. HFB+THO accepts the last occupied equivalent single-particle

energy as λp in this no pairing case, whereas the Basis-Spline code takes the average of the

last occupied and first unoccupied equivalent single-particle energy levels.

Deformations, dripline and pairing properties

Recently, triple-gamma coincidence experiments have been carried out with Gammas-

phere at LBNL [105] which have determined half-lives and quadrupole deformations of the

neutron-rich 102,104Zr isotopes. The isotopes from that region are produced in the pro-
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cess of fission of transuranic elements and have been studied via γ-ray spectroscopy tech-

niques. These medium-mass nuclei are among the most neutron-rich isotopes (N/Z ≈ 1.6)

for which spectroscopic data are available. Very large prolate quadrupole deformations

(β2 = 0.43, 0.45) are found for the 102,104Zr isotopes. Furthermore, the laser spectroscopy

measurements [99] for the Zirconium isotopes have yielded precise rms-radii in this region.

Recently, an experiment has been carried out to measure the mass of the 104Zr isotope

[101]. It is therefore of a great interest to compare these data with the predictions of the

self-consistent HFB mean field theory.

In radial (r) direction, the lattice in the HFB-2D-LATTICE code extends from 0−15 fm,

and in symmetry axis (z) direction from −15, ...,+15 fm, with a lattice spacing of about

0.8 fm in the central region. Angular momentum projections Ω = 1/2, 3/2, ..., 21/2 were

taken into account. Calculations performed with the HFB-2D-THO code used 20 trans-

formed harmonic oscillator shells. Figure 17 shows the calculated two-neutron separation

energies for the Zirconium isotope chain. The two-neutron separation energy is defined as

S2n(Z,N) = Ebind(Z,N) − Ebind(Z,N − 2) . (161)

Note that in using this equation, all binding energies must be entered with a positive sign.

The position of the two-neutron dripline is defined by the condition S2n(Z,N) = 0, and

nuclei with negative two-neutron separation energy are unstable against the emission of

two neutrons. As one can see both methods (HFB-2D-THO and HFB-2D-LATTICE) are

in excellent agreement for the two-neutron separation energy for the entire isotope chain.

Particularly, the 122Zr isotope is predicted in both calculations as the dripline nucleus. In

addition, we also give a comparison with the latest experimental data, available only up to

the isotope 110Zr [106]. As it is shown on Fig. 17 the separation energy values obtained from

the experiment are somewhat larger than the theoretical calculations although the trend

remains the same.

In Fig. 18 we compare the intrinsic proton and neutron quadrupole moments calculated

with the lattice code and the THO code. Available experimental data [105] are also given.

Generally, we observe a nearly perfect agreement between the two codes as well as with the

experiment. The deformations (for neutrons ) in terms of the deformation parameter β2

for those nuclei, namely for the 102−112Zr isotopes range from β2=0.42 to β2 = 0.47. Both
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Figure 17: Two-neutron separation energies for the neutron-rich Zirconium isotopes. The
dripline is located where the separation energy becomes zero. The 122Zr isotope is the last
stable nucleus against two neutron emission.

the Basis-Spline lattice code and the HFB-2D-THO code predict the 112Zr isotope to have

the largest ground state deformation. For mass numbers larger than 112 (Table. 5), we

observe a transition to spherical ground state shape. This phenomenon had been also found

in calculations performed by Möller et al. [107] (Finite Range Droplet Model calculations

(FRDM)) and in Relativistic Mean-Field calculations by Lalazissis et al. [54]. We depict

this comparison in Fig. 19 . Experimental deformations for protons are available for two

isotopes, 102Zr and 104Zr [105]. Calculations agree with the experiment reasonably well and

give β2 values of 0.42,0.43 while the experiment predicts β102
2 =0.42, β104

2 =0.45.

In Fig. 20 we compare the root-mean-square radii of protons and neutrons predicted by

the LATTICE code and the THO code. Both codes give nearly identical results for the whole

isotope chain. Only one experimental data point is available, the proton rms radius of 102Zr

[99]. The experiment yields a proton rms radius of 4.54 fm while the HFB codes predict a

value of 4.45 fm (HFB-2D-LATTICE) and 4.46 fm (HFB-2D-THO). The difference between

theory and experiment is quite small, of order 2%. We can clearly observe the presence of

the neutron-skin manifested by the large differences between the neutron and proton rms
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Figure 18: Intrinsic quadrupole moments for protons and neutrons.

radii for all of the isotopes in the chain. As expected the neutron-skin becomes ”thicker” as

we approach the dripline. Starting at the mass number A=114 up to the dripline the nuclei

prefer a spherical ground state shape (Fig. 18) which results in a sudden shrinking of the

rms radius at A=114.

Table 5: The calculated HFB observables for the most deformed 112Zr isotope. The columns
display binding energy (BE), deformation parameter β2 for neutrons and protons (βn

2 ,βp
2),

rms-radii (rn,rp,rtotal), average pairing gaps (∆n,∆p), pairing energy for neutrons and pro-
tons (PEn,PEp ), and Fermi levels (λn, λp).

BE(MeV) βn
2 (fm2) βp

2(fm
2) βtot

2 (fm2) rn(fm) rp(fm) rtot(fm)

-901.90 0.47 0.45 0.47 4.88 4.58 4.77

∆n(MeV) ∆p(MeV) PEn(MeV) PEp(MeV) λn(MeV) λp(MeV) -

8.41 10−2 8.01 10−2 −4.53 10−2 −3.33 10−2 −2.82 −16.22 -
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sis et al. (RMF), HFB-2D-LATTICE and Möller et al. (FRDM) (β2 total is shown ).
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Figure 20: Root-mean-square radii for the chain of Zirconium isotopes.
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Figure 21: Average neutron pairing gap for the chain of Zirconium isotopes.
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Figure 22: Average proton pairing gap for the chain of Zirconium isotopes.
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Fig. 21 and Fig. 22 depict the average pairing gaps for neutrons and protons. Generally,

both HFB codes show the same trend for the pairing gaps as a function of neutron number;

the agreement is noticeably better for neutrons. The two HFB codes predict a small value of

the neutron pairing gap for the 112Zr isotope which on the other hand has the largest prolate

deformation (Fig. 18) among the calculated nuclei. Coincidentally, the dripline turns out to

be at the neutron magic number (N=82) and, as expected, both codes yield a pairing gap

of zero for the 122Zr isotope. The differences observed in the neutron and proton pairing

gaps can be attributed to different approaches in representing the continuum states, namely

discretized continuum states in the HFB-2D-LATTICE versus positive energy bound states

in a stretched harmonic oscillator. In general, the pairing gap is the one observable which

is most sensitive to the properties of the continuum states. In addition, two approaches use

different methods for representing differential operators as well as calculating the Coulomb

potential.

Density studies

In this section we focus on the normal and pairing densities for the selected isotopes.

In Fig. 23 we show a contour plot of normal densities for protons and neutrons for the

110Zr isotope. It is the last deformed isotope with a significant value of the pairing gap

for neutrons, (Fig. 21), therefore it is possible to show plots of both normal and pairing

densities. The results obtained for the neutron normal and pairing densities (Figs. 23 and

24) clearly exhibit a large prolate deformation. The normal density for neutrons (Fig. 23) is

concentrated in the region that extends from 0 fm to 2 fm in r-direction and from −5 fm to

+5 fm in z-direction. Within this region, we find an enhancement in the neutron density with

a shape that resembles the figure “eight”. In comparing the neutron to the proton density,

one notices that both the center of the nucleus and the surface is dominated by neutrons.

The pairing density for neutrons in Fig. 24 shows a richer structure than the normal density.

This quantity describes the probability of correlated nucleon pair formation with opposite

spin projection, and it determines the pair transfer formfactor. We can see that most

correlated pair formation takes place in the four closed shaped structured areas near the

z-axis. We may conclude that neutrons dominate the pairing properties of this nucleus
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which is a consequence of ∆n being larger than ∆p. A similar argument applies to normal

densities (N>Z) , yet the difference between neutrons and protons is more pronounced in

case of the pairing densities. A graph depicting the single-particle energy spectrum of the

pairing density for the 104Zr isotope has been published in Ref. [84]. In Figs. 25 and 26 we

show plots of normal densities as a function of the distance from the center, r =
√
ρ2 + z2.

For a given value of r, the density is single-valued for a spherical nucleus and multi-valued for

a deformed density distribution because in the latter case different combinations of lattice

points zi and ρj give rise to the same r-value.
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Figure 23: Contour plots of the 110Zr normal densities, for protons (left) and neutrons
(right). Densities are shown as a function of the cylindrical coordinates (r, z), where z is
the symmetry axis. The scale ranges from 9.7 ·10−2 fm−3 (dark red), through 5.0 ·10−2

(light green), 3.0 ·10−3 (light blue), to 3.4 ·10−15 (dark blue) .

In Fig. 25 we compare three different calculations of the neutron normal density for

the most deformed 112Zr isotope. The plot on a logarithmic scale shows that the density

distribution predicted by the HFB-2D-THO and HFB-2D-LATTICE codes is deformed for

66



0.12 10 14.87
−14.87

−10

0

10

14.87

r

z

0.12 10 14.87
−14.87

−10

0

10

14.87

0.12 10 14.87
−14.87

−10

0

10

14.87

0.12 10 14.87
−14.87

−10

0

10

14.87

Figure 24: Contour plots of the 110Zr pairing densities, for protons (left) and neutrons
(right). The densities are shown as a function of the cylindrical coordinates (r, z), where z
is the symmetry axis. The scale ranges from 9.0 ·10−3 fm−3 (dark red), through 4.9 ·10−3

(light green), 8.0 ·10−4 (light blue), to 9.3 ·10−14 (dark blue) .

almost all values of the distance from the nuclear center, r. At very large distances the

densities become less deformed since nuclear potentials go to zero and HFB equations lead

to a spherical asymptotic solution. Fig. 25 also shows for comparison the HFB-2D-HO result

as an illustration of the shortcomings of the pure harmonic oscillator basis calculations to

reproduce density distributions asymptoticly at very large distances. One can see its too

rapid decay beyond distances of about 12 fm. Clearly, the pure harmonic oscillator basis

calculations cannot represent properly density asymptotic for nuclei close to the neutron

drip line. Neutron and proton normal densities for the drip-line nucleus 122Zr are shown

in Fig. 26. From the single-valued plot as a function of r =
√
ρ2 + z2 one can immediately

conclude that both neutron and proton normal densities are spherical. Another feature is

the strong neutron enhancement at the center and a corresponding depletion in the proton

density, which is due to occupied (unoccupied) s orbitals near the Fermi level.
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Figure 25: Logarithmic plot of the normal neutron density for the most deformed isotope
112Zr as a function of the distance r =

√
ρ2 + z2.

Figure 26: Linear plot of the normal neutron and proton density for the dripline nucleus
122Zr as a function of distance r =

√
ρ2 + z2. Comparison between the HFB-2D-THO code

and the HFB-2D-LATTICE code.
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We also note that the neutron density is substantially larger than the proton density for

all values of r.

The convergence study of the HFB observables

In this section we focus on the convergence studies of the HFB observables (see section

3.1.3). In Fig. 27 are plotted the average neutron pairing gap 〈∆n〉 and deformation

parameter β2 for neutrons as a function of the iteration number. As one can observe
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Figure 27: Convergence studies. Shown are the average neutron pairing gap 〈∆n〉 and
deformation parameter β2 for neutrons for the 102Zr isotope as a function of the iteration
number.

both observables converge asymptotically to the final value after about forty iterations.
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These two selected observables exhibit two different kinds of the monoticity; the pairing

gap 〈∆n〉 monotically decreases while the deformation parameter βn increases. Our goal is

to plot simultaneously few selected observables in order to observe and compare the rate at

which these quantities reach the converged value. For the quantity of choice f we plot it’s

percentage relative error versus the iteration number
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Figure 28: Convergence studies for the 102Zr isotope. Plotted is the relative percentage
error of the five selected HFB observables: binding energy, neutron Fermi level, neutron
rms-radius, deformation parameter β2 for neutrons and average neutron pairing gap 〈∆n〉.

∆f

f
× 100% ≡ ||fiter+1| − |fiter||

|fiter+1| × 100%. (162)

We take also an absolute value of all quantities to be able to plot simultaneously the selected

observables regardless of the character of it’s monoticity or sign. The results for the two

neutron-rich isotopes 102,106Zr are shown in Figs. 28 and 29. We plot the most important

observables i.e. binding energy, Fermi level, pairing gap, deformation parameter and rms-

radius as the function of the iteration number. As can be seen, the observables converge at
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different rates. Another noticeable feature, is that we can observe two families of observables;

the “slow” ones, i.e. the pairing gap and deformation parameter β2, and the “fast” ones,

i.e. binding energy, rms-radius and the Fermi level. This is a fact one should keep in mind

when making decisions about the number of required iterations.
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Figure 29: Convergence studies for the 106Zr isotope. Plotted is the relative percentage
error of the five selected HFB observables: binding energy, neutron Fermi level, neutron
rms-radius, deformation parameter β2 for neutrons and average neutron pairing gap 〈∆n〉.
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5.2 Calculations for Kr isotope chain .

This section addresses the ground state properties of the neutron-rich Krypton isotopes

(Z = 36) up to the two-neutron dripline. The isotope chain calculations start from the 104Kr

isotope up to the dripline nucleus 116Kr. In our calculations we use the grid size, maximum

magnetic number jz = 21/2, pairing strength V0 as in case of Zr isotope chain. We find

a shape transition from the prolate deformation into oblate and also various coexisting

nuclear shapes in calculated isotope chain. We compare our results with the Finite Range

Droplet Model calculations (FRDM) [107] and with the Relativistic Mean-Field calculations

by Lalazissis et al. [54].

5.2.1 Bulk properties.

Figure (30) shows the calculated two-neutron separation energies for the Krypton isotope

chain (Eq. 161).
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Figure 30: Two-neutron separation energies for the neutron-rich Krypton isotopes. The
dripline is located where the separation energy becomes zero. The 116Kr isotope is the last
stable nucleus against two neutron emission.

As can be seen the dripline is found to be at A = 116.
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Figure 31: Mass distribution quadrupole parameter β2 for neutrons. Comparison of calcu-
lations by Lalazissis et al. (RMF+BCS), HFB-2D-LATTICE and Möller et al. (FRDM)
(β2 total is shown ).

Compared to the two-neutron separation energy for the Zr isotope chain for the same

mass number (Fig. 17 ) the energy values are on average smaller by about 4 MeV. This

observed energy difference occures naturally due to the absence of the four protons. Ex-

perimental data for the Krypton isotopes chain calculated in this work is unavailable. It is

due to experimental difficulties to reach the region of the relatively large N/Z ratios. The

most neutron-rich Zirconium isotope for which experimental data is available is 110Zr with

N/Z≈ 1.75. Our Krypton isotope chain starts from the 104Kr with N/Z ≈ 1.8. Krypton

isotopes similarly as in case of Zirconium chain reveal variety of shapes. The deformations

in Fig.31 range from β2=0.38 (104Kr), through β2=-0.31 (108Kr-see Fig. 33) up to β2=0.1

(110Kr) . In particular we can observe the shape change from the prolate deformation into

the oblate at the mass number A=108. The shape transition is also indicated by two other

models, namely the Finite Range Droplet Model calculations (FRDM) [107] and by the

Relativistic Mean-Field calculations by Lalazissis et al. (RMF+BCS) [54]. We can observe

the same trend for the depicted three models, yet not a perfect agreement. The discrepan-

cies between our HFB-2D-LATTICE code and the former two methods are expected and
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Table 6: Shape coexistence studies. Shown are the deformations β
n/p
2 for neutrons/protons

and binding energy for selected isotopes. The results are showed for three possible minima
(1st,2nd,3rd). The first column contains the ground state minimum.

isotope 1st min. 2nd min. 3rd min.
βn

2 βp
2 E[MeV] βn

2 βp
2 E[MeV] βn

2 βp
2 E[MeV]

104Kr 0.38 0.35 -821.41 0.09 0.1 -816.44 -0.26 -0.25 -821.30
106Kr 0.36 0.35 -825.65 - - - -0.29 -0.28 -825.29
110Kr -0.15 -0.15 -832.14 0.07 0.08 -830.45 0.40 0.36 -829.94

can be understood as the result of the simplistic BCS model [56] of pairing interaction

used by FRDM and RMS calculations, which is known to break down in the vicinity of

the dripline. In Table (6) we study the shape coexistence phenomenon present for the Kr

isotope chain. As can be seen, the selected isotopes 104,106,110Kr can have several different

coexisting Jπ = 0+ states with stable deformed shapes. These deformations correspond

to the local minima of the binding energy as the function of the deformation, where the

ground state minimum has the lowest binding energy. What can be noticed is that the

energy difference between the prolate and oblate minimum for 104,106Kr isotopes is very

small of the order of 10-40 keV. a As anticipated, the rms-radii studies in Fig. 32 show the

neutron-skin phenomenon manifested as the large difference between proton and neutron

rms-radius. A sudden radius drop at A=108-110 falls exactly into the mass region of the

the shape change occurrence (see Fig. 31). The comparison with Relativistic Mean-Field

calculations by Lalazissis et al. [54] clearly show the shortcomings of the BCS model based

treatment of pairing interaction, which introduces a systematically larger radius for neu-

trons. This effect has also been seen in calculations of the Sulfur isotopes by Oberacker et

al. (fig.4) [83] and also in the Zr isotopes chain (fig. 20). In Figures 36 and 37 we show

the average pairing gaps for neutrons and protons respectively. For instance, the relatively

larger neutron pairing gap for 108Kr (∆n > ∆p) implies also a larger neutron pairing density

what is shown in Fig. 34. In the opposite case of 104 Kr, when ∆n < ∆p, it is more probable

to find the two protons at the same position with the opposite spin projection (Fig. 35 ).
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Figure 32: Root-mean-square radii for the chain of Krypton isotopes.

Another interesting pairing quantity which we have studied is the “pairing density spectral

distribution” PnΩq plotted in Fig.38

PnΩq = −
∫ ∞

0
rdr

∫ ∞

−∞
dz

∑

σ=↑↓
Ψ

(2)
nΩ(r, z, σ, q)Ψ

(1)∗
nΩ (r, z, σ, q). (163)

The quantity PnΩq carries an information about the contribution of a given quasiparticle

state |nΩq〉 to the neutron pairing density [82].

As we can notice the function PnΩq is peaked around the Fermi energy λn = −1.49 MeV,

what tells us that the states near the Fermi level contribute most to the pairing density. In

calculating the observables we include states up the 60 MeV in the equivalent single particle

energy εn. The plot in Fig. 38 reassures us that the contribution to the pairing density

above the energy 60 MeV can be neglected (contribution of the order of ∼ 10−3). Thus, the

cut-off at the energy of 60 MeV is fully justified.
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Figure 33: Contour plots of the 108Kr normal densities, for protons (left) and neutrons
(right). Densities are shown as a function of the cylindrical coordinates (r, z), where z is
the symmetry axis. Note the oblate shape, with β2=-0.31.
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Figure 34: Contour plots of the 108Kr pairing densities, for protons (left) and neutrons
(right). The densities are shown as a function of the cylindrical coordinates (r, z), where z
is the symmetry axis. The oblate quadrupole deformation is β2 = −0.31.
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Figure 35: Contour plots of the 104Kr pairing densities, for protons (left) and neutrons
(right). The densities are shown as a function of the cylindrical coordinates (r, z), where z
is the symmetry axis. The prolate quadrupole deformation is β2=0.38.
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Figure 36: Average neutron pairing gap for the chain of Krypton isotopes.
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Figure 37: Average proton pairing gap for the chain of Krypton isotopes.
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CHAPTER VI

CONCLUSIONS

This work concentrates on the 2D-lattice coordinate-space HFB calculations for neutron-

rich nuclei. The 2D axially symmetric coordinate-space calculations are a natural contin-

uation of the 1D coordinate-space calculations by Dobaczewski et al. [81]. In the lattice

approach, no region of the spatial lattice is favored over any other region: the well bound,

weakly bound, and (discretized) continuum states can be represented with the same ac-

curacy. Our method does not have any limitations in taking into account the continuum

states. The arbitrary cut-off in the equivalent single-particle energy is possible (currently

60 MeV), thanks to the utilization of the Basis-Spline techniques [93, 89, 108, 90, 91, 92] in

representing the differential operators. In this sense the lattice calculations are considered

the most accurate, as they do not impose any approximations (e.g. low-energy cut-off or

harmonic oscillator basis expansion methods).

As of today, our 2D lattice HFB code is a fully functional and highly optimized FOR-

TRAN 95 program suitable for parallel supercomputers. The applied parallelization scheme

for different angular momentum numbers Ω and different isospins (proton/neutron) enabled

us to speed up calculations for Ωmax = 21
2

almost 22 times. Furthermore, nearly four times

gain in the speed was achieved by diagonalization of the smaller reduced Hamiltonian.

Clearly, the current code advanced in speed ∼88 times compared to the older versions. The

reduction of the size of the diagonalized Hamiltonian was accomplished by applying the

unitary transformation to the original Hamiltonian, which decouples the HFB equations

(sec:3.1.4). A smaller Hamiltonian matrix allows us to reach heavier systems e.g. calcula-

tions for 238U are feasible at reasonable computation time. It is also important to mention

that the Hamiltonian matrix of the reduced Hamiltonian is a general positive definite matrix

compared to the general nondefinite one of the original Hamiltonian. This property makes a

search for an alternative to the direct diagonalization methods of solving the HFB problem

much easier.

Moreover, it has been found that the precise pairing strength V0 depends on the method

79



used (lattice, THO) and cannot be taken over from the calculations of others in order to

have comparable results. In section (sec:5.1) the fit to the properties of the 120Sn isotope

was made providing the new value of V0.

Furthermore, we explored the neutron-rich A ∼ 100 mass region resulting in the calcu-

lations of properties of the two isotope chains, namely 36Kr and 40Zr.

The results obtained for the Zr isotope chain agree remarkably well with the calcula-

tions by Stoitsov et al. [79] giving the reassurance that both codes, namely our HFB-

2D-LATTICE code and the Transformed Harmonic Oscillator (THO) approach are fully

functional. In particular both codes agree on the dripline nucleus and predict the same

shape change from prolate into spherical. The comparison of rms-radii and neutron densi-

ties show also the presence of a neutron skin in the neutron-rich Zr isotope chain. However,

we find minor differences in the pairing gaps predicted by both methods; this is expected

because ∆n,p is sensitive to the continuum states. Finally, the convergence studies based on

the two selected Zr isotopes exhibit two families of observables, the “fast” ones converging

fairly quickly to the final value and the “slow” ones, which require many more iterations in

order to converge.

Similarly, as in case of Zirconium we find in studied Kr isotope chain a shape change from

the prolate deformation into an oblate, which is reflected in the neutron and proton rms-

radius as well. The results obtained for the chain of Kr isotopes confirm that the mass region

of A ∼ 100 is the area of the competition between various coexisting nuclear shapes. In

particular we found several different coexisting Jπ = 0+ states in selected three Kr nuclei.

The usefulness of the average pairing gap quantity in studying the pairing densities was

demonstrated. The plot of the neutron pairing density spectral distribution vs. equivalent

single-particle energy demonstrates that the 60 MeV cut-off energy limit is sufficient.

To summarize, we have numerically solved the HFB problem on the 2D lattice without

any approximations. As mentioned before, the lattice calculations are considered to be the

most accurate from the numerical point of view. Unfortunately, the size of the Hamiltonian

matrix in two dimensions requires fairly large amount of CPU time. For this reason our

code cannot provide a complete mass table of neutron-rich nuclei within a reasonable time

frame. Such calculations are crucial in astrophysics.

80



As it was demonstrated in case of the Zr isotopes our HFB ground state results agree

very well with the THO-calculations by Stoitsov et al., whose code is much faster. However,

our lattice 2-D code provides a much better representation of continuum states which may

be crucial in future calculations of excited states.

It is possible to generate ground state solution of several selected nuclei, which will serve

as the input for the future time dependent calculations. Currently, our group focuses on the

Time-Dependent-Hartree-Fock (TDHF) calculations of heavy-ion collisions. The 2D HFB

lattice code will provide a base for the planned in the future Time-Dependent-Hartree-Fock-

Bogoliubov (TDHFB) calculations for exotic nuclei.
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