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Chapter 1

Introduction

The goal of this research is to develop image reconstruction techniques to automatically correct

for errors in Magnetic Resonance Imaging (MRI) data due to errors in the trajectory used in the

data acquisition. A method is presented to perform an iterative image reconstruction correcting for

these trajectory errors in non-Cartesian acquisitions, without additional scans or measurements.

This chapter discusses the basics of non-Cartesian acquisitions in MRI, parallel imaging recon-

structions, and previous methods of correcting for trajectory errors.

1.1 Non-Cartesian Readout Trajectories

Readout trajectories for MRI have typically been on a Cartesian grid with sample points ac-

quired at equispaced points in 2 and 3 dimensional space. This allows image reconstruction with a

simple Fourier transform which can be performed efficiently using fast Fourier transforms (FFTs).

However, sampling on a Cartesian grid is slow and does not allow for undersampling in an optimal

manner in terms of the resulting signal-to-noise ratio (SNR). Non-Cartesian trajectories include

radial, center-out radial, spiral, and concentric circles among many others. These were introduced

as methods of increasing the speed of traversal of k-space while minimizing SNR losses due to

sub-Nyquist sampling. They are designed generally to oversample the center of k-space where

signal is highest. They are in particular used in dynamic MRI, including functional brain imaging

[1], cardiac imaging [2, 3], and in applications where the MR signal is short-lived, such as sodium

imaging [4] and ultra-short echo time (UTE) imaging [5].

However, compared to Cartesian k-space readouts, they are particularly sensitive to trajectory

errors caused by gradient eddy currents, delays, and non-ideal gradient amplifier characteristics.

These errors are pronounced in non-Cartesian trajectories, particularly because they often involve

sampling on the ramps of the gradients. Non-Cartesian trajectories are also used for applications

1



which require fast readouts and therefore push gradient amplifiers to their limits, resulting in de-

creased accuracy. The gradien t pre-emphasis methods that scanners typically use to compensate

for these types of eddy current errors are often targeted to optimize gradient trapezoids used for

Cartesian imaging only, and are limited in the scope of errors for which they can compensate.

These uncompensated trajectory errors can result in severe image distortions.

1.2 Parallel Imaging Reconstructions

A common technique for efficient signal acquisition in MRI is parallel imaging, in which sev-

eral coils with spatially independent sensitivity profiles are used to sample the signal simulta-

neously. Since the coils have different spatial sensitivity profiles, they each collect a uniquely

weighted version of the underlying signal. This redundant sampling enables image reconstruc-

tion that exploits this fact and allows higher fidelity recovery of the underlying signal, providing a

signal-to-noise ratio (SNR) benefit. Further, it enables undersampling of the signal in k-space with

recovery of the signal via the spatial encoding provided by the separate coils. In turn this allows in-

creased temporal resolution and provides a basis for reduced-artifact image reconstructions which

take advantage of redundantly sampled data over multiple coils. There are several methods of

exploiting the redundancies in multicoil datasets, including those from non-Cartesian trajectories.

The two methods specifically highlighted in this work are SPIRiT and SENSE reconstructions, and

these are discussed in detail below.

1.2.1 SENSE

A brief summary of the SENSE (sensitivity encoding) technique follows. A more detailed

account can be found in the work of Pruessmann et al.[6, 7] . When we acquire along an arbitrary

trajectory in k-space the corresponding signal model is:

yc(~k) =
∫

VOI
p(~r)ec(~k,~r)d~r (1.1)
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where yc(~k) is the k-space signal measured by coil c as a function of k-space position, p(~r) is

a function of the imaged object and imaging parameters at spatial coordinates~r, and ec(~k,~r) are

encoding functions. To reconstruct an image, these encoding functions are discretized and form

the elements of an encoding matrix E defined as follows:

E(ci), j = eı~ki·~r jsc j (1.2)

where~ki is the k-space trajectory at index i, and sc j is coil c’s sensitivity at image index j. Image

reconstruction then follows a linear model:

f = Gy (1.3)

where f represents the image object, and the reconstruction matrix G reverses the encoding matrix:

G = (EH
Ψ
−1E)−1EH

Ψ
−1 (1.4)

where Ψ is the sample noise matrix. However, direct solution of this equation is extremely com-

putationally expensive and therefore iterative methods are typically employed. Since the noise is

complex additive white Gaussian, the solution to the non-Cartesian image reconstruction problem

is the minimizer of a cost J as follows:

J(f) =
1
2

Nc

∑
c=1

Nk

∑
i=1

dci

∣∣∣∣∣yci−
Ns

∑
j=1

e−ı2π(~ki)·~r jsc j f j

∣∣∣∣∣
2

(1.5)

where Nc is the number of receive coils, the dci are optional coil- and k-space location-dependent

weights,~r j is the jth spatial coordinate in the image, and sc j is coil c’s receive sensitivity at~r j. This

minimization problem can be solved using a conjugate gradient (CG) routine. The reconstruction

requires accurate measurement of coil sensitivities. The resulting image f̂ j will be a body-coil

or ground truth image, on top of which the known or measured coil sensitivities are multiplied
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to get back the full-coil image set. The technique enables corrections of undersampled data that

can lead to pixel aliasing. While the aliased spatial pattern is the same for all coils, the aliasing

weights are different for each coil and so coil sensitivity information can be exploited to account

for undersampling errors.

1.2.2 SPIRiT

Iterative self-consistent parallel imaging reconstruction (SPIRiT) is a method that utilizes the

redundancies in a multicoil MR dataset to minimize errors, particularly in non-Cartesian and un-

dersampled image reconstructions[8]. SPIRiT introduces a calibration kernel, which enforces con-

sistent relationships between each acquired k-space sample and its surrounding neighborhood. The

SPIRiT kernel is calibrated on multi-coil data at the center of k-space; it develops a set of weights

which minimize the difference between the acquired data points and the same points synthesized

by the weighted sum of neighboring data in k-space (including that from other coils). Again the

data are represented by a linear model:

y = Df (1.6)

where D is a reconstruction system matrix that relates the reconstructed image f to the collected

k-space data y. This is a requirement that reconstruction be consistent with the acquired data.

Additionally, SPIRiT requires consistency between acquired and synthesized k-space data:

x = Gx (1.7)

where x represents acquired and non-acquired k-space data, and G performs a series of convolution

operations based on the derived set of SPIRiT calibration weights. Figure 1.1 demonstrates, for

Cartesian and non-Cartesian trajectories, which k-space points may influence the data consistency

and kernel consistency constraints for a given sample.

Image reconstruction is then formulated as an minimization problem which enforces both data
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Figure 1.1: In Cartesian SPIRiT, a k-space sample not acquired (red circle) is synthesized from a
weighted kernel applied to those acquired (solid black) in the surrounding neighborhood including
other coils. Arrows indicate the samples that contribute to this point. For non-Cartesian SPIRiT
reconstruction, data consistency is enforced between sampled non-Cartesian points and the syn-
thesized points on the Cartesian grid, and calibration consistency is enforced with the Cartesian
data synthesized from the surrounding Cartesian k-space points.

consistency and self-consistency with the SPIRiT calibration kernel:

J(f) =
1
2

Nc

∑
c=1

Nk

∑
i=1

dci

∣∣∣∣∣yci−
Ns

∑
j=1

e−ı2π(~ki)·~r j fc j

∣∣∣∣∣
2

+
λ

2
||Sf||2 (1.8)

where S is the SPIRiT calibration kernel and λ controls the strength of the SPIRiT regularization

(i.e. the relative importance of consistency between synthesized and acquired k-space).

Both the SPIRiT and SENSE reconstruction methods lend themselves to modifications fur-

ther exploiting data redundancy. In Chapter II, a similar cost function to that employed here is

optimized in order to allow the estimation of trajectory errors typically caused by gradient eddy

currents.
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1.3 Existing Methods for Trajectory Correction

Many methods exist to prospectively or retrospectively correct trajectory errors. MRI scanners

use gradient coil shielding and waveform pre-emphasis to prospectively avoid significant trajec-

tory deviations in typical MR acquisitions. However, those methods are limited in terms of the

magnitude and temporal dynamics of the errors for which they can compensate, and non-Cartesian

trajectory gradient waveforms can easily push past those limits. Consequently, much research has

focused on developing methods to compensate for non-Cartesian trajectory errors retrospectively.

One approach to retrospective trajectory error correction is to measure or predict the erroneous

trajectory waveforms and use them in place of the nominal trajectory for image reconstruction. Ma-

son et al. [9] proposed an early gradient waveform measurement technique using a point phantom

to localize and measure the phase progression of a set of spins. To eliminate the need for precise

placement of a physical phantom, Duyn et al. [10] and Zhang et al. [11] proposed measuring the

phase accrual of spins due to a gradient waveform of interest by performing slice selection along

the same axis as the encoding gradient. Gurney et al. [12] later introduced a modification to Duyn’s

method to additionally allow the measurement of B0 eddy currents. Magnetic field monitoring is

another measurement approach that uses susceptibility-matched NMR probes placed around the

imaging volume in the scanner, and has the advantage of flexibility, in that it can be performed

concurrently with any scan protocol [13]. The primary disadvantage of this approach is that it

requires specialized hardware to be situated inside the already-crowded magnet bore. All gradient

measurement approaches share the disadvantage that they cannot be performed retroactively as a

post-processing step, for example after attempts at image reconstruction without corrections reveal

the presence of artifacts in previously-acquired data. Predictive methods have also been proposed

based on the calibration of a gradient system model; subsequently this model may be applied to

predict errors for new input waveforms that might differ in terms of the orientation of the imaging

plane [14] or the trajectory itself [15, 16, 17]. All of these techniques require calibration scans

that can lengthen overall examination time. Some require only one-time or periodic calibration,

but do not predict transient gradient errors such as those caused by variations in the gradient sys-
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tem response with gradient coil temperature increases. Predictive methods are also fundamentally

limited by the models on which they are based. For example, linear time-invariant models can-

not predict errors due to gradient amplifier nonlinearity, and most do not account for concomitant

gradient terms due to the difficulty in measuring them.

Several more recently-proposed methods for trajectory error correction do not require addi-

tional measurements, calibration scans or hardware [18, 19, 20], and focus on correcting errors

in radial scans. These are iterative methods that estimate trajectory errors from the k-space data

themselves, and work by exploiting a) data redundancy resulting from oversampling in the cen-

ter of k-space, which is a universal characteristic of non-Cartesian trajectories in use today, and

b) data redundancy provided by parallel imaging. Deshmane et al. [18] proposed a method that

iteratively shifts data in k-space with the goal of finding the set of shifts that produces the highest

sum-of-squares (SOS) signal; the set of best shifts is then used to update the k-space trajectory used

for reconstruction. Wech et al. [20] proposed a method that iteratively shifts radial projections in

k-space, choosing the direction of those shifts based on the concordance of the resulting k-space

data with the remainder of the dataset. These methods have the advantage that transient gradient

errors can be captured retrospectively without the need for additional measurements. However,

they are limited in their range of potential applications because the need to select specified shift di-

rections and magnitudes would make for a large and potentially intractable combinatorial solution

space when applying them to trajectories other than radial. A more flexible alternative is to build

trajectory corrections on data consistency, as we discuss in the next chapter.

7



Chapter 2

Trajectory Auto-Corrected Image Reconstruction

2.1 Introduction

We propose a more general method to reconstruct images free of trajectory errors, called TRa-

jectory Auto-Corrected image Reconstruction (TrACR), that is based on the same basic idea as the

aforementioned measurement-free methods but uses a flexible gradient-based trajectory optimiza-

tion approach. The method jointly estimates images and k-space errors, can be adapted to multiple

trajectories, and can be used with multiple existing non-Cartesian parallel imaging reconstruction

techniques. The method is evaluated with in vivo 7 Tesla brain data from radial, center-out ra-

dial, and spiral acquisitions in five human subjects. Performance of the method is investigated as a

function of k-space acceleration factor and the number of receive coils. Center-out radial and spiral

trajectory error estimates are validated against trajectory measurements. A preliminary account of

this work was given in a 2014 ISMRM Annual Meeting abstract [21].

Theory

Problem Formulations

The TrACR method is formulated as a joint estimation of images and k-space trajectory errors,

using extensions of the cost functions for SENSE [7, 6] and SPIRiT [8] non-Cartesian parallel

imaging reconstruction to incorporate trajectory errors as additional variables. The cost function

used for SENSE reconstruction is:

J(f ,∆~k) =
1
2

Nc

∑
c=1

Nk

∑
i=1

dci

∣∣∣∣∣yci−
Ns

∑
j=1

e−ı2π(~ki+∆~ki)·~r jsc j f j

∣∣∣∣∣
2

, (2.1)
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where f is a length-Ns vector of image samples to be reconstructed, ∆~k is a length-Nk vector of

trajectory errors to be estimated, Nc is the number of receive coils, the dci are optional coil- and

k-space location-dependent weights, yci is coil c’s ith k-space data sample, ı =
√
−1, ~ki is the

nominal ith k-space location,~r j is the jth spatial coordinate in the image, and sc j is coil c’s receive

sensitivity at~r j. In this work the dci are used to apply k-space density compensation to accelerate

algorithm convergence. The cost function used for SPIRiT reconstruction is:

J(f ,∆~k) =
1
2

Nc

∑
c=1

Nk

∑
i=1

dci

∣∣∣∣∣yci−
Ns

∑
j=1

e−ı2π(~ki+∆~ki)·~r j fc j

∣∣∣∣∣
2

+
λ

2
‖Sf‖2 , (2.2)

where f is now a length-NsNc vector of images for all coils, and λ

2 ‖Sf‖
2 is the SPIRiT regulariza-

tion, where λ is a user-specified regularization parameter and S is the SPIRiT operator. Equation

2.2 is an extension of Eq. 10 in Ref. [8]. The individual coil images can be combined after SPIRiT

reconstruction using any coil combination method [8]. In both the SENSE and SPIRiT cases we

model the k-space trajectory errors ∆~ki as a sum of weighted error basis functions:

∆~ki =
Nb

∑
b=1

~ebiwb =
{
~Ew

}
i
, (2.3)

where Nb is the number of error basis functions ~eb. In order to minimize the required number

of error basis functions, we construct them in a trajectory-dependent manner. Useful error basis

construction approaches for radial, center-out radial, and spiral trajectories are described further in

the Methods.

Algorithm

TrACR is an iterative method based on an alternating minimization approach, in which one

of the parameters f or ∆~k is kept fixed while the other is updated. Accordingly, the algorithm

comprises an outer loop which in each iteration invokes an f update, followed by a ∆~k update. For

fixed ∆~k, the cost functions in Eqs. 2.1 and 2.2 reduce to the original non-Cartesian SENSE and
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SPIRiT reconstruction problems and are typically minimized with respect to f using the Conjugate

Gradient (CG) algorithm [22]. To update the k-space error weights w in Eq. 2.3 for fixed f , a

nonlinear Polak-Ribière CG algorithm is used [22]. Each iteration of that algorithm requires the

derivatives of the cost function with respect to w, in order to calculate the next search direction.

Since by Eq. 2.3 each error weight wb affects all k-space trajectory dimensions, the total derivative

for each weight will comprise a sum over the k-space dimensions. For the SENSE reconstruction

problem, the contribution to the derivative of wb from the kx-dimension is

{
∂J

∂wb

}
x
=

Nc

∑
c=1

Nk

∑
i=1

ℜ

{
Ns

∑
j=1
−ı2πx jex

bie
ı2π(~ki+∆~ki)·~r jdcis∗c j f ∗j rci

}
, (2.4)

where ℜ denotes the real part of the complex number in the braces, ∗ indicates a complex conjugate,

and rci is the residual:

rci = yci−
Ns

∑
j=1

e−ı2π(~ki+∆~ki)·~r jsc j f j. (2.5)

Once the derivatives for each k-space dimension are computed, they are summed to obtain the

total derivative for each weight, and the gradient vector of collected derivatives for all weights is

returned to the CG algorithm. The derivatives of the SPIRiT cost function are obtained by replacing

sc j f j with fc j in Eqs. 2.4 and 2.5. The TrACR algorithm alternates between image and k-space

error weight updates until a stopping criterion is met.

2.2 Methods

2.2.1 Algorithm Implementation

The TrACR algorithm was implemented in MATLAB 2014a (The Mathworks, Natick, MA,

USA) on a desktop PC with an Intel Xeon E3-1240 3.4 GHz CPU (Intel Corporation, Santa Clara,

CA, USA) and 16 GB of RAM. Image updates were initialized with zeros each outer iteration

to avoid noise amplification. Except where otherwise noted, all images were reconstructed using

MATLAB’s lsqr function, with a fixed tolerance of 10−2, both inside and outside the TrACR
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algorithm. This allowed the number of CG image iterations in each image update step to vary

as needed; typically 2 to 10 iterations were used. All non-uniform discrete Fourier transforms

were computed using a non-uniform fast Fourier transform (NUFFT) algorithm [23]. Density

compensation weights (dci in Eqs. 2.1 and 2.2) were calculated using the method of Zwart et al. [24]

using the nominal trajectories. For SPIRiT image reconstructions, the regularization parameter λ

(Eq. 2.2) was fixed to 10% of the median of the absolute value of the k-space data. To enable direct

comparison of SENSE and SPIRiT reconstructions, the SPIRiT kernel was calibrated using images

obtained by applying the receive sensitivities measured for SENSE to a sum-of-squares Cartesian

reconstruction. The CG algorithm for the k-space updates used a maximum of 5 iterations and

a backtracking line search ([25], p. 464) with a maximum allowed trajectory change in one CG

iteration of 1/FOV, where FOV is the reconstructed field-of-view. The outer loop of the TrACR

algorithm was stopped when the k-space backtracking line search returned a zero step size in its

first iteration. MATLAB code to implement the algorithm and a demonstration with an in vivo

radial dataset are available at https://bitbucket.org/wgrissom/tracr/downloads.

2.2.2 Experiments

In vivo experiments were performed at 7 Tesla (Philips Achieva, Philips Healthcare, Best,

Netherlands) using a quadrature volume coil for excitation and a 32-channel head coil (Nova Med-

ical, Wilmington, MA, USA) for reception. Scans were performed in 5 healthy volunteers with

approval from the Institutional Review Board of Vanderbilt University. Data were collected using

3 non-Cartesian trajectories: golden-angle (GA) radial, center-out radial, and multi-shot spiral, de-

tailed further below. Cartesian scans were also collected and used to synthesize a body coil image

and an estimate of the sum-of-squares receive sensitivity using a polynomial fit; the receive sen-

sitivity was divided out of the reconstructed non-Cartesian images. Coil sensitivity measurements

were collected for SENSE reconstructions. All scans were gradient echo sequences with repeti-

tion time and echo time matched for all trajectories, at 200 ms and 7.9 ms, respectively, and with

2.5 mm slice thickness. Center-out radial and spiral trajectory measurements for validation were
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collected in a spherical phantom for each scan session using a modified Duyn method [10, 12].

Trajectory measurements began 1 ms prior to the expected start of the gradient waveforms in order

to capture components generated by the scanner’s gradient pre-emphasis.

The GA radial trajectory comprised 201 projections, each containing 256 sample points. Trajectory-

specific acquisition parameters were: readout duration 0.46 ms, maximum gradient amplitude 16.1

mT/m and maximum gradient slew rate 7.9 T/m/s, water/fat shift 0.741 pixels. The center-out ra-

dial trajectory comprised 402 projections, each containing 170 sample points. Trajectory-specific

acquisition parameters were: readout duration 0.34 ms, maximum gradient amplitude 25.5 mT/m,

maximum gradient slew rate 114 T/m/s. The spiral trajectory comprised 16 shots of length 5.7 ms.

Maximum gradient amplitude was 14.3 mT/m and the maximum gradient slew rate was 70 T/m/s.

The trajectory was designed using Brian Hargreaves’ spiral design toolbox [26]. The resolution

of each trajectory matched that of the 128 × 128 reconstruction grid. The reconstructed field of

view was 25.6 cm and all trajectories were designed to sample k-space to a maximum frequency

of ±2.5 cycles/cm. Where indicated, the data were coil-compressed prior to image reconstruction

using singular value truncation [27].

2.2.3 Error Basis Generation

Golden-Angle Radial

Data sampling occurs only during the flat parts of the trapezoids in conventional and golden

angle radial acquisitions, so the majority of trajectory errors can be captured by linear translations

of the radial lines in k-space [18]. This leads to a straightforward trajectory error basis matrix

construction ~E = (Ex,Ey), as:

Ex =

[
INpro j ⊗1Nsamp×1 0Npro jNsamp×Npro j

]
, (2.6)

Ey =

[
0Npro jNsamp×Npro j INpro j ⊗1Nsamp×1

]
, (2.7)
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where INpro j is an Npro j×Npro j identity matrix in which Npro j is the number of radial projections,

⊗ represents a Kronecker product, 1Nsamp×1 is a length-Nsamp vector of ones with Nsamp being the

number of sample points per projection, and 0Npro jNsamp×Npro j is a matrix of zeros.

Center-Out Radial and Spiral

In ramp-sampled center-out radial and spiral acquisitions, data are acquired while the gradients

change amplitudes. The majority of trajectory errors are the result of eddy currents generated

on conducting structures in the scanner which produce gradient field errors. These gradient field

errors are typically modeled as a weighted linear combination of terms of the form ([28], p. 320):

ge(t,τ) =−
dG(t)

dt
∗
{

H(t)e−t/τ

}
, (2.8)

where each term has a different value of the time constant τ , t is time, G(t) is the nominal gradient

waveform, and H(t) is the Heaviside step function. For a given center-out radial or spiral readout

gradient waveform G(t), this model was used to calculate error basis vectors by generating func-

tions ge(t,τ) for 1000 time constants spaced linearly between 1 µs and 2 ms, and sampled with the

same dwell time as the measured k-space data. The functions were integrated to arrive at a k-space

error basis set, then compressed down to six linearly-independent waveforms by stacking them into

a matrix Ge, calculating its singular value decomposition (SVD) Ge =USV ′, and taking the first

six columns of the matrix U (corresponding to the six largest singular values) as the error basis

for that input gradient waveform. For the center-out radial case, the compressed error basis matrix

was calculated for a single trapezoid and was rotated for each projection, forming the final error
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basis matrix ~E = (Ex,Ey) as:

Ex =



G̃

G̃cos 2π

Npro j
...

G̃cos 2π(Npro j−1)
Npro j


, (2.9)

Ey =



0

G̃sin 2π

Npro j
...

G̃sin 2π(Npro j−1)
Npro j


, (2.10)

where G̃ is the SVD-compressed error basis matrix. For the spiral case, compressed error basis

matrices were calculated for the Gx(t) and Gy(t) waveforms for one of the 16 shots. These were

then rotated to form the final error basis matrix ~E = (Ex,Ey) as:

Ex =



G̃x 0

G̃x cos 2π

Nshot
G̃y sin 2π

Nshot
...

...

G̃x cos 2π(Nshot−1)
Nshot

G̃y sin 2π(Nshot−1)
Nshot


, (2.11)

Ey =



0 G̃y

−G̃x sin 2π

Nshot
G̃y cos 2π

Nshot
...

...

−G̃x sin 2π(Nshot−1)
Nshot

G̃y cos 2π(Nshot−1)
Nshot


. (2.12)

In total, 6 error weights were fit in the center-out radial case and 12 in the spiral case. The defi-

nitions in Eqs. 2.9-2.12 are based on the empirical observation that the trajectory errors were very

similar for the x and y gradient channels, so a single set of error coefficients can be estimated that

applies to all shots/projections. For non-axial slice planes, it may be more accurate to estimate
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separate error coefficients for each gradient channel. Finally, on our scanner, the vendor’s gradient

pre-emphasis on our scanner resulted in a temporal gradient delay that was found to be constant

between scans, subjects, and trajectories; this shift was measured and applied to the nominal gradi-

ent waveforms provided to our algorithm. Alternatively, one could disable waveform pre-emphasis

for such acquisitions.

2.3 Results
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Figure 2.1: Investigation of the number of SVD-compressed error basis functions necessary to
accurately model trajectory errors. (a) Residual error for direct least-squares fits of basis functions
to the measured trajectory error for the center-out radial and spiral trajectories versus the number
of independent basis functions used. (b) Direct least-squares fits of 2, 3, or 6 independent basis
functions to the measured error for one projection of the center-out radial trajectory. (c) Direct
least-squares fits of 4, 6, or 12 independent basis functions to the measured error for one shot of
the spiral trajectory in the kx dimension.
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Figure 2.1 illustrates the accuracy with which the generated error basis functions can be fit to

the measured trajectory errors in the center-out radial and spiral cases. This was investigated by

directly fitting (by least-squares, without the TrACR algorithm) the error basis functions to the

measured errors for the first projection/shot, while varying the size of the SVD-compressed error

bases. Figure 2.1a plots the root-mean-square (RMS) error in fitting the measured trajectory errors,

as a function of the number of basis functions used. For both trajectories, as the size of the SVD-

compressed basis set increased, the error monotonically decreased to a minimum value and then

flattened out. Figure 2.1b plots least-squares fits of 2, 3 and 6 basis functions to the error measured

for the first projection of the center-out radial trajectory. For 6 basis functions, the measured and

fit curves nearly coincide. Figure 2.1c plots least-squares fits of 4, 6 and 12 basis functions to the

error measured for the first shot of the spiral trajectory (only the kx error waveform is shown). For

12 basis functions, the measured and fit curves nearly coincide. These results support the use of 6

basis functions for the center-out radial TrACR reconstructions that follow, and 12 basis functions

for the spiral TrACR reconstructions.

Figures 2.2-2.5 show golden angle radial, center-out radial, and spiral images reconstructed

using the nominal trajectories, the measured trajectories (center-out radial and spiral only) and the

trajectories estimated using TrACR with SENSE and SPIRiT, in the same subject and slice. For

each case, the displayed image was formed as a sum-of-squares combination of the individual coil

images reconstructed by CG using the final trajectory. Before running TrACR, the 32-channel

coil data was compressed to 15 channels. In all cases, the uncorrected image contains considerable

intensity modulations and blurring across the brain, which are removed in both SENSE and SPIRiT

TrACR reconstructions. The difference images are similar in all cases, indicating that both TrACR-

SENSE and -SPIRiT were effective in estimating the corrected trajectories, and (in the center-out

radial and spiral cases) yielded similar image reconstructions as the measured trajectories. Across

subjects, the mean number of TrACR iterations was: 27 (golden angle radial), 779 (center-out

radial), and 205 (spiral). The mean compute time was: 8.7 minutes (golden angle radial), 2.7 hours

(center-out radial), and 1.1 hours (spiral). The TrACR-SPIRiT reconstructions required between
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Figure 2.2: Final CG image reconstructions on nominal (uncorrected), TrACR-SENSE, and
TrACR-SPIRiT trajectories for the golden angle radial dataset in one subject. The second row
shows intensity differences between the TrACR reconstructions and the uncorrected image.

10-40% more iterations/longer compute times.

Figure 2.3 illustrates the estimated trajectories and errors for the subject shown in Figs. 2.2-

2.5. Figure 2.3a shows the center of the nominal golden angle radial trajectory and the trajectories

estimated by TrACR-SENSE and -SPIRiT. The TrACR-SENSE and -SPIRiT trajectories are indis-

tinguishable on this plot, and differ considerably from the nominal trajectory. Figure 2.3b plots the

measured and estimated k-space errors for a single projection of the center-out radial trajectory, as

a function of time. While both trajectory estimates fit the measured error well at the beginning of

the projection in the center of k-space, at higher spatial frequencies near the end of the projection

the TrACR-SENSE estimate is closer to the measured error. The higher accuracy achieved at low

spatial frequencies reflects the fact that the MR signal amplitude is much higher in the center of

k-space, so the algorithm favors minimizing trajectory errors there. Figure 2.3c shows an analo-
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gous result for the spiral case: the error estimates are very close to the measured trajectory near the

center of k-space, and diverge somewhat with increasing time/spatial frequency, and the TrACR-

SENSE estimate comes closer to the measured trajectory than does TrACR-SPIRiT. Although the

trajectories estimated by TrACR-SENSE and TrACR-SPIRiT differ in the high spatial frequencies

in the center-out radial and spiral cases, those differences did not result in significant differences

in the final reconstructed images in Figures 2.4 and 2.5.

To investigate the dependence of the trajectory error on k-space acceleration and the number

of receive channels, the golden angle radial TrACR-SENSE reconstructions in this subject were

repeated for acceleration factors between 1 and 8, and for numbers of receive channels between 1

and 32. Acceleration was realized by uniformly dropping projections, and the number of channels

was varied using SVD coil compression. Figure 2.6a shows fully-sampled and 4x-accelerated (50

projection) image reconstructions using CG-SENSE and the final TrACR trajectories (in this case

images were reconstructed using lsqr with a stopping tolerance of 10−1). With 4× acceleration,

there is an apparent loss of SNR but no noticeable aliasing artifacts. The same figure also plots

the root-mean-square (RMS) trajectory error for each acceleration factor, referenced to the fully-

sampled 32-channel TrACR-SENSE result. The errors were calculated after subtracting off the

mean k-space trajectory shift, and were low for all acceleration factors, increasing only slightly

with acceleration. Figure 2.6b plots the trajectory errors across numbers of receive channels, ref-

erenced to the fully-sampled 32-channel TrACR-SENSE result. As the number of coils used for

reconstruction increased, the trajectory error decreased for both acceleration factors. For less than

10 coils, the error was higher with both full sampling and 4× acceleration than it was at any ac-

celeration factor with 15 coils, indicating that in the golden angle radial case the trajectory error

depends more on the number of coils than on the acceleration factor.

Figure 2.7 shows the evolution of the k-space error estimates and images over TrACR outer

loop iterations, for center-out radial TrACR-SENSE. Images are shown on top, with center-out ra-

dial k-space estimates shown at the same TrACR iteration numbers on the bottom and the measured

trajectory error provided for reference. The image improves rapidly with early TrACR iterations
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as the lower k-space locations are corrected, whereas high frequency corrections build up more

slowly.

Figure 2.8 summarizes the performance of TrACR across the 5 subjects, 3 trajectories, and

SENSE and SPIRiT formulations. Figure 2.8a shows how much lower (in percent; higher numbers

are better) the final TrACR trajectories’ cost functions (Eqs. 2.1 and 2.2) were, compared to no cor-

rection. All instances of TrACR significantly reduced the uncorrected image cost, with a median

cost reduction across subjects and trajectories of 76%. The same figure also shows the SENSE

and SPIRiT cost reductions for the measured trajectories, which in all cases were not markedly

higher than the TrACR cost reductions. Figure 2.8b shows the increase in normalized image gra-

dient squared for each case, compared to the uncorrected images. The normalized image gradient

squared is an image quality metric that has been reported as having a high correlation with observer

image quality rating [29]. It was calculated from the final SENSE and SPIRiT image reconstruc-

tions. All reconstructions resulted in increased normalized image gradient squared, which were

comparable to values for images reconstructed using the measured k-space trajectories.

2.4 Discussion

In vivo experiments demonstrated TrACR’s ability to correct image artifacts caused by k-space

trajectory errors in non-Cartesian acquisitions. TrACR corrections made significant visible im-

provements (reduced streaking and blurring, and enhancement of fine details) to the reconstructed

images in the in vivo experiments, with comparable image quality to images reconstructed us-

ing measured k-space trajectories. Golden angle radial reconstructions across acceleration factors

demonstrated that TrACR-estimated trajectories were less accurate at higher radial acceleration

factors; however, the errors remained relatively low across acceleration factors due to the large

signal magnitude and oversampling at the center of k-space even with sub-Nyquist radial sam-

pling. The golden angle radial reconstructions with varying numbers of coils demonstrated that

the method benefits from parallel imaging due to the data redundancy it provides, since error

increased as the number of coils decreased. The algorithm performed consistently across five sub-
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jects, in terms of the amount by which the SENSE and SPIRiT cost functions were reduced, and

in terms of the increase in normalized image gradient squared.

TrACR reconstructions were able to correct most of the measured errors in the center-out radial

and spiral trajectories, as shown in Fig. 2.3.

Due to the higher signal and higher sampling density in the center of k-space, the algorithm

preferentially corrected trajectory errors there, and converged with somewhat higher residual er-

rors at the higher spatial frequencies. Though it was not observed in our reconstructions, it is

possible that the TrACR-estimated trajectory will have higher error than the uncorrected trajectory

at the high spatial frequencies. This potential problem could be mitigated by multiplying the error

basis functions with a window that decreases to zero at the high frequencies. We have tested this

approach with the spiral reconstructions (results not shown) and found that it performed similarly

to the unwindowed reconstructions, with negligible image differences when the windows trun-

cated the error functions at approximately 75% of the maximum k-space radius. Windowing the

error basis may also accelerate algorithm convergence, since (as demonstrated in Fig. 2.7) the low

frequencies are fitted early in the TrACR iterations.

The center-out radial and spiral results suggest that accurate corrections at high spatial fre-

quencies may be precluded for cases in which there is a long separation in time between sampling

the center of k-space and the end of the trajectory. The algorithm’s success also depends on the

provision of a suitable error basis. In this work, error bases for spiral and center-out radial trajec-

tories were derived from eddy current models, and this construction approach can be applied to

any existing readout trajectory. However, error basis functions derived from eddy current models

may not be effective in capturing other sources of error, such as errors due to gradient amplifier

non-linearity and long-time constant eddy currents that persist between TRs. Developing suit-

able error bases in those cases may require the incorporation of hysteresis models (for amplifier

non-linearity) and whole-sequence eddy current modeling (for long-time constant eddy currents).

Furthermore, while an eddy current error basis can be constructed for any trajectory, properties of

the trajectory itself may still preclude effective corrections. Specifically, we expect that TrACR
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would not be broadly effective in correcting errors in Cartesian readouts, since every line does not

cross the center of k-space and the lines may not be spaced close enough together. However, with

the exception of echo planar imaging, eddy currents are relatively benign in Cartesian readouts.

An important consideration in the TrACR-SPIRiT reconstruction is the choice of images used

to calibrate the SPIRiT operator. We have found that in many cases the algorithm will converge

to an acceptable solution if the operator is initially calibrated using low-resolution images recon-

structed with the nominal trajectory, and is periodically re-calibrated during the TrACR iterations

using the latest trajectory error estimate (results not shown). However, due to model inconsisten-

cies inherent in that approach, it is possible for the iterations to diverge or converge to an unac-

ceptable solution. Therefore a more cautious alternative is to calibrate the operator using Cartesian

images of the same geometry, as described in [8]. This is the approach that was used here. An-

other consideration that may affect both TrACR-SENSE and -SPIRiT performance is the density

compensation. In this work, density compensation weights for all TrACR reconstructions were

calculated using the nominal trajectory, and were held fixed over the iterations. The weights were

then updated using the TrACR error estimate for the final image reconstruction. Slightly better

trajectory estimates may be possible by either periodically updating the density compensation, or

by not using density compensation at all, which would require increasing the number of iterations

used in each image update.

The computation times for the algorithm were shortest for golden-angle radial, and longest for

center-out radial. This result was expected since the golden-angle radial trajectory error basis func-

tions were uniform across each projection, so determining their weights could likely be performed

using only the center of k-space, and it was found that the algorithm preferentially corrected tra-

jectory errors there first. The large difference between the computation times for the spiral and

center-out radial trajectories is likely due to the fact that the initial center-out radial RMS trajec-

tory errors neared 1/FOV, or the Nyquist sample spacing, whereas the spiral and golden angle

radial trajectory errors were about half as large. Overall, the reported computation times of several

minutes (golden angle radial) to a few hours (center-out radial) were not compatible with online
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use. However, in the current implementation the TrACR algorithm was stopped when the back-

tracking line search returned a zero step size in the first iteration. The motivation for this stopping

criterion was to demonstrate the very best possible trajectory correction with the algorithm. In

practice we have found that the reconstructed images stop changing significantly well before this

stopping criterion is satisfied, and that a more practical criterion that is predictive of this may be

to stop the algorithm when the difference between consecutive cost function values falls below

0.1% of the current cost. Using this criterion resulted in approximately 75% shorter computa-

tion times/fewer iterations, with worse trajectory errors at high spatial frequencies compared to

measurements in the center-out radial and spiral cases, but with negligible final image differences

(results not shown). The algorithm’s computations could be accelerated using parallel computing

[30, 31], and its convergence may be accelerated by jointly (rather than alternately) updating the

images and trajectory errors each iteration. The alternating update approach used here was chosen

primarily for its flexibility in decoupling the k-space error and image update codes. While CG is

widely accepted as an efficient method for MR image reconstruction, algorithms other than CG

may work better for the k-space error updates, such as Newton or Gauss-Newton methods. These

could accelerate convergence at the cost of increased computational cost per iteration compared to

CG.
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Figure 2.3: Trajectory errors for the image reconstructions in Figs. 2.2-2.5. (a) A subset of nom-
inal golden angle radial projections and their corresponding TrACR-SENSE and TrACR-SPIRiT
projections in the center of k-space. The TrACR-SENSE and TrACR-SPIRiT projections coincide.
(b) Measured, TrACR-SENSE and TrACR-SPIRiT center-out radial k-space trajectory error curves
as a function of time, for one projection. (c) The same curves in (b) for the kx(t) waveform of one
shot of the spiral trajectory. Trajectories and errors are plotted in units of multiples of 1/FOV.
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Figure 2.4: Final CG image reconstructions on nominal, TrACR-SENSE, TrACR-SPIRiT, and
measured k-space trajectories for the center-out radial dataset in one subject. The second row
shows intensity differences between the corrected reconstructions and the uncorrected image.
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Figure 2.5: Final CG image reconstructions on nominal, TrACR-SENSE, TrACR-SPIRiT, and
measured k-space trajectories for the spiral dataset in one subject. The second row shows intensity
differences between the corrected reconstructions and the uncorrected image.
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Figure 2.8: Numerical TrACR-SENSE and -SPIRiT results across 5 subjects and the three trajec-
tories. (a) Cost function (Eqs. 1 and 2) reduction as a percentage of the uncorrected (initial) cost.
(b) Percentage increase in the normalized image gradient squared, versus no correction. Metrics
for reconstructions using measured trajectories are also shown for the center-out radial and spiral
cases.
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Chapter 3

Conclusions and Future Work

The TrACR approach to auto-correct non-Cartesian images for k-space trajectory errors was

described and validated in vivo for three non-Cartesian trajectories. It is a more general formu-

lation than existing methods, and can be extended to any non-Cartesian trajectory for which a

suitable trajectory error basis can be derived. It does not require trajectory measurements or prior

calibration data and exploits data redundancy provided by oversampling in non-Cartesian acquisi-

tions and parallel imaging. The method can be used in conjunction with multiple parallel imaging

reconstruction techniques.

Future work will involve implementing TrACR for other trajectory types, with the next focus

being echo-planar imaging (EPI). EPI trajectories are often affected by artifacts due to trajectory

errors resulting from fast reversal of the gradient polarity for each acquired line. We aim to apply

TrACR to estimate the resulting phase errors for EPI reconstructions. Errors in EPI trajectories

typically cause ghosting artifacts and can be primarily represented by a single 1-dimensional shift

of each line in k-space. Although oversampling in the center of k-space is not accomplished by EPI

trajectories and is an advantage to the current method, the relative simplicity of the error model in

EPI will provide compensatory redundancy in the trajectory errors themselves.
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