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CHAPTER 1 

 

INTRODUCTION 

 

The American Society of Anesthesiologist’s’ (ASA) Physical Status (PS) classification is 

a subjective assessment of a patient’s overall health. It is a widely used grading system for 

preoperative health in surgical patients, and consists of five classes of increasing severity with a 

sixth class for organ donors. Associations with ASA scores and surgical outcomes, rate of 

postoperative complications, operating times, hospital length of stay, morbidity rates and other 

postoperative outcomes have been reported in literature (Daabiss 2011). 

Even though ASA score has been shown to be a predictor of postoperative outcomes, 

there is considerable variation in the ASA classification allocation (Daabiss 2011). It is up to the 

anesthesiologists to subjectively rate the patients’ preoperative health. They do this by analyzing 

information from the patient’s history and physical examination and medications. This process 

can take anywhere from 2-10 minutes per patient. In a day, an anesthesiologist can see on 

average anywhere from 5-30 patients, so in total this process can a considerable amount of time. 

Though there are definitions for the class allocations in the ASA scale, the definitions do 

not detail the diseases and conditions for patients in each class. Despite that, the ASA scale is 

considered reliable. The ASA scale has been shown to have a moderate inter-rater reliability in 

clinical practice, with studies finding Cohen’s Kappa scores of 0.40 (Riley et al., 2014), and 0.64 

(Ihejirika et al., 2015). In addition, there is good agreement with how different anesthesiologists 

rate a patient’s ASA classification, and the classification is a valid indicator of preoperative 
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health status (Sankar et al., 2014). Since ASA score is an important indicator for outcomes, it 

would introduce less variability if the method of evaluating ASA score was not so subjective.  

In this paper, we attempt to solve the problem of predicting the ASA score of patients. 

We split the problem into two parts: 1) develop a model that uses data from the electronic 

medical record (EMR) to predict ASA score and 2) evaluate the model and compare its 

agreement with anesthesiologists to literature.  While the multiple ASA scores suggest multi-

class classification, we find that the highest distribution of scores as well as the hardest scores to 

separate fall into ASA classes 2 and 3. Because of this, we reframe the problem to be a binary 

classification problem, classifying patients into either ASA 1/2 or ASA 3/4/5. Supervised 

machine learning is used to develop a system that mines the underlying factors to determine 

which class a patient should belong to. In this system, both numerical and categorical features 

are used, and we attempt to incorporate time into the ICD9 features. In contrast to previous 

works, we train our model using a data set of 400,000 samples and evaluate our model by 

looking at both performance and agreement. The model provides a systematic way of 

determining ASA score, which saves anesthesiologists time in ASA determination. The results of 

the study demonstrate that this model can accurately predict the ASA score, providing a 

comparable level of agreement to anesthesiologists. 
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CHAPTER 2 

 

BACKGROUND 

 

ASA score 

Preoperative assessment is the evaluation of a patient’s health before an operation with 

the goal of reducing the patient’s surgical and anesthetic perioperative morbidity or mortality, 

and to return the patient to desirable functioning as quickly as possible (Zambouri, 2007). It is 

important in not only ensuring patient safety, but also in managing patient workflow and 

allocating resources for the operation. The most widely used method for preoperative assessment 

is the ASA classification system. 

The current ASA PS classification system was proposed by Dripps et al. in 1961 and 

adopted by the ASA in 1962.  The system consists of five classes: 

I. Patient is a completely healthy fit patient. 

II. Patient has mild systemic disease. 

III. Patient has severe systemic disease that is not incapacitating. 

IV. Patient has incapacitating disease that is a constant threat to life. 

V. A moribund patient who is not expected to live 24 hour with or without surgery. 

The sixth class, later added, denotes an organ donor. 

The ASA PS classification was originally created for statistical data collection and 

reporting in anesthesia (Saklad, 1941). It is now used in many other areas: allocation of resources 

(Vogt & Henson, 1997), reimbursement for anesthesia services, (Australian Government 

Department of Health and Aging, 2005) and predicting perioperative risk (Bjorgul et al., 2010, 

Cullen et al., 1994, Dalton et al., 2011, Davenport et al., 2006, Glance et al., 2012, Han et al., 
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2004, Hightower et al., 2010, Lee et al., 1999, Malviya et al., 2011, Skaga et al., 2007, Vacanti et 

al., 1970., Wolters et al., 1996). 

 

ASA score reliability 

Since it is up to anesthesiologists to interpret the definitions of the ASA classification 

system with respect to their patients, ASA score is subjective. For example, there is inherent 

subjectivity when trying to distinguish cases belonging to ASA classes 2, 3 and 4, because the 

difference depends on differentiating between “mild systemic”, “severe systemic” and 

“incapacitating” diseases (Sankar et al., 2014). Despite the fact that ASA score is a subjective 

assessment, studies have found that it is reliable. The ASA scale has moderate to substantial 

inter-rater reliability in clinical practice (Riley et al., 2014, Sankar et al., 2014, Ihejirika et al., 

2015).  

 

ASA score correlation to outcomes 

The ASA score is used in many areas including research, evaluation, and prediction. One 

reason that it is so widely used is because ASA score is correlated with outcomes (Daabiss 

2011). ASA score has specific correlation with medical factors such operating time, hospital 

length of stay, postoperative infection rates, and morbidity rate following various types of 

surgery (Ridgeway et al., 2005, Tang et al., 2001, Sauvanet et al., 2005, Prause et al., 1997, 

Carey et al., 2006). It has significant predictive impact on blood loss during surgery (Grosflam et 

al., 1995) and perioperative myocardial infarction (House et al., 2016). There is evidence of 

significant correlation between ASA class and perioperative variables, postoperative 

complications, and mortality rate (Wolters et al. 1996). Due to the ASA score’s patterns of 



 5 

association with patient characteristics and postoperative outcomes, it is considered to be a valid 

measure of preoperative health status (Sankar et al., 2014). 

 

ASA prediction using machine learning 

In the past, machine learning has been used to attempt to classify patients into the ASA 

classes. The decision tree classifier, multi-layer perceptron (or single layer neural network), 

Naïve Bayes classifier, and support vector machines have all been tested and used to classify 

ASA score (Karpagavalli et al., 2009, Lazouni et al., 2013).   

Karpagavalli et al. (2009) use a decision tree classifier, multi-layer perceptron, and Naïve 

Bayes classifier to categorize 362 cases with 37 features collected from private hospitals into 

ASA classes 1, 2 and 3. The distribution of cases was 35.64% ASA 1, 28.45% ASA 2, and 

35.91% ASA 3. The study found the decision tree classifier, Naïve Bayes, and multi-layer 

perceptron to achieve 10-fold cross validated accuracies of 96.13%, 76.24%, and 97.79% 

respectively on the data set.  

The study by Lazouni et al. (2013) test the decision tree classifier, support vector 

machines, and multi-layer perceptron classifier on a set of 898 cases with 17 features classified 

into ASA 1-4. The distribution of cases in this data set was 24.38% ASA 1, 43.95% ASA 2, 

25.84% ASA 3, and 5.80% ASA 4. This study found a 10-fold cross validated accuracy of 

88.01%, 91.43%, and 93.25% for the decision tree, multi-layer perceptron, and SVM classifiers 

respectively.  

While both studies produce high accuracies in their results, accuracy may not be the best 

metric to measure performance because of bias introduced by class imbalance. In addition, both 

studies used a fairly small sample size to train and test their classifiers. For a model like the deep 
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neural network, this amount of data would likely be insufficient to train with. The models that 

were used may not generalize well to larger data sets; for example, the SVM classifier that 

Lazouni et al. (2013) find to perform the best does not scale well with large amounts of data. 
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CHAPTER 3 

 

METHODS 

 

Overview 

This study presents a system that builds a supervised machine learning model to predict 

the ASA scores of pre-operative patients. The problem is reframed so that the model classifies 

ASA score in a binary fashion. The system uses retrospective data with ASA scores given by 

anesthesiologists for pre-operative patients as labels to train a classifier. Features for the 

classifier were chosen from discussion with an anesthesiologist and observations made from the 

data. We selected features such as age, BMI and ICD9 codes as a proxy for patient history 

because these are all factors that anesthesiologists look at in their history and physical 

examination. Medications were also selected as features, because pre-operation medications play 

a large role in an anesthesiologist’s decision. Different structures were tested for the ICD9 

features in order to attempt to capture temporal aspects of ICD9 history. The trained classifier 

can predict the ASA score for future surgical patients. 

 

Setting 

The study was conducted with data from the Vanderbilt University Medical Center 

(VUMC) in middle Tennessee. The subjects of the study are surgery patients from the years 

1999-2014 for whom anesthesiologists recorded an ASA score. 
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Data 

The data used to train and test our classifiers comes from the Vanderbilt Perioperative 

Data Warehouse (PDW), which records ASA scores for all patients who have received a surgery 

at Vanderbilt. A cohort of 415,000 samples from 216,000 patients that have an ICD9 history is 

analyzed. Of the data, a 10% holdout dataset is set aside to evaluate the final classifiers. The 

scores that were given by anesthesiologists are used as the label, or true score (noting that it may 

not always be accurate/may have variability). The ASA score 6 is excluded from the predictions 

and dataset, because that score indicates a brain-dead patient whose organs are being removed 

for donor purposes. A summary of the data for each ASA class is shown (Table 1). 

 

Table 1. Summary statistics for data set separated by ASA class. 

 

 

With labels, we can apply supervised machine learning algorithms to the data, and 

attempt to predict ASA score. This approach is feasible because, though there is variability in 

ASA scores given by anesthesiologists, studies have shown that there is moderate inter-rater 

reliability and good agreement between anesthesiologists (Sankar et al., 2013), and over a large 

amount of data, the variability will even out. From the distribution of the data (Figure 1) and the 



 9 

knowledge that the hardest scores to distinguish were ASA scores 2 and 3, we reframed the 

problem as a binary classification problem. 

 

 

Figure 1. Distribution of ASA scores in the data. Cases with ASA scores 2 and 3 dominate the 

distribution. 

 

Besides ASA score, the PDW provides age, BMI, surgery type, and inpatient ICD9 

codes. In addition to the ASA scores and patient data from the PDW, we have access to the ICD9 

outpatient history from the Vanderbilt Enterprise Data Warehouse (EDW), which is associated 

with patient healthcare encounters. The co-occurrence of inpatient and outpatient ICD9 chapters 

with ASA can be observed in Figure 2 and Figure 3. The co-occurrence trends indicate that the 
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value of ICD9 codes for predicting ASA score. All data that is collected is pre-operation and 

normalized by frequency of both chapter and ASA score. 

 

 

Figure 2. Co-occurrence of inpatient ICD9 chapters with ASA score normalized by frequency of 

ASA score and chapter. A darker color indicates greater presence of the chapter in those cases. 
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Figure 3. Co-occurrence of outpatient ICD9 chapters with ASA score normalized by frequency 

of ASA score and chapter. A darker color indicates greater presence of the chapter in those cases. 

 

Supervised machine learning 

 Supervised machine learning is the task of building a model or function from a set of 

labeled training data. The four machine learning methods that we use in this study are: logistic 

regression, k-nearest neighbors (KNN), random forests, and deep neural networks. 
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Logistic regression 

 Logistic regression is a method that measures the relationship between the categorical 

dependent variable and any number of independent variables by estimating probabilities using a 

logistic function (McCullagh et al., 1989). 

 

K-nearest neighbors 

 The k-nearest neighbors method is a machine learning model that classifies new data 

points based on which previously seen data points it is most similar to (Cover & Hart, 1967). In a 

classification task, the model finds the k nearest data points to the new case and assigns the 

majority class. 

 

Random forests 

 Random forests is a machine learning method that uses an ensemble of decision tree 

predictors. The method builds a number of trees each from a random, independently sampled 

subset of variables from the original feature set. It classifies new cases by taking a majority vote 

of the decision trees it has built (Breiman, 2001). 

 

Deep neural networks 

In the past decade, a machine learning model called neural networks have become very 

popular. A standard neural network consists of a number of simple, connected processors called 

neurons. These neurons are activated through inputs or from other neurons, and the network 

learns the weights that make a desired output (Schmidhuber, 2015). Deep neural networks use 

feed forward neural networks with many layers. They consist of an input feeding into a number 
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of fully connected hidden layers which feed into an output. Convolutional neural networks are 

deep neural networks with limited connections that are localized based on the input data, and use 

convolutional filters. An example is an image, in which pixels are locally connected to 

surrounding pixels. Deep learning models scale well to large data sets, but require a large 

training data set. 

 

Feature analysis and selection 

We selected classes (or categories) of features that we believed, from discussion with an 

anesthesiologist, are factors that anesthesiologists look for in pre-operation patients. The 

different classes of features selected were age, body mass index (BMI), surgery service, if the 

patient previously had a surgery, preoperative medications, prior inpatient ICD9 codes and 

history of outpatient ICD9 codes. Temporality was incorporated into the ICD9 features by 

sectioning codes into stretches of time (we use months) for which they were placed, up to a year 

before the surgery. The various feature classes are: 

 

Age: Age of the patient, as a continuous numeric value. 

BMI: Body mass index of the patient, as a continuous decimal value. 

Surgery service: Category of surgery the patient is about to receive. Each category (70 total) is a 

binary feature. 

Previous surgery: If the patient has previously had a surgery, a single binary feature. 

Preoperative medications: Medications classified in hierarchy, using the top-level hierarchy 

yielding 21 categories. Each category is a feature, with numerical counts for each instance of 

medication in that category. 
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Inpatient ICD9 codes: ICD9 codes received while in the hospital. In creating these features, we 

tested numerical counts for: raw codes, parent codes, ICD9 chapters, PheWAS (Denny et al., 

2013) classification (Vanderbilt-developed Phenome-Wide Association Study classification), 

ICD9 hierarchy and temporally structured ICD9 chapters. 

Outpatient ICD9 codes: ICD9 codes received while not admitted to the hospital. In creating these 

features, we tested numerical counts for: raw codes, parent codes, ICD9 chapters, PheWAS 

classification, ICD9 hierarchy and temporally structured ICD9 chapters. 

 

We tested different combinations of feature classes and created a final combined 

classifier. The combined classifier and classifiers using a single feature class (i.e. ASA prediction 

with only age) are compared to analyze how predictive each classifier was on ASA score. 

Performance was measured with 5-folds cross validation and the AUC was used to select the 

features for the final combined classifier. 

 

Hierarchy 

The feature classes ICD9 codes and medications both have a hierarchical structure. A 

recent study has shown that leveraging hierarchy in ICD9 features improves prediction (Singh et 

al., 2014). The basic idea behind leveraging hierarchy is that there are relationships between the 

parents and children in the ICD9 coding structure. Children under the same parent code have 

correlated relationships, which may have a relationship with some outcome of interest. The 

approach developed in the study consists of two parts: 1) map each ICD9 code to a conditional 

probability of outcome using the training data and 2) use the probabilities to construct features. 

The first part estimates the probability of the positive prediction given the subtree of the 
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hierarchy at each node (ICD9 code). The second part constructs features using top level codes, 

and setting values by taking the maximum conditional probability from the subtree nodes. We 

attempt to leverage the hierarchy in both our ICD9 code and medication feature classes. 

 

ICD features 

We realized that there was more information in the ICD9 codes that we could incorporate 

in features. ICD9 codes have a hierarchical structure, and could be generalized to higher level 

features. In addition, ICD9 codes are not all given at the same point in time. They accumulate 

over time as a patient comes into the hospital; because of this, we hypothesized that ICD9 codes 

given closer to the surgery date would have a greater impact on their physical status. In testing 

different structures for the ICD9 code features, two different approaches were used: ICD9 

hierarchy and temporally structured ICD9 chapters. We created our hierarchy-leveraging features 

by using the approach outlined in the study by Singh et al. (2014). For our temporally structured 

ICD9 chapters, we took the past year of surgeries and counted the number of each ICD9 chapter 

found in each month (12 total months). In short, each chapter with each month was turned into a 

separate feature. 

For the features from ICD9 codes, we tested: raw codes, parent codes, ICD9 chapters, 

PheWAS classification, and ICD9 hierarchy and temporally structured ICD9 chapters. The raw 

ICD9 codes resulted in about 4,000 features, while both the parent codes and PheWAS codes 

resulted in about 1,000 features. The ICD9 chapters result in 20 features, the ICD9 hierarchy 

results in 20 features, and the temporally structured ICD9 chapters result in 240 features.  
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Feature matrix 

From the collected data, feature matrices were created to be used as the input for the 

machine learning algorithms (Figure 4).  

 

 

Figure 4. Example feature matrix for the ASA classifier. Each row represents one patient case, 

and each column in the feature matrix represents a feature. If a patient has multiple surgeries, one 

row is included per surgery. 

 

All features are collected from data that is available from before the patient has their surgery. 

 

Classification 

Python’s scikit-learn (Buitinck et al., 2013) and lasagne (Dielman et al., 2015) packages 

were used to develop the classifiers (lasagne for deep learning) for predicting ASA score. We 

tune the hyperparameters of our machine learning models using hyperopt (Bergstra et al., 2013) 

to search over a specified space. To simplify the problem, we remove the trivial ASA 6 score 

(which indicates dead), and separate the scores into two classes: ASA 1/2, and ASA 3/4/5. This 

split turns the problem into a binary classification problem. The supervised machine learning 

techniques that we test in our study include logistic regression, k-nearest neighbors, random 
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forest, deep neural networks and a hybrid network consisting of both deep and convolutional 

neural networks.  

 

Deep learning for temporal data 

We attempt to use convolutional neural networks to find the relationships in the temporal 

ICD9 data. In this data set, the localized features are the co-occurrence of ICD9 chapters in time, 

one month connected to the next month. The filters attempt to capture information from temporal 

proximity. 

The hybrid neural network uses both networks to learn from the data. The deep neural 

network operates on the non-temporal data (age, BMI, etc) while the convolutional neural 

network takes temporal data as its input, or the temporal outpatient ICD9 features. We used a 

convolutional neural network in order to find features within the temporal data. The output 

hidden units from the convolutional neural network are combined with the hidden units from the 

last hidden layer of the deep neural network, and concatenated to form a layer of hidden units 

from both. The resulting layer is fed into an output layer, which uses a softmax as the activation 

function. 

 

Optimized parameters 

The final parameters from hyperopt that we found were logistic regression with an elastic 

net penalty, k-nearest neighbors with k=4, random forests using 79 estimators and a depth of 19, 

deep neural networks with 0.1 hidden drop, a depth of 3 and width of 400, and the hybrid 

network with the same deep network parameters plus convolutional network parameters with 20 

filters and a window size of 3. 
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Classifier evaluation 

We evaluated the performance of our classifiers using 5-fold cross validation and 

calculating the average ROC AUC scores, as well as calculating the AUC on our holdout dataset. 

To gain insight into the amount of data required for training and the plateau of performance, we 

analyzed the AUC at different sized training sets of the random forest and deep neural network. 

Since AUC correlates with Kappa (Ben-David, 2008), we calculated a theoretical human 

achievable AUC corresponding to the best unweighted Kappa statistic using the following 

equation from the paper: 

  

TP = Q(1- K)(1-2N) + KP + FP      (1) 

 

We assign the ASA class 3/4/5 to the positive class; the variables are TP = true positives, 

FP = false positives, Q = predicted positives, P = positives, N = negatives, K = Kappa. We know 

P = 0.517 and N = 0.483 from the proportion of ASA class 1/2 and 3/4/5, but make the 

assumption that Q = 0.517 in the best case scenario that all positives are true positives for 

calculations. We then create an AUC curve corresponding to K = 0.64, the highest unweighted 

Kappa in literature (Ihejirika et al., 2015). We plot this theoretical human AUC against the 

performance AUCs of our classifiers. 

 

Distribution of model predictions 

We calculate the prediction probability of our best random classifier for all cases, and 

observe the correct/misclassified ratio of cases for different predicted probabilities. Analyzing 
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the distribution of these predictions allows us to determine which/how many cases are being 

classified correctly or incorrectly, and how certain the model thinks those classifications are. 

 

Cohen’s Kappa 

In order to analyze the effect of the moderate variability between raters, we treated our 

model as a rater, and the raw data as another rater. We calculated the unweighted Cohen’s Kappa 

for inter-rater agreement between our model and the raw scores. This statistic measures the 

agreement between the two “raters”. We use the unweighted Kappa because our model uses only 

two classes. We reason that since the raw data is a representation of a number of raters which 

should have good agreement with each other, the model should agree with the raw data, as it acts 

as another rater. If our calculated Cohen’s Kappa is comparable to the ones found in literature, 

the model should be as agreeable as the opinion of another anesthesiologist. 

 

Manual review 

We evaluated the performance of our model on a subset of 117 cases that had been 

reviewed by a single anesthesiologist. With these cases, we compared the ASA score determined 

by the model and the anesthesiologist, and calculated both AUC and Cohen’s Kappa.  
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CHAPTER 4 

 

RESULTS 

 

Individual feature class results 

The results for the individual classifiers and combined classifier for the logistic regression, k-

nearest neighbors and random forest methods can be seen in the following table. 

 

Table 2. The average ROC AUC scores for each individual feature class, and combined 

classifier measured using 5-fold cross validation. 

 

 

The ICD9 chapter counts, ICD9 hierarchy, and temporal ICD9 chapter counts 

outperformed the other structures for ICD9 codes significantly (as a result, they are not shown 

Table 2; the full table of all the differently structured feature classes can be seen in Appendix A).  

We found that the best combination of feature classes was: age, BMI, service, medications, 

inpatient ICD9 hierarchy, outpatient ICD9 chapters. This combination resulted in the highest 

AUCs for each combined classifier. 
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Combined classifier results 

The results for the combined classifiers under each machine learning method are 

presented in the following Table 3. 

 

Table 3. Classification AUC for combined classifiers using logistic regression, k-nearest 

neighbors, random forests, deep neural network and combination deep and convolutional neural 

network. 

 

 

The best machine learning classifier is the random forest, which achieved an AUC of 

0.884 on the holdout dataset. We found that the best deep neural network performs as well as the 

best hybrid deep/convolutional neural network. In addition, logistic regression performs well 

with an AUC of 0.84.  

 

Learning curve and theoretical human AUC 

We also compared the learning rate of the random forest to the deep neural network 

(Figure 5). The random forest achieves a high AUC with much less data than the deep neural 

network requires. Both classifiers plateau approximately 0.5 below the theoretical maximum 

AUC (0.935). 



 22 

 

Figure 5. Learning rate of deep neural network and random forest plotted with the theoretical 

human AUC (0.935) calculated with Kappa from literature. 

 

Distribution of predicted probabilities 

We graphed the predicted probabilities of the model from 0 to 1. The results can be seen 

in figure 6. 
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Figure 6. Predicted probabilities of the random forest model for every case in the holdout set 

using a threshold of 0.5: <0.5 predicts ASA 1/2 and >0.5 predicts ASA 3/4/5. The classifier 

predicts “easy” cases with high accuracy (near p=0 and p=1). 

 

 

Model agreement 

The Cohen’s Kappa of the model compared to the raw data was 0.63. A model trained on 

all the data and tested on the dataset reviewed by the single anesthesiologist resulted in an AUC 

of 0.770 and Cohen’s Kappa of 0.541. These Kappa scores are comparable to scores found in 

literature, which came from experiments that compare the inter-rater reliability of different 

anesthesiologists. Because the scores are comparable, we infer that our model can act as a 

separate anesthesiologist that will predict scores that agree with those of real anesthesiologists. 
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CHAPTER 5 

 

DISCUSSION 

 

In this study, we designed a system that predicts ASA score given EMR data. Through 

testing, we found that a random forest classifier with features classes of age, BMI, service, 

medications, inpatient ICD9 hierarchy, and outpatient ICD9 chapters produced the highest AUC. 

Because of pseudo gold standard labels that we used, we tested the inter-rater reliability of our 

model by calculating the Cohen’s Kappa statistic. The model has moderate inter-rater reliability 

with the anesthesiologists in the data set, comparable to the Cohen’s Kappa found in literature. 

To find the best way to represent the medications and ICD9 code feature classes, we 

tested various feature granularities. We found that the individual medication and ICD9 code 

features did not improve performance, and that the top level categories in the hierarchy for both 

performed the best. In fact, we observed that more granular categories (for example, each ICD9 

code as a feature compared to the ICD9 chapters) caused overfitting in the models, and actually 

produced a lower AUC in general.  

Adding temporality to the ICD9 features did not increase the AUC of any of the models 

significantly. This implies that either temporality is not important, only the occurrence or co-

occurrence of certain diseases/problems matters, or the temporality could not sufficiently be 

represented. Because temporality did not improve prediction, the hybrid deep and convolutional 

neural network did not perform better than the deep neural network. 
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We found that medications did not have as high of an impact on prediction as our 

anesthesiologist had originally stated. We hypothesize that this is due to the fact that the pre-op 

medications and previous diagnosis via ICD9 codes give overlapping insight into the same 

information on the patient’s status. 

Results show that on the holdout set, random forests performed the best, closely followed 

by deep neural networks. Random forests also require much less data to achieve a high AUC 

than deep neural networks. The high performance of logistic regression implies that there are 

simple, linear relationships between features and the ASA score. The structure of the best-

performing DNN is a network with 3 layers, using 400 units. Using more layers decreased the 

AUC of the model, implying that the increased number of layers and connections did not add any 

value to the model prediction, and instead increased overfitting. The theoretical maximum AUC 

calculation demonstrates that there is likely a plateau in which AUC cannot improve due to the 

variability in ASA data. All models fall short of the theoretical maximum AUC, which implies 

that there may be room to improve. 

Since ASA assignments may be varied between anesthesiologists, we find interrater 

reliability of our model versus the raw data using the Cohen’s Kappa statistic. We decided to use 

this method after observing that Cohen’s Kappa for ASA has been calculated in literature by 

averaging rater versus reference Kappa values (Riley et al., 2014, Ihejirika et al., 2015) or 

calculating group rater versus rater Kappa values (Sankar et al., 2014). The Cohen’s Kappa for 

our model compared to the raw data was found to be 0.63. The model compared to data of a 

specific anesthesiologist resulted in a Cohen’s Kappa of 0.54. In literature, unweighted Kappa 

scores of 0.40 (Riley et al., 2014), and 0.64 (Ihejirika et al., 2015) are found. Our score is 
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comparable to these scores, implying that our model can be thought of as another reliable 

anesthesiologist. 

The graph of predicted probabilities from the random forest classifier shows that the 

cases in which the model predicts a probability near 0.5 are the hardest cases (high percentage 

misclassified), while the cases with probabilities near 0 and 1 contain the most correct cases. In 

addition, more of the total cases fall into the ends (probability near 0 or 1). From a practical 

standpoint, the model can be used to accurately evaluate a majority of cases (easy cases) and 

require manual review only for the more difficult cases, reducing the workload for 

anesthesiologists. 

There are several limitations in our study. One is that our labels, or golden standard, are 

the ASA scores designated by one physician. Some of these cases can be misclassified. We hope 

this is mitigated by the size of the data set and the fact that anesthesiologists' inter-rater 

reliability is moderate. We address this limitation by providing the Cohen's Kappa statistic for 

the predictions against all the data and against a single anesthesiologist. Even though our 

calculated Cohen’s Kappa doesn’t directly compare to those in literature, it acts as a comparable 

estimate. The second major limitation is that we only predict the ASA classes in two groups: 

ASA 1/2 and ASA 3/4/5. We argue, however, that this is sufficient, because the distinction 

between the ASA classes 2 and 3 is the hardest to determine, cases generally fall into ASA 2 or 

3, and because we predict a high number of “easy” cases with high accuracy. The third limitation 

is that the data is only limited to Vanderbilt, and has not been tested on a broader, multi-

institutional corpus. Future directions could include training and testing the model on EMR data 

from other institutions, and examining the differences or variance.  
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Conclusion 

This study attempts to solve the problem of creating a reliable model to rate patients on 

the ASA scoring scale. This model differs from previous work in that it uses more modern 

models, a significantly greater amount of training data, and uses retrospective anesthesiologist’s’ 

scores on cases as the golden standard instead of manually reviewed cases and scores. The output 

classifier for two class prediction achieves an AUC of 0.884. Modeling the classifier and raw 

data as raters, we achieve a Cohen’s Kappa of 0.63, with a Cohen’s Kappa of 0.54 against our 

anesthesiologist, comparable to scores seen in literature that range 0.4-0.64. This work 

demonstrates the feasibility of using this model as a standardized ASA scorer. 
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APPENDIX A 

The following table includes the 5-fold cross validated AUC for all single feature class 

classifiers that we tested. 
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