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CHAPTER 1

INTRODUCTION

1.1 Basics of Survival Analysis

At its core, this dissertation concerns itself with the study of survival analysis. For

proper understanding of the the contents within, it is first necessary to remind the

reader of several basic concepts and quantities commonly found in survival analytic

statistical procedures.

Survival analysis is principally concerned with the modeling of time-to-event data,

i.e., the time until individuals in a population experience a particular event of interest

(Klein and Moeschberger, 2005). Time-to-event data are especially prevalent in the

field of biostatistics since many health studies are concerned with following patients

over time with respect to some health outcome. For example, in a trial assessing

the efficacy of a drug targeted at preventing an adverse outcome such as myocardial

infarction (MI), an individual’s time until experiencing MI could be collected prospec-

tively as part of the study. Alternatively, in the case of an observational study, time

until an event can be derived in a variety of ways including using time-to-admittance

to a hospital, for example. Additionally, after controlling for other covariates (e.g.

age and sex), our goal is to be able to model the time to myocardial infarction as

a function of a treatment or some other independent variable of interest. In this

example, one would interpret longer time periods of not experiencing the event (in

other words, survival with respect to MI) as more desirable. Hence, if individuals in

a hypothetical treatment arm of the study survive longer (in a statistically meaning-

ful manner) without experiencing myocardial infarction, we would conclude that the

treatment is efficacious.

A natural question, however, is determining the methodology by which we intend

1



to model such time-to-event data. Naturally, as is the case in any statistical frame-

work, we seek to model the data with a mathematical procedure that intrinsically

accounts for the variability in the data set. Of course, this implies a probabilistic

formulation of data modeling wherein observed data are treated as observations of a

positive-valued continuous random variable, say, T . One resulting question, however,

is which probabilistic statements are appropriate to model these time-to-event data?

In other words, which functions related to the probability distribution associated with

T are most appropriate to model so that we can use the data to make inference about

how T is influenced by the treatment variable (or other predictors of interest)? If

we return to our preceding myocardial infarction example, our question of interest

might be phrased: do patients in the treatment arm go longer without experiencing

an MI than those in the control group? Alternatively, stated, one could ask for a

given time t, what is the probability that a person does not experience MI past t. In

mathematical notation, if we consider an individual’s time as a random quantity, T ,

we would be interested in developing a model for S(t) = P (T > t). Specifying a

probabilistic quantity like S(t) as a function of covariates, however, is challenging.

Instead of modeling the survival probability function directly, it is often more mathe-

matically and computationally convenient to model related quantities, which we will

discuss now.

The most commonly modeled alternative to the survival function is the hazard

function (Klein and Moeschberger, 2005). The hazard is defined as the instantaneous

risk of failure (or experience of the event of interest) and is mathematically given by

λ(t) = lim
δt→0

P (t < T ≤ t+ δt|T > t)
δt

. (1.1)

For a specified distribution function F (t) = P (T ≤ t), the probability density

2



function is given by

f(t) = ∂F (t)
∂t

= λ(t)S(t).

One last important function in this context known as the cumulative hazard which

is defined as

Λ(t) =
∫ t

0
λ(x)dx (1.2)

and is related to the aforementioned survival function by

S(t) = exp(−Λ(t)). (1.3)

In principle, the specification of a mathematical model that can model the survival

probability can be developed by modeling any of the three aforementioned quantities

directly. Some of these functions, however, are more easily modeled than others. One

of the most common strategies for modeling survival data is to introduce a covariate

effect on either the hazard or cumulative hazard. Specifically, the proportional hazards

model assumes that the hazard between two values of an independent variable differs

by some proportional amount. Mathematically, for such a model, a hazard function

is modeled as a function of a covariate by

λ(t|X) = λ0(t) exp(βTX) (1.4)

where λ0(t) is known as the baseline hazard, corresponding to the hazard when all

covariates equal zero (this quantity is often treated as a nuisance variable). Alterna-

tive specifications of a survival model can be given in the form of accelerated failure

time models, however these will not be discussed in this work.
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1.1.1 Censoring

When following individuals over time, it is possible that we fail to observe the

time of the event of interest during the course of the study period. Observations

that fall into this category are known as censored observations: a concept is quite

commonly observed in time-to-event analyses. There are several types of censoring,

but in this dissertation we will be concerned with so-called right-censored models.

In these models, it is assumed that censored observations have survived past the

observed or recorded time with respect to particular event.

This brings us to the formalized version of the likelihood contribution for each

censored subject. For a univariate model, For each individual, our observed data

consists of an observation time ti and an event indicator δi indicating whether the

event occurred. In terms of random variables, we assume that the true event time T ∗i

and a censoring time Ci are independent and that our observed time Ti = min(T ∗i , Ci).

In terms of modeling censored observations, the likelihood contribution is given by

the survival function, S(t); i.e. for a right-censored observation, we assume that the

subject survived past the observed time t.

1.1.2 Moving beyond proportional hazards

While the proportional hazards specification of the hazard model is convenient for

fitting and interpretation of coefficients, the proportionality assumption on the hazard

can be quite restrictive and lead to biased results when applied to datasets containing

data that violates the assumption. To illustrate, consider a scenario wherein we try to

fit a univariate proportional hazards model to data simulated from non-proportional

hazards (the true survival function and cumulative hazard functions are given by

the green dashed line). We see that the fitted proportional hazards model produces

a biased estimate of the underlying functions. With increasing data, this bias is

not overcome; instead, the variability around the bias lessens and we become more
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confident in the wrong inference.

Figure 1.1: Model Fits On Non-Proportional Hazards data

Naturally, other methods may be applied to account for non-proportional haz-

ards such as the accelerated-failure time model (Wei, 1992) and the time-varying

covariate methodology (Sueyoshi, 1992). However, this dissertation primarily centers

around the study and application of generalized transformation models. These mod-

els generalize common models used in survival analysis, including the aforementioned

proportional hazards model and the the proportional odds model as special cases.

This generalization is made through the introduction of a particular transformation

function defined as

G(v, r) = vI(r = 0) + [log(1 + vr)/r]I(r > 0) (1.5)

for v, r ∈ R+ (Zeng and Lin (2007), Zeng et al. (2009)). Intuitively, as values of r

increase, the outputs of the transformation for the varying parameter become closer

for successive values of v.
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In this model, it is most convenient, as we will see, to model the conditional

cumulative hazard instead of the hazard. Using the previously developed survival

quantities, we can determine the form of the univariate likelihood function for right

censored data. In the univariate case, beginning from the cumulative hazard function,

we have that

Λ(t|X) = G
[
Λ0(t) exp(βTX), r

]
= log

[
1 + rΛ0(t) exp(βTX)

]
/r.

From this specification, we conclude that the survival function and hazard functions

are given respectively by

S(t|X) = exp
{
− log

[
1 + rΛ(t) exp(βTX)

]
/r
}

(1.6)

and

λ(t|X) = ∂Λ(t|X)
∂t

= exp(βTX)
1 + rΛ(t) exp(βTX)

∂Λ0(t)
∂t

= λ(t) exp(βTX)
{

1 + rΛ0(t) exp(βTX)
}−1

(1.7)

In this dissertation, we focus on the development of multivariate models that

utilize this particular transformation model. Model parameters will be estimated

using Bayesian methods, which we now briefly discuss.
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Figure 1.2: Hazard and Survival Functions subject to the Transformation G(v, r) = vI(r = 0) +
[log(1 + vr)/r]I(r > 0).

1.2 Bayesian Statistics

1.2.1 Bayesian Analysis

We now consider the statistical inferential framework upon which this disserta-

tion is founded. Bayesian inference is motivated by the idea that we can update

our prior belief about a phenomenon by performing an experiment (Gelman et al.,

2013). Operationally, we convolve the results of that experiment with our prior be-

lief, and subsequently quantify the resulting posterior belief in some fashion (through

appropriate summary statistics of this posterior distribution, for example). This pro-

cess mimics the inductive accumulation of scientific knowledge, but depending on the

strength of our prior belief, one particular experiment might not necessarily over-

whelm our prior belief about the scientific process in which we are interested. That

is to say, there exists a particular weighting between prior belief and experimentation

involved in the Bayesian framework (the exact weighting depends on the experimental

conditions, sample size, and strength of prior). This process of learning is predicated

on a somewhat controversial notion of probability, but its implementation is a direct

application of a well known probabilistic result: Bayes’ theorem. The Bayesian view

interprets a probability as a personal belief of an event, in contrast to the frequentist
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view of a long run phenomenon. Assuming a subjective, belief-based interpretation

of probability, Bayes’ theorem gives a recipe for updating our prior belief about a

scientific process (in other words, the parameters). In the Bayesian view, the param-

eters of a statistical probability model represent the truth about the underlying data

generating mechanism (i.e. which specific formulation of our assumed probability

model gave rise to the observed data). Bayes’ Theorem (Casella and Berger, 2002)

gives the following formulation for learning about model parameters given our data:

P (θ|X) = P (X|θ)P (θ)∫
P (X|θ)P (θ)dθ . (1.8)

This theorem arises from foundational relationships between conditional and joint

probabilities. One implication of using Bayes’ formula as a method of learning about

a parameter is that we can no longer believe that this parameter is fixed and constant

(as opposed to the frequentist, long run probabilistic interpretation). Rather, Bayes’

theorem implies existence of uncertainty about the parameter of interest and thus

model parameters must be treated as random variables themselves.

To operationalize the process of Bayesian modeling, in principle, one specifies

a probability generating model for the data encoded in the likelihood P (X|θ). To

complete the formulation, one must select a prior probability distribution for the

parameter θ, denoted P (θ). Integrating the joint likelihood results in the marginal

likelihood which comprises the denominator of the computation in equation 1.8. Al-

though in principle, the process of Bayesian computation is a matter of leveraging an

elementary probability theorem, in practice, computation of the posterior distribution

can be quite complex.
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1.2.2 Introduction to the Bayesian Fitting

The process of implementing Bayesian models began first with the restriction

of models under consideration to that of the class of ‘so-called’ conjugate models.

Mathematically speaking, the posterior distribution of parameters under this par-

ticular framework were the same distributional form as the prior distribution, but

with updated parameters according to the conditional update. For example, for a

parameter that is learned about and is endowed with a Gaussian distribution and

whose generating model is assumed to be Gaussian as well, the posterior distribution

of this model is also Gaussian. There are many examples of conjugate models and

this strategy had proven useful for relatively simple model specifications (see Gelman

et al. (2013) for more details).

Although Bayesian computation had been founded on distributional equivalencies

of prior to posterior densities, the paradigm was plagued by the rigid necessity of con-

jugacy in its modeling. The requirement of a mathematically closed-form solutions

as a means for posterior inference severely limited Bayesian models. For instance,

censored and truncated models lack closed form conjugate models. This posed a se-

rious problem for the adoption of Bayesian methods for more complex models until

the introduction of simulation based-computational strategies which are still in main-

stream use (Metropolis et al., 1953). The authors described a method for simulating

draws from a posterior density via the construction of a Markov chain with random

walk. There has been much work in the advancement of Markov Chain Monte Carlo

(MCMC) sampling; see Brooks et al. (2011) for an overview.

1.3 Bayesian Survival Analysis

The Bayesian implementation of basic survival analysis is well founded and method-

ological development has been historically performed in Gibbs sampling-based soft-

ware such as JAGS or OpenBugs (Ibrahim et al., 2005). Formulating such Gibbs-
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sampling procedures often relied on the formulation and conversion of likelihood into

alternative forms. One example of this is the utilization of the so-called Poisson

trick, in which a semi-parametric Cox proportional hazards model can be converted

into a counting process-based model that is suitable for use in the software BUGS

(Spiegelhalter et al., 2007). Specifically, time until death is model using the following

formulation. We model the number of failures at time t for a subject i = 1, . . . n

through a counting process Ni(t). The counting process has associated with it an

corresponding intensity process that dictates the time specific rate of failure. This in

intensity process is given by

Ii(t) = Yi(t)λ0(t) exp(β ′Xi)

where Yi(t) ∈ {0, 1} depending on whether the subject is observed at the given time

point. Finally, the model is fit using a Poisson likelihood using a Gibbs sampler.

Many subsequent Bayesian survival analysis methodologies have been founded

upon this formulation. However, with the introduction of tensor-based computing

libraries such as ‘theano’ (Theano Development Team, 2016) and ‘tensorflow’ (Abadi

et al., 2016), gradient calculations can be leveraged for the implementation of Hybrid

Monte Carlo and Variational inference; as is the case in the python library ‘pymc3’

(Salvatier J, 2016). Tensor-based computation allows Bayesian modelers to utilize

a deep-learning platform to compute otherwise computational difficult tasks (such

as differentiation) and allows the modeler to not rely solely on pre-existing Gibbs

sampling techniques or to be forced to build their own for every specific new model.

Instead, the model likelihood can be passed as a simple tensor function within a model

context.
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1.3.1 Overview and Scope of Dissertation

This dissertation broadly focuses on the advancement and extension of Bayesian

methods for multivariate survival analysis with applications in larger data settings.

Increased sample information allows researchers to develop more flexible Bayesian

multivariate time-to-event models, but at the cost of increased computational time

associated with Markov Chain Monte Carlo (MCMC) sampling. Therefore, an ad-

ditional challenge addressed in this dissertation is the testing and implementation of

scalable algorithms that allow our models to be applied to large data.

In the first portion of this dissertation, we focus on generalizing various bivariate

copula survival models that allow for separate specification of marginal and associ-

ation components. We extend the Bayesian formulation of these models to include

generalized forms of the marginal survival functions as well as to include flexible B-

spline formulations of the baseline hazard. To demonstrate the approach, we apply

the techniques to a myocardial infarction dataset.

In the second portion of this thesis, we develop a scalable Bayesian framework

to accommodate time to first event of multivariate survival outcomes with ordinal

severity. This is done using a flexible Bayesian multivariate frailty model that de-

restricts the form of the survival function in order to simultaneously study the cor-

related covariate effects on differing severity levels of the outcome and to provide a

mechanism for combining these profiles into an overall effect. This work was moti-

vated by and applied to the Tennessee Asthma Bronchiolitis Study (TABS) cohort

(derived from the TennCare medical claims database) in order to quantify mater-

nal smoking effect across levels of first hospital admittance for infant bronchiolitis.

Using an additional data source correlating the multivariate survival outcomes with

ordinal severity scores, we provide a systematic and flexible way to determine the

overall direction of the smoking effect size over the multivariate survival events. Us-

ing Bayesian methods at the scale of an insurance claims database is challenging
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due to the computational bottlenecks of typical MCMC routines, which motivated

the use of approximate Bayesian inference in this paper. Variational Bayesian in-

ference is one such approximate approach, wherein the posterior density of a model

parameter is approximated by a member of a distributional family closest to the true

posterior in terms of some statistical distance. Additionally, it is unclear how valid

these approximations are outside of relatively simple statistical models. Therefore, as

a secondary focus of the paper, we study the efficacy of variational Bayesian methods

on multivariate survival models through a variety of simulations.

An important contribution to the advancement of scientific research is the devel-

opment of usable computational tools for researchers to easily adapt to their own

projects. Therefore, as a final component to this dissertation, we provide software for

the previously described time-to-event methods using the python Bayesian module

‘pymc3’ which is built upon the deep learning library ‘theano’ (Theano Development

Team, 2016). This software includes flexible implementations of the methods devel-

oped in this dissertation with user-friendly syntax to reduce the barrier-of-entry to

researchers. Leveraging pymc3 allows for usage of the deep learning library to auto-

matically compute otherwise difficult quantities such as gradient information neces-

sary for Bayesian methods as well as Hybrid Monte Carlo sampling and Variational

inference. The software incorporates other pymc3 mechanics like the ‘variational’

sub-module with the intent that researchers can use these models to answer scientific

questions involving multivariate time-to-event outcomes with EHR-scale datasets.

12



CHAPTER 2

BAYESIAN INFERENCE FOR MARGINAL TRANSFORMATION

MULTIVARIATE SURVIVAL MODELS

2.1 Introduction

One pervasive problem in the modeling of multivariate failure times is the proper

specification of a flexible form of joint survivor function. The frailty model, which will

be discussed in a future section of this dissertation, offers a conditional version of the

survival function. In this case, the survival function is specified such that individual

multivariate outcomes are conditionally independent given a subject-specific random

effect (relating the different dimensions of the multivariate outcome) endowed with

some parametric distribution. Alternatively, one may choose to to specify the joint

survival function in such a way that the marginal distributions are separated from

the association structure. A copula function provides a means for defining a joint

survival function by first specifying the marginal models and subsequently joining

those models under a particular association structure.

Copula models have been studied in the context of survival analysis as early

as Oakes (1989) wherein statistical inference was developed based on maximum-

likelihood estimation procedures. Subsequently, fitting procedures were introduced

in Shih and Louis (1995) for the association parameter in survival models. These

papers provide a basis for the frequentist inferential treatment of general multivariate

models in the marginal regression setting. However, much of the research in the area

of survival copula methodology include an assumption of a proportional change via

covariates in the marginal distributions. One notable exception to this was provided

by Li et al. (2017), who studied the bivariate survival using quantile regression and

martingale-based non-parametric estimation.
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In practice, the proportionality assumption, whether it is about the odds or the

hazard, may be too strenuous and fitting such models to data that do not follow

proportionality assumptions will lead to biased estimation procedures that cannot be

remedied with the introduction of larger sample sizes. As a result, there has been

much work in the area of generalizing survival functions to accommodate a wider class

of relationships of hazard functions for differing levels of covariates. Transformation

models for survival data first appeared in the literature with Dabrowska and Doksum

(1988) and later Zeng and Lin (2007) wherein the authors considered a model with

cure fraction. Shortly after the development of these models, Zeng et al. (2009) de-

veloped an extension of the transformation methodology to model multiple outcomes

within a conditional survival model by constructing the survival function condition-

ally on a random effect distributed as gamma distribution with unit mean. Here, the

appropriate transformation was learned from the data in large samples or, in smaller

samples, was fixed over a grid of values and model fit was evaluated based on some

information criteria. One early work that generalized random effects survival analysis

in the Cox proportional hazards setting to one without restriction on the form of the

baseline hazard can be found in Sargent (1998). Bayesian extensions to these models

can be found in both Yin (2008) and de Castro et al. (2014). A robust extension to

the linear transformation model was provided by Lin et al. (2017) using rank-based

estimation procedures.

Frequentist inference for marginal transformation models also has an established

literature and alternative transformations models than those considered in this pa-

per have been considered. First, Chen (2010) provides a maximum-likelihood-based

copula marginal methods for semi-parametric formulations for competing risks and

dependent censoring; the latter of these provides a methodology for transformed

marginals using counting processes. In Li et al. (2008), the authors consider trans-

formations of non-parametric hazard models into standard normal marginal distribu-
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tions and subsequent coupling with a Gaussian copula. Similarly, Lin et al. (2014)

considers probit-style transformations in order to recover a Gaussian copula model

structure. A two-staged estimation methodology is provided by Chen and Yu (2012),

where the marginal parameters are first estimated using martingale methods and

subsequently plugged into the full likelihood for association parameter estimation.

Furthermore, Diao and Yin (2012), developed a random effects cure model general-

izing the proportional hazards cure model and mixture cure models using empirical

processes. Finally, a non-copula based marginal transformation methodology based

on estimating equations was developed in Chen and Lu (2012).

The Bayesian treatment of copula models also has a rich literature. Bayesian treat-

ment of survival copula models with specified marginal distributions, however, was

first studied in Romeo et al. (2006) wherein the authors give both one and two-stage

estimation procedures using proportional hazards and non-parametric estimation of

the marginal models. As an extension, Meyer and Romeo (2015) provided a Bayesian

semi-parametric analysis of recurrent failure time data using copulas. The framework

allowed for parametric as well as a nonparametric modeling of the marginal baseline

hazards and models the influence of covariates on the marginals via a proportional

hazards assumption. Another extension to this work was given by E Shemyakin

and Youn (2006) wherein the authors provide a model for joint last survival in the

Bayesian framework. A mixed outcome model was considered in Craiu and Sabeti

(2012) wherein the authors proposed a method for jointly modeling continuous and

discrete outcomes. In Louzada et al. (2013), the authors consider a Bayesian model

using the Farlie-Gumbel-Morgenstern copula but do not consider a transformation in

the margins. Recently, Romeo et al. (2018), explored Bayesian bivariate survival anal-

ysis using the power variance function copula. All of these papers comprise a healthy

and formidable basis literature, however, to our knowledge, there has been no work

addressing Bayesian copula models that flexibly define the form of the marginal sur-
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vival models via transformation models of the sort developed in Zeng et al. (2009).

This paper seeks to fill this void and effectively provides marginal model extension to

the methods developed in de Castro et al. (2014) and a generalization of the propor-

tional hazards assumption assumed in the parametric model of Romeo et al. (2006).

Additionally, we provide an alternative semi-parametric formulation to those listed

above by studying the Bayesian application of cubic splines in the baseline hazard.

In this paper, we develop generalized copula models that extend pre-existing

Bayesian marginal models that require the introduction of covariates through the

specification of proportional hazards models to a general transformation class that

includes both the proportional hazards and proportional odds as special cases. We

will use Bayesian inference to both determine the choice of transformation as well as

determine the best copula model based on Bayesian information criteria. We consider

two separate specifications of the marginal survival functions: first, we consider mod-

els with parametric specifications of baseline hazard, and secondly we consider models

using cubic spline specifications of the baseline hazard. For the latter of these models,

we study both penalized and un-penalized approaches to the spline specification.

The remainder of this paper is organized in the following manner. Section 2 intro-

duces the rigorous definition of copula models as well as a description of the families

considered in this work. Furthermore, we describe the semi-parametric formulation

of the transformation copulas using splines. In this part, we first define the spline

approach to modeling baseline hazard and subsequently discuss the various types of

specific spline models we will be implementing. Next, we describe how the spline

model is formulated for the univariate transformation case and how to extend to

the copula model. Section 3 describes the inferential strategies necessary to imple-

ment the proposed models. Next, a simulation study is performed to demonstrate

statistical efficacy of the proposed approach. Finally, the paper concludes with an

application of the proposed method to a myocardial data set wherein risk factors for
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stroke and myocardial infarction are jointly estimated. We provide simulations for

each of the proposed implementations and subsequently apply the methodologies to

the Atherosclerosis Risk in Communities Study (ARIC) dataset. We close the entire

paper with a discussion and future research.

2.2 Basic Quantities

In this section we present the basic definition and intuition behind copula models.

An in-depth discussion may be found in Nelsen (1999) and Joe (1997). First, con-

sider a vector of K random variables (T1, . . . , TK)′ with continuous margins (with

corresponding marginal cumulative distribution functions, Fk(tk) = P (Tk ≤ k),

k = 1, . . . , K). By the probability integral transform, the corresponding vector of

CDFs has uniformly distributed marginals. Now, we define the copula (Nelsen,

2007) of the vector (T1, . . . , TK)T as the joint CDF of the margins such that

Cα(u1, . . . , uk) = P (T1 ≤ F−1
1 (u1), . . . , Tk ≤ F−1

K (uK)) (2.1)

The function Cα : [0, 1]K → [0, 1] is a copula if

1. Cα(u1, 0, . . . , uK) = 0, i.e. is equal to zero if one of its components equals zero

2. Cα(1, . . . , u, 1) = u, i.e. the copula is equal to the marginal u if all other

arguments are equal to 1.

3. Cα is non-decreasing.

From this definition, we can begin to develop a modeling strategy for coupling

disparate marginals via the following theorem.

Sklar’s theorem: For random variables (T1, . . . , TK)T with joint cumulative dis-
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tribution function

F (t1, t2, . . . , tK) = P (T1 ≤ t1, . . . , TK ≤ tK) (2.2)

and marginals Fk(t) = P (Tk ≤ tk), there exists a copula, Cα such that

F (t1, t2, . . . , tK) = Cα(F1(t1), . . . , FK(tK)). (2.3)

Additionally, given a copula Cα and marginal distributions Fk(tk) = P (Tk ≤ tk), then

Cα(F1(t1), . . . , FK(tK)) (2.4)

defines a valid joint cumulative distribution function.

From a modeling perspective, Sklar’s Theorem allows us to separate the modeling

of the marginal distributions Fk(tk) from the dependence structure. In other words, we

are guaranteed the existence of a copula that gives a valid distribution function for any

specification of marginal distributions. Now, instead of associating two distribution

functions with a copula to define a joint CDF, we can analogously define a joint

survival function in terms of a copula function (Nelsen, 2007), (Georges et al., 2001).

In this paper, we extend the formulation of bivariate copula models to include a

marginal transformation that allows for a more flexible formation of the margins in

the survival function thereby overcoming the restriction of proportional hazards in

such models. We now proceed to discuss the classes of copula functions that will be

considered throughout this paper.

2.2.1 Classes of Copula Functions

There exist a multitude of valid copula functions, each developed in an effort to

model different underlying dependence phenomena. For a nearly complete collection
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of these functions, see (Nadarajah et al., 2017). The most basic implementations

of copula function, however, are the parametric families which include the Gaussian

and the Student’s t-copula. These functions exploit the distributional assumptions of

each family to properly couple the marginal distributions. The usage of a Gaussian

copula for survival data was addressed by (Masarotto et al., 2012).

Although the parametric copula framework offers a tractable and simple imple-

mentation of copulas, we instead focus on the Archimedean class of copula models

(Genest and Mackay, 1986). Definitionally, we say that a copula is Archimedean if

its joint survival function has the form

Cα(u1, . . . , uK) = ψ−1
(

K∑
k=1

ψ(uk);α
)

(2.5)

for some ψ : [0,∞] → [0, 1]. Notice that this family is parameterized by α. This

parameter effectively measures the strength of the dependence between the marginal

survival models. The members of this family that will be considered in the parametric

portion of this paper include the Clayton, Frank, Gumbel, and Joe Models. In this

section we only present the form of the copula; relevant derivatives for likelihood

formulation are available in Appendix A.

2.2.2 Clayton Model

The first copula under consideration was first developed by Clayton as a mul-

tivariate extension of the proportional hazards model (Clayton and Cuzick, 1985).

The Laplace transform (Widder, 2015) of this particular model is that of a gamma

distribution, relating this model to the gamma frailty model. Further discussion on

the differences between the two models can be found in (Goethals et al., 2008)
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The form of the copula function for this case is given by

Cα(u1, u2) = (u−α1 + u−α2 − 1)−1/α. (2.6)

An illustration of the association structure can be found in Figure 2.1.

Figure 2.1: Joint Distribution of Uniform Marginals under Clayton Copula with α = 8

2.2.3 Gumbel-Hougaard Model

The Gumbel-Hougaard copula is given by

Cα(u1, u2) = e−((− log (u2))α−logα (u1))
1
α
. (2.7)

An illustration of the association structure can be found in Figure 2.2.

2.2.4 Joe Model

The copula specification for the Joe copula is given by:
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Figure 2.2: Copula Generation for Gumbel Model

Cα(u1, u2) = (1− [(1− u)α + (1− v)α

×− (1− u)α(1− v)α]1/α)

An illustration of the association structure can be found in Figure 2.3.

2.2.5 Frank Model

Finally, the copula specification for the Frank model is given by:

Cα(u1, u2) = − 1
α

log
(

1 + (eαu1 − 1) (eαu2 − 1)
−1 + e−α

)
(2.8)

An illustration of the association structure can be found in Figure 2.4.
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Figure 2.3: Copula Generation for Joe Model

Figure 2.4: Copula Generation for Frank Model

2.3 Model and Likelihood Formulations

In this section, we develop the likelihood formulation for the bivariate survival

models. Consider bivariate pairs of data (T ∗i1, T ∗i2) representing the true time to event

for the ith individual in the study. Now, consider censoring times (Ci1, Ci2) and cor-
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responding indicator functions δik = I(Cik ≥ T ∗ik), k = 1, 2. Then the observed times

are given by Tik = min(Cik, T ∗ik), k = 1, 2. The construction of these models can be

conceptualized in a modular fashion; we begin by defining the marginal survival func-

tions for each dimension and then subsequently define the joint distribution in terms

of these marginal distributions. Our goal is to define a copula-based transformation

joint model for the survival probability P (T1 > t1, T2 > t2|X) using

Sk(tk|Xi) =
{

1 + rkΛ0k(tk) exp(β ′kXi)
}−r−1

k (2.9)

with density

fk(tk|X) = λ0k(tk) exp(β ′kXi)
{

1 + rkΛ0k(tk) exp(β ′kXi)
}−(1+r−1

k
)
. (2.10)

For bivariate data, there are four combinations of possible observed indicators

for the individual pairs of times. The likelihood component for two right censored

observations is given by the joint survival function itself; which is given by the copula

evaluated at the conditional marginal survival functions. This may be expressed as

P (T1 > t1, T2 > t2) = Cα

({
1 + r1Λ01(t1) exp(β ′1Xi)

}−r−1
1
,
{

1 + r2Λ02(t2) exp(β ′2Xi)
}−r−1

2
)
.

(2.11)

Next, when both times correspond to observed failures, the likelihood contribution is

given by

P (T1 = t1, T2 = t2) =
∂2Cα

({
1 + r1Λ01(t1) exp(β ′1Xi)

}−r−1
1
,
{

1 + r2Λ02(t2) exp(β ′2Xi)
}−r−1

2
)

∂t1∂t2

For the case that only one event occurs, we differentiate the copula function in the

direction of the observed time. With out loss of generality consider the case that T1
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is censored and T2 is observed. Then we have

P (T1 > t1, T2 = t2) = −
∂Cα

({
1 + r1Λ01(t1) exp(β ′1Xi)

}−r−1
1
,
{

1 + r2Λ02(t2) exp(β ′2Xi)
}−r−1

2
)

∂t2

Our likelihood for the bivariate data is then simply the product of the indicator

combinations

L(α, β1, β2, λ1, λ2, r1, r2|X) =
n∏
i=1

P (T1 = t1, T2 = t2)δ1δ2P (T1 > t1, T2 = t2)(1−δ1)δ2

×P (T1 = t1, T2 > t2)(1−δ2)δ1P (T1 > t1, T2 > t2)(1−δ1)(1−δ2)

=
n∏
i=1

(cα(Si1(t1|X), Si2(t2|X))fi1(t1|X)fi2(t2|X))δ1δ2

×
(
−∂Cα (Si1(t1|X), Si2(t2|X))

∂Si1(t1|X) · (−fi1(t1|X))
)δi1(1−δi2)

×
(
−∂Cα(Si1(t1|X), Si2(t2|X))

∂Si2(t2|X) · (−fi2(t2|X))
)δi2(1−δi1)

×Cα(Si1(t1|X), Si2(t2|X))(1−δ1)(1−δ2). (2.12)

For statistical inference, the log-likelihood of this expression is used for computa-

tional feasibility.

Now that we have defined the likelihood of this model, computing the poste-

rior distribution is done through Bayes’ theorem. Bayesian analyses require the

specification prior distributions on the model parameters i.e., we need to specify

p(α, β1, β2, λ1, λ2, r1, r2). We will leave specific distributional assumptions to subse-

quent sections, but the posterior distribution of the model parameters will be of the

form

P (α, β1, β2, λ1, λ2, r1, r2|X) ∝ L(α, β1, β2, λ1, λ2, r1, r2|X)

×P (α, β1, β2, λ1, λ2, r1, r2). (2.13)
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In this paper, we first consider a parametric Weibull formation of the hazard, which

exhibits a monotone hazard over time and is especially significant because it may

be parameterized in a proportional hazards or accelerated failure time specification

(Klein and Moeschberger, 2005). Mathematically, the baseline hazard takes the form

λk(t) = λkρkt
ρk and the cumulative hazard function is given by Λk(t) = λkt

ρk .

2.4 Semi-parametric copula model

We now extend the preceding methodological development to a de-restricted form

of a baseline hazard function λ0(t). By restricting oneself to a parametric hazard,

we are limited to only consider monotonic hazards. Indeed, it is often the case that

the true underlying hazard is non-monotone. Naturally, there are some parametric

alternatives to a Weibull hazard, including the log-Normal distribution (Klein and

Moeschberger, 2005), however, one alternative way to specify the baseline hazard is

through the introduction of a non-linear spline function De Boor et al. (1978).

A spline function is nothing more than a linear combination of basis vectors (the

exact basis will be discussed more in the subsequent section). Early implementations

of a spline baseline hazard include Herndon and Harrell Jr (1995) in terms of the a

truncated power basis. In this paper, we utilize the B-spline basis of De Boor et al.

(1978).

2.4.1 Likelihood specification

In this section, we develop the inferential specification of the likelihood component

of this model. Splines leverage the fact that a functional form may be expressed as

a linear combination of a set of basis functions; specifically, the basis functions are

generated conditionally on a set of (in this paper, fixed) knot points. Estimation of

the underlying baseline hazard function therefore becomes an estimation procedure

for the coefficients of the linear combination (for whatever basis is used). Although

25



the linear component of a survival model may be replaced with splines to specify

a non-linear covariate effect (by way of a linear construction), we focus here only

on the development of the baseline hazard. Similarly to Sharef et al. (2010), we

specify the spline function to model the baseline hazard function (although we do

not adaptively select knot points as in the aforementioned paper). As an alternative,

several authors advocate the modeling of the log-hazard, which is given by log λ0(t) =∑S
s=1 αsBs,q(t). This formulation allows for the introduction of certain penalization

methods on the linear coefficients, due to the fact that the log-hazard is not required

to be positive. However, one important quantity of interest in our models is the

cumulative hazard for the right censored observations. The log-hazard specification

of the baseline hazard can be numerically integrated to give the cumulative hazard;

see Davis and Rabinowitz (2007) implementation of quadrature integration. While

numerical integration is feasible for smaller datasets, the computational complexity

involved in fitting increasingly complex baseline hazard, coupled with the complexity

of evaluating the likelihood motivates the development of a spline specification that

leads to a closed-form solution for the baseline-cumulative hazard that is in terms of

the coefficients used to parameterize the hazard function. The introduction of a closed

form integral allows for easier gradient computations in the underlying computer

software. Complexity is reduced by eliminating the need for numerical approximation

and information is incorporated about the spline coefficients through the cumulative

hazard.

The primary reason for this restriction is because the hazard itself is unrestricted in

its shape, whereas the cumulative baseline hazard is strictly increasing over time; this

fact motivates non-linearly modeling the hazard instead of the cumulative baseline

hazard. Although there exist closed-form expressions of the derivative function of a

specified spline, we will instead leverage the closed form expression for integration of

B-splines instead. Following the model specification in Equation 2.9 , we see that it
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is necessary to compute the following quantity:

Λ0k(tk|~αk) =
∫ tk

0
λ0k(x|α)dx. (2.14)

Now, we wish to use the spline representation of baseline hazard which assumes

that

λ0k(t|~αk) =
S∑
s=1

αskBs,q(tk) (2.15)

where q is the order of the spline (degree + 1) over a set of knots ξ, and S = q + #

of knots. This is a simple dot product of α and a vector containing the appropriate

basis values at the observed time, ti.

Now that we have specified the form of the baseline hazard, we now show the form

of the baseline hazard. This quantity, is of course, the integrated (or cumulative)

hazard function. As given in De Boor et al. (1978), the integral of a spline may be

expressed as

Λ0(t|~α) =
∫ t

0
λ0(x|~α)dx

=
∫ t

0

S∑
s=1

αsBs,q(x)dx

=
S−1∑
s=1

 s∑
j=1

αj(ξj+q − ξj)/q
Bs,q+1(t). (2.16)

Hence, the full likelihood for a given subject the univariate model, is given by

li(β, α|Xi, ti, δi) = δi

[
log

(
S∑
s=1

αsBs,q(tk)
)

+XT
i β

]

−

S−1∑
s=1

 s∑
j=1

αj(ξj+q − ξj)/q
Bs,q+1(t)] exp(XT

i β)
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In figures 2.5 and 2.6, we can see one MCMC run on a simulated dataset to

demonstrate this approach.

2.4.2 Computer Implementation

Although Equation 2.16 gives a closed form solution for the integral of the baseline

hazard, this expression is not trivial in its computer implementation. Recall that we

wish to leverage a tensor-based deep learning library to perform expensive gradient

calculations for procedures such as Hamiltonian Monte Carlo, or alternative fitting

procedures such as the Laplace’s approximation (Shun and McCullagh, 1995) and

variational Bayesian inference (Blei et al., 2017). A preliminary implementation of

the integration task can be constructed using a nested loop (this is present in the

‘IntegrateBs’ R package). However, since we would like to pass arbitrary vectors as

data into the model, we need to express the integral in terms of matrix algebra. Such

steps will alleviate much computational overhead and will reduce the computational

complexity of the differentiation for the fitting process.

Notably, we would like for theano, (or any deep learning library for that matter),

to handle the spline coefficients as a tensor of arbitrary size and have all computations

involve that specific computational tensor; notably ~α. Revisiting the summation in

Equation 2.16, we have

S−1∑
s=1

 s∑
j=1

αj(ξj+q − ξj)/q
Bs,q+1(t) (2.17)

for ξ0 ≤ t ≤ ξs. One might notice that this expression constitutes a broadcasted

dot product over an upper triangular matrix. To illustrate, we first consider the inner

summation given by
1
q

k∑
j=1

αj(ξj+q − ξj). (2.18)
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For a given k, we notice that

αintegral,k = 1
q

k∑
j=1

αj(ξj+q − ξj) (2.19)

= 1
q
α ·



ξ1+q − ξ1

ξ2+q − ξ2

...

ξk+q − ξk

0(#knots+q−k)×1


(#knots+q)×1

(2.20)

which is simply a scalar. Collecting these terms in a vector, say αintegral which is

of dimension (s − 1) × 1. This vector may be computed by broadcasting ~α over the

following matrix 

ξ1+q − ξ1 ξ1+q − ξ1 . . . . . . ξ1+q − ξ1

0 ξ2+q − ξ2 . . . . . . ξ2+q − ξ2

... 0 ... . . . ξ3+q − ξ3

... ... ... . . . ...

0 0 0 . . . 0


Further, we define the vector of evaluated S− 1 basis functions Bq+1(t). We see then

that

S−1∑
s=1

 s∑
j=1

αj(ξj+q − ξj)/q
Bs,q+1(t) = αintegral ·Bq+1(t) (2.21)

A comparison of the accuracy and speed of the implementation can be found in

the Appendix.
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Figure 2.5: Cumulative hazard function using univariate B-splines on the baseline hazard. Blue
points represent the posterior MCMC draws, the black vertical lines represent the knot locations,
and the red line represents the true simulated cumulative hazard function.

Figure 2.6: Survival function using univariate B-splines on baseline hazard. Blue points represent
the posterior MCMC draws, the black vertical lines represent the knot locations, and the red line
represents the true simulated survival function.
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2.4.3 Multivariate Censored Likelihood

The development of the likelihood function for the multivariate spline copula

model proceeds in a similar fashion to the parametric model. The bivariate cop-

ula under this specification has the same form as Equation 4.1 with Λ0(t) and λ0(t)

replaced by 2.16 and 2.15, respectively.

2.5 Inference

In Bayesian analysis, the most common strategy for computing posterior distri-

butions and quantities of interest is through Markov Chain Monte Carlo (MCMC)

wherein an ergodic Markov Chain is constructed in such a manner that its stationary

distribution is the posterior distribution of interest, P (θ|X) (Brooks et al., 2011).

With regards to Bayesian sampling mechanisms for survival copulas, Romeo et al.

(2006) implemented a Gibbs sampler for proportional hazards copula models using

the BUGS software Recent advances in the MCMC literature have led to the de-

velopment of more efficient sampling schemes including Hamiltonian Monte Carlo

and No U-Turn Sampling (Gelman et al., 2014). Certainly, the area of Bayesian

survival analysis has a multitude of computational development of Gibbs sampling

methods developed for specific models (Ibrahim et al., 2005). In the first part of these

analyses, we will use No-U-turn sampling with pymc3 (Salvatier J, 2016). Pymc3 is a

general purpose probabilistic programming package written in the Python computing

language.

2.6 Simulations

To assess the statistical properties of our proposed methodology, we implement

a series of simulations to determine the overall efficacy of the approach. For the

simulations, we generated data from non-proportional hazards models of the form

seen in Equation 2.9. Simulation strategies for proportional hazards may be found in
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Bender et al. (2005) and we extend this methodology to the general transformation

model previously outlined. Simulation from copula models is a somewhat challenging

undertaking, depending on the type of copula that is being simulated. The gen-

eralized approach, however, is described by Marshall and Olkin (1988). For these

simulation studies, however, the R package ‘copula’ was used to simulate from the

underlying copula. After simulating from the copula models, we then took each mar-

gin (which is uniformly distributed), and simulated draws from the joint model using

the inverse CDF of the transformation model. We simulated cohort covariates for

that acted as proxies for age and sex. Specifically, for the age covariate, we drew

Xage ∼ Gamma(α = 10, β = .3) and sex was generated by a simple binomial variable

with success probability p = .5. For our simulations we set the transformation pa-

rameters to r1, r2 = 0.5. For the parametric models, the baseline hazard and frailty

parameters were given Half-Cauchy(2.5) distributions, while diffuse Normal distribu-

tions were used for the regression coefficients (zero mean and variance of 1002). Note

that our modeling framework allows for any specification of prior distribution and we

are not restricted to a specific form.

The basic graphical workflow of our approach is illustrated in Figure 2.7. We can

see that each margin of the copula model is compartmentalized and is joined together

via a copula function Cα.

2.6.1 Initial Values

In principle, the fitting of a Bayesian model proceeds by implementing Markov

Chain. Theoretically, as long as the sampling process has sufficient time to sample,

draws from the stationary distribution of the Markov Chain will be simulations from

the target posterior distribution. However, in practice, MCMC can be highly sensitive

to initial values. Indeed, in our initial attempts for simulations, we found that using
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~X

~ξ1

~t1

~ξ2

~t2

~α1Bq,S(t1) ~α2 Bq,S(t2)

~β1r1Λ10(t1) ~β2 r2 Λ20(t2)

S1(t1|X) α S2(t2|X)

Cα

Figure 2.7: Graphical construction of parametric copula model. The grey squares represent quan-
tities in the computational graph corresponding to data/data derived quantities, purple circles rep-
resent random variables, and orange rectangles represent deterministic (or derived) variables in the
computational graph.
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default values of mean on the prior distributions resulted in failure of the initial energy

of the Hamiltonian Monte Carlo. This motivated the use of better initial values.

For the Frank, Joe, and Gumbel models, an initial implementation of initial values

was via the usage of the maximum likelihood estimates of the marginal distributions.

Notably, for these models, we performed an initial optimization of the marginal sur-

vival parameters with Nelder-Mead optimization. Subsequently, we optimized the

joint distribution to obtain an initial point for association parameter. Using the opti-

mization in this last step, we initialized the MCMC sample. For the simulated models,

this initialization was mostly sufficient, however, due to the unconstrained nature of

the Nelder-Mead algorithm, it was possible for the optimizer to return negative values

for the transformation parameter r. This ultimately led the sampler to occasionally

fail due to the initial value lying outside of the support of the distribution. However,

we found that if the MCMC sampler was able to sample at least one sample, then the

simulation would run the entire time. For numerical stability, we recommend either

constraining the optimization or just using the mean of the posterior distribution

from MCMC marginal fits as starting values for the full joint distribution fit. For the

Clayton models contained throughout, the full posterior distribution was maximized

(maximum a posteriori) and was used as an initial value. However, this joint opti-

mization occasionally led to some failures in initializing the MCMC sampling. We

will discuss this fact and an alternately proposed initialization scheme in the next

section.

2.6.2 Simulations

In this section, we present the results of simulation studies performed on simu-

lated datasets of size 5000. For the parametric Clayton model, we used 2000 Hamil-

tonian tuning steps and 5000 draws and we initialized the MCMC at the maximum

a-posteriori estimate. For each other parametric copula, we used No-U-Turn Hamilto-
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nian MCMC with 500 tuning steps and 5000 post-tuning steps as well as a two-staged

maximum likelihood initialization (described in the previous section). Uniform cen-

soring was introduced and censoring rates for the Clayton model were 10% and 14%

for T1 and T1, respectively (note, although this censoring rate is low here, we perform

simulations with much higher rates in the semi-parametric portion of the paper).

Censoring rates for the Gumbel model were 18% and 25.1%, 17.5% and 24.4% for

the Frank model, and 17.3% and 23.5% for the Joe model. For each parameter, we

provide the average bias of the posterior mean (ABPM) over all simulations, the stan-

dard deviation of the posterior mean (SDPM), the mean standard deviations of the

posterior distributions (SDS), the mean squared error, and the frequentist coverage

probability (CP) of the 95% quantile credible interval. For the reader’s convenience,

we multiplied each of these quantities by 100.

Interpreting these results, conditional on an effective starting value, we see that

with diffuse priors on the parameters, the coverage probabilities of the simulations

are between 93.0% to 97.2% with most parameters reaching the nominal level of 95%.

Overall, we see low average bias and low MSE in the simulations for the β effect

sizes; the highest of which in absolute value is 5.03 × 10−3 corresponding to the β21

estimate in the Frank model. Overall, the highest observed bias for the posterior

mean was the association parameter α across all of the models (the highest of which

was 1.2×10−2). We notice that the standard deviation of the posterior samples for the

transformation parameter and for the copula association parameter are the largest of

all parameters indicating that there is less sample information about these parameters

than for the effect sizes. Additionally, the diffusion in these posterior samples likely

contributes to the increase in bias of the posterior mean. It should be noted to the

reader that these simulation results are based on runs that had reasonable initial

values that allowed the MCMC sampler to run. In some cases, the maximization

attempt for the initial value (that is the maximization of the full joint posterior as
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Copula Param. Truth ABPM SDPM SDS MSE CP
(×100) (×100) (×100) (×100) (×100)

β11 1.63 -0.144 4.775 4.604 0.228 94.2
β12 0.03 -0.009 0.173 0.167 < 0.001 93.0
β21 0.8 -0.246 3.881 3.717 0.151 95.2
β22 0.03 -0.017 0.172 0.168 < 0.001 94.6
α 3.21 1.288 7.992 8.162 0.655 94.6

Clayton λ1 0.0047 0.006 0.052 0.051 < 0.001 93.8
λ2 0.0037 0.106 0.052 0.051 < 0.001 94.0
ρ1 0.716 0.036 1.330 1.376 0.018 95.8
ρ2 0.725 -0.022 1.508 1.439 0.023 94.2
r1 0.5 0.219 3.504 3.657 0.123 95.0
r2 0.5 0.206 4.264 3.968 0.182 94.8

β11 1.3 -0.085 4.294 4.032 0.184 93.2
β12 0.03 -0.009 0.159 0.165 < 0.001 96.4
β21 0.8 -0.034 3.827 3.627 0.147 93.4
β22 0.03 -0.007 0.163 0.165 < 0.001 95.6
α 9 0.618 20.561 19.855 4.231 94.4

Joe λ1 0.0047 0.006 0.048 0.049 < 0.001 95.6
λ2 0.0037 0.106 0.048 0.049 < 0.001 96.0
ρ1 0.716 0.037 1.297 1.319 0.017 95.8
ρ2 0.725 0.059 1.337 1.353 0.018 97.2
r1 0.5 0.249 4.465 4.474 0.200 94.6
r2 0.5 0.450 5.076 4.977 0.260 95.6

β11 1.3 -0.311 4.684 4.675 0.22 94.2
β12 0.03 -0.033 0.201 0.197 < 0.001 94.2
β21 0.8 -0.147 4.397 4.299 0.194 95.6
β22 0.03 -0.028 0.199 0.198 < 0.001 94.2
α 7.9 1.700 14.216 14.639 2.050 96.8

Gumbel λ1 0.0047 0.015 0.052 0.053 < 0.001 95.4
λ2 0.0037 0.115 0.052 0.053 < 0.001 95.4
ρ1 0.716 -0.135 1.282 1.338 0.017 96.0
ρ2 0.725 -0.093 1.350 1.373 0.018 94.6
r1 0.5 -0.175 4.340 4.314 0.189 95.0
r2 0.5 0.227 4.785 4.747 0.230 95.8

β11 1.3 -0.283 4.821 4.717 0.233 93.6
β12 0.03 -0.019 0.184 0.187 < 0.001 94.8
β21 0.8 -0.503 4.113 4.263 0.172 96.0
β22 0.03 -0.027 0.183 0.192 < 0.001 95.2
α 8 0.848 14.416 14.849 2.085 95.6

Frank λ1 0.0047 0.009 0.056 0.055 < 0.001 94.8
λ2 0.0037 0.109 0.056 0.055 < 0.001 96.6
ρ1 0.716 0.071 1.627 1.561 0.027 93.6
ρ2 0.725 -0.045 1.748 1.724 0.031 94.6
r1 0.5 0.292 5.608 5.382 0.315 93.0
r2 0.5 0.242 6.928 6.835 0.481 95.0

Table 2.1: Copula simulation results for 500 simulations for parametric Archimedean copulas, results
are multiplied by 100
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an initial value) failed to yield an estimate that allowed Hamiltonian Monte Carlo

to tune and sample. We implemented an alternative initialization procedure that

yielded less HMC initialization errors overall and yielded nearly identical results to

those presented in table 2.1. Results for this followup simulation can be found in

table 2.11 in the Appendix.

2.6.3 Semi-parametric Simulations

For the Clayton semi-parametric spline model, we performed a series of simulations

for a variety of different spline specifications. Here, we present the results of a non-

restricted spline with a simple diffuse Half-Cauchy prior, a more informative Half-

Cauchy, and a hierarchical Half-Cauchy distribution on the spline coefficients. In

these simulations we fixed 15 and 10 knots at evenly spaced sample quantiles of the

observed data points.

2.6.4 Unpenalized Spline Model

As a preliminary benchmark, we fit an non-hierarchical, unpenalized spline model

that used a Half Cauchy prior. Model 1 represents the model with a HalfCauchy(0.001)

prior distribution and Model 2 represents the model with a HalfCauchy(b̂) prior dis-

tribution where b̂ is the MAP point estimate. We the results of these simulations can

be found in table 2.2.

We notice a slight under-coverage of the posterior credible intervals. This is likely

due to the fact that the coefficients of the spline corresponding to the control points

lie outside of the space of the observed data.
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Figure 2.8: Graphical construction of spline-based copula model. The grey squares represent quan-
tities in the computational graph corresponding to data/data derived quantities, purple circles rep-
resent random variables, and orange rectangles represent deterministic (or derived) variables in the
computational graph.

Model Param. Truth ABPM SDPM SDS MSE CP
(×100) (×100) (×100) (×100) (×100)

β11 1.3 1.547 3.251 3.202 0.13 92.1
β12 0.03 -0.007 0.107 0.106 < 0.001 94.3
β21 0.8 1.225 2.955 2.821 0.102 92.1

Model 1 β22 0.03 0.012 0.115 0.117 < 0.001 95.6
α 3.21 -0.989 4.453 4.699 0.208 94.7
r1 0.5 2.592 3.294 3.367 0.176 91.2
r2 0.5 3.575 4.662 4.494 0.345 86.8

β11 -0.63 -0.815 1.914 2.08 0.043 95.6
β12 0.03 -0.043 0.093 0.095 < 0.001 93.6
β21 -0.69 -0.213 1.845 1.983 0.034 96.0

Model 2 β22 0.02 -0.054 0.073 0.074 < 0.001 89.0
α 3.21 -0.044 3.424 3.582 0.117 95.8
r1 0.5 1.998 6.067 6.219 0.408 94.1
r2 0.5 -0.349 4.2 4.174 0.178 95.8

Table 2.2: Initial simulations with unrestricted spline specification on the baseline hazard
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2.6.5 Penalized Spline

We next consider a penalized version of the spline baseline hazard. If we consider

the model implemented in the previous section, we see that it was necessary to specify

the hyper-parameter of the prior distribution for the spline coefficient a priori. We

saw that the coefficients corresponding to the control points that were placed just

past the study end date tended to be pulled toward the prior mean due to the fact

that no-data existed to inform the posterior distribution. To amend this, we consider

penalizing the spline coefficients by introducing a hierarchical prior distribution on

the hyper-parameter of the spline coefficient prior distribution. By introducing this

prior distribution, the spline coefficients themselves are treated as random variables

from some generative process endowed with a parameter learned from the data. Now,

since we assume that the spline coefficients corresponding to the control points follow

the same distribution as the spline coefficients corresponding to the interior knots,

we can better infer the posterior due to borrowing of strength. In other words, we

borrow strength from the inference on the interior knots to better infer the posterior

of the control points due to the fact that the interior knots have data associated with

them. The results of 500 simulations under this specification can be seen in tables

2.3, 2.4, 2.5, and 2.6. Figures 2.9, 2.10, 2.11, and 2.12, present marginal survival

functions over several simulations (mean is in blue, and 95% quantiles are in red)

using 15 knots. Figures 2.13, 2.14, 2.15, and 2.16 present simulations using 10 knots.

In each of these figures, the black dashed line represents the true survival functions,

the red lines represent the 95% quantile bands, black vertical lines are knot locations,

and the blue lines represent the means over each of the simulations.

We can see that of the splines implementations, the penalized spline did better

at recovering the true underlying model parameters than the unpenalized model;

notably, the frequentist coverage probabilities were all were near the nominal level

whereas the unpenalized implementations contained under-coverage in some param-
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Parameter Truth ABPM SDPM SDS MSE CP
(×100) (×100) (×100) (×100) (×100)

β11 -0.63 -0.463 5.049 5.088 0.257 96.2
β12 0.03 -0.014 0.214 0.235 < 0.001 96.6
β21 -0.69 0.466 4.663 4.985 0.220 95.8
β22 0.02 -0.028 0.179 0.191 < 0.001 95.2
α 3.21 0.554 9.793 9.487 0.962 95.2
r1 0.5 2.511 11.926 14.088 1.485 98.2
r2 0.5 -0.370 9.109 10.243 0.831 96.8

Table 2.3: Penalized spline results with 10 knots and sample size of 5000, more censoring

Parameter Truth ABPM SDPM SDS MSE CP
(×100) (×100) (×100) (×100) (×100)

β11 -0.63 0.565 4.268 4.518 0.185 95.4
β12 0.03 -0.051 0.203 0.210 < 0.001 94.6
β21 -0.69 1.010 4.595 4.685 0.221 96.0
β22 0.02 -0.055 0.181 0.180 < 0.001 92.6
α 3.21 0.731 8.508 8.341 0.729 94.4
r1 0.5 -1.173 7.971 8.832 0.649 96.8
r2 0.5 -2.307 7.853 8.147 0.670 94.4

Table 2.4: Penalized spline results with 10 knots and sample size of 5000, less censoring

Parameter Truth ABPM SDPM SDS MSE CP
(×100) (×100) (×100) (×100) (×100)

β11 -0.63 -0.482 4.633 5.044 0.217 95.8
β12 0.03 -0.011 0.231 0.234 0.001 94.4
β21 -0.69 0.639 4.603 4.936 0.216 95.6
β22 0.02 -0.046 0.181 0.188 < 0.001 95.4
α 3.21 0.611 9.685 9.472 0.942 94.6
r1 0.5 1.916 11.762 13.862 1.420 98.4
r2 0.5 -2.025 8.876 9.923 0.829 96.2

Table 2.5: Penalized spline results with 15 knots and sample size of 5000, more censoring
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Figure 2.9: Plot of posterior marginal survival functions, male, 99 years old, 15 knots. The black
dashed line represents the true survival functions, the red lines represent the 95% quantile bands,
black vertical lines are knot locations, and the blue lines represent the means over each of the
simulations.

Figure 2.10: Plot of posterior marginal survival functions, female, 99 years old, 15 knots. The
black dashed line represents the true survival functions, the red lines represent the 95% quantile
bands, black vertical lines are knot locations, and the blue lines represent the means over each of
the simulations.

eters. As a result, we conclude that the penalized spline model performs best with

respect to the provided statistical properties.
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Figure 2.11: Plot of posterior marginal survival functions, female, 25 years old, 15 knots. The
black dashed line represents the true survival functions, the red lines represent the 95% quantile
bands, black vertical lines are knot locations, and the blue lines represent the means over each of
the simulations.

Figure 2.12: Plot of posterior marginal survival functions, male, 25 years old, 15 knots. The black
dashed line represents the true survival functions, the red lines represent the 95% quantile bands,
black vertical lines are knot locations, and the blue lines represent the means over each of the
simulations.

Finally, figures 2.18 and present posterior distributions of joint probabilities (i.e.

posterior copula values for the penalized spline model).
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Figure 2.13: Plot of posterior marginal survival functions, male, 99 years old, 10 knots. The black
dashed line represents the true survival functions, the red lines represent the 95% quantile bands,
black vertical lines are knot locations, and the blue lines represent the means over each of the
simulations.

Figure 2.14: Plot of posterior marginal survival functions, female, 99 years old, 10 knots. The
black dashed line represents the true survival functions, the red lines represent the 95% quantile
bands, black vertical lines are knot locations, and the blue lines represent the means over each of
the simulations.
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Figure 2.15: Plot of posterior marginal survival functions, female, 25 years old, 10 knots. The
black dashed line represents the true survival functions, the red lines represent the 95% quantile
bands, black vertical lines are knot locations, and the blue lines represent the means over each of
the simulations.

Figure 2.16: Plot of posterior marginal survival functions, male, 25 years old, 10 knots. The black
dashed line represents the true survival functions, the red lines represent the 95% quantile bands,
black vertical lines are knot locations, and the blue lines represent the means over each of the
simulations.

2.7 Application

As an application of the methods described in this paper, we use the proposed

methods to analyze a cohort from the Atherosclerosis Risk in Communities Study
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Parameter Truth ABPM SDPM SDS MSE CP
(×100) (×100) (×100) (×100) (×100)

β11 -0.63 1.282 4.132 4.44 0.187 94.8
β12 0.03 -0.093 0.190 0.206 < 0.001 93.6
β21 -0.69 1.702 4.463 4.633 0.228 93.0
β22 0.02 -0.078 0.172 0.178 < 0.001 92.8
α 3.21 0.422 7.971 8.319 0.637 96.4
r1 0.5 -3.458 7.721 8.582 0.716 94.4
r2 0.5 -3.777 7.083 7.954 0.644 92.8

Table 2.6: Penalized spline results with 15 knots and sample size of 5000, less censoring

Figure 2.17: Simulated Bivariate Survival Times for Semi-Parametric Simulations

(Schmidt et al., 1999). We defined T1 as the time to myocardial infarction, and T2 as

the time to stroke. Covariates that were included in the model included race, baseline

age, sex, systolic blood pressure, diabetes, hypertension and smoking status. In the

Clayton semi-parametric version of the model, sampling failed to initialize with the

continuous covariates on their original scale. As such, we therefore standardized these

values in the semi-parametric model.

We use this dataset to perform posterior estimation of joint survival given the

covariates. The data we used contain 4639 patients who are more than 65 years of
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Figure 2.18: Joint survival probability for male 25 years old, 15 knots. Each blue kernel density
plots represent the posterior distribution of the probability for a single simulation.

Figure 2.19: Joint survival probability for female 25 years old, 15 knots. Each blue kernel density
plots represent the posterior distribution of the probability for a single simulation.

age. The censoring rates for myocardial infarction and time to stroke were 89.6% and

88.7%, respectively.

Figure 2.20 shows the bivariate relationship between the stroke and myocardial

46



infarction times. Initial inspection of the scatterplot reveals a very strong linear

relationship between the observed stroke times and the observed myocardial infarction

times; indeed, 83.1% of the cohort had identical stroke and myocardial infarction

times. However, among these 3854 individuals whose stroke and myocardial infarction

times were identical, only 13 patients experienced both events; the rest of these

observations were censored on at least one of the outcomes.

Figure 2.20: Bivariate observed times for ARIC dataset

For this application, we implemented the four previously discussed copula models

on the dataset. Tables 2.8 and 2.9 present the model fits for each copula.

In table 2.7, we present the results of the WAIC (Vehtari et al., 2017) to com-

pare the different copula models. The WAIC can be thought of as a large sample

approximation to cross-validation, and is defined as

WAIC = −2
(

n∑
i=1

log
(

1
S

S∑
s=1

p(yi|θs)
)
−

n∑
i=1

V S
s=1(log(p(yi|θs)))

)
(2.22)

where

V S
s=1as = 1

S − 1

S∑
s=1

(as − s̄)2 (2.23)

47



Clayton Semi-Parametric 10463.99
Clayton Parametric 10468.29
Gumbel Parametric 10461.22
Joe Parametric 10463.39
Frank Parametric 10465.96

Table 2.7: WAIC for various copula survival models applied to ARIC dataset

We see that all four of the copula models perform similarly in terms of information

criteria; but the Gumbel-Hougaard performs the best. In Figure 2.21 and 2.22, we

display the posterior joint survivor functions for each model. Again, we can see that

the posterior survival surfaces for each model are quite similar between the models.

2.8 Discussion and Future Work

In this paper, we have provided a systematic approach for generalizing the for-

mation of copula models to include non-proportional marginal regressions to provide

a flexible joint survival function. This approach is promising because it de-restricts

the effect of the covariate on the survival functions in order to provide a more flex-

ible and data-driven model fit. Furthermore, this approach generalizes pre-existing

parametric approaches that assume proportional hazards models in the margins. Our

approach performed well in simulation studies of moderate size, exhibiting low bias

for all model parameters. We extended the model to include a non-parametric spline

basis formulation of the baseline hazard. Using a B-spline basis increased flexibility

in the model and penalizing the coefficients resulted in excellent recovery of model pa-

rameters. Such penalization is necessary to control the control points of the B-Spline

basis functions that lie outside of the time domain. We obtained reasonable poste-

rior estimates for diffuse priors, suggesting no pathologies in the underlying modeling

framework. More work needs to be performed, however, in the determination of the
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Copula Param. Mean SD 2.5th 97.5th Copula Param. Mean SD 2.5th 97.5th

β11 0.718 0.098 0.532 0.918 β11 0.706 0.095 0.512 0.907
β12 0.264 0.149 -0.040 0.541 β12 0.287 0.150 -0.013 0.576
β13 0.054 0.008 0.037 0.071 β13 0.324 0.008 0.230 0.420
β14 0.171 0.064 0.045 0.294 β14 0.133 0.063 0.004 0.260
β15 0.006 0.002 0.002 0.011 β15 0.158 0.002 0.047 0.271
β16 0.507 0.121 0.264 0.739 β16 0.499 0.119 0.266 0.733
β17 -0.098 0.142 -0.377 0.182 β17 -0.115 0.144 -0.407 0.165
β21 0.058 0.111 -0.171 0.269 β21 0.066 0.108 -0.152 0.298

Clayton β22 0.231 0.168 -0.090 0.558 Gumbel β22 0.254 0.161 -0.082 0.586
β23 0.082 0.010 0.061 0.103 β23 0.503 0.010 0.383 0.637
β24 0.290 0.072 0.158 0.437 β24 0.261 0.070 0.120 0.409
β25 0.009 0.002 0.004 0.015 β25 0.238 0.002 0.112 0.376
β26 0.545 0.147 0.255 0.836 β26 0.574 0.145 0.281 0.890
β27 -0.115 0.152 -0.429 0.165 β27 -0.134 0.148 -0.445 0.172
α 0.873 0.202 0.481 1.270 α 0.069 0.016 0.038 0.104
λ1 0.000 0.000 0.000 0.000 λ1 0.004 0.000 0.003 0.005
λ2 0.000 0.000 0.000 0.000 λ2 0.004 0.000 0.003 0.006
ρ1 1.225 0.056 1.115 1.332 ρ1 1.219 0.054 1.115 1.334
ρ2 1.308 0.079 1.157 1.463 ρ2 1.352 0.080 1.195 1.534
r1 0.523 0.454 0.000 1.430 r1 0.607 0.452 0.021 1.910
r2 2.159 1.141 0.002 4.214 r2 2.873 1.164 0.649 5.640

β11 0.700 0.096 0.509 0.884 β11 0.716 0.097 0.521 0.901
β12 0.271 0.152 -0.012 0.584 β12 0.267 0.151 -0.0167 0.572
β13 0.053 0.008 0.036 0.069 β13 0.054 0.008 0.0383 0.071
β14 0.143 0.063 0.009 0.260 β14 0.169 0.064 0.0449 0.295
β15 0.006 0.002 0.002 0.011 β15 0.006 0.002 0.001 0.011
β16 0.489 0.119 0.268 0.725 β16 0.509 0.117 0.268 0.725
β17 -0.114 0.148 -0.413 0.168 β17 0.102 0.148 -0.390 0.197
β21 0.047 0.107 -0.172 0.249 β21 0.060 0.110 -0.164 0.272

Joe β22 0.235 0.160 -0.076 0.548 Frank β22 0.233 0.164 -0.081 0.563
β23 0.080 0.010 0.059 0.099 β23 0.082 0.010 0.061 0.102
β24 0.260 0.071 0.116 0.395 β24 0.290 0.071 0.156 0.439
β25 0.009 0.002 0.004 0.014 β25 0.009 0.002 0.004 0.015
β26 0.531 0.142 0.252 0.810 β26 0.547 0.145 0.267 0.839
β27 -0.129 0.152 -0.424 0.172 β27 0.115 0.153 -0.416 0.179
α 1.077 0.019 0.0418 0.118 α 1.697 0.326 1.056 2.338
λ1 0.000 0.000 0.000 0.000 λ1 0.000 0.000 0.000 0.000
λ2 0.000 0.000 0.000 0.000 λ2 0.000 0.000 0.000 0.000
ρ1 1.208 0.053 1.105 1.310 ρ1 1.226 0.056 1.117 1.336
ρ2 1.302 0.079 1.142 1.444 ρ2 1.308 0.081 1.159 1.473
r1 0.522 0.448 0.000 1.426 r1 0.529 0.456 0.000 1.431
r2 2.107 1.134 0.071 4.202 r2 2.180 1.141 0.035 4.202

Table 2.8: Results of Copula Fits to ARIC dataset
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Parameter Mean SD 2.5th 97.5th

β11 0.801 0.121 0.578 1.054
β12 0.327 0.169 0.007 0.662
β13 0.369 0.057 0.263 0.487
β14 0.170 0.070 0.033 0.308
β15 0.177 0.064 0.057 0.309
β16 0.562 0.136 0.298 0.835
β17 -0.066 0.157 -0.377 0.235
β21 0.158 0.142 -0.109 0.447
β22 0.266 0.208 -0.146 0.666
β23 0.627 0.087 0.467 0.808
β24 0.348 0.091 0.175 0.533
β25 0.306 0.083 0.151 0.478
β26 0.765 0.205 0.392 1.195
β27 -0.081 0.195 -0.465 0.307
α 0.884 0.200 0.517 1.297
b1 0.007 0.002 0.003 0.012
α1,0 0.007 0.008 0.000 0.029
α1,1 0.005 0.002 0.002 0.010
α1,2 0.004 0.002 0.001 0.008
α1,3 0.005 0.002 0.002 0.009
α1,4 0.002 0.001 0.000 0.005
α1,5 0.005 0.002 0.002 0.009
α1,6 0.006 0.002 0.003 0.010
α1,7 0.004 0.002 0.001 0.008
α1,8 0.008 0.002 0.004 0.013
α1,9 0.004 0.002 0.000 0.009
α1,10 0.011 0.003 0.006 0.017
α1,11 0.005 0.003 0.001 0.010
α1,12 0.011 0.003 0.005 0.018
α1,13 0.006 0.003 0.001 0.013
α1,14 0.012 0.004 0.004 0.021
α1,15 0.010 0.006 0.001 0.023
α1,16 0.013 0.008 0.001 0.032
α1,17 0.014 0.012 0.001 0.045
α1,18 0.057 1.750 0.000 0.155
r1 1.703 1.113 0.316 4.470
b2 0.012 0.005 0.005 0.023
α2,0 0.009 0.010 0.000 0.035
α2,1 0.003 0.001 0.001 0.006
α2,2 0.005 0.002 0.001 0.009
α2,3 0.006 0.002 0.002 0.010
α2,4 0.008 0.002 0.004 0.013
α2,5 0.007 0.003 0.002 0.013
α2,6 0.018 0.005 0.010 0.029
α2,7 0.013 0.005 0.005 0.024
α2,8 0.012 0.006 0.003 0.026
α2,9 0.016 0.010 0.001 0.040
α2,10 0.032 0.015 0.009 0.067
α2,11 0.028 0.014 0.008 0.062
α2,12 0.008 0.008 0.000 0.031
α2,13 0.069 0.038 0.017 0.161
α2,14 0.016 0.019 0.000 0.067
α2,15 0.014 0.016 0.000 0.056
α2,16 0.015 0.023 0.000 0.077
α2,17 0.027 0.073 0.000 0.158
α2,18 0.055 0.424 0.000 0.296
r2 6.550 2.132 2.679 11.058

Table 2.9: Results of Semiparametric Copula Fits to MI dataset
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Figure 2.21: Posterior Survival Surface Draws for Female Smokers. Top left: Clayton model. Top
right: Gumbel model, Bottom left: Joe Model, Bottom Right: Frank Model
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Figure 2.22: Posterior Survival Surface Draws for Male Smokers. Top right: Gumbel model, Bottom
left: Joe Model, Bottom Right: Frank Model
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Figure 2.23: Comparison of posterior draws from joint survival function for ARIC dataset; semi-
parametric Clayton model (blue), parametric Clayton model (red). Surfaces represent draws from
the posterior of the joint probability of MI and stroke for age 70 with systolic blood pressure of 120.
Top left panel represents female non-smokers, top right panel represents female smokers, bottom left
panel represents male non-smokers, bottom right panel represents male smokers

proper knot number and placements for differing censoring rates and sample sizes; in

this paper, we simply placed knots at evenly spaced sample quantiles. We applied the

methodology to a myocardial infarction dataset where we fit the parametric copula

models and subsequently compared to the semi-parametric model.

One main conclusion from the present paper is that we can define a robust and
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flexible framework that not only generalizes the survival function specification, but

also the baseline hazard, resulting in a versatile tool for statistical practitioners. With

a tractable, stable estimation framework such as this, we can define even more flexi-

ble models that generalize the relationship between input variables and the survival

model. One simple extension of this would be the incorporation of non-linear predic-

tor effects in the form of splined covariates. Similarly, if the specification of knots is

difficult, one may alternatively specify a Gaussian process form on the covariate ef-

fects (although at the expense of O(n3) computational complexity) (Fernández et al.,

2016). Through the inclusion of non-linear covariates, we envision the incorporation

of image or other complex covariate types via a neural network architecture embedded

within the flexible framework developed in the present paper.

We showed that the semi-parametric model worked well in moderately sized data

sets, however, it is important to study large sample Bayesian models. Variational

Bayesian methods (Blei et al., 2017) comprise approximate methods to overcome the

computational complexity of MCMC sampling in large datasets by approximating the

posterior distribution of the model parameters with a member of a parametric family

closest in terms of Kullback-Leibler divergence. Such methods can be adopted to the

copula framework presented in this paper to better facilitate the adoption of more

complex models to larger datasets.

In the semi-parametric portion of this paper, we limited our discussion to only the

Clayton copula model. In principle, however, the described B-spline methodology may

be applied to any valid copula specification. However, an important consideration in

the usage of copula models is the computational tractability of each model. We note

that the Clayton copula likelihood has a log likelihood free of additional exponential

functions whereas other Archimedean models contain more complex mathematical

expressions thereby facilitating much simpler computational execution. Indeed, dur-

ing the simulations, we noted a sharp increase in the computational time required to
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complete the MCMC from the Clayton and other listed models.

Lastly, further work needs to be done in this investigation with respect to dif-

fering censoring mechanisms. Specifically, one possible extension is to generalize the

model further to incorporate general censoring structures. Left censoring is straight

forward (see Appendix), however, the general censoring case is less straightforward

and requires further research.
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2.9 Appendix

2.9.1 Derivatives of Copulas for Likelihood Specification

2.9.1.1 Gumbel Model

The joint survival function for the Gumbel model is given by

Cα(u1, u2) = e−((− log (u2))α−logα (u1))
1
α (2.24)

The respective derivatives of the copula terms with respect to each argument are

∂Cα(u1, u2)
∂u1

= 1
u1

((− log (u2))α − logα (u1))
1
α

(−α+1)
e−((− log (u2))α−logα (u1))

1
α logα−1 (u1)

(2.25)

and

∂Cα(u1, u2)
∂u2

= −(− log (u2))α

u2 log (u2) ((− log (u2))α − logα (u1))−
1
α

(α−1)
e−((− log (u2))α−logα (u1))

1
α

(2.26)

Furthermore, the corresponding joint density of the copula model is given by

cα(u1, u2) = ∂2Cα(u1, u2)
∂u1∂u2

= (− log (u2))α logα−1 (u1)
u1u2 log (u2)

× ((− log (u2))α − logα (u1))−2+ 1
α

(
−α− ((− log (u2))α − logα (u1))

1
α + 1

)
×e−((− log (u2))α−logα (u1))

1
α
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2.9.1.2 Joe Model

∂Cα(u1, u2)
∂u1

= (−u1 + 1)α−1 (− (−u2 + 1)α + 1)

× (− (−u1 + 1)α (−u2 + 1)α + (−u1 + 1)α + (−u2 + 1)α)
1
α

(−α+1)

∂Cα(u1, u2)
∂u2

= (−u2 + 1)α−1 (− (−u1 + 1)α + 1)

× (− (−u1 + 1)α (−u2 + 1)α + (−u1 + 1)α + (−u2 + 1)α)
1
α

(−α+1)

cα(u1, u2) = ∂2Cα(u1, u2)
∂u1∂u2

= (−u1 + 1)α−1 (−u2 + 1)α−1

× (− (−u1 + 1)α (−u2 + 1)α + (−u1 + 1)α + (−u2 + 1)α)−2+ 1
α

× (α ((−u1 + 1)α − 1) ((−u2 + 1)α − 1) + α (− (−u1 + 1)α (−u2 + 1)α + (−u1 + 1)α + (−u2 + 1)α)− ((−u1 + 1)α − 1) ((−u2 + 1)α − 1))

2.9.1.3 Frank Model

Cα(u1, u2) = − 1
α

log
(

1 + (eαu1 − 1) (eαu2 − 1)
−1 + e−α

)
(2.27)

∂Cα(u1, u2)
∂u1

= (eαu2 − 1) eα(u1+1)

− (eαu1 − 1) (eαu2 − 1) eα + eα − 1
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∂Cα(u1, u2)
∂u2

= (eαu1 − 1) eα(u2+1)

− (eαu1 − 1) (eαu2 − 1) eα + eα − 1

cα(u1, u2) = ∂2Cα(u1, u2)
∂u1∂u2

= α (eα − 1) eα(u1+u2+1)

(− (eαu1 − 1) (eαu2 − 1) eα + eα − 1)2

2.9.1.4 Clayton Model

∂Cα(t1, t2)
∂t1

= t
−(α+1)
1

(
t−α1 + t−α2 − 1

)−(α+1
α )

∂Cα(t1, t2)
∂t2

= t
−(α+1)
2

(
t−α1 + t−α2 − 1

)−(α+1
α )

Sik(t|X) =
{

1 + rkΛ(t) exp{β ′iXi}
}−r−1

k

cα(t1, t2) = ∂2Cα(t1, t2)
∂t1∂t2

= (α + 1)(t1t2)−(α+1)(t−α1 + t−α2 − 1)−
2α+1
α

2.9.2 Simulation Details

Simulation of the preceding models comprises two steps: 1. Generation from the

copula margins and 2. transformation of the uniformly distributed margins in step 1

into the transformation models.
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2.9.2.1 Marginal Data

The generation of the data for the transformation survival model for the non-

parametric involves a baseline hazard that comprises two joined Weibull hazards.

For this specification, we define the parametric parameters, λ1, λ2.ρ1, ρ2 and a change-

point, κ. Under this parameterization, we generate data from the model with baseline

hazard

λ0(t) = λ1ρ1t
ρ1−1I(t < κ) + λ2ρ2t

ρ2−1I(t ≥ κ) (2.28)

With this formulation, we can define the baseline cumulative hazard function,

which is necessary for use in the inverse probability transform:

Λ0(t) =
∫ t

0
λ0(t)dt

= λ1t
ρ1 + (λ2t

ρ2 − λ1κ
ρ1) I(t ≥ κ)

For simulation, we need the inverse function of Λ0(t), which is defined as

Λ−1
0 (u) =

(
u

λ1

)1/ρ1

I(u ≤ Λ0(κ)) +
(
u− λ1κ

ρ1 + λ2κ
ρ2

λ2

)1/ρ2

I(u > Λ0(κ))

Finally, we invert the remainder of the transformation model. First, with uniform

variates U , we simulate from the conditional cumulative hazard by

T = Λ−1
0

(
U−r − 1
r exp(X ′β)

)

2.9.3 Technical Considerations for Likelihood

Here, we provide some technical considerations for formulating the censored like-

lihood derived above. Further notes can be found in Georges et al. (2001). Here,
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we consider the joint CDF of the observed random variables T ∗1 = min(T1, C1) and

T ∗2 = min(T2, C2) such that Ti have distribution functions FTi(ti) and censoring mech-

anisms such that Ci have distribution functions FCi(ci).

First, we can see in the case that neither

P (T ∗1 ≤ d1, T
∗
2 ≤ d2) = P (C1 ≤ d1, T

∗
2 ≤ d2, T1 > C1)

=
∫ ∫ ∫

1[c<d1,t2≤d2,t1>c]f(t1, t2)fC1(c)dt1dt2dc

=
∫ d1

0

[∫ ∞
c

∫ d2

0
f(t1, t2)

]
fC1(c)dc

=
∫ d1

0
[S1(c)− Cα(S1(c), S2(d2))] fC1(c)dc

Using Leibniz’s rule and integration by parts, we obtain a likelihood contribution

of

L ∝ ∂Cα(S1(c), S2(d2))

Theoretically, the extension to the left censored likelihood could proceed with the

preceding derivation via

P (T ∗1 ≤ d1, T
∗
2 ≤ d2) = P (C−1 ≤ d1, T

∗
2 ≤ d2, T1 ≤ C−1 )

=
∫ ∫ ∫

1[c≤d1,t2≤d2,t1≤c]f(t1, t2)fC−1 (c)dt1dt2dc

=
∫ d1

0

[∫ c

0

∫ d2

0
f(t1, t2)

]
fC−1 (c)dc

=
∫ d1

0
[1− S1(c)− S2(c) + Cα(S1(c), S2(d2))] fC1(c)dc

2.9.3.1 Accuracy and Speed of Spline integral implementation

Consider the function f(x) = .5x+ .1x2 + 3 and suppose we are interested in the

integral f(t) =
∫ t

0 f(x)dx. In Figure 2.24 we see that the function can be represented

by a spline function with B-spline basis functions.
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Figure 2.24: True function f(x) represented by a spline

Now, we compare three four possible methods of integration. As a benchmark, we

calculate the resulting value from the method and its time to completion. We repeat

this process 100 times and report the mean and standard deviation of both the time

and the evaluated integral value at t = 30 (which equals 1215.0). Table 2.10 contains

the results of this simulation.

1. Quadrature integration of f(x)

2. Quadrature integration of ˆf(x)

3. Looped Integral Formula for
∫ t

0
ˆf(x)dx

4. Matrix Optimized integration routine (our approach)

We can see that the matrix-optimized version of the spline gives an extremely

accurate value for the required integration. Of course, integrating the actual func-

tion is fastest, but in terms of evaluating the integral of the spline representation,
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Mean SD Value Mean Time SD Time
Quadrature True Function 1215.0 < 0.001 < 0.001 < 0.001
Quadrature Spline Function 1215.0 < 0.001 0.1100 0.0129
Loop Spline 1215.0 < 0.001 0.0802 0.0097
Matrix Optimized 1215.0 < 0.001 0.0059 0.0011

Table 2.10: Results of spline integration simulation

our matrix-optimized version is superior to the quadrature integration and the pre-

existing looped integral.

2.9.4 Alternative initialization scheme results

In table 2.11, we present the results of a two-stage initialization procedure for

MCMC sampling. We notice that the coverage of the 95 percent credible intervals

are between 93.2 and 96.6 at the nominal level. The secondary initialization routine

first estimates the marginal parameters, then univariately optimizes the association

parameter conditional on the estimated marginal model. The greatest difference

between the results presented in the first initialization step and the initialization

presented here is a reduction in the bias of posterior mean for the copula association

parameter which gave a reduction of 0.0114. This indicates that the joint optimization

initialization routine did not artificially select “good” datasets that may have falsely

informed the posterior coverage probabilities in the first round of simulations.
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Parameter Truth ABPM SDPM SDS MSE CP
(×100) (×100) (×100) (×100) (×100)

β11 1.63 0.157 4.397 4.605 0.194 95.2
β12 0.03 -0.009 0.171 0.167 < 0.001 94.4
β21 0.8 -0.274 3.648 3.712 0.134 95.4
β22 0.03 -0.004 0.175 0.169 < 0.001 93.2
α 3.21 0.148 8.461 8.144 0.716 95.4
λ1 0.0047 0.004 0.051 0.051 < 0.001 94.8
λ2 0.0037 0.104 0.051 0.051 < 0.001 96.6
ρ1 0.716 0.104 1.390 1.378 0.019 95.0
ρ2 0.725 0.062 1.373 1.439 0.019 96.2
r1 0.5 0.253 3.622 3.665 0.132 94.4
r2 0.5 0.265 3.707 3.967 0.138 96.4

Table 2.11: Copula simulation results for 500 simulations for parametric copulas, second initialization
scheme
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CHAPTER 3

BAYESIAN LARGE SCALE INFERENCE FOR TIME TO FIRST EVENT OF

MULTIVARIATE ORDINAL SURVIVAL OUTCOMES WITH APPLICATION TO

AN OBSERVATIONAL COHORT STUDY

3.1 Abstract

Motivated by a large scale observational cohort study, we develop a scalable

Bayesian framework to accommodate time to first event of multivariate survival out-

comes with ordinal severity. We model the multivariate survival outcomes using a

flexible gamma frailty transformation model that includes Cox-proportional hazards

model and proportional odds model as two special cases. A computationally effi-

cient algorithm based on variational inference is used to scale the Bayesian inferential

scheme to large datasets. Bayesian model selection procedures are further developed

to determine the most proper and pragmatic transformation. Numerical simulations

are conducted to evaluate the validity of the method and variational algorithm. The

proposed method is further applied to a cohort with 163,763 patients from the Ten-

nessee Asthma Bronchiolitis Study (TABS).

3.2 Introduction

Pervasive throughout the medical sector, electronically-held medical databases

contain information on the order of hundreds of thousands to millions of records

from which to study. These data are collected for a variety of reasons, but can

nonetheless be leveraged for biomedical research more cost effectively than conducting

a randomized controlled trial. One class of medical administrative data that has found

popularity among medical researchers is medical claims data (Cave and Munson,

1999). In the United States, many states with specific insurance systems maintain
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databases that may be accessed for use in academic research. In healthcare insurance

claims data, information pertaining only to the type of healthcare administered is

recorded since other information is superfluous for billing purposes. Furthermore,

typical patient data include individual characteristics, frequency of healthcare visits,

and healthcare type may be recorded in these databases. Although limited by the

granularity of information in this type of encoding, the latter field is routinely used

as an ordinal proxy for the severity of a particular disease. Hypothetically, one might

expect a patient who was hospitalized for a condition would have experienced a more

severe form of the disease than a patient who only visited an outpatient clinic. In

the state of Tennessee, for example, individuals who qualify under certain income

thresholds receive state-funded healthcare insurance from the Tennessee Division of

Health Care Finance and Administration under the Tennessee Medicaid Program

(TennCare) (Carroll et al., 2008). Consequently, personalized health information

about subjects enrolled in TennCare is recorded and retained for each patient. Our

motivating study, the Tennessee Asthma Bronchiolitis Study (TABS), uses TennCare

data to study how maternal smoking durning pregnancy relates to infant bronchiolitis

outcomes. In this dataset, there are three possible types of healthcare visitation

types: outpatient clinic, emergency department, and hospitalization. As the immune

response to bronchiolitis changes after repeated healthcare visits, our study focuses

on time to the first of these three events.

Time-to-first event analysis is typically formulated in terms of a univariate pro-

portional hazards model (Anker and McMurray, 2012), Rauch et al. (2018), (Claggett

et al., 2018). Furthermore, these analyses are typically conducted in the recurrent

events framework and study time to the first of same type of event (the first of a

possible chain of recurrent verses modeling all events), whereas in our case we have

time to the first of several different type of events. There is limited literature on the

latter. Now, fitting a univariate model to the time-to-first event effectively assumes
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the same regression effect on different type of events. In the preliminary analysis

of time to each type of the event (by ignoring within subject correlation) in TABS

study, the maternal smoking effect from the Cox proportional model varies across

different type of bronchiolitis-related healthcare admission (see Appendix for these

univariate models). In this paper, we study the topic under Bayesian framework with

’big data’ that allows different regression effects on different type of events with a gen-

eral transformation model that includes proportional hazard model and proportional

odds model as two special cases. With ’big data’, we also study scaling the method

to larger datasets using contemporary variational inference (Blei et al., 2017).

In the TABS study, the type of healthcare admission was considered to be as-

sociated with disease severity – patients with hospitalization for example, typically

experienced higher severity of the disease than those who visited out patient facilities.

Hence there is an implicit ordering to the events of interest. There is, however, lim-

ited literature on developing statistical inference for time to first event of multivariate

ordinal survival outcomes. Statistical inference for simultaneously determining the

effect of treatment on severity of event and time to event has its history in frequen-

tist statistical literature. The systematic analysis of ordinal survival data was first

explored by Berridge and Whitehead (1991), wherein the authors conceptualized the

ordinal outcome using a continuation ratio model for time to any event and using

one proportional hazards model. The two models are linked by incorporating the

function of time to any event as a covariate in a continuation ratio sub-model. The

continuation ratio component of this model has the limitation that disease severity

is a function of time; rather, in our situation, we do not assume that the disease

progresses in a manner that is amenable to this formulation. Similarly, Falcaro and

Pickles (2007) proposed flexible mixed probit model involving person-specific thresh-

olds for an interval censoring mechanism on the ordinal survival outcome representing

censored age of disease onset. Subject specific parameter estimation is computation-
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ally difficult even in frequentist models due to the complexity of the underlying high

dimensional optimization. Additionally, the authors consider the time itself as ordinal

rather than the outcome of interest, as ordinal. In both Hedeker et al. (2000) and

Thomas and Have (1996), the authors consider modeling the outcome a using com-

plementary log-log transformation models. Similarly to Falcaro and Pickles (2007),

the first of these texts treats the survival time itself as an ordinal outcome rather

than modeling time to a disease with ordinal severity. Again, the latter of these re-

quires the estimation of subject specific thresholds. While these texts offer important

theoretical and methodological foundations to the modeling of complex multivariate

survival outcomes, no authors have developed a general methodology for the simulta-

neous modeling of disease severity and time-to-event using proxy observations in such

a way that can use validation data. Furthermore, all of the reviewed methods have

been developed within the frequentist paradigm and as such, no Bayesian solution for

the analysis of multivariate ordinal event data has been proposed in the literature.

To model the ordinal survival outcome flexibly, we develop and employ a specific

transformation gamma frailty model (de Castro et al., 2014) and adapt it to large scale

datasets using approximate Bayesian inference. Secondly, we convolve the results of

the multivariate frailty model with data that correlates the ordinal outcome with

disease severity to obtain an overall effect size for the covariate of interest. Instead

of having to derive distributional results for a combination step, the incorporation of

validation data for the ordinal proxy variable will be straightforward using the results

of the Bayesian posterior computation.

One pervasive challenge in the area of Bayesian statistics, however, is the effi-

cient and accurate computation of posterior quantities with large amounts of data.

Since the introduction of the Metropolis-Hastings algorithm (Chib and Greenberg,

1995) and associated software such as BUGS (Spiegelhalter et al., 1994), Markov

Chain Monte Carlo has become a mainstay in Bayesian computation. While more
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efficient sampling schemes such as the Hamiltonian Monte Carlo routine (Hoffman

and Gelman, 2014) have drastically improved sampling performance, MCMC remains

computationally slow for relatively complex models with more that a few thousand

observations. Due to this, much research has been conducted addressing the problem

of scalable Bayesian computation; see (Bardenet et al., 2015) and (Blei et al., 2017)

for good references. Indeed, the methodological motivation behind this paper comes

from the usage of large medical insurance databases to query data. As such, any pro-

posed Bayesian model that a researcher desires to use on such data must inherently

address the issue of scalability with large amounts of data. Therefore, as another

focus of this paper, we describe in detail a scalable alternative to MCMC using vari-

ational inference (Blei et al., 2017). We describe the overall framework and provide

tools necessary for proper implementation.

The remainder of the paper is organized in the following manner. In the next

section, we describe the general formulation of the model for the time to first multi-

variate events as well as develop a weighted composite score to quantify the overall

exposure effect by incorporating external data. In Section 3, we outline the infer-

ential methodology used to fit the model described in Section 2. In Section 4, we

present results of a simulation study to assess the validity of the approach. Finally,

in Section 5, we apply the methodology to our motivating study consisting of over

160,000 patients involved in a bronchiolitis retrospective cohort study. A discussion

and future directions section concludes the paper.

3.3 General Model Formulation

In this section, we develop the inferential framework for time to first event anal-

ysis. Specifically, we develop a generalized transformation model formulation of the

gamma frailty multivariate survival analysis model (de Castro et al. (2014), Zeng

et al. (2009)). At this stage, we present the model in general terms, with no ex-
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plicit mathematical representation of the baseline hazard function so as to illustrate

the influence of the transformation parameter. We will define explicit form for this

component in the next section.

With respect to the shape of hazard function over differing values of a covariate, in

general, we would like to account for non-proportionality of hazards of a disease over

time. That is to say, in instances where the difference in hazards between differing

groups changes as a function of time, it is clear that the traditional proportional

hazards model would be inappropriate. Although other alternatives exist, in this

paper we consider the transformation given by

G(v, r) = vI(r = 0) + [log(1 + vr)/r]I(r > 0). (3.1)

for v, r ∈ R+ As values of r increase, the outputs of the transformation for the varying

parameter are more similar for successive values of v than outputs for smaller values

of r.

Continuing with the model formulation, we introduce this particular transforma-

tion into the survival framework by conceptually inputting the conditional cumula-

tive hazard of proportional hazards model into the aforementioned transformation

G. Within this transformation framework, there are two cases that correspond to

pre-existing survival models with interpretable effect sizes. Specifically, as r → 0, the

model approaches the proportional hazards model, while when r = 1, we recover the

proportional odds survival model (Bennett, 1983). To proceed with the inferential

framework, we now introduce some notation.

3.3.1 Notation and Basic Quantities

Although we are primarily interested in modeling a group effect across differing

levels of disease severity, our data contains observations of only the first instance of
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Figure 3.1: Hazard and Survival Functions subject to the Transformation G

the severity of disease. That is to say, we do not observe the presence (or absence) of

all disease severity states. In this framework, we incorporate the unobserved states

as right-censored.

Let Yk denote the true event time of the kth event k = 1, . . . , K and Y0 = C, the

censoring time. We observe T = min{Y0, Y1, . . . , YK} and δ = {k : Yk ≤ Yj,∀j 6= k}.

To account for correlation within an individual, we specify a frailty term, denoted

by ωi. We parametrically model the frailty by assuming ωi ∼ Γ(θ−1, θ−1), to ensure

identifiability. As discussed, we consider a transformed version of the conditional

cumulative hazard function under G. Hence, we consider the following model of the

conditional cumulative hazard function:

Λik(t|ωi, Xi) = ωiG
[
Λk(t) exp(βTkXi)

]
(3.2)

= ωi log
[
1 + rΛk(t) exp(βTkXi)

]
/r. (3.3)
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From this specification, we conclude that the survival function and hazard functions

are given respectively by

Sik(t|ωi, Xi) = exp
{
−ωi log

[
1 + rΛk(t) exp(XT

i βk)
]
/r
}

(3.4)

and

λik(t|ωi, Xi) = λk(t) exp(βTkXi)ωi
{

1 + rΛk(t) exp(βTkXi)
}−1

. (3.5)

3.3.2 Likelihood Formulation

Given the transformation model in equation (3.3), we now construct the likelihood

associated with this formulation. As previously stated, if a particular level of disease

severity is observed for an individual, then the other K−1 levels are considered right

censored at the time that event was observed. Hence for each of these K − 1 levels,

we introduce the respective survival function of that level. Specifically, we specify the

conditional joint probability distribution of the event time and δi by

P (Ti = t, δi = k|ωi, Xi, r > 0) =
K∏
k=1

fk(t) ∏
{j:j 6=k,j=1,...,K}

Sj(t)
I(δ=k)

[Sk(t)]I(δ=0)

=
K∏
k=1

{
λk(t) exp(βTkXi)ωi

1 + rΛk(t) exp(βTkXi)

}I(δ=k)

× exp
{
−ωi log

[
1 + rΛk(t) exp(βTkXi)

]
/r
}

We note that the frailties, ωi, are nuisance parameters and we integrate them with

respect to their density such that for θ = {β1, . . . ,βK , λ1, . . . , λK , θ},

L(θ|X, r > 0) =
n∏
i=1

∫ ∞
0

P (T = t, δi = k|ωi, Xi)P (ωi|θ)dωi

=
n∏
i=1

Γ
(∑K

k=1 I(δi = k) + θ−1
)
θ−θ

−1 ∏K
k=1

[
λk(t) exp(βTk Xi)

1+rΛk(t) exp(βT
k
Xi)

]I(δi=k)

(
θ−1 +∑K

k=1 log (1 + rΛk(t) exp(βTkXi)) /r
)∑K

k=1 I(δi=k)+θ−1

Γ(θ−1)
.
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Furthermore, because Γ(α+1)
Γ(α) = α and since ∑K

k=1 I(δi = k) ∈ {0, 1}, we conclude that

L(θ|X, r > 0) =
n∏
i=1

θ−
∑K

k=1 I(δi=k)θ−θ
−1 ∏K

k=1

[
λk(t) exp(βTk Xi)

1+rΛk(t) exp(βT
k
Xi)

]I(δi=k)

(
θ−1 +∑K

k=1 log (1 + rΛk(t) exp(βTkXi)) /r
)∑K

k=1 I(δi=k)+θ−1
.(3.6)

Similarly, for the case where r = 0 we have the joint probability of

P (Ti = t, δi = k|ωi, Xi, r = 0) =
K∏
k=1

[
ωiλk(t) exp(βTkXi)

]I(δ=k)
(3.7)

× exp
{
−ωiΛk(t) exp(βTkXi)

}
.

Again, we integrate the frailties and obtain

L(θ|X, r = 0) =
n∏
i=1

∫ ∞
0

P (T = t, δi = k|ωi, X)P (ωi|θ)dωi

=
n∏
i=1

θ−
∑K

k=1 I(δi=k)θ−θ
−1 ∏K

k=1

[
λk(t) exp(βTkXi)

]I(δi=k)

(∑K
k=1 Λk(t) exp(βTkXi) + θ−1

)θ−1+
∑K

k=1 I(δi=k)
. (3.8)

Therefore, for all valid values of r, our likelihood is given by combining equations

(3.6) and (3.8):

L(θ|X) =



∏n
i=1

θ
−
∑K

k=1 I(δi=k)
θ−θ
−1∏K

k=1[λk(t) exp(βTk Xi)]
I(δi=k)

(∑K

k=1 Λk(t) exp(βT
k
Xi)+θ−1)θ

−1+
∑K

k=1 I(δi=k)
r = 0

∏n
i=1

θ
−1
∑K

k=1 I(δi=k)
θ−θ
−1∏K

k=1

[
λk(t) exp(βT

k
Xi)

1+rΛk(t) exp(βT
k
Xi)

]I(δi=k)

(θ−1+
∑K

k=1 log(1+rΛk(t) exp(βT
k
Xi))/r)

∑K

k=1 I(δi=k)+θ−1 r > 0.

This is the most general form of the likelihood and is left in this expression for clarity.

Extended derivation details are included in the supplemental materials. In this paper,

we consider a parametric Weibull formation of the hazard, which exhibits a monotone

hazard over time and is especially significant because it may be parameterized in a pro-

portional hazards or accelerated failure time specification (Klein and Moeschberger,
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2005). Mathematically, the baseline hazard takes the form λk(t) = γkξkt
ξk−1 and the

cumulative hazard function is given by Λk(t) = γkt
ξk . At the end of this paper, we

consider semi-parametric formulation.

3.3.3 Combination of effect sizes using external data

Recall that in the motivating TABS study, although the severity order for different

types of events is clearly defined, the actual level of severity (i.e. the severity score)

is not available in the medical claims data. Therefore, an additional analysis was

conducted using data from a prospective study, the Tennessee Children’s Respiratory

Initiative (TCRI), to correlate the ordinal outcome with a severity score (Hartert

et al., 2010). In this paper, we use this additional source of data to develop a weight

function to combine the individual exposure effects in order to estimate the overall

effect across all types of events. We combine the posterior distributions in a weighted

fashion such that

βcomb =
K∑
k=1

wkβk (3.9)

where wk is the weight for each type of effect. In particular, within each category,

the sample mean is calculated and standardized over all levels. That is to say, we

calculate weights as

ŵk = 1
nk

nk∑
j=1

Scorej/
K∑
k=1

1
nk

nk∑
j=1

Scorej. (3.10)

By replacing wk in equation (3.9) with ŵk, and replacing βk with posterior samples

from the frailty model we can estimate the overall exposure effect by β̂comb adjusting

for disease severity. To account for the variability of ŵ in β̂comb, we perform a non-

parametric quantile bootstrap of the conditional standardized means (Efron, 1992).
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3.4 Inference

In Bayesian analysis, the most common strategy for computing posterior distri-

butions and quantities of interest is through Markov Chain Monte Carlo (MCMC)

wherein an ergodic Markov Chain is constructed in such a manner that its stationary

distribution is the posterior distribution of interest, p(θ|X) (Gelman et al., 2014).

Recent advances in the MCMC literature have led to the development of more effi-

cient sampling schemes including Hamiltonian Monte Carlo and No U-Turn Sampling

(Hoffman and Gelman, 2014). Certainly, the area of Bayesian survival analysis has

a multitude of computational development of Gibbs sampling methods developed

for specific models (Ibrahim et al., 2005). Despite these advances, however, MCMC

methods remain computationally intensive for more than a few thousand observations.

Ideally, we would like to leverage the vast amount of sample information to create

a richer model than we otherwise would have been able to construct using a smaller

sample. In the context of linear models, model richness is gained by the provision of

more spendable degrees of freedom due to increased sample information. Of course,

increases in model complexity require a corresponding increase in computational re-

sources due to the expanded dimension of the parameter space (not only with the

parameter themselves, but with the correlation between those parameters). Any in-

creases in the dimensionality of the parameter space will result in an inflation in

required MCMC iterations to ensure proper mixing. Additionally, the baseline in-

crease in wall time due to the computationally expensive evaluation of the likelihood

in any given MCMC step.

3.4.1 Variational Bayes

The preceding facts pose a substantial challenge especially in the context of the

application of survival analysis techniques to large observational studies. Fortunately,

new alternatives to MCMC exist which scale Bayesian methods to large datasets using
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a specialized optimization framework, known as stochastic variational Bayes (Hoffman

et al. (2013)).

As an alternative to sampling from an ergodic Markov Chain, variational Bayesian

methods offer an inferential approach that approximates the posterior distribution

through the minimization of the relative entropy between the true posterior distribu-

tion and some approximating family. For our inferential scheme, we intend to perform

posterior inference over the vector θ = {β1, . . . ,βk, ξ1, . . . , ξk, ρ1, . . . , ρk, θ}. For our

posterior distribution p(θ|X), and some approximating family q(θ), the variational

objective is defined by

q(θ)∗ = arg min
q(θ)∈Q

DKL(q(θ)||p(θ|x)) (3.11)

where DKL(P ||Q) is the Kullback-Leibler divergence defined as

DKL(P ||Q) =
∫

log
(
dP

dQ

)
dP

dQ
dQ

where P and Q are probability measures over θ.

Our objective function therefore has an intuitive task- i.e., we seek to find the

member of a particular approximating family that minimizes the statistical distance

from the true posterior distribution; hence, posterior inference is converted from a

sampling problem to an optimization problem. The DKL is a commonly used pseudo-

metric of statistical distance due to its ease of interpretation. Furthermore, using

DKL in an objective function offers a convenient way to perform the optimization.

Using Jensen’s inequality, it can be shown that that maximizing the Evidence Lower

Bound (ELBO) minimizes DKL; see Blei et al. (2017) for details.

It is worth mentioning the choice of approximating distribution in the variational

inference routine. One of the main advantages of using a minimization criterion such

as DKL is that no matter what distributional form is chosen, we are guaranteed that
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it is closest to the true posterior in terms of the distance. That being said, the

Gaussian variational approximation is by far the most straightforward to implement.

Historically, mean-field (i.e. fully-factorized Gaussian) and full-rank Gaussian distri-

butions have been proposed, (Beal (2003), Kucukelbir et al. (2015)). Respectively,

these approximations constitute taking q(θ) = ∏
θN(µ, σ2) and q(θ) = N(µ,Σ) as

the approximating families, respectively.

To implement variational inference, we use automatic differentiation variational

inference (ADVI) (Kucukelbir et al., 2015). While in the past, variational inference

has been quite difficult to implement, even for the mean-field approach, ADVI pro-

vides an automated way of specifying a model and performing the inference by first

transforming the parameter space to common support and scaling. If J is the num-

ber of parameters in the model, then ADVI has complexity O(NMJ) where M is

the number of Monte Carlo samples at each iteration. To perform the optimization

on large datasets (potentially for datasets that cannot fit into local memory at once),

one may use stochastic gradient methods in tandem with the optimization (Hoffman

et al., 2013). In these methods, the gradient necessary for the optimization of the

objective in equation (3.11) is approximated by its evaluation at a subset of the full

data (which is called a mini-batch). By using mini-batch ADVI, the computational

complexity is reduced to O(BMJ) where B << N is the mini-batch size (Kucukelbir

et al., 2015).

3.5 Simulations

To evaluate the validity of the proposed approach, we perform several simulation

studies. In this section, we present the results of two rounds of simulations. First, we

evaluate the validity of ADVI under a fixed transformation of r, and we follow up with

some simulations regarding the choice of r. In all of the presented simulations, the

full-rank Gaussian family is used. During initial simulation studies, we found posterior
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inference for r to be difficult using a full-rank Gaussian. Notably, optimization of the

DKL did not converge properly. In part, we can see from the model specification that

the frailty for each person is multiplied by the transformation parameter. Because

data in each cluster (i.e. each person) are limited, the correlation between these two

parameters is quite difficult to estimate due to the fact that at most one event per

person can be observed. Hence, the off-diagonal in the full-rank matrix is difficult to

find as well.

For the simulation studies, we generated data from non-proportional hazards mod-

els of the form seen in equation (3.3). Simulation strategies for proportional hazards

may be found in Bender et al. (2005) and we extend this methodology to the general

transformation model. We simulated cohort covariates for that acted as proxies for

age and sex. Specifically, for the age covariate, we drew Xage ∼ Γ(α = 10, β = .3) and

sex was generated by a simple binomial variable with success probability p = .5. We

performed simulations for three ordinal levels of severity (i.e. K = 3) over fixed trans-

formations given by r = 0, 0.5, 1.0 and 1.5. Parameters for estimation were given by

β1 = (0.63, 0.03)T , β2 = (0.8, 0.03)T , β3 = (0.9, 0.03)T , γ = (0.0047, 0.0037, 0.0057)T ,

and ξ = (0.716, 0.725, 0.73)T . Vague gamma priors were given for baseline hazard and

frailty parameters (Gamma(0.001, 0.001)), while diffuse Normal distributions were

used for the regression coefficients (zero mean and standard deviation of 100). Note

that our modeling framework allows for any specification of prior distribution and we

are not restricted to a specific form.

First, for computational convenience, the log-likelihood was used for numeric sta-

bility. To perform the variational inference, we used the “variational” submodule in

the package PyMC3 Bayesian statistical software written in the Python 3 program-

ming language (Salvatier J, 2016). Python 3 is an open source computing framework

and PyMC3 is a probabilistic programming package that uses the deep learning library

Theano (Bastien et al., 2012) as a computational backend. By using Theano, infer-
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ence in PyMC3 is aided by automatic computation of derivatives through symbolic

differentiation. The procedure is accomplished by the construction of a computing

graph with defined tensors for the ordinal outcomes, the covariates, and the failure

times. For each of the 500 simulations, we generated a dataset of size 150,000 us-

ing the covariate and failure time generation mechanisms that were described in the

previous section. Mini-batches of size 3000 were used for full-rank simulations. All

simulations were ran on cluster nodes containing Intel Xeon E5-2630v3 CPUs with

a base clock frequencies of 2.4GHz with 20 GB of RAM allocated to each job. For

software, we used PyMC3 version 3.1 and Theano version 0.9.0.

3.5.1 Inference of regression coefficients with fixed transformations

The first operating characteristic of the model that we establish is the ability to

find β estimates with low bias under knowledge of the true transformation. We fix the

transformation here in order to show that under proper selection of r, the remaining

model can be well estimated. Table 3.1 contains simulation results for the regression

coefficient estimates. We can see that the regression coefficient estimates across all

simulation scenarios exhibit low bias (no greater than 2.93× 10−3) and low MSE (no

greater than 2.70×10−4) while maintaining coverage probability at least the nominal

level.

3.5.2 Model Selection and selection of transformation parameter r

We have established that under the proper specification of transformation, esti-

mates for the effect sizes can be well estimated using full-rank ADVI. We now focus

our attention to the specification of the parameter r. In this section, we discuss a

strategy for determining a reasonable transformation estimate using the maximum a

posteriori (MAP) value (Rasmussen and Williams, 2006), which corresponds to the

posterior mode of r.
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Transformation Param. Truth AVPM SDPM SDS MSE CP
(×100) (×100) (×100) (×100) (×100)

β11 0.63 0.090 1.290 1.560 0.017 96.0
β12 0.03 -0.015 0.081 0.252 < 0.001 100.0

Gk(x) = x β21 0.8 0.065 1.449 1.630 0.021 95.4
β22 0.03 -0.018 0.084 0.263 < 0.001 100.0
β31 0.9 0.122 1.105 1.399 0.012 98.4
β32 0.03 -0.010 0.070 0.252 < 0.001 100.0

β11 0.63 0.236 1.389 1.667 0.020 97.6
β12 0.03 < 0.001 0.082 0.259 < 0.001 100.0

Gk(x) = 1
0.5 log(1 + 0.5x) β21 0.8 0.236 1.439 1.733 0.021 96.4

β22 0.03 -0.009 0.094 0.267 < 0.001 100.0
β31 0.9 0.221 1.285 1.576 0.017 97.8
β32 0.03 -0.003 0.083 0.255 < 0.001 100.0

β11 0.63 0.144 1.525 1.795 0.023 96.8
β12 0.03 0.004 0.091 0.269 < 0.001 100.0

Gk(x) = log(1 + x) β21 0.8 0.086 1.541 1.856 0.024 97.8
β22 0.03 0.002 0.097 0.269 < 0.001 100.0
β31 0.9 0.090 1.389 1.695 0.019 97.4
β32 0.03 0.007 0.090 0.262 < 0.001 100.0

β11 0.63 0.207 1.624 1.888 0.027 96.0
β12 0.03 0.011 0.099 0.272 < 0.001 100.0

Gk(x) = 1
1.5 log(1 + 1.5x) β21 0.8 0.213 1.717 1.942 0.030 95.2

β22 0.03 0.013 0.108 0.281 < 0.001 100.0
β31 0.9 0.293 1.472 1.827 0.023 97.4
β32 0.03 0.006 0.092 0.268 < 0.001 100.0

Table 3.1: Full Rank ADVI simulation results with r fixed at the truth

Instead of modeling r as part of a whole approximate Bayesian solution, we pro-

pose to fix the value at the MAP value. We perform simulations under this scenario

and explore how well variational inference performs for the rest of the model. Sec-

ondly, we define a neighborhood around the MAP estimate and perform model selec-

tion based on information criteria over the neighborhood grid of values. Additionally,

in the context of scientific inference, interpretability of coefficients is an important

aspect for researchers. In the context of this transformation model, we have two

special cases that can be easily interpreted by researchers. Specifically, when r = 0,

we recover the well known parametric proportional hazards model and when r = 1,

we recover the proportional odds model. As such, in practice, a researcher could fit

the model developed in this framework with r̂ along with the two interpretable trans-

formations using information criteria. Here, we use the deviance information criteria

(DIC), Watanabe-Akaike Information Criteria (WAIC), and the Bayesian Predictive
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Information Criteria (BPIC).

First, the DIC (Spiegelhalter et al., 2002) is a widely used measure of model fit

defined as

DIC = D(θ̄) + 2pD

where D(θ) = −2 logL(θ|X) + C, and pD = D̄ −D(θ̄). Secondly, the WAIC can be

thought of as a large sample approximation to cross-validation, and is defined as

WAIC = −2
(

n∑
i=1

log
(

1
S

S∑
s=1

p(yi|θs)
)
−

n∑
i=1

V S
s=1(log(p(yi|θs)))

)

where V S
s=1as = 1

S−1
∑S
s=1(as − s̄)2 and is generally more stable because it computes

the variance separately for each data point and then performs the summation (Vehtari

et al., 2017). The final information criteria that we consider is the Bayesian Predictive

information criteria (BPIC) which was developed as an estimator of the posterior

mean of the expected log-likelihood of the predictive distribution when the specified

family of probability distributions does not contain the true distribution (Ando, 2007).

In Table 3.2 we can see results of model estimation when we fix the transformation

parameter to the optimized MAP value. We notice that the bias of the posterior

means is very similar across all levels of true transformation parameter when compared

to the results in table 3.1. Any increase in the average bias is small, however, with no

more than a 1.38 × 10−3 difference in parameter bias from the previous simulations

performed under knowledge of the true r. Additionally, coverage probability has been

reduced for some of the regression coefficients with 93.8% coverage being the lowest

among all of the posterior distributions.

3.5.3 Model Selection in an ε-neighborhood of the MAP estimate

We consider the selection of a model in a neighborhood surrounding the MAP

estimate. That is to say, we first compute the MAP estimate, r̂, and subsequently
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Transformation Param. Truth AVPM SDPM SDS MSE CP
(×100) (×100) (×100) (×100) (×100)

β11 0.63 0.061 1.284 1.533 0.017 96.8
β12 0.03 -0.012 0.084 0.245 < 0.001 100.0

Gk(x) = x β21 0.8 -0.126 1.465 1.603 0.022 95.4
β22 0.03 -0.02 0.092 0.262 < 0.001 100.0
β31 0.9 0.213 1.08 1.407 0.012 98.0
β32 0.03 -0.012 0.081 0.244 < 0.001 100.0

β11 0.63 0.136 1.574 1.658 0.025 95.6
β12 0.03 -0.009 0.089 0.258 < 0.001 100.0

Gk(x) = 1
0.5 log(1 + 0.5x) β21 0.8 0.278 1.534 1.745 0.024 96.2

β22 0.03 -0.002 0.094 0.267 < 0.001 100.0
β31 0.9 0.257 1.364 1.564 0.019 97.0
β32 0.03 -0.0 0.083 0.252 < 0.001 100.0

β11 0.63 0.196 1.586 1.778 0.026 96.6
β12 0.03 0.008 0.096 0.263 < 0.001 100.0

Gk(x) = log(1 + x) β21 0.8 0.224 1.670 1.880 0.028 96.2
β22 0.03 -0.004 0.093 0.274 < 0.001 100.0
β31 0.9 0.159 1.646 1.691 0.027 94.2
β32 0.03 0.002 0.090 0.259 < 0.001 100.0

β11 0.63 0.247 1.685 1.863 0.029 96.2
β12 0.03 0.009 0.093 0.266 < 0.001 99.8

Gk(x) = 1
1.5 log(1 + 1.5x) β21 0.8 0.295 1.608 1.956 0.027 98.4

β22 0.03 0.009 0.099 0.276 < 0.001 100.0
β31 0.9 0.275 1.906 1.817 0.037 93.8
β32 0.03 0.004 0.092 0.262 < 0.001 100.0

Table 3.2: Full Rank ADVI simulation results fixing r at the MAP estimate

search the space of models over an evenly spaced grid for the neighborhood [r̂−ε, r̂+ε],

evaluating each point with the information criteria outlined in the preceding section.

We perform the grid search over ε− neighborhoods of size 0.14. Figure 3.2 presents

kernel density plots of the transformation parameters selected by this approach. We

can see that this selection criteria provides a reasonable selection method for r. In

each simulation, the mode of the selected values correspond to the underlying true

simulated transformation parameter.

3.5.4 Inference for frailty parameter

During the course of the simulations, we noticed that inference for the frailty

parameter exhibited interesting behavior. Specifically, we found that the posterior

means of the gamma frailty parameter, θ had low bias but exhibited under-coverage in

the credible interval. We notice that the standard deviation of the posterior mean is
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Figure 3.2: Selection of transformation parameter in ε− neighborhood of r̂,

True Model ABPM (×100) SDPM (×100) SDS (×100) MSE (×100) CP (×100)

TTFE1 0.702 1.232 1.327 0.02 94.0
TTFE2 0.837 6.704 1.305 0.456 28.0
TTME 0.338 0.58 0.669 0.005 94.2

Table 3.3: Inference for frailty parameter, θ, comparing time to first event with r fixed at the
truth (TTFE1), r estimated at the MAP estimate (TTFE2), and time to multiple events (TTME).
Simulated under r = 0.5.

smaller than the standard deviation of the simulations; indicating that the variation in

the point estimate for θ conditional on the optimized r was greater than the variation

found in each posterior distribution on average. We hypothesized that this extra

variation was due the fact that time-to-first event resulted in little between-person

information. To test this, we ran a simulation that allowed for any number of events

to be observed within a person (see Appendix for derivation details). Table 3.3 shows

the results of these simulations for the case with the most extreme under-coverage

of the posterior credible interval. We can see that the simulation confirmed our

hypothesis; the coverage probability is closer to the nominal level and the standard

deviation of the posterior mean is smaller than the time-to-first event case.

In essence, we can interpret these results in the context of ‘no free lunch.’ Specifi-
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cally, due to the decreased within person information, there is increased variability in

the frailty parameter estimates. Notably, since the frailty terms for each cluster are

multiplied by the transformation parameter, the increase in variability in the frailty

is correlated with the transformation parameter. Now, since r and θ are multiplied

mathematically, the fact that we fix one parameter at a point estimate results in the

under estimation of the variability of posterior estimates of the frailty parameter. We

notice that the difference in the average bias between posterior mean the model that

is fixed at the true transformation parameter and the model that fixes r at the MAP

estimate is very small (1.35 × 10−3). The variability that is neglected by fixing the

transformation parameter at the MAP estimate is transferred to the variability in

the point estimate (the posterior mean) of θ. The under-coverage of the posterior

credible interval is attributable to the under-estimation of the variability in θ when

fixing r.

3.6 Application

Bronchiolitis is an infection of the lower respiratory tract most commonly oc-

curring in infants and children under two years of age. Respiratory syncytial virus

(RSV) is the most common cause of infant bronchiolitis with peak ages of two to six

months; up to 50-80% of bronchiolitis episodes during infancy are due to RSV infec-

tion (Meissner, 2016). Bronchiolitis is an important medical condition to study not

only in its own right, but due to the fact that it has itself been identified as an impor-

tant risk factor for subsequent pediatric respiratory conditions (Wu et al., 2008). As

a motivating problem for this paper, it is of interest to study the association between

maternal smoking during pregnancy and infant bronchiolitis severity.

As an application of our model, a de-identified dataset from an established birth

cohort of infants and their biological mothers enrolled in TennCare and designed

to assess the relationship between infant bronchiolitis and childhood asthma, Ten-
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nessee Asthma Bronchiolitis Study cohort (TABS) was utilized. The de-identified

dataset included 163,763 patient records was obtained and analyzed. In this dataset,

three levels of severity were included for bronchiolitis visit: out-patient visit (“opv”),

emergency room visit (“emr”) and hospitalization (“hos”) (Carroll et al., 2009). The

percentages of patients who experienced each of the aforementioned ordinal levels

were 10.7% 6.2%, and 4.0%, respectively. About 79.1% of patients in the cohort did

not experience an event within the study timeframe (first year of life). Covariates that

were included in the model include delivery method, number of living siblings related

to the infant, indicators for residence, infant race, and standardized birthweight in

grams.

Following the analysis of the TABS cohort data, follow-up validation data valida-

tion was assessed in the TCRI cohort, a prospective cohort in which infants with acute

respiratory illness were enrolled, and disease severity quantified using a respiratory

severity score. In this cohort, the Tal score (McCallum et al., 2013), which is a simple

respiratory severity score that has been demonstrated to have good inter-rater relia-

bility, was calculated, and level of healthcare utilization, hospitalization, emergency

department visit, or unscheduled outpatient visit recorded. The respiratory severity

score ranges from 0 to 12, with a higher score indicating more severe disease. This

score is derived as an aggregate of assigned values ranging from 0 to 3 in categories

of respiratory rate, retractions, wheezing, and oxygen saturation in room air and has

been shown to discriminate level of healthcare utilization as well as lower versus up-

per respiratory tract infection as another marker of disease severity (Rodriguez et al.,

2016). It should be noted that the individuals contained in this follow-up study are

not the same subjects contained in the TennCare dataset. The study was approved

by the Institutional Review Board of the Vanderbilt University and the Tennessee

Department of Health.
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Est. HR SE z p Lower 95% CI Upper 95% CI
genderMale 0.290 1.336 0.011 26.263 0.000 0.268 0.311
masthma 0.134 1.143 0.025 5.419 0.000 0.085 0.182
mat-smoke 0.131 1.140 0.012 10.719 0.000 0.107 0.155

assiss -0.008 0.992 0.021 -0.363 0.716 -0.050 0.034
c-section 0.051 1.052 0.013 3.957 0.000 0.026 0.076
AfAm -0.241 0.786 0.015 -16.111 0.000 -0.270 -0.211

residence2 -0.051 0.950 0.014 -3.678 0.000 -0.078 -0.024
residence3 -0.204 0.815 0.015 -13.389 0.000 -0.234 -0.174
weightstand -0.068 0.934 0.006 -12.015 0.000 -0.079 -0.057
siblings 0.031 1.031 0.004 7.246 0.000 0.023 0.039

Table 3.4: Univariate Cox proportional hazards model

3.6.1 Univariate Analyses

A preliminary analysis was performed assessing the time to any first event as a

univariate cox proportional hazards model. Table 3.4 contains the fits of the univariate

Cox model.

We see that according to this model, the hazard ratio for time to first bronchiolitis

episode comparing mothers who smoked during pregnancy to those that didn’t is

Mean: 1.140, 95% CI: (1.110, 1.168). We will compare this to the severity adjusted

quantity using the secondary dataset.

3.6.2 Computing Time and Implementation

The proposed method was used to analyze the data collected in the TABS study.

Our first attempt at model fitting involved the usage of No U-Turn sampling using

PyMC3. Using a computing cluster, we allocated 8 Xeon E5-2630v3 CPU cores and

150 GB of RAM to running MCMC. As such, we ran MCMC on the dataset 10 times

to benchmark the performance. We ran each instance for 24 hours and measured

sampling rate as well as the projected time to draw 10000 samples. After 24 hours,

MCMC sampled at an average of 30.89 seconds per draw. The average projected time

to completion was 91.10 hours (3.8 days).
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Next, we fit the model using the proposed ADVI framework. For ADVI, usage

of the cluster was not necessary for model fitting; we were able to successfully run

40,000 ADVI iterations in 27.62 minutes on a standard laptop equipped with a 2.4

GHz Intel Core i5 processor and 8 GB of memory. Using this same local machine

hardware, however, employing MCMC invariably resulted in a system hang. In the

final analysis, however, we conservatively ran ADVI for a total of 150,000 iterations

to ensure convergence which took an average of 125.9 minutes to complete.

3.6.3 Results

The transformation parameter was found to be optimized at r̂ = 0.24. Bootstrap-

ping the validated Tal scores from the TCRI cohort resulted in symmetric weight

distributions (we used 1000 bootstrap replications). Table 3.5 presents the results of

fitting the model with model selection criteria.

With respect to the interpretable quantities, we can see that the proportional haz-

ards model (r = 0) is slightly preferred over the proportional hazards odds (r = 1),

with the exception of WAIC (although this difference is quite small). These quantities

suggest, however, that the transformation has little effect on the inference of the re-

gression coefficients with respect to overall model fit. Since the proportional hazards

model was the preferred interpretable model preferred by both DIC and BPIC, we

present model fit results from this transformation along with those fitted with r̂ in Ta-

ble 3.6. We see very similar results in the effect sizes as that presented with optimized

r. The individual smoking effects in outpatient, emergency room, and hospitaliza-

tion were combined using equation (3.9) using the bootstrapped ŵks. Specifically,

when combined with severity scores according to equation (3.9), we interpret the

exponentiated combined score (Mean: 1.243, 95% Credible Interval (1.160 1.333))

as the severity-weighted hazard ratio of infant bronchiolitis comparing mothers who

smoked during pregnancy versus those did not smoke, adjusting for other covariates.
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In essence, this quantity provides a score that is informative for health policy makers:

it describes the weighting scheme provides an indication of disease burden. Figure 3.3

compares the distributions of the exponentiated combined regression coefficients for

r = 0 and r = r̂; we notice that the two distributions are quite similar. If we compare

this to the full MCMC implementation, we have Mean: 1.271, 95% CI (1.189,1.359).

Further, we observe only a slight overlap in the interval estimates comparing the

combined score to the univariate Cox PH model discussed earlier.

Model WAIC DIC BPIC

Proportional Hazards, r = 0 567688.61 632938.35 616691.63
Proportional Odds, r = 1 567307.66 637702.07 624291.48

r̂ 567315.32 633034.14 616939.19

Table 3.5: Information criteria comparing fitted models with r = 0, and r = 1, and r = r̂

Figure 3.3: Combined exponentiated regression coefficient comparing r = 0 and r = r̂

3.7 Discussion

We have presented a model that systematically and flexibly models time to first

event for ordinal disease severity. Extending the method to multivariate ordinal
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r = 0 r = r̂

Type of Outcome Post. Mean Post. SD 2.5th HPD 97.5th HPD Post. Mean Post. SD 2.5th Quant. 97.5th Quant

β00 0.550 0.037 0.477 0.621 0.549 0.040 0.473 0.627
β01 0.314 0.071 0.175 0.453 0.310 0.076 0.163 0.460
β02 0.268 0.040 0.190 0.347 0.272 0.040 0.193 0.351
β03 0.056 0.015 0.027 0.086 0.062 0.018 0.027 0.098

Emergency Room β04 -0.097 0.063 -0.221 0.027 -0.093 0.066 -0.222 0.036
β05 0.058 0.041 -0.023 0.139 0.063 0.033 -0.002 0.129
β06 -0.263 0.043 -0.345 -0.180 -0.248 0.040 -0.326 -0.170
β07 0.029 0.044 -0.058 0.115 0.048 0.044 -0.039 0.133
β08 0.199 0.043 0.116 0.282 0.230 0.048 0.136 0.323
β09 -0.130 0.020 -0.169 -0.091 -0.122 0.018 -0.156 -0.087

β10 0.436 0.034 0.369 0.502 0.427 0.038 0.352 0.502
β11 0.146 0.087 -0.025 0.315 0.140 0.085 -0.025 0.306
β12 0.226 0.042 0.143 0.309 0.225 0.045 0.136 0.311
β13 0.151 0.021 0.109 0.191 0.153 0.016 0.121 0.184

Hospitalization β14 -0.051 0.068 -0.185 0.084 -0.049 0.081 -0.207 0.111
β15 0.092 0.043 0.009 0.175 0.096 0.040 0.018 0.174
β16 -0.598 0.044 -0.685 -0.515 -0.587 0.048 -0.681 -0.493
β17 -0.416 0.047 -0.507 -0.324 -0.409 0.043 -0.494 -0.323
β18 -0.707 0.044 -0.794 -0.621 -0.696 0.050 -0.793 -0.598
β19 -0.133 0.020 -0.173 -0.093 -0.125 0.020 -0.164 -0.087

β20 0.530 0.030 0.472 0.589 0.531 0.035 0.462 0.598
β21 0.098 0.066 -0.031 0.228 0.088 0.071 -0.049 0.228
β22 0.077 0.040 -0.002 0.154 0.069 0.038 -0.007 0.144
β23 0.059 0.017 0.026 0.092 0.058 0.017 0.026 0.091

Outpatient Visit β24 -0.027 0.049 -0.123 0.068 -0.028 0.060 -0.145 0.093
β25 0.085 0.035 0.017 0.156 0.087 0.040 0.009 0.166
β26 -0.703 0.039 -0.779 -0.626 -0.713 0.043 -0.797 -0.629
β27 -0.018 0.038 -0.092 0.058 -0.005 0.042 -0.088 0.078
β28 -0.617 0.037 -0.690 -0.545 -0.623 0.047 -0.715 -0.531
β29 -0.089 0.018 -0.125 -0.053 -0.087 0.019 -0.124 -0.051

Table 3.6: Posterior Quantities for Bronchiolitis cohort

survival outcomes is straightforward. The composite quantity developed in equation

(3.9) offers a composite score weighted by disease severity instead of by prevalence

of each disease level in the underlying study cohort. When severity score is not

available, the composite score can be constructed assuming ordinal scores such as

1, 2, . . . , K - a common practice in dealing with ordinality of outcomes. Note that

inclusion of recurrent events is also straightforward with appropriate modification to

the likelihood function. In our simulations, several insights were gained both from

the perspective of the underlying model assumed for the conditional hazard, but also

regarding the interface of variational approximation to the posterior distribution.

Considering the operating characteristics of our methodology, we see that the model

performs well under the simulated scenarios, and provides relatively small bias for

most model parameters. Specifically, the effect sizes were well estimated using ADVI,

which is encouraging for clinical relevance. With respect to the combination step of

the effect sizes across levels of severity, we found that the bootstrap distribution of

the standardized sample means were symmetric around their mean values. Certainly
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other quantities could have been taken from the skewed distribution and bootstrapped

in a similar fashion. Additionally, in the outpatient group of the validation study,

we observed what appeared to be a mixture distribution. In this case, it may be

interesting to incorporate the weights via a Dirichlet process mixture.

To our knowledge, there has been no direct application of variational inference to

multivariate survival models, especially in the presence of a full-rank approximation.

As such, this work provides a foundation for future research in more complex sur-

vival models using variational Bayesian methods. Alternatives to the approximation

paradigm of variational inference, however, do exist. Divide and conquer strategies

including expectation propagation (Minka, 2001) and combination strategies using

optimal transport theory (Srivastava et al., 2015) are both appealing alternatives to

variational Bayes and warrant further investigation into their application to multi-

variate survival models.

Certainly, more rich approximations may be made to the posterior (see future

directions in the conclusion of this thesis). We strongly consider the approximation

made in this present work to be more statistically sound than other approximations

due to the rigorous definition of the objective function for the optimization procedure,

however. Specifically, Laplace’s approximation to the posterior distribution is one

commonly used methodology. To review, Laplace’s approximation posits a normal

approximation to a posterior distribution that uses information about the posterior

mode and curvature to develop the approximation. Roughly speaking, the mean of the

approximation is set to the maximum a posteriori estimate of θ and the variance of the

approximation is calibrated by the expected information of the posterior distribution.

However, it has been noted by several authors that this approximation is only correct

under very stringent conditions (Geisser et al., 1990), one such condition being that

the error of the approximation must be of order O(n−2), a fact that must be known

a priori.
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Perhaps the most direct extension of the model described in this paper is the spec-

ification of a more flexible form of the baseline hazard function λ0(t). In de Castro

et al. (2014), the authors use a gamma frailty model with a piecewise exponential

model, specifying a piecewise baseline hazard. Alternatively, we can extend this mul-

tivariate Bayesian framework to include splines. Such models, however, employ more

parameters for their non-parametric components. As such, MCMC will become even

more computationally expensive, further motivating the exploration of the validity of

ADVI in large-scale multivariate survival models. See the conclusion of this disserta-

tion for a full discussion of this future direction.

While the full-rank Gaussian alternative provides the advantage that correlations

between parameters are captured, the main drawback with this modification is that

the approximation is restrictive in that it assumes the posterior distribution to be el-

liptically shaped. In practice, we would like to be able to model the posterior with an

arbitrary shape for the approximating distribution while maintaining scalability with

respect to the number of parameters in the model. One promising approach to over-

come these challenges is the modification of the mean-field ADVI with normalizing

flows (Rezende and Mohamed, 2015). Within the Gaussian approximation however,

computational load can be reduced by specifying a grouped approximation where a

block of the covariance of the approximating distribution is modeled as full-rank and

the remainder fully-factorized. These extensions are currently under investigation

and the future for adapting Bayesian methods to large scale data sets is promising.

3.7.1 Acknowledgement

The authors thank the Tennessee Division of TennCare of the Department of

Finance and Administration, as well as the Tennessee Department of Health for pro-

viding data for the study.

90



3.8 Appendix

3.8.1 Derivation Details

Now, let Yk denote the true event time of the kth event k = 1, . . . , K and Y0 = C.

We observe T = min{Y0, Y1, . . . , YK} and δ = {k : Yk ≤ Yj, j 6= k}. To account for

correlation within an individual, we specify a frailty term, denoted by ωi. Where

ωi ∼ Γ(θ−1, θ−1). From here, we model the cumulative hazard as

Λik(t|ωi,Xi) = ωiGk

{
Λk(t) exp(βTkXi)

}
= ωi log

{
1 + rΛk(t) exp(βTkXi)

}
/r

From this specification one can conclude that the survival function and hazard func-

tions are each given by

Sik(t|ωi, Xi) = exp {−Λik(t|ωi, Xi)}

= exp
{
−ωi log

[
1 + rΛk(t) exp(βTkXi)

]
/r
}

and

λik(t|ωi, Xi) = ∂Λik(t|ωi, Xi)
∂t

= λk(t) exp(βTkXi)ωi
{

1 + rΛk(t) exp(βTkXi)
}−1
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We therefore specify the joint probability distribution of the event time and δ by

P (Ti = t, δi = k|ωi, Xi, r > 0) =
K∏
k=1

fk(t) ∏
j 6=k

Sj(t)
I(δ=k)

[Sk(t)]I(δ=0)

=
K∏
k=1

fk(t)I(δ=k)Sk(t)1−I(δ=k)

=
K∏
k=1

λk(t)I(δ=k)Sk(t)

=
n∏
i=1

[
λk(t) exp(βTkXi)ωi

{
1 + rΛk(t) exp(βTkXi)

}−1
]I(δ=k)

× exp
{
−ωi log

{
1 + rΛk(t) exp(βTkXi)/rk

}}

We note that the frailties are nuisance parameters, so we integrate them with
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respect to the density of ωi such that

L(θ|Xi, r > 0) =
∫ ∞

0
P (Ti = t, δi = k|ωi, Xi, r > 0)P (ωi|θ)dωi

=
∫ ∞

0

K∏
k=1

[
λk(t) exp(βTkXi)ωi

{
1 + rΛk(t) exp(βTkXi)

}−1
]I(δ=k)

θ−θ
−1

Γ(θ−1)ω
θ−1−1
i e−θ

−1ωi

× exp
{
−ωi

K∑
k=1

log
(

1 + rΛk(t)ex
′
iβ
)
/rk

}
dωi

=
∫ ∞

0
ω
∑K

k=1 I(δi=k)
i ωθ

−1−1
i exp

{
−ωiθ−1

} θ−θ
−1

Γ(θ−1)

× exp
{
−ωi

K∑
k=1

log
[
1 + rΛk(t) exp(βTkXi)

]
/rk

}
dωi

×
K∏
k=1

[
λk(t) exp(βTkXi)

{
1 + rΛk(t) exp(βTkXi)

}−1
]I(δi=k)

=
∫ ∞

0
ω
∑K

k=1 I(δi=k)+θ−1−1
i

θ−θ
−1

Γ(θ−1)

× exp
{
−ωi(θ−1 +

K∑
k=1

log
[
1 + rΛk(t) exp(βTkXi)

]
/r)

}
dωi

×
K∏
k=1

[
λk(t) exp(βTkXi)

{
1 + rΛk(t) exp(βTkXi)

}−1
]I(δi=k)

We recognize the integral in the final line as the kernel of a gamma density.

L(θ|Xi, r > 0) =
Γ
(∑K

k=1 I(δi = k) + θ−1
)
θ−θ

−1Γ(θ−1)−1

(
θ−1 +∑K

k=1 log (1 + rΛk(t) exp(βTkXi)) /rk
)∑K

k=1 I(δi=k)+θ−1

×
K∏
k=1

[
λk(t) exp(βTkXi)

1 + rΛk(t) exp(βTkXi)

]I(δi=k)

Furthermore, that because Γ(α+1)
Γ(α) = α and since ∑K

k=1 I(δi = k) ∈ {0, 1}, we conclude
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that

L(θ|Xi, r > 0) = θ−
∑K

k=1 I(δi=k)θ−θ
−1

(
θ−1 +∑K

k=1 log (1 + rΛk(t) exp(βTkXi)) /rk
)∑K

k=1 I(δi=k)+θ−1

×
K∏
k=1

[
λk(t) exp(βTkXi)

1 + rΛk(t) exp(βTkXi)

]I(δi=k)

Now for the case where r = 0 we have the joint probability of

P (T = t, δ = k|ωi, Xi, r = 0) =
K∏
k=1

λk(t)I(δ=k)Sk(t)

=
K∏
k=1

[
ωiλk(t) exp(βTkXi)

]I(δ=k)

× exp
{
−ωiΛk(t) exp(βTkXi)

}
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Again, we integrate the frailties and obtain

L(θ|Xi, r = 0) =
∫ ∞

0
P (T = t, δi = k|ωi, Xi, r = 0)P (ωi|θ)dωi

=
∫ ∞

0

K∏
k=1

[
ωiλk(t) exp(βTkXi)

]I(δ=k)
exp

{
−ωiΛk(t) exp(βTkXi)

}

× θ−θ
−1

Γ(θ−1)ω
θ−1−1
i e−θ

−1ωidωi

=
∫ ∞

0
ω
∑K

k=1 I(δi=k)
i e−ωi

∑K

k=1 Λk(t) exp(βTk Xi)
θ−θ

−1

Γ(θ−1)ω
θ−1−1
i e−θ

−1ωidωi

×
K∏
k=1

[
λk(t) exp(βTkXi)

]I(δi=k)

=
∫ ∞

0
ω
∑K

k=1 I(δi=k)
i e−ωi

∑K

k=1 Λk(t) exp(βTk Xi)
θ−θ

Γ(θ−1)ω
θ−1−1
i e−θ

−1ωidωi

×
K∏
k=1

[
λk(t) exp(βTkXi)

]I(δi=k)

=
∫ ∞

0
ω
∑K

k=1 I(δi=k)+θ−1−1
i e−ωi(

∑K

k=1 Λk(t) exp(βTk Xi)+θ
−1)dωi

θ−θ
−1

Γ(θ−1)

×
K∏
k=1

[
λk(t) exp(βTkXi)

]I(δi=k)

=
Γ
(
θ−1 +∑K

k=1 I(δi = k)
)∏K

k=1

[
λk(t) exp(βTkXi)

]I(δi=k)
θ−θ

−1

(∑K
k=1 Λk(t) exp(βTkXi) + θ−1

)θ−1+
∑K

k=1 I(δi=k)
Γ(θ−1)

Therefore, for all valid values of r, our likelihood is given by

L(θ|Xi) =



Γ(θ−1+
∑K

k=1 I(δi=k))∏K

k=1[λk(t) exp(βTk Xi)]
I(δi=k)

θ−θ
−1

(∑K

k=1 Λk(t) exp(βT
k
Xi)+θ−1)θ

−1+
∑K

k=1 I(δi=k)
Γ(θ−1)

r = 0

θ
−
∑K

k=1 I(δi=k)
θ−θ
−1∏K

k=1

[
λk(t) exp(βT

k
Xi)

1+rΛk(t) exp(βT
k
Xi)

]I(δi=k)

(θ−1+
∑K

k=1 log(1+rΛk(t) exp(βT
k
Xi))/rk)

∑K

k=1 I(δi=k)+θ−1 r > 0
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3.8.2 Derivation for Time to Multiple events

P (T = t, δi = k|ωi, Xi) =
∫ ∞

0
p(T = t, δi = k|ωi, Xi)p(ωi|θ, α)dωi

=
∫ ∞

0

K∏
k=1

[
ωiλk(t) exp

{
βTkXi

}]I(δ=k)
exp

{
−ωiΛk(t)eβ

T
k Xi

}
× θα

Γ(α)ω
α−1
i e−θωidωi

=
∫ ∞

0
ω
∑K

k=1 I(δi=k)
i e−ωi

∑K

k=1 Λk(t)eβ
T
k
Xi θα

Γ(α)ω
α−1
i e−θωidωi

×
K∏
k=1

[
λk(t) exp

{
βTkXi

}]I(δi=k)

=
∫ ∞

0
ω
∑K

k=1 I(δi=k)
i e−ωi

∑K

k=1 Λk(t)eβ
T
k
Xi θα

Γ(α)ω
α−1
i e−θωidωi

×
K∏
k=1

[
λk(t) exp

{
βTkXi

}]I(δi=k)

=
∫ ∞

0
ω
∑K

k=1 I(δi=k)+α−1
i e

−ωi
(∑K

k=1 Λk(t)eβ
T
k
Xi+θ

)
dωi

× θα

Γ(α)

K∏
k=1

[
λk(t) exp

{
βTkXi

}]I(δi=k)

=
Γ
(
α +∑K

k=1 I(δi = k)
)

Γ(α)

∏K
k=1

[
λk(t) exp

{
βTkXi

}]I(δi=k)
θα(∑K

k=1 Λk(t)eβ
T
k
Xi + θ

)α+
∑K

k=1 I(δi=k)

=
∏K
k=1

[
λk(t) exp

{
βTkXi

}]I(δi=k)
θα(∑K

k=1 Λk(t)eβ
T
k
Xi + θ

)α+
∑K

k=1 I(δi=k)

∑K

k=1 I(δi=k)∏
j=1

(α + j − 1)
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- Further, using the spline basis formulation of the baseline hazard, we obtain

P (T = t, δi = k|ωi, Xi) =
∏K
k=1

[
λk(t) exp

{
βTkXi

}]I(δi=k)
θα(∑K

k=1 Λk(t)eβ
T
k
Xi + θ

)α+
∑K

k=1 I(δi=k)

∑K

k=1 I(δi=k)∏
j=1

(α + j − 1)

=
∏K
k=1

[∑
k αkBk,q(t) exp

{
βTkXi

}]I(δi=k)
θα(∑K

k=1
∑s−1
k=1

(∑k
j=1 αj(ξj+q − ξj)/q

)
Bk,q+1(t)eβTk Xi + θ

)α+
∑K

k=1 I(δi=k)

×

∑K

k=1 I(δi=k)∏
j=1

(α + j − 1)

3.8.3 Simulation Details

For the simulation studies, we generate data from non-proportional hazards model.

Simulation strategies for proportional hazards may be found in (Bender et al., 2005)

and we extend this methodology to the general transformation model. For each

subject i we first draw a frailty term ωi ∼ Γ(θ−1, θ−1). Next, conditional on ωi,

we use the standard probability integral transformation generate the survival times.

Notably, we simulate from

T ∗ik =
exp

(
log(U)r
−ωi

)
− 1

λkr exp
(
X
′
iβk

)
1/ρk

Since Λk is an invertible map due to the fact that λk(t) > 0 for all values of t and

k. Once have simulated a set of k survival times for each individual, we generate

censoring times according to Ci = 1 + Uc where U ∼ [0, 1] and c is some constant.

Then, for the ith individual we take Tik = min{T ∗ik, Ci}. Finally, to simulate observing

the first event, we obtain min{Tik}Kk=1.

3.8.4 Univariate Cox Models
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Est. HR SE z p Lower 95% CI Upper 95% CI
genderMale 0.317 1.373 0.020 15.652 0.000 0.277 0.356
masthma 0.270 1.310 0.043 6.210 0.000 0.185 0.355
mat-smoke 0.237 1.267 0.023 10.139 0.000 0.191 0.282

assiss -0.050 0.952 0.041 -1.208 0.227 -0.130 0.031
c-section 0.037 1.038 0.024 1.561 0.119 -0.010 0.084
AfAm 0.027 1.027 0.026 1.021 0.307 -0.025 0.078

residence2 0.074 1.077 0.029 2.551 0.011 0.017 0.131
resresidence3 0.390 1.477 0.028 13.883 0.000 0.335 0.445
weight-stand -0.084 0.920 0.010 -8.020 0.000 -0.104 -0.063

siblings 0.008 1.008 0.008 1.030 0.303 -0.007 0.023

Table 3.7: Univariate Cox PH model for emergency room admitted infant bronchiolitis

Est. HR SE z p Lower 95% CI Upper 95% CI
genderMale 0.286 1.331 0.015 18.574 0.000 0.256 0.316
masthma 0.059 1.061 0.035 1.692 0.091 -0.009 0.128
mat-smoke 0.050 1.052 0.017 2.966 0.003 0.017 0.083

assiss 0.018 1.018 0.029 0.605 0.545 -0.040 0.075
c-section 0.052 1.054 0.018 2.915 0.004 0.017 0.088
AfAm -0.382 0.683 0.022 -17.680 0.000 -0.424 -0.339

residence2 0.019 1.020 0.018 1.062 0.288 -0.016 0.055
resresidence3 -0.438 0.645 0.022 -19.861 0.000 -0.481 -0.395
weight-stand -0.046 0.955 0.008 -5.941 0.000 -0.062 -0.031

siblings 0.015 1.015 0.006 2.408 0.016 0.003 0.027

Table 3.8: Univariate Cox PH model for outpatient clinic admitted infant bronchiolitis

Est. HR SE z p Lower 95% CI Upper 95% CI
genderMale 0.256 1.292 0.025 10.143 0.000 0.207 0.306
masthma 0.115 1.122 0.057 2.006 0.045 0.003 0.227
mat-smoke 0.207 1.230 0.027 7.570 0.000 0.153 0.261

assiss -0.019 0.981 0.050 -0.386 0.699 -0.117 0.078
c-section 0.068 1.070 0.029 2.304 0.021 0.010 0.126
AfAm -0.341 0.711 0.036 -9.550 0.000 -0.412 -0.271

residence2 -0.383 0.681 0.032 -12.009 0.000 -0.446 -0.321
resresidence3 -0.559 0.572 0.036 -15.722 0.000 -0.629 -0.489
weight-stand -0.101 0.904 0.013 -7.783 0.000 -0.127 -0.076

siblings 0.105 1.111 0.009 11.403 0.000 0.087 0.124

Table 3.9: Univariate Cox PH model for hospital admitted infant bronchiolitis
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CHAPTER 4

SOFTWARE IMPLEMENTATION: THE BAYLEAF MODULE

4.1 Introduction

The implementation of statistical methodologies into usable tools for researchers

and practitioners is paramount to a method’s widespread adoption. The development

of statistical software for general survival analysis has a strong presence in the R pro-

gramming language environment (R Core Team, 2014). However, the implementation

of survival analysis, especially multivariate survival analysis, in the python program-

ming language (Python Core Team, 2015) is limited. The python module ’lifelines’

offers standard univariate, frequentist inferential procedures including Cox propor-

tional hazards and parametric survival analysis. Furthermore, univariate Bayesian

models survival models may be found in the excellent ’survivalstan’ package; in this

module, standard Bayesian piecewise exponential models built upon the framework

of Stan can be found. Despite the existence of these modules, software has not been

implemented to perform Bayesian analysis of transformation-based frailty and cop-

ula models of the sort described previously in this dissertation. The utilization of

the python programming language allows for tool development in one of the most

commonly used data science languages. Additionally, the utilization of python allows

usage of the deep-learning library theano for automatic computation of gradients for

standard statistical procedures.

In this paper, we describe a new software module built specifically for the imple-

mentation of Bayesian transformation models developed and studied in this disserta-

tion.
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4.1.1 Goals and Vision

The goal of the bayleaf module is to provide an “easy to use” API to fit Bayesian

transformation models using PyMC3 as a computational backend. By using PyMC3,

we are able to build statistical models that can use next-generation sampling tech-

niques as well as variational Bayesian methodologies for large datasets. Bayesian

survival models have been historically limited in their wide-spread usability due to

the limitations of previous software packages. Notably, Bayesian survival analysis has

often been formulated in terms of the so called “Poisson trick”, wherein an intensity

process is modeled and a Poisson likelihood is assumed. Using tools like PyMC3, we

are instead able to circumvent the re-posing of the likelihood and are able to use log

likelihoods in terms of any hazard and survival functions.

This version of the bayleaf package provides a user friendly syntax and modeling

suite for the parametric models contained in this dissertation. This paper is organized

in the following manner. First, we will describe the basic structure of the module

(note, all of the code used to generate this dissertation is available on the author’s

github). Next, we describe the different models currently contained in the module.

For each, we provide an example and demonstration for usage. In conclusion, we

finish the paper with a brief note on future directions.

4.2 Tensor-based computation

Before we discuss the inner-workings of the package, we briefly discuss the abstract

way in which computation is undertaken in the package. The basis for the compu-

tation back-end of the bayleaf module is a graphical model. Specifically, a computa-

tional graph is simply a directed graph whose nodes are operations and whose edges

are tensors (Abadi et al., 2016). We will include a directed acyclic graph for each

model in their corresponding subsection for the user to visualize the computational

process.
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4.3 Installation

The module bayleaf found on the author’s github page.

4.4 Simulation Routines

The package bayleaf provides data simulation routines for univariate, frailty, and

limited copula models. Notably the following functions are available to simulate data:
# Weibull Simulation routine

sim_Weibull(N, lam, rho, beta, rateC, maxtime)

# multivariate generalized weibull model

sim_weibull_frail_generalized(betas, theta, X, lam, r, rho, maxtime, cens_end, n, k, first = False)

Details for the simulation routines for these models can be found in the Appendix

of the first paper in this dissertation.

4.5 Models

4.5.1 Class Structure of Package

The general class organization of the bayleaf module is adapted from the GLM

submodule contained in PyMC3. In general, three component classes comprise the

overall construction. First, the independent component constructs and adds the gen-

eral covariate information to the model context. Next, the general modeling class

uses a specified likelihood function to undergo inference.

4.6 Syntax

In this section, we describe the syntax of the ‘bayleaf’ package. In the main

model class for each inferential model, there is a class method that parses an R-like

model call. The syntax of this framework is built upon the ‘patsy’ python module;

a framework to describe statistical models. In essence, the ‘patsy‘ package parses

the formula passed to the constructer and creates the appropriate design matrix and

outcome vectors. Finally, the likelihood is added to the model context and is able to
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used for Bayesian fitting.

For both the copula and frailty models, the outcome and independent variables

are separated by a tilde (“∼"). Furthermore, the formulas are represented in a string.

Hence, a formula used in this package will be of the form:

formula = outcome ~ independent

Furthermore, each component of the formula uses names within the dataset to

construct the model. Linear specifications of the independent component use “+”

operators and the outcome uses the following parsing pattern:

’([time_1, time_2,..., time_k],[delta_1, delta_2,..., delta_k])~X_1+X_2+...+X_p-1’

Naturally, this formula is parsed using base python functions. Once the data is

stripped from the inputted data frame, the outcome variables and design matrices

are then used to populate the instantiated tensor variables used in the rest of the

computational graph. The following class method is used for this process:

@classmethod

def from_formula(cls, formula, data, minibatch = False, priors=None,

vars=None, name=’’, model=None):

import patsy

outcomes= formula.split("~")[0]

# get time variables

time_vars = [v.strip() for v in outcomes[outcomes.find("([")+2:outcomes.find("]")].split(",")]

#get event times

event_raw = outcomes[outcomes.find("],")+2:]

event_vars = [v.strip() for v in event_raw[event_raw.find("[")+1:event_raw.find("])")].split(",")]

# Now get x, times, and events

x = patsy.dmatrix(formula.split("~")[1].strip(), data)

time = data[time_vars].as_matrix()

event = data[event_vars].as_matrix()

labels = x.design_info.column_names

# add the data tensors to the computational graph

x_tensor = theano.shared(np.asarray(x)+0., borrow = True)

time_tensor = theano.shared(time+0., borrow = True)
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event_tensor = theano.shared(event+0., borrow = True)

return cls(x=x_tensor, time=time_tensor, event=event_tensor, minibatch=minibatch, labels=labels,

priors=priors, vars=vars, name=name, model=model)

We can see that the class method takes the string literal formula and first parses

which values correspond to the outcome variable. Next, the ‘patsy‘ package creates

the corresponding design matrix according to the specification given in the formula

syntax. Finally, the class method takes the created numpy arrays and converts them

into tensor shared variables to be used within theano for later use in the PyMC3

engine.

4.6.1 Univariate Models

The bayleaf package provides statistical inference for several univariate models.

These include the proportional hazards model and general univariate versions of the

transformation models studied in this dissertation.

4.6.2 Transformation Frailty Models

Frailty models assume that the joint survival function is constructed conditionally

upon a subject specific random effect. The model likelihood is given by

L(θ|X) =



∏n
i=1

θ
−
∑K

k=1 I(δi=k)
θ−θ
−1∏K

k=1[λk(t) exp(βTk Xi)]
I(δi=k)

(∑K

k=1 Λk(t) exp(βT
k
Xi)+θ−1)θ

−1+
∑K

k=1 I(δi=k)
r = 0

∏n
i=1

θ
−1
∑K

k=1 I(δi=k)
θ−θ
−1∏K

k=1

[
λk(t) exp(βT

k
Xi)

1+rΛk(t) exp(βT
k
Xi)

]I(δi=k)

(θ−1+
∑K

k=1 log(1+rΛk(t) exp(βT
k
Xi))/r)

∑K

k=1 I(δi=k)+θ−1 r > 0.

In bayleaf, the following default prior distributions are placed on the parameters:
default_regressor_prior = Normal.dist(mu=0, tau=1/100)

default_lambda_prior = Gamma.dist(0.001,0.001, testval = 1.)

default_rho_prior = Gamma.dist(0.001,0.001, testval = 1.)

default_r_prior = InverseGamma.dist(alpha =1., testval = 1.)

default_theta_prior = Gamma.dist(0.001,0.001, testval = 1.)
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Mean SD MC Error HPD2.5 HPD97.5 neff R̂

X10 0.640 0.029 0.000 0.584 0.698 5595.988 1.0
X20 0.030 0.001 0.000 0.027 0.033 3226.548 1.0
X11 0.833 0.030 0.000 0.772 0.890 4431.405 1.0
X21 0.029 0.001 0.000 0.026 0.032 3876.154 1.0
X12 0.889 0.028 0.000 0.835 0.945 4810.688 1.0
X22 0.030 0.001 0.000 0.028 0.033 4372.268 1.0
λ0 0.005 0.000 0.000 0.004 0.005 2818.672 1.0
ρ0 0.710 0.011 0.000 0.689 0.731 3424.207 1.0
r0 0.448 0.088 0.001 0.281 0.618 3568.984 1.0
λ1 0.004 0.000 0.000 0.003 0.004 2845.079 1.0
ρ1 0.716 0.011 0.000 0.697 0.738 3367.490 1.0
r1 0.445 0.088 0.001 0.278 0.619 3606.243 1.0
λ2 0.006 0.000 0.000 0.005 0.007 3468.263 1.0
ρ2 0.716 0.010 0.000 0.696 0.734 3970.470 1.0
r2 0.460 0.060 0.001 0.346 0.580 4335.616 1.0
θ 0.505 0.015 0.000 0.475 0.536 7550.863 1.0

Table 4.1: Results for MCMC Frailty model

4.6.2.1 Example

To illustrate the usage of this model, we first generate data from the transforma-

tion model and subsequently fit using the formula class method.
with pm.Model() as model_test2:

Frailty.from_formula(’([time_1, time_2, time_3],[delta_1, delta_2, delta_3])~X_1+X_2-1’, data = data)

MAP = pm.find_MAP()

with model_test2:

trace_mcmc =pm.sample(2000, start=MAP)

After fitting this model, we use the ‘summary’ function to generate a table of

results. Table 4.1 presents these results. These results are obtained via the PyMC3

summary function.

The corresponding PyMC3 model for this particular implementation is given by:
with Model() as ordinal_surv_weibull_transformation_newMC:

### works with any prior we place on this

## first define hyperparameter priors for weibull components

rho = pm.Gamma(’rho’, 0.001,0.001, shape = 3)

lam = pm.Gamma(’lam’, 0.001,0.001, shape = 3) # k dimensions

## define hyperparameters for gamma frailty

theta = pm.Gamma(’theta’,0.001,0.001)

## create matrix of beta priors of shape kxp

beta = pm.Normal(’beta’, np.zeros(10), np.ones(10)*100, shape = (3,10))
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## transformation parameter, can model with an Inverse Gamma.

r = pm.Gamma("r",0.01,0.01, shape = (3,1)) # pm.InverseGamma("r", alpha =1, shape = (3,1))

## Now define different components of log likelihood

def logp(delta_full, X_full, tau_full):

linear = tt.dot(beta,X_full.T).T# this is the correct formulation

weib_base_haz = lam*rho*tau_full**(rho-1) #weib haz

weib_base_cumhaz = lam*tau_full**(rho) # cumulative ha

phi_1 = tt.log(weib_base_haz*np.exp(linear))

phi_2 = tt.log((1+r*weib_base_cumhaz*np.exp(linear)))

failed_component = tt.sum(delta_full*phi_1, axis = 1)-tt.sum(delta_full*phi_2, axis = 1)

psi = tt.log(tt.sum(tt.log(1+r*weib_base_cumhaz*tt.exp(linear))/r,axis=1)+theta**(-1))

# second component for all the censored observations

one_k = tt.ones(3)

second = (theta**(-1)+tt.dot(delta_full, one_k))*psi

# define log likelihood

return tt.log(theta**(-tt.dot(delta_full,one_k))) + failed_component + theta**(-1)*tt.log(theta**(-1)) - second

survival = pm.DensityDist(’survival’, logp, observed={’delta_full’:delta_full,

’tau_full’: tau_full,

’X_full’: X_full},

total_size = X_full.shape[0])

4.6.3 Transformation Copula Models

Similarly to the frailty model discussed in the previous section, the class structure

for the copula based estimation is based on a base constructor class that first parses

the input variables as specified by the formula. The formula syntax is exactly the

same as in the frailty model.

For a given copula, Cα, our likelihood is given by

L(α, β1, β2, λ1, λ2, r1, r2) =
n∏
i=1

P (T1 = t1, T2 = t2)δ1δ2P (T1 > t1, T2 = t2)(1−δ1)δ2

×P (T1 = t1, T2 > t2)(1−δ2)δ1P (T1 > t1, T2 > t2)(1−δ1)(1−δ2)

=
n∏
i=1

(cα(Si1(t1|X), Si2(t2|X))fi1(t1|X)fi2(t2|X))δ1δ2

×
(
−∂Cα(Si1(t1|X), Si2(t2|X)

∂Si1(t1|X) · (−fi1(t1|X))
)δi1(1−δi2)

×
(
−∂Cα(Si1(t1|X), Si2(t2|X)

∂Si2(t2|X) · (−fi2(t2|X))
)δi2(1−δi1)

×Cα(Si1(t1|X), Si2(t2|X))(1−δ1)(1−δ2). (4.1)
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as developed in the first paper of this dissertation. We use the following prior

distributions on the model parameters:
priors = {’alpha’:pm_dists.HalfCauchy.dist(beta=5),

’lam_1’: pm_dists.HalfCauchy.dist(beta=2.5),

’rho_1’: pm_dists.HalfCauchy.dist(beta=2.5),

’lam_2’: pm_dists.HalfCauchy.dist(beta=2.5),

’rho_2’: pm_dists.HalfCauchy.dist(beta=2.5),

’r_1’:pm_dists.HalfCauchy.dist(beta=2.5),

’r_2’:pm_dists.HalfCauchy.dist(beta=2.5)}

4.6.3.1 Example

To demonstrate this function, we first simulate data, then we initialize the model

with 1500 tuning steps and run for 1000 samples. Results for the MCMC are presented

in table 4.2. We used the following parameters for the simulation:
beta1 = np.array([1.63, 0.03])

beta2 = np.array([0.8, 0.03])

lambda_k = np.array([0.0047, 0.0037])

rho_k = np.array([0.716, .725])

alpha = 3.210

r_s = np.array([0.5,1.5])

with pm.Model() as test_run:

Copula(time_1=time_1, time_2=time_2, e_1=delta_1, e_2=delta_2, x=X, family = ’clayton_trans’)

MAP = pm.find_MAP()

trace = pm.sample(1000, tune =1500, start = MAP)

Alternatively, we can use the formula syntax:
with pm.Model() as test_run:

Copula.from_formula(’([time_1, time_2],[delta_1, delta_2])~X_1+X_2-1’, data = data, family = ’clayton_trans’)

MAP = pm.find_MAP()

trace = pm.sample(1000, tune =1500, start = MAP)

Table 4.2 contains the results of the MCMC run for the simulated dataset.

4.7 Future Directions

The ‘bayleaf module is still in its infancy and we are excited for what the future

holds. Future developments for the ‘bayleaf’ package include the inclusion of B-splines

in baselines of both frailty and copula models. Additionally, copula models can be

numerically unstable in both frequentist and Bayesian frameworks, especially at the

initialization stage of MCMC; therefore, more robust initialization routines will be
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Mean SD MC Error HPD2.5 HPD97.5 neff R̂

X11 1.686 0.035 0.001 1.622 1.756 1597.371 1.000
X21 0.032 0.001 0.000 0.030 0.034 1739.013 1.000
X12 0.826 0.040 0.001 0.748 0.905 2071.032 1.000
X22 0.033 0.002 0.000 0.029 0.036 1749.652 1.000
ρ1 0.723 0.011 0.000 0.701 0.742 1474.589 1.000
ρ2 0.752 0.015 0.000 0.720 0.779 1765.541 1.003
λ1 0.004 0.000 0.000 0.004 0.005 1342.057 1.000
λ2 0.003 0.000 0.000 0.002 0.004 1618.397 1.001
α 3.212 0.067 0.001 3.082 3.343 3267.176 1.000
r1 0.504 0.037 0.001 0.430 0.574 1813.504 1.000
r2 1.578 0.109 0.003 1.357 1.787 1621.922 1.003

Table 4.2: Results for MCMC Copula model

added to the framework in future releases (see the first paper of this dissertation

for a discussion of this). To accomplish these tasks, we will have separate class

specifications for the outcome and independent components and include separate

routines to incorporate univariate marginal estimates as initial values. We also hope

to extend the bivariate copula models to be of arbitrary dimension. Naturally, we

would like to include differing correlation structures between pairwise dimensions, so

a conditional specification is most likely.

As of the writing of this dissertation, the deep-learning library ‘theano’ is no longer

actively developed (although it is maintained for its current version). As the PyMC

project moves forward (which will possibly involve switch of computational backend

to another deep-learning library), we will be adapting our models accordingly.
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CHAPTER 5

CONCLUSION

In this dissertation, we have developed and explored Bayesian tools for generalized

multivariate survival models. In the first portion of this thesis, we focused on gener-

alizing various bivariate copula survival models that allow for separate specification

of marginal and association components. In this section, we generalized several pre-

existing Archimedean copula models to include more flexible forms of the underlying

marginal models. Specifically, we generalized the structure of the underlying cumu-

lative hazard in each margin to include common cases of survival models including

the proportional hazards and proportional odds models. We learned this generaliza-

tion as a transformation parameter included as part of the overall Bayesian solution.

First, we studied survival models that include parametric baseline hazards; however,

we provided an additional source of flexibility by introducing a semi-parametric spec-

ification through a B-spline function for the baseline hazard. For the semi-parametric

model, we studied both penalized and un-penalized approaches and found that pe-

nalizing the spline coefficients through the introduction of a hierarchical parameter

provided better overall frequentist coverage over the entirety of the parameter space.

The semi-parametric model inherently can model any shape of baseline hazard, thus

removing a restrictive assumption of parametric models. In principle, the penaliza-

tion of spline coefficients may allow for the usage of a large number of knots in the

spline specification. We found during the course of our simulations that using a large

number of spline knots in tandem with the initialization process has the ability to

produce errors in the initialization procedure when too many knots are introduced

due to the increase in dimensionality of the parameter space for optimization. A two

stage initialization is recommended for both parametric and semi-parametric models
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for computational stability.

In the second portion of this thesis, we developed a scalable Bayesian framework to

accommodate time to first event of multivariate survival outcomes with ordinal sever-

ity. This is done using a flexible Bayesian multivariate frailty model that de-restricts

the form of the survival function in order to simultaneously study the correlated

covariate effects on differing severity levels of the outcome and to provide a mecha-

nism for combining these profiles into an overall effect. This work was motivated by

and applied to the Tennessee Asthma Bronchiolitis Study (TABS) cohort (derived

from the TennCare medical claims database) in order to quantify maternal smoking

effect across levels of first hospital admittance for infant bronchiolitis. Using an addi-

tional data source correlating the multivariate survival outcomes with ordinal severity

scores, we provide a systematic and flexible way to determine the overall direction

of the smoking effect size over the multivariate survival events. Furthermore, we in-

vestigated the effect of using a scalable Bayesian algorithmic framework to perform

inference in large datasets. We found that for time to first event data, the usage

of a frailty transformation model is efficacious for finding the effect sizes and base-

line hazard components. Due to the increase of within-person censoring, however,

we found that the simultaneous determination of the transformation parameter and

the frailty parameter to be difficult. Specifically, fixing the transformation parameter

at the maximum a posteriori value produced posterior distributions for the frailty

parameter to be too narrow, and thus did not capture the true parametric value in

simulated results. We confirmed this notion by running the same simulation in time

to any event, where multiple events can be observed for each person.

For a final section of this dissertation, we provided software for the previously

described time-to-event methods using the python Bayesian module PyMC3 which is

built upon the deep learning library ‘theano’. This software includes flexible imple-

mentations of the methods developed in this dissertation with user-friendly syntax to
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reduce the barrier-of-entry to researchers. Leveraging PyMC3 allows for usage of the

deep learning library to automatically compute otherwise difficult quantities such as

gradient information necessary for Bayesian methods as well as Hybrid Monte Carlo

sampling and variational inference.

5.1 Future Research

The continued influx of vast medical data provides a foundation for an exciting

future of medical research. Specifically, increased amounts of sample information al-

low us to develop richer and more flexible modeling capabilities. Furthermore, richer

models allow us to make better decisions and predictions under uncertainty. In my

view, the Bayesian approach to deep learning is an exciting and challenging domain

with much promise. By constructing neural-network architectures with probabilistic

weights, one can quantify uncertainty in predicted outputs more rigorously than in

non-Bayesian networks of the same kind. Additionally, such frameworks may allow

us to make optimal decisions under uncertainty by leveraging the decision-theoretic

framework inherent in Bayesian methods. With the tools we have developed and

explored in this dissertation, as well as the development of methods for integrating

heterogeneous data sources, one tangible goal of future research would be integrating

complex deep architectures within multivariate time-to-event analyses. While con-

structing such models in theory may be straightforward, what is still unknown is the

efficacy of Variational Bayesian methods in general for Bayesian neural networks. It

is known that variational Bayes has the ability to under-estimate the variance in the

posterior distributions. Hence, it is important for the development of any system

that utilizes Variational Bayesian methods to see how sensitive the posterior is to

various distributional assumptions contained within the objective function. Under-

estimation of variance can lead to incorrect inference and quantification of a patient’s

risk. In a hospital setting, underestimating variability can also result in monetary
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loss, especially if decisions are being made within the Bayesian framework (Graves,

2011).

Continuing in the vein of Bayesian Neural networks, it has been shown that an

infinitely wide deep neural network is equivalent to a Gaussian Process (Lee et al.,

2017). While this dissertation has had a secondary focus on scalable inference, it is

also important to consider increased flexibility in smaller datasets. Specifically, the

investigation of Gaussian process priors (Rasmussen, 2004) in the setting of survival

analysis is relatively recent development; key references can be found in Fernández

et al. (2016). These models posit a zero-mean Gaussian process prior for functional

forms. We envision the extension of our proposed methods to be able to accommo-

date the inclusion of Gaussian process priors for non-linear independent components.

Figure 5.1 shows a posterior fit for an intensity process for univariate survival model.

Figure 5.1: Posterior MCMC draws for intensity process for Gaussian process survival

The adaptation of Bayesian methods at scale is quite challenging as we have seen
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in this dissertation. Primarily, the restriction of variational methods to Gaussian

distributional families in turn restricts posterior inference through the introduction

of further assumptions. While adapting the variational approach to neural network

based models, it is important to de-restrict the approximating distribution to allow

for bi-modal and other general shapes of the posterior. One predominant approach to

this flexibility is the introduction of Normalizing flows (Rezende and Mohamed, 2015),

wherein the shape of the posterior is inferred as part of the optimization itself. Specif-

ically, the normalizing flows procedure formulates the approximating distributional

family as a series of invertible transformations (fk) of a standard normal distribu-

tion, z0; see equations 5.1 and 5.2. This particular approach does not come with

out its challenges, however. Specifically, during the course of fitting, it is especially

important to track the derivatives alongside the model parameters for each step in

the fitting process.

zK = fK ◦ · · · ◦ f2 ◦ f1(z0) (5.1)

ln qK(zK) = ln q0(z0)−
K∑
k=1

ln
∣∣∣∣∣ ∂fk∂zk−1

∣∣∣∣∣ (5.2)

One pervasive problem in the area of normalizing flows is a lack of understanding in

which and how many flows are appropriate in a given statistical scenario; this problem

is similar to the choice of activation functions for a neural network. The appropriate

transformations for normalizing flows variational inference has not been studied, to

our knowledge, in the setting of multivariate survival analysis. Additionally, while

there have been some theoretical guarantees regarding posterior concentration of the

variational approach to general Bayesian problems (Wang and Titterington, 2012),

this has not been thoroughly studied with respect to normalizing flows framework.

In addition to the previously developed parametric framework for the frailty model

for time-to-first event, we are currently implementing a semi-parametric version of
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the present model using the spline specification developed in the second paper of

this thesis. Specifically, we replace the baseline hazard function λ0(t) with a linear

constraint given by

λ0(t) = γ0 + γ1t+
∑
k

αkBk,q(t)

which implies that the cumulative hazard is given by

Λ0(t) =
∫ t

0
λ0(x)dx

=
∫ t

0
γ0 + γ1x+

∑
k

αkBk,q(x)dx

= 1
2t(2(γ0 + γ1t)) +

∫ t

0

∑
k

αkBk,q(x)dx

= 1
2t(2(γ0 + γ1t)) +

s−1∑
k=1

 k∑
j=1

αj(ξj+q − ξj)/q
Bk,q+1(t).

The likelihood specification follows from before in equation (3.8). A semi-parametric

version of the aforementioned model would provide a flexible alternative to model-

ing the joint survival function with the restrictive Weibull model. We found during

the course of our experimentation that many factors are necessary to identify when

implementing ADVI with a spline baseline hazard. As described, we take the same

approach to implementing the spline-baseline hazard model as in the first paper of

this dissertation. For this approach, 20 knots were placed at evenly spaced sample

quantiles. One main challenge with this approach is determining the best variational

inferential settings for proper inference of a given model. Figure 5.2 illustrates several

combinations of settings for VI for this spline model.

One final future point of research is the extension of the methods developed in

this thesis to arbitrary dimensions. It should be noted that although the copula

methods contained herein can be extended to n dimensions, the main assumption of

the copula model is that the pairwise dependence parameter between each dimension
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Figure 5.2: Differing Combinations of Optimization Criteria for ADVI in Semiparametric Model
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is the same. Unless we expect each dimension of the outcome to covary identically,

then one must develop ways to develop a multivariate model with differing dependence

parameters for each dimension pair. The Vine method of developing graphical models

Bedford and Cooke (2002), paired with the copula methodology can enable higher

dimensional, flexible modeling through the introduction of transformation models

and semi-parametric baseline hazards developed in this dissertation. Additionally, a

graphical approach to computing is beneficial here for programming. The ability to

modularize programming tasks can more easily facilitate the Bayesian learning for

graphical models like Vine copulas; conditional on the assumed dependence structure

between the variety of dimensions, one can specify a likelihood function in a piecewise

manner. Additionally, learning the underlying conditioning may be possible in this

framework as well.

As for the development of the software package ‘bayleaf’ we are in the process of

implementing a computational routine for the spline models. One particular challenge

in software development is the appropriate default settings for variational Bayesian

inference for spline-based estimation. As we saw, finding optimal settings for the

various tuning parameters is indeed challenging. However, for the general MCMC

case, we will work towards making our models more flexible and robust.
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5.2 Appendix

5.2.1 Code for Paper 1

5.2.1.1 Code for Semi-Parametric Copula Model
import pymc3 as pm

import numpy as np

import pandas as pd

import theano

import statsmodels.api as sm

import theano.tensor as tt

import patsy

from patsy import dmatrix

import numpy as np

from scipy import special

import scipy as sp

import pandas as pd

def knot_matrix(orde, xi, time):

#orde = 4 ## order of the spline

## in the augmented knot matrix, you need to repeat the upper bound and lower bound orde times each

knot_augment = np.append(np.append(np.repeat(0.,repeats=orde), xi), np.repeat(max(time)+2,repeats=orde))

nk = len(knot_augment)

knot_aug2 = np.append(knot_augment, knot_augment[nk-1])

foo = np.append(((knot_aug2[(orde):]-knot_aug2[:-(orde)])/float(orde))[:-2],[0])

diff_mat = np.array([foo for i in range(len(foo)-1)])

masked_k = np.reshape(np.multiply(np.tri(N=diff_mat.shape[0],

M = diff_mat.shape[1]).flatten(),

diff_mat.flatten()),

diff_mat.shape)

aug_masked_k = np.row_stack([np.zeros(len(foo)),masked_k]).T

return(aug_masked_k.tolist())

# 3. We’ll do order 4 spline bases (i.e. cubic splines)

def bh_basis_fxns(time, xi):

import patsy

fxns = np.asarray(patsy.dmatrix("bs(x, knots = xi, lower_bound = 0., upper_bound = max(time)+0.00000000001,\

degree = 3, include_intercept=True) - 1",\

{"x": time})).tolist()

return(fxns)

# To play nicely, we need to lop off the last element

def cum_bh_fxns(time, xi):

import patsy

fxns = np.asarray(patsy.dmatrix("bs(x, knots = xi, lower_bound = 0., upper_bound = max(time)+0.00000000001,\

degree = 4, include_intercept=True) - 1",\

{"x": time}))[:,:-1].tolist()

return(fxns)

## Covariate Generation

def sim_simple_covs(n):

sex = np.random.binomial(n=1,p=.5,size =n)

age = np.random.gamma(size=n, shape = 10, scale = 1/.3)

return(np.array([sex,age]).T)

## Outcome generation, Weibull_BH

# Weird BH

def knot_matrix(orde, xi, time):

#orde = 4 ## order of the spline
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## in the augmented knot matrix, you need to repeat the upper bound and lower bound orde times each

knot_augment = np.append(np.append(np.repeat(0.,repeats=orde), xi), np.repeat(max(time)+0.00000000001,repeats=orde))

nk = len(knot_augment)

knot_aug2 = np.append(knot_augment, knot_augment[nk-1])

foo = np.append(((knot_aug2[(orde):]-knot_aug2[:-(orde)])/float(orde))[:-2],[0])

diff_mat = np.array([foo for i in range(len(foo)-1)])

masked_k = np.reshape(np.multiply(np.tri(N=diff_mat.shape[0],

M = diff_mat.shape[1]).flatten(),

diff_mat.flatten()),

diff_mat.shape)

aug_masked_k = np.row_stack([np.zeros(len(foo)),masked_k]).T

return(aug_masked_k.tolist())

# 3. We’ll do order 4 spline bases (i.e. cubic splines)

def bh_basis_fxns(time, xi):

import patsy

fxns = np.asarray(patsy.dmatrix("bs(x, knots = xi, lower_bound = 0., upper_bound = max(time)+0.00000000001,\

degree = 3, include_intercept=True) - 1",\

{"x": time})).tolist()

return(fxns)

# To play nicely, we need to lop off the last element

def cum_bh_fxns(time, xi):

import patsy

fxns = np.asarray(patsy.dmatrix("bs(x, knots = xi, lower_bound = 0., upper_bound = max(time)+0.00000000001,\

degree = 4, include_intercept=True) - 1",\

{"x": time}))[:,:-1].tolist()

return(fxns)

## Covariate Generation

def sim_simple_covs(n):

sex = np.random.binomial(n=1,p=.5,size =n)

age = np.random.gamma(size=n, shape = 10, scale = 1/.3)

return(np.array([sex,age]).T)

## Outcome generation

# First, generate an instance of data to init the graph

### We need to see how well the map does for the Weird BH

weib_bh = lambda rho, lam, t: rho*lam*t**(rho-1)

weib_cbh = lambda rho, lam, t: lam*t**(rho)

##Since we can invert parts of a piecewise function, we then have a way to perform the integration on this

def weird_bh1(t, rho1=.725, lam1=0.0037, rho2=2.714, lam2=0.0000001, changepoint =100):

res = []

for time in t:

if time <= changepoint:

res = np.append(res,weib_bh(rho = rho1, lam = lam1, t = time))

elif (time > changepoint):

res = np.append(res,weib_bh(rho = rho2, lam = lam2, t = time))

return(res)

t = np.linspace(0.001,365, 100)

weib_bh = lambda rho, lam, t: rho*lam*t**(rho-1)

## cumulative hazard

def weird_cbh1(t, rho1=.725, lam1=0.0037, rho2=2.714, lam2=0.0000001, changepoint = 100):

res = []

for time in t:

if time <= changepoint:

integral = weib_cbh(rho1, lam1, time)

res = np.append(res,integral)
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elif (time > changepoint):

integral = weib_cbh(rho1, lam1, changepoint)+(weib_cbh(rho=rho2,lam=lam2,t=time)-weib_cbh(rho=rho2,lam=lam2,t = changepoint))

res = np.append(res,integral)

return(res)

## now to the simulate data functions

def weird_cbh1_inverse(u, rho1=.725, lam1=0.0037, rho2=2.714, lam2=0.0000001, changepoint=100):

res = []

for u_t in u:

if u_t <= weird_cbh1([changepoint], rho1, lam1, rho2, lam2):

inverse = (u_t/lam1)**(1/rho1)

res = np.append(res, inverse)

elif u_t > weird_cbh1([changepoint], rho1,lam1,rho2,lam2):

inverse = ((u_t-weib_cbh(rho=rho1, lam=lam1, t=changepoint)+weib_cbh(rho=rho2,lam=lam2, t = changepoint))/lam2)**(1/rho2)

res = np.append(res, inverse)

return(res)

## Simulate from copula

n = 5000

beta1 = np.array([-0.63, 0.03])

beta2 = np.array([-0.69, 0.02])

betas = np.vstack([beta1,beta2])

betas = np.vstack([beta1,beta2])

n_tune = 2500 #number of tuning steps for mcmc

X = sim_simple_covs(n)

exp_1 = np.exp(np.dot(X,betas.T))[:,0]

exp_2 = np.exp(np.dot(X,betas.T))[:,1]

alpha = 3.210

r_s =0.5

r_t =0.5

# clayton generation

U_s = np.random.uniform(size=n)

S = (U_s**(-r_s)-1)/(r_s*exp_1)

# S trans

## Edit for sept 9, change to see whether we need a different bh

rhos = np.array([[.725, .725], [2.714, 2.714]])

lams = np.array([[0.0037, 0.0067], [0.0000001, 0.0000005]])

changepoints = np.array([100,70])

S_trans = weird_cbh1_inverse(u = S,rho1=rhos[0,0],lam1=lams[0,0],

rho2=rhos[1,0], lam2=lams[1,0],

changepoint=changepoints[0])

U_t = np.random.uniform(size=n)

S_T = ((U_t**(-(alpha)/(alpha+1))-1)*(U_s)**(-alpha)+1)**(-alpha**(-1))

T = (S_T**(-r_t)-1)/(r_t*exp_2)

T_trans = weird_cbh1_inverse(u = T,rho1=rhos[0,1],lam1=lams[0,1],

rho2=rhos[1,1], lam2=lams[1,1],

changepoint=changepoints[1])

Te = np.vstack([S_trans,T_trans]).T

cens_end = 7500
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maxtime = 300

Cens = 1+cens_end*np.random.uniform(size = (n,2))

Cens[Cens>maxtime] = maxtime

Cens = 1+cens_end*np.random.uniform(size = (n,2))

Cens[Cens>maxtime] = maxtime

results = np.repeat(0, n)

names_df = ["del"]

# loop over levels

for level in range(2):

obs_t = np.amin(np.array([Te[:,level], Cens[:,level]]).T, axis =1) # observed time

names_df = np.append(names_df, "time_"+str(level+1))

delta = (Te[:,level] < Cens[:,level]) + 0 # censoring indicator

names_df = np.append(names_df, "delta_"+str(level+1))

results = np.vstack((results, obs_t))

results = pd.DataFrame(np.vstack((results, delta)))

#

x_names = ["X_"+str(j+1) for j in np.arange(X.shape[1])]

names_df = np.append(names_df, x_names)

#names_df = np.append(names_df, "frailty") # now add frailty

out = pd.DataFrame(np.vstack((results, X.T)).T)

out.columns = names_df

out = out.iloc[:, out.columns!="del"]

#### Now create data vectors and tensors

tau1_full = theano.shared(np.array(out["time_1"])+0.,borrow=True)

tau2_full = theano.shared(np.array(out["time_2"])+0.,borrow=True)

delta1_full = theano.shared(np.array(out["delta_1"])+0., borrow = True)

delta2_full = theano.shared(np.array(out["delta_2"])+0., borrow = True)

X_full = theano.shared(X+0., borrow = True)

tau1 = np.array(out["time_1"])+0.

tau2 = np.array(out["time_2"])+0.

delta1 = np.array(out["delta_1"])+0.

delta2 = np.array(out["delta_2"])+0.

###

#### Now construct the splines for each dimension

#### Dimension 1.

#times = np.sort(time)

## spline knots

knots_num = 15

t_obs = tau1[np.array(out["delta_1"], dtype =int)==1]

xi = np.append(np.percentile(t_obs, q = np.arange(0,100,100/((knots_num)-1))),[max(tau1)])

orde = 4 ## order of the spline

## in the augmented knot matrix, you need to repeat the upper bound and lower bound orde times each

knot_augment = np.append(np.append(np.repeat(0.,repeats=orde), xi), np.repeat(max(tau1)+0.00000000001,repeats=orde))

nk = len(knot_augment)

knot_aug2 = np.append(knot_augment, knot_augment[nk-1])

foo = np.append(((knot_aug2[(orde):]-knot_aug2[:-(orde)])/float(orde))[:-2],[0])

diff_mat = np.array([foo for i in range(len(foo)-1)])

masked_k = np.reshape(np.multiply(np.tri(N=diff_mat.shape[0], M = diff_mat.shape[1]).flatten(),diff_mat.flatten()),

diff_mat.shape)

aug_masked_k_1 = np.row_stack([np.zeros(len(foo)),masked_k]).T
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# 3. We’ll do order 4 spline bases (i.e. cubic splines)

bs_3_1 = np.asarray(patsy.dmatrix("bs(x, knots = xi, lower_bound = 0., upper_bound = max(tau1)+0.00000000001, degree = 3,

include_intercept=True)-1",\

{"x": tau1}))

# To play nicely, we need to lop off the last element

bs_4_1 = np.asarray(patsy.dmatrix("bs(x, knots = xi, lower_bound = 0., upper_bound = max(tau1)+0.00000000001, degree = 4,

include_intercept=True)-1",\

{"x": tau1}))[:,:-1]

#### Second group of spline stuff

## spline knots

t_obs_2 = tau2[np.array(out["delta_2"], dtype =int)==1]

xi_2= np.append(np.percentile(t_obs_2, q = np.arange(0,100,100/((knots_num)-1))),[max(tau2)])

orde = 4 ## order of the spline

## in the augmented knot matrix, you need to repeat the upper bound and lower bound orde times each

knot_augment_2 = np.append(np.append(np.repeat(0.,repeats=orde), xi_2), np.repeat(max(tau2)+0.00000000001,repeats=orde))

nk_2 = len(knot_augment_2)

knot_aug2_2 = np.append(knot_augment_2, knot_augment_2[nk_2-1])

foo_2 = np.append(((knot_aug2_2[(orde):]-knot_aug2_2[:-(orde)])/float(orde))[:-2],[0])

diff_mat_2 = np.array([foo_2 for i in range(len(foo_2)-1)])

masked_k_2 = np.reshape(np.multiply(np.tri(N=diff_mat_2.shape[0], M = diff_mat_2.shape[1]).flatten(),diff_mat_2.flatten()),

diff_mat_2.shape)

aug_masked_k_2 = np.row_stack([np.zeros(len(foo_2)),masked_k_2]).T

# 3. We’ll do order 4 spline bases (i.e. cubic splines)

bs_3_2 = np.asarray(patsy.dmatrix("bs(x, knots = xi_2, lower_bound = 0., upper_bound = max(tau2)+0.00000000001, degree = 3,

include_intercept=True)-1",\

{"x": tau2}))

# To play nicely, we need to lop off the last element

bs_4_2 = np.asarray(patsy.dmatrix("bs(x, knots = xi_2, lower_bound = 0., upper_bound = max(tau2)+0.00000000001, degree = 4,

include_intercept=True)-1 ",\

{"x": tau2}))[:,:-1]

################# Models Used throughout

X_t= theano.shared(X+0.,borrow=True)

obs_t_t_1 = theano.shared(tau1+0.,borrow=True)

fail_t_1 = theano.shared(delta1+0., borrow = True)

bs_3_t_1 = theano.shared(bs_3_1+0., borrow = True)

bs_4_t_1 = theano.shared(bs_4_1+0., borrow = True)

aug_masked_k_t_1 = theano.shared(aug_masked_k_1, borrow = True)

X_t= theano.shared(X+0.,borrow=True)

obs_t_t_2 = theano.shared(tau2+0.,borrow=True)

fail_t_2 = theano.shared(delta2+0., borrow = True)

bs_3_t_2 = theano.shared(bs_3_2+0., borrow = True)

bs_4_t_2 = theano.shared(bs_4_2+0., borrow = True)

aug_masked_k_t_2 = theano.shared(aug_masked_k_2, borrow = True)

################# Models Used throughout

with pm.Model() as full_spline_clayton_penalized:

# first instantiate the priors

alpha = pm.HalfCauchy("alpha", 2.5)

# first dimension

beta_1 = pm.Normal(’beta_1’, np.zeros(2), np.ones(2)*100, shape=2)
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# priors on the spline knots

# dimension of coefficients is # of knots + order, so cubic splines with 4 knots =8

gamma_0_1 = 0#pm.HalfCauchy("gamma_0_1", beta = 2.5)## intercept for penalized spline

gamma_1_1 = 0#pm.HalfCauchy("gamma_1_1", beta = 2.5)## Slope for penalized spline

# hierarchical_parameter on the spline coefficients

b_1 = pm.HalfCauchy("b_1", beta =2.5)

alpha_1 = pm.HalfCauchy(’alpha_1’,beta = b_1,shape = (1,knots_num+orde))

alpha_1.broadcastable

#### prior on the transformation parameter

r_1 = pm.InverseGamma("r_1", alpha = 1) #pm.HalfCauchy("r_1",2.5)

# second dimension

beta_2 = pm.Normal(’beta_2’, np.zeros(2), np.ones(2)*100, shape=2)

# priors on the spline knots

# dimension of coefficients is # of knots + order, so cubic splines with 4 knots = 8

gamma_0_2= 0#pm.HalfCauchy("gamma_0_2", beta = 2.5)## intercept for penalized spline

gamma_1_2 = 0#pm.HalfCauchy("gamma_1_2", beta = 2.5)## Slope for penalized spline

b_2 = pm.HalfCauchy("b_2", beta = 2.5)

alpha_2 = pm.HalfCauchy(’alpha_2’,beta = b_2,shape = (1,knots_num+orde))

alpha_2.broadcastable

#### prior on the transformation parameter

r_2 = pm.InverseGamma("r_2", alpha = 1)#pm.HalfCauchy("r_2",2.5)

## We now define the log likelihood

def logp(time_1, time_2, delta1, delta2, X):

# Marginal Density and Survival components

base_haz_1 = gamma_0_1+gamma_1_1*time_1+tt.dot(alpha_1, bs_3_1.T)

base_cumhaz_1 =.5*(time_1*(2*gamma_0_1+gamma_1_1*time_1)) + tt.dot(bs_4_1,tt.dot(alpha_1,aug_masked_k_1)[0])

base_haz_2 = gamma_0_2+gamma_1_2*time_2+tt.dot(alpha_2, bs_3_2.T)

base_cumhaz_2 =.5*(time_2*(2*gamma_0_2+gamma_1_2*time_2)) + tt.dot(bs_4_2,tt.dot(alpha_2,aug_masked_k_2)[0])

linear_1 = tt.dot(beta_1,X.T).T

linear_2 = tt.dot(beta_2,X.T).T

# next up we build parts of the likelihood

surv_1 = tt.exp(-tt.log(1+r_1*base_cumhaz_1*tt.exp(linear_1))/r_1)

surv_2 = tt.exp(-tt.log(1+r_2*base_cumhaz_2*tt.exp(linear_2))/r_2)

density_1 = base_haz_1*tt.exp(linear_1)*(1+r_1*base_cumhaz_1*tt.exp(linear_1))**-(1+r_1**(-1))

density_2 = base_haz_2*tt.exp(linear_2)*(1+r_2*base_cumhaz_2*tt.exp(linear_2))**-(1+r_2**(-1))

# next up we build parts of the likelihood

### Copula derivatives:

log_clayton_copula = (-alpha)**(-1)*tt.log(surv_1**(-alpha)+surv_2**(-alpha)-1)

log_d_clayton_copula_s1 = -(alpha+1)*tt.log(surv_1)-((alpha+1)/alpha)*tt.log(surv_1**(-alpha)+surv_2**(-alpha)-1)

log_d_clayton_copula_s2 = -(alpha+1)*tt.log(surv_2)-((alpha+1)/alpha)*tt.log(surv_1**(-alpha)+surv_2**(-alpha)-1)

log_d2_clayton_copula_s1_s2 =

tt.log(alpha+1)+(-(alpha+1))*tt.log(surv_1*surv_2)-((2*alpha+1)/alpha)*tt.log(surv_1**(-alpha)+surv_2**(-alpha)-1)

### different parts of log likelihood

first = delta1*delta2*(log_d2_clayton_copula_s1_s2+tt.log(density_1)+tt.log(density_2))

second = delta1*(1-delta2)*(log_d_clayton_copula_s1+tt.log(density_1))

third = delta2*(1-delta1)*(log_d_clayton_copula_s2+tt.log(density_2))

fourth = (1-delta1)*(1-delta2)*log_clayton_copula

### different parts of log likelihood

return first+second+third+fourth

survival = pm.DensityDist("survival", logp,
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observed = {"delta1": fail_t_1 , "delta2":fail_t_2,

"time_1": obs_t_t_1, "time_2":obs_t_t_2,

’X’:X_t})

#This is what a typical call to pymc3 is...

with full_spline_clayton_penalized:

MAP = pm.find_MAP()

trace_HMC = pm.sample(1000,tune=n_tune, start = MAP)

5.2.2 Code for Paper 2
import pymc3 as pm

from pymc3 import Model, starting

import theano.tensor as tt

from theano import function as fn

import theano

import numpy as np

import scipy as sp

import pandas as pd

import random

import patsy

import argparse

### Fixed sample size for this simulation

n = 150000

## generate gamma frailty according to parameters \theta^{-1}

theta = .510

## generate gamma frailty term, ~gamma(theta^{-1},theta), np parameterizes with scale, so

w = np.random.gamma(size = n, shape=theta**(-1), scale = theta)

## functionalize this

beta1 = np.array([0.63, 0.03])

beta2 = np.array([0.8, 0.03])

beta3 = np.array([0.9, 0.03])

betas = np.vstack([beta1,beta2,beta3])

lamk = np.array([0.0047, 0.0037, 0.0057])

rhok = np.array([0.716, .725, .73])

### Simulate Datasets and Calculate MAPS

## Simulation to see what is going on here

r_this = 0.5

def sim_simple_covs(n):

sex = np.random.binomial(n=1,p=.5,size =n)

age = np.random.gamma(size=n, shape = 10, scale = 1/.3)

return(np.array([sex,age]).T)

X = sim_simple_covs(n)

# Simulate Survival Times, generalize for k categories

def sim_weibull_frail_generalized(betas=betas,w=w,X1=X,lam=lamk, r = 0.0,rho=rhok,tau=365, cens_end =390,n=n):

## from probability integral transform

if r == 0.0:

r = 0.00000001

Te = ((np.exp(-(np.log(np.random.uniform(size=(n,3)))*r)/w[:,None])-1)/(r*lam*np.exp(np.dot(X1,betas.T))))**(1/rho)

# generate censoring time, unif(1,7) and truncated by tau

Cens = 1+cens_end*np.random.uniform(size = n)

Cens[Cens>tau] = tau

alltimes = np.vstack((Cens,Te.T)).T

eventType = []
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for i in range(len(w)):

eventType.append(np.where(alltimes[i,]==np.amin(alltimes[i,]))[0][0])

obs_t = list(np.amin(alltimes,axis = 1))

out = pd.DataFrame(np.array([obs_t, eventType, pd.Series(X[:,[0]][:,0]),pd.Series(X[:,[1]][:,0]),w])).T

out.columns = ["obs_t", "eventType", "sex", "age", "sim_frail"]

return(out)

simulated_frail_general = sim_weibull_frail_generalized(r=r_this, X1=X, w=w)

### Instantiate the Model outside of the for loop. This reduces the computational

## define tensors with shared variables

# First, generate an instance of data to init the graph

obs_t = np.asarray(simulated_frail_general["obs_t"], dtype = float)

#Now for bayesian Model

delta = np.asarray(pd.get_dummies(simulated_frail_general["eventType"]).drop(0.0,1), dtype = int)

## need this to be in nxk to play nicely with theano

tau = np.tile(np.array([obs_t]).transpose(), (1, 3))

# Design tensor

X_full = theano.shared(X+0.,borrow=True)

tau_full = theano.shared(tau+0.,borrow=True)

delta_full = theano.shared(delta+0., borrow = True)

r_t = theano.shared(0.001, borrow = True) ## placeholder value, just a dummy, will be replaced with MAP

# For the implementation of the full rank, we have a new api.

# So, we need to re-define the model

# First thing to do is to grab the Maximum a posteriori estimate

### Instantiate the Model outside of the for loop.

# This reduces the computational load

## define tensors with shared variables

# First, generate an instance of data to init the graph

############################

###### Model Specifications#

### We need to be able to find MAP overall

with pm.Model() as ordinal_surv_weibull_transformation_MAP_full:

## first define hyperparameter priors for weibull components

rho = pm.Gamma(’rho’, 0.001,0.001, shape = 3)

lam = pm.Gamma(’lam’, 0.001,0.001, shape = 3) # k dimensions

## define hyperparameters for gamma frailty

theta = pm.Gamma(’theta’,0.001,0.001)

## create matrix of beta priors of shape kxp

beta = pm.Normal(’beta’, np.zeros(2), np.ones(2)*100, shape = (3,2))

## transformation parameter

r = pm.Gamma("r",0.01,0.01)

## Now define different components of log likelihood

def logp(delta, X, tau):

linear = tt.dot(beta,X.T).T# this is the correct formulation

weib_base_haz = lam*rho*tau**(rho-1) #weib haz

weib_base_cumhaz = lam*tau**(rho) # cumulative ha

phi_1 = tt.log(weib_base_haz*np.exp(linear))

phi_2 = tt.log((1+r*weib_base_cumhaz*np.exp(linear)))

failed_component = tt.sum(delta*phi_1, axis = 1)-tt.sum(delta*phi_2, axis = 1)

psi = tt.log(tt.sum(tt.log(1+r*weib_base_cumhaz*tt.exp(linear))/r,axis=1)+theta**(-1))

# second component for all the censored observations

one_k = tt.ones(3)

second = (theta**(-1)+tt.dot(delta, one_k))*psi

# define log likelihood
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return tt.log(theta**(-tt.dot(delta,one_k))) + failed_component + theta**(-1)*tt.log(theta**(-1)) - second

survival = pm.DensityDist(’survival’, logp, observed={’delta’:delta_full,

’tau’: tau_full,

’X’: X_full})

# Run MAP on the first Model, then fill r_t tensor in computational graph

with ordinal_surv_weibull_transformation_MAP_full:

MAP_save = pm.find_MAP()

r_MAP = np.exp(MAP_save["r_log__"])

## Now update in graph

r_t.set_value(r_MAP)

# Now define models with fixed r (the tensor)

with Model() as ordinal_surv_weibull_transformation_MAP:

minibatch_delta = pm.Minibatch(data = delta_full.get_value(), batch_size = 3000)

minibatch_X = pm.Minibatch(data = X_full.get_value(), batch_size = 3000)

minibatch_tau = pm.Minibatch(data = tau_full.get_value(), batch_size = 3000)

## first define hyperparameter priors for weibull components

rho = pm.Gamma(’rho’, 0.001,0.001, shape = 3)

lam = pm.Gamma(’lam’, 0.001,0.001, shape = 3) # k dimensions

## define hyperparameters for gamma frailty

theta = pm.Gamma(’theta’,0.001,0.001)

## create matrix of beta priors of shape kxp

beta = pm.Normal(’beta’, np.zeros(2), np.ones(2)*100, shape = (3,2))

## transformation parameter

## This is defined as a tensor so we populate this with the MAP estimate from the overall MAP

r = r_t

## Now define different components of log likelihood

def logp(delta, X, tau):

linear = tt.dot(beta,X.T).T# this is the correct formulation

weib_base_haz = lam*rho*tau**(rho-1) #weib haz

weib_base_cumhaz = lam*tau**(rho) # cumulative ha

phi_1 = tt.log(weib_base_haz*np.exp(linear))

phi_2 = tt.log((1+r*weib_base_cumhaz*np.exp(linear)))

failed_component = tt.sum(delta*phi_1, axis = 1)-tt.sum(delta*phi_2, axis = 1)

psi = tt.log(tt.sum(tt.log(1+r*weib_base_cumhaz*tt.exp(linear))/r,axis=1)+theta**(-1))

# second component for all the censored observations

one_k = tt.ones(3)

second = (theta**(-1)+tt.dot(delta, one_k))*psi

# define log likelihood

return tt.log(theta**(-tt.dot(delta,one_k))) + failed_component + theta**(-1)*tt.log(theta**(-1)) - second

survival = pm.DensityDist(’survival’, logp, observed={’delta’:delta_full,

’tau’: tau_full,

’X’: X_full})

with Model() as ordinal_surv_weibull_transformation_vi:

minibatch_delta = pm.Minibatch(data = delta_full.get_value(), batch_size = 3000)

minibatch_X = pm.Minibatch(data = X_full.get_value(), batch_size = 3000)

minibatch_tau = pm.Minibatch(data = tau_full.get_value(), batch_size = 3000)

## first define hyperparameter priors for weibull components

rho = pm.Gamma(’rho’, 0.001,0.001, shape = 3)

lam = pm.Gamma(’lam’, 0.001,0.001, shape = 3) # k dimensions

## define hyperparameters for gamma frailty

theta = pm.Gamma(’theta’,0.001,0.001)

## create matrix of beta priors of shape kxp

beta = pm.Normal(’beta’, np.zeros(2), np.ones(2)*100, shape = (3,2))
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## transformation parameter

## This is defined as a tensor so we populate this with the MAP estimate from the overall MAP

r = r_t

## Now define different components of log likelihood

def logp(delta, X, tau):

linear = tt.dot(beta,X.T).T# this is the correct formulation

weib_base_haz = lam*rho*tau**(rho-1) #weib haz

weib_base_cumhaz = lam*tau**(rho) # cumulative ha

phi_1 = tt.log(weib_base_haz*np.exp(linear))

phi_2 = tt.log((1+r*weib_base_cumhaz*np.exp(linear)))

failed_component = tt.sum(delta*phi_1, axis = 1)-tt.sum(delta*phi_2, axis = 1)

psi = tt.log(tt.sum(tt.log(1+r*weib_base_cumhaz*tt.exp(linear))/r,axis=1)+theta**(-1))

# second component for all the censored observations

one_k = tt.ones(3)

second = (theta**(-1)+tt.dot(delta, one_k))*psi

# define log likelihood

return tt.log(theta**(-tt.dot(delta,one_k))) + failed_component + theta**(-1)*tt.log(theta**(-1)) - second

survival = pm.DensityDist(’survival’, logp, observed={’delta’:minibatch_delta,

’tau’: minibatch_tau,

’X’: minibatch_X}, total_size = n)

# Run them

with ordinal_surv_weibull_transformation_MAP:

MAP_save = pm.find_MAP()

with ordinal_surv_weibull_transformation_vi:

approx2 = pm.fit(advi_iters, method = pm.FullRankADVI(), start=MAP_save)

125



REFERENCES

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghe-

mawat, S., Irving, G., Isard, M. et al. (2016), Tensorflow: a system for large-scale

machine learning., in ‘OSDI’, Vol. 16, 265–283.

Ando, T. (2007), Bayesian predictive information criterion for the evaluation of hier-

archical bayesian and empirical bayes models, Biometrika 94(2), 443–458.

Anker, S. D. and McMurray, J. J. (2012), ‘Time to move on from Ôtime-to-firstÕ:

should all events be included in the analysis of clinical trials?’.

Bardenet, R., Doucet, A. and Holmes, C. (2015), On markov chain monte carlo

methods for tall data, arXiv preprint arXiv:1505.02827 .

Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I., Bergeron, A.,

Bouchard, N., Warde-Farley, D. and Bengio, Y. (2012), Theano: new features and

speed improvements, arXiv preprint arXiv:1211.5590 .

Beal, M. J. (2003), Variational algorithms for approximate Bayesian inference, Uni-

versity of London London.

Bedford, T. and Cooke, R. M. (2002), Vines: A new graphical model for dependent

random variables, Annals of Statistics 1031–1068.

Bender, R., Augustin, T. and Blettner, M. (2005), Generating survival times to sim-

ulate cox proportional hazards models, Statistics in medicine 24(11), 1713–1723.

Bennett, S. (1983), Analysis of survival data by the proportional odds model, Statis-

tics in Medicine 2(2), 273–277.

URL: http://dx.doi.org/10.1002/sim.4780020223

126



Berridge, D. M. and Whitehead, J. (1991), Analysis of failure time data with ordinal

categories of response, Statistics in medicine 10(11), 1703–1710.

Blei, D. M., Kucukelbir, A. and McAuliffe, J. D. (2017), Variational inference:

A review for statisticians, Journal of the American Statistical Association (just-

accepted).

Brooks, S., Gelman, A., Jones, G. and Meng, X.-L. (2011), Handbook of markov chain

monte carlo, CRC press.

Carroll, K. N., Gebretsadik, T., Griffin, M. R., Wu, P., Dupont, W. D., Mitchel,

E. F., Enriquez, R. and Hartert, T. V. (2008), Increasing burden and risk factors

for bronchiolitis-related medical visits in infants enrolled in a state health care

insurance plan, Pediatrics 122(1), 58–64.

Carroll, K. N., Wu, P., Gebretsadik, T., Griffin, M. R., Dupont, W. D., Mitchel,

E. F. and Hartert, T. V. (2009), The severity-dependent relationship of infant

bronchiolitis on the risk and morbidity of early childhood asthma, Journal of Allergy

and Clinical Immunology 123(5), 1055–1061.

Casella, G. and Berger, R. L. (2002), Statistical inference, Vol. 2, Duxbury Pacific

Grove, CA.

Cave, D. G. and Munson, B. (1999), ‘Medical claims integration and data analysis

system’. US Patent 5,970,463.

Chen, C.-M. and Lu, T.-F. C. (2012), Marginal analysis of multivariate failure time

data with a surviving fraction based on semiparametric transformation cure models,

Computational Statistics Data Analysis 56(3), 645 – 655.

URL: http://www.sciencedirect.com/science/article/pii/S016794731100332X

127



Chen, C.-M. and Yu, C.-Y. (2012), A two-stage estimation in the clayton–oakes model

with marginal linear transformation models for multivariate failure time data, Life-

time data analysis 18(1), 94–115.

Chen, Y.-H. (2010), Semiparametric marginal regression analysis for dependent com-

peting risks under an assumed copula, Journal of the Royal Statistical Society:

Series B (Statistical Methodology) 72(2).

Chib, S. and Greenberg, E. (1995), Understanding the metropolis-hastings algorithm,

The american statistician 49(4), 327–335.

Claggett, B., Pocock, S., Wei, L., Pfeffer, M. A., McMurray, J. J. and Solomon,

S. D. (2018), Comparison of time-to-first event and recurrent-event methods in

randomized clinical trials, Circulation 138(6), 570–577.

Clayton, D. and Cuzick, J. (1985), Multivariate generalizations of the proportional

hazards model, Journal of the Royal Statistical Society. Series A (General) 82–117.

Craiu, V. R. and Sabeti, A. (2012), In mixed company: Bayesian inference for bi-

variate conditional copula models with discrete and continuous outcomes, Journal

of Multivariate Analysis 110, 106 – 120. Special Issue on Copula Modeling and

Dependence.

URL: http://www.sciencedirect.com/science/article/pii/S0047259X12000796

Dabrowska, D. M. and Doksum, K. A. (1988), Estimation and testing in a two-

sample generalized odds-rate model, Journal of the American Statistical Association

83(403), 744–749.

Davis, P. J. and Rabinowitz, P. (2007), Methods of numerical integration, Courier

Corporation.

128



De Boor, C., De Boor, C., Mathématicien, E.-U., De Boor, C. and De Boor, C. (1978),

A practical guide to splines, Vol. 27, Springer-Verlag New York.

de Castro, M., Chen, M.-H., Ibrahim, J. G. and Klein, J. P. (2014), Bayesian trans-

formation models for multivariate survival data, Scandinavian Journal of Statistics

41(1), 187–199.

URL: http://dx.doi.org/10.1111/sjos.12010

Diao, G. and Yin, G. (2012), A general transformation class of semiparametric cure

rate frailty models, Annals of the Institute of Statistical Mathematics 64(5), 959–

989.

URL: https://doi.org/10.1007/s10463-012-0354-0

E Shemyakin, A. and Youn, H. (2006), Copula models of joint last survivor analysis,

Applied Stochastic Models in Business and Industry 22(2), 211–224.

Efron, B. (1992), Bootstrap methods: another look at the jackknife, in ‘Breakthroughs

in statistics’, Springer, 569–593.

Falcaro, M. and Pickles, A. (2007), A flexible model for multivariate interval-censored

survival times with complex correlation structure, Statistics in medicine 26(3), 663–

680.

Fernández, T., Rivera, N. and Teh, Y. W. (2016), Gaussian processes for survival

analysis, in ‘Advances in Neural Information Processing Systems’, 5021–5029.

Geisser, S., Hodges, J., Press, S. and ZeUner, A. (1990), The validity of posterior ex-

pansions based on laplaceâĂŹs method, Bayesian and likelihood methods in statis-

tics and econometrics 7, 473.

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A. and Rubin, D. B.

(2014), Bayesian data analysis, Vol. 2, CRC press Boca Raton, FL.

129



Gelman, A., Stern, H. S., Carlin, J. B., Dunson, D. B., Vehtari, A. and Rubin, D. B.

(2013), Bayesian data analysis, Chapman and Hall/CRC.

Genest, C. and Mackay, J. (1986), The joy of copulas: Bivariate distributions with

uniform marginals, The American Statistician 40(4), 280–283.

URL: https://www.tandfonline.com/doi/abs/10.1080/00031305.1986.10475414

Georges, P., Lamy, A.-G., Nicolas, E., Quibel, G. and Roncalli, T. (2001), Multivari-

ate survival modelling: a unified approach with copulas.

Goethals, K., Janssen, P. and Duchateau, L. (2008), Frailty models and copulas:

similarities and differences, Journal of Applied Statistics 35(9), 1071–1079.

Graves, A. (2011), Practical variational inference for neural networks, in ‘Advances

in neural information processing systems’, 2348–2356.

Hartert, T. V., Carroll, K., Gebretsadik, T., Woodward, K. and Minton, P. (2010),

The tennessee children’s respiratory initiative: Objectives, design and recruitment

results of a prospective cohort study investigating infant viral respiratory illness

and the development of asthma and allergic diseases, Respirology 15(4), 691–699.

Hedeker, D., Siddiqui, O. and Hu, F. B. (2000), Random-effects regression analysis

of correlated grouped-time survival data, Statistical Methods in Medical Research

9(2), 161–179.

Herndon, J. E. and Harrell Jr, F. E. (1995), The restricted cubic spline as base-

line hazard in the proportional hazards model with step function time-dependent

covariables, Statistics in medicine 14(19), 2119–2129.

Hoffman, M. D., Blei, D. M., Wang, C. and Paisley, J. (2013), Stochastic variational

inference, The Journal of Machine Learning Research 14(1), 1303–1347.

130



Hoffman, M. D. and Gelman, A. (2014), The no-u-turn sampler: adaptively setting

path lengths in hamiltonian monte carlo., Journal of Machine Learning Research

15(1), 1593–1623.

Ibrahim, J. G., Chen, M.-H. and Sinha, D. (2005), Bayesian survival analysis, Wiley

Online Library.

Joe, H. (1997), Multivariate models and multivariate dependence concepts, CRC Press.

Klein, J. P. and Moeschberger, M. L. (2005), Survival analysis: techniques for censored

and truncated data, Springer Science & Business Media.

Kucukelbir, A., Ranganath, R., Gelman, A. and Blei, D. M. (2015), ‘Automatic

variational inference in stan’.

Lee, J., Bahri, Y., Novak, R., Schoenholz, S. S., Pennington, J. and Sohl-

Dickstein, J. (2017), Deep neural networks as gaussian processes, arXiv preprint

arXiv:1711.00165 .

Li, R., Cheng, Y., Chen, Q. and Fine, J. (2017), Quantile association for bivariate

survival data, Biometrics 73(2), 506–516.

Li, Y., Prentice, R. L. and Lin, X. (2008), Semiparametric maximum likelihood es-

timation in normal transformation models for bivariate survival data, Biometrika

95(4), 947–960.

Lin, H., Zhou, L., Li, C. and Li, Y. (2014), Semiparametric transformation models

for semicompeting survival data, Biometrics 70(3), 599–607.

Lin, Y., Luo, Y., Xie, S. and Chen, K. (2017), Robust rank estimation for transfor-

mation models with random effects, Biometrika 104(4), 971–986.

URL: http://dx.doi.org/10.1093/biomet/asx055

131



Louzada, F., Suzuki, A. and Cancho, V. (2013), The fgm long-term bivariate sur-

vival copula model: modeling, bayesian estimation, and case influence diagnostics,

Communications in Statistics-Theory and Methods 42(4), 673–691.

Marshall, A. W. and Olkin, I. (1988), Families of multivariate distributions, Journal

of the American statistical association 83(403), 834–841.

Masarotto, G., Varin, C. et al. (2012), Gaussian copula marginal regression, Electronic

Journal of Statistics 6, 1517–1549.

McCallum, G. B., Morris, P. S., Wilson, C. C., Versteegh, L. A., Ward, L. M., Chat-

field, M. D. and Chang, A. B. (2013), Severity scoring systems: are they internally

valid, reliable and predictive of oxygen use in children with acute bronchiolitis?,

Pediatric pulmonology 48(8), 797–803.

Meissner, H. C. (2016), Viral bronchiolitis in children, New England Journal of

Medicine 374(1), 62–72.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. and Teller, E.

(1953), Equation of state calculations by fast computing machines, The journal of

chemical physics 21(6), 1087–1092.

Meyer, R. and Romeo, J. S. (2015), Bayesian semiparametric analysis of recurrent

failure time data using copulas, Biometrical Journal 57(6), 982–1001.

Minka, T. P. (2001), Expectation propagation for approximate bayesian inference, in

‘Proceedings of the Seventeenth conference on Uncertainty in artificial intelligence’,

Morgan Kaufmann Publishers Inc., 362–369.

Nadarajah, S., Afuecheta, E. and Chan, S. (2017), A compendium of copulas, Statis-

tica 77(4), 279.

132



Nelsen, R. B. (1999), ‘An introduction to copulas, volume 139 of lecture notes in

statistics’.

Nelsen, R. B. (2007), An introduction to copulas, Springer Science & Business Media.

Oakes, D. (1989), Bivariate survival models induced by frailties, Journal of the Amer-

ican Statistical Association 84(406), 487–493.

Python Core Team (2015), Python: A dynamic, open source programming language,

Python Software Foundation.

URL: https://www.python.org/

R Core Team (2014), R: A Language and Environment for Statistical Computing, R

Foundation for Statistical Computing, Vienna, Austria.

URL: http://www.R-project.org/

Rasmussen, C. E. (2004), Gaussian processes in machine learning, in ‘Advanced lec-

tures on machine learning’, Springer, 63–71.

Rasmussen, C. E. and Williams, C. K. (2006), Gaussian processes for machine learn-

ing, Vol. 1, MIT press Cambridge.

Rauch, G., Kieser, M., Binder, H., Bayes-Genis, A. and Jahn-Eimermacher, A. (2018),

Time-to-first-event versus recurrent-event analysis: points to consider for selecting

a meaningful analysis strategy in clinical trials with composite endpoints, Clinical

Research in Cardiology 107(5), 437–443.

Rezende, D. J. and Mohamed, S. (2015), Variational inference with normalizing flows,

arXiv preprint arXiv:1505.05770 .

Rodriguez, H., Hartert, T. V., Gebretsadik, T., Carroll, K. N. and Larkin, E. K.

(2016), A simple respiratory severity score that may be used in evaluation of acute

respiratory infection, BMC research notes 9(1), 85.

133



Romeo, J. S., Meyer, R. and Gallardo, D. I. (2018), Bayesian bivariate survival analy-

sis using the power variance function copula, Lifetime data analysis 24(2), 355–383.

Romeo, J. S., Tanaka, N. I. and Pedroso-de Lima, A. C. (2006), Bivariate sur-

vival modeling: a bayesian approach based on copulas, Lifetime Data Analysis

12(2), 205–222.

Salvatier J, Wiecki TV, F. C. (2016), ‘Probabilistic programming in python using

pymc3’.

URL: https://doi.org/10.7717/peerj-cs.55

Sargent, D. J. (1998), A general framework for random effects survival analysis in the

cox proportional hazards setting, Biometrics 1486–1497.

Schmidt, M. I., Duncan, B. B., Sharrett, A. R., Lindberg, G., Savage, P. J., Offen-

bacher, S., Azambuja, M. I., Tracy, R. P., Heiss, G., investigators, A. et al. (1999),

Markers of inflammation and prediction of diabetes mellitus in adults (atheroscle-

rosis risk in communities study): a cohort study, The Lancet 353(9165), 1649–1652.

Sharef, E., Strawderman, R. L., Ruppert, D., Cowen, M., Halasyamani, L. et al.

(2010), Bayesian adaptive b-spline estimation in proportional hazards frailty mod-

els, Electronic journal of statistics 4, 606–642.

Shih, J. H. and Louis, T. A. (1995), Inferences on the association parameter in copula

models for bivariate survival data, Biometrics 1384–1399.

Shun, Z. and McCullagh, P. (1995), Laplace approximation of high dimensional inte-

grals, Journal of the Royal Statistical Society. Series B (Methodological) 749–760.

Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and Van Der Linde, A. (2002), Bayesian

measures of model complexity and fit, Journal of the Royal Statistical Society:

Series B (Statistical Methodology) 64(4), 583–639.

134



Spiegelhalter, D., Thomas, A., Best, N., Gilks, W. and Lunn, D. (1994), Bugs:

Bayesian inference using gibbs sampling. mrc biostatistics unit, cambridge, eng-

land, URL: http://www. mrc-bsu. cam. ac. uk/bugs 21, 27.

Spiegelhalter, D., Thomas, A., Best, N. and Lunn, D. (2007), Openbugs user manual,

version 3.0. 2, MRC Biostatistics Unit, Cambridge .

Srivastava, S., Cevher, V., Dinh, Q. and Dunson, D. (2015), Wasp: Scalable bayes via

barycenters of subset posteriors, in ‘Artificial Intelligence and Statistics’, 912–920.

Sueyoshi, G. T. (1992), Semiparametric proportional hazards estimation of competing

risks models with time-varying covariates, Journal of econometrics 51(1-2), 25–58.

Theano Development Team (2016), Theano: A Python framework for fast computa-

tion of mathematical expressions, arXiv e-prints abs/1605.02688.

URL: http://arxiv.org/abs/1605.02688

Thomas, R. and Have, T. (1996), A mixed effects model for multivariate ordinal

response data including correlated discrete failure times with ordinal responses,

Biometrics 473–491.

Vehtari, A., Gelman, A. and Gabry, J. (2017), Practical bayesian model evaluation us-

ing leave-one-out cross-validation and waic, Statistics and Computing 27(5), 1413–

1432.

Wang, B. and Titterington, D. (2012), Convergence and asymptotic normality of

variational bayesian approximations for exponential family models with missing

values, arXiv preprint arXiv:1207.4159 .

Wei, L.-J. (1992), The accelerated failure time model: a useful alternative to the cox

regression model in survival analysis, Statistics in medicine 11(14-15), 1871–1879.

Widder, D. V. (2015), Laplace transform (PMS-6), Princeton university press.

135



Wu, P., Dupont, W. D., Griffin, M. R., Carroll, K. N., Mitchel, E. F., Gebretsadik, T.

and Hartert, T. V. (2008), Evidence of a causal role of winter virus infection during

infancy in early childhood asthma, American journal of respiratory and critical care

medicine 178(11), 1123–1129.

Yin, G. (2008), Bayesian transformation cure frailty models with multivariate failure

time data, Statistics in medicine 27(28), 5929–5940.

Zeng, D., Chen, Q. and Ibrahim, J. G. (2009), Gamma frailty transformation models

for multivariate survival times, Biometrika 96(2), 277–291.

Zeng, D. and Lin, D. (2007), Maximum likelihood estimation in semiparametric re-

gression models with censored data, Journal of the Royal Statistical Society: Series

B (Statistical Methodology) 69(4), 507–564.

136


	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Basics of Survival Analysis
	Censoring
	Moving beyond proportional hazards

	Bayesian Statistics
	Bayesian Analysis
	Introduction to the Bayesian Fitting

	Bayesian Survival Analysis
	Overview and Scope of Dissertation


	Bayesian Inference for Marginal Transformation Multivariate Survival Models
	Introduction
	Basic Quantities
	Classes of Copula Functions
	Clayton Model
	Gumbel-Hougaard Model
	Joe Model
	Frank Model

	Model and Likelihood Formulations
	Semi-parametric copula model
	Likelihood specification
	Computer Implementation
	Multivariate Censored Likelihood

	Inference
	Simulations
	Initial Values
	Simulations
	Semi-parametric Simulations
	Unpenalized Spline Model
	Penalized Spline

	Application
	Discussion and Future Work
	Appendix
	Derivatives of Copulas for Likelihood Specification
	Gumbel Model
	Joe Model
	Frank Model
	Clayton Model

	Simulation Details
	Marginal Data

	Technical Considerations for Likelihood
	Accuracy and Speed of Spline integral implementation

	Alternative initialization scheme results


	Bayesian Large Scale Inference for Time to First Event of Multivariate Ordinal Survival Outcomes with Application to an Observational Cohort Study
	Abstract
	Introduction
	General Model Formulation
	Notation and Basic Quantities
	Likelihood Formulation
	Combination of effect sizes using external data

	Inference
	Variational Bayes

	Simulations
	Inference of regression coefficients with fixed transformations
	Model Selection and selection of transformation parameter r
	Model Selection in an -neighborhood of the MAP estimate
	Inference for frailty parameter

	Application
	Univariate Analyses
	Computing Time and Implementation
	Results

	Discussion
	Acknowledgement

	Appendix
	Derivation Details
	Derivation for Time to Multiple events
	Simulation Details
	Univariate Cox Models


	Software Implementation: The bayleaf module
	Introduction
	Goals and Vision

	Tensor-based computation
	Installation
	Simulation Routines
	Models
	Class Structure of Package

	Syntax
	Univariate Models
	Transformation Frailty Models
	Example

	Transformation Copula Models
	Example


	Future Directions

	Conclusion
	Future Research
	Appendix
	Code for Paper 1
	Code for Semi-Parametric Copula Model

	Code for Paper 2


	REFERENCES

