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CHAPTER I  

 

INTRODUCTION 

 

In order to effectively treat and prevent cardiac rhythm disturbances, the response 

of the heart to electrical stimulation must be understood. For example, although cardiac 

defibrillation therapy is now a widely used and accepted medical procedure, the 

mechanisms by which a strong electrical shock halts potentially lethal fibrillation are still 

the subject of debate. While it is obvious that defibrillatory shocks activate and inactivate 

regions of the heart that are distant from the site of stimulation, standard cable models of 

cardiac tissue predict that such far-field stimulation would be ineffective more than a few 

millimeters from the stimulating electrode. Several alternative models have been 

proposed, including a "bidomain" model that includes the effects of tissue anisotropies 

and the separate intracellular and extracellular spaces. 

The bidomain theory has been shown to characterize successfully many of the 

effects of electrical stimulation of the heart. Most notably, there is good agreement with 

experimental results of unipolar stimulation when an unequal anisotropy ratio is used in 

the bidomain model. Experiment and theory produce a “dog bone”-shaped region 

centered around the electrode with regions of the opposite sign in the convex portions of 

the “dog bone”. With reversal of the polarity, the spatial pattern of polarization reverses. 

These regions of positive and negative polarization, termed “virtual electrode 

polarization”, have proven responsible for four known modes of excitation in cardiac 

tissue. 
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According to the unequal-anisotropy ratio bidomain theory of cardiac tissue, any 

heterogeneity of the myocardium, such as fiber curvature or branching, should produce 

regions of hyperpolarization and depolarization in response to an externally applied 

electric field. This form of virtual electrode polarization provides a mechanism for the 

far-field stimulation that is observed experimentally. Adjacent areas of opposite 

polarization are potential sources of wave front generation, which would cause the 

transmembrane potential to be altered over a large region of the heart. 

This research was directed at investigating the roles of virtual electrode 

polarization and other predictions of the unequal-anisotropy bidomain model in electrical 

stimulation of the heart. 

1.1. Objectives 

The objectives of this research were to examine experimentally the response of 

cardiac tissue under various conditions to electrical stimulation in the context of the 

bidomain model. Understanding the response of cardiac tissue to an electrical stimulus is 

crucial for the proper treatment and prevention of cardiac arrhythmias. To this end, we 

mapped optically the changes in transmembrane potential during and after electrical 

stimulation using voltage-sensitive fluorescent dyes. This technique allows non-invasive 

measurement of the transmembrane potential with high spatial and temporal resolution. 

We examined unipolar point stimulation of cardiac tissue under elevated extracellular 

potassium conditions, close to the refractory period, and through out the cardiac cycle. 

We also investigated field stimulation of the diastolic whole heart and the shock-induced 

changes in transmembrane potential around an artificial heterogeneity. A better 
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understanding of the cardiac response to electrical stimulation in these situations will 

facilitate improvement of anti-arrhythmic therapies. 

1.2. Specific Aims 

To complete the objectives of this research, the following specific aims were necessary:  

Aim 1. Determine the effects of elevated extracellular potassium concentration on the 

response of diastolic cardiac tissue to unipolar stimulation. Cardiac disturbances, 

such as ischemia and hyperkalemia, are accompanied by elevation of the 

extracellular potassium concentration that, in turn, affects the resting 

transmembrane potential as well as tissue excitability. We examined the effects on 

the stimulation mechanism utilizing several visualization methods, including 

time-space plots. 

Aim 2. Examine unipolar stimulation in the wake of a steadily propagating wave. The 

“pinwheel” stimulation protocol, in which a point stimulus is applied at the tail of 

steadily propagating conditioning wave, has been used in extensive theoretical 

studies of cardiac vulnerability to single premature stimuli, but only a few 

experimental mapping studies have examined this protocol. When we applied the 

unipolar test stimulus near the refractory period, interesting activation dynamics 

were observed that suggest substantial revision of the classical explanation of 

cardiac vulnerability is necessary. 

Aim 3. Investigate the role of virtual electrode polarization from unipolar stimulation in 

excitability through the cardiac cycle. Although numerous researchers have 

examined excitability in different phases of the cardiac cycle, there has been no 

systematic experimental research to elucidate the correlation among the virtual 
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electrode polarization pattern, stimulation mechanism, and excitability under 

unipolar cathodal and anodal stimulation. In our experiments, we explained these 

relationships and constructed strength-interval curves that agree well with 

bidomain model simulations. 

Aim 4. Examine and quantify the activation dynamics of the isolated rabbit heart in 

response to diastolic field stimulation. Although much research has been directed 

at studying the effects of field stimulation on systolic tissue, the effects of field 

stimulation on diastolic tissue are equally important. Our work is the first 

systematic experimental examination of the response of the isolated whole, intact 

heart to field shocks applied during diastole. Activation dynamics are measured as 

a function of shock strength, duration, and polarity. 

Aim 5. Determine the role of heterogeneities in the response to field stimulation. 

Bidomain simulations of an insulated heterogeneity predict alternating regions of 

positive and negative polarization in response to field stimulation. We inserted a 

pulled glass micropipette through the myocardium and examined the shock-

induced changes in transmembrane potential when the fiber direction was both 

parallel and perpendicular to the electric field. Shocks were applied to both 

systolic and diastolic tissue.
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CHAPTER II  

 

BACKGROUND AND SIGNIFICANCE 

 

2.1. Introduction: Ventricular Fibrillation and Defibrillation 

An estimated 300,000 to 400,000 fatalities each year in the United States are 

attributed to sudden cardiac death [1]. The most common cause of sudden cardiac death 

in the United States is ventricular fibrillation, a condition in which the electrical and 

mechanical activity of the ventricles becomes uncoordinated [2]. The ventricles exhibit 

chaotic, quivering behavior and cannot effectively pump blood though the cardiovascular 

system. Without intervention, death usually occurs within minutes. Cardiac defibrillation, 

a process that halts the arrhythmia, is most often accomplished by subjecting the heart to 

a strong electrical shock. Although defibrillation therapy has become a well-established 

practice, the mechanisms by which the electric field alters the myocardial transmembrane 

potential remain unclear. The future design of safer and more efficient defibrillators, 

pacemakers, and other anti-arrhythmic devices, as well as improvements in 

pharmacological treatments, depend upon the understanding of how the heart responds to 

electrical stimulation. 

2.2. Function of the Heart 

The heart is a muscular pump whose purpose is to circulate continuously blood 

throughout the body, delivering nutrients and removing wastes in the process. Most cells 

of the heart allow conduction of electrical impulses, but there is a specialized conduction 

system with autorhythmic properties that is essential to proper heart function. Initiation of 
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the cardiac cycle occurs from an electrical signal (action potential) generated by a 

specific region of these specialized conduction cells. The action potential then spreads 

throughout the heart in a coordinated fashion via the specialized conduction system to 

produce the contraction that pumps blood throughout the body. The heart consists of four 

chambers: the right atrium (RA), left atrium (LA), right ventricle (RV), and left ventricle 

(LV). The electromechanical activity of the cardiac cycle occurs in the following way. 

The RA fills with deoxygenated blood from the body via the venae cavae while 

the LA fills with oxygenated blood from the lungs. The sinoatrial node, located in the RA, 

fires the wave of depolarization that spreads across the RA and LA, causing them to 

empty into the RV and LV, respectively. The atrioventricular (AV) node is the only 

electrical connection between the atria and ventricles. Once the electrical signal conducts 

through the AV node, the activation spreads down the septum between the two ventricles 

via the bundle of His. The right and left bundle branches depolarize the RV and LV, 

respectively. Purkinje fibers, cells that arise from the bundle branches, transmit the 

electrical signal to all parts of the ventricles, producing synchronized contraction of the 

ventricular muscle. RV contraction pushes the deoxygenated blood to the lungs via the 

pulmonary artery; LV contraction pumps oxygenated blood to the body through the aorta. 

When the chambers are filling, the heart is in diastole (rest). When the chambers are 

contracting and emptying, the heart is in systole. Without the orderly progression of 

electrical events, the heart is not able to pump blood effectively. 

2.3. Structure of the Heart Walls 

The heart walls are comprised of three layers: the epicardium, myocardium, and 

endocardium. The outer surface of the heart is called the epicardium. The epicardium is 
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usually very smooth and consists mostly of connective tissue, but also contains fat, blood 

vessels, and nerves. The myocardium lies between the epicardium and endocardium. In 

the ventricles the myocardium is the thickest layer. The ventricular myocardium consists 

of sheets of muscle fibers and is highly vascularized. The muscle fibers gradually rotate 

counterclockwise through the heart wall, with an approximate 120° total angle of rotation 

from the epicardium to the inner heart surface [3-5]. The rotation minimizes tension 

between the sheets and maximizes the contractile ability of the ventricles. The inner 

surfaces of the atria and ventricles are covered with mostly connective tissue, the 

endocardium. The endocardium also contains some nerves and the Purkinje conduction 

system, and is an irregular surface. The ridged myocardial surfaces covered by the 

endocardium are called trabeculae carnae. 

2.4. The Cardiac Action Potential 

The propagating action potential is mediated by ion channels in the cardiac 

cellular membrane. Cardiac membranes are excitable: stimulation above a threshold 

causes large changes in the voltage across the membrane (transmembrane potential, Vm). 

Connections between cells allow excitation to spread from cell-to-cell. Under normal 

conditions, the resting Vm is usually around -85 mV in a cardiac ventricular cell. When 

stimulation of suprathreshold amplitude occurs, an action potential is generated. The 

most important ion channels in cardiac tissue are those than conduct Na+, K+, and Ca2+. 

These ions are most responsible for the five phases of the cardiac action potential, as 

shown in Figure 2.1. These ion channels are voltage-gated, meaning that they open and 

close depending upon Vm, with a time constant that reflects the speed of the opening and 

closing process. 
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The upstroke (phase 0) occurs when 

stimulation induces a change in Vm that opens 

fast voltage-gated Na+ channels. Since 

extracellular [Na+] is greater than intracellular 

[Na+], Na+ enters the cells and quickly 

depolarizes the membrane to approximately 

+25 mV. The Na+ channels inactivate at the 

peak of the action potential. The brief rapid 

early repolarization after the peak (Phase 1) is caused by a transient outward K+ current. 

The plateau (Phase 2) is a very distinct feature of cardiac action potentials and is 

responsible for their prolonged duration (200-300 ms). The plateau phase occurs from a 

balance of inward Ca2+ current and outward K+ current. Contraction of the heart occurs 

during this phase due to the presence of intracellular Ca2+. Repolarization (Phase 3) 

follows the plateau phase. Ca2+ channels close as slow K+ channels open. The resulting 

K+ efflux causes Vm to decrease. Finally, ion concentrations return to their resting levels 

via pumps and exchangers, and Vm returns to its resting value (Phase 4, diastole).  

2.5. The Bidomain Model 

The bidomain model is a mathematical model that has been shown to successfully 

characterize many electrical properties of cardiac tissue and many of the effects of 

electrical stimulation of the heart [6]. The bidomain model is a multi-dimensional cable 

model [7] with distinct intracellular and extracellular spaces represented by networks of 

resistors. These two spaces are separated by a nonlinear cell membrane that is represented 

by parallel resistor and capacitor combinations. A schematic depicting the two-

 
Figure 2.1. Typical ventricular action 
potential. Phases of the action potential are 
labeled. 0 – upstroke; 1 – early repolarization, 
2 – plateau, 3 – repolarization, 4 – diastole. 
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dimensional bidomain model is shown in Figure 2.2 [8]. The electrical potentials of the 

intracellular and extracellular spaces are governed by the pair of coupled partial 

differential equations that comprise the bidomain model: 

iionmmii IJtVCV −+∂∂=∇⋅∇ )(~ βσ     (1) 

eionmmee IJtVCV −+∂∂−=∇⋅∇ )(~ βσ ,   (2) 

where iσ~ and eσ~ are the electrical conductivities of the two spaces (S/m), Cm is 

membrane capacitance per unit area (F/m2), β is 

the ratio of cell membrane area to tissue volume 

(m-1), Jion is the membrane ionic current per unit 

area (A/m2), and Ii and Ie are the intracellularly-

applied and extracellularly-applied external 

current sources per unit volume (A/m3). Vi, Ve, 

and Vm are the intracellular, extracellular, and 

transmembrane potentials, respectively. 

Use of the bidomain model has gained 

favor due to its representation of the cardiac 

microstructure as coupled, continuous domains rather than a single effective 

monodomain conductor or discrete structures. Thus, the anisotropic nature of cardiac 

tissue caused by the tissue architecture may be incorporated into the model. The electrical 

conductivities of the intracellular and extracellular spaces are directionally dependent, 

with differing anisotropies in the two spaces. This unequal anisotropy ratio leads to the 

well-known anisotropic conduction velocity, as well as a variety of surprising and 

interesting effects [9]. 

 
Figure 2.2. Schematic depicting the two-
dimensional bidomain model (from [8]). 
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2.6. Unipolar Stimulation 

Over the past fifteen years, John Wikswo’s cardiac electrophysiology group at 

Vanderbilt University has been dedicated to conducting in vitro experiments to provide 

qualitative and quantitative tests of many of the predictions of the bidomain model. The 

ability to incorporate unequal anisotropy in the intracellular and extracellular domains in 

the bidomain model has led to good agreement between numerical simulations and 

experimental results of unipolar electrical stimulation [10]. The bidomain theory of 

cardiac tissue revealed that the unequal anisotropies of the intracellular and extracellular 

spaces play a key role in the virtual electrode appearance [11-14]. These numerical 

simulations predict that during anodal stimulation of the myocardium, a “dog bone”-

shaped region of hyperpolarization arises centrally around the electrode, oriented 

transverse to the fiber direction. This “dog bone” is flanked by two regions of 

depolarization (virtual cathodes) lying in the convex portions of the “dog bone”, oriented 

along the fiber direction. Conversely, during cathodal stimulation of the myocardium, a 

“dog bone” shaped region of depolarization arises centrally around the electrode and is 

flanked on each side by regions of hyperpolarization (virtual anodes). Wikswo et al. [15], 

Knisley [16], and Neunlist and Tung [17] confirmed these numerical predictions when 

they observed the virtual electrode effects experimentally using optical mapping. Figure 

2.3 shows the marked discrepancy between cathodal point stimulation in the equal-

anisotropy ratio bidomain model (A) and the experimental data (B), which are 

qualitatively consistent with results of the unequal-anisotropy ratio bidomain model (C). 

Both numerical [14] and experimental [15] results reveal that virtual electrodes 

cause the four known mechanisms of excitation: cathode make, cathode break, anode 
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make, and anode break. “Cathode” and “anode” simply refer to the polarity of the 

electrical stimulation. In make stimulation, the excitation originates in the depolarized 

regions at the onset of the stimulus. In break stimulation, however, the excitation 

originates in the hyperpolarized areas at the termination of the stimulus. Make excitation 

only occurs when resting tissue is stimulated. Break excitation can occur in both resting 

and refractory tissue by applying a long stimulus, or by applying a short stimulus during 

the repolarization stage of the action potential.  

Although there has been great qualitative agreement between bidomain theory and 

experimental data for unipolar stimulation, there are some obvious quantitative 

discrepancies. One disagreement is in anodal and cathodal thresholds. Theory predicts 

thresholds that are smaller than those observed experimentally. Additionally, theory 

predicts anodal thresholds that are ten times greater than cathodal thresholds, while 

experimental data show a ratio more on the order of 4:1. One reason may be the very 

large transmembrane potentials predicted numerically near electrodes that are rarely 

observed experimentally [18]. 

The causes for the discrepancies between the numerical predictions and the 

experimental results may be due to experimental artifacts. Tests of voltage-sensitive dyes 

 
Figure 2.3. The response to unipolar cathodal stimulation. (A) Equal-anisotropy 
bidomain model. (B) Experimental data. (C) Unequal-anisotropy bidomain model. 
(From reference [15].) 
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commonly used to map transmembrane potential distribution show that they are linear for 

potentials between -100 mV and 100 mV [19,20], but may produce a constant response 

for potentials above 200 mV [20]. An additional experimental reason why large 

transmembrane potentials are not optically recorded is that optical mapping does not 

actually measure true surface polarization but, rather, a weighted average of 

transmembrane potential over a region of limited depth [21]. The depth of this region, 

however, is debated with predictions ranging from 300-500 µm [16,22] all the way up to 

1-2 mm [23-25]. Additionally, the physical unipolar electrode prevents recording of the 

signal directly underneath it, where theory predicts the transmembrane potential will be 

largest [26]. However, recent experiments using a translucent electrode made from 

indium tin oxide removed this limitation [27]. Results under the electrode were in 

agreement with bidomain theory: changes in transmembrane potential were anisotropic, 

with larger values along the fiber axis. However, at the edge of the electrode, theory and 

experiment disagreed: bidomain simulations still predicted much larger transmembrane 

potentials than found experimentally. 

Invalid modeling assumptions are also a likely cause of discrepancy between 

theory and experimental data. In numerical simulations, transmembrane potentials reach 

values (±400 mV) where electroporation should occur. However, many bidomain 

modeling studies have ignored electroporation. In studies where electroporation was 

incorporated into the model [28-32], quantitative differences were observed. One study 

[32] found that the inclusion of electroporation kept transmembrane potentials from 

becoming very large near an electrode. Another source of error in numerical studies is the 

membrane model. Membrane models, such as Beeler-Reuter [33] and Luo-Rudy [34,35], 
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are usually based on voltage clamp measurements in the range of normal action 

potentials. Therefore they do not accurately reflect changes occurring from strong shocks 

where transmembrane potential may be much larger. Use of membrane models in 

simulations involving strong shocks requires modification of the models which may or 

may not be valid because the nonlinear response of the cardiac cell membrane to large 

polarizations is not well known [36]. 

2.7. Field Stimulation 

More recently, the focus of Wikswo’s group has expanded to also encompass the 

unequal-anisotropy bidomain model predictions of field stimulation of the heart. The 

mechanisms by which defibrillation-strength electric shocks affect cardiac tissue have 

been the subject of extensive study in the cardiac biophysics community. Standard cable 

models predict changes in transmembrane potential that decrease exponentially with 

distance from the stimulating electrode and, hence, do not explain the large changes 

caused by external electric fields that have been observed distally from the electrode 

[37,38]. This phenomenon has been termed far-field stimulation, and many explanations 

have been hypothesized for its existence. 

One hypothesis, the saw-tooth model, is an alternative to the bidomain model. In 

this model, Plonsey and Barr [39] suggest that the intercellular resistances at the gap 

junctions cause depolarization and hyperpolarization on opposite ends of each myocyte. 

Although the saw-tooth mechanism seems plausible and has been greatly studied, 

attempts to verify experimentally the saw-tooth effect thus far have failed [40,41]. A 

more recent study [42] suggests a new interpretation in which the saw-tooth effect may 

not necessarily appear as a polarity reversal across a gap junction. However, these results 
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are limited to a very simplistic two-cell model, and the saw-tooth effect still has not been 

observed in intact tissue. 

A second hypothesis suggested by Trayanova, Roth, and Malden [43] proposes 

that fiber curvature and unequal anisotropy ratios cause depolarization and 

hyperpolarization throughout the heart. Their bidomain calculations also predict that the 

transmembrane potential at the epicardial surface may be vastly different than the 

transmembrane potential below the surface. Subsequent bidomain numerical simulations 

by Entcheva et al. [44] have supported the role of fiber curvature and fiber rotation in 

virtual electrode formation. Using an anatomically precise bidomain model of rabbit 

ventricles, Efimov et al. [45] predicted complex virtual electrode polarization patterns 

that would result in very different transmembrane potential distributions between the 

endocardium and epicardium, as shown in Figure 2.4. 

Another hypothesis, proposed by Fishler [46], is that syncytial heterogeneities 

inherent throughout the bulk myocardium, such as cell-to-cell variations in myocyte 

shape and packing efficiency, play a role in the mechanism for far-field stimulation. Each 

of these syncytial heterogeneities 

produced a small “island” of 

depolarization and an adjacent 

“island” of hyperpolarization when 

an electric shock was applied. 

While this phenomenon has been 

observed on the level of single 

cells, experimental evidence at 

 
Figure 2.4. Predicted whole-heart response to field shock 
for two cross-sectional planes during a 5.8 V/cm electric field 
applied across the heart from right to left (virtual cathodes 
and virtual anodes are red and blue, respectively). Note the 
endocardial polarity is opposite to that on the epicardium 
(from [45]). 



15 

larger scales has proven inconclusive. 

Macroscopic heterogeneities have also been suggested as a cause for the 

mechanisms of far-field stimulation. Using three computer models (a space-clamped 

membrane, a three-dimensional cylindrical cell, and a one-dimensional fiber), 

Krassowska and Kumar [47] suggest that the heart functions like a collection of short 

fibers that, in the presence of an electric field, should cause areas of hyperpolarization 

and depolarization to occur in a patchy fashion associated with each region. White et al. 

[48] found that myocardial discontinuities, caused by surgical incisions in the ventricular 

wall, can give rise to activation fronts following a stimulus, suggesting areas of 

polarization near the discontinuity. 

More recent bidomain numerical simulations have hypothesized that electrodes 

often used to record the response of cardiac tissue to stimulation are potential causes of 

far-field stimulation or electrical artifacts in the recordings. Langrill Beaudoin and Roth 

[49,50] hypothesize that the insulated plunge electrodes used to record experimentally 

extracellular potentials [51] may affect the transmembrane potential when subjected to an 

electric field. Numerical simulations predict that the transmembrane potential induced 

around the electrode during a field shock exhibits alternating areas of depolarization and 

hyperpolarization. Patel and Roth [52] examined possible artifacts caused by another type 

of recording electrode. Epicardial surface electrodes are often used to record the electrical 

response of cardiac tissue during defibrillation experiments [51,53]. It has been assumed 

that these electrodes had no effect on the cardiac response. Numerical simulations by 

Patel and Roth, however, predict adjacent regions of depolarization and hyperpolarization 
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around the epicardial electrodes in an electric field because the epicardial electrodes have 

shorted out the extracellular space. 

Each of the above hypotheses in some way incorporates bidomain myocardial 

heterogeneities as mechanisms for producing adjacent regions of hyperpolarization 

(virtual anodes) and depolarization (virtual cathodes) during an external electrical shock. 

The adjacent areas of opposite polarization are potential sources of wave front generation 

that could cause the far-field stimulation observed during electrical shocks. One goal of 

this research was to examine the roles of such inhomogeneities, emphasizing the 

macroscopic level, in the response of cardiac tissue to field shocks. Determining and 

understanding the mechanisms for far-field stimulation will enable the future design of 

safer and more efficient defibrillation devices. 

2.8. Extracellular Potassium Concentration 

An elevation in extracellular potassium concentration accompanies many cardiac 

abnormalities such as ischemia [54] and hyperkalemia [55]. This change in extracellular 

potassium concentration is known to increase the resting transmembrane potential and 

additionally affects the excitability of cardiac tissue. In humans normal [K+]o is 5.4 mM, 

and the resting membrane potential is –84 mV. Increasing [K+]o to 10 mM elevates the 

resting membrane potential to approximately –67 mV [55]. However, at transmembrane 

potentials above –70 mV the sodium inactivation gates are closed, rendering the tissue 

unexcitable [33]. Therefore the transmembrane potential distribution during electrical 

stimulation is dependent upon the extracellular potassium concentration. Although high 

extracellular potassium occurs clinically, there is relatively little work examining the 

effects of the extracellular potassium concentration on the cardiac shock response. 
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2.9. Electroporation 

High-strength electrical shocks cause the formation of small pores in the lipid 

bilayer matrix, in a process termed “electroporation”. The electropores, as these pores are 

commonly called, are hydrophilic and increase membrane conductance and permeability, 

facilitating intercellular molecular transport [56]. Experimental evidence indicates that 

electropores form when the transmembrane potential exceeds +400 mV [57]. For most 

electrical stimulation, electropores are not permanent and can reseal within seconds to 

minutes after the stimulation ceases [58]. For very strong stimulation, or stimulation of 

excessive duration, the electropores remain long after the termination of stimulation, 

leading to irreversible membrane damage and eventual cell death. 

There have been numerous numerical studies examining the potential role of 

electroporation in defibrillation and arrhythmogenesis [28-30,59-63], and more limited 

experimental studies in cultured cells [20,57,64-66] and tissue [24,67-69]. Characteristics 

of electroporated regions have included transient elevation in resting transmembrane 

potential, reduction in action potential amplitude, and decreased rate of rise in action 

potential upstroke. Neunlist and Tung [70] found that magnitudes of these signatures of 

electroporation increased sigmoidally with increasing shock strength. Hence 

electroporation is more likely to occur in regions of maximal shock-induced 

transmembrane potential polarization. 

However, the location and spatial extent of electroporation in intact cardiac tissue 

is largely unknown [24]. A prior study revealed that electroporation is an asymmetric 

event, with more electropores of smaller size on the membrane side facing the anode, and 

fewer electropores of larger size facing the cathode [71]. Direct evidence of 
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electroporation in cell culture studies [72,73] and intact tissue [74,75] comes from using 

fluorescent probes. However, the experiments using intact tissue examined 

electroporation only under a very large stimulating electrode[74], and in permanent tissue 

damage from repetitive unipolar stimulation [75]. The spatial extent of reversible 

electroporation during unipolar stimulation remains unknown. Because the 

transmembrane potential distribution of unipolar stimulation is well-defined, unipolar 

stimulation would be a good experimental protocol for examination of the spatial pattern 

of electroporation in intact cardiac tissue. 

2.10. Cardiac Optical Mapping  

Traditional measurements of cardiac electrical activity have been acquired via 

microelectrode techniques or via extracellular electrodes placed within the myocardium 

or on the epicardial, endocardial, or torso surfaces. However, optical fluorescence 

imaging has arisen as an alternative means to map optically the electrical activity of the 

heart. The first successful application of optical fluorescence imaging of the heart 

occurred in 1976 [76]; since that time, optical fluorescence imaging has gained favor as 

an excellent technique to measure the electrical activity of the heart with high spatial and 

temporal resolution. 

Optical fluorescence imaging involves using a fluoroprobe that is very sensitive to 

small changes in membrane potential. When the dye molecules are introduced to the 

cardiac cells, they lodge in the cellular membranes. When the transmembrane potential of 

those cells changes, the dye molecules undergo changes in their electronic structure, and 

consequently changes in their fluorescence spectra. This shift in the fluorescence spectra 

results in a fluoresced signal whose intensity is proportional to the transmembrane 
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potential. The transmembrane potential is usually computed as -∆F/F, where F is the 

fluorescence intensity recorded from resting tissue and ∆F is the difference in 

fluorescence between F and when the tissue is excited. The minus sign is used to invert 

the signal such that optically recorded action potentials have the same orientation as those 

recorded electrically. Excitation of the dye molecules can be achieved over very small 

areas using a laser beam [77,78] or, more commonly, over much larger regions of the 

heart via optical fibers or diffusers [79,80]. 

Optical fluorescence imaging of the electrical activity of the heart has proven very 

important in experimentally verifying theoretical predictions of unipolar stimulation of 

the anisotropic bidomain model [15-17]. Cardiac optical imaging has also been utilized to 

study the spatiotemporal aspects of fibrillation [81] and the mechanisms by which 

defibrillation-strength shocks halt fibrillation [82]. Its utility in these types of studies lies 

in the fact that cardiac optical mapping has many advantages over the more traditional 

glass microelectrode and extracellular electrode measurements. 

One advantage is that optical mapping is a non-invasive technique. 

Microelectrode techniques require the impalement of the cell membrane. This results in 

undesirable cell damage, and could prove difficult because of the small size of cardiac 

myocytes and the contractile motion of the cells. The use of a fluoroprobe that is 

incorporated into the cell membrane alleviates these problems. 

An additional benefit of optical mapping is the high spatial resolution that can be 

achieved. Glass microelectrode techniques obviously are limited to the spatial resolution 

of one cell at a time. Extracellular electrodes can be used to record from multiple sites 

simultaneously; however, the spatial resolution of such methods is limited by the size and 
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density of the electrodes. As electrode arrays become larger, their size and the ability to 

make good contact with the heart surface can be limiting factors. Optical mapping 

provides a means of simultaneous recordings from a multitude of sites, with high spatial 

resolution that depends upon the method of acquisition (i.e. CCD camera or photodiode 

array). 

A key advantage of optical fluorescence imaging is that it is not subject to 

stimulus artifacts during electrical pulses. Both microelectrode and extracellular 

recordings are complicated by the presence of stimulus artifacts produced by the 

extracellular electric field. These artifacts mask the tissue response during stimulation, a 

time which may be very important to understanding the response of cardiac tissue to 

electrical stimulation. Because transmembrane potential, and not extracellular field, is 

measured during optical fluorescence imaging, the signal artifact caused by the stimulus 

is very small [82,83]. 

There are also some complications in optical fluorescence imaging. As discussed 

earlier, optical imaging does not actually measure the true epicardial polarization, but a 

weighted average of transmembrane potential of a debated depth of tissue. Another 

problem is motion artifacts caused by the contraction of the beating heart. Therefore the 

motion of the heart must either be stopped via mechanical or chemical means. 

Mechanical cessation of motion involves pressing the region of the heart to be imaged 

against glass or some other transparent surface [22,84]. While mechanical cessation 

eliminates any chemical agent that may affect the electrophysiological properties of the 

heart, pressing the heart against a surface increases the risk of ischemia in that region and 

the interface between the heart and the glass may have an effect on virtual electrode 
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polarization [85]. Excitation-contraction decouplers are usually used to stop motion in 

cardiac optical mapping experiments. Two commonly used chemical agents are diacetyl 

monoxime (BDM, DAM, 2,3-butanedione monoxime) and methoxyverapamil (D600, 

gallopamil). BDM inhibits cross-bridge interactions by blocking ATP-sensitive 

potassium channels. D600 acts by blocking calcium flux through the slow (L-type) 

calcium channels. Both slightly alter action potential properties by altering some 

membrane conductances [86-88]; BDM may also cause edema [89]. 

2.11. Summary and Dissertation Outline 

This chapter provided a background of cardiac dynamics and electrical 

stimulation of cardiac tissue. The first section introduced fibrillation and explained that 

the mechanisms of defibrillation are not yet understood. The cardiac cycle, heart 

structure, and the ionic components of the cardiac action potential were then described. 

The bidomain model of cardiac tissue was introduced, and was followed by the validation 

of bidomain theory using unipolar stimulation. Field stimulation of cardiac tissue then 

was described, and the proposed role that heterogeneities play in the tissue shock 

response was discussed. Virtual electrode polarization in response to electrical 

stimulation and its role in excitation also were presented. The relevance of extracellular 

potassium and electroporation were included. Lastly, the optical fluorescence mapping 

process, its benefits over more traditional measurement techniques, and its confounding 

factors were explained. 

The purpose of this research is to examine the effects of electrical stimulation of 

cardiac tissue under different circumstances in the context of the bidomain model. The 

dissertation is organized in the following manner. 
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Chapter 3 details the results of diastolic unipolar anodal stimulation during 

elevated extracellular potassium conditions. Specifically, the spatiotemporal activation in 

elevated extracellular potassium is compared with normal conditions, and the mechanism 

of excitation is examined. 

Chapter 4 examines unipolar stimulation in the wake of a steadily propagating 

wave. The timing of the unipolar stimulation has great implications on the resulting 

activation dynamics. 

Chapter 5 presents a systematic examination of excitability through the cardiac 

cycle. We present experimental strength-interval curves that agree with numerical 

bidomain predictions. The role of virtual electrodes and stimulation mechanisms in 

excitability at different times through the cardiac cycle is described. 

Chapter 6 presents the results of field stimulation of the diastolic rabbit heart. 

Both shock strength and shock duration are shown to affect the shock-induced changes in 

transmembrane potential and activation dynamics. Shock polarity also plays a major role. 

Chapter 7 discusses the effects of an artificial heterogeneity during field 

stimulation of cardiac tissue. The shock-induced changes in transmembrane potential 

around the heterogeneity are presented. Experimental results are in good agreement with 

bidomain predictions. 

Chapter 8 summarizes the results of Chapters 3 through 7 and the overall 

objectives of this dissertation. The research considerations and societal implications are 

also discussed.  
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3.1. Abstract 

During cardiac disturbances such as ischemia and hyperkalemia, the extracellular 

potassium ion concentration is elevated. This in turn changes the resting transmembrane 

potential and affects the excitability of cardiac tissue. To test the hypothesis that 

extracellular potassium elevation also alters the stimulation mechanism, we used optical 

fluorescence imaging to examine the mechanism of diastolic anodal unipolar stimulation 

of cardiac tissue under 4 mM (normal) and 8 mM (elevated) extracellular potassium. We 

present several visualization methods that are useful for distinguishing between anodal-

make and anodal-break excitation. In the 4 mM situation, stimulation occurred by the 

make, or stimulus-onset, mechanism that involved propagation out of the virtual 

cathodes. For 8 mM extracellular potassium, the break, or stimulus termination, 

mechanism occurred, with propagation out of the virtual anode. We conclude that 

elevated potassium, as might occur in myocardial ischemia, alters not only stimulation 

threshold but also the excitation mechanism for anodal stimulation.  

3.2. Introduction 

The importance of virtual electrode mechanisms in myocardial stimulation using 

unipolar electrodes has been demonstrated in previous studies [1-3]. The bidomain theory 

revealed that the unequal electrical anisotropies of the intracellular and extracellular 

spaces play the key role in the virtual electrode appearance [4-7]. During anodal 

stimulation of myocardium, a “dog bone” shaped region of hyperpolarization oriented 

transverse to the fiber direction arises centrally around the stimulating electrode. The 

“dog bone” shaped hyperpolarized region is flanked by two regions of depolarization in 

the convex portions of the “dog bone”. 
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Virtual electrode stimulation can occur by two mechanisms, known as make and 

break stimulation [3,7]. In make stimulation the excitation originates in the depolarized 

regions (virtual cathodes) at the onset of the stimulus. Conversely, in break stimulation 

the excitation originates in the hyperpolarized region (virtual anode) at the termination of 

the stimulus pulse. The make excitation mechanism only occurs when diastolic tissue is 

stimulated. Break excitation may be induced in both diastolic and systolic tissue by 

applying a long stimulus or may be induced by means of short stimulus applied during 

the repolarization phase of the action potential. 

In break stimulation the wave front originates in the virtual anode because of 

charge diffusion from the virtual cathodes to the virtual anode area [8]. The closure of 

sodium channel inactivation gates due to depolarization leaves the virtual cathode regions 

unexcitable.  However, the sodium channel inactivation gates are open in the 

hyperpolarized virtual anode region, causing the tissue to be excitable [9].  

It is well established that elevated extracellular potassium ion concentration 

([K+]o), which often accompanies such heart disturbances as ischemia [10] and 

hyperkalemia [11], changes the resting transmembrane potential and alters the 

excitability of cardiac tissue. In humans normal [K+]o is 5.4 mM, and the resting 

membrane potential is –84 mV. Increasing [K+]o to 10 mM elevates the resting membrane 

potential to approximately –67 mV [11]. However, at transmembrane potentials above –

70 mV the sodium inactivation gates are closed, rendering the tissue unexcitable [12]. 

We hypothesize that elevated [K+]o, as might occur during ischemia, not only 

alters excitation but also affects the mechanism of stimulation. In this paper we report 

epifluorescence data from a series of experiments utilizing diastolic anodal stimulation in 
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which the effect of [K+]o elevation was examined. We show that under normal [K+]o 

conditions, the excitation mechanism is anode make. However, under elevated [K+]o 

conditions the excitation mechanism is revealed as anode break. 

3.3. Materials and Methods 

3.3.1. Experimental Preparation and Protocol 

All experiments were conducted in accordance with National Institutes of Health 

regulations for the ethical use of animals in research and were approved in advance by 

the Vanderbilt Institutional Animal Care and Use Committee. 

New Zealand white rabbits (n=10) weighing 2 to 3 kg were first preanesthetized 

with intramuscular ketamine (50 mg/kg). The animals were then intravenously 

heparinized (1000 units) and subsequently anesthetized with sodium pentobarbital (50 

mg/kg). Following a mid-sternal incision, the hearts were rapidly excised and moved to a 

Langendorff perfusion system.  The ascending aorta was cannulated and secured in order 

to perfuse the coronary arteries in a retrograde manner with an oxygenated Tyrode’s 

solution containing (in mM) 130 NaCl, 4 KCl, 2 CaCl2, 1 MgCl2, 1.5 NaH2PO4, 23 

NaHCO3, and 10 glucose. In each experiment, [K+]o was initially 4 mM (normal) and was 

subsequently raised to 8 mM by adding the appropriate amount of KCl to the existing 

perfusate solution. After [K+]o was raised, a 10-minute equilibration time elapsed before 

subsequent data collection. The perfusate was continuously bubbled with a 95% 

oxygen/5% carbon dioxide mixture, and the temperature and pH were continuously 

maintained at 37°C and 7.4±0.05, respectively. Coronary perfusion pressure was 

regulated to 50 mm Hg. The hearts were exposed to the air during the experiments.  
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Following an equilibration time of 20 minutes to allow sinus rhythm stabilization, 

the hearts were stained with 200 µL of di-4-ANEPPS (Molecular Probes, Eugene, OR) 

stock solution (0.5 mg/mL dimethyl sulfoxide) administered via a bubble trap above the 

aorta. Diacetyl monoxime (DAM) was added to the Tyrode’s solution at a concentration 

of 15 mM to block muscle contraction and, hence, lessen motion artifacts in the 

fluorescence data. In all experiments only the anterior left ventricle was imaged. 

Electrical stimulation was conducted via both bipolar and unipolar electrodes. The 

bipolar pacing electrode (S1) was constructed from two platinum wires (0.25 mm 

diameter) enclosed in glass with only the tips of the wires exposed. The distance between 

the two tips was 1 mm. The bipolar pacing electrode was placed on the right ventricle 

close to septum, 8 to 9 mm from the unipolar testing electrode. The unipolar testing 

electrode (S2), also made from platinum wire (0.25 mm diameter), was positioned 

centrally on the anterior left ventricle. The camera field of view was centered around the 

testing electrode. A small piece of titanium mesh placed against the posterior left 

ventricle served as the reference testing electrode. The electrical stimuli in the 

experiments were provided by computer-controlled current sources (Bloom Associates 

Ltd., Narberth, PA). The heart was constantly paced at a 350 ms cycle length with 2 ms 

electrical stimuli (S1) of strength equal to two times the diastolic stimulation threshold. 

Anodal test stimuli (S2) of 0.1-10 mA amplitude and 10 ms duration were applied at a S1 

– S2 coupling interval of 350 ms, unless otherwise stated. 

To measure the transmembrane potential directly, ten additional experiments were 

conducted using microelectrodes. Action potentials at multiple sites were recorded by 

using “floating” 3 M KCl-filled microelectrodes. The microelectrodes were pulled from 
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borosilicate glass capillaries (World Precision Instruments, Sarasota, FL) by a 

micropipette puller (Model P80/PC, Sutter Instrument Co., Novato, CA). The 

microelectrode tips were mounted on 50 µm-diameter platinum wire. The Ag/AgCl 

reference electrode, 8 mm in diameter and 1 mm in thickness (EP8, World Precision 

Instruments), was placed in the left ventricular cavity. The electrodes were connected to 

the input probes of a dual differential electrometer (model FD223, World Precision 

Instruments). The signals were digitized, visualized, recorded, and analyzed by a digital 

oscilloscope (Infinium, Hewlett-Packard Co., Palo Alto, CA). The sampling rate for data 

acquisition was 10 kHz. All microelectrode measurements were conducted on the anterior 

left ventricle using the same perfusion setup as for the optical studies. 

3.3.2. Optical Imaging and Data Analysis 

The fluorescence was excited by a diode-pumped, solid-state laser (Verdi, 

Coherent Inc., Santa Clara, CA) at a wavelength of 532 nm. The illumination was 

delivered to the heart with a double beam illumination scheme [9]. The emitted light was 

passed through a cutoff filter (#25 Red, 607 nm, Tiffen Co., Hauppauge, NY) and imaged 

with a high-speed CCD camera (Model CA D1-0128T, Dalsa Inc., Waterloo, ON, 

Canada). The faceplate of the camera was cooled via a 15˚C refrigerated bath. The data 

were acquired at 2-ms intervals with 12-bit resolution from 128 × 128 sites 

simultaneously over a 12 × 12 mm area. The digitized pixel intensity from the digital 

camera was transferred to a PCI bus-master frame grabber board (IC-PCI, Imaging 

Technology Inc., Bedford, MA) mounted in an IBM-compatible personal computer (Dell 

Precision Workstation 610, Dell Computer Corp., Round Rock, TX). 
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The optical data were first normalized pixel-by-pixel according to fluorescence 

changes during the last pacing response and then the resulting images were voltage-

calibrated according to the microelectrode measurements. The resting membrane 

potential and action potential amplitude were –85 mV and 112 mV under normal [K+]o (4 

mM) and –68 mV and 95 mV under elevated [K+]o (8 mM), respectively. All data 

presented in this paper have been filtered to improve the signal-to-noise ratio. Data 

depicting the transmembrane potential distribution were spatially filtered with an 8 × 8 

Gaussian filter. These spatially filtered data were used to compute the optical dV/dtmax 

measurements. 

We utilized time-space analysis [13-15] to examine the stimulation mechanism. 

To explore the evolution of electrical activity during stimulation, time-space plots were 

constructed for lines along and transverse to the fiber direction. The intersection of these 

two lines roughly coincided with the position of the testing electrode. To construct the 

time-space plots, the optical data were pre-processed by applying a 5 × 5 Gaussian spatial 

filter and a 5-point mean temporal filter two times.  

3.4. Results 

3.4.1. Moderate Anodal Stimulation of Diastolic Tissue for Normal [K+]o 

Figure 3.1 illustrates the tissue response to 6 mA amplitude (3× threshold), 10 ms 

diastolic anodal stimulation delivered at an S1-S2 coupling interval of 350 ms.  
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Figure 3.1. Anodal-make response to diastolic 3× threshold stimulation for normal [K+]o (4 mM). The 
anodal S2 stimulus was 6 mA in amplitude, 10 ms in duration, and applied at an S1-S2 coupling interval 
of 350 ms. (A) Image of the transmembrane potential distribution 2 ms after the onset of S2 point 
stimulation at the center of the image. (B) Four representative traces recorded within the virtual cathode 
(red) and virtual anode (blue) areas. The pixel locations for these traces are marked with white and black 
dots in panel A. (C and D) Time-space plots for lines longitudinal and transverse to the fiber direction 
(white and black dashed lines in panel A). The white horizontal isochronal line corresponds to 8 ms after 
the beginning of S2. The white slanted lines in panel C demonstrate the inward and outward propagation 
velocity along the fiber direction. The white slanted lines in D demonstrate the outward propagation 
velocity transverse to the fiber direction. The blue and red arrows indicate the location of the pixels 
depicted by black and white dots in panel A. (E) The transmembrane potential distribution as a function 
of time. The numbers in the upper right represent the time [ms] since the onset of S2. 
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The image of the transmembrane potential distribution during stimulation is 

shown in Figure 3.1 A. The experimental data correspond to results previously reported 

[1-3]. The transmembrane potential distribution map exhibits the expected central “dog 

bone” shaped virtual anode (VA) and a pair of adjacent virtual cathodes (VC). Figure 3.1 

B shows four superimposed optical signals: two at VC (red) locations and two at VA 

(blue) locations. The VC action potentials initiate at the beginning of the stimulus. The 

VA traces reveal initial hyperpolarization, such that the VA action potentials initiate long 

after the VC action potentials. The peak rate of rise, dV/dtmax, is greater for the VA action 

potentials than for the VC ones. Traces were selected for calculation by random sampling 

in the VA and VC regions. For eight traces in the VA region dV/dtmax is 12.3±0.4 mV/ms, 

while dV/dtmax is 6.0±0.8 mV/ms for eight traces in the VC regions. 

The time-space plots for lines longitudinal and transverse to the fiber direction are 

presented in Figure 3.1, C and D, respectively. These lines are depicted with white and 

black dashed lines in Figure 3.1 A. Figure 3.1 C shows that excitation propagates from 

two locations that correspond spatially to the virtual cathodes in Figure 3.1 A. The red 

arrows in Figure 3.1 C indicate the two pixel locations (VC1 and VC2) of the VC traces 

shown in Figure 3.1 B. Similarly, the blue arrows in Figure 3.1 D show the position of the 

two pixels VA1 and VA2. 

To compare the activation time of the VC and VA regions, we drew an isochronal 

line (horizontal) in both Figure 3.1 C and D. One can see that activation first begins in the 

VC regions. The slope of the line tangent to the depolarization front (drawn 

approximately at the -30 mV contour) reveals the conduction velocity along (Figure 3.1 

C) and transverse (Figure 3.1 D) to the fiber direction. Conduction velocity is inversely 
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related to the slope of the lines drawn in the time-space plots. It is seen that propagation 

from the VC regions is faster in the outward direction than inward toward the central 

hyperpolarized VA region (Figure 3.1 C). Outward conduction velocities indicated by the 

drawn lines are 65 and 61 cm/s whereas the inward conduction velocities for the drawn  

lines are 27 and 24 cm/s. As was expected, there is anisotropy in the conduction velocity 

along and transverse to the fiber direction. Figure 3.1 C shows faster conduction 

longitudinal to the fiber direction in comparison with transverse to the fiber direction, as 

shown in Figure 3.1 D. The two transverse conduction velocities are 21 and 25 cm/s. Our 

longitudinal and transverse conduction velocity measurements are in agreement with 

those computed by Boersma et al. [16]. 

Images of the transmembrane potential distribution at 2 ms intervals following the 

onset of S2 are shown in Figure 3.1 E. Excitation originates in the two VC regions, 

indicating anodal-make stimulation. 

3.4.2. Threshold Anodal Stimulation of Diastolic Tissue for Normal [K+]o 

In contrast to the results for moderate anodal stimulation described in Figure 3.1, 

in most experiments we did not observe symmetric activation patterns for threshold 

anodal stimulation. In the particular experiment described, the threshold anodal stimulus 

was a 2 mA, 10 ms duration pulse delivered at an S1-S2 coupling interval of 350 ms. 

Figure 3.2 demonstrates the typical situation in which one of the VC regions 

reveals more positive polarization than the other. This ‘stronger’ VC region is the site of 

excitation initiation.  The time traces in Figure 3.2 B show delay in excitation between 

the two VC areas. Activation is first observed for VC2, and the resulting wave front 

initiates activation in the VA region (blue traces VA1 and VA2). VC1 activation occurs  
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Figure 3.2. Anodal-make response to diastolic threshold stimulation for normal [K+]o (4 mM). The 
anodal S2 stimulus was 2 mA in amplitude, 10 ms in duration, and applied at an S1-S2 coupling interval of 
350 ms. (A) Image of the transmembrane potential distribution 10 ms after the onset of S2 point stimulation 
at the center of the image. (B) Four representative traces recorded within the virtual cathode (red) and 
virtual anode (blue) areas. The pixel locations for these traces are marked with white and black dots in 
panel A. (C and D) Time-space plots for lines longitudinal and transverse to the fiber direction (white and 
black dashed lines in panel A). The white horizontal isochronal line corresponds to 16 ms after the 
beginning of S2. The white slanted lines demonstrate propagation velocity along (panel C) and transverse 
(panel D) to the fiber direction. The blue and red arrows indicate the location of the pixels depicted by 
black and white dots in panel A. (E) The transmembrane potential distribution as a function of time. The 
numbers in the upper right represent the time [ms] since the onset of S2. 



42 

last. As was the case in Figure 3.1, the peak rate of rise is greater for the VA action 

potentials than for the VC ones. However, the magnitude of and the difference in dV/dtmax 

for the VA and VC regions are smaller for threshold stimulation. For eight randomly  

selected traces in the VA region dV/dtmax is 6.3±0.5 mV/ms, whereas for eight randomly 

selected traces in the VC regions, dV/dtmax is 4.8±0.4 mV/ms. 

Figure 3.2 C and D show time-space plots for lines along and transverse to the 

fiber direction. Lines tangent to the depolarization front are drawn (at approximately the -

30 mV contour) to show the conduction velocities. Activation is first observed in the 

VC2 area (Figure 3.2 C), followed by activation in the VA regions (Figure 3.2 D). 

Activation in the VC1 area is delayed (Figure 3.2 C). These time-space plots again reveal 

the expected anisotropic conduction velocity along (43 and 46 cm/s) and transverse (27 

and 17 cm/s) to the fiber direction. Note the marked decrease in longitudinal conduction 

velocity for threshold stimulation in comparison with moderate stimulation (Figure 3.1 

C). Both the time-space plot in the longitudinal direction (Figure 3.2 C) and the 

succession of the transmembrane potential images (Figure 3.2 E) also demonstrate 

asymmetric anodal-make excitation for threshold anodal stimulation. 

3.4.3. Long Duration, Strong Anodal Stimulation of Refractory Tissue for Normal [K+]o 

To obtain an episode of anodal-break stimulation, a 20 mA amplitude (10× 

threshold), 150 ms anodal S2 stimulus was delivered to refractory tissue using an S1-S2 

interval of 80 ms.   

Figure 3.3 A demonstrates the stimulation timing (black arrows at the bottom) and 

tissue response to S1 and S2 stimulation. The red trace corresponds to the virtual cathode 

pixel location VC1 while the blue trace corresponds to the virtual anode pixel location 
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VA2, as depicted in Figure 3.3 B, showing the transmembrane potential distribution 82 

ms after the onset of S2. The expected “dog bone” shaped virtual anode and pair of 

adjacent virtual cathodes are shown.  

The virtual cathode and virtual anode optical traces are presented in Figure 3.3 C. 

The beginning of the time-scale corresponds to the 130th ms of the S2 pulse (20 ms prior 

to the stimulus termination). During S2 stimulation, the voltage difference between the 

virtual anodes and virtual cathodes is approximately 40 mV. Immediately after S2 

termination (second dotted black line in Figure 3.3 A), the voltage in the virtual cathode 

areas decreases (red traces), whereas the virtual anode voltage (blue traces) increases, 

indicating charge diffusion from the virtual cathodes to the virtual anode area. After the 

VC and VA traces intersect, the voltages in the virtual anode region are greater than those 

in the virtual cathode regions, suggesting the initiation of excitation in the virtual anode 

region. Figure 3.3 F shows images of transmembrane potential distribution as a function 

of time. The frame labeled 16 ms approximately corresponds to the time at which the VC 

and VA traces intersect in Figure 3.3 C. Note that the final activation pattern in the series, 

at 36 ms, shows dog-bone-shaped activation, consistent with a dog-bone-shaped virtual 

anode and anodal-break excitation. 

The virtual cathodes are revealed in the longitudinal time-space plot (Figure 3.3 

D) as red areas (indicated with red arrows) during stimulation. The color change of the 

virtual cathode 

regions from red to blue after the stimulus is turned off reflects the diffusion of positive 

charge into the more negative virtual anode area, as was discussed for Figure 3.3 C. The 

isochronal lines (horizontal white lines) reveal that activation in the virtual anode occurs  
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Figure 3.3. Anodal-break response to strong systolic stimulation for normal [K+]o (4 mM). The anodal 
S2 stimulus was 20 mA in amplitude, 150 ms in duration, and applied at an S1-S2 coupling interval of 80 
ms. (A) Representative traces recorded within the virtual cathode (red) and virtual anode (blue) area 
depicting the response to S1 and S2 stimulation.  The black arrows underneath the plot show the stimulus 
timing. (B) Image of the transmembrane potential distribution 82 ms after the onset of S2 point stimulation 
at the center of the image. The pixel locations for the traces in A and C are indicated by the white and black 
dots. (C) Four representative traces recorded within the virtual cathode (red) and virtual anode (blue) areas 
depicting the response at the end of S2 and following S2 termination. (D and E) Time-space plots for lines 
longitudinal and transverse to the fiber direction (white and black dashed lines in panel B). The white 
horizontal isochronal line corresponds to the termination of S2. The white slanted lines demonstrate 
propagation velocity along (panel D) and transverse (panel E) to the fiber direction. The blue and red 
arrows indicate the location of the pixels depicted by black and white dots in panel B. Data artifacts caused 
by the testing electrode lie underneath the black W’s in the images of panels B and D. (F) The 
transmembrane potential distribution as a function of time. The numbers in the upper right represent the 
time [ms] since the termination of S2. 
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earlier (Figure 3.3 E) than in the virtual cathodes (Figure 3.3 D), again indicating anodal-

break stimulation. Conduction velocities were not computed for Figure 3.3, D and E, 

because there are no stationary velocities to measure.  

3.4.4. Threshold Anodal Stimulation of Diastolic Tissue for Elevated [K+]o 

Figure 3.4 illustrates the tissue response to anodal threshold stimulation during 

diastole for 8 mM [K+]o conditions.  

Figure 3.4 A shows the transmembrane potential distribution during a 6 mA 

(threshold), 10 ms anodal S2 stimulus using an S1-S2 interval of 350 ms for elevated 

[K+]o. The polarization pattern is very similar to that produced with the exact same 

stimulation parameters for normal [K+]o (Figure 3.1 A). A hyperpolarized region lies 

around the point of stimulation, and a pair of adjacent depolarized regions is oriented 

along the fiber direction.  

Four representative traces from the virtual cathodes (red) and virtual anode (blue) 

region are depicted in Figure 3.4 B. The optical signals initially reveal depolarization in 

the VC areas and hyperpolarization in the VA area. Moreover, although the VC regions 

are distal from the S2 electrode location, the magnitude of the VC depolarization is 

significantly larger than the magnitude of the hyperpolarization in the VA region, which 

surrounds the S2 electrode site. Following S2 termination, the VC traces reveal slight 

negative polarization whereas the VA traces exhibit depolarization. After the VC and VA 

traces intersect, the VA optical signals show activation prior to the VC signals. This 

behavior is similar to that shown for stimulation of refractory tissue in normal [K+]o 

(Figure 3.3 C), suggesting excitation initiation in the VA region. Because of the biphasic  
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Figure 3.4. Anodal-break response to diastolic threshold stimulation for elevated [K+]o (8 mM). The 
anodal S2 stimulus was 6 mA in amplitude, 10 ms in duration, and applied at an S1-S2 coupling interval of 
350 ms. (A) Image of the transmembrane potential distribution 8 ms after the onset of S2 point stimulation 
at the center of the image. (B) Four representative traces recorded within the virtual cathode (red) and 
virtual anode (blue) areas. The pixel locations for these traces are marked with white and black dots in 
panel A. (C and D) Time-space plots for lines longitudinal and transverse to the fiber direction (white and 
black dashed lines in panel A). The white horizontal isochronal line corresponds to the termination of S2. 
The white slanted lines demonstrate propagation velocity along (panel C) and transverse (panel D) to the 
fiber direction. The blue and red arrows indicate the location of the pixels depicted by black and white dots 
in panel A. (E) The transmembrane potential distribution as a function of time expressed as a percentage of 
the fluorescence intensity and represented by a false-color scale. The numbers in the upper right represent 
the time [ms] since the onset of S2. 
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nature of the VC time traces, dV/dtmax was not measured for the virtual electrode regions 

for the elevated [K+]o situation. 

Time-space plots for lines longitudinal and transverse to the fiber direction are 

presented in Figure 3.4, C and D. In Figure 3.4 C the slope of the tangent line of the 

depolarization edge (drawn approximately at the -55 mV contour) reveals no longitudinal 

wave front propagation away from the S2 electrode site for 25 ms after S2 termination. 

However, the time-space plot in Figure 3.4 D shows very slow transverse propagation (6 

and 5 cm/s) out of the virtual anode during this time period. 

Images of the transmembrane potential distribution as a function of time are 

presented in Figure 3.4 E. The stimulus was turned on in frame 0 and was terminated 10 

ms later, between the frames depicting 8 and 12 ms. Although the tissue is diastolic, S2 

fails to initiate excitation in the VC areas. Instead, following the cessation of S2 (12 ms 

frame), the charge in the VC areas begins to diffuse into the hyperpolarized VA region 

located between the VC areas (16 – 36 ms frames), and excitation is initiated in the VA 

(16 ms frame).  

It should be noted that the longitudinal axis of the spreading excitation wave 

(Figure 3.5 A, blue line) forms an approximate 35° angle with the VC location axis 

(Figure 3.5 A, green line), which was assumed to coincide with the fiber direction. 

However, for normal [K+]o (4 mM), the main ellipse axis of the propagating wave front 

concurred with the VC location axis (Figure 3.5 B, green line). The data depicted for both 

the elevated [K+]o (Figure 3.5 A) and normal [K+]o (Figure 3.5 B) situations are the same 

data described in Figure 3.4and Figure 3.1, respectively. In both cases the anodal S2 was 

a 6 mA, 10 ms pulse delivered at an S1-S2 interval of 350 ms. 
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Figure 3.5 also demonstrates time-space plots for the VC location axis (Figure 3.5 

C) and the main axis of the spreading excitation wave (Figure 3.5 D) for the elevated 

[K+]o situation (Figure 3.5 A). Figure 3.5 D shows excitation propagation after stimulus 

cessation, but no propagation is observed along the VC axis during the same time period 

(Figure 3.5 C). It should also be mentioned that slope of the tangent lines in Figure 3.5 D 

reveals faster conduction velocity (9 cm/s) in comparison with those in Figure 3.4 D for 

transverse to the fiber direction. 

 
Figure 3.5. Wave front and virtual cathode location for normal (4 mM) and elevated (8 mM) 
[K+]o. Images of the transmembrane potential distribution for (A) elevated and (B) normal [K+]o. 
The smaller ellipses depict the virtual cathode locations, and the large ellipses describe the 
propagating wave fronts. (C and D) The time-space plots constructed along the (C) green and (D) 
blue lines in panel A. The white horizontal isochronal line corresponds to the termination of S2. 
The white slanted lines show propagation velocity along the axes in panel A. 
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3.4.5. Effect of Elevated [K+]o on the Transmembrane Potential 

Figure 3.6 illustrates the effects of elevated [K+]o on the transmembrane potential. 

Elevation of [K+]o from 4 mM (Figure 3.6 A) to 8 mM (Figure 3.6 B) raises the resting 

membrane potential from -84.8±2.3 mV (75 measurements from 37 cells of 8 hearts) to -

67.5±2.3 mV (66 measurements from 27 cells of 7 hearts) and reduces the action 

potential amplitude from 112.0±4.0 mV (74 measurements from 36 cells of 9 hearts) to 

95.5±2.7 mV (68 measurements from 28 cells of 7 hearts).  

3.5. Discussion 

Cathodal and anodal make and break stimulation was first demonstrated by 

Dekker in 1970 [17]. The cellular mechanisms of these four modes for stimulating 

cardiac tissue remained a mystery until Roth’s 1995 modeling analysis [7] demonstrated 

the role played by the differences between the anisotropies of the intracellular and 

extracellular spaces in the response of the cardiac bidomain to point stimulation. The 

subsequent measurements by Wikswo et al. [3] provided clear evidence that the response 

to suprathreshold point stimulation in the isolated rabbit heart was consistent with the 

 

 
Figure 3.6. Microelectrode measurements of transmembrane potential for 
normal (4 mM) and elevated (8 mM) [K+]o. Typical action potentials recorded 
using microelectrodes for (A) normal and (B) elevated [K+]o. 
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explanation of the four modes provided by Roth. 

Nikolski et al. [18] report ‘paradoxical” results for threshold stimulation of 

cardiac tissue. In this paper, we demonstrate that the identification of the mode of 

stimulation for threshold stimulation is difficult, in part because the VC and VA areas are 

smaller and less pronounced and hence less easily delineated, because charge diffusion 

does not necessarily lead to a rapid response of the tissue, and because heterogeneities in 

the tissue excitability can lead to asymmetries in the threshold stimulus response. 

Recognizing the possible difficulty in interpreting optical recordings of excitation 

patterns for threshold stimuli, we have developed a series of visualization techniques and 

criteria that allow us to discriminate between anodal and cathodal make and break 

excitation. The examples we provide in Figure 3.1 through Figure 3.4 were chosen to 

provide a pedagogically rigorous explanation of these techniques and criteria. 

Furthermore, to provide a means to adjust the response of the tissue to the 

stimulation while keeping the stimulus parameters constant, we have conducted a series 

of experiments using elevated extracellular potassium, which raises the transmembrane 

potential and in turn increases the sodium channel inactivation. Partial inactivation of the 

sodium channels is known to increase the threshold and to slow the rise of the action 

potential [19]. The traces presented in Figure 3.4 B resulting from anodal stimulation in 

high [K+]o clearly show significant deceleration of the optical action potential upstrokes 

in comparison to those for normal [K+]o in Figure 3.1 B. Under 4 mM [K+]o, dV/dtmax for 

ten randomly selected traces is 8.7±0.5 mV/ms, whereas under 8 mM [K+]o dV/dtmax 

decreases to 5.2±0.4 mV/ms. For the microelectrode measurements dV/dtmax is 174.8±30 

mV/ms (mean±std, n=22) and 40.3±5.4 mV/ms (mean±std, n=26) for normal and 
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elevated [K+]o, respectively. This deceleration of action potential upstroke is a 

consequence of the depolarizing effect of elevated [K+]o on the resting membrane 

potential and also may be the result of a voltage-independent effect on the inwardly 

rectifying K+ current [20,21]. The discrepancy between the microelectrode and optical 

dV/dtmax measurements is due to the high sampling rate of the microelectrode data and 

fluorescence averaging within a volume of tissue in the optical data [22]. 

The traces in Figure 3.4 B also demonstrate that for a 6 mA stimulus, because of 

the slowed upstroke caused by elevated [K+]o, the VC regions cannot sufficiently 

depolarize to reach threshold during the 10 ms stimulus duration. The hyperpolarization 

in the VA area appears faster that the VC depolarization, but is a much weaker response. 

Under the condition of the partially elevated resting membrane potential, the 

hyperpolarization opens voltage-dependent sodium channel inactivation gates and causes 

increased excitability in the VA region. Thus, although the depolarization in the VC areas 

is too weak to overcome threshold and initiate an action potential, there is sufficient 

charge accumulation in the VC areas to stimulate the VA region following S2 

termination, resulting in anodal-break stimulation. 

In a recent study of acute global ischemia [23], the authors found that ischemia 

significantly changed repolarization characteristics but only slightly decreased 

conduction. This is in sharp contrast with our findings of obvious slowed conduction 

during elevated [K+]o. The Cheng et al. ischemic model is created by decreasing 

perfusion flow rate to 25% of normal. In this decreased flow state, we believe there may 

still be enough flow to allow extracellular potassium to wash out. Therefore [K+]o may 
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not have been significantly elevated in their study, explaining why they do not see 

decelerated action potential upstrokes. 

The elevation of [K+]o has biphasic effect on excitability. As was shown in pigs, 

the ventricular threshold of excitability decreases when the plasma [K+]o is moderately 

elevated, but increases sharply when plasma [K+]o exceeds 7 to 9 mM [24]. For 

intermediate concentrations of [K+]o (6 – 7 mM) we observed make excitation for 10-ms 

threshold stimulation (data not shown), as was the case for the normal 4 mM [K+]o 

situation. Therefore, in our rabbit experiments we analyzed the mechanism of diastolic 

stimulation in the [K+]o range of 8 – 9 mM. We observed anodal-break stimulation for 8 

mM [K+]o in 7 of the 10 experiments. In these cases elevation of [K+]o from 4 mM to 8 

mM increased the anodal threshold from 1.53 ± 0.5 mA (mean ± std, n=7) to 3.41 ± 1.3 

mA (mean ± std, n=7) (two-tailed, paired Student’s t-test, P<0.01). In the remaining 3 

experiments, in order to observe anodal-break stimulation [K+]o had to be increased to 9 

mM. For these hearts elevation of [K+]o from 4 mM to 9 mM increased the anodal 

threshold from 1.33 ± 0.7 mA (mean ± std, n=3) to 2.77 ± 0.9 mA (mean ± std, n=3) 

(two-tailed, paired Student’s t-test, P<0.05). Subsequent elevation of [K+]o above 9 mM 

significantly decreases the signal-to-noise ratio. When [K+]o was raised to 12 mM, tissue 

excitability was completely depressed, and stimuli as large as 10 mA elicited no 

response. 

According to anatomical architecture, myocardium is characterized by fiber axis 

rotation. This rotation is counterclockwise from the epicardial to endocardial surface with 

a rotation angle of approximately 120˚ [25,26]. Additionally, optical recordings from the 

heart surface are actually weighted averages of fluorescence from a tissue depth that has 
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been estimated to be 300 – 500 µm [1,22] all the way up to 1 – 2 mm [27-30]. In our 

experiments with elevated [K+]o, the anodal-break stimulated propagating wave front 

forms an ellipse with axes that do not coincide with the axes longitudinal and transverse 

to the fiber direction (Figure 3.5 A). This apparent discrepancy may be explained by wave 

front propagation in deeper myocardial layers. 

Though beyond the scope of this paper, it may be worthwhile to conduct detailed 

studies of the ionic mechanisms that are involved in the conversion of the stimulation 

mechanism during elevated [K+]o. Such experimental studies may include the addition of 

pharmacological sodium channel blockers and the use of another excitation-contraction 

decoupler, such as cytochalasin D. However, little modeling work exists to study the 

effects of elevated [K+]o. Detailed studies of the involved ionic mechanisms would be 

best and most easily conducted by mathematical modeling due to the complexity of such 

experimental undertakings. 

Because [K+]o elevation accompanies ischemia, our data suggest break 

stimulation as a likely mechanism for threshold unipolar anodal stimulation not only 

during hyperkalemia but also during ischemic events. Given the increased recognition of 

the role of break excitation in cardiac defibrillation [31], and the presence of increased 

extracellular potassium during fibrillation, it may be worthwhile to examine in greater 

detail the role of elevated [K+]o in the defibrillation process. 

3.6. Limitations of the Study 

As described earlier, optical signals originate not only from surface epicardial 

layers but also from layers deeper beneath the surface. The resulting three-dimensional 

data and the three-dimensional myocardial structure make the image patterns more 
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difficult to interpret. Cryoablation of the endocardium to obtain a preparation in which 

only a thin epicardial layer is viable would help to alleviate this problem [29,32-37]. 

Current optical imaging techniques require the use of an excitation-contraction 

decoupler, such as DAM, to eliminate motion artifacts in data collection. DAM is known 

to change several membrane conductances, causing some electrophysiological effects 

including decreased action potential duration [38], decreased dV/dtmax [39], and decreased 

conduction velocity [36]. While the use of DAM may quantitatively affect our results, 

comparison of data in normal and high [K+]o situations is valid because DAM was used 

in all experiments. 

When we elevated [K+]o ,  we did not alter other ion concentrations in the 

perfusate in order to maintain the same osmolarity as the original 4 mM [K+]o perfusate. 

The high [K+]o perfusate, therefore, has a higher osmolarity than the normal [K+]o 

perfusate. However, a change in [K+]o from 4 mM to 8 mM increases the osmolarity by 

only 8 mOsm/L, or a total change of 2.4%. Such a small change should have minimal 

effect upon the myocardial cells. 
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4.1. Abstract 

Compared to steadily propagating waves (SPW), damped waves (DW), another 

solution to the non-linear wave equation, are seldom studied. In cardiac tissue after 

electrical stimulation in an SPW wake, we observe DW with diminished amplitude and 

velocity that either gradually decrease as the DW dies, or exhibit a sharp amplitude 

increase after a delay to become an SPW. The cardiac DW-SPW transition is a key link 

in understanding defibrillation and stimulation close to the refractory period, and is ideal 

for general study of DW dynamics. 

4.2. Introduction 

The physics of the propagation of continuous waves in passive (linear) media has 

been studied exhaustively and exhibit reflection, refraction, and interference. In the 

classic example of electromagnetic (EM) waves in vacuum, waves of all frequencies 

propagate with the same phase velocity, so that a solitary EM pulse can propagate 

without distortion and can pass through another pulse unchanged. In lossy media, where 

energy is dissipated, wave amplitude decays as it propagates. In dispersive media, where 

wavelength depends upon propagation velocity, the wave shape can change with time and 

anomalous dispersion can occur. 

In active (non-linear) media, for which losses in the media are accompanied by 

the release of stored energy, solitary waves of a particular shape can propagate without 

distortion. The wave shape is determined by the governing non-linear differential 

equations. Propagating nerve and cardiac action potentials (APs) are examples of solitary 

waves for which nonlinearities determine biologically important phenomena [1]: AP 

initiation requires a suprathreshold electrical stimulus, which in turn depends upon both 
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the stimulus duration and the elapsed time since the previous AP. A minimum time 

interval, termed the absolute refractory period (ARP), must separate the leading edges of 

sequential APs, regardless of stimulus strength. Because of the ARP, upon collision APs 

will annihilate each other. Despite the common assumption that the AP has a constant 

shape and a uniform conduction velocity, experiments reveal that an AP following 

immediately after another AP will have a deformed shape (termed restitution) and 

reduced propagation velocity (termed dispersion) as compared to one after a longer 

separation in time [2]. Most of these phenomena are evident, for example, in reentrant 

cardiac arrhythmias [3]. Reduction of the threshold can increase the sensitivity to 

extraneous electrical activity and can lead to the spontaneous generation of waves that 

form expanding target patterns. AP annihilation upon collision results in a volume of 

tissue being refractory, so that any conduction through that region is blocked for a time 

longer than the ARP. Conduction block can lead to an AP that propagates over a closed 

path to form a vortex or more complex reentrant patterns [4]. A reduction in the ARP can 

lead to higher reentry frequencies, as seen in fibrillation, the most dangerous of all 

cardiac reentries. Finally, there is an ongoing controversy as to whether reexcitation 

following an unsuccessful defibrillation shock arises from an unstable point focus 

(triggered activity), an intramural reentry not visible from the epicardium, or slow 

propagation in the electrically altered post-shock tissue [5,6]. 

In this paper, we demonstrate experimentally that non-uniform propagation and 

AP amplitude decay can play an important role in both conduction block and delayed 

activation. We used isolated rabbit hearts and applied a conditioning electrical stimulus 

(S1), which produced a solitary AP propagating with constant shape and amplitude. 
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Following a specified interval, we applied a second stimulus (S2), which launches another 

wave into the wake of the initial one. This protocol is of special interest to the study of 

the vulnerability of the heart to the initiation of self-maintained, high frequency wave 

sources that have long been regarded as a precursor to dangerous cardiac arrhythmias [7-

9]. A widely accepted mathematical description of vulnerability assumes that the effect of 

stimulation depends on the S2 timing: an S2 soon after S1 dies out, because it is applied to 

absolutely refractory tissue; an S2 long after S1 freely propagates, because it is applied to 

resting tissue; an S2 applied close to the boundary of absolute refractoriness may result in 

a discontinuous front that evolves into reentry (see ref. [9] for details). This description 

bears its roots in the simple cellular automata model by Wiener and Rosenblueth [8], 

which assumes only discrete states of the medium occur, i.e., a wave either has a constant 

shape and propagates steadily, or it disappears. However, as mentioned above, theoretical 

and experimental observations indicate that the shape, amplitude, and velocity of a 

propagating wave are not always constant. Our experiments were designed to test 

quantitatively in cardiac tissue theoretical predictions regarding the spatio-temporal 

effects of S2 stimulation in the wake of the previous conditioning wave, particularly those 

by Aliev and Panfilov in the Belousov-Zhabotinsky reaction [10]. 

4.3. Experimental Procedures 

We used cryoablation to obtain a 1 mm thick, quasi-2D layer of left ventricular 

epicardium [11] from 2 – 3 kg New Zealand white rabbits (n = 10). We visualized the 

distribution of the transmembrane potential using a standard fluorescence mapping 

system, and voltage-calibrated the fluorescence images with microelectrode 

measurements [12]. We used the important pinwheel stimulation protocol [13]: To 
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initiate planar conditioning S1 waves propagating across the left ventricle, we placed a 

linear wire electrode, oriented perpendicular to the fibers, on the lower part of the left 

ventricular wall, and paced the heart at a cycle length of 300 ms. S2 was applied with a 

point electrode approximately at the center of the imaging area. The current used for S1 

pacing was just above the threshold, whereas the current for the S2 was 2 mA (about 20× 

diastolic threshold). The stimulus duration was 2 ms for S1 and 10 ms for S2 pulses. 

During each experiment, the S1–S2 interval was progressively shortened in 5 - 10 ms 

steps starting from 250 ms down to the ARP, when S2 no longer produced a propagating 

wave. The slow-wave dynamics described below were observed in all ten hearts when S2 

was applied near the refractory tail of the S1 response.  

4.4. Results 

The results displayed in Figure 4.1 and Figure 4.2 depict the analysis for one 

typical recording using an S1–S2 interval of 180 ms and a 2 mA cathodal S2. Figure 4.1 

demonstrates the dynamics observed after application of S2 close to the refractory period. 

The frames of the false color voltage movie in Figure 4.1(a) show the response of the 

heart following S2 termination. The movie starts at the end of S2, which was applied 

when the preceding S1 wave produced a gradient of repolarization in the vicinity of the S2 

electrode location. The S1-induced planar wave had already propagated along the fiber 

direction from the lower-right to the upper-left of the image area, with the tail of the S1 

steadily propagating wave (SPW) disappearing in the upper left corner of the 0 and 8 ms 

frames. As a result of S2, two low amplitude waves appear to propagate in opposite 

directions (arrows in the 16 ms frame). The wave moving left and upward dies out by 28 

ms, while the wave propagating right and downward becomes a full amplitude response, 
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which starts to propagate in all directions (last frame). A time lag of approximately 40 ms 

exists between the termination of S2 and the appearance of the full amplitude response. 

Figure 4.1(b) shows two damped waves (DW) forming following S2 stimulation, 

which was applied to the refractory tail of the SPW from S1, but only one DW causes a 

fully propagating wave front (S2 SPW). More detailed spatio-temporal characteristics of 

the dynamics are illustrated in the time-space plot of Figure 4.1(c), for which the data 

movie was sliced along the dashed α-axis in panel (b). From this plot, one clearly sees 

that the left wave dies, while the wave on the right results in a full amplitude response.  

Figure 4.2(a) and (b) show the DW dynamics in terms of signal upstroke (dVm/dt). 

Figure 4.2 (a) elucidates the wave front dynamics following S2 stimulation (S1 activity 

has been removed from the plot). The two waves propagate in opposite directions (white 

and black arrows) from the dog-bone shaped polarization [14] located at the center of the 

(x,y) plane. One of the waves decays, and the other transforms into a wave similar to the 

S1-induced, high-amplitude SPW. Figure 4.2 (b) demonstrates dVm/dt amplitude for the 

 

 
Figure 4.1. Damped propagation resulting from S2 stimulation in the wake of a conditioning S1 wave 
using a cathodal 2 mA, 10 ms S2 (S1-S2 interval of 180 ms). (a) Frames of a movie of the transmembrane 
potential distribution, Vm(x,y). The S2 point electrode is located at the center of the images. The numbers in 
the upper right represent the time (ms) since S2 termination. The arrows at 16 ms indicate DW propagation. 
(b) A 3-D presentation of Vm(x,y,t) following S2 stimulation, constructed by stacking sequentially recorded 
2-D plots of Vm(x,y), applying spatio-temporal filtering, and selecting Vm = -50 mV as the threshold to show 
the repolarization phase of the S1 SPW and the post-S2 activation dynamics. The dashed α-axis is parallel 
to the fiber direction and corresponds to the white dashed line in the 8 ms image in panel (a). (c) The DW 
and S2 SPW spatio-temporal dynamics. The time-space plot Vm(α,t) was constructed along the α-axis. 
Black and white arrows indicate the propagation direction for the two DW. In all panels, S2 ended at Time = 
0. 
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two waves as a function of time along the dashed α-axis in (a). The decaying wave, A-A', 

exhibits very small dVm/dt until it finally dies, while for the other wave, B-B', dVm/dt 

eventually increases. The crest-position of the waves reflects the dynamics of the 

propagation velocity: A-A' has slower velocity (16.1 ± 0.5 cm/s) which approaches zero 

around 25 ms after S2 termination, while B-B' exhibits a higher, fairly stable velocity for 

the interval shown (21.4 ± 0.4 cm/s). The two types of DW dynamics are clearly seen in 

Figure 4.2 (c). For A-A' the amplitude of the wave decreases with time until it disappears 

almost 25 ms after S2 cessation (filled circles). B-B' (open circles) initially has similar 

dynamics, but instead of disappearing, eventually gains amplitude to produce a full-scale 

SPW.  

The distance of low-amplitude DW propagation and the time delay between S2 

application and the transition of the DW into an SPW depends on the S1–S2 interval. 

Figure 4.3 illustrates the DW propagation distance and S2-SPW delay as a function of S1–

S2 interval. The data presented in this figure were acquired from a different heart than the 

data shown in Figure 4.1and Figure 4.2. Two phases are distinguishable in this curve: as 

the S1-S2 interval is decreased toward refractoriness, the character of the curve changes 

 

 
Figure 4.2. Detailed analysis of damped wave propagation. (a) 3-D presentation of signal upstroke 
(dVm(x,y,t)/dt) following S2 stimulation, constructed by stacking sequential 2-D plots of dVm(x,y,t)/dt, 
applying spatio-temporal filtering, and selecting dVm/dt = -1.1 V/s as the threshold. The arrows indicate the 
DW with decaying propagation (black) and the growing wave (white). (b) dVm(α,t)/dt as a function of time 
and space along the α-axis. A-A' and B-B' are the two S2 DW: A-A' decays and dies, while B-B' eventually 
grows into an SPW. (c) The amplitude of waves A-A' (filled) and B-B' (open) from (b). S2 terminated at 
Time = 0. 
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dramatically, with the distance and delay rising dramatically below 180 ms. This sharp 

change is caused by the transition of the stimulation mechanism from make to break 

[12,14]. In addition, the X-Z projection demonstrates approximately linear distance-delay 

dependence for S1–S2 intervals between 180 and 150 ms, indicating only slight influence 

of S1–S2 interval shortening on DW velocity (18.2 ± 2 cm/s). The minimal S1–S2 interval 

for response was 135 ms. 

4.5. Discussion 

The "S1-S2" stimulation protocol has been widely used to study the cardiac 

response to premature stimulation. The dynamics are of special interest when the S1-S2 

interval is close to the refractory period. We show damped propagating waves that either 

died out or evolved into a full-scale SPW. These dynamics are unusual from the point of 

 

 
Figure 4.3. Delay between S2 and SPW appearance versus distance between electrode position and 
location of SPW origination as a function of S1-S2 interval. The threshold of 95 mV amplitude was used to 
locate the earliest conversion of DW to SPW. The delay was calculated as the period between S2 onset and 
full amplitude response activation time ((dVm/dt)max). Projections of the curve onto the three axes are in 
gray. The sharp change in the curve corresponds to the transition of the stimulation mechanism from make 
to break. 
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view of classical theory [9] and, in our opinion, have received too little attention in either 

the theoretical or experimental literature.  

Previously, the appearance of DW, sometimes referred to as decaying 

propagation, has been shown near the vulnerable window boundaries in both FitzHugh-

Nagumo and Beeler-Reuter models of excitable media [9,15,16]. In a simulated nerve 

fiber using the 1-D FitzHugh-Nagumo model under temperature gradient conditions, a 

slow-velocity, unstable wave and a fast-velocity, stable wave originating from the same 

point and traveling in opposite directions have also been demonstrated [17]. Recent 

findings show that multiple responses exist after a single stimulation near the boundary of 

vulnerable window, and are the result of propagation and conversion of DW into normal 

pulses [10]. Similar patterns were observed in a theoretical study of an inhomogeneous 

medium [18], where the patterns occurred near the boundary of an inhomogeneity. An 

interesting insight to the problem was recently suggested by Biktashev [19], who 

reformulated the classical Hodgkin-Huxley approach to excitable systems to include two 

equations describing the front of the pulse. He found that under proper conditions, 

propagation loses stability and becomes dissipative.  

In experimental cardiac studies, responses different than all-or-none activity were 

initially reported by Kao and Hoffman [20]. They used isolated papillary muscles and 

Purkinje fibers to produce graded and decremental responses by varying the S2 strength 

applied at a fixed time during repolarization or by varying the S1-S2 interval using a fixed 

S2 strength. Additionally, the differences between the experimental study by Jalife and 

Moe, examining the role of passive tissue properties in conduction delay and impulse 

reflection [21], and the present work, describing an active response to stimulation in the 
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repolarization phase, should be emphasized. They used an isotonic sucrose solution as an 

isolator to produce an unexcitable gap between the proximal and distal sections of a 

Purkinje strand preparation, such that the transmission of the excitation between the two 

excitable segments is accomplished electrotonically by a passive response, in contrast to 

the active mechanism in our DW study. 

It is important to note that, until now, DW dynamics have been experimentally 

studied only for chemical media in the Belousov-Zhabotinsky reaction [10]. Cardiac 

research has begun to address this subject in terms of a “graded response” [22].  Gotoh et 

al. [23] used a stimulation protocol similar to ours to investigate the induction of reentry, 

and observed that a propagating lower-amplitude response could initiate normal 

activation distantly from the S2 site. Although we suggest that the DW dynamics 

described in this present work may underlie the graded response effect, some important 

differences should be emphasized. Specifically, in contrast with this DW study in which 

S2 monopolar cathodal pulses were applied in the wake of planar S1 SPW, Gotoh et al. 

used bipolar electrodes for S1 and S2 stimulation, with the cathodal S2 pole located nearer 

the S1 and the S2 poles oriented along the fiber direction. It has been shown that bipolar 

stimulation produces complex polarization patterns, which depends on both interelectrode 

distance and the position of the stimulating dipole with respect to the fiber direction [24]. 

Hence, the tissue response is determined not only by stimulus parameters but also by 

bipolar electrode location. Another important difference is the S2 stimulus strength, in 

that Gotoh et al. studied vulnerability to reentry and hence examined high amplitude 

stimulation. On the contrary, we used low intensity S2 pulses to produce DW that could 

propagate over the polarization area. 
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Our work along with theoretical findings show that either functional 

inhomogeneity, which exists in the refractory tail [10], or an anatomical inhomogeneity 

[18] can result in damped propagation and, hence, demand a substantial revision of the 

classical explanation of vulnerability of cardiac tissue. Damped propagation must be 

examined in the context of apparent focal activity after a defibrillation shock [5]. We also 

conclude that cardiac tissue can serve as an ideal excitable medium to refine the 

measurement and understanding of the physics of damped propagation of waves in non-

linear, active media, particularly for reentrant, vortex-like excitation. 
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5.1. Abstract 

Understanding the basic mechanisms of excitability through the cardiac cycle is 

critical to both the development of new implantable cardiac stimulators and improvement 

of the pacing protocol. Although numerous works have examined excitability in different 

phases of the cardiac cycle, no systematic experimental research has been conducted to 

elucidate the correlation among the virtual electrode polarization pattern, stimulation 

mechanism, and excitability under unipolar cathodal and anodal stimulation. We used a 

high-resolution imaging system to study the spatial and temporal stimulation patterns in 

20 Langendorff-perfused rabbit hearts. The potential-sensitive dye di-4-ANEPPS was 

utilized to record the electrical activity using epi-fluorescence. We delivered S1-S2 

unipolar point stimuli with durations of 2-20 ms. The anodal S-I curves displayed a more 

complex shape in comparison with the cathodal curves. The descent from refractoriness 

for anodal stimulation was extremely steep, and a local minimum was clearly observed. 

The subsequent ascending limb had either a dome-shaped maximum or was flattened, 

appearing as a plateau. The cathodal S-I curves were smoother, closer to a hyperbolic 

shape. The transition of the stimulation mechanism from break to make always coincided 

with the final descending phase of both anodal and cathodal S-I curves. The transition is 

attributed to the bidomain properties of cardiac tissue. The effective refractory period was 

longer when negative stimuli were delivered than for positive stimulation. Our spatial and 

temporal analyses of the stimulation patterns near refractoriness show always an 

excitation mechanism mediated by damped wave propagation after S2 termination. 
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5.2. Introduction 

Earlier studies of excitability during the cardiac cycle demonstrated that recovery 

of excitability is not a smoothly progressive process, but has an interval of increased 

excitability or period of superexcitability [1,2]. In the S-I curve this interval appears as a 

"dip" and, in the family of strength-duration curves, the period of increased excitability is 

manifested as displacement of the curves under stimulation during the relative refractory 

period (RRP) [3,4]. Investigations of unipolar cathodal and anodal stimulation of the 

heart with short pulses revealed that periods of superexcitability are characteristic of 

positive (anodal) stimulation, whereas the S-I curve for negative (cathodal) stimulation is 

close to hyperbolic shape [5,6].  

Cranefield showed in 1957 that during stimulation by a pair of separated 

electrodes in diastole, the excitation originates from the site of cathodal stimulation 

starting with the beginning of the pulse, indicating cathodal make stimulation, but for 

stimulation in the RRP the excitation occurs at the location of the anode after stimulus 

termination, indicating anodal break stimulation [5,7]. In 1970, Dekker established the 

heart’s ability to respond to all four modes of direct current activation: anodal make, 

anodal break, cathodal make, and cathodal break [8]. He also demonstrated the composite 

nature of the anodal and cathodal S-I curves. He showed that, due to differences in 

threshold for make and break stimulation, the S-I curve for short stimuli includes the 

most effective portions of the curves created individually for make and break stimulation.  

A theoretical framework for these observations was first established in 1996 using 

the bidomain model [9,10]. During unipolar myocardial stimulation, both regions of 

negative and positive polarizations are present. These depolarized and hyperpolarized 
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regions are called the virtual cathode (VC) and virtual anode (VA), respectively [11-13]. 

The difference in the ratios of electrical conductivities parallel and perpendicular to the 

fiber direction in the intracellular and interstitial spaces, also called "unequal anisotropy 

ratios", cause the formation of virtual electrodes [14,15]. The bidomain model 

incorporates this feature of cardiac tissue explicitly [10,16-18]. During anodal 

stimulation, a dog-bone-shaped region of hyperpolarization, oriented transverse to the 

fiber direction, arises centrally around the stimulating electrode. This hyperpolarized area 

is flanked by two regions of depolarization in the convex portions of the dog-bone. 

During cathodal stimulation, the tissue polarization has similar geometry but opposite 

polarity. In make stimulation, the excitation originates in the depolarized region (VC) at 

the onset of the stimulus. In break stimulation, the wave front originates in the 

hyperpolarized area (VA) because of charge diffusion from the VC to the VA area after 

termination of the stimulus. Bidomain model simulations have demonstrated the 

importance of virtual electrodes in the complexity of S-I curve shape [9]. Specifically, the 

dip results from an interaction between the VC and VA areas. The plateau is caused by 

break stimulation, while the abrupt descent of the plateau phase at the end of the RRP is 

associated with the change of the stimulation mechanism from break to make. 

Although a number of prior studies have explored excitability through the cardiac 

cycle, this work is the first attempt of a systematic investigation of the role of virtual 

electrodes in excitability at different S1-S2 coupling intervals. The goal of our study was 

to investigate experimentally the spatio-temporal effects underlying the mechanism of the 

S-I relation for unipolar cathodal and anodal stimulation. 
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5.3. Methods 

5.3.1. Experimental Preparation 

All experiments followed the guidelines of the National Institutes of Health for 

the ethical use of animals in research and were approved in advance by the Vanderbilt 

Institutional Animal Care and Use Committee.  

New Zealand White rabbits of either sex weighing 2.2 to 2.5 kg were first 

preanesthetized with ketamine (50 mg/kg), then heparinized (1000 units), and 

anesthetized by sodium pentobarbital injection (60 mg/kg) into an ear vein. Following a 

mid-sternal incision, the heart was removed and placed onto a Langendorff apparatus, 

where it was retrogradely perfused via the coronary arteries with oxygenated (95% O2 / 

5% CO2) Tyrode's solution of the following composition (in mM): 133 NaCl, 4 KCl, 2 

CaCl2, 1 MgCl2, 1.5 NaH2PO4, 20 NaHCO3, and 10 glucose. The excitation-contraction 

uncoupler 2,3-butanedione monoxime (BDM [Sigma-Aldrich, St. Louis, MO]) was added 

to the perfusate (15 mM) to eliminate contractile artifacts in the optical recordings. The 

temperature and pH were continuously maintained at 37ο ± 0.5οC and 7.4 ± 0.05, 

respectively. Coronary perfusion pressure was regulated to 50 mm Hg. The hearts were 

exposed to air during the experiments. A 30-minute stabilization period followed the 

staining of the heart with 200 µL of di-4-ANEPPS (Molecular Probes, Eugene, OR) stock 

solution (0.5 mg/mL dimethyl sulfoxide) administered via a bubble trap above the aorta. 

5.3.2. Experimental Protocol 

In all experiments the anterior left ventricle (LV) was mapped. The heart was 

continuously paced at a cycle length of 300 ms via a bipolar teflon-coated platinum 
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electrode (0.125 mm in diameter, 1 mm distance between poles) placed on the right 

ventricle close to the septum, 8–9 mm from the unipolar testing electrode. The pacing 

stimulus strength was adjusted to twice the diastolic threshold of excitation. The unipolar 

testing electrode (delivering S1 and S2), made from platinum wire (0.25-mm diameter), 

was placed on the center of the anterior LV. The camera field of view was centered with 

respect to the testing electrode. For S1 stimuli (4 ms duration), the current strength was 

set slightly above diastolic threshold. A piece of titanium mesh against the posterior LV 

served as the reference electrode for the S1 and S2 stimuli. 

S2 pulses of 20 ms duration for both negative and positive polarities were 

examined. To test the excitability of the myocardium through the cardiac cycle, the S1-S2 

interval was decremented in 20 ms steps beginning at 270 ms. When approaching 

refractoriness, the testing interval was progressively shortened in 5-10 ms steps until S2 

no longer produced a propagating wave in response to currents as large as 10 mA. To 

measure the threshold current, the S2 pulse was progressively decreased in amplitude in 

0.1 mA steps for anodal stimulation and 0.05 mA steps for cathodal stimulation for each 

examined S1-S2 interval. After the stimulation protocol was completed, the stability of 

the diastolic threshold was additionally verified. The electrical stimuli in the experiments 

were provided by computer-controlled current sources (Bloom Associates, Narberth, PA). 

The light emitting diode (LED) was placed in the right upper corner of the imaged area to 

indicate the time of S2 application. EGs were continuously monitored using two Ag-

AgCl pellet electrodes (EP8, World Precision Instruments) placed on opposite sides of 

the heart. 
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5.3.3. Imaging System and Data Acquisition 

A high spatial and temporal resolution imaging system was utilized. The main 

components of the optical system are a Coherent diode-pumped, solid-state Verdi laser 

(532 nm), bundles of optical fiber for illumination delivery, and a high-speed DALSA 

12-bit digital camera with spatial resolution of 128×128 pixels and temporal resolution of 

490 frames/second (Model CA D1-0128T, Dalsa, Waterloo, Ontario, Canada). The 

faceplate of the camera was cooled via a 15οC refrigerated bath. The fluorescence emitted 

from the imaged area of the heart was collected by a 52-mm lens (+4, Tiffen, Japan) and 

passed through a cutoff filter (#25 Red, 607 nm, Tiffen, Japan). The magnification was 

adjusted to focus on a 12×12 mm area. 

The camera was connected to a Bitflow R3-DIF image acquisition board (Bitflow, 

Boston, MA) in a Dell 650 Pentium IV/2 GHz Precision Workstation equipped with 2 

GB of random access memory. Custom data acquisition software written in LabVIEW 

(National Instruments, Austin, TX) records the ∼12 MB/s data stream. Following 

acquisition, data were visualized with a custom MATLAB viewer. 

5.3.4. Data Processing and Analysis 

Data were first spatially filtered with an 8x8 Gaussian filter and then normalized 

pixel-by-pixel according to fluorescence changes during the last pacing response. 

Voltage-calibration was performed according to our previous microelectrode 

measurements: the resting membrane potential is -85 mV and the action potential (AP) 

amplitude is 112 mV [19]. To illustrate the net effect of the S2 stimulation on the 

transmembrane potential distribution (Vm), the previous S1 response was subtracted from 

the S2 response for some analyses. We refer to this potential distribution as ∆Vm.  
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To study the development of the cardiac electrical response during stimulation 

and immediately after termination of the stimulus, time-space plot (TSP) analysis was 

utilized [19]. TSPs were constructed for lines along and transverse to the fiber direction. 

The intersection of these two lines roughly coincided with the position of the pacing (S1 

and S2) electrode.  

To visualize damped propagation after break stimulation three-dimensional stack 

plots were used. For this purpose data were additionally preprocessed by employing a 

5x5 Gaussian spatial filter and a 5-point mean temporal filter; then, two-dimensional 

plots of dVm/dt were sequentially stacked yielding the isosurface plot.  

The duration of the effective refractory period (ERP) was defined as the minimal 

S1-S2 interval under which the threshold excitation current exceeded 10 mA. To estimate 

the relative refractory period (RRP), the maximal S1-S2 interval (Tmax) for threshold 

current of 0.1 mA higher than diastolic threshold current was determined. Thereafter RRP 

was defined as the difference between Tmax and ERP. 

Because excitation of cardiac tissue can originate from either the VC (make 

stimulation) or from the VA (break stimulation), four spatial locations were examined in 

the analysis: two points in the central VA and one in each of the adjacent VC regions for 

anodal stimulation or two points in the central VC and one in each of the flanking VA 

areas for cathodal stimulation. We refer to these locations as VA1, VA2, VC1, and VC2. 

While stimulation at threshold intensity does not always yield obvious positive or 

negative virtual electrode polarizations, for convenience and consistency in analyzing 

each data set, we will refer to these areas as VC or VA as indicated by the stimulus 

polarity. 
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5.3.5. Statistical Analysis 

Nine rabbit hearts were used to study cathodal stimulation, and eleven hearts were 

used for examining anodal stimulation. In addition three experiments were conducted 

without BDM in the perfusate. Group data are presented as mean values ± std. Statistical 

analysis was accomplished utilizing the unpaired t-test. Differences were considered 

significant if P<0.05. 

5.4. Results 

5.4.1. Experimental Cathodal and Anodal Strength-Interval Curves 

Figure 5.1 shows the variation of cathodal (Figure 5.1) and anodal (Figure 5.1B) 

S-I curves from different rabbit hearts. In spite of some variability, common trends 

inherent in the cathodal and anodal S-I curves are evident. Anodal S-I curves (Figure 

5.1B) always contain a dip under stimulation close to the ERP (D), a plateau (P), and then 

abruptly falloff at the end of the RRP (F). These characteristics are not as evident in the 

cathodal S-I curves (Figure 5.1A).  

For anodal stimulation, the dip was located at an S1-S2 interval of 136.4 ± 13 ms 

(N = 11) with current magnitude of 1.6 ± 0.7 mA (N = 11). The local maximum for the 

plateau phase was 2.3 ± 0.8 mA (N = 11) at an S1-S2 interval of 176.4 ± 9.2 ms (N = 11). 

The subsequent decrease to a constant diastolic threshold was observed at S1-S2 coupling 

intervals ranging between 178 ± 7.0 ms and 183 ± 7.0 ms (N = 9) for cathodal stimulation 

and between 185 ± 8.4 ms and 190 ± 8.4 ms (N = 11) for anodal stimulation. The mean 

values of threshold current in diastolic tissue were 0.15 ± 0.09 mA (N = 9) and 1.05 ± 

0.36 mA (N = 11) for cathodal and anodal stimulation, respectively. The experimentally 
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measured RRP was longer under anodal stimulation (62.3 ± 12.1 ms; N = 11) than under 

cathodal stimulation (49.4 ± 5.8 ms; N = 9) (P<0.01). However, the duration of the ERP 

was insignificantly longer for cathodal (134.4 ± 5.8 ms; N = 9) than for anodal testing 

(129.5 ± 13.3 ms; N = 11).  

 
Figure 5.1. Typical cathodal (column A) and anodal (column B) experimental S-I curves illustrating the 
variability in the measurements among 6 rabbit hearts. The S2 stimulus duration was 20 ms. 
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To determine if 

BDM affects the S-I 

curve shape, control 

experiments without 

BDM were conducted. 

Figure 5.2A and B 

illustrate cathodal and 

anodal S-I curves for 

stimulus durations of 20, 

10, 5 and 2 ms. The 

measurements for each 

polarity were attained in 

two separate 

experiments. Figure 5.2C 

shows the 20-ms cathodal 

and anodal S-I curves 

measured in one heart. 

One can see the 

shortening of the plateau 

phase and increase of the 

ERP as the S2 duration 

decreases. In addition, 

the 20-ms S-I curves 

 
Figure 5.2. Variation of S-I curves as a function of S2 duration 
obtained without the use of BDM. Cathodal (A) and anodal (B) S-I 
curves have been constructed with S2 durations of 2 ms, 5 ms, 10 ms and 
20 ms. (C) Cathodal and anodal 20-ms S-I curves measured in one heart. 
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reproduce all of the characteristic phases observed in Figure 5.1 when BDM was used. 

Because some of these characteristic properties of S-I curves are not apparent for stimuli 

of shorter durations, the S-I curves constructed for 20-ms pulses were chosen for 

analysis. 

In terms of stimulation mechanism, every curve can be divided into make and 

break portions (Figure 5.3). The transition between these two segments is illustrated in 

the following sections. 

5.4.2. Stimulation at the end of the Relative Refractory Period: transition of the 

stimulation mechanism from make to break 

Cathodal Stimulation. For cathodal stimulation the duration of the RRP was 49.4 

± 5.8 ms (N = 9). Figure 5.4 demonstrates the analysis of the tissue response to 

 
Figure 5.3. Experimental cathodal (A) and anodal (B) S-I curves consisting of two sections: make and 
break stimulation. The vertical dashed line corresponds to the S1-S2 interval of the transition from the 
make to break stimulation mechanism. The points of the curves corresponding to the shortest interval for 
make stimulation and the longest interval for break stimulation are depicted by the numbers “1” and “2”, 
respectively. The number “3” corresponds to the S1-S2 interval close to the ERP when the S2 pulse 
initiates damped waves. The S2 stimulus duration was 20 ms. 
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stimulation of –0.4 mA in magnitude with an S1-S2 coupling interval of 185 ms. The 

corresponding point on the S-I curve in Figure 5.3A is indicated by "1". The images of 

transmembrane potential (Vm) distribution at 4-ms intervals after the onset of S2 are 

 
Figure 5.4. Cathodal-make response to threshold stimulation at the end of the RRP using an S1-S2 
interval of 185 ms. A: The transmembrane potential distribution as a function of time. The numbers in the 
upper right represent the elapsed time (ms) since S2 onset. The stimulation electrode is located at the center 
of the images. The bright blue spot in right upper corner during the first 20 ms is an LED artifact. B: Image 
of ∆Vm during S2. C: Four traces recorded within the VC (red) and VA (blue) areas. D and E: Time-space 
plots for lines longitudinal and transverse to the fiber direction (white and black dashed lines in B). The red 
and blue arrows indicate the location of the pixels depicted by the black and white dots in B. The white 
horizontal isochronal line corresponds to 13 ms after S2 onset. The white slanted lines in D and E 
demonstrate propagation velocity along and transverse to the fiber direction, respectively.  
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presented in Figure 5.4A. Excitation originates in the center of the mapped region, which 

coincides with the point electrode location and forms the spreading wave of elliptical 

shape. The image of ∆Vm corresponding to the 8-ms image in Figure 5.4A is shown in 

Figure 5.4B. Negative polarization in the regions flanking the central VC area is not 

revealed. In addition, due to stimulation of threshold intensity, the dog-bone contour of 

the VC is not as evident as for stimulation with larger currents [20]. Four superimposed 

calibrated optical signals from the VC (red) and VA (blue) regions are demonstrated in 

Figure 5.4C. The VC APs initiate before S2 termination. The falling of the VA traces 

during S2 indicates tissue repolarization at these regions. Figure 5.4D and Figure 5.4E 

illustrate the time-space plots for lines longitudinal and transverse to the fiber direction. 

These lines are depicted in Figure 5.4B with white and black dashed lines. One can see 

that activation starts simultaneously at the same location for both longitudinal (Figure 

5.4D) and transverse directions (Figure 5.4E). This location corresponds to the VC area. 

The origination of the excitation at the VC indicates cathodal-make stimulation. 

Figure 5.5 illustrates the tissue response to stimulation of –0.8 mA in magnitude. 

The S1-S2 interval of 180 ms was 5 ms shorter than in the above-described recording. 

The corresponding position on the S-I curve in Figure 5.3A is indicated by "2". Figure 

5.5B illustrates the distribution of ∆Vm at 8 ms after the S2 onset. No prominent VA 

hyperpolarization is observed. However, after S2 termination (20-ms frame, Figure 5.5A) 

charge diffusion occurs from the central VC area into the adjacent VA region, which 

serves as the origin for the later excitation (36-ms frame). In Figure 5.5C the optical 

signals reveal depolarization in the VC region during S2, while the VA signals exhibit 

continuation of the recovery from S1. After S2 termination the VC traces reveal negative 
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polarization whereas the VA2 signal exhibits depolarization. After intersecting with the 

VC traces, the VA2 trace shows activation prior to the traces from the VC region. 

Though VC depolarization is very noticeable in Figure 5.5D and E, the time-space plot 

for the longitudinal direction displays an asymmetric activation pattern suggesting 

 
Figure 5.5. Cathodal-break response to threshold stimulation at the end of the RRP. The S1-S2 coupling 
interval is 180 ms. For the detailed description of the figure parts, refer to the caption for Figure 5.4. In this 
figure, the white horizontal isochronal line in D and E corresponds to 28 ms after the onset of S2. 
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excitation from the VA2 region. In addition, the horizontal isochronal line indicates 

activation of the VC area (Figure 5.5E) after VA stimulation (Figure 5.5D) with a delay 

of 15 ms after S2 termination. The origination of excitation from the VA region after 

termination of the stimulus indicates cathodal-break as the stimulation mechanism. 

The transmembrane potential distribution around the stimulating electrode (1x1 

mm2 area) at the beginning of S2 was –69.8 ± 2.0 mV (121 pixels) for make stimulation 

and –60.7 ± 2.1 mV (121 pixels) for break stimulation. 

Figure 5.6 shows the mean (N = 9) ∆Vm profiles (10 ms after S2 onset) along the 

fiber direction for both make (Figure 5.6A) and break (Figure 5.6B) cathodal stimulation. 

The maximal VC depolarization is +16.1 mV and +22.5 mV for make and break 

stimulation, respectively. No obvious hyperpolarization is detected in the regions 

flanking the VC. 

Anodal Stimulation. The RRP for the anodal stimulation was estimated as 62.3 ± 

12.1 ms (N = 11). Analysis of the tissue response to stimulation of +1.3 mA in magnitude 

with an S1-S2 coupling interval of 185 ms is presented in Figure 5.7. The point on the S-I 

curve that corresponds to the stimulus under consideration is indicated in Figure 5.3B by 

"1". Two distinguishable VC depolarizations can be seen during S2 in both the set of 

consecutive Vm distributions starting with the 12-ms frame (Figure 5.7A) and the image 

of ∆Vm (Figure 5.7B). The VA hyperpolarization is not visible in Figure 5.7B. At the 

termination of S2, Vm in the lower right VC achieves threshold and thereafter produces 

the asymmetric pattern of activation. The time traces in Figure 5.7C demonstrate delay in 

excitation between the two VC regions. Activation is first observed in the VC2 area 
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Figure 5.6. ∆Vm profiles during S2 of cathodal make (A), break (B), and DW 
mediated responses (C). The repolarization of the previous S1 wave was subtracted, 
and then ∆Vm profiles were extracted for an 8-mm segment along the fiber direction 
10 ms after S2 onset. The data is represented as mean ± std, as indicated by the error 
bars (N = 9). The stimulation site is located at the middle (4 mm) of the segment. 
Asterisks in B indicate significant difference (P<0.05) between the make (A) and 
break (B) profiles, and those in C indicate significant difference (P<0.05) between 
the break (B) and DW (C) profiles. The S2 strengths were 0.6 ± 0.4 mA for make 
(A), 1.2 ± 0.7 mA for break (B), and 2.6 ± 0.6 mA for DW (C). 
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(Figure 5.7B), and then the wave propagates into the VA area (Figure 5.7C blue traces). 

VC1 activation occurs last. The time-space plots in Figure 5.7D and E show the 

activation begins in the VC2 area, followed by activation in the VA region. Both the 

succession of Vm images (Figure 5.7A) and the longitudinal time-space plot (Figure 

5.7D) demonstrate asymmetric anodal-make stimulation. 

 
Figure 5.7. Anodal-make response to threshold stimulation at the end of the RRP using an S1-S2 interval 
of 185 ms. For the detailed description of the figure parts, refer to the caption for Figure 5.4. The white 
horizontal isochronal line in D and E corresponds to 18 ms after the onset of S2. 
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Figure 5.8 illustrates the tissue response to stimulation of +2.3 mA in magnitude 

with an S1-S2 coupling interval of 180 ms. The corresponding location on the S-I curve 

is indicated by "2" in Figure 5.3B. The central region of negative polarization and the 

adjacent areas of more prominent positive polarization can be observed in Figure 5.8A 

and B. Despite the more distinctive positive polarization in comparison with Figure 5.7A, 

the activation does not happen at the VC regions; instead, charge diffusion occurs from 

 
Figure 5.8. Anodal-break response to threshold stimulation in the RRP. The S1-S2 coupling interval is 
180 ms. For the detailed description of the figure parts, refer to the caption for Figure 5.4. The white 
horizontal isochronal line in D and E corresponds to 28 ms after S2 onset. 
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the VC to the VA area (interval between 24 and 32 ms) after S2 termination. As a result, 

after the Vm reaches threshold at the VA site, the excitation initiates and propagates in a 

similar manner as the cathodal-make stimulation in Figure 5.4A. Four representative VC 

and VA optical APs in Figure 5.8C also indicate that excitation occurs first at the VA 

region. Two areas of depolarization corresponding to VCs are very distinguishable in 

Figure 5.8D during S2. However, the horizontal white isochronal line reveals that 

activation occurs at the same time in the two time-space plots: 10 ms after S2 

termination, originating at the VA. The initiation of excitation at the central VA area with 

delay after S2 termination is characteristic of the anodal-break stimulation mechanism. 

The Vm distribution over the stimulation site (1x1 mm2) at the time of S2 

application was –71.2 ± 2.0 mV (121 pixels) for make stimulation and –60 ± 2.4 mV 

(121 pixels) when stimulation occurred via the break mechanism. 

Although VA hyperpolarization is not obvious in Figure 5.7B, small negative 

polarization can be observed in Figure 5.9A. The VC depolarization is stronger than VA 

hyperpolarization and displays maximums of +6.5 mV for the VC1 region and +6.1 mV 

for VC2 region versus the VA minimum of –4.7 mV. In break stimulation the stronger S2 

strength induces a larger ∆Vm (Figure 5.9B). However, the difference in ∆Vm between 

make and break stimulation is more prominent for the VCs than for the VA area, and is 

statistically significant.  

5.4.3. Stimulation close to the Effective Refractory Period: damped wave mediated 

response 

Cathodal Stimulation. The ERP measured for cathodal stimulation was 134.4 ± 

5.8 ms (N = 9). Figure 5.10 illustrates the analysis of the tissue response to stimulation 
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–2.3 mA in amplitude and 145 ms 

for the S1-S2 coupling interval. The 

corresponding point on the S-I curve 

in Figure 5.3A is indicated by "3". 

At the time of S2 delivery, the Vm 

around the electrode is –21.2 ± 1.2 

mV (1x1 mm2, 121 pixels). 

However, 16 ms after S2 onset the 

negative polarizations at VA1 and 

VA2 have magnitudes of -47.4 ± 1.9 

mV and –43.5 ± 1.7 mV (1x1 mm2, 

121 pixels), accordingly. The 

depolarization at the VC at this time 

is elevated to –10.4 ± 3.4 mV (1x1 

mm2, 121 pixels). Similar to the 

previously described episode of 

cathodal-break stimulation (Figure 

5.5A, 24-ms through 32-ms frames), 

charge diffusion from the VC to VA 

regions occurs after S2 termination 

(Figure 5.10A, 24-ms through 32-

ms frames). However, charge 

diffusion does not successfully 

 
Figure 5.9. ∆Vm profiles during S2 of anodal make (A), 
break (B), and DW stimulation. ∆Vm profiles are 
represented as mean ± std. Asterisks in B indicate 
significant difference (P<0.05) between the make (A) and 
break (B) profiles, and those in C indicate significant 
difference (P<0.05) between the break (B) and DW (C) 
profiles. The mean values of the anodal S2 current were 
1.48 ± 0.5 mA for make (A), 2.1 ± 0.7 mA for break (B), 
and 1.6 ± 0.7 mA for DW (C). N=11. 
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generate full-amplitude APs at the VA regions, but initiates low amplitude damped waves 

(DW) (Figure 5.10A, 36-ms through 56-ms frames), that develop into regenerative 

responses at 6.6 mm and 6.2 mm from the stimulation site. The dog bone shaped VC and 

two VAs are very prominent in Figure 5.10B. Figure 5.10C shows that immediately after  

 
Figure 5.10. DW mediated response as a result of cathodal threshold stimulation close to the ERP using 
S1-S2 interval of 145 ms. A: The images of Vm distribution following S2 onset as a function of the time. B: 
∆Vm during S2. C: Four VC and VA traces. D and E: TSPs along and transverse to the fiber direction. The 
white horizontal isochronal line corresponds to 56 ms after the start of S2. 
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S2 termination the voltage at the VC decreases whereas voltage at the VAs increases, 

indicating charge diffusion from the VC to VA areas. About 35 ms after S2 onset, the 

voltage at the VC and VA regions is almost equal. Thereafter, the VC and VA time traces 

do not intersect as Vm at the VA increases, which takes place for break stimulation 

(Figure 5.5). In this situation, the VA optical signals first exhibit decreasing voltage and 

then subsequent activation approximately 65 ms after S2 onset. The failure of the S2 

stimulus to initiate full-amplitude responses at VA areas is obvious in the time-space 

plots (Figure 5.10D, E). After S2 termination, the transmembrane voltage immediately 

spreads out from the VC region about 2.5 mm and dissipates. Afterwards, longitudinal 

and transverse time-space plots reveal the excitation occurs about 45 ms after S2 

termination. 

Because of color saturation, it is difficult to show clearly both large and small Vm 

deflections with the same color scale in Figure 5.10A. To demonstrate that depolarization 

does not disappear between 36 and 56 ms, the movie of this time interval was further 

analyzed. The images of ∆Vm distribution as a function of time are displayed in Figure 

5.11A. The detailed evolution of the wave front beginning at 28 ms is presented in Figure 

5.11B and C. The dVm/dt dynamics show decreasing amplitude between 28 and 36 ms 

followed by propagation to the upper left and lower right corners of the image. The 

isosurface plot in Figure 5.11C was constructed using a threshold of –0.2 mV/ms. Two 

knobs reflect the charge diffusion to the VAs, and two isthmuses represent DWs that 

eventually develop into the regenerative response. 
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The mean ∆Vm profile during stimulation early in the RRP, when excitability 

sharply decreases with shortening of the S1-S2 interval, is shown in Figure 5.6C. As 

compared with break stimulation at the end of RRP (Figure 5.6B), the most important 

difference between the two profiles is the increased negative polarization that occurs 

when the stronger S2 stimulus is applied. The differences in the minimum areas between 

the two profiles are 4.7 mV (VA1) and 4.2 mV (VA2). There is also a difference in the 

positive deflection (VC): this difference is smaller, however, at 3.7 mV.  

Anodal Stimulation. The ERP for anodal stimulation was 129.5 ± 13.3 ms (N = 

11). Figure 5.12 represents the response of the tissue to a +1.4 mA amplitude stimulus 

applied at a 130 ms S1-S2 coupling interval. The corresponding point in Figure 5.3B is 

indicated by "3" and is located in the dip of the S-I curve. Before S2 application Vm in the 

vicinity of the stimulation electrode was –11.7 ± 4.8 mV (1x1 mm2, 121 pixels). During 

S2 the polarization at VC1 and VC2 was –22.8 ± 1.7 mV and –26 ± 1.3 mV, respectively; 

 
Figure 5.11. DW propagation after cathodal stimulation near refractoriness. A: Successive images of 
∆Vm computed by subtracting the previous S1 AP from the S2 response. The numbers in the upper right 
represent the time (ms) since S2 onset. B: Images of dVm/dt as a function of time. C: Isosurface plot of 
signal upstroke, constructed by sequential stacks of dVm/dt contours using –0.2 V/s as the threshold. Black 
one-ended arrows indicate DWs, and the double arrow at the bottom shows the fiber direction. 
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the transmembrane potential at the VA was –41.8 ± 5.2 mV (16ms, 1x1 mm2, 121 pixels). 

After S2 termination, charge diffusion to the VA region is observed (24-ms through 42-

ms frames, Figure 5.12A), but this voltage elevation fails to initiate a full-amplitude AP 

 
Figure 5.12. DW mediated response as a result of anodal threshold stimulation close to the ERP. The 
S1-S2 coupling interval is 130 ms. For the detailed description of the figure parts, refer to the caption for 
Figure 5.4. The artifact of the stimulating electrode is marked by the green "W" in B. The white horizontal 
isochronal line corresponds to 67 ms after S2 onset. 
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at the VA area. The regenerative response occurs below the VA region with considerable 

delay, approximately 52 ms after S2 termination (72-ms frame, Figure 5.12A). While 

positive polarization is barely observed during S2 in Figure 5.12A, it is visible after S1 

subtraction (Figure 5.12B). The VA traces presented in Figure 5.12C intersect the VC 

optical signals around the time interval of 35-40 ms, but then do not elevate to become 

regenerative APs as for anodal-break stimulation shown in Figure 5.8C; instead, the VA 

signals decrease in amplitude to –50 mV. Successive activation of the VC and VA 

regions occurs in the range of 70-78 ms. TSPs along and transverse to fiber direction in 

Figure 5.12D and E demonstrate an increase of the transmembrane potential in the central 

hyperpolarized area after stimulus termination, but no activation occurs immediately 

afterwards. The horizontal isochronal line shows the initiation of excitation at a delay 

about 50 ms after S2 termination. The site of origination of activation in Figure 5.12E is 

spatially shifted from the center in comparison with the time-space plot in Figure 5.8E, 

suggesting the stimulation occurs outside of the VA area. 

Because the Vm deflection at the VA is too small to be distinguishable with color 

scale in Figure 5.12A, the movie section between 38 and 68 ms was extracted for 

additional analysis and represented separately in Figure 5.13. The set of ∆Vm (Figure 

5.13A) and dVm/dt (Figure 5.13B) images demonstrate that VA depolarization propagates 

towards the lower left corner of the image (Figure 5.13B) and converts into a 

regenerative response 2.3 mm from the location of the stimulation electrode. The 

isosurface plot in Figure 5.13C illustrates wave front dynamics after charge diffusion 

from the VCs to the central VA area. The central knob represents VA depolarization after 
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charge diffusion, which narrows into a thin isthmus with time and then evolves in a fast 

propagating AP. 

Figure 5.9C shows the average ∆Vm profile at 10 ms after S2 onset for the S1-S2 

intervals corresponding to the local minima of the dips of the S-I curves for anodal 

stimulation, indicating DW mediated excitation. One can see stronger central VA 

hyperpolarization for the DW mediated mode in comparison with the curve shown for 

break stimulation in Figure 5.9B. 

5.5. Discussion 

The shape of the S-I curve depends on inherent cardiac tissue properties, as well 

as the electrode design [6] and parameters of the stimulus pulses [8,9,21,22]. There is 

significant variability in the S-I curve appearance among different hearts even when the 

same electrode and stimulation protocol are used [8]. However, anodal stimulation 

always yields more complex dynamics through the cardiac cycle than cathodal 

 
Figure 5.13. DW propagation after anodal stimulation near refractoriness. A: Successive ∆Vm images 
created by subtracting the previous S1 AP from the S2 response. B: Images of dVm/dt as a function of time. 
C: Isosurface plot illustrating signal upstroke dynamics after S2 termination. The threshold for creating the 
isosurface was –0.85 V/s. 
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stimulation. The manifestation of supernormal excitability, wherein the excitability is 

higher than expected, is a more important distinction.  

In Roth’s theoretical study using Beeler-Reuter membrane dynamics [9], he 

computed S-I curves using stimuli durations of 2, 5, 10, and 20 ms. Our experimentally 

measured anodal S-I curves (Figure 5.2B) have the same characteristic shape of the 

numerical curves: a dip, plateau phase, and descent at the end of the RRP. In the 

numerical cathodal S-I curves, the dip only appeared for the 20-ms duration. For the 

shorter stimuli, the behavior of the theoretical cathodal S-I curves is very similar to our 

experimentally measured S-I curves illustrated in Figure 5.2A. The difference between 

the cathodal numerical and experimental data for stimulation of 20-ms duration could be 

the result of discrepancy in repolarization dynamics between the BR model and real 

cardiac tissue. In addition, though the numerical model is a three-dimensional bidomain 

with cylindrical symmetry, it does not represent realistic anatomical structure with fiber 

rotation, which can affect the spatial current distribution at the stimulation location. 

Another discrepancy is the lower thresholds for resting tissue in Roth’s simulations 

(0.038 mA for cathodal and 0.41 mA for anodal stimulation) in comparison with our 

experimental measurements (0.15 ± 0.09 mA (N = 9) for cathodal and 1.05 ± 0.36 mA (N 

= 11) for anodal stimulation). The disparity in unipolar stimulation thresholds in 

numerical and experimental studies is well-known and has been discussed in the 

literature, although a definitive explanation has not been determined [23]. However, the 

anodal-cathodal threshold ratio for the theoretical data (factor of 10.8) is close to the ratio 

from our experiments (factor of 7.0). Additionally, the calculated S-I curves are shifted 
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toward longer S1-S2 coupling intervals in comparison with our experimentally measured 

curves: this is a result of the longer AP duration in the BR model (300 ms).  

Roth [9] suggested three effects combined to produce the complicated shape of 

the S-I curve: weak active response at the VC regions, the change in membrane 

resistance, and depolarization of the tissue immediately before S2 application. During 

stimulation at the end of the RRP, when tissue is recovering from refractoriness, the weak 

nonpropagating VC active response can affect the threshold. Roth hypothesized that if 

stimulation is cathodal, the weak nonpropagating active response prolongs the 

refractoriness in the border region between the VC and VA. As a result, stronger 

stimulation is needed to overcome this refractoriness. Therefore the weak active response 

increases the stimulation threshold. However, under anode break stimulation late in the 

RRP, the elevation of depolarization at the VC due to local weak active response causes 

descent of the S-I curve as the interval increases. We believe that as long as the VC weak 

response increases depolarization, it elevates the voltage gradient between the VA and 

VC area. This increased voltage gradient will facilitate excitation and decrease threshold.  

It is known that a steep change of resistance during an AP coincides with a phase 

of faster recovery during repolarization [24]. This faster recovery facilitates polarization 

at shorter of S1-S2 intervals and decreases the threshold. However, this phenomenon 

does not equally affect cathodal and anodal stimulation. It has been shown that 

stimulation during the plateau phase induces asymmetrical changes in Vm, yielding larger 

negative Vm changes than positive ones [25-28]. The L-type calcium current was 

suggested to underlie this nonlinear Vm change [29]. 
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Why does a dip appear in the anodal S-I curve but not in the cathodal curve? If 

anodal stimulation is delivered early in the RRP, the effect of the nonlinear cardiac cell 

membrane behavior at the VA area overcomes the elevation of Vm due to the short S1-S2 

interval and facilitates stimulation, causing the positive slope of the anodal S-I curve. 

When cathodal stimulation takes place early in the RRP, the spatial geometry of virtual 

electrode polarization dominates. Hyperpolarizing two VAs distant from the electrode 

requires larger current. Therefore no dip is observed in the cathodal S-I curve.  

Thus, the transmembrane voltage immediately before S2 application determines 

the membrane conductance and affects the membrane nonlinear properties. In addition, 

for stimulation close to the ERP, the pre-stimulation Vm is crucial for unstable DWs with 

diminished amplitude and velocity, causing them to either dissipate or become full 

amplitude steadily propagating waves. 

It has been shown that stimulation during the RRP can induce a graded response 

that depends on the stimulus magnitude and S1-S2 interval [28,30-34]. This response can 

be local or can propagate [31,35], forming DW with diminished amplitude and velocity 

[36]. What is the ionic mechanism of DW? In our study at the time of anodal S2 onset, 

the mean Vm around the electrode (1x1 mm2) for S1-S2 intervals corresponding to the dip 

locations in the S-I curves is –16.1 ± 6.2 mV (1331 pixels, 11 experiments). During 

cathodal stimulation close to the ERP when excitability sharply increases with decreasing 

S1-S2 intervals, this value is –17.3 ± 3.9 (1089 pixels, 9 experiments). The mean values 

of depolarization measured at the end of the RRP when stimulation occurs via the break 

mechanism are –55.7 ± 4.6 mV (1331 pixels) and –53.7 ± 6.2 mV (1089 pixels) for 

anodal and cathodal stimulation, respectively. The gating of activation and inactivation 
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for the calcium current is known to operate under membrane potentials more positive 

than –40 mV, whereas the sodium current starts to activate at potentials higher than –70 

mV and is almost completely inactivated under voltages higher than –60 mV [37]. Hence, 

it reasonable to expect that the calcium current is the dominant current in damped 

propagation, while the composition of the current underlying the break response during 

stimulation at the end of the RRP is similar to the current composition of the AP during 

diastolic stimulation. Further studies using simultaneous Ca2+ and Vm imaging are 

needed to validate this hypothesis. 

Nikolski et al. [38] reported about break excitation during diastole. When 

stimulation was of near-threshold intensity, cathodal and bipolar stimulation revealed 

break excitation. If stimulation was anodal, the excitation followed the make mechanism. 

Later, they demonstrated that anodal break excitation also can occur in diastole, but was 

accompanied by an overshoot of the pacing current because of the half-cell double layer 

discharge. The addition of a diode in the stimulation circuit eliminated both the overshoot 

and the break excitation [39].  

Lindblom et al. [40] conducted a theoretical study of excitability and 

arrhythmogenesis in the pinwheel experiment using the Beeler-Reuter Drouhard-Roberge 

model to represent membrane kinetics. Although they examined pinwheel stimulation 

protocol rather than point stimulation, their results for S2 stimuli occurring after 95% 

repolarization were similar to Roth's simulations in diastole [9]: make excitation was 

always observed. In our experiments the stimulation mechanism in diastole was make for 

both positive and negative polarities (Figure 5.3). 
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Limitations. To eliminate the mechanical distortion of optical signals, the electro-

mechanical uncoupler BDM was utilized. It is known that this reagent can modify ion 

conductances [41-43] and, hence, can affect excitability. To determine if BDM affects the 

S-I curve, control measurements of excitability through the cardiac cycle without BDM 

were conducted. It was demonstrated that all typical characteristics of the cathodal and 

anodal S-I curves also were observed in hearts perfused without BDM.  

Optical signals are estimated to originate from depths of 300-500 µm [11,44] up 

to about 1-2 mm [45-49]. On the other hand, tissue polarization falls off over a few 

electrotonic space constants. The space constants follow tissue anisotropy, with the 

smallest being transverse to the fiber direction. As was demonstrated in dog hearts, the 

value of the space constant depends on the type of cardiac tissue and varies from 920 µm 

to 1250 µm along the fiber direction and between 115 µm and 595 µm for the direction 

transverse to the fibers [50]. The depth of penetration for the polarization beneath the 

stimulating electrode is unknown, but it is assumed that this value is a few transverse 

space constants. Hence, the voltage measurements at the VA and VC can be 

underestimated if the electrical space constant is less than the optical decay constant [51]. 

In addition, averaging of the fluorescence over depth also can attenuate the appearance of 

damped propagation, causing DW to appear less prominent than they actually are. 
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This chapter presents the experimental diastolic field shock data. In mid-November we 
are meeting with M. M. Maleckar and N. A. Trayanova of Tulane University to combine 
our experimental work with their corresponding bidomain simulations using an 
anatomically accurate model of the rabbit ventricles. The resulting manuscripts will be 
submitted for publication in Circulation Research. 
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6.1. Abstract 

Although defibrillation therapy has become an invaluable medical procedure, the 

mechanisms by which strong external shocks alter the cardiac transmembrane potential to 

terminate fibrillation are still unclear. Much research has been directed at examining field 

stimulation of systolic tissue, but field stimulation of the diastolic heart is also important. 

Field shocks of 1 to 50 V/cm of varying duration were delivered during diastole to di-4-

ANEPPS stained isolated rabbit hearts placed in a bath of Tyrode’s solution. High-speed 

optical imaging was utilized to observe the tissue response to the shocks. We found 

decreasing activation time with increasing shock strength when the stimulus duration was 

2 ms. When shock duration was varied for strong stimulation (50 V/cm), activation time 

first decreased rapidly then increased more slowly with increasing shock duration. Shock-

induced negative virtual electrode polarization caused delayed activation at longer shock 

durations. Delayed activation from hyperpolarization was more prominent for the left 

ventricle than for the right ventricle. 

6.2. Introduction 

Externally-applied electric fields are known to cause changes in transmembrane 

potential (Vm) at locations distant from the stimulating electrodes, a phenomenon termed 

“far-field” stimulation. This is counter to the predictions of standard cable models in 

which the changes in Vm fall off exponentially with distance from the stimulating 

electrodes. Many possible explanations for far-field stimulation have been presented. 

Plonsey and Barr [1] hypothesized that intercellular resistances at gap junctions cause 

depolarization and hyperpolarization on opposite ends of each myocyte. However, 

attempts to experimentally verify the “saw-tooth” effect in intact cardiac tissue have 
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failed [2,3]. Theoretical simulations using the bidomain model of cardiac tissue predict 

that fiber curvature and unequal anisotropy ratios between the intra- and extracellular 

spaces cause depolarization and hyperpolarization throughout the heart [4-6]. These 

regions of positive and negative polarization far from the stimulating electrodes are called 

virtual cathodes and virtual anodes, respectively; collectively, they are known as “virtual 

electrode” polarization. 

Other heterogeneities have been hypothesized as contributors to the mechanism of 

far-field stimulation. Computer models incorporating syncytial heterogeneities of the 

bulk myocardium revealed islands of hyperpolarization and depolarization during an 

external electric shock [7]. On the level of macroscopic heterogeneities, the heart can be 

modeled as a collection of short fibers that, when exposed to an external electrical field, 

should produce hyperpolarization and depolarization in a patchy manner corresponding 

with each region [8]. In addition, cleavage planes between muscle layers may cause non-

uniform, anisotropic propagation and also provide a substrate for bulk resetting of the 

myocardium during defibrillation [9]. 

The boundary conditions of the heart surfaces also impact how an electric field 

alters Vm. Latimer and Roth [10] modeled a slab of tissue with an intercavitary electrode 

in two conditions: the epicardium bounded by air and the epicardium bounded by a 

conductive bath. They found that the conductive bath reverses the sign of Vm in some 

regions and dramatically increases the magnitude of the shock-induced changes in Vm at 

the epicardial surface. Additionally, Vm falls off rapidly with depth into the tissue, 

suggesting that the optically-measured Vm would be much smaller than the true epicardial 

Vm. Entcheva et al. [11] modeled an ellipsoid bidomain heart with transmural fiber 
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rotation using different boundary conditions. They found that the induced change in Vm 

partially results from the tissue boundary conditions, and is not fully determined by tissue 

anisotropy. When the bath is highly conductive, border polarization occurs at the 

surfaces, potentially masking the surface virtual electrode effects. If the bath is less 

conductive or if the boundary is insulating (i.e. tissue against glass) bulk virtual electrode 

polarization can break through and appear on the epicardial surface. Additionally, the 

conductivity of the bath changes the appearance of the virtual electrode polarization on 

the epicardial surface. 

Each of these hypotheses incorporates heterogeneities as a mechanism for 

producing adjacent regions of positive and negative polarization during an external 

electric shock. These adjacent areas of polarization are potential sources of wave front 

generation that could cause the far-field stimulation observed during field shocks. 

Although much research has been directed at studying the effects of field 

stimulation on systolic tissue, the effects of field stimulation on diastolic tissue are 

equally important but have been less investigated because of the complication of sodium 

channel activation [12,13]. In one experimental study of diastolic field stimulation, 

Sharifov and Fast applied shocks transmurally across an isolated pig left ventricle [14]. 

They found direct and rapid activation of the ventricular bulk and delayed activation and 

multi-phasic transmembrane potential responses at very strong shock strengths. However, 

because they were imaging the cut end of a preparation, the extent to which the angles of 

the cut fibers at the tissue surface, damage, and ischemia contributed to their results is 

unknown [15,16]. To our knowledge, there has not been a systematic, quantitative 

experimental examination of the response of the isolated whole, intact heart to field 
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shocks applied during diastole. In this chapter, we present analyses of the roles of both 

shock strength and shock duration on whole heart epicardial activation and propagation. 

6.3. Materials and Methods 

6.3.1. Experimental Preparation 

All experiments conformed to the National Institutes of Health guidelines for the 

ethical use of animals in research and were pre-approved by the Vanderbilt Institutional 

Animal Care and Use Committee. 

 New Zealand white rabbits (2.2-3.6 kg) were first preanesthetized with 

intramuscular ketamine (50 mg/kg). Intravenous heparin (2000 units) and pentobarbital 

(60 mg/kg) were then administered, and the hearts were excised quickly and 

Langendorff-perfused on a custom-built “C-shaped” glass arm. The ascending aorta was 

cannulated and secured for retrograde perfusion of the coronary arteries with oxygenated 

(95% O2; 5% CO2) Tyrode's solution of the following composition (in mM): 133 NaCl, 

4 KCl, 2 CaCl2, 1 MgCl2, 1.5 NaH2PO4, 20 NaHCO3, and 10 glucose. The temperature of 

the solution was maintained at 37° C, and the pH was regulated to 7.4 ± 0.05. To 

minimize motion artifacts, the excitation-contraction decoupler diacetyl monoxime 

(DAM, Sigma-Aldrich, St. Louis, MO) was added to the Tyrode’s solution at a 

concentration of 15-20 mmol/L. To prevent buoyancy of the heart in the bath, the heart 

was secured to the glass arm by two sutures: one near the apex and one through the 

posterior heart, carefully avoiding major vessels. The heart was then positioned in a 

warmed, oxygenated, circulating bath of Tyrode’s solution such that the anterior heart 

could be imaged. 
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6.3.2. Stimulation Protocol 

Pacing stimuli (S1) were delivered via an insulated bipolar electrode with less 

than 1 mm of the platinum wire tips exposed (0.2 mm diameter, 2 mm spacing between 

poles). The S1 stimuli, provided by a computer-controlled current source (Bloom 

Associates, Narberth, PA), were 4 ms long and 2 times threshold intensity and 

continuously delivered at a basic cycle length of 300-350 ms. Ten conditioning S1 pulses 

preceded the field shocks. 

The field shocks (S2) were produced by a custom, computer-controlled high-

voltage stimulator (Ventritex, Sunnyvale, CA) and applied via titanium plates positioned 

at both ends of the bath, such that they faced right and left ventricles. To examine the role 

of shock strength, 2 ms S2 shocks of 1 to 30 V/cm were applied during diastole (S1-S2 

coupling interval of 300-350 ms). The short 2 ms duration was used to separate the 

shock-induced response from sodium channel activation. To examine the role of shock 

duration, 50 V/cm shocks of 0.1 to 8 ms duration were delivered to diastolic tissue at a 

S1-S2 coupling interval of 350 ms. Current and voltage wave forms were monitored on a 

digital phosphor oscilloscope (TDS5034B, Tektronix, Richardson, TX) via a current 

probe (TCP305, Tektronix) and a high voltage differential probe (P5205, Tektronix) 

connected to two Ag-AgCl electrodes (2 mm diameter, model E252, In Vivo Metric, 

Healdsburg, CA) in the bath. 

6.3.3. Optical Imaging 

To view changes in Vm, 200 µL of the voltage-sensitive fluorescent dye di-4-

ANEPPS (0.5 mg/mL dimethyl sulfoxide; Molecular Probes, Eugene, OR) was 

administered via a bolus injection into a bubble trap above the aorta. The anterior heart 
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was illuminated by a diode-pumped, solid-state 532 nm laser (Verdi, Coherent, Santa 

Clara, CA). The emitted light was passed through a cutoff filter (no. 25 Red, 607 nm, 

Tiffen, Japan). In some experiments, images were simultaneously acquired with a high 

spatial resolution Dalsa CCD camera (Waterloo, Ontario, Canada; 128×128 pixels, 487 

frames/sec) and a high temporal resolution Redshirt CCD camera (Decatur, GA; 26×26 

pixels, 5051 frames/sec) by using a partially silvered mirror with 70% transmission and 

30% reflection. In other experiments, the Dalsa camera alone was used. Figure 6.1 shows 

the view of the anterior rabbit heart with the Dalsa CCD camera. The typical field of 

view required to image the whole rabbit heart was 5×5 cm2. 

6.3.4. Data Processing and Analysis 

Data acquired with the Dalsa camera were spatially 

filtered with a 3×3 Gaussian filter. When necessary to 

improve signal quality, data acquired with the Redshirt 

camera were also spatially filtered. To preserve the shock 

timing, no temporal filtering was utilized. In some figures 

the fluorescence (F) data are presented as the ratio of the 

change in F to the background F before the shock (∆F/F). 

In other analyses, data were first normalized on a pixel-by-

pixel basis according to the change in F during the S1 

pacing response. The resulting normalized data (Fnorm) 

ranged from 0 (rest) to 1 (peak) for the S1 response. Pixels corresponding to atrial tissue 

were digitally removed from the data and subsequent analyses. 

 
Figure 6.1. View of the 
anterior rabbit heart. The 
locations of the right atrium 
(RA), left atrium (LA), right 
ventricle (RV), left ventricle 
(LV), and septum are marked. 
The placement of the S1 pacing 
bipolar electrode is shown near 
the apex. The field of view was 
typically 5×5 cm2. 
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Field shock activation times (AT) for each ventricular pixel were computed as the 

elapsed time from stimulus onset until 50% of the S1 action potential amplitude was 

reached (0.5 for Fnorm). Total AT is the time from shock onset until the last ventricular 

pixel achieves the activation threshold of 0.5. Total AT was also computed for regions of 

interest corresponding to the left ventricle (LV) and right ventricle (RV) in order to 

discern activation differences between the two chambers. In these cases, total AT is the 

time from shock onset until the last pixel in the region of interest reaches the activation 

threshold. 

To obtain a measure of activation dynamics for the whole heart, the sum of Fnorm 

for all ventricular pixels for each movie frame was computed. The result was normalized 

by dividing by the number of pixels summed to yield Favg. This signal is functionally 

equivalent to a whole-heart surface recording of Vm. 

6.4. Results: Role of Shock Strength 

We examined the role of shock strength using a shock duration of 2 ms. Shock 

strengths of 1 to 30 V/cm were tested. 

6.4.1. Response to Weak Shocks 

Figure 6.2 shows the Vm response of two different hearts to 2 ms, 1 V/cm electric 

field stimulation of both polarities. Hyperpolarization is not observed for the weak shock 

strengths. Activation is very slow, mostly resulting from propagation from the site of 

initial epicardial activation, and does not begin until long after the shock is terminated. 

The initial site of shock-induced activation may be a transmural location corresponding to 

an anatomical heterogeneity, such as a papillary muscle insertion, or in other cases 

appears to originate from within the septal wall. We observe different activation timing 
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and patterns in different hearts, suggesting that anatomical differences amongst hearts 

and variations in the way the heart is mounted on the goniometer may play a role in 

activation in response to weak shock strengths. 

The green asterisks in the first frames of Figure 6.2 mark the sites of initial 

epicardial activation from 1 V/cm field stimulation. In Figure 6.2A, the initial site of 

activation is high on the left ventricle when the field is applied from left to right (top row). 

When the field is reversed, the initial site of activation corresponds to the septal wall near 

the apex (Figure 6.2A, bottom row). For this heart, activation is quite slow: the first signs 

of epicardial activation do not appear for 32 ms after shock onset, and activation of the 

whole heart is not complete until approximately 96 ms after the shock. For a different 

heart, 1 V/cm field stimulation results in much faster activation. When the electric field is 

 
Figure 6.2. Response to weak field stimulation. This figure shows the response of two different hearts 
(A and B) to 1 V/cm field stimulation of both polarities. The shock duration is 2 ms. The numbers in the 
lower left of each frame indicate the time [ms] since shock onset. Green asterisks in the first frames 
indicate the site of first activation on the epicardial surface. Green arrow in the bottom row of B indicates a 
second site of epicardial activation. Direction of the shock is indicated by the arrows: when the anode faces 
the LV, the direction is “←”, and when the cathode faces the LV the direction is “→”. Images were 
acquired with the Dalsa CCD camera (128×128 pixels at 487 frames/sec). 
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applied from left to right, activation begins approximately 6 ms after shock onset and 

originates at the septal wall near the apex (Figure 6.2B, top row). Further activation of the 

septum occurs in the 10-18 ms frames. The site of initial activation changes to a mid-LV  

location when the field is reversed (Figure 6.2B, bottom row).In the 18-ms frame, the 

initial site of activation for the opposite polarity (RV near the apex, as indicated by the 

green arrow in the bottom row of Figure 6.2B) appears to activate at a rate which is faster 

than would be expected from propagation from the mid-LV site of initial activation. This 

second region of epicardial activation suggests that there is a second site of transmural 

activation that is farther away from the epicardial surface than the first site. The resulting 

propagation from the second site has to move across a longer distance to reach the 

epicardial surface, resulting in a delayed epicardial site of activation breakthrough. By 

38-ms most of the epicardial surface is activated for both polarities. 

6.4.2. Response to Strong Shocks 

Figure 6.3 shows the response of one rabbit heart to 30 V/cm field stimulation (2 

ms duration) as imaged with the high temporal resolution Redshirt camera. Here we see 

rapid, direct activation of the heart in comparison with the weak shock strength. 

Dependence of activation upon the polarity of the electric field is also observed. When 

the anode faces the LV (Figure 6.3A), hyperpolarization of the LV is stronger and more 

obvious than RV hyperpolarization when the polarity is reversed (Figure 6.3B). 

Additionally, when the anode is at the LV, hyperpolarization of the LV slows activation 

in comparison with the other field polarity.  

Figure 6.4 shows the high spatial resolution images acquired simultaneously with 

the Dalsa CCD. These images show the importance of high temporal resolution for 
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viewing the shock-induced negative virtual electrode polarization of diastolic tissue. In 

Figure 6.3, which shows the high temporal resolution data acquired with the Redshirt 

camera (5051 frames/sec), there are 10 frames corresponding to the shock application in 

which hyperpolarization can be viewed and characterized. In Figure 6.4 the 2-ms shock 

corresponds to less than one frame (487 frames/sec). LV hyperpolarization is noted in the 

0 and 2-ms frames (Figure 6.4A), and for the opposite polarity RV hyperpolarization is 

only visible in the 0-ms frame (Figure 6.4B). 

 
Figure 6.3. Response to strong field stimulation, acquired with high temporal resolution. This figure 
shows the spatiotemporal response of one heart to 30 V/cm field stimulation. The shock duration is 2 ms. In 
(A) the electric field is applied from right to left and in (B) the field is applied from left to right. The 
numbers below frame indicate the time [ms] since shock onset. Images were acquired with the Redshirt 
CCD camera (26×26 pixels at 5051 frames/sec). 
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6.4.3. Analysis of Shock Strength 

Figure 6.5 shows the Vm 

response at the onset of the field 

shock for the range of strengths 

tested. For the weakest shocks (1 

and 3 V/cm) no immediate activity 

is observed with S2 onset; 

activation occurs long after S2 

onset. At 5 V/cm,  

hyperpolarization and 

depolarization of the LV occurs, 

depending upon shock polarity. 

When the field is applied from right 

to left, we begin to see hyperpolarization of the LV and depolarization of the RV for 7 

and 10 V/cm stimulation. When the anode faces the RV, depolarization of the LV edge 

occurs but hyperpolarization of the RV is not observed. At 15 and 20 V/cm, when the 

anode faces the LV we see strong RV depolarization and LV hyperpolarization. When the 

 
Figure 6.4. Response to strong field stimulation, acquired 
with high spatial resolution but only 2 ms temporal 
resolution. This figure shows the high spatial resolution data 
that was acquired simultaneously with the high temporal 
resolution data shown in Figure 6.3. The electric field 
strength is 30 V/cm applied (A) right-to-left and (B) left-to-
right. The shock duration is 2 ms. The numbers below the 
frame indicate the time [ms] since shock onset. Images were 
acquired with the Dalsa CCD camera (128×128 pixels at 
487 frames/sec). 

 
Figure 6.5. Summary of response to diastolic field stimulation of the isolated rabbit heart as a function 
of shock strength and polarity. The frames depicted correspond to S2 onset. Shocks of 2 ms duration were 
applied in the direction indicated. The upper limit of the color scale is saturated at the strongest strengths. 
These data were acquired with high spatial resolution (Dalsa camera, 128×128 pixels at 487 frames/sec). 
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anode faces the RV, we see strong LV depolarization and some slight hyperpolarization 

of the RV edge and RV near the junction of the apex and septum. For the strongest 

shocks (25 and 30 V/cm), when the anode faces the LV we see strong RV depolarization 

and strong LV hyperpolarization. For the opposite polarity, LV depolarization is very 

strong and RV hyperpolarization of small magnitude is noted at the RV edge and on the 

RV side of the apex. 

To compare whole heart activation as a function of shock strength and polarity, 

we computed Favg for all ventricular pixels (Figure 6.6A). Favg was also calculated for a 

normally propagating paced response (S1) and for sinus activation. The S1 trace was 

aligned with the field shock traces according to stimulus pulse onset. The sinus trace was 

aligned with S2 onset according to the first frame where sinus activation appears on the 

epicardial surface. 

Comparing the Favg traces in Figure 6.6A, the S1 activation is obviously slowest, 

with the traces of the weak, 1 V/cm shocks being significantly faster. Favg for sinus 

activation falls in line with those for the 3 V/cm shocks, but has longer repolarization. 

The upstroke velocities of Favg increase with increasing shock strength. 

The activation dynamics immediately after shock onset for strong shocks are 

better viewed in Figure 6.6B. When the electric field is applied from right to left (cathode 

at LV), activation is immediate with shock onset for the 20, 25, and 30 V/cm Favg traces. 

When the shock direction is reversed, hyperpolarization is evident after shock onset for 

those strong shocks. LV hyperpolarization is delaying whole heart activation at the 

strongest fields tested.  
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Figure 6.6. Favg and total activation time as a function of shock strength and polarity. The shocks were 2 
ms long. (A) Favg from one heart. Red vertical line indicates shock onset. (B) Magnified view of A to show 
activation dynamics immediately after shock onset. (C) Total activation time from two hearts. Error bars 
represent standard error of the mean (n=2). Direction of the shock is indicated by the arrows: when the 
anode faces the LV, the direction is “←”, and when the cathode faces the LV the direction is “→”. Data 
acquired with the Redshirt camera (26×26 pixels at 5051 frames/sec). 
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Total AT for all ventricular pixels is graphed in Figure 6.6C as a function of 

shock strength and polarity. Total AT decreases rapidly with increasing shock strength  

from 1 to 5 V/cm, then continues decreasing at a much slower rate until 15 V/cm. To this 

point, shock polarity does not have a large effect. At 20 V/cm a difference in total AT 

between the two polarities becomes apparent: total AT is slower when the anode faces the 

LV, due to negative virtual electrode polarization of the LV. From 20 to 30 V/cm, total 

AT continues decreasing for both curves, but the changes are very small. 

6.4.4. Analysis of Right Ventricle and Left Ventricle Regions 

Because the RV and LV respond differently depending on shock polarity, we 

analyzed total AT for selected regions corresponding to each chamber. Figure 6.7 shows 

the total AT for RV and LV regions of interest as a function of shock strength and 

polarity. AT maps for the whole heart are shown as insets for the 3, 10, and 20 V/cm 

shocks. The RV and LV regions of interest are indicated on these maps with white 

rectangles. 

Total AT generally decreases with increasing shock strength in both regions of 

interest. At the weak 3 V/cm strength activation is slow, the polarity of the shock does 

not have a large effect on the AT maps, and RV activation (squares, Figure 6.7) is slower 

than LV activation (triangles). At 10 V/cm activation is much faster, and the polarity of 

the shock affects the AT maps. When the anode faces the LV, activation of the LV is 

delayed by hyperpolarization, and activation of the RV is faster. When the cathode faces 

the LV, the LV activates quickly, and delayed activation is noted in the septal region. At 

strong shocks (> 20 V/cm) activation of the regions of interest is very fast, except for the 

LV when it faces the anode (blue triangles). In that configuration, strong 
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hyperpolarization of the LV delays activation of the region, as is seen in the inset of 

activation time maps for 20 V/cm. When the cathode is at the LV, the whole heart is 

activated in less than 5 ms for shocks of 20 V/cm or stronger. At strong shock strengths, 

activation is much faster than would be expected from propagation. 

6.5. Results: Role of Shock Duration 

We examined the role of shock duration using strong shocks of 50 V/cm. Shock 

durations of 0.1 to 8 ms were tested. Atrial pixels and pixels at the base of the heart 

between the atria were digitally removed from the data prior to analysis and presentation. 

 
Figure 6.7. Total activation time of RV and LV regions of interest as a function of shock strength and 
polarity. The shock duration was 2 ms. Whole heart AT maps for 3, 10, and 20 V/cm are shown in the 
insets. The RV and LV regions of interest are indicated by the white rectangles on the maps. Data were 
collected with the Redshirt camera (26x26 pixels at 5051 fps). 



   

 125

6.5.1. Response to Short Duration Shocks 

Figure 6.8 shows the response to 50 V/cm stimulation of 0.2 ms duration. 

Hyperpolarization of the side of the heart facing the anode is observed at shock onset for 

both shock polarities. Depolarization of the chamber facing the cathode is observed in the 

second frame of the shock (0.2-ms frame). RV hyperpolarization soon ends after S2 

termination, with the whole heart activated by the 0.8-ms frame of Figure 6.8B. LV 

hyperpolarization lasts slightly longer, with the whole heart excited 1.4 ms after shock 

onset (Figure 6.8A). For both polarities, the chamber facing the cathode first activates 

more strongly (yellow color), further confirming the left/right differences in activation. 

 
Figure 6.8. Response to strong field stimulation of short duration. This figure shows the spatiotemporal 
response of one heart to 50 V/cm field stimulation of 0.2 ms duration. In (A) the electric field is applied 
from right to left and in (B) the field is applied from left to right. The numbers below frame indicate the 
time [ms] since shock onset. Images were acquired with the Redshirt CCD camera (26×26 pixels at 5051 
frames/sec). 
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6.5.2. Response to Long Duration Shocks 

Figure 6.9 shows the first 4 ms of the whole heart response to 50 V/cm 

stimulation of 8 ms duration. Strong hyperpolarization of the LV is observed 0.2 ms into 

the shock (Figure 6.9A), and strong RV hyperpolarization occurs at the 0.4-ms mark 

(Figure 6.9B). The last region of RV hyperpolarization is noted near the apex 1.8 ms into 

the shock in Figure 6.9B, indicating that activation has overrun the shock. LV 

hyperpolarization is longer, with the last region occurring near the apex 2.6 ms after the 

onset of the shock (Figure 6.9A). 

The Vm response to 8-ms stimulation is much stronger and faster than the 

response to 0.2-ms stimulation shown in Figure 6.8. In Figure 6.9 the left/right 

 
Figure 6.9. Response to strong field stimulation of long duration. This figure shows the spatiotemporal 
response of one heart to 50 V/cm field stimulation of 8 ms duration. In (A) the electric field is applied from 
right to left and in (B) the field is applied from left to right. The numbers below frame indicate the time 
[ms] since shock onset. The upper limit of the color scale is saturated. Images were acquired with the 
Redshirt CCD camera (26×26 pixels at 5051 frames/sec). 
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hyperpolarization/depolarization (blue/red colors) dichotomy between the chambers 

dependent on the field direction is much more pronounced. Peak activation (yellow color) 

of the entire half of the facing the cathode is very obvious in the 4.0-ms frames of Figure 

6.9, whereas in Figure 6.8 only a fraction of the heart was maximally activated 4 ms after 

shock onset. 

6.5.3. Analysis of Shock Duration 

Whole heart activation dynamics as a function of shock duration is shown in 

Figure 6.10. In Figure 6.10A Favg for each shock duration and polarity is plotted. Note 

that the peak Favg  for each curve is greater than 1. This means that the very strong 50 

V/cm shock caused a much stronger and faster response than the S1 pacing stimulus by 

which the fluorescence data was normalized. In this graph we see that the shortest shocks 

(0.1 ms) exhibit delayed upstroke velocities in comparison with the other curves. 

Hyperpolarization with shock onset is also visible in some curves.  

Figure 6.10B is a magnified view to show better the response after shock onset. 

Hyperpolarization after shock onset is noted in every curve except the 0.1 and 0.2 ms 

curves when the field is applied from left to right (cathode at LV). For these cases, RV 

hyperpolarization is of small magnitude and very transient (as noted Figure 6.8B), and 

therefore does not reveal itself in the Favg computation for the whole heart. For all other 

shock durations and polarities, the shock-induced negative virtual electrode polarization 

is substantial enough to manifest in the whole heart activation dynamics. Activation for 

the 0.1-ms shocks is slowest, followed by the 0.2-ms duration. For the longest shock 

durations (3, 5 and 8 ms), strong LV hyperpolarization dominates in the Favg traces when 
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Figure 6.10. Favg and total activation time as a function of shock duration and polarity. The shock 
strength was 50 V/cm. (A) Favg for each shock duration and polarity. Red vertical line indicates shock 
onset. (B) Magnified view of A to show activation dynamics after shock onset. (C) Total activation time. 
Direction of the shock is indicated by the arrows: when the anode faces the LV, the direction is “←”, and 
when the cathode faces the LV the direction is “→”. Data acquired with the Redshirt camera (26×26 pixels 
at 5051 frames/sec). 
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the field is applied from left to right, resulting in a large decrease of Favg after shock onset 

and delayed activation. 

Total AT for each shock duration is graphed in Figure 6.10C according to shock 

polarity. Because of the strong 50 V/cm field, total AT decreases rapidly with increasing 

shock duration until 2.0 ms. For shock durations greater than 2.0 ms, total AT increases 

with increasing shock duration because of stronger hyperpolarization. Differences in total 

AT between the two polarities occur for all shock durations. The stronger LV 

hyperpolarization delays activation more than RV hyperpolarization; thus total AT is 

longer when the anode faces the LV. 

6.5.4. Analysis of Right Ventricle and Left Ventricle Regions 

As the two ventricular chambers activate differently depending on the field 

direction, we analyzed regions of interest corresponding to the RV and the LV. The 

results are shown in Figure 6.11. For shocks of 0.1 to 0.8 ms duration, total AT decreased 

rapidly with increasing shock duration in each region of interest. For shocks longer than 

1.0 ms, there is little change in total AT for the RV when it faces the cathode (blue 

squares) and for the LV when it faces the cathode (red triangles). Activation of these 

regions is very rapid (< 2 ms), with the LV activating slightly faster than the RV. 

However, when the regions of interest face the anode, activation of the regions is slowed 

by hyperpolarization. When the RV faces the anode, total AT of the RV region (red 

squares) increases with increasing shock duration for shocks longer than 1.0 ms. When 

the LV faces the anode, LV total AT (blue triangles) plateaus for the 1.5 to 3.0-ms 

shocks, and then increases for the 5 and 8-ms durations. 
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To characterize further the differences in LV and RV activation depending on 

field polarity, Favg was computed for the regions of interest indicated in Figure 6.11. 

These Favg traces, shown in Figure 6.12, depict activation during and immediately after 

the shocks and clearly illustrate dramatically different activation dynamics of the RV and 

LV as a function of the field direction. In this figure, the traces were aligned according to 

shock termination in order to see better the effects of the different shock durations.  

In Figure 6.12A the electric field was applied from left to right such that the 

cathode faced the RV and the anode faced the LV. Favg traces for the RV region reveal 

slow activation for the 0.1 and 0.2-ms durations, but for all longer durations activation is 

very rapid beginning at the onset of the shock. Dominant negative virtual electrode  

 
Figure 6.11. Total activation time of RV and LV regions of interest as a function of shock duration and 
polarity. The shock strength was 50 V/cm. Whole heart AT maps for 0.4, 2, and 8 ms are shown in the 
insets. The RV and LV regions of interest are depicted by the white rectangles on the maps. Images were 
collected with the Redshirt camera (26x26 pixels at 5051 fps). 
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polarization is obvious in the LV Favg traces, especially at the longest durations. 

Activation of the LV is much slower in comparison with the RV. The LV Favg traces for 

the 5 and 8-ms durations exhibit four phases of behavior. The first phase is negative 

polarization with shock onset which is followed by a phase of fast depolarization. The 

third phase is slower depolarization to ≈0.5, with activation completed by a phase of 

increased upstroke velocity after shock termination. Negative polarization in the Favg 

 
Figure 6.12. Favg for RV and LV regions of interest as a function of shock duration and polarity. The 
shock strength was 50 V/cm. Vertical red lines indicate the termination of the shock. The time scale was 
chosen to show activation dynamics during and immediately after the shocks. Left column: Favg for the RV 
region. Right column: Favg for LV region. In (A) the electric field was applied from right to left (anode at 
LV). In (B) the electric field was applied from left to right (cathode at LV). Data were acquired with the 
Redshirt camera (26x26 pixels at 5051 fps). 
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traces lasted for approximately 1.6 ms for durations of 1.5 ms and greater; the increase in 

durations above 1.5 ms did not lengthen the time of negative Favg. 

In Figure 6.12B the electric field was applied from right to left such that the anode 

faced the RV and the cathode faced the LV. Negative polarization is observed in all of 

the RV traces; however, the magnitude of the hyperpolarization is smaller and activation 

is faster than was observed for the LV in Figure 6.12A. The RV Favg traces for the 5 and 

8-ms durations exhibit less prominent four-phase behavior that was described for the LV 

in Figure 6.12A. For the RV, the negative polarization is shorter (≈1 ms) for shock 

durations of 1.5 ms and greater. Favg traces for the LV region reveal slow activation for 

the 0.1 and 0.2 ms durations, but activation is extremely rapid for all longer shock 

durations. The maximum Favg. for the LV increases with increasing duration, and 

activation is stronger and faster than for the RV when it faced the cathode (Figure 

6.12A). For the 0.1-ms duration, Favg increases rapidly for one frame (0.2 ms) at shock 

onset, and then much slower activation follows when the chamber faces the cathode (RV 

in Figure 6.12A and LV in Figure 6.12B, black traces). The brief period of positive 

polarization in response to an extremely short shock may reflect membrane charging. 

6.6. Discussion 

We find that the chamber that faces the cathode activates first and more strongly; 

the chamber facing the anode exhibits slower activation. Negative virtual electrode 

polarization delays activation. The LV hyperpolarizes at lower shock strengths than the 

RV. The magnitude and duration of LV hyperpolarization is larger than that observed for 

the RV.  
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Many of the experimental results presented are in good agreement with numerical 

predictions of an anatomically accurate 3D bidomain model of the rabbit ventricles which 

includes the bidomain anisotropy required for realistic modeling of shock response 

(M.M. Maleckar, personal communication, 2005). Maleckar and Trayanova [17] reported 

an increase in negative shock-induced Vm predominantly in the septum and LV free wall 

with increasing field strength, causing paradoxical increase in AT for stronger shocks. 

These results qualitatively agree with our experimental results in which field stimulation 

of strong strength and long duration (50 V/cm; 3, 5, and 8 ms) increased total AT due to 

negative virtual electrode polarization (Figure 6.10C and Figure 6.11). These results also 

agree with others who found shock-induced delayed activation from hyperpolarization in 

LV wedge preparations [14,18] and cell strands [18]. 

One discrepancy of note between experiment and theory is the experimental 

absence of obvious RV hyperpolarization at shock strengths less than 20 V/cm. 

Numerical simulations predict negative virtual electrode polarization of the RV should 

occur. The discrepancy may be due to modeling error, i.e. inaccurate membrane model, 

or may be due to experimental limitations. The bath may be masking virtual electrode 

polarization [10,11]. Additionally, when the chamber faces the anode, bidomain theory 

predicts negative polarization of the epicardial surface and positive polarization of the 

endocardial surface [4-6]. Transmural fiber rotation for both the LV and RV is 

counterclockwise from the epicardial to endocardial surface with a rotation angle of 

approximately 120˚ [19,20]. As the RV is much thinner than the LV, RV transmural fiber 

rotation is faster. In addition, optical recordings from the epicardial surface are actually 

weighted averages of fluorescence from a tissue depth that is estimated to be 300-500 µm 
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[21,22] or as much as 1-2 mm [23-26]. The combination of fiber rotation and 

fluorescence averaging over depth could blur epicardial and transmural virtual electrode 

polarization patterns, resulting in smaller recordings of shock-induced hyperpolarization 

for the thinner RV than actually occur. In the LV, this is less of a problem because 

transmural rotation is slower through the thicker wall. We do observe some 

hyperpolarization at the RV edge near the right atrium and the RV near the apex for 20-

30 V/cm shocks (Figure 6.3B, Figure 6.4B, and Figure 6.5). The fact that these locations 

correspond to thicker regions supports the above hypothesis. 

For very strong and very long field stimulation, Favg traces in hyperpolarized 

regions (LV in Figure 6.12A and RV in Figure 6.12B) revealed four phases of behavior: 

initial hyperpolarization at shock onset, rapid depolarization, slow depolarization, and 

fast depolarization after shock termination. This morphology is similar to the triphasic 

morphology observed in transmural field stimulation of porcine LV preparations [14]. 

Our latter three phases correspond to their three phases: the authors report a lack of 

hyperpolarization during diastolic field stimulation. However, careful examination of one 

of the curves in their article (Figure 4C, top trace) reveals transient hyperpolarization of 

small magnitude at shock onset [16] in response to diastolic stimulation of 38 V/cm for 

10 ms. This disagrees with our results; we observed prominent negative virtual electrode 

polarization for shocks with these approximate parameters. 

Nevertheless, in their study Sharifov and Fast [14] hypothesized that the complex 

upstrokes resulted from electrotonic interaction and spatial averaging of virtual electrode 

polarization at microscopic heterogeneities. Activation is very rapid at virtual cathode 

while, at virtual anodes, negative polarization can occur for the duration of the shock. 
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Spatial averaging by the imaging modality of adjacent virtual cathodes and anodes would 

measure multi-phasic upstrokes. They also noted that the phase of slow depolarization 

during the shock was paralleled by the occurrence of elevation of diastolic Vm after the 

shock. Indeed, close examination of the Favg traces in Figure 6.10A reveals elevation of 

the resting potential after the shock, most notably for the 8-ms duration. Elevation of 

resting Vm is believed to be a signature of membrane electroporation [24,27]. Therefore 

multi-phasic upstrokes with the morphology described above may be another indicator of 

electroporation. 

6.7. Conclusions 

In conclusion, the goals of this study were to characterize the effects of diastolic 

field stimulation of the isolated whole heart as a function of shock strength, duration, and 

polarity. Temporal activation analyses indicate that increasing shock strength and 

duration do not necessarily result in faster activation, and that negative virtual electrode 

polarization must be considered when applying field stimulation to diastolic tissue. 
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7.1. Abstract 

The response of cardiac tissue to strong electric fields is determined by 3-D cable 

properties, bidomain anisotropy, nonlinearities, and, most importantly, heterogeneities. 

Langrill Beaudoin and Roth [1,2] numerically studied the effect of a plunge electrode and 

found alternating regions of hyperpolarization and depolarization around the electrode in 

response to field shock. We sought to verify experimentally their results by using field 

stimulation and optical imaging of di-4-ANEPPS stained rabbit hearts with a pulled glass 

micropipette serving as the heterogeneity. There is good agreement between the 

experimental and numerical results. Because adjacent regions of opposite polarization are 

potential sources of wave front generation, our results suggest that plunge electrodes or 

similar-sized heterogeneities may play a role in far-field stimulation. 

7.2. Introduction 

The effects of defibrillation-strength electric fields on the heart have been the 

subject of numerous experimental studies. In the context of the bidomain theory of 

cardiac tissue, heterogeneities cause regions of positive and negative polarization when 

exposed to an externally applied electric field. Researchers often use insulated plunge 

electrodes to record the extracellular potential within the ventricular walls [3,4]. While 

these plunge electrodes had been thought to have little impact upon the electrical activity 

of the heart, these electrodes are essentially artificially added myocardial heterogeneities 

within the cardiac bidomain. Recent bidomain calculations by Langrill Beaudoin and 

Roth [1,2] predict alternating areas of positive and negative polarization around an 

insulated heterogeneity. The purpose of this study was to verify experimentally the 

results of their numerical simulations. The predicted adjacent areas of opposite polarity 
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are potential sources of wave front generation, a hypothesized mechanism for far-field 

stimulation, could contribute to arrhythmogenesis, and could lead to errors in mapping 

shock distributions. 

7.3. Methods 

All experiments conformed to the National Institutes of Health guidelines for the 

ethical use of animals in research and were pre-approved by the Vanderbilt Institutional 

Animal Care and Use Committee. 

7.3.1. Experimental Set Up 

Here we present the effects of a heterogeneity during field stimulation of cardiac 

tissue. A pulled glass micropipette (1.5-mm 

diameter) was pushed through the anterior left 

ventricle of a Langendorff-perfused rabbit heart in a 

warmed bath of Tyrode’s solution with titanium 

plates at each end for field stimulation. The heart 

was mounted on a custom-built glass goniometer to 

allow rotation of the fiber direction (FD) in the area 

of the heterogeneity with respect to the field 

direction. The heart was secured to the goniometer 

by two sutures: one near the apex and one through 

the posterior heart, carefully avoiding major vessels. 

The experimental set up is shown schematically in 

Figure 7.1. 

 
Figure 7.1. Experimental set up of 
isolated heart mounted on a goniometer. 
This figure shows the isolated rabbit 
heart mounted on a goniometer to allow 
rotation of the heart with respect to the 
electric field. The heart is in a warmed 
bath of Tyrode’s solution. Titanium plate 
electrodes are positioned at the ends of 
the bath for delivery of field shocks. A 
pulled glass micropipette through the 
anterior left ventricle serves as the 
heterogeneity. 
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7.3.2. Optical Imaging 

The heart was stained with the voltage-sensitive dye, di-4-ANEPPS, and a CCD 

camera (Redshirt Imaging, Decatur, GA; 80×80 pixels, 1000 frames/sec) was positioned 

to image the 8×8 mm2 area around the heterogeneity. The tissue was illuminated by a 

diode-pumped, solid-state 532 nm laser (Verdi, Coherent, Santa Clara, CA). The emitted 

light was passed through a cutoff filter (no. 25 Red, 607 nm, Tiffen, Japan). To reduce 

motion artifacts in the acquired data, the excitation-contraction uncoupler diacetyl 

monoxime (DAM, Sigma-Aldrich, St. Louis, MO) was added to the Tyrode’s solution at 

a concentration of 15-20 mmol/L. 

7.3.3. Stimulation Protocol 

Apical pacing stimuli (S1; 4 ms duration, 1.5× threshold) were delivered every 

300 ms via an insulated bipolar electrode. Field shocks (S2), supplied by a computer-

controlled custom voltage source (Ventritex,Sunnyvale, CA), of 3 ms duration and 30 

V/cm strength were applied either to systolic tissue at an S1-S2 coupling interval of 85 

ms or diastolic tissue at an S1-S2 coupling interval of 300 ms. Shocks of both polarities 

were examined with FD parallel and perpendicular to the field. Each shock configuration 

was tested twice; data from both acquisitions were summed and then spatially filtered 

(5×5 Gaussian) and normalized according to the pacing S1 response, assuming a resting 

transmembrane potential (Vm) of -85 mV and an action potential amplitude of 112 mV 

[5].  

7.3.4. Numerical Simulations 

For comparison with the experimental data, the bidomain model was used to 

predict the effects of a 1.6-mm diameter heterogeneity in a 2-D sheet of cardiac tissue to 
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5 V/cm stimulation. The simulations used a linear membrane model; thus the numerical 

results are the same for systolic and diastolic field shocks. Therefore the theoretical data 

is not replicated in the figures showing the experimental diastolic field stimulation data. 

7.4. Results and Discussion 

7.4.1. Vm response to systolic field stimulation 

The experimental images of systolic field stimulation show the shock-induced 

∆Vm during the second-ms of the 3 ms stimuli. The images were obtained by subtracting 

the frame acquired just before the shock. Figure 7.2 shows the response to both polarities 

with FD parallel to the field. Alternating regions of positive and negative virtual electrode 

polarization (VEP) occur around the heterogeneity. When the polarity is reversed, the 

 
Figure 7.2. Virtual electrode polarization around an artificial heterogeneity during systolic field 
stimulation with fiber direction parallel to the electric field. Field shocks of 30 V/cm strength were applied 
for 3 ms during the plateau phase (S1-S2 coupling interval of 85 ms). Images of the shock-induced change 
in transmembrane potential (∆Vm) are shown for both shock polarities; the frames correspond to the 
second-ms of the shock. Temporal traces for the areas indicated by the magenta and green squares are 
depicted below the images. Insets of the traces reveal the shock response in more detail. Red diamonds 
indicate the interval of S2 application. 
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VEP pattern reverses. There is excellent qualitative agreement between the experimental 

and theoretical images. Time traces for the regions indicated by the magenta and green 

squares reveal the timing of the field shocks with respect to the pacing response. The 

insets show in more detail the temporal shock response; the red diamonds indicate the 

interval during which the S2 shock was delivered. Fast negative VEP with shock onset is 

observed, along with positive VEP of smaller magnitude. Stimulation in the plateau phase 

is known to produce larger negative changes in Vm than positive ones [6-8]. The L-type 

calcium current has been hypothesized to underlie this nonlinearity in systolic Vm 

response [9]. The temporal traces also reveal the reversal of ∆Vm with polarity. When the 

field is applied from left to right with parallel FD, the largest ±∆Vm in the virtual 

electrodes around the heterogeneity are -64 mV and +29 mV. For the opposite polarity, 

they are -68 mV and +18 mV.  

Figure 7.3 shows ∆Vm for systolic shocks when FD is perpendicular to the field. 

The 90° change in FD reverses the pattern of VEP and generally decreases the magnitude 

of ∆Vm. The maximum ±∆Vm are -51 mV and +20 mV with the cathode to the right, 

and -28 mV and +30 mV for the opposite polarity. Again the experimental polarization 

pattern correlates well with the theoretical prediction. 

7.4.2. Vm response to diastolic field stimulation 

The experimental images of diastolic field stimulation show the shock-induced 

∆Vm during the first-ms of the 3 ms stimuli. Figure 7.4 shows the response to diastolic 

field stimulation when the FD is parallel with the electric field. The pattern of VEP 

around the heterogeneity resembles that of the parallel FD data for systolic field 

stimulation in Figure 7.2, but with positive VEP more prominent. Again, with field  
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Figure 7.3. Virtual electrode polarization around an artificial heterogeneity during systolic field 
stimulation with fiber direction perpendicular to the electric field. Field shocks of 30 V/cm strength were 
applied for 3 ms during the plateau phase (S1-S2 coupling interval of 85 ms). Images of the shock-induced 
change in transmembrane potential (∆Vm) are shown for both shock polarities; the frames correspond to the 
second-ms of the shock. Temporal traces for the areas indicated by the magenta and green squares are 
depicted below the images. Insets of the traces reveal the shock response in more detail. Red diamonds 
indicate the interval of S2 application. 

 
Figure 7.4. Virtual electrode polarization around an artificial heterogeneity during diastolic field 
stimulation with fiber direction parallel to the electric field. Field shocks of 30 V/cm strength were applied 
for 3 ms to resting tissue (S1-S2 coupling interval of 300 ms). Images of the shock-induced change in 
transmembrane potential (∆Vm) are shown for both shock polarities; the frames correspond to the first-ms 
of the shock. Temporal traces for the areas indicated by the magenta and green squares are depicted below 
the images. Red diamonds indicate the interval of S2 application. 
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direction reversal, the spatial pattern of polarization reverses as well for diastolic 

stimulation. The temporal traces show the activation dynamics in the green and magenta 

regions after the shock; the red diamonds indicate S2 shock timing. The traces reveal fast 

depolarization with onset of the shock in the positive VEP regions. In the negative VEP 

regions, hyperpolarization of smaller magnitude occurs at the shock onset, but lasts only 

1 ms. Depolarization of the negative VEP regions occurs during the second and third-ms 

of the field shock. For diastolic stimulation, activation of the positive VEP areas is faster 

than that in the negative regions VEP. Hyperpolarization in the negative VEP regions 

delays activation. 

Figure 7.5 shows the diastolic shock-induced Vm response with the FD 

perpendicular to the electric field. The 90° rotation of the FD causes the spatial pattern of 

VEP to almost disappear. However, when comparing the shock-induced ∆Vm images, one 

 
Figure 7.5. Virtual electrode polarization around an artificial heterogeneity during diastolic field 
stimulation with fiber direction perpendicular to the electric field. Field shocks of 30 V/cm strength were 
applied for 3 ms to resting tissue (S1-S2 coupling interval of 300 ms). Images of the shock-induced change 
in transmembrane potential (∆Vm) are shown for both shock polarities; the frames correspond to the first-
ms of the shock. Temporal traces for the areas indicated by the magenta and green squares are depicted 
below the images. Red diamonds indicate the interval of S2 application. 
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can see reversal of the pattern of the areas of strongest change (yellow color) when the 

electric field is reversed. The temporal traces, indeed, reveal different activation 

dynamics for different regions around the heterogeneity. Though no hyperpolarization is 

detected in the traces, delayed activation is observed. When the field direction reverses, 

the activation in the region is faster. Thus, while the spatial pattern of VEP is not readily 

visible, there are areas of faster and slower activation dynamics around the heterogeneity 

when FD is perpendicular to the field. 

7.4.3. Vm response to systolic field stimulation around a very small heterogeneity 

In another experiment we observed VEP around very small artificial myocardial 

heterogeneities, comparable to the size of anatomical heterogeneities in the heart. Figure 

7.6 shows ∆Vm around a cactus needle (≈0.28-mm diameter) when the FD is parallel to 

the electric field. Small regions of VEP occur in the area immediately around the cactus 

needle. The spatial scale and magnitude of ∆Vm are smaller with the cactus needle in 

comparison to the larger, 1.5-mm diameter micropipette. This is in agreement with 

numerical predictions [2]. When the electric field is applied from left to right, both 

moderate negative polarization and positive polarization of very small magnitude are 

visible in the temporal traces. With the reversed polarity, the pattern of VEP also reverses 

and negative polarization is observed in the temporal trace. However, positive 

polarization does not occur in the other trace. Rather, this region of tissue seems 

relatively unaffected by the shock. The small size of the heterogeneity may not be 

sufficient to produce positive polarization in systolic tissue when the majority of the left 

ventricle is hyperpolarized from the shock. However, even if positive polarization does 



   

 148

not occur with this electric field polarity, there still exists a gradient of Vm between the 

adjacent areas to allow charge diffusion and potentially generate a wave front. 

7.5. Conclusions 

These results are experimental confirmation of previous bidomain 

calculations.[1,2] The data reveal the importance of the relationship between the electric 

field, heterogeneity, and FD. Our findings suggest that insulated heterogeneities, such as 

plunge electrodes, could cause unintended experimental artifacts and results. The cactus 

needle data imply that VEP around even relatively small heterogeneities may play a role 

in far-field stimulation and arrhythmogenesis. 

 
Figure 7.6. Virtual electrode polarization around a cactus needle during systolic field stimulation with 
fiber direction parallel to the electric field. Field shocks of 30 V/cm strength were applied for 3 ms to 
systolic tissue (S1-S2 coupling interval of 85 ms). Images of the shock-induced change in transmembrane 
potential (∆Vm) are shown for both shock polarities. Temporal traces for the areas indicated by the magenta 
and green squares are depicted below the images. Insets of the traces reveal the shock response in more 
detail. Red diamonds indicate the interval of S2 application. 
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CHAPTER VIII  

 

SUMMARY AND FUTURE WORK 

 

The objectives of this research were to investigate experimentally the response of 

the heart in the context of the bidomain theory of cardiac tissue. Different experimental 

conditions and stimulation protocols were examined. 

The review of cardiac dynamics in Chapter 2 illustrated the importance of 

studying electrical stimulation of the cardiac tissue. Ventricular fibrillation and the 

unknown mechanisms of defibrillation were discussed. The bidomain model was 

introduced as a numerical model which has accurately predicted many electrical 

properties of cardiac tissue and many of the effects of electrical stimulation of the heart. 

Experimental unipolar stimulation, producing the characteristic “dog bone” virtual 

electrode polarization pattern, was shown to agree with the unequal-anisotropy ratio 

bidomain model. Field stimulation and the proposed role of heterogeneities and virtual 

electrode polarization in bidomain theory were additionally described. Lastly, cardiac 

optical mapping was presented as a non-invasive way to measure the membrane response 

to electrical stimulation. 

Chapter 3 details the results of anodal stimulation of diastolic cardiac tissue 

during elevated extracellular potassium conditions. Under normal conditions, activation 

from diastolic anodal stimulation is mediated by the make excitation mechanism. The 

excitation originates at the onset of the stimulus in the virtual cathodes that flank the 

virtual anode “dog bone”. However, when the extracellular potassium concentration is 
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increased, as occurs during ischemia, the resting transmembrane potential is elevated. 

Elevation of resting transmembrane potential increases sodium channel inactivation, 

causing the threshold to increase and slowing action potential upstrokes. For threshold 

anodal stimulation in high potassium, we found that the virtual cathodes were not 

depolarized above threshold during the 10-ms stimulus because of the slowed upstroke. 

Because the resting transmembrane potential is elevated, hyperpolarization in the small 

virtual anode opens voltage-dependent sodium channel inactivation gates, producing 

increased excitability in the virtual anode. At the termination of the stimulus, charge that 

accumulated in the virtual cathodes (but could not overcome threshold) is sufficient to 

stimulate the virtual anode. Excitation, therefore, initiates in the virtual anode region at 

the termination of the stimulus, indicating anodal-break stimulation. Subsequent 

numerical predictions of the bidomain model qualitatively agreed with our experimental 

findings [1]. These results suggest that anode break, not anode make, may be the 

excitation mechanism for threshold unipolar anodal stimulation during hyperkalemia and 

ischemia. 

In Chapter 4 we presented the results of unipolar cathodal stimulation in the wake 

of a planar conditioning wave propagating along the fiber direction. When the unipolar 

stimulus was applied near the refractory tail of the planar wave, slow-wave dynamics 

were observed. Two damped waves of small amplitude propagate slowly in opposite 

directions from the “dog bone” shaped polarization centered around the unipolar 

electrode. The damped wave that propagates into more refractory tissue (toward the 

planar conditioning wave) decays and dies approximately 28 ms after stimulus 

termination. The other damped wave, whose initial dynamics are similar to the first, 
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eventually evolves a full amplitude steadily propagating wave roughly 40 ms after 

stimulus termination. The transition of damped waves to full amplitude propagating 

waves suggests that slow propagation in electrically altered post-shock tissue may be one 

mechanism of re-excitation after unsuccessful defibrillation. 

The role of virtual electrode polarization from unipolar stimulation in excitability 

through the cardiac cycle was presented in Chapter 5. The experimental strength-interval 

curves are in good agreement with the numerical predictions of the bidomain model. The 

transition of the stimulation mechanism from break to make always coincided with the 

final descending phase of both anodal and cathodal curves. This transition is attributed to 

the bidomain properties (virtual electrode polarization patterns) of cardiac tissue. 

Stimulation patterns near refractoriness show always an excitation mechanism mediated 

by damped wave propagation after S2 termination, similar to that described in Chapter 4. 

In Chapter 6 field stimulation (2-ms duration) of the diastolic rabbit heart as a 

function of shock strength was presented. At low field strengths, activation was slow and 

appeared to propagate to the epicardium from sites of transmural initial activation. 

Hyperpolarization was not observed for weak shocks. Increasing the shock strength 

generally decreased activation time. Small-magnitude hyperpolarization and 

depolarization of the left ventricle and right ventricle depolarization occur with onset of 

moderate shocks. For shocks above 15 V/cm, virtual electrode polarization was strong 

and prominent except for right ventricle hyperpolarization, which was of small magnitude 

and localized to the right ventricular edge and apex. Left ventricular areas of negative 

virtual electrode polarization exhibited delayed activation. 
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We also presented the effects of shock duration (50-V/cm strength) in Chapter 6. 

Short shocks resulted in slow activation. However, in contrast to weak shocks, both 

positive and negative virtual electrode polarization of the left ventricle and right ventricle 

were observed. Activation time decreased with increasing shock strength until 2-ms. For 

2-ms shocks, activation of the heart was very rapid, with the whole heart activated within 

4 ms of shock onset. This is much faster than would be expected from propagation. For 

shocks longer than 2-ms, we observed paradoxical increase in activation time with 

increasing shock duration. Analyses of regions of interest corresponding to the right and 

left ventricles revealed delayed activation of the chamber facing the anode due to 

negative virtual electrode polarization. Activation delay caused by hyperpolarization of 

the left ventricle was more prominent than that of right ventricle hyperpolarization. The 

results of this study elucidate the effects of diastolic field stimulation of the isolated 

heart. Temporal activation analyses indicate that increasing shock strength and duration 

do not necessarily result in faster activation, and that negative virtual electrode 

polarization must be considered when applying field stimulation during diastole. 

Chapter 7 detailed the virtual electrode effects around an artificial heterogeneity 

during field stimulation. Experimental data show alternating regions of positive and 

negative virtual electrode polarization around an insulated heterogeneity during field 

stimulation of both systolic and diastolic tissue. When the field polarity was reversed, the 

spatial pattern of polarization also reversed. The virtual electrode effects were more 

prominent when the fiber direction was parallel to the field, and minimized when the 

fibers were perpendicular to the field. A 90° rotation of the fiber direction reversed the 

spatial pattern of polarization. The experimental results are in good agreement with 
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bidomain predictions. The adjacent areas of positive and negative virtual electrode 

polarization around the heterogeneity are potential sites of wave front generation, and 

may be a mechanism for far-field stimulation. These results also suggest that 

heterogeneities introduced during experimental measurements, such as plunge electrodes, 

may cause unintended artifacts and results. 

8.1. Overall Conclusions 

A common theme of the results described in the above chapters is virtual 

electrode polarization in response to electrical stimulation of cardiac tissue. The bidomain 

model of cardiac tissue predicts virtual electrode polarization when unequal anisotropies 

of the intracellular and extracellular spaces are incorporated. Bidomain theory has 

revolutionized the field of cardiac stimulation, successfully characterizing many of the 

experimentally observed effects of electrical stimulation. The results of this research 

generally agree with predictions of the unequal-anisotropy ratio bidomain model, further 

validating the bidomain theory of cardiac tissue. An increased understanding of how 

cardiac tissue responds to electrical stimulation in various conditions will guide 

improvements in treatment and prevention of cardiac rhythm disorders. 

8.2. Future Work 

In some cases there are natural extensions of the individual research projects that 

lead to possible future experimental investigations.  

Examining the effects of elevated extracellular potassium during field stimulation 

of the whole heart is a clinically relevant experiment. The extracellular potassium 

concentration of a fibrillating heart requiring defibrillation therapy may be elevated. 

Electroporation of the cardiac membrane occurs during high strength electrical shocks. 
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As the response of the diastolic heart to field stimulation has now been 

characterized, the spatial location and role of electroporation may be investigated. 

Researchers have begun to use fluorescent probes to detect electroporated regions in 

intact tissue [2,3]; however, this methodology has not been extended to field stimulation 

at the spatial scale of the whole heart. This research group has extensive preliminary data 

examining the spatial extent of electroporation during unipolar stimulation [4,5]. After 

the experimental technique is perfected, the protocol could be extended to examining 

electroporation during field stimulation of the whole heart. 

One limitation of cardiac optical mapping is that only the activation is only 

viewed from the epicardial surface. Bidomain theory predicts endocardial polarization of 

the opposite polarity than epicardial polarization during field stimulation of the whole 

heart [6,7]. Earlier experiments from this group attempted to view endocardial activity 

transmurally by placing a fiber inside the left ventricle for endocardial illumination. 

Results did not agree with bidomain predictions: rapid activation of the endocardium was 

observed at shock onset, with no corresponding negative virtual electrode polarization [8]. 

However, our imaging resolution and stimulation control have greatly improved since 

that time. Revisiting these experiments with the improved technology may be warranted. 

Finally, virtual electrode effects around an artificial heterogeneity were observed 

during field stimulation. This research may be extended by examining the effects of 

shock strength, duration, and timing and heterogeneity size. Imaging on a larger scale 

would reveal if wave front generation occurs at these heterogeneities. We observed 

virtual electrode polarization around a heterogeneity as small as a cactus needle. This size 

is on the order of small-scale anatomic heterogeneities inherent in the myocardium. Our 
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research group has developed a flat-field imaging system with very high spatial 

resolution that is ideal for studying the virtual electrode phenomenon on such a small 

scale. 

8.3. Research Considerations 

Before embarking on these research projects, the protection of research subjects 

and the societal impact of this research were considered. 

8.3.1. Protection of Research Subjects 

No human subjects were used in this research. Because the research project was 

directed towards developing an understanding of cardiac electrophysiology and its 

representation with the bidomain model, animal experimentation is necessary. The results 

from this research should lead to more accurate numerical simulations of the response of 

the heart to electrical stimulation and, therefore, reduce the use of experimental animals 

in the future. 

Our group is very concerned about the proper and ethical use of animals in 

scientific research, and we go to great lengths to ensure that rabbits used in our work 

undergo a minimum of distress and discomfort. All lab personnel completed the Animal 

Research Training Program sponsored by the Institutional Animal Care and Use 

Committee, as required by Vanderbilt University. All experiments were conducted in 

accordance with National Institutes of Health regulations for the ethical use of animals in 

research and were pre-approved by the Vanderbilt Institutional Animal Care and Use 

Committee. New Zealand white rabbits were first preanesthetized with intramuscular 

ketamine followed by intravenous sodium pentobarbital for anesthesia. The hearts were 

then quickly excised and mounted on a Langendorff apparatus. After removal of the 
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heart, the rabbit carcass was returned to the Vanderbilt Division of Animal Care (DAC) 

for proper disposal. These methods are consistent with the recommendations of the Panel 

on Euthanasia of the American Veterinary Medical Association. 

The personnel who staff the DAC performed the everyday care and maintenance 

of the experimental animals. Routine care of animals was provided by a group of animal 

technicians whose work is guided by supervisors and the DAC assistant to the director. 

Thus, except during the actual experimental procedures, the rabbits were housed and 

cared for by the DAC. The Vanderbilt University laboratory animal program is fully 

accredited by the AAALAC, and all research protocols involving vertebrate animals are 

reviewed by the Vanderbilt University veterinarian as required by Vanderbilt University 

policy. 

8.3.2. Societal Implications 

Coronary heart disease remains the single largest cause of mortality in the United 

States. An estimated 335,000 Americans die each year from sudden cardiac death, and 

the majority of these cases are believed to be from ventricular fibrillation [9]. An 

increased understanding of how the heart responds to electrical stimulation in different 

conditions is crucial to the development of better pharmacological and device therapies. 

The result will be an overall improvement in quality of life and increase in life 

expectancy. 
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