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CHAPTER I

INTRODUCTION

In the past five years, the genomics field has generated a prolific amount of sequence

data. Groups such as the 1000 Genomes Project and Complete Genomics have pioneered

next-generation data pipelines, including study design, data generation, variant calling, and

quality control of output data. These technological advances and collaborative projects have

made the study of low frequency variants increasingly achievable. It has become possible

to look beyond common variant polymorphisms typical of genome-wide association studies

(GWAS) and potentially explain additional trait variance using rare or low frequency vari-

ants (defined here as minor allele frequencies less than 1% and less than 5%, respectively).

Yet, even with increased data availability, progress toward understanding genomic vari-

ation and its association to common human disease lags behind. Scientists are hindered

in exploiting these laboratory advances because strategies for analyzing these data to uti-

lize their maximal potential are underdeveloped. In fact, the wealth of available data has

made distinguishing true scientific discoveries from the thousands of false discoveries even

more challenging. The growing disparity in rapidly advancing data collection vs. slowly

developing data analysis methods mandates a more concerted research effort to develop the

necessary analytical tools to successfully interpret the genotypic and biologic data. Success-

ful analyses will ultimately improve the prevention, diagnosis, and treatment of common

disease. Research that meets this critical challenge will include developing methods to an-

alyze the data and developing pipelines to integrate low frequency data from sequencing

with other “-omic” measures.

The study of low frequency variation on a genome-wide scale has been minimal prior to

the next-generation sequencing era. Due to the infancy of this research, none of the currently

available analytical methods are accepted as the “gold standard.” Previously developed

pipelines and tools used in GWAS are largely ineffective because rare variants have low
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r2 values and cannot be detected using a tag-SNP approach. According to the literature,

low frequency variants have larger effect sizes than common variant associations, are much

more prevalent than common variants, and have a higher proportion of nonsynonymous

variation. Therefore, they require special consideration when developing analytical tools to

study disease association [2, 3, 4].

Since low frequency variants are individually uncommon, large sample sizes are needed

to ensure that multiple copies of a variant of interest can be sampled [5, 6]. The study

design and cost of sequencing can make the required sample size prohibitive, particularly as

the minor allele frequency decreases below 1%. To increase the composite allele frequency

and analyze smaller sample sizes, collapsing methods can be utilized. Commonly referred

to as burden tests, variants in a specific genetic region can be binned into a single genetic

variable, which is then used for analysis [5]. An alternate collapsing strategy to the burden

test compares distributions of variants across the trait of interest. Nonburden tests do not

assume all variants binned together are causal or have the same direction of effect and can

model rare variant epistasis. Variations of burden and nonburden tests are described in

Chapter II. While nonburden tests are more powerful in cases with both protective and

deleterious variants or many noncausal variants, they are less powerful than burden tests if

a large proportion of binned variants in the same direction are truly causal or if the sample

size is relatively small [7].

Previous collapsing strategies have focused on a particular statistical test in a pre-

defined region rather than how to best group variants in informative regions. Agnostic

or uninformed binning approaches can often lead to a decrease in power when there are

variants with different directions of effect or too many neutral variants that mitigate the

signal. The most successful collapsing method groups variants likely to have an impact on

the function of a specific gene or genomic unit and compares the variant distribution or

composite genetic score distribution across the trait of interest.

The goal of this project is to address this major limitation of current rare variant asso-

ciation tests, uninformed binning. BioBin is a novel knowledge-guided collapsing method

which focuses on bin generation rather than association testing. By generating meaning-

ful bins with biologically related variants, the power of any statistical association method

2



increases. In addition, BioBin provides the framework to create interesting and complex hy-

potheses by allowing multi-level bin generation using prior biological knowledge. While the

implementation facilitates burden tests most easily, BioBin is not coupled to any statistical

test. Users are able to use a variety of association tests, burden or nonburden methods, and

permutation strategies appropriate for the hypothesis and data being tested.

This thesis introduces the functionality of BioBin. First, the software is described

in detail with an explanation of many novel parameters and options specific to BioBin.

Second, extensive testing is presented using a variety of simulation parameters and a method

comparison. Third, application of BioBin to natural data sets is described to identify rare

variant burden differences between cases and controls.

Chapter II describes the genetic architecture of low frequency variants and the contri-

bution of low frequency variants to Mendelian and common complex disease. Chapter II

also discusses the evolution of low frequency variants and specifically why GWAS anal-

ysis pipelines fail in low frequency variant association tests. Lastly, the current state of

low frequency variant analysis is examined by reviewing available computation tools and

algorithms.

Chapter III details the development of BioBin and available options in the BioBin

package. This chapter presents an introduction and overview of resource requirements

for both BioBin and Library of Knowledge Integration (LOKI). Six software features are

characterized: custom knowledge input, multilevel feature binning, filtering strategies, loci

selection, optional inheritance patterns, and variant weighting. Lastly, statistical tests

commonly used with BioBin are briefly described. Portions of this chapter were derived

from “A Biologically Informed Method for Detecting Associations with Rare Variants” [8].

Chapter IV includes comprehensive type I error and power simulations under various

conditions. Described evaluations include different allele frequency weights, statistical meth-

ods, and power comparisons between BioBin and other methods. First, type I error was

evaluated using two continuous region simulations (simulating genes and pathways). Sec-

ond, simulations to study type I error for pathway-type analyses which have the potential

for dependent bins were performed. Lastly, correlation results between bin size and bin sig-

nificance and a few simulated power assessments were addressed. This chapter was partially

3



adapted from a peer-reviewed manuscript, “BioBin: a bioinformatics tool for automating

the binning of rare variants using publicly available biological knowledge” [9].

Chapter V describes the application of BioBin to 1000 Genomes Project data. A

manuscript describing this work is in preparation at PLOS genetics, “Low Frequency Vari-

ants, Collapsed Based on Biological Knowledge, Uncover Complexity of Population Stratifi-

cation in 1000 Genomes Project Data.” In addition, some of the text from “Using BioBin to

Explore Rare Variant Population Stratification” was adapted for this chapter [10]. In order

to reveal the magnitude of low frequency population stratification, Chapter V describes

how pairwise population comparisons using the 1000 Genomes Project Phase I data were

performed to investigate differences in low frequency variant burden across multiple biolog-

ical features. Low frequency variant confounding is much more prevalent than one might

expect, even within continental groups. The proportion of significant differences in low fre-

quency variant burden is also dependent on the region of interest; for example, annotated

regulatory regions showed fewer low frequency burden differences between populations than

intergenic regions.

Chapter VI consists of two applications of BioBin on natural whole-exome data. BioBin

was applied to two data sets available from dbGaP: Kabuki syndrome (10 individuals)

and cystic fibrosis with chronic Pseudomonas aeruginosa infection (431 individuals). The

Kabuki analysis description and results were adapted from “BioBin: a bioinformatics tool

for automating the binning of rare variants using publicly available biological knowledge” [9].

The Kabuki sample is too small for adequate power, but the cystic fibrosis data analysis

identified several interesting genes for follow-up analyses.

In Chapter VII, the benefits and limitations of this approach are discussed. Chapter VII

also includes a discussion of the future of low frequency variant binning analyses and how

BioBin will be amenable to future improvements of genomic analyses. Finally, the funda-

mental considerations to advance genomic research are considered, particularly at the level

of sequence data analysis.
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Terminology

Allele

Humans inherit one allele from each parent at every locus, resulting in a diploid state.

Each pair of alleles form the genotype at a particular locus. At the population level,

allelic variation at a locus is measurable as the number of different alleles (polymorphism)

present. If 99% of population is homozygous for TT at a genetic locus and 1% of population

is heterozygous with genotype TG, there are two alleles at this locus in the population, the

major allele is T and the minor allele is G.

Bin

Bins contain combinations of variants. Bins can be generated based on any number of

similarities. In this thesis, bins are often generated based on genomic location, e.g. gene

bins are formed based on the start and stop position of the gene. All of the variant loci

present in this gene are binned together and analyzed as a single unit.

Burden test

In this thesis, collapsing methods that use burden-type statistical analysis are referred to as

burden tests. Instead of retaining characteristics of each variant in the bin, the statistical

tests use a single summative value for all variants in the bin for each individual. The simplest

of these would be dichotomizing low-frequency variants for each individual (independent

variable designated as 0 if individual does not contain a low frequency variant and 1 if the

individual contains at least one low frequency variant).

Collapsing method

Collapsing methods refer to a general type of low frequency analysis, also called “binning”

methods, where low frequency variants are combined together based on some similarity

(genomic coordinates, functional significances, etc.) for analysis. The description of a

collapsing method refers to how the low frequency variants are combined. In the literature
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some collapsing methods also have a statistical test associated with the software. BioBin is

a collapsing method with multiple algorithmic components but without any incorporated

statistical test.

Gene

A molecular unit of heredity of a living organism. A gene is a defined region of DNA with

transcription start and stop sites coding for messenger RNA.

Linkage

Genetic linkage describes the way in which two loci located in close proximity on a chromo-

some are often inherited together. Loci in close proximity are more likely to be inherited

together. In contrast, loci located farther away from each other on the same chromosome

are more likely to be separated during recombination, the process that recombines DNA

during meiosis. The strength of linkage between two loci depends upon the distance, rates

of recombination, and functional interaction (might affect viability of offspring) in that

region of the chromosome. If two loci are in linkage equilibrium, they are inherited inde-

pendently in each generation. If two loci are in linkage disequilibrium, alleles at each locus

are inherited together more often than would be expected by random chance.

Locus

The location of a gene or particular sequence on a chromosome. The locus of a gene refers

to the start and stop positions of that gene. The locus of a variant is the specific genomic

coordinates of that variant in the genome (variant site). In this thesis, the term locus refers

to a single genomic coordinate where a variant occurs. Therefore, a single locus can refer

to the site of multiple allelic variants (polymorphic locus).

Mutation[11]

Change in genetic sequence that affects function. There are some that argue that the term

mutation should refer to any change in sequence below 1% and all other changes should be

called polymorphisms. However, this thesis only uses the term to describe variants with
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known effects on function, regardless of allele frequency. This is more consistent with the

definition of mutant from biology (wild-type versus mutant). The process of “mutation”

(verb) introduces novel variants to the population, but for a variant itself to be called a

mutation, it has to have known functional effects (harmful or protective). Literature from

the field of human genetics typically focuses on mutations that have harmful effects due

to the bias in research, which more often studies low frequency disease-causing variation

rather than variation that leads to improved health or longevity.

Nonburden test

Collapsing methods that use statistical analyses that retain characteristics of each variant in

the bin. These statistical tests often use vector-based methods to compare distributions of

variants across the trait of interest rather than using a single summative value. Nonburden

tests do not assume all variants binned together are causal or have the same direction of

effect and can model rare variant epistasis.

Polymorphism

A relatively benign change in genetic sequence. The term single nucleotide polymorphism

(SNP) is very popular in the literature and refers to more than one allele at a locus in a

population. Polymorphisms can cause variable phenotypes, but these changes are unlikely

to contribute to phenotypes that decrease fitness and have an allele frequency of an arbitrary

threshold of at least 1%.

Variant

Any change in genetic sequence at a particular locus. The term variant is used as a very

general and inclusive term relating to all genetic changes (single nucleotide changes, inser-

tions, deletions, copy number variation changes, etc.) of any frequency and of any functional

consequence (neutral, protective, damaging, or unknown). A single locus can have multiple

variants, e.g., if G is the referent allele, G→ C represents one variant and G→ T represents

a second variant at the same locus. In this thesis, the term variant typically refers to a sin-

gle nucleotide allelic change of any frequency or functional consequence. Unless otherwise
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specified, in the following chapters, “rare”, “low frequency” and “common” variants refer

to variants with minor allele frequencies ≤ 1%, ≤ 5%, and > 5% respectively.
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CHAPTER II

BACKGROUND

Since pioneering observations of genetic and evolutionary properties were reported by

Darwin and Mendel in 1859 and 1866, respectively, geneticists have been interested in

uncovering the secrets of inheritance, patterns of selection, distinguishing genetic and non-

genetic causes of traits or diseases, etiology of genetic diseases, and determining risk profiles

in individuals harboring variation [12, 13]. Later, the discovery of linkage and epistasis by

Bateson and autosomal recessive inheritance patterns of alcaptonuria by Garrod further

evolved the field of genomics [14, 15]. Present day genomics research utilizes unprecedented

technology and computational power, but the goal of uncovering disease associations and

understanding inheritance is much the same. This task is complicated by the numerous types

of genetic variation and genetic architecture, and interpretations of results are contingent

on understanding the landscape of genetic variation. This thesis focuses on the analysis of

low frequency variants; however, first characteristics of low frequency variants are reviewed.

It is important to consider the potential ways low frequency variants contribute to complex

disease, the evolution of low frequency variants, and how to translate these properties into

tools for studying low frequency variation.

Contribution of low frequency variants to disease heritability

Genome-wide association studies (GWAS) focus on common variants that often miss valu-

able information about epistatic (gene-gene, GxG) and gene-environment (GxE) inter-

actions, structural variants, and rare variants (RV) [16]. While researchers have been

able to attribute almost 11,000 variants from 1657 publications to over 80 diseases and

traits [17, 18], the estimated odds ratios for these variants are predominantly less than
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1.5 and a variable but small fraction of the estimated heritability has been explained. For

example, in a recent study of metabolic traits, Vattikuti et al. found previously published

common variants to explain between 25% (HDL trait) and 80% (systolic blood pressure

measurement) of estimated narrow sense heritability [19]. In the case of HDL and most

other traits, large proportions of heritability have yet to be explained. In an effort to eluci-

date additional heritability and to take advantage of the new sequencing technology, many

researchers are investigating, in particular, the effects of rare variants. Either because of

sheer number of rare variants or because of the effects of weak selection, rare variants are

thought to be more likely to be disease predisposing than common variants [20, 21]. It is

believed that rare variants can act alone, in concert with other rare variants, or together

with common variants. Bansal et al. describes many reasons rare variants likely influence

disease susceptibility [22]:

1. The recent population expansion resulted in a large number of segregating and po-

tentially functionally relevant rare variants.

2. Rare variants have been shown to be functional mutations in tumorigenesis.

3. There are many published examples of allelic heterogeneity (breast cancer: BRCA1,

cystic fibrosis: CFTR).

4. Functional assays have been performed in vivo for multiple rare variants and have

been shown to influence clinical phenotypes.

5. Rare variants have been associated with phenotypes in candidate gene studies.

One of the earliest and best characterized causal rare variant identifications occurred

in the study of cystic fibrosis (CF) in 1989 [23]. Kerem et al. performed an extensive

linkage analysis in CF patients with restriction fragment length polymorphisms to identify

a single locus, chromosome 7q31, corresponding to the CFTR gene. In the original paper,

the disease prevalence was stated to be 1/2000 live births in Caucasian populations, with

a mutant allele frequency of 2.2% [24]. Since this original publication and resulting ∆508

mutation identification, over 1000 other causative mutations have been identified to cause
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cystic fibrosis in the CFTR gene. Low frequency variants have been identified for several

other Mendelian traits using linkage studies and most recently, next-generation sequencing.

Approximately 1/2 to 1/3 of all known or suspected Mendelian diseases (approximately

7000) have been associated with a particular locus [25]. In the past, it has been difficult to

fully resolve missing heritability because linkage studies failed when the disease was too rare,

when too few family members were affected, when disease decreased reproductive fitness,

when the disease exhibited reduced penetrance, or when locus heterogeneity was present.

In addition, spontaneous instead of inherited mutations causing monogenic disorders were

impossible to study using linkage analysis [25, 26]. Next generation sequencing provides

resolution to a single base pair change and can be applied within pedigrees, across unrelated

individuals, in trios, and from sampling individuals from phenotype extremes. The user can

apply series of filters and deduce a list of potential mutations in a relatively short period of

time. In fact, in less than two years (2010-2011) over 27 studies were published identifying

rare variant loci for Mendelian traits/disorders [25].

Although dominant rare variants with large effect sizes (OR > 5) generally corre-

spond to Mendelian diseases with close to 100% penetrance, there is increasing evidence to

support a role for rare variants to contribute to risk of common, complex disease. Re-

cent studies have implicated rare variants with moderate effect sizes using phenotypes

such as obesity, autism, schizophrenia, hypertriglyceridemia, hearing loss, complex I de-

ficiency, type-1 diabetes, sporadic mental retardation, inflammatory bowel disease, sick

sinus syndrome, celiac disease, prostate cancer, Alzheimer’s, and overall cognition in the

elderly [25, 27, 28, 29, 30, 31, 32, 33, 34].

Evolution of low frequency variants

The use of indirect association tests popular in GWAS for rare variants is unlikely to be

powerful. In order to better understand why, it is important to consider the evolution of

rare variants. There is no defined allele frequency threshold to distinguish which variants

are considered rare and which variants are considered common. Dickson et al. identify rare
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variants using a minor allele threshold between 0.005 and 0.02 [35]. Gibson labels variants

as rare if the minor allele frequency is less than 1% [36]. Alternatively, others consider

variants rare that have minor allele frequencies less than 0.01-0.05 [7, 37]. In this text, rare

variants refer to variants with MAF ≤ 1%, low frequency variants refer to variants with

MAF ≤ 5%, and common variants refer to variants with MAF > 5%.

Rare alleles are observed for virtually every gene; Gorlov et al. estimate at least 2-3

rare variants per gene on average [20]. The expected number and distribution of disease

alleles in the population depend on mutation rate, selection and population ancestry. Rare

variants represent a considerable proportion of genome variation; Gorlov estimates up to

60% of SNPs in the genome are SNPs < 5% [20]. Many rare alleles are deleterious and

presumably persist in the population by recurrent mutation [1].

Population expansion

Demographic scenarios such as population subdivision with a change in migration rates over

time and admixture with archaic humans might have affected patterns of sequence variation

and linkage disequilbrium (LD). African populations fit a model of continuous population

growth, but other populations show a clear signature of a population bottleneck at about the

time of emergence from Africa [38]. A severe bottleneck has multiple genetic effects on the

population genetic structure. It changes the allelic frequency (genetic drift), increases the

average level of homozygosity (inbreeding), and causes correlations of allele frequencies be-

tween multiple alleles at the same locus (Hardy-Weinberg Equilibrium (HWE)) and among

variants at different positions (LD). Individuals of African descent have patterns of ge-

netic variation consistent with a larger long-term effective population size than populations

of non-African ancestry. The large effective population size is reflected in elevated levels

of diversity, elevated haplotype diversity, and reduced levels of linkage disequilibrium [1].

Rapid population growth and weak purifying selection have allowed ancestral populations

to accumulate an excess of low frequency variants across the genome. This affects genomic

analyses in two ways: it alters proportion of deleterious versus neutral variation expected
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in low frequency variants and population stratification.

Low frequency variants exhibit extreme population stratification [39]. Demonstrating

the magnitude of low frequency population stratification between two populations, Ten-

nessen et al. identified more than 500,000 single nucleotide polymorphisms (SNPs) using

15,585 protein-coding genes from 2,440 individuals. Of these SNPs, 86% had a MAF < 0.5%

and 82% were population specific between European Americans and African Americans [39].

Low frequency allele sharing between populations on the same continent were between 70%

and 80%. In contrast, low frequency allele sharing between populations on different con-

tinents were lower than 30% and variants were often unique to a single population. In

genomic analyses, this extreme population stratification can lead to higher false positives

and difficulty in replicating associations across genetic studies when not considered as part

of the experimental design for low frequency SNP analyses [40].

Common variants are often identified in more than one continental group, while rare

variants are often specific to one population. Common variants shared between African

and non-African populations are older and likely existed before the migration out of Africa.

Non-African populations tend to have less rare variants (more positive Tajima’s D test

statistic) than African populations. This can possibly be explained by a population size re-

duction (bottleneck) during which the rare variants were lost more quickly than the common

variants [38].

Effects of selection

The calculated intronic ratio suggested by Gorlov is calculated as the number of SNPs in

specific categories (nonsynonymous, possibly damaging, probably damaging, etc.) divided

by the absolute number of intronic SNPs and can be used as an approximate measure

of selection. Purifying selection drives variants to lower frequency, and positive selection

promotes high-frequency derived alleles. For variants with MAF <10% and particularly

<5%, the intronic ratio increases sharply suggesting a strong effect of purifying selection.

Comparing the different categories, the intronic ratio for probably and possibly damaging

13



variants is even more increased, suggesting a stronger purifying selection against these

categories [20]. Therefore, the excess of rare variants in the human genome leads one to

conclude that many low frequency variants are functional and under the effect of purifying

selection. For example, cancer suppressors and oncogenes are under the pressure of purifying

selection. As a result, protein-damaging mutations in these genes have a lower frequency in

the population.

The actual distribution of allele frequencies in populations suggests that many segregat-

ing amino acid polymorphisms present at low frequency are mildly deleterious, less likely

to be eliminated by weak purifying selective pressure, and likely major players in common

disease susceptibility [1, 20]. For example, Nelson et al. found that in 202 drug target

genes, 2/3 of the low frequency variants were nonsynonymous mutations, a much higher

ratio than found for common variants. This ratio reflects the expected proportion given

random mutation and degenerate coding and also supports the theory that low frequency

variants are only weakly filtered by selection [4, 41]. Due to weak selection, low frequency

variants appear to be enriched for functional variation, including protein coding changes

and altered function [40]. In addition, low frequency variants represent a considerable pro-

portion of the variation in the genome due to recent explosive population growth [39]. Since

the allele frequency distribution is skewed towards more low frequency variants and many

of these are functional, a higher number of low frequency deleterious variants are expected.

These evolutionary conditions explain the prominence of disease-promoting variants at low

frequencies and reflect the balance between mutation and selection.

Evolutionary models

Human variation tends to fit the expectations of neutrality reasonably well, except that

human genes generally show an excess of rare alleles [1]. A common approach to testing the

standard neutral model is based on the Tajima’s D test. Under the standard neutral model,

the expectations of θW and of nucleotide diversity, π, are equal [38]. Certain types of selec-

tion (selective sweep, where a rare variant was quickly favored and fixed in the population)
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or recent exponential population growth result in an excess of rare alleles, and Tajima’s D

statistic is negative [1, 38]. Alternatively, a positive value of D reveals a relative excess of

intermediate frequency alleles. This is expected under a model of population subdivision or

balanced polymorphism. This pattern suggests either some type of balancing selection, in

which heterozygous genotypes are favored, or some type of diversifying selection, in which

genotypes carrying the less common alleles are favored. This situation may also happen if

the sample population was formed from a recent admixture of two different populations [1].

Characteristics of low frequency variants

Calculating age of variants

Beyond theory, there are a few ways to estimate the age of a variant. As mentioned pre-

viously, low r2 values refer to more recent mutations. More precisely, allelic age can be

estimated from genetic variation among different copies (intra-allelic variation) and from

its frequency. Intra-allelic variation estimates follow the decay of LD. One must know the

recombination rate and expected frequency of the mutation at similar loci to calculate the

suspected generation time. Kimura and Ohta were the first to consider the relationship

between age and frequency (see Equation 1). Time is measured in 2N generations and p is

the observed allele frequency. For example, if the MAF is 2%, the estimated age is 32,000

years. One can use these methods together or contrast them to show evidence of natural

selection [42].

E(t1) =
−2p

1− p
ln p (1)

Linkage disequilibrium in low frequency variants

Linkage disequilibrium (LD) between single nucleotide polymorphisms (SNPs) allows for

SNP tagging and indirect association testing. Linkage disequilibrium is defined as partic-

ular combinations of alleles at closely linked loci which occur more or less often than the

individual allele frequencies would predict. For example: imagine a locus with two alleles,
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Table 1. Example of linkage disequilibrium. Adapted from Hartl et al. [1]

STEPS
ALLELE ALLELE POSSIBLE
(SITE 1) (SITE 2) GENOTYPES

1. Ancient monomorphic alleles A B AB
2. A mutates to a Aa B AB, aB
3. B mutates to b in chr carrying aB Aa Bb AB, aB, ab

A and a. The Hardy-Weinberg Equilibrium (HWE) principle states (assuming all assump-

tions are met) that the genotypes AA, Aa, and aa are expected to be p2
A, 2pAqa, and q2

a,

respectively (where p and q represent the major and minor allele frequencies). Thus, the A

allele is in random association with the a allele. The same could be said for another locus

containing B and b alleles, where the B allele is in random association with the b allele (see

Table 1). When the alleles of these two loci are not linked, the frequency of a particular

combination of alleles equals the product of their respective allele frequencies. This is called

linkage equilibrium. When the alleles of the A locus are linked with alleles of the B locus,

the loci are in linkage disequilibrium.

The frequency of recombination (r) between loci is important because it determines the

rate towards linkage equilibrium. The frequency of recombination is necessarily r = 0.5

when two loci are on different chromosomes and r = 0 when the two loci are too close

together for a break to occur between them. The farther apart two loci are, the more likely

recombination between the loci becomes. The genotypic frequencies are related to the allelic

frequencies in the previous generation and D is the difference between the frequency of given

haplotype (observed) in the previous generation minus the frequencies of the A and B alleles

in the previous generation (expected). See Equation 2 for one example haplotype.

D = PAB − pApB (2)

Dn = (1− r)nD0 (3)

Dn is the value of D in the nth generation, thus it shows the decay of LD over generations

(time) due to recombination. The term (1 − r)n goes to zero as n becomes large (see
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Equation 3); the smaller the value of r the slower the rate towards equilibrium. Dn will

go to zero unless there are other factors to offset the decrease to linkage equilibrium (e.g.

nonrandom mating or other violations of HWE). The decay of LD, which can be estimated

by exponential decay, is shown in Figure 1 for different recombination frequencies [1].

Three things can affect linkage disequilibrium:

1. Recombination. Recombination occurs at hotspots across the genome and breaks up

LD. The rate of approach to linkage equilibrium depends on the rate of recombination

in genotypes heterozygous for both loci (see Equation 3). Inbreeding reduces the

frequency of heterozygous genotypes so that LD is maintained and recombination is

minimal.

2. Gene conversion may replace a small integral part of a conserved segment, producing

localized breakdown of LD, whereas markers on each side continue to show LD.

3. Population history. The older the population, the shorter the conserved segments.

LD is more extensive and of longer range in populations derived from recent founders.

LD can result from mixing subpopulations with different allele frequencies. If subpop-

ulations permanently mix and undergo random mating, LD is expected to decrease

according to the recombination rate, r, per generation. Similarly, inbreeding reduces

recombination because it reduces the frequency of the double heterozygotes, which

are essential for recombination to take place.

D depends on the allele frequencies, so it is often normalized by dividing D by the

theoretical maximum for observed allele frequencies. To calculate D′ and r2, see Equation 4,

Equation 5, and Equation 6 [1].

D′ =
D

Dmax
(4)

where

Dmax =


min (pAqb, qapB) when D > 0

min (pApB, qaqb) when D < 0

(5)
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Figure 1. Linkage disequilibrium between genes gradually disappears when mating is random, pro-
viding no other processes are present. The rate of approach to linkage equilibrium depends on the
recombination frequency between the genes. Adapted from Hartl and Clark 2006 [1].
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Table 2. Examples of r2 and age of mutation adapted from Hartl and Clark [1].

AGE OF
MUTATION

GENOTYPE
FREQUENCIES

CALCULATED
r2

b arose early in a lineage PAB = 0.5 PAb = 0 r2 = 0.96
PaB = 0.01 Pab = 0.49

b arose much later in a lineage (more recent) PAB = 0.5 PAb = 0 r2 = 0.01
PaB = 0.49 Pab = 0.01

r2 =
D2

pAqapBqb
(6)

D′ is a normalized measure of LD and it is mostly influenced by recombination. For

example, if D′ = 0.50, the amount of disequilibrium between the SNPs in the two loci is

about 50% of its theoretical maximum. For any given D′, r2 can take any value between 0

and D′2. The range of r2 is due to the fact that it also depends on the allele frequencies.

r2 is a measure of linkage disequilibrium, but it captures when/where in the genealogy of

the haplotypes the mutation occurred. For example, there are two ancient monomorphic

alleles A and B at two sites. Over time, the A allele mutates to a and B mutates to b.

The possible genotypes following each of these steps is shown in Table 1 [1]. After the third

step (B mutation), notice there is no Ab genotype. It will remain at 0% frequency in the

absence of recombination or recurrent mutation. Because of the missing haplotype, D′ = 1

and the value of r2 depends on the timing of the B → b mutation (see Table 2). The r2

value relates to the age of the mutation, lower values refer to more recent mutations.

According to simulations performed by Kruglyak, the rapid decay of LD with distance is

a consequence of the relatively ancient origin of most common variants. Variants observed

at 10% frequency tend to be of a more recent origin, but also date almost exclusively to the

time of expansion or earlier (assuming this is a neutral variant). Rare variants often make

only three haplotypes with common SNPs, in this case, r2 can be close to zero (depends

on age of variant) while D’ is 1 [1, 43]. Therefore, r2 is the more reliable measure of LD

when considering rare variants. The value of r2 depends on the allele frequency difference

between the two loci. The genotyped SNP that tags the most variants from the causal SNP

(has the highest r2) is the SNP with the lowest MAF in which the minor allele is coupled
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Table 3. Maximum r2 and expected odds ratios (OR) between a rare causal variant and common
genotyped SNP with an odds ratio of 1.1. Adapted from Wray et al. [43]

Freq. of
Estimate

Freq. of genotyped SNP
causal variant 0.05 0.10 0.20 0.30 0.40 0.50

0.005
r2 0.10 0.05 0.02 0.01 0.01 0.01

OR 2.0 3.0 5.0 7.0 9.0 11.0

0.01
r2 0.19 0.09 0.04 0.02 0.02 0.01

OR 1.5 2.0 3.0 4.0 5.0 6.0

0.02
r2 0.39 0.18 0.08 0.05 0.03 0.02

OR 1.3 1.5 2.0 2.5 3.0 3.5

with the rare causal variant. The possible LD structure between rare and common variants

is detailed in Table 3 [43].

Linkage disequilibrium is a result of history; it reflects shared ancestry of haplotypes

present in any population [1]. The presence of LD can be explained by LD in a founding

population that has not had time to dissipate due to low frequency of recombination or

because of natural selection [1, 38]. Random mating reduces haplotype blocks (LD) [1].The

International HapMap Consortium defined the ancestral chromosome segments in four hu-

man populations and catalogued markers that could be used in GWAS as tag SNPs [20, 44].

The commonly employed strategy of indirect association testing relies on the association

between disease and SNPs near a true causal variant, where the associated SNP and causal

variant are in LD. This allows for a dense map of tag SNPs to scan the genome for regions

associated with a trait of interest [44]. As mentioned before, this has led to the discovery

of many common SNPs associated with disease.

Current methods to analyze low frequency variation

There are three categories of analysis possible for rare variants in a whole-genome study:

direct association testing, indirect association testing (utilizing LD), and collapsing meth-

ods. Direct association testing is plausible, but unlikely to be effective in current common

study sizes where the total sample size is < 1000 individuals because rare variants will be

scarce and contribute small numbers to the analysis which necessitates cautious interpre-
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tation [45]. It is difficult and extraordinarily expensive to ascertain large enough data sets

to acquire sufficient numbers of cases that carry the same causal rare variant and to be

able to detect a difference in allele frequency when the MAF is so low [20, 21, 22, 46, 47].

As an example, Nejentsev et al. was able to report a rare variant association with a

MAF 0.46% in cases and 0.67% in controls using 17,730 individuals [48]. This is much

larger than the current size of most sequencing studies due to cost. A single exome

with 50x coverage can cost between $850-$1000 US dollars for direct to consumer pric-

ing (https://www.23andme.com/exome/, http://www.axeq.com/axeq.html; accessed July

17, 2013) and approximately $500 US dollars for in-house rates within an institution

(http://vantage.vanderbilt.edu/pubutils/ngscalc.html; accessed July 17, 2013). For a single

in-house whole-genome sequence (50x coverage) without analysis, the cost is over $8000 US

dollars. The prices are steadily falling for next-generation sequence data, but the costs of

a study of any reasonable size can quickly exceed $100,000. The prohibitive costs make

single variant association testing unfeasible for variants with low minor allele frequencies.

Ignoring this limitation with small sample sizes could lead to unstable estimates of rare

variant effects on disease and be uninformative [49].

Performing indirect tests of association with rare variants will lead to dubious interpre-

tation of results. Rare variants can be in LD with other variants; rare haplotypes exist and

can be associated with disease [50]. However, indirect association testing assumes low-level

allelic heterogeneity and assumes that the variants are common [21, 44]. Rare variants have

low MAF and low r2 values and thus exhibit poor tagging properties with common variants

(see Table 3) [21, 51]. Inappropriate indirect SNP association testing runs a high risk of

false-negative results because rare functional variants can be inadequately tagged. For vari-

ants of lower frequency, the decay of LD is similar to common variants, but the maximal

level of LD at zero recombination is lower due to the difference in frequency between the

variant and the associated SNP allele. To successfully use tag SNPs for indirect association

testing, it is best to match the allele frequency of the variant and associated SNP allele.

Common variants can be detected with single markers using a tag SNP approach, whereas

lower-frequency variants require haplotype analyses or binning for association testing [44].

Haplotype analyses are very sensitive to population stratification, haplotype structure, and
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matching allele frequencies and should be utilized with caution [46].

Recently there has been some interest in synthetic associations. Synthetic associations

are a particular type of indirect association, specifically, the association of a genotyped

common marker resulting from multiple unobserved low-frequency causal variants [35, 43].

Some authors believe rare variants can cause synthetic associations with real risk effects

several-fold stronger than what is credited to a tagged common variant [3]. Therefore,

variance explained by the causal variants is much higher than what is seen in the associated

SNPs because the genotyped SNPs have not tagged the causal variants with great precision.

Synthetic associations are unlikely responsible for signals found in GWAS. Given the

required effect sizes (due to poor tagging), it is unlikely that synthetic associations explain

common variant associations [43]. These hypothetical rare variant effect sizes are so large

they would have been almost certainly picked up in linkage studies (see Table 3). Although

very common associated SNPs are unlikely to be causal, they most likely tag causal SNPs

with similar allele frequency and are unlikely to represent synthetic associations [43].

Searching for genes with an enrichment of rare variants even in a low number of se-

quenced genomes is more productive [3]. Given the restrictions of available sample sizes,

binning methods are likely to be the most powerful and effective methods to identify causal

rare variants. Most often a single variant is likely too rare to completely explain the ob-

served prevalence of a trait of interest, particularly common, complex traits. However, the

high proportion of rare variants across the genome, presence of allelic heterogeneity, and

presence of locus heterogeneity can explain additional prevalence of a trait [20].

To date, most sequence analysis tools use standard analytical methods to reduce the

search space. One standard method is to use family data which allows the analyst to exploit

transmission patterns to filter the data [52]. This strategy is effective but not applicable

to data sets without family information. Another technique is to perform a candidate gene

study and collapse rare variants into bins in order to combine association signals. Collapsing

methods are favorable for the following reasons:

1. Applies to case-control studies

2. Applies to whole-genome sequence data
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3. Potentially enriches association signals by combining otherwise underpowered rare

variants

4. Reduces the degrees of freedom in the statistical test

Collapsing methods, which test cumulative effects of rare variants in genetic regions, can

be classified based on the type of statistical test used, either burden or nonburden tests [7].

Burden tests

Instead of testing each variant independently, variants that fall below a specified MAF

threshold can be collapsed into a single comprehensive variable for analysis. The burden

tests described below are unique approaches that combine variants’ weights or manage bins

using different MAF thresholds or genomic boundaries. The first researchers to describe

a burden test collapsing approach were Morgenthaler and Thilly in 2007 [53]. Their co-

hort allelic sums test (CAST) calculates the sums of allelic mutation frequencies in cases

versus controls and applies a statistical test to determine if the difference is statistically

significant. The CAST method assumes that rare variants have the same magnitude and

direction of effect. Because the method uses a chi-square statistic, it is less than ideal be-

cause it does not easily incorporate covariates, cannot be used in quantitative phenotypes,

and does not measure the direction of association [22]. One year later, Li and Leal de-

veloped a similar method, the combined multivariate and collapsing method (CMC). The

CMC method uses a multivariate statistical test and permits combined analysis of rare and

common variants [21]. The CMC method has improved power over CAST, presumably be-

cause functional information (direction of effect) was incorporated and because the method

can be implemented in a regression framework [54].

The next group of published collapsing tests introduced the idea of individual variant

weighting. Witte describes two approaches to weighting: a priori weighting or empirical

weighting [5]. A priori aggregation methods can be used in many ways; the CAST method

applies an a priori weight because it requires “all or nothing” bins. If an individual has
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one or more variants, the comprehensive genetic variable is the same. Another sensible

way to weight variants includes using properties such as minor allele frequency cutoffs, or

nonsynonymous versus synonymous changes. Madsen and Browning proposed a collapsing

method using a priori weights, each variant is weighted using its allele frequency, a com-

prehensive genetic score is calculated and then a rank sum test between cases and controls

is performed [55].

Other burden tests use empirical weights to aggregate variants, essentially utilizing ex-

ternal information about the potential functionality of variants, such as, variable minor

allele frequency cutoffs and directionality of effect [5]. Price et al. propose a method to

optimize the grouping of rare variants using a variable-threshold approach based on allele

frequency [56]. Similarly, Fang et al. propose a pooling method using a threshold of risk

measure instead of allele frequencies to build bins with the most powerful association sig-

nal [57]. Hoffman et al. utilize a step-up approach to iteratively add variants to a bin only if

it improves the association signal [49]. Several other methods cleverly incorporate functional

data to guide collapsing and use a regression framework for statistical association [58].

Burden tests are notoriously less powerful when variants binned together have opposing

directions of effect [7, 37]. It is important to employ filtering strategies and attempt to

create bins with functional variants with the same direction of effect.

Nonburden tests

Instead of assessing the cumulative effects of variants in a bin by summarizing the genetic

score into a single value, nonburden tests investigate the variance distribution of allele fre-

quencies. The first published nonburden test was the C-alpha test. In case-control data,

it compares the expected variance to the actual variance of the allele frequency distribu-

tion [59]. Nonburden tests are often more powerful in bins where variants have different

directions of effect. Kernel based tests, such as SKAT and SKAT-O, improve upon C-alpha

because they can be implemented in a regression framework (rather than requiring permu-

tation), allow for easy covariate adjustment (including controlling for population stratifica-
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tion), and can be applied to dichotomous and continuous phenotypes [37, 7]. The kernel

association test aggregates individuals’ variant-score tests statistics with weights when SNP

effects are modeled linearly. Then they aggregate associations between variants and pheno-

types using kernel matrix. SKAT tests can also incorporate local correlation substructure,

weights, and can allow epistatic effects [37].

Nonburden tests are often overly conservative, particularly in small study sizes and when

the large majority of variants are truly causal. SKAT-O improves upon SKAT because

it allows correlation between variant regression coefficients, which improves power when

binned variants are in the same direction of effect [7].

Conclusions

As with linkage and GWAS, the number and penetrance of alleles affecting disease risk, i.e.,

the genetic architecture of a disease, directly affect the strategy for identifying polymor-

phisms that modulate disease susceptibility [20]. One must be careful to match cases and

controls since overrepresentation of rare variants in a specific ethnic group may complicate

the interpretation of association analyses of such variants. Even though there are many

available testing strategies, statistically significant mutations, multiple mutations that are

functional and co-segregate with disease, de novo mutations, and/or model organisms are

required to prove a link between variation in these genes and disease [47].
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CHAPTER III

BIOBIN SOFTWARE

Many recent publications detail collapsing approaches for low frequency or rare vari-

ant association tests. These methods build bins of multiple rare or low frequency variants

across pre-defined regions and use a statistical test to detect an association between the

presence/absence, number, or the distribution of low frequency variants and case/control

status. BioBin contributes novelty to the field of low frequency variant association testing

by focusing on defining regions rather than demonstrating the use of a particular statis-

tical test. Most available software packages include a default statistical test and do not

provide any guidance or assistance in defining regions for binning. For a given dataset and

hypothesis, there are different and sometimes multiple statistical tests that are appropri-

ate. In addition, novel statistical tests for binning methods are published frequently in

the literature, and the freedom to choose a specific test for an analysis is often preferable.

There are explicit situations that require the use of regression analysis (logistic, linear, or

polytomous), Fisher’s exact test, or permutation of unique statistical test, etc. A simple

analytical pipeline for low frequency variant analyses using BioBin is shown in Figure 2.

Overall, the most powerful collapsing analysis to detect associations with low frequency

variants will use a method to define bin boundaries in a way that will combine low frequency

variants with similar functional properties and apply the most appropriate statistical test.
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Figure 2. Pipeline for BioBin analysis. Blue squares correspond to data, green hexagons correspond
to bioinformatic or statistical method applications.

BioBin resource requirements

BioBin is a standalone command line application written in C++ that relies on a locally

built Library of Knowledge Integration (LOKI) database (see later section describing LOKI)

to create knowledge based bins. Source distributions are available for Mac and Linux op-

erating systems and require minimal prerequisites to compile. In the BioBin distribution

download, included tools allow the user to create and update the LOKI database by down-

loading information directly from source websites.

BioBin computational requirements scale primarily according to the number of loci in

the study. To demonstrate this, the population size and number of loci has been varied

in the input variant calling format (VCF) file of the 1000 Genomes Project Phase I low

coverage data to assess the resource requirements of BioBin [60]. Over 10 replicates, Figure 3

shows that bin generation is highly correlated to the number of loci in the study and

bin generation drives the memory and time usage. The number of individuals in a study

does not have a large impact on resource requirements, but does increase the size of the

input VCF file and thus time it takes BioBin to read the input VCF file. Even with

large datasets, BioBin can be run without access to specialized computer hardware or a

computing cluster; however, the number of binnable low frequency variants is the primary
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driver of memory usage. BioBin is open-source and publicly available on the Ritchie lab

website (http://ritchielab.psu.edu/ritchielab/software/).

Library of Knowledge Integration database (LOKI)

Harnessing prior biological knowledge is a powerful way to inform collapsing feature bound-

aries. BioBin relies on the Library of Knowledge Integration (LOKI) for database integra-

tion and boundary definitions. LOKI contains resources such as: the National Center for

Biotechnology (NCBI) dbSNP and gene Entrez database information [61], Kyoto Encyclope-

dia of Genes and Genomes (KEGG) [62], Reactome [63], Gene Ontology (GO) [64], Protein

families database (Pfam) [65], NetPath - signal transduction pathways [66], Molecular IN-

Teraction database (MINT) [67], Biological General Repository for Interaction Datasets

(BioGrid) [68], Pharmacogenomics Knowledge Base (PharmGKB) [69], Open Regulatory

Annotation Database (ORegAnno) [70], and evolutionary conserved regions from UCSC

Genome Browser [71].

LOKI provides standardized interface and terminology to disparate sources, each con-

taining individual means of representing data. The four main concepts used in LOKI

are positions, regions, groups, and sources. The term position refers to single nucleotide

polymorphisms (SNPs), single nucleotide variants (SNVs) or low frequency variants. The

definition of region has a broader scope, any genomic segment with a start and stop position

can be defined as a region, including genes, copy number variants (CNVs), insertions and

deletions, and evolutionary conserved regions (ECRs). Sources are databases (such as those

listed above) that contain groups of interconnected information, thus organizing the data in

a standardized manner. For example, BioGrid ID:468346 defines a group from the BioGrid

data source. This group contains the following regions: HMGB1P1, CTCFL, and PRMT7.

LOKI is implemented in SQLite, a relational database management system, which does

not require a dedicated database server. The user must download and run installer scripts

(python) and allow for 10-12 GB of data to be downloaded directly from the various sources.

The updater script will automatically process and combine this information into a single
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database file (∼6.7 GB range). A system running LOKI should have at least 50 GB of disk

storage available. The script to build LOKI is open source and publicly available on the

Ritchie lab website (http://ritchielab.psu.edu/ritchielab/software/). Users with

knowledge of relational databases can customize their LOKI database by including or ex-

cluding sources, including additional sources, and updating source information as frequently

as they like [Pendergrass et al., in preparation].

BioBin software overview

BioBin options can be configured via configuration file or command line input, which is

helpful when developing low frequency variant analysis pipelines. Even in the same data,

one might consider testing multiple hypotheses. For example, one could run BioBin with

binning boundaries based on genes and then make a few small changes to the configuration

file to run pathway binning analyses. BioBin also includes several novel features and options

for evaluating low frequency variants, those are described in the Software Features section.

Input files

To run BioBin, the user must have a locally built LOKI database and two study files:

1) variant calling format file (VCF) and 2) phenotype file. The LOKI database is de-

scribed in the previous section and detailed instructions can be found in the BioBin manual,

which is available on the Ritchie lab website (http://ritchielab.psu.edu/ritchielab/

software/). At this time, BioBin only accepts zipped and unzipped VCF files as study

input. A single input VCF file should include all of the relevant individuals and study vari-

ants. The most recent genome build is preferred for genome coordinates to match LOKI

information, but BioBin contains an internal algorithm derived from LiftOver to trans-

form variants from older builds to the newest build if necessary [71]. Lastly, the user must

include a phenotype file, a simple file with two columns indicating the sample identifiers
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Table 4. Example phenotype input file

ID PHE
ID1 0
ID2 0
ID3 1
ID4 1
ID5 0

(string value) found in the VCF file and corresponding phenotype (floating point value).

Most of the current tests have focused on binary outcomes, but categorical or continuous

outcomes are acceptable as phenotypes. The user needs to specifically indicate the desired

“control” group to determine allele frequencies and to determine which variants in the data

are binnable. For binary traits, one group should be designated as the control group. For

quantitative traits, a single group can be designated as controls or all individuals can be

considered together to determine binnable variants. An example phenotype file with binary

outcomes is shown in Table 4. Other input files are optional and described in further detail

in the Software Features section.

Output files

There are two main output files produced by BioBin: bins report and locus report. The

bins report provides information on bins generated by BioBin. An example bins report

output file is shown in Table 5. Lines 1-6 include the file header and summary information

for each bin. Each line after 6th row corresponds to an individual in the study. After ID

and Status columns, columns i = 3..N represent all of the bins generated by BioBin. The

values in a cell correspond to the contribution of variants of each individual (row) to the

bin (column).

The summary rows summarize the variants and loci in each bin. Row 1 contains the total

number of variants found within a bin. Row 2 represents the total number of loci binned

together. With regard to the values in rows 1 and 2, a locus corresponds to the physical

location of the variant. A single locus can represent multiple variants because there can be
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Table 5. Example bins report output file

ID Status TTLL10 WRAP73
Total Variants -1 32 63

Total Loci -1 5 5
Control Loci Totals -1 5 5

Case Loci Totals -1 5 5
Control Bin Capacity -1 134 172

Case Bin Capacity -1 130 130
NA06984 0 0 1
NA06985 0 0 0
NA20504 1 0 1
NA20506 1 0 0

multiple alleles at a particular location in the population. Rows 3 and 4 exclude loci for

which data are entirely missing from either the case or control populations. Rows 5 and 6

show the total bin capacity for either the cases or controls. The capacity is defined as the

absolute maximum number of variants that could be contributed to a given bin.

The locus report contains information about the variants and bin statistics, but does

not contain any information about individuals in the study. Each line corresponds to a

locus in the study, similar to the VCF file. A sample of the locus report output file is shown

in Table 6. Columns 1, 2, and 3 identify each locus. Column 4 represents the alleles and

their frequencies, as calculated from the designated control population. A pipe (|) character

separates individual alleles, and the allele and frequency are separated by a colon (:). The

alleles are ordered from most frequent to least frequent, and the minor allele frequency

(MAF) is defined to be the frequency of the second most common allele. Column 5 refers

to the non-major allele frequency in the case population. The non-major allele frequency is

defined to be the frequency of all alleles other than the most common allele in the control

population. Column 6 represents the status of the locus. If the minor allele frequency is

below the threshold for binning, this column will be 1, if the minor allele frequency exceeds

the threshold, it will be 0. Column 7 lists all genes that contain the locus separated by a

pipe (|). Column 8 lists the bin names that contain the locus, again separated by a pipe (|).

Generation of any of these reports or a few additional reports that include allelic or

bin statistics can be turned on or off at the user’s request using options available on the

command line or in the configuration file. For information on additional reports, the BioBin
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manual is available on the Ritchie lab website (http://ritchielab.psu.edu/ritchielab/

software/).

BioBin software features

In addition to flexible and biologically informed binning strategies, several important fea-

tures have been implemented to improve upon existing collapsing approaches. These param-

eters include: user-defined or customized knowledge, adjustable multi-level feature types,

various filtering strategies, flexible loci selection, and individual variant weighting.

Customized knowledge

The LOKI database contains diverse and comprehensive knowledge from many databases,

which together provide variant details, region annotations, and multiple region or group

relationships (e.g. pathways or protein interactions). To accommodate a wide-variety of

analyses, the user can choose to include or exclude any source available in LOKI from the

command-line or configuration file. If provided by the user, BioBin accessible knowledge

can also be expanded to include sources of knowledge outside of LOKI. For example, if a

user wishes to bin specific regions based on his/her research knowledge that is not described

in any public database loaded into LOKI, there are several options to include this novel

information for a BioBin analysis. The first option is to add this knowledge to the LOKI

database. This requires a relatively advanced understanding of the LOKI framework and

SQL relational databases, but LOKI is open-source and can be modified on a local machine.

A second and likely easier option is to input custom region files to transiently define bin

boundaries. Custom feature files can be used in place of or in addition to LOKI knowledge.

An example of a custom feature file is shown in Table 7.
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Table 7. Custom region feature file.

Chrom ID Start(bp) Stop(bp)

9 Region1 1384729 1673929

13 Region2 14940582 16392837

18 Region3 27361833 29877254

22 Region4 188726 1208327

Multi-level feature binning

The most important component of BioBin is the ability to bin at multiple levels of biological

knowledge. Example binning strategies can be seen in Figure 4. One can create gene-based

bins for an exome study, but very quickly change the configuration file to collapse genes

together to investigate evidence of protein-protein interactions. Using hierarchical biological

relationships and optional functional or role information, BioBin can create bins based on

many unique binning guidelines.

As a standard in the current iteration of LOKI, NCBI dbSNP and NCBI Entrez Gene

have been selected as the primary sources of position and regional information due to

the data quality, reliability, and clearly defined database schema. These sources also most

closely correspond to the region and group IDs provided by other database sources integrated

into LOKI.

In addition to binning variants based on knowledge, BioBin also provides an option to bin

variants that do not associate with any available knowledge. These are known as interregion

bins, or if generated between gene features, intergenic bins. After feature selection using

LOKI and/or external custom files, interregion bins can be created using a configurable

width parameter (in kb). These bins catch variants that do not fit into the user-defined

or biologically defined feature types (see intergenic bin labels on Figure 4). For example,

if one were testing low frequency burden differences between two groups across genes, all

variants in genes would be collapsed into respective gene bins, and variants outside of gene

boundaries would be binned based on genomic location in intergenic regions.
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Table 8. Custom region feature file.

Chrom ID Start(bp) Stop(bp)

10 DEL 100010909 100010909

11 DEL 99715682 99715682

16 DEL 97443 97443

18 DEL 13029986 13029986

Filtering strategies

In published whole-exome studies, a series of filters are often applied to remove neutral

or presumably low impact variants. Frequently this is accomplished by excluding variants

found in datasets such as 1000 Genomes Project or excluding variants with certain proper-

ties, i.e. synonymous or predicted neutral variants. Similar to the custom region knowledge

files described previously, BioBin accepts custom role files, which contain single variant or

region annotations. These custom role files can be used to exclude or specifically include

variants for a binning analysis. For example, one could use a role file to exclude variants

based on the 1000 Genomes Project. Alternatively, with the same role file and slight pa-

rameter change, one can study variants exclusively present in the 1000 Genomes Project.

This functionality is particularly useful if the user wants to filter based on protein coding

variants or predicted damaging variants using an annotation tool such as Polyphen-2 or

SIFT [72, 73, 74]. Table 8 shows an excerpt of annotated variants from the 1000 Genomes

Project using Variant Effect Predictor Tools (VEP), an annotation tool that provides SIFT

and PolyPhen-2 predictions [72, 73, 74, 75]. For example, if using a role file similar to one

found in Table 8, BioBin could create gene feature bins containing only variants predicted

to be deleterious or damaging (DEL).

Locus selection

In the binning method literature, it is common for studies to calculate allele frequencies in

unaffected individuals to determine if a locus is binnable, i.e. less than the MAF binning
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threshold. However, constraining binnable loci based only on controls leads to selection

bias and an increase in type I error, which worsens in large bins. In this thesis, the term

locus refers to a strict chromosome coordinate or position and the term variant describes

alleles at that locus. The minor allele at a given locus is determined from the second most

frequent allele in the control group.

Three parameters have been implemented in BioBin to manage type I error, reduce

selection bias, and increase flexibility in selecting binnable loci. The first option is a con-

figurable MAF binning threshold. Binning strategies are applied to low frequency variants,

where the user defines “low frequency.” Price et. al proposed a variable threshold approach;

Price suggested that a single minor allele frequency threshold does not apply to all stud-

ies [76]. Although this is not available as an automatic optimization in BioBin, the MAF

binning threshold can be tested and optimized by the user for his/her study data.

The second option, labeled Rare-Case-Control or “RCC,” addresses how BioBin handles

the minor allele frequency-binning threshold in two groups. When RCC is enabled, if the

variant is low frequency in either group, the locus is binnable. This does not change which

allele is considered the minor allele, the minor allele is annotated using unaffected group

allele frequencies, but it does increase the number of binnable loci because it includes specific

sites (or loci), which have a low frequency variant in cases and not in controls.

To illustrate the effect of “RCC,” the CEU population from 1000 Genomes Project data

was randomly divided into cases and controls. In Figure 5, each line corresponds to a MAF

binning threshold. At a very low binning threshold (MAF≤ 0.02), there is a distinct increase

in bins with small p-values (red line). The low MAF threshold constricts the contribution

of variants by each control to only one variant, whereas, each case can contribute one or

more variants. In larger bins (bins containing more loci), this slow accumulation of variants

in cases quickly leads to significance. However, when the RCC parameter is turned on, the

p-value distribution is more uniform and selection bias is reduced.

A Kruskal-wallis test was run to determine if the mean p-value was the same in groups

with varying loci per bin (accomplished by increasing the MAF binning threshold). Without

using the RCC option, the Kruskal-wallis p-value was 2.2e−16 (see Figure 5a). Thus, at least

one of the three MAF threshold groups had p-values that differed from the others more than
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chance alone. In Figure 5b, the RCC option was utilized and the p-value was no longer

significant (p-value = 0.288). When RCC was on, the difference between the three groups

was no longer detectable. Therefore, adding the RCC option decreases error and specifically

decreases the correlation between bin size and significance.

Although it is not advisable to perform genomic association analyses in low frequency

variants in study data with considerable heterogeneity in ancestral background, there are

still loci with considerable allelic heterogeneity within continental groups [4, 5, 6]. The third

parameter option concerns choosing the minor allele. In a recent population comparison,

switching the group status (case/control) changed the results by 1-3%. The last option for

loci selection,“overall-major-allele,” addresses this problem (denoted as “OMA” in Table 9).

This option was added to allow BioBin to look at affected and unaffected groups before

determining which alleles are the major and minor alleles. When the overall-major-allele

option is turned on, the major allele is designated by the overall highest frequency allele.

In Table 9, each line corresponds to alternative ways a single variant would be handled

under permutations of these options for 100 affected individuals (MAF=0.3) and 100 unaf-

fected individuals (MAF=0.05). Generally, controls are assigned as individuals unaffected

by the phenotype; however, to illustrate RCC and OMA options, the control group alter-

nates between affected and unaffected individuals. Examples A-D show the function of the

rare-case-control option. In example A, the variant is not rare enough in the designated

control group to be binned. Under the same parameters, if the unaffected individuals are

designated as controls, the variant is binned because it meets the minor allele frequency

threshold (example B). Most often, it is not beneficial for results to change based on control

designation. Examples C-D show how the variant is binned regardless of control group

designation when the “RCC” option is used. The minor allele frequency within each group

does not change. Therefore, the allele chosen as the minor allele is still dependent on the

control group, but a variant can be binned if it is “rare” in either group. Since multiple

variants can be present at a single locus, these rules are applied at each locus using the

most frequent and second most frequent alleles. Once the locus is determined binnable, any

variants at that locus will be considered in the binning analysis. When RCC is OFF at low

binning thresholds, the number of loci in a bin is highly correlated with significance. Using
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the RCC option reduces selection bias and bin size correlation with significance.

Examples E-H in Table 9 show the benefits of using the OMA option. Specifically, when

comparing the low frequency variant count between affected individuals and unaffected

individuals, examples C-D show more similar counts than A-B, but G-H have the exact

variant counts which means that the designation of “control” status is unimportant. Using

rare-case-control and overall-major-allele options require BioBin to review allele counts

collectively between the two groups to choose the minor allele. The individual group minor

allele frequency does not change, but which allele is considered the major (and thus minor)

allele can change. The overall minor allele is not necessarily the control group minor allele.

As shown in examples G-H, this is the ideal condition for a population comparison where

results should be independent of which group is chosen as the control group.

Optional inheritance patterns

BioBin can alter the method of “counting” variants in a bin if the user wishes to employ an

alternative inheritance pattern. The default option utilizes additive encoding, where each

allelic variant adds to an individual bin score. It is also possible to use dominant or recessive

encoding if the user wishes to test a specific hypothesis with those inheritance patterns.

Bin dependency

Bins are often not independent of each other and this should be considered in the statistical

analysis. BioBin provides a measure of dependency in the screen output. Figure 6 shows

a whole-exome analysis example, the total number of binnable variants was 238,145. Of

those, 222,564 variants were binned only once, while 11,255 variants were found in more

than one bin (between 2 and 22 bins). In a gene analysis, only a small proportion of

variants are included in more than one bin (< 5%). One should consider this information

when determining the best method to account for multiple test correction.

41



T
ab

le
9.

It
er

at
io

n
s

of
m

a
jo

r/
m

in
or

al
le

le
se

le
ct

io
n

a
n

d
va

ri
a
n
t

b
in

n
in

g
u

si
n

g
p

a
ra

m
et

er
s

ra
re

-c
a
se

-c
o
n
tr

o
l

(R
C

C
)

a
n

d
ov

er
a
ll

-m
a
jo

r-
a
ll

el
e

(O
M

A
).

U
si

n
g

b
ot

h
op

ti
on

s
is

n
ec

es
sa

ry
to

m
ak

e
th

e
re

su
lt

s
in

d
ep

en
d

en
t

o
f

co
n
tr

o
l

g
ro

u
p

se
le

ct
io

n
a
n

d
m

a
in

ta
in

a
re

a
so

n
a
b

le
ty

p
e

I
er

ro
r

ra
te

.

E
x

P
O
P

M
in

o
r

M
a
jo
r

G
r
o
u
p

R
C
C

O
M

A
M

in
o
r

G
r
o
u
p

L
o
w

F
r
e
q
.

B
in

C
o
u
n
t

B
in

C
o
u
n
t

A
ll
e
le

A
ll
e
le

A
O
N

O
N

A
ll
e
le

A
M

A
F

M
A
F
≤
0
.0
5

G
r
o
u
p

A
G
r
o
u
p

B

A
u

n
a
ff

ec
te

d
T

:6
0

A
:1

4
0

u
n

a
ff

ec
te

d
N

O
N

O
T

0
.3

N
O

a
ff

ec
te

d
A

:1
0

T
:1

9
0

B
u

n
a
ff

ec
te

d
T

:6
0

A
:1

4
0

a
ff

ec
te

d
N

O
N

O
A

0
.0

5
Y

E
S

1
0

1
4
0

a
ff

ec
te

d
A

:1
0

T
:1

9
0

C
u

n
a
ff

ec
te

d
T

:6
0

A
:1

4
0

u
n

a
ff

ec
te

d
Y

E
S

N
O

T
0
.3

Y
E

S
6
0

1
9
0

a
ff

ec
te

d
A

:1
0

T
:1

9
0

D
u

n
a
ff

ec
te

d
T

:6
0

A
:1

4
0

a
ff

ec
te

d
Y

E
S

N
O

A
0
.0

5
Y

E
S

1
0

1
4
0

a
ff

ec
te

d
A

:1
0

T
:1

9
0

E
u

n
a
ff

ec
te

d
T

:6
0

A
:1

4
0

u
n

a
ff

ec
te

d
N

O
Y

E
S

A
0
.7

N
O

a
ff

ec
te

d
A

:1
0

T
:1

9
0

F
u

n
a
ff

ec
te

d
T

:6
0

A
:1

4
0

a
ff

ec
te

d
N

O
Y

E
S

A
0
.0

5
Y

E
S

1
0

1
4
0

a
ff

ec
te

d
A

:1
0

T
:1

9
0

G
u

n
a
ff

ec
te

d
T

:6
0

A
:1

4
0

u
n

a
ff

ec
te

d
Y

E
S

Y
E

S
A

0
.7

Y
E

S
1
4
0

1
0

a
ff

ec
te

d
A

:1
0

T
:1

9
0

H
u

n
a
ff

ec
te

d
T

:6
0

A
:1

4
0

a
ff

ec
te

d
Y

E
S

Y
E

S
A

0
.0

5
Y

E
S

1
0

1
4
0

a
ff

ec
te

d
A

:1
0

T
:1

9
0

42



Figure 6. Screen output indicating bin dependency.

Variant weighting

Madsen and Browning were the first to propose using individual variant weights to influence

composite genetic scores. In their original paper, mutations were grouped into a bin and

each individual was scored by a weighted sum of mutation counts. According to Madsen

and Browning, the mutation frequency, qi, for each locus is dependent on the number of

variant alleles observed in unaffected individuals (mU
i ) and the number of affected and

unaffected individuals (ni, see Equation 7) The calculated weight (wi) is the estimated

standard deviation of the total number of mutations in the sample under the null hypothesis

(see Equation 8). Finally, the genetic score for each individual is the sum of all variable loci

in the bin divided by their respective weights [55](see Equation 9).

qi =
mU

i + 1

2nUi + 2
(7)

wi =
√
ni · qi · (1− qi) (8)

γj =
L∑
i=1

Iij
wi

(9)
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Although the weight sum test is implemented in a nonparametric framework using per-

mutations on sum rank test statistics to estimate significance, it has been noted by us and

others that the calculation of qi based only on the observed control group (unaffected sam-

ples) results in inflated type I error [77]. The original Madsen and Browning implementation

allows bias weighting such that weights in binned alleles with higher frequencies in cases

are unbounded, while weights of alleles with higher frequencies in controls are bounded.

Using this weighting scheme, there is a higher false positive rate even in the presence of no

true genetic effect (see Chapter IV) [77]. To provide an unbiased weight, BioBin permits

a weighting parameter with four options: control weight, overall weight, maximum weight,

and minimum weight. The control weight is reflective of the original Madsen and Brown-

ing calculation, which uses only the number of alleles in unaffected individuals to calculate

qi. The overall weight uses the overall allele count in the calculation of qi and is com-

monly used in popular software association packages [78, 79]. The maximum and minimum

weights are calculated by using the maximum or minimum 1/wi value when qi is calculated

using affected and unaffected individuals. The maximum and minimum weights allow for

weights to reflect large differences in allele frequencies in cases and controls and are more

powerful than using the overall weight option but do not lead to bias in results. Weights

are incorporated similarly to Madsen and Browning to calculate the genetic score for each

individual. Equation 10 shows this relationship and an additional custom weight (wc) that

can be implemented using custom weight input files. Custom weights allow the user to

manage additional weights; for example, one might increase the weight of nonsynonymous

variants to 1.1 to reflect the potential burden of damaging nonsynonymous variation.

γj =
L∑
i=1

Iij ·
1

wi
· wc (10)
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Statistical tests

The focus of the BioBin software is to build flexible and biologically relevant bins; therefore,

BioBin does not include any particular statistical test in the software package. The lack

of an implemented statistical test is preferable, since it allows the user the freedom to

choose the most appropriate statistical test given their study data and hypothesis. The

BioBin analyses presented in this thesis use burden tests, a composite genetic score has

been used in multiple statistical frameworks to detect associations between independent

genetic variables and a trait of interest. The following statistical tests were used: logistic

regression, Wilcoxon two-sample rank sum test, and standard permutations. The most basic

genetic score is just the individual’s sum of variants within a single bin. Using weights, each

variant can be influenced by weights based on allele frequency or custom weights provided

by the user. The formula for combining those weights (if present) and calculating a genetic

score is shown in Equation 10.

In the presented analyses, when a logistic regression was used, the null hypothesis of

no effect was tested as β1 = 0. When results were calculated using a Wilcoxon two-sample

rank sum test, a nonparametric method to test if the mean ranks differ between two groups,

the null hypothesis of no difference between the mean ranks was tested. In some analyses,

permutations were used to affirm simulation results. Permutations were performed using

either a Wilcoxon two-sample rank sum test statistic or the rank sum test as described by

Madsen and Browning [55]. For the permutation test, the phenotype was randomly assigned

and the resulting bin was tested 1000 times. The p-value was calculated as the proportion

of permutations in the null distribution that were more extreme than the observed value.

Summary

There are challenges for association detection using binning analyses, variants in the same

bin can have various functional effects (protective, detrimental or neutral), allele frequencies
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at variant positions are often population specific, and there has not been a clear standard for

statistical testing. However, collapsing algorithms improve power in low frequency variant

analyses when large sample sizes ( > 10,000 individuals) are not available. Also, collapsing

methods provide an avenue to embrace allelic heterogeneity, locus heterogeneity, and epista-

sis. Knowledge-based binning increases the likelihood that variants with similar functional

properties will be binned together and that an association signal can be detected. Further-

more, collapsing method results, in particular BioBin results, are interpretable biologically.
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CHAPTER IV

SIMULATION STUDIES

Since low frequency binning is a relatively new approach, BioBin had to be extensively

tested utilizing simulations with multiple statistical approaches and weighting options. Si-

multations described in this chapter were generated using SimRare, a GUI interface for

simuPOP, a forward time simulator [80, 81]. Together, these two software programs sim-

ulate introduction and evolution of rare variants and can allow complex fitness and selec-

tion modeling (http://simupop.sourceforge.net, https://code.google.com/p/simrare/) with

a user-friendly approach. SimRare takes less time and is more computationally efficient be-

cause replicates are generated and data are stored as population averages rather than storing

individual haplotypes. In this study, the term replicate is a realization of the forward-time

simulation using the given input parameters. In each of the studies described in this chap-

ter, 250 replicates were simulated. Each replicate uses the same evolutionary parameters

but differs because of the random seed variables and random genomic size. After the repli-

cate initializations, populations of any size with any genetic effect can be modeled from this

population. In this chapter, the number of times populations are generated from this pool

for testing will be referred to as duplications.

In all of the simulations described below, an additive multilocus model with a selection

coefficient distribution was used, previously described by Kryukov [82]. The mutation

rate was set at of 1.8e−8 per nucleotide per generation. The population sizes were Ne =

8100, 8100, 7900, and 900,000 with 5000 generations, 10 generations, and 370 generations

respectively.
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Type I error assessment

BioBin is a flexible binning algorithm; the variety of available weighting options and variable

size of output bins should be adequately tested in simulated data to provide future users

assurance in their study results. In this chapter, type I error results are presented from

a gene region simulation study, large region simulation study, and two dependent group

simulation studies. The gene region simulation study represents a biological gene region

with a single start and stop position. The large region simulation study represents a much

larger region with a single start and stop position that could be a very large gene, but is

the average size of pathway bins. The first dependent group simulation study represents

pathway bins by randomly selecting gene region simulations into a single bin. The second

dependent group simulation study is similar to the first group simulation, except a single

significant region is forced into each group.

An odds ratio of 1.0 was used for protective and detrimental mutations with an additive

mode of inheritance for 500 cases and 500 controls in each study. Each simulation incorpo-

rated 1% missingness and 1% unphenotyped individuals. The type I error was calculated

as the proportion of simulated duplicates with a p-value ≤ 0.05. An error rate above 5%

would indicate a higher false-positive test and an error rate lower than 5% would indicate

a conservative test.

Continuous region simulation

Type I error was tested using the evolutionary parameters described above to generate

random length simulated regions for two continuous region simulations (each region has

single start and stop position). For continuous region simulations, each duplicate was a

single region of random size and all of the variants from the simulated region were binned

together in a single bin. Each result was tested with all currently available allele frequency

weight options and at least two statistical tests. First, 2000 duplicate regions were simulated
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with random region lengths between 2.5kb and 100kb. Over the 2000 duplicates, the number

of variants in a bin varied between 42 and 4254 (µ = 1813, SD = 1083.17). The size of

bins (number of variants per bin) in this simulation mimicked gene bins created from an

exome study in a natural data set. However, the 2.5kb-100kb duplicates did not create bins

large enough to resemble bins seen in pathway analyses. To address this, the simulation

was extended to create 1012 duplicate larger continuous regions with random region lengths

between 100kb-500kb. The larger regions are very memory intensive to simulate; therefore,

the number of duplicates was less than the number generated for smaller regions. The

number of variants per bin in the larger region study varied from 13,070 to 98,450 (µ =

48690, SD = 19207.4).

The type I error results are shown in Table 10. For each simulation study in the 2.5kb-

100kb continuous region study, five weight options (described further in Chapter III) and

four statistical tests were used. The included statistical tests were: Wilcoxon two-sample

rank sum test, logistic regression, Wilcoxon rank sum test with permutations, and rank

sum test with permutations. For each 100kb-500kb continuous region, five weight options

and two statistical tests were applied: Wilcoxon two-sample rank sum test and logistic

regression.

The weight calculated using the original Madsen and Browning implementation (CTRL)

had a very high type I error in every test except permutation tests. The weights calculated

from overall allele frequency (OVERALL), which is the most common implementation of

the Madsen and Browning test in current online methods, are mostly well controlled, but

increase slightly in analyses with larger bins. Of the novel unbiased weights, the minimum

and maximum weight (MIN and MAX, respectively), the minimum weight had the lowest

type I error and in most analyses was overly conservative.

Using the p-values from each of the type I error simulation results, quantile-quantile

plots were generated to visualize the log p-value distribution (see Figure 7). On each plot,

the size, weight, and statistical test are indicated. The null uniform distribution is shown

in red. Each column represents results from a specific allele frequency weight. For example,

the first column shows all of the results from the CTRL weight analyses. The first two

rows are 2.5kb-100kb analysis results with 2000 replicates. The third and fourth rows are
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Table 10. Type I error simulation results from continuous region simulation studies.

Study Statistical Test Weight Type I error Permutation∗

2.5kb-100kb

Wilcoxon

CTRL 0.5267
OVERALL 0.0525

MAX 0.0715
MIN 0.048

NO WEIGHT 0.0505

Regression

CTRL 0.7856
OVERALL 0.0455

MAX 0.0685
MIN 0.0385

NO WEIGHT 0.043

Wilcoxon

CTRL 0.0535 Y
OVERALL 0.0545 Y

MAX 0.0535 Y
MIN 0.056 Y

NO WEIGHT 0.0505 Y

Sum rank

CTRL 0.0495 Y
OVERALL 0.0485 Y

MAX 0.0475 Y
MIN 0.051 Y

NO WEIGHT 0.0435 Y

100kb-500kb

Wilcoxon

CTRL 0.999
OVERALL 0.0613

MAX 0.0771
MIN 0.0464

NO WEIGHT 0.0563

Regression

CTRL 0.999
OVERALL 0.0514

MAX 0.085
MIN 0.0425

NO WEIGHT 0.0573
∗ N permutations = 1000
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permutation results using 1000 permutations on each of the 2000 replicates from the same

data. The fifth and sixth rows are the type I error results from the 1016 replicates of the

100kb-500kb large region analyses.

The type I error is vastly inflated in every analysis with the exception of the permutation

tests. For comparison, the last column contains the results from BioBin when no weights

are used and the type I error is well controlled.

Pathway simulation studies

From the simulated region tests described above, new knowledge was generated for type I

error under different weight and test conditions; however, the simulations were not quite

comparable to pathway analyses. Variants binned using pathway knowledge are often binned

in multiple pathway bins because genes recur in multiple pathways with high frequency. This

dependency could affect the type I error rate.

To address this, two additional simulation approaches were developed. Between 2-50

bins from the 2000 gene region duplicates were grouped two ways to test type I error. For

both group simulations, five weight options and two statistical tests were applied: Wilcoxon

two-sample rank sum test and logistic regression.

First, between 2 and 50 bins were randomly grouped together (simulating 2-50 genes in

a pathway). Each 2.5kb-100kb bin could only appear once in a group simulation bin, but

could appear multiple times across the 1000 group simulations. Second, this was repeated

and the most significant bin (p-value ∼ 1e−04) from the null 2.5kb-100kb bin analysis was

forced into each group. One thousand new groups were created by randomly combining

between 2 and 50 bins including the forced the false positive bin into each group. The

type I error was measured as the proportion of total replicates with a p-value of less than

or equal to 0.05. In the second group analysis, since a known signal was forced into each

bin, the reported error was not truly type I error. However, it was important to consider

how a single bin or region of signal can be propagated to larger bins and how the signal is

balanced by noise.
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Table 11 shows the type I error results from the group simulations. Quantile-quantile

plots are shown in Figure 8. The top two rows show the p-value distribution from 1000

duplicates of the first group simulation which contained between 2-50 random bins from the

2.5kb-100kb region analyses. The last two rows show the p-value distribution from the 1000

duplicates of the group simulations which contained between 2-50 bins from the 2.5kb-100kb

region analyses with the forced false positive bin in each group. As shown in Table 11 and

Figure 8, the control weight does not manage type I error under any simulated conditions

without permutation. In the completely random group simulation study, the other four

weights manage type I error reasonably well. Maximum weight is slightly anti-conservative

while the other three are conservative. In the random group with a forced signal, the type

I error is always anti-conservative because the bins are not designed for a true type I error

assessment. Of the four weights, minimum weight and no weight are the most conservative.

Correlation between significance and bin size

Shown in Table 10 and Table 11, the type I error regardless of weight increases in the three

large bin simulation studies (100kb-500kb and two group simulations). The analyses using

the MIN weight or no weight were the least affected, but type I error did still increase. It

is important to understand if the increase in type I error was completely explained by the

size of the bin or if the increase in type I error was compounded by bin dependency (bins

are present in more than one group, which is common in pathway analyses). In each of the

simulation studies, the correlation between each bin p-value and the number of variants in

that bin was evaluated.

In Figure 9, each plot shows the fitted linear correlation line between bin p-values and

the number of variants in that bin. The colors represent the five weight conditions used

in the simulation testing. There is also a black line at y = 0.5 to represent the null

correlation between p-value and number of variants in a bin. In each simulation study, the

CTRL weight is highly affected by the number of variants in a bin because of the selection

bias described in a later section. This effect is most evident in the three large simulation
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studies, note the type I error for the large region simulation study and the two group

simulation studies was over 99% (see Table 10 and Table 11). The Spearman correlation

was tested in each of the four simulations with minimum variant weights applied using the

regression p-value and size of bin. The top left plot shows the results from the 2.5kb-100kb

continuous region analysis. The number of variants in a bin varied between 42 and 4254

(µ = 1813, SD = 1083.17, Spearman correlation ρMIN = −0.0258, p− valueMIN = 0.102).

Weights other than the CTRL weight have only a marginal decrease in p-values at the

high end of gene region simulation study. The MIN weight does not appear to decrease at

all, but stays with the null line at y = 0.5. The top right plot shows the results from the

100kb-500kb large continuous region simulation study, the number of variants per bin varied

from between 13,070 to 98,450 (µ = 48690, SD = 19207.4, Spearman correlation ρMIN =

0.00729, p − valueMIN = 0.743). The non-CTRL weights do not show a strong trend

between p-value and the number of variants in a bin. The bottom left plot shows the

results from the group simulation study, the number of variants per bin varied between 922

variants to 106,300 variants (µ = 47670, SD = 26325.97, Spearman correlation ρMIN =

−0.0203, p − valueMIN = 0.365). Without regard to the CTRL weight, each of the other

weight conditions show a minor decreasing trend, indicating that larger group bins contain

dependencies with slightly lower p-values. The bottom right plot shows the results from

the 2.5kb-100kb group simulation study, where the most significant null bin was forced into

each group. The number of variants per bin varied from 3330 to 115,000 variants (µ =

48400, SD = 27206.31, Spearman correlation ρMIN = 0.287, p − valueMIN = 3.9e−39).

There is a noticeable correlation between p-value and bin size. As the bin size increases,

the signal from the single false positive bin is mitigated.

Non-bias variant weighting comparison

The simulation results indicate that relying on the variant weights based entirely on controls

drastically increases the type I error in all statistical tests except permutation testing. Even

worse, this bias is magnified with the size of the bin, introducing a spurious correlation that
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can confound results. By weighting solely on the control population, the user introduces

a bias similar to the bias described by Lemire [77]. Three options for weighting were

implemented that eliminate selection bias. The most common method is to weight loci by

their overall frequency in the case and control population combined. While this reduces

type I error, it also reduces statistical power. In a recent population comparison of low

frequency variants, many loci that were nearly fixed in opposite directions were found. If

one used the overall weight, these loci would be extremely down-weighted, even though they

are incredibly relevant [83].

The other two unbiased methods use either the minimum or the maximum of the weights

calculated for each population individually (e.g. min( 1
wU

i
, 1

wA
i

) or max( 1
wU

i
, 1

wA
i

). In simu-

lation tests, the minimum weight better controlled the type I error and in most cases was

overly conservative. Figure 10 shows the Madsen and Browning estimate of variance (wi)

and the respective locus weight for large populations and varying allele frequencies. As can

be seen in Figure 10, when using the locus maximum weight with a minor allele frequency

cutoff (vertical line), the locus weights are constrained within a limited range; however,

there is no such constraint when using the minimum weighting option.
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Power simulation assessment

Varying sample size

In addition to the parameters described in the Simrare section, to evaluate power, a sample

data set was generated with the following parameters: fixed 5kb simulated region, 0.9 odds

ratio for protective mutations, 2.5 odds ratio for detrimental mutations, and an additive

mode of inheritance. A protective odds ratio was 0.9 to add noise to the data. The

detrimental odds ratio was designated as 2.5 to provide a conservative estimate of power.

Most literature reviews expect causative low frequency alleles to have odds ratios ≥ 2 [2].

Four sample sizes were created: 2000, 1000, 500, 250. Case/control status was evenly and

randomly assigned in each of the 4000 duplicates. Missingness or unphenotyped individuals

were not incorporated. The power was computed as the percentage of the 4,000 duplicates

with a p-value ≤ 0.05. As shown in Table 12, the power is greater than 90% at sample sizes

of 1000 and 2000 individuals. The power drops to 75% at a sample size of 500 and 50% at

a sample size of 250. While the power drops dramatically with decreasing sample size, it is

important to note that power to detect associations relies heavily on the effect size of the

variants.

Table 12. Power analysis using fixed 5kb simulations with 4000 replicates for each of four sample
sizes (N=2000, 1000, 500, and 250). Note: for each sample size, the number reflects the total number
of individuals (i.e. N=2000 translates to 1000 cases and 1000 controls).

Sample Size Power

2000 0.9910

1000 0.9340

500 0.7575

250 0.5030
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Unequal sample size and comparison with other methods

The last test was designed to generate a sample data set evaluating power similar to the

cystic fibrosis study sample (see Chapter VI), the following parameters were used: randomly

generated bins ranging from 1kb to 10kb; 0.9 odds ratio for protective mutations; 2.5 odds

ratio for detrimental mutations; and an additive mode of inheritance for 100 cases and

300 controls under three scenarios: 100% functional variants, 50% functional variants, and

25% functional variants. In this case, missingness or unphenotyped individuals were not

incorporated. The power was calculated as the proportion of the 1,000 duplicates with a

p-value ≤ 0.05.

The power of BioBin using multiple weight conditions in a logistic regression and

Wilcoxon two-sample rank sum test framework was compared with other published meth-

ods: combined multivariate and collapsing method (CMC), Kernel-based adaptive cluster

test (KBAC), rare variant threshold test (MZ), weighted sum statistic (WSS) and variable

threshold test (VT) [81]. The power analysis results are shown in Figure 11, Figure 12,

and Figure 13. The corresponding type I error for each method is shown in text on each

graph. The most powerful BioBin result uses CTRL weight, which has a tremendous type

I error rate (red line). The most powerful BioBin weight with controlled type I error is the

minimum weight using a logistic regression test; it is second only to the variable threshold

method first described by Price et al. [56].

61



Figure 11. Power estimates for multiple binning strategies on simulated data with 100 cases and 300
controls where only 25% of variants are functional. For reference, the corresponding Type I error
values are provided for each test.
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Figure 12. Power estimates for multiple binning strategies on simulated data with 100 cases and 300
controls where only 50% of variants are functional. For reference, the corresponding Type I error
values are provided for each test.
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Figure 13. Power estimates for multiple binning strategies on simulated data with 100 cases and
300 controls where 100% of variants are functional. For reference, the corresponding Type I error
values are provided for each test.
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Summary

The power and type I error estimates are dependent on sample size, effect size, and BioBin

parameters. Minimum variant weighting was the most powerful and most conservative

weighting framework. Permutations were used for some of the calculations provided but

were not necessary to maintain reasonable type I error rates as long as the variant weights

were unbiased. Lastly, bin size does not appear to increase type I error. Dependency

within bins (such as found in pathway analyses) can minimally increase the type I error.

Additionally, a child bin or variant with a strong signal can propagate signal through larger

parent bins in a size dependent manner. Overall, the bins provided by BioBin are most

powerful if the total sample size is greater than 500 individuals and minimum weighting is

used.
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CHAPTER V

1000 GENOMES PROJECT DATA: POPULATION COMPARISON OF

LOW FREQUENCY BURDEN

Low frequency variants are likely to play an important role in uncovering complex trait

heritability; however, they are often population specific or unique to populations within a

continent. This specificity complicates genetic analyses investigating low frequency variants

for two reasons: low frequency variant signals in an association test are often difficult to

generalize beyond a single population or continental group and there is an increase in false

positive results in association analyses due to underlying population stratification. In order

to reveal the magnitude of low frequency population stratification, pairwise population

comparisons were performed using the 1000 Genomes Project Phase I data to investigate

differences in low frequency variant burden across multiple biological features.

Methods and results

Binning approach

NCBI dbSNP and NCBI Entrez Gene were chosen as the primary sources of position and

regional information [61]. Pathway/group bins, regulatory regions, and evolutionary con-

served regions were created using sources available in LOKI (sources detailed in Chapter III).

Some sources explicitly provide lists of genes in pathways, others provide groups of genes

which share a biological connection (e.g. protein-protein interactions). For the purposes of

this study, any bin created by multiple regions/genes was analyzed in the Pathway-Groups

feature analysis. External custom input files were generated using boundaries of annotated

exon regions from UCSC to bin exon and intron specific variants. For example, if Gene A
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Table 13. Excerpt of custom region file containing regions with signatures of natural selection

Chr ID Start(bp) Stop(bp)

1 CMS EUR:reg1 1490074 1509034
1 CMS ASN:reg2 16414784 16417992
1 CMS AFR:reg3 26917014 26936774
1 CMS EUR:reg4 30707291 30724056

has three exons and two introns, only two bins would be created: GeneA-exons and GeneA-

introns. GeneA-exons would contain all variants that fell within any of the three Gene

A exon boundaries. External custom feature files were also generated for regions under

natural selection by combining regions provided by previously published work [84, 85]. An

excerpt of the custom region natural selection file is shown in Table 13.

Statistical analysis

BioBin is a bioinformatics tool used to create new feature sets that can then be analyzed in

subsequent statistical analyses. Statistical tests used with BioBin can be chosen according to

the hypothesis being tested, the question of interest, or the type of data being tested. Unless

otherwise noted, the results presented here were calculated using a Wilcoxon 2-sample rank

sum test implemented and graphed in the R statistical package [86, 87]. P-values presented

have been corrected using a standard Bonferroni correction, adjusting for the number of

bins created and tested in a given analysis.

1000 Genomes Project data

To investigate low frequency variant population stratification using BioBin, 1000 Genomes

Project Phase I data were analyzed. The 1000 Genomes Project was started in 2008 with the

mission to provide deep characterization of variation in the human genome. As of October

2011, the sequencing project included whole-genome sequence data for 1094 individuals,

and aimed to sequence 2,500 individuals by its completion [88]. Table 14 provides the total
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number of variants (common and low frequency) and individuals included in Phase I VCF

files of 1000 Genomes Project data for 1094 individuals in all 14 populations. Cryptically

related individuals (N=75) were removed and a pairwise comparison of low frequency variant

burden differences between 14 populations was conducted.

In addition to the differences in overall magnitude of variation between these population

groups, there were also differences in the distribution of this variation. In Figure 14, the al-

lele frequency density distribution plot of chromosome 1 for all 14 populations is presented.

On chromosome 1, African descent populations have the highest density of low frequency

variation. Others have found a similar trend genome-wide [60]. In general, the African

ancestral populations not only have more variants overall than other ancestral groups (see

Table 14), these populations also have a higher distribution of low frequency variants than

other ancestral groups (see Figure 14). Although the number of individuals in a given popu-

lation affects the identification of low frequency variants, the trends seen in Figure 14 reflect

ancestry, not population size. The cyclic blue line corresponds to the Iberian population,

which only contains 14 individuals. The smaller sample size is responsible for discrete allele

frequency values and irregular allele frequency distribution.

Although low coverage next generation sequence data are prone to errors, no evidence

exists to support the theory that sequence technology led to differential bias in a way

that could explain the trends found in this chapter. In a recent publication by the 1000

Genomes Project, the authors declared sequence errors to be relevant to the technology

used but not to have any correlation with population identity. In order to determine if there

was differential bias across populations or continental groups based on sequence technology,

principal component analyses in each continental group were performed and global variation

differences in the context of sequence technology were reviewed (similar approach to recent

1000 Genomes Consortium paper). Sequence technologies used for each population in the

Phase I release (see Table 15) [60] were examined. Before removing the 75 cryptically

related individuals, only the TSI population was sequenced on a single technology. However,

after dropping cryptically related individuals, CHB, CHS, and JPT were also sequenced

exclusively with Illumina technology.

In Figure 15, the first two principal components calculated from each of the four conti-
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Figure 14. Minor allele frequency distribution on chromosome 1 for 14 1000 Genomes Project Phase
I populations. Groups are color coordinated by continental ancestry: greens=African descent (YRI,
LWK, ASW); blues=Mexican/Spanish descent (IBS, PUR, CLM, MXL); orange/reds=European
descent (GBR, FIN, CEU, TSI); and pink/purple colors=Asian descent (JPT, CHB, CHS). The
populations of African descent have the highest proportion of low frequency variation. The cyclic
blue line is the IBS (Iberian) population, which only contains 14 individuals. This reduces the overall
available spectrum of variant frequency; IBS are thus an outlier in many of the presented analyses.
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nental groups shown in Table 15 are plotted. The scatter plots are colored using population

identity and then sequence technology. From Figure 15, it is clear that within continental

groups, the largest source of variation is sequence technology. In all four groups, the first

principal component perfectly separates based on technology. However, the variation does

not also coincide with population identity and there is overlap between populations since

few populations were sequenced on a single technology. This reduces the likelihood that

sequence technology causes differential bias in the resulting trends of the presented analyses

(see Table 15 and Figure 15).

Investigation of allele sharing

In any genetic study, and especially in consideration of low frequency variants, it is im-

portant to evaluate sample relatedness and allele sharing. To accomplish this, identity-by-

descent (IBD) was investigated in very common variants (MAF > 5%), to assess relatedness.

Second, a more traditional method of assessing cryptic relatedness was used, LD pruned

variants with MAF > 5% in continental groups were used to parsimoniously eliminate cryp-

tically related individuals. Third, identity-by-state (IBS) within populations was assessed

with and without cryptically related individuals. Lastly, IBS was calculated within conti-

nental groups in low frequency variants (MAF < 5%) and very common variants (MAF >

25%).

Population groups were combined into continental populations (i.e. AFR continen-

tal group included ASW, LWK, YRI) and sample relatedness was evaluated between and

within the general ancestry groups using identity-by-state (IBS) and identity-by-descent

(IBD). Pairwise IBS represents the number of shared alleles at a specific locus between two

individuals. IBS can be observed as 0, 1, or 2 depending on how many alleles are in common

between the pair. If the shared alleles are inherited from a recent common ancestor, they

are also considered IBD. Pairwise IBS calculations for low-frequency variants approximate

IBD since the variants are likely to be recent and the chance of being identical because of re-

currence is rare [89]. PLINK and PLINK-SEQ were used to estimate pairwise IBS and IBD
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for individuals of the same general ancestry group (http://atgu.mgh.harvard.edu/plinkseq/,

http://pngu.mgh.harvard.edu/ purcell/plink/) [78]. In each analysis, evidence of increased

relatedness was found in ASW (African ancestry, USA), CHB (Han Chinese Beijing, China),

CHS (Han Chinese Shanghai, China), CLM (Medellin, Columbia), GBR (England and

Scotland), JPT (Japan), LWK (Luhya, Kenya), and MXL (Mexican Ancestry, California)

populations.

Identity by descent (IBD) in all 1094 individuals

In most genomic studies, subject relatedness is calculated using common variants. There-

fore, in the first allele sharing analysis, IBD was estimated using only common variants

(MAF > 10%) in all 1094 individuals available in the Phase I release. In Figure 16, the

y-axis and x-axis correspond to the proportion of markers identical by descent between a

pair of individuals sharing one allele versus none. Small clusters of individuals in the top

left quadrant correspond to more allele sharing than expected from unrelated individuals.

For example, the green points in the left plot of Figure 16A represent a subset of approx-

imately 10 related individuals in the LWK population. Each point represents the IBD

estimate between two LWK individuals. The pairs that share one allele at almost 100% of

possible loci (Z1∼1) and share at least one allele at all loci (Z0∼0) represent a parent-child

relationship. Siblings cluster near the center of the plot while pairwise IBD estimates for

completely unrelated individuals cluster in the lower right quadrant. In Figure 16, there are

several within-population plots that show increased allele sharing within population groups

(A,C,E,G). However, there does not appear to be any increased sharing between population

groups (B,D,F,H). For example, even though there are individuals in the LWK population

that appear to be related (see Figure 16A), none of the three African descent populations

appear to have closely related individuals across populations (i.e. LWK-YRI are not related,

Figure 16B).

In Figure 16, the pairwise calculations with a proportion of IBD greater than 0.5 were

composed of 16 LWK individuals, each with evidence of first and second-degree relation-

ships within the LWK population. Two of the four top related IBD pairwise compar-

isons in LWK have been calculated in other studies as parent-child relationships [90].
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Most of the apparent relationships in the IBD plots above have been identified previously

and are available on the 1000 Genomes Project website [http://www.1000genomes.org/

phase1-analysis-results-directory, cryptic relation analysis].

Evaluating cryptic relatedness

For common variants, an independent subset of SNPs with a minor allele frequency greater

than 5% and r2 linkage disequilibrium values less than 0.2 was created to calculate pairwise

IBD between individuals. For example, the populations of African descent (LWK, ASW,

and YRI) were grouped, and the IBD calculated using all of the individuals from these

three populations. Maximally connected or related individuals were removed in a parsimo-

nious and iterative manner and the IBD analysis was repeated until the maximum pairwise

pi hat score was less than or equal to 0.3. After repeating this analysis in each continental

group, 75 individuals were dropped from BioBin analyses based on the threshold for cryptic

relatedness. The remaining 1,019 individuals were used for the binning analyses presented

in this paper.

Within population identity by sharing (IBS)

An alternate allele sharing method described by Abecasis et al. uses IBS rather than IBD to

review allele sharing [91, 92]. In the case of low frequency or rare variants, IBS approximates

IBD. Figure 17 shows within population IBS for all 14 populations for variants with a MAF

< 3%, where each point represents a pairwise IBS calculation within the same population

(i.e. IBS calculation between YRI-YRI individuals but not YRI-CEU individuals). In

Figure 17A, the pairs with average IBS calculations that fall outside of the cluster are

cryptically related individuals with increased allele sharing. Figure 17B shows the IBS

calculations after removing 75 individuals with cryptic relatedness.

Within continental group, IBS calculations in low frequency and common variants

Allele sharing was evaluated between major ancestral groups using PLINK-SEQ to calculate

IBS for low frequency variants and common variants (threshold MAF < 3% and MAF

> 25%, respectively). Using the ratio of shared alleles divided by the total number of
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Figure 17. Within population identity-by-state (IBS) estimations A) before and B) after removing
individuals with cryptic relatedness. The x-axis represents the IBS mean for low frequency variants
averaged over 22 autosomal chromosomes. The y-axis corresponds to the standard deviation of IBS
scores across 22 autosomal chromosomes. The colors and point types correspond to each population;
color schemes correspond to general ancestry groups as defined for Figure 14. Each point represents
a population pairwise IBS calculation (i.e. YRI-YRI, not YRI-CEU). Identifying and excluding
related individuals removes the outliers seen in the top plot.
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genotyped alleles between two individuals, excess sharing of low frequency variants was

compared to excess sharing of common variants. Again, there was increased sharing among

ASW, CHB, CHS, CLM, GBR, JPT, LWK, and MXL populations before removing the 75

cryptically related individuals.

Figure 18 shows the mean IBS calculations (averaged across 22 autosomal chromosomes)

in low frequency variants for all pairwise individuals within a continental ancestry group.

The left plot (Figure 18A) corresponds to the IBS calculations for all 1094 individuals;

the right plot (Figure 18B) shows the IBS calculations after removing cryptically related

individuals. The x-axis corresponds to the index number comparison; each x index value

represents one pairwise comparison. The comparisons are grouped and colored by type (i.e.

CHS-CHS and CHS-JPT). The y-axis corresponds to the mean IBS calculation across all

22 autosomal chromosomes. In Figure 18, low IBS means correspond to very little allele

sharing for variants with MAF < 0.03. Higher IBS means correspond to more allele sharing

(and perhaps relatedness) among individuals in that pair. For example, there is increased

sharing of alleles with < 3% MAF among LWK pairs (teal peaks, Figure 18A).

Common variant IBS calculations alone overestimate IBD; however, the analysis was

repeated for common variants, results are shown in Figure 19. For common variants, the

IBS calculations were measured using only variants with a continental group minor allele

frequency of 25% or higher. In Figure 19, the left plot shows the IBS calculations in all

1094 individuals; the right plot shows the IBS calculations after removing 75 cryptically

related individuals. The same peaks of increased sharing in LWK, ASW, GBR, CHS, and

MXL are seen and the removal of those cryptically related individuals reduces the amount

of sharing in those populations.

Genomic feature exploration

After determining which individuals to exclude from this study, the feature options of BioBin

were used to investigate a variety of biologically relevant bins for differences in low frequency

variant burden across 14 populations. Feature selection in BioBin is a clear innovation over
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other available collapsing methods. Knowledge of biological features, such as genes and

pathways, are available through LOKI for binning. The minimum bin size was set to two

variants, the interregion bin size was chosen to be 50kb, and a MAF binning threshold of

0.03 was implemented. A 3% MAF binning threshold was chosen to focus the analysis on

rare and near rare variation that differs between population groups. Genes (introns, exons,

nonsynonymous variants, and predicted deleterious variants), intergenic regions, pathways,

pathway-exons, regulatory regions, evolutionary conserved regions, and regions thought to

be under natural selection were binned.

Results are shown in Figure 20, Figure 21, Figure 22, Figure 23, Figure 24, and Figure 25.

Each matrix plot indicates the proportion of significant bins (after Bonferroni correction)

out of the total number of bins generated between two populations. The color intensity

represents the proportion of total bins that were significant [0, 1]. Overall, there are large

differences across populations with regard to low frequency variant burden, and the dis-

tribution of low frequency variants is not random across the genome. The magnitude of

stratification corresponds to the mutational landscape of the region. Note: although Iberian

(IBS) populations are often clustered with European groups, and it makes sense to do so,

a hierarchical clustering algorithm grouped the small population with Spanish/Mexican

populations in the matrix plot results.

Coding and noncoding regions

NCBI Entrez database was chosen to provide the boundaries for gene regions and created

a custom role file of intron and exon boundaries using data provided from UCSC Genome

Browser [71]. In Figure 20, the top matrix corresponds to bins created using gene exon

boundaries, the middle matrix corresponds to bins created using gene intron boundaries,

and the bottom matrix corresponds to bins created using regions between genes (intergenic).

The abbreviations for the each population are found on the x and y-axes. The numbers

in each block and the color intensity [0, 1] indicate the proportion of significant bins (after

Bonferroni correction) for the 1000 Genomes populations on each axis, where the darker

the color, the higher the proportion of significant bins. In general, the x-axis is organized

with African descent populations on the far right and increasing differentiation with regard
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to low frequency burden towards the left (i.e. populations of Asian descent have the highest

proportion of significant bins compared to African descent groups).

The coding regions show a trend of a lower proportion of significant bins with low fre-

quency variant burden differences than either the intron or intergenic bins. For example,

in the CEU (Northern/Western European Ancestry, USA), YRI (Yoruba African) compar-

ison, approximately 44% of the gene exon bins had significant differences in low frequency

variant burden. In contrast, the noncoding region bins, gene-introns and intergenic bins

had 66% and 70% of bins with significant differences in low frequency variant burden. The

coding regions appear to be under more constraint across populations than noncoding re-

gions. Comparing only the noncoding regions, introns tend to have slightly fewer variation

differences than intergenic bins, most likely because introns are by default nearest neighbors

to the selective pressures on coding regions.

The gene exon bins were filtered using annotations from the Variant Effect Predictor

Software (VEP) [75]. Gene bins were created with only nonsynonymous variants and a

second analysis using only predicted damaging variants annotated by SIFT or PolyPhen-

2 [72, 74, 75]. The results in Figure 21 indicate that these potentially functional and

significant changes are even more conserved between populations than coding regions (Fig-

ure 20A).

ORegAnno annotated regions

The database ORegAnno (Open Regulatory Annotation database) was used to define reg-

ulatory region boundaries for the bin analysis. The top matrix of Figure 22 shows the 91

population comparisons for the ORegAnno regulatory feature analysis.

In comparison to Figure 20, the annotated regulatory regions have fewer significant bins.

For example, in gene exon analysis shown in Figure 20, approximately 44% of the ASW-

CHB gene-exon bins contained significant differences in low frequency burden. However,

in Figure 22, only 28% of the ASW-CHB annotated regulatory bins contained significant

differences in low frequency burden. This trend is consistent across the matrix of population

comparisons; regulatory regions have fewer significant bins than the coding or noncoding

features of the same population comparison.
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Figure 20. Proportion of significantly different bins in A) gene exon, B) gene intron, and C) intergenic
regions. The proportion of significant bins across all population comparisons increases from coding
(A) to noncoding (B) and finally intergenic (C) regions.
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Figure 21. Proportion of significantly different bins for gene exon filters: A) nonsynonymous and
B) predicted deleterious variants. The abbreviations for the each population on are on the x and
y-axes. The numbers in each block and the color intensity [0, 1] indicate the proportion of signif-
icant bins (after Bonferroni correction) for the 1000 Genomes populations on each axis, where the
darker the color, the higher the proportion of significant bins. In general, the x-axis is organized
with African descent populations on the far right and increasing differentiation with regard to low
frequency burden towards the left (i.e. populations of Asian descent have the highest proportion of
significant bins compared to African descent groups). Filtering gene exon regions by mutation type
and predicted functional significance lead to smaller bins and overall greatly reduced proportions of
significance.
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Figure 22. Proportion of significantly different bins in A) ORegAnno regulatory and B) pathway
feature analysis. The abbreviations for the each population on are on the x and y-axes. The
numbers in each block and the color intensity [0, 1] indicate the proportion of significant bins (after
Bonferroni correction) for the 1000 Genomes populations on each axis, where the darker the color,
the higher the proportion of significant bins. In general, the x-axis is organized with African descent
populations on the far right and increasing differentiation with regard to low frequency burden
towards the left (i.e. populations of Asian descent have the highest proportion of significant bins
compared to African descent groups). From more conserved regulatory regions to relatively large
binned pathways, Figure 22A shows conservation in comparison to genic regions (Figure 20) and
Figure 22B shows occasionally very high proportions of significant bins in parent pathway bins in
comparison to genic regions (Figure 20).
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Pathway and group features

Several biological pathway and group sources from LOKI (the Library of Knowledge Inte-

gration, described in detail in Chapter III) were used to generate low frequency variant bins:

PFAM, KEGG, NetPath, PharmGKB, MINT, GO, dbSNP, Entrez, and Reactome. The

Figure 22B shows the 91 population comparisons for the pathway group feature analysis.

Of all of the feature analyses, pathway bins consistently show the highest proportion

of significant differences in low frequency variant burden between populations. There are

several potential explanations. First, since pathway bins are generally much larger than the

other feature types, it is possible that large bins increase the false positive rate. Second,

the same genes and regions can recur in multiple pathways. If the region has significant

differences in low frequency variant burden, then each pathway or group containing that

region will have a higher chance of having significant differences in low frequency variant

burden. Following this logic, a pathway containing many genes has a higher chance of

having at least one gene with extreme low frequency variant stratification. To compare

only coding regions within a pathway, the pathway analysis was filtered to include only

variants within exons. The proportions are reduced (shown in Figure 23) but still higher

than the gene exon proportions shown in Figure 20A.

Evolutionary conserved regions (ECRs)

PhastCons output downloaded from UCSC Genome Browser was used to derive evolutionary

conserved feature boundaries for primates, mammals, and more than 40 species of verte-

brates. Figure 24 shows the 91 population comparisons for the ECR feature analysis. The

numbers in each block and the color density indicate the proportion of significant bins for

the 1000 Genomes populations on each axis. For example, in the ECR: vertebrate matrix,

16.38% of the ECR bins have significant differences in low frequency burden between YRI

and CHS populations. In general, the x-axis is organized with African descent populations

on the far right and increasing differentiation with regard to low frequency burden towards

the left (i.e. populations of Asian descent have the highest proportion of significant bins

compared to African descent groups). Of all of the feature analyses, ECR bins had the
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Figure 23. Proportion of significantly different bins for the pathway-exon feature analysis. The
numbers in each block and the color intensity [0, 1] indicate the proportion of significant bins for
the 1000 Genomes populations on each axis. In general, the x-axis is organized with African descent
populations on the far right and increasing differentiation with regard to low frequency burden
towards the left (i.e. populations of Asian descent have the highest proportion of significant bins
compared to African descent groups). The overall proportion of significant bins is much less in this
pathway-exon analysis than the pathway analysis shown in Figure 22B.
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smallest proportion of significant bins. More ancestrally similar populations tended to have

negligibly low frequency burden differences in these conserved segments. For example, ap-

proximately 7% of the ECR region bins (vertebrate alignment) were significantly different

between FIN (Finnish) and JPT (Japanese) individuals. However, the significant number

of bins between the two ancestrally similar GBR (British) and CEU individuals was less

than 1%.

Regions of natural selection

Natural selection can alter genomic variation in features, particularly in regions with some

impact on protein function (regulatory regions, coding regions). Positive selection on a

specific variant allows the advantageous variant to sweep through a population, which can

lead to an excess of common variants. Alternatively, weak negative selection or purifying

selection can result in selective removal of deleterious alleles. This can decrease variation

around the locus under selection and lead to an excess of rare or low frequency variation [93].

Commonly, evidence of natural selection is found only in one ancestral group, which is

consistent with the idea that these selection events postdate population separation [94].

Because of this differentiation among populations, regions identified as being under selective

pressures were used as features in a BioBin analysis. Table 16 shows the analysis plan,

features tested, sources used, and the mean number of bins generated across all pairwise

comparisons.

To investigate regions of natural selection, a feature list was created using regions re-

cently identified/confirmed by Grossman et al. with the Composite Multiple Signals algo-

rithm on the 1000 Genomes Project data [84]. In addition, a publication by Barreiro et al.

provided a list of specific genes with the strongest signatures of positive selection; i.e. genes

that contained at least one nonsynonymous or 5’ UTR mutation with an FST value greater

than 0.65 [85].

After lifting positions to human genome build 37, there were only 368 remaining re-

gions from the original regions identified by Grossman et al. The results are shown in

Figure 25. The top plot corresponds to regions identified in African ancestry, the middle

plot corresponds to regions identified in populations of Asian ancestry, and the bottom
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Figure 24. Proportion of significantly different bins in evolutionary conserved region feature analysis
A) conserved with primates, B) conserved with mammals, and C) conserved with vertebrates.
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Table 16. Analyses performed for each population comparison: features tested, contributing sources,
and total of bins generated for each analysis.

Analysis Feature Source AVG Bin Total

A

Genes-Exons(NS/DEL) NCBI Entrez, UCSC roles

80786
Genes-Introns NCBI Entrez, UCSC roles

Genes-Unknown NCBI Entrez, UCSC roles
Intergenic (50kb) -

B Pathway/Groups
PFAM, KEGG, NetPath,
PharmGKB, MINT, GO,
dbSNP, Entrez, Reactome

178497

C Natural Selection
Pritchard/Stoneking

Grossman
?

368
D ORegAnno UCSC-ORegAnno 11293

E
ECR-vertebrates

ECR-placental mammals
ECR-primates

UCSC-PhaseCons 319269

plot corresponds to regions identified specifically in populations of European ancestry. The

trends in these three matrix plots are distinctly different from the trends shown in Fig-

ures 20, Figure 21, and Figure 22. The blocks of comparisons within a continental group

(shown in black boxes on each matrix plot) still have very little color, indicating that the

low frequency variant burden between populations within a continental group is very sim-

ilar. The main difference is the gain of intensity outside of the continental groups. For

example, in Figure 25B (regions identified in Asian populations), the European continental

group and Spanish continental group are most likely to have proportions over 60% when

compared to populations of Asian descent. In the same plot, the populations in the African

group have proportions over 85% when compared to populations in the Asian group.

In general, regions considered to be under natural selection were unlikely to have sig-

nificant differences in low frequency burden between ancestrally similar populations, and

very likely to have significant differences in regions considered to be under natural selection

between ancestrally distant populations (see Figure 25).

Regions of natural selection have been identified using various methods often in a popu-

lation specific manner. Therefore, large differences were expected in low frequency variant

burden between populations that have not shared similar evolutionary history. Specific

genes provided by Barreiro et al. that have been found to show the strongest signatures of
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Figure 25. Proportion of significantly different bins in natural selection analysis by region of iden-
tification: A) AFR continental group, B) ASN continental group, and C) EUR continental group.
The regions of natural selection, particularly negative selection, are often accompanied by excess low
frequency variants. As world populations evolved, selective forces were often unique and location
specific. Therefore, the evolution of low frequency variants compared across world populations can
be markers of past selective events. Populations within a continental group are very similar and
there are high proportions of statistically significant bins between populations of different continental
groups.
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positive selection were investigated. These genes contain at least one nonsynonymous or 5’

UTR mutation with an FST value greater than 0.65 [85].

Using CEU/CHB/YRI populations as representative populations from the European,

Asian, and African ancestral groups, the regions of natural selection associated with the

gene list provided by Barreiro with overlap in one of two other publications are shown in

Table 17 and Table 18 [84, 95, 96]. This table includes the number of loci in the bin, total

binned variants from both populations, and the bin p-value. The source author corresponds

to the paper for that particular region. The “relevant population” describes the population

where the signature of selection was found.

Next, particular genes known to have allele frequency differences between populations

were of interest, including Lactase, Phenylalanine Hydroxylase, CTCF, and CFTR. Table 19

shows the BioBin p-value results for three representative populations (YRI, CEU, CHB)

in each gene bin. For example, the Lactase gene had a significant low frequency variant

burden difference between CEU/CHB and CEU/YRI but not YRI/CHB. On the other

hand, CFTR was significantly different between CEU/CHB, CEU/YRI, and YRI/CHB.

Linkage disequilibrium in binned low frequency variants

Although low frequency variants are commonly assumed as independent (in low linkage dis-

equilibrium (LD) with other variants), there are rare haplotypes within related individuals

and populations [97]. Linkage disequilibrium (LD) was investigated in 10 top-ranked bins

for three population comparisons, CEU-CHB, CHB-YRI, CEU-YRI. LD was calculated be-

tween binned variants and the number of variants inside of a bin in LD with an r2 > 0.3

was calculated.

In Figure 26, three pairwise population comparisons are shown. The top 10 ranked bins

were investigated from the CEU-CHB (A), CHB-YRI (B), and CEU-YRI (C) coding and

noncoding analyses for presence of LD (r2 > 0.3) between two variants in the same bin. The

abundance of white space illustrates the lack of rare haplotypes in the top most significant

bins.
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Figure 26. Proportion of loci in top bins in high LD with other variants in the same bin. Each bar
represents a gene or intergenic bin. For a particular population comparison, the total height of the
bar corresponds to the number of loci in that bin. The shades of blue and purple correspond to loci
with r2 LD values greater than 0.3 for a specific population shown in the legend. The variant can be
in LD in one population, the other population, or both (described in each legend). Almost all of the
low frequency loci in LD had r2 values of approximately 0.5 or 1, corresponding to almost perfect
LD. The white space corresponds to loci in the bin with LD values less than 0.3. The top bins are
therefore, mostly composed of independent loci.
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Pathway correlation with bin size

Since the proportion of significant bins in the feature analyses is considerably higher for

pathway bins than any other feature, the correlation between pathway p-value and bin size

was of particular interest. The pathway feature for the CEU-YRI population comparison

was chosen to assess the correlation between significance and several characteristics of the

pathways. All of the pathways in the YRI/CEU analysis were compiled, and the following

information for each pathway bin was obtained: total genomic coverage, number of genes,

number of independent genes, number of loci, number of variants, and BioBin p-value.

Because the majority of pathways or groups were not very large, the data was heavily

skewed (see Figure 27). A log10 transformation was performed on all six variables: number

of genes in the pathway or group, number of unique genes (not present in any other pathway

or group), number of loci in the pathway bin, number of variants in the pathway bin, genomic

coverage of the pathway bin, and the BioBin reported Bonferroni adjusted p-value. Because

of the skewedness, any pathway bins that had transformed loci values outside of 2.5 standard

deviations of the log-transformed loci mean were removed.

Figure 27 and Figure 28 show the correlations between six untransformed and trans-

formed variables (with outliers removed), where each pairwise correlation is significant (p-

value < 0.05). A bin was considered an outlier if the number of loci in the bin was more

than 2.5 standard deviations from the mean transformed loci value.

The number of loci, number of variants, and size of genomic region were significantly and

linearly correlated with each other (correlation coefficients > 0.95). The most interesting

correlations were the nonlinear correlations between the loci/variants/genomic coverage and

p-values. Figure 28B is a higher magnification of the highlighted correlation in Figure 28A;

specifically, the correlation between log10 p-values and log10 variants were plotted. The

lowess smoothing function is shown in red, and the function appears to change slope twice.

On the x-axis, the slope from x=1 to x=3 is relatively linear and the log10 p-value increases

with an increasing number of variants (p-value becomes more significant). From x=3 to

x=4, the slope is near 0. From x=4 to x=5, the slope appears nonlinear and with a larger

slope than the left slope, indicating again most significant p-values with higher numbers
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Figure 27. Investigation of pathway significant correlation with bin size using untransformed
pathway variables. Correlation scatterplot matrix for six untransformed variables: the num-
ber of genes in a pathway (n genes), the number of unique genes in the pathway (n uniq), the
number of loci in the pathway bin (loci), the number of variants in the pathway bin (vari-
ants), the genomic coverage of pathway (coverage kb), and the bin p-value (p-val). Bins consid-
ered outliers were removed before generating the correlations (http://stat.ethz.ch/R-manual/R-
patched/library/graphics/html/pairs.html). The variables are right skewed and require transfor-
mation.

98



of variants in a bin. Although these are transformed values, the p-values are not perfectly

uniform. Therefore, the tails are possibly unreliable.

Lastly, boxplots describing certain characteristics from each data source were created.

Figure 29 shows that specific sources (i.e. KEGG) consistently have larger bin characteristics

(number of loci, number of genes, coverage (kb), etc.) and also have much more significant

bin p-values (Figure 29B). It appears that certain sources might inherently have more

significant groups by nature of the information that these sources provide, or because of the

size of groups found in the source.
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Figure 28. Investigation of pathway significant correlation with bin size using log10 transformed
pathway variables. Correlation scatterplot matrix for six log10 transformed variables: the num-
ber of genes in a pathway (n genes), the number of unique genes in the pathway (n uniq), the
number of loci in the pathway bin (loci), the number of variants in the pathway bin (variants),
the genomic coverage of pathway (coverage kb), and the bin p-value (p-val). Bins considered out-
liers were removed before generating the correlations. Figure 28B is a higher magnification of
the correlation highlighted in Figure 28A, but instead of the +log10 transform of p-values, it is
showing the the log10 transformed p-values and log10 transformed variants with a loess smoothing
function (red line) and 95% confidence intervals (gray shading). (http://stat.ethz.ch/R-manual/R-
patched/library/graphics/html/pairs.html).
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Figure 29. Pathway characteristics presented by LOKI source. Different pathway characteristics
presented in box plots: A) The y-axis shows the log10 frequency of each source statistic for the
number of genes (Num. Genes), the number of loci (Num. Loci), the number of variants (Num.
Variants), and the coverage in kb, B) The distribution of p-values for the various knowledge sources.
On average, the same four sources listed above also tend to have bins with smaller p-values. Each
boxplot and color corresponds to the biological knowledge sources listed in the legend. KEGG,
NetPATH, PharmGKB, and Reactome show consistently larger bins (higher number of loci, variants,
and coverage).
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Discussion

1000 Genomes Project data

Since the reference genome is predominantly of European ancestry [98, 99, 100], populations

with non-European ancestry generally have more variation with respect to the reference

genome than populations of European ancestry (see Table 14). Therefore, to interpret the

results of this study, one might conclude that non-European populations have higher rates

of sequencing error than European descent populations. However, in the most recent 1000

Genomes Project publication, the authors report an accuracy of individual genotype calls

at heterozygous sites more than 99% for common SNPs and 95% for SNPs at a frequency

≥ 0.5% [60]. Furthermore, the authors found that variation in genotype accuracy was more

related to sequencing depth and technical issues than population-level characteristics [60].

Therefore, neither the sequencing error nor the predominantly European reference genome

adequately explain the trends seen in the genomic feature exploration.

Both sequence generation (technology and/or site) and population identity strongly

contribute to underlying stratification in next-generation sequence data. After removing

individuals with cryptic relatedness, 4 out of 14 Phase I populations were sequenced entirely

using a single sequence technology (CHB, CHS, JPT, and TSI). The other 10 populations

had between 3-18 individuals or 5%-57% of the population sequenced on technologies

other than Illumina (ABI SOLID or LS454). Note: all three of the Asian populations

(after removing individuals with cryptic relatedness) were sequenced only with Illumina

technologies.

Investigation of allele sharing

To identify cryptically related individuals, LD-pruned common variants (minor allele fre-

quency ≥ 5%, linkage disequilibrium r2 ≤ 0.2) were used to calculate identity-by-descent.
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Seventy-five individuals of various population backgrounds were identified and eliminated.

In addition to the previously documented relatedness in 1000 Genomes Project [http:

//www.1000genomes.org/phase1-analysis-results-directory], additional cryptic re-

latedness was found [90, 101]. The differences are likely because continental groups were

used (not a single population or the entire 1094 individuals) to identify cryptically related

individuals; in this analysis, continental groups could include variants with fixed opposite

frequencies that are overall common. This is infrequent in populations of the same conti-

nental group, but could be stratification introduced by different sequencing technologies.

Genomic feature exploration

The major goal of this study was to investigate population stratification across multiple

biological features. Matrix plots were created to illustrate the proportion of significant

bins in each comparison (shown in Figure 20, Figure 21, Figure 22, Figure 23, Figure 24,

and Figure 25). These results show an interesting trend between functional regions of the

genome and variant tolerance, where variant tolerance refers to the balance of mutation

load and resulting functional impact. Mutations appear to be less tolerated in functional

regions. Similarly, ECRs, which are known to be conserved among species, are also the

features least likely to have variation burden differences between two populations. There

is some debate about selection and functional significance in these conserved regions; it is

unknown what factors have the largest effect on mutation rates [102], but it is possible that

consistently low mutation rates in these features have generated conserved regions through-

out evolution [103]. There are two potential explanations: 1) additional level of repair of

DNA damage in transcriptional active regions by transcription coupled repair (TCR), 2)

approximately 3% of the genome is subject to negative selection; however, it is estimated

that functionally dense regions contain up to 20% of the sites under selection [102, 103].

A number of the top results in each comparison have an interesting context, particu-

larly in light of natural selection. Perhaps one of the most notable is SLC24A5 (Ensembl

ID:ENSG00000188467), which is one of the top ten results in 19 out of 91 populations
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comparisons in the gene feature analysis. European specific selective sweeps estimated in

the last 20,000 years suggest that SLC24A5 is key in skin pigmentation; Zebrafish with

“golden” mutations in this gene exhibit melanosomal changes [104, 105, 106]. The presence

of selection in this gene only in particular populations is most likely due to environmental

factors such as distance to the equator, which has led to the evolution and expansion of low

frequency variants in some populations but not others.

A second notable top result is DARC (Ensembl ID:ENSG00000213088), which encodes

the Duffy antigen. The DARC gene bin was in the top ten results in 14 out of 91 population

comparisons in the gene feature analysis. It has long been known that populations of African

descent have increased diversity due to natural selection at this location, which prevents

Plasmodium vivax infection.

The top result from the regulatory region analysis was a region on chromosome 20

(chr20:45395536- 45396346) which was in the top ten bins in 24 out of 91 population com-

parisons in the ORegAnno feature analysis. This region also overlaps several ENCODE

transcription factor binding sites in multiple cell lines: CTCF, POLR2A, NFYA, E2F1,

FOS, and more. It was also annotated as an insulator in multiple cell lines in ENCODE

Chromatin State Segmentation analyses using Hidden Markov Models [71, 107].

As one last example, the intergenic bin chr15.968 contains variants in the genome loca-

tion chr15:48400199-48412256. This bin is one of the top ten bins in 17 out of 91 population

comparisons in the intergenic analysis. The region covered by the chr15.968 bin is less than

1kb upstream of SCL24A5 on chromosome 15 and overlaps with several transcription factor-

binding sites (including CTCF), regions thought to be weak enhancers, and regions thought

to be insulators. According to Grossman et al., there are defined regions under natural selec-

tion before and after this region (chr15:45145764-45258860 and chr15:48539026-48633153),

and all are very likely to participate in the transcriptional regulation of SLC24A5.

The natural selection features require knowledge of three things for interpretation: 1)

population A, 2) population B, and 3) the population where this signature was identified.

When all three of these are within the same ancestral or continental group, very few differ-

ences are expected in low frequency burden. However, if population A is the same or similar

to the population possessing the selection signature and population B is different, signifi-
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cant differences are expected in low frequency burden between population A and population

B. In these results, the vast majority of regions considered to be under natural selection

had significant differences in low frequency burden between disparate ancestral populations,

which supports the theory of selection in these regions.

Proportion of LD between variants in a bin

Low frequency variants can form rare haplotypes, which inflate the signal in a feature

bin [43, 97]. The top 10 ranked bins from the CEU-CHB, CHB-YRI, and CEU-YRI coding

and noncoding analyses for presence of LD between two variants in the same bin were

investigated. Figure 26 shows bins predominately filled with white-space indicating low

to no pairwise LD between variants in those bins. In the top ten bins from these three

analyses, rare haplotypes do not appear to be driving the significant differences seen in low

frequency variant burden.

Pathway size correlations

In general, size of bins can influence the number of stratified variants contained and thus

the significance of that bin. It is important to prove that this is because larger bins have

a greater opportunity to collect variants that are stratified and not because of inflated

type I error. Type I error rates in bins between approximately 40 variants to over 100,000

variants were tested and no correlation between bin size and Type I error rate was found

(see Chapter IV). However, it should also be noted that while larger bins have more chances

to collect stratified variants, there is also a larger capacity to collect neutral variants that

contribute noise and decrease the signal.

Using CEU-YRI pathway burden analysis, correlation between pathway size and signif-

icance was reviewed. The number of genes in pathways ranged from 1 to over 700 genes,

with the average around 5 genes per group. Correlations for this data are shown in Fig-

ure 28. Not surprisingly, there were very linear and positive correlations between number

of loci, number of variants, and genomic coverage. However, each of these had a nonlinear

and somewhat complex relationship with the log-transformed p-value. This is highlighted

in Figure 28B, which shows the relationship between the log10 transformed p-value and
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the log10 transformed number of variants in the bin. The trend indicates that p-values are

positively correlated (become more significant) with numbers of variants in a bin when the

numbers of variants are relatively small or very large.

Two reasons could explain this correlation: 1) the false-positive rate is influenced by bin

size (number of variants per bin), and 2) true signals from child bins (genes) with burden

differences which perpetuate higher numbers of significant parent bins (pathways). After

extensive simulation testing (see Chapter IV) and recent publications in the literature, the

latter is likely true [108]. A single or small number of child bins (gene bins in this example)

can drive parent bins (pathways in this example) to be significant even if no other child

bin contains stratification. The comparison in Figure 29 between group sources available

in LOKI suggests KEGG, NetPATH, PharmGKB, and Reactome have consistently larger

bins (higher number of loci, variants, and coverage). On average, these same four sources

also tend to have bins with smaller p-values. Therefore, larger pathways are more likely to

contain a gene with extreme low frequency variant stratification.

Trends in the Asian continental group

The x-axis of each matrix plot (i.e. Figure 20) is oriented with African continental popula-

tions on the far right and the continental group with the highest proportion of significantly

different low frequency variant bins on the far left. Asian populations are generally more

different from African populations than European populations. There are at least three

possible explanations; first, the Asian populations were the only continental group to be se-

quenced on the same technology, which could introduce a different bias when testing any of

these populations with populations outside of Asian ancestry. While this is true of the 1,019

unrelated individuals, there were cryptically related individuals sequenced using SOLID

technologies in all three of the Asian populations. The only population (including crypti-

cally related individuals) to be sequenced exclusively on Illumina was TSI. When the Asian

populations were examined, the cryptically related individuals were added back into the

analysis to see if individuals of Asian descent sequenced with different technologies changed

the results. The trend was the same, Asian populations are the most different from African

populations with regard to low frequency variant burden. The second potential explanation
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is that Asian populations had considerable proportions of cryptic relatedness that had to

be removed for this analysis, 49 of the 75 individuals removed were from Asian populations.

Perhaps there was something unique about how those samples were collected. The third

and most interesting explanation involves the journey for early Asian populations leaving

Africa. Travelling east was much different geographically than travelling west. For exam-

ple, early Asian migrants would have traversed the Himalayan Mountains. The harsh travel

could have induced bottlenecks and other evolutionary mechanisms that would uniquely

change the genetic architecture, specifically the architecture of low frequency variation.

Conclusion

As researchers continue in pursuit of genetic etiologies explaining heritability in common,

complex disease, it is important to consider multiple types of genomic data, specifically vari-

ation beyond common variants. Low frequency variants are more frequent in the genome

than common variants and are likely to have significant functional impact on human health.

Many successes are expected in next-generation data analysis; however, it has become in-

creasingly clear that the same methods and corrections used in GWAS cannot be applied

to low frequency variant analyses. Since low frequency variants are often recent mutations,

they are specific to continental ancestry groups. This provides two important conclusions:

first, low-frequency variants that influence disease are likely not the same across distantly

related individuals (allelic and locus heterogeneity); second, low frequency population sub-

structure leads to substantial differentiation and cannot be ignored in low frequency anal-

yses [60].

Population stratification is a pertinent and very present confounder in genomic stud-

ies. In common variant association studies, stratification is often managed using ances-

try correction components. Until relatively recently, the challenges presented by low fre-

quency population stratification to genomic analyses has been overlooked. Current methods

used for GWAS to correct for ancestry are not likely adequate for low frequency stratifi-

cation [76, 109]. Therefore, it is imperative that researchers are aware of potential pitfalls
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stratification can introduce to low frequency genomic analyses. Additionally, this study

highlights potential limitation in using the 1000 Genomes samples as population based

controls in case-control association studies. If the case population belongs to a different

ancestry than the 1000 Genomes control population and/or they are exclusively sequenced

using a different technology, this can introduce significant stratification. This level of strat-

ification may or may not be adequately corrected using PCA or other analysis methods.

Thus, it is clear that proper evaluation of stratification would be prudent if 1000 Genomes

Project data are being proposed as a population control set.

In summary, the results presented in this chapter expose the magnitude of low frequency

population stratification between all populations available in 1000 Genomes Project Phase

I release across multiple interesting biological features. The magnitude of low frequency

stratification appears to be dependent on the functional location of the variation. For ex-

ample, there were fewer differences in low frequency burden in coding regions than intergenic

regions. Features with less variant tolerance and possibly more evolutionary constraint had

fewer differences in low frequency variant burden between different populations, i.e. sig-

nificant low frequency bins seemed to be consistent with mutation theory. African descent

populations overall varied most greatly from populations of Asian descent. However, low

levels of stratification existed even between populations of the same continental group. Fu-

ture studies should focus on methods to accurately control for low frequency population

stratification.
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CHAPTER VI

BIOBIN ANALYSES IN NATURAL DATA

Kabuki analysis

BioBin was applied to ten samples with Kabuki syndrome. Kabuki syndrome is a rare

disorder that affects multiple systems; it is commonly associated with the following char-

acteristics: cardiac anomalies, skeletal abnormalities, characteristic facial appearance, and

intellectual disability [110]. In a published analysis using these data, Ng et al. applied a

filtering method to identify MLL2 as a possible causative gene for Kabuki syndrome [111].

Although a sample of ten individuals across multiple ancestries do not provide reasonable

power to achieve statistical significance for identified rare variant trends in a burden analy-

sis, it was a useful exercise to show how BioBin can be used to prioritize bins based on rare

variant burden differences.

Study sample

The NHLBI Kabuki dataset available on dbGaP (http://www.ncbi.nlm.nih.gov/gap/) was

downloaded April 2012. According to the authors of the original study, ten unrelated

individuals with Kabuki syndrome were sequenced: 7 of European ancestry, 2 of Hispanic

ancestry, and one of mixed European and Afro-Caribbean ancestry [111]. Variants were

identified using a custom Agilent array capture kit targeting all protein coding regions

annotated by RefSeq 36.3 [111]. Shotgun fragment libraries were hybridized to these custom

microarrays, and then enriched using massively parallel sequencing for an average coverage

of 40x on the mappable, targeted exome [111]. The raw fastq files were downloaded from

dbGaP and processed using standard exome algorithms: bwa, samtools, picard, GATK, and
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bedtools.

Since the number of identified variants correlate with the depth of coverage (to a thresh-

old of approximately 30x) and the Kabuki cases are from multiple ancestral backgrounds, it

was imperative to use a multi-ethnic control set with a high depth of coverage. Publically

available Complete Genomics whole-genome sequences for 54 unrelated individuals from 11

populations were used as the control group for this experiment [112]. The 54 Complete

Genomics samples were sequenced with an average genome-wide coverage of 80x [112].

Methods and results

In this study of 10 cases and 54 controls, there was very little power to detect a reasonable

association. If the probability of exposure (allele frequency) was 0.03, type I error was 0.05,

and the true odds ratio for disease in exposed subjects relative to unexposed subjects was

3, the power to reject the null hypothesis using a chi-square test was only 0.226 [113].

BioBin was used to collapse the whole-exome data for 10 Kabuki individuals with 54

individuals from Complete Genomics whole-genome data. In the original Kabuki analysis,

Ng et al. used a filtering method to identify MLL2 as a possible causative gene for Kabuki

syndrome. In this analysis, in order to compare the cases and controls, we filtered both

datasets by exome boundaries (available from UCSC) and filtered out variants present

in the 1000 Genomes Project Phase I data (October 2011 release: 14 populations, 1094

individuals) [71, 88]. A MAF binning threshold of 0.05 was used to collapse rare variants

based on known gene regions (start and stop positions form bin boundaries) and known

pathways (gene bins in the same pathway are collapsed into one pathway bin). BioBin

produced the MLL2 gene bin with 125 total variant loci (184 total variants) at a minor

allele frequency threshold of 0.05, but was not significant (p-value = 0.4718).

While we did not replicate the MLL2 finding, one of the top pathways included EMG1,

a gene previously associated with Bowen-Conradi syndrome (pathway adjusted p-value <

0.001, gene adjusted p-value < 0.001). Bowen-Conradi syndrome has a much more severe

phenotype, but shares two disease characteristics with Kabuki: impaired growth and mental
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retardation [114].

Conclusions

Ng et al. filtered out 1000 Genome variants and other non-causative variants identified from

previous Kabuki studies. They also considered only nonsynonymous variants with predicted

changes in function. As shown in the results section, ten individuals with whole-exome data

are not a large enough case sample size for sufficient power in a Wilcoxon 2-sample rank

sum test. The uneven sample size and different sequencing approach for cases and controls

were major limitations in this study. To compare the cases and controls, both datasets

were filtered by exome boundaries and variants present in the 1000 Genomes Project Phase

1 release were removed. These steps helped reduce potentially noise contributing neutral

variants.

The same filtering process from Ng et al. was not used and the sample size affords

very little power for a case-control study, which together, likely explain why MLL2 was

not significant in this analysis. In addition, population stratification exists in the cases and

controls and was not accounted for in this analysis. MLL2 has 54 exons and quite a bit of

neutral variation. As shown in Chapter IV, larger bins with increased background variation

make causative signals harder to detect.

In this underpowered analysis, BioBin results should be utilized as a prioritization

method; thus, it would require a much larger sample size to investigate the robustness

of the EMG1 association. To improve this analysis, one could potentially use a principle

components analysis to adjust for the variant confounding between the two groups in a

regression analysis or perform a permutation test to help adjust for unknown confounding.

A better test data set would include at least 500 individuals that were sequenced with the

same technology. Overall, BioBin can be used as a filtering mechanism to group data and

evaluate rare variant burdens between two groups, but requires a more substantial sample

size to gain power to detect significance.
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Cystic fibrosis analysis

Cystic fibrosis (CF) is a genetic disease affecting multiple organ systems. According to the

Cystic Fibrosis Foundation, cystic fibrosis affects approximately 1 out of every 2000-3000

live births in Caucasian individuals and the median life expectancy for patients with cystic

fibrosis in 2011 was 36.8 years [115]. It is caused by homozygous or compound heterozygous

mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, a

regulated chloride channel. More than 1500 catalogued mutations with disease causing

potential in the CFTR gene have been catalogued [116]. Of the various complications

and comorbidities that accompany CF, the most debilitating organ dysfunction involves

abnormalities in airway secretion and resulting chronic lung infections.

Pseudomonas aerunginosa (PA) infection is the most common cause of respiratory fail-

ure in patients with CF, and is responsible for deteriorating lung function and mortality in

patients with persistent infection [117]. Although there are clear environmental exposures

that contribute to infection frequency, there are also genetic factors that modify recurrent

PA infection risk. Recently, Green et al. calculated the heritability of chronic PA infection

as 0.76 using monozygotic and dizygotic twins with Class I, II, and III mutations (severely

affected CFTR function) [118]. The results of this study and the known severity of chronic

infection to individuals with cystic fibrosis make a strong case for continued genomic re-

search in this area.

Study sample

Data were accessed from the National Heart, Lung, and Blood Institute (NHLBI) from

September 2012 through January 2013. Study Accession ID phs000254.v2.p1 contains ex-

ome sequence data from 431 subjects across two cohorts, 189 limited to cystic fibrosis

research from the University of Washington (UW) and 242 for general research use from

University of North Carolina (UNC). Selected subjects were divided based on two extremes
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Table 20. Data characteristics for cystic fibrosis study sample for 416 European descent individuals.

Covariates
Overall (%) PA (%) PF (%)

N=416 N=181 N=235
Data release version

Phase I 90 (21.63) 90 (49.72) 0 (0)
Phase II 326 (78.37) 91 (50.28) 236 (100)

Sample Site
UW 174 (41.83) 117 (64.64) 58 (24.58)
UNC 242 (58.17) 64 (35.36) 178 (75.42)

of lung disease phenotypes: youngest individuals with chronic Pseudomonas aeruginosa

(Pa) and those exhibiting extremely poor pulmonary function (PF) as defined by survival

corrected FEV percentile [119].

Before starting analyses, a principal component analysis (PCA) was run using the 1000

Genomes Project Phase I data and CF data to assess and designate ancestry [88]. Figure 30

shows the first two principal components of the merged 1000 Genomes (labeled by color in

legend) and dbGaP cystic fibrosis study data (labeled gray in legend). In Figure 30, indi-

viduals of European descent from the 1000 Genomes Project data are clustered in orange.

In the cystic fibrosis dataset, individuals with values for PC1 ≤ 0.005 or PC2 ≤ 0.01 were

eliminated from the data set based on how closely individuals clustered with the European

descent group from 1000 Genomes Project Phase I data. Using these criteria, 15 individuals

from the UW site were dropped from further analyses.

Table 20 shows phase and site data characteristics of the remaining 416 individuals.

Phase refers to the dbGaP release, 90 individuals used in this study were released in the

first phase through dbGaP. An additional 326 individuals were released in the second phase.

All of the individuals from the PF study were ascertained in the second phase. In addition

more individuals overall were collected from the UNC site than the UW site.

All 416 samples were collected from individuals with cystic fibrosis, but technically from

two studies: recurrent Pseudomonas aeruginosa (PA) infection and pulmonary function

(PF) phenotype. Therefore, the analyses presented in this chapter are stratified by pheno-

type. Several of the covariates were measured over the clinical history for a given patient;

in this case, median values were used for statistical analyses. Median values were used for

the following variables: Forced Expiratory Volume (FEV) measures, age, and height. The
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Figure 30. Principal component analysis (PCA) using merged samples from the CF analysis and
1000 Genomes Project Phase I data to identify ancestry.
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Table 21. dbGaP cystic fibrosis clinical and demographic characteristics for two studies: recurrent
pseudomonas infection (PA) and mild/severe pulmonary phenotype (PF).

Covariates
PA∗ PF

Cases Controls Cases Controls
Gender†

Male 38 51 58 60
Female 49 43 56 62

Age‡

Male 5.95 (2.89) 15.92 (7.50) 12.12 (3.45) 19.24 (6.83)
Female 5.68 (2.53) 14.28 (5.51) 13.56 (3.98) 19.52 (8.85)

FEV values∗‡

Male 1.33 (0.54) 2.15 (0.92) 1.27 (0.49) 3.71 (0.86)
Female 1.39 (0.53) 2.01 (0.59) 1.16 (0.40) 2.86 (0.57)

Height (cm)∗‡

Male 124.87 (11.73) 159.65 (19.15) 145.77 (17.75) 165.17 (14.13)
Female 127.30 (13.67) 150.77 (11.21) 148.8 (14.81) 155.17 (12.29)

Sequencer (HiSeq)†

Male 7 6 26 30
Female 7 7 28 23

Sequencer(GAII)†

Male 31 45 34 33
Female 42 36 33 41

† counts (N)
‡ calculated mean and standard deviation
∗ Values inclusive of imputed measures

clinical and demographic variables shown in Table 21 are stratified by study and gender.

To maximize the number of individuals in each statistical analysis, missing values were

imputed for any covariates with missingness. FEV values and height variables were missing

in 14 PA cases and are annotated with an “∗” in Table 21. The R package “mi” was

utilized to perform multiple imputations [120]. Although, these were not missing completely

at random, the variables were highly correlated with age and gender, thus, this process

provided a reasonable imputation. A fixed estimate for imputed values was used in the

analysis.

Correlations between covariates shown in Table 20 and Table 21 were evaluated. The

correlation plot shown in Figure 31 was generated using the R package “PerformanceAn-

alytics” to visualize the correlation between all of the study covariates, clinical covariates,

demographic covariates, and calculated principal components in the PA study [121, 122].

On Figure 31, the bottom panel contains the scatterplots between pairwise variables, each
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label and histogram are shown along the diagonal, and the top panel indicates the coeffi-

cient of correlation (in number and relative size) and the significance of the correlation in

asterisks. As shown in Figure 31, the first principal component was highly correlated with

both sequencing variables. Covariates age, FEV measurements, height, and gender were

correlated. This is not surprising since lung capacity is anatomically related to individual

size.

The comprehensive correlations from the PA analysis shown in Figure 31 are some-

what hard to study in detail, pertinent correlations shown in Figure 31 are shown again in

Figure 32.

Methods

As healthcare providers continue to adopt electronic medical record systems and build col-

laborations with researchers, genomic study designs will increasingly include a multitude of

genomic and clinical data. Many of these variables are highly correlated measures that can

complicate analytical results. Using the CF dataset, the following approaches were taken

with the CF data: traditional binning approach with logistic regression using maximum-

likelihood estimators (ML) and logistic regression using penalized likelihood estimators

(Firth), pre-processing variable selection approach with ML logistic and Firth logistic re-

gression, pathway analysis using ML logistic and Firth logistic regression, and a machine

learning elastic net analysis.

Statistical analyses

Firth logistic regression performs better than ML logistic regression in analyses with “sep-

aration.” Separation occurs when the outcome is very rare, very common, or when there

are several correlated predictors. In small data sets, separation occurs when both outcomes

are not observed in a cell defined by two covariates, e.g., the outcome is perfectly predicted

by a non-trivial combination of covariates. Perfect separation refers to a combination of

predictors that perfectly predict the outcome. For example, zero controls (outcome) are
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both female (independent variable) and ever-smokers (independent variable). Separation

can also occur if the outcome variable can be perfectly separated by a single independent

variable. In logistic regression using maximum likelihood estimators, this causes problems

fitting the model and results in at least one of the parameter estimates diverging to infinity

(infinite log p-values). Occasionally this can cause an error; however, most of the time,

the only diagnostic clue is unreliable standard error estimates, i.e., Wald test confidence

intervals of infinite width. Firth introduced a modified score equation to include a penalty

function which reduces bias and resolves the issue of separation. It is generally preferred

to exact conditional regression because it can be implemented in cases of continuous and

categorical variables and requires less computational power than exact conditional regres-

sion [123, 124, 125]. Firth regression was implemented using the R package “logistf” [126].

For each analysis, logistic regression used a maximum likelihood estimator (ML) and Firth

logistic regression used a penalized likelihood estimator.

Elastic net analysis refers to a regularized regression method that can perform variable

selection and prediction using a variety of parameter optimizations, bootstrapping, and/or

cross validation. It is ideal when there are more predictors or modeling parameters than

samples. Elastic nets use two penalty parameters, alpha (α) and lambda (λ), to shrink coef-

ficients of inconsequential predictors and optimize coefficients for relevant predictors [127].

Although using a machine learning approach to select variables introduces bias to the anal-

ysis, it helps maintain reasonable error by building parsimonious models.

To perform variable selection, an elastic net algorithm was used to rank variables that

model the phenotype; genetic data was not used to perform variable selection [128, 129].

For each phenotype, PA and PF, subsets of the covariate data were used in repeated cross

validations to estimate optimal alpha and lambda parameters with minimal cross validation

error. Once the optimal alpha and lambda values were obtained, 1000 models were built

from bootstrap samples of the data. Variables that appeared in over 75% of the generated

models were considered high priority and likely important predictors for the phenotype of

interest. A threshold of 75% was an arbitrary designation to reduce noise from unimportant

variables but still be fairly inclusive of any variables that consistently showed up across 1000

models. Depending on the alpha and lambda parameters chosen, the elastic net algorithm
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can perform variable selection and also allow for correlated variables to remain in the model.

For example, two highly correlated variables can be present in 85% and 90% of the 1000

bootstrapped models. As discussed before, correlations in covariates can lead to unstable

error estimates in a logistic regression analysis. Therefore, the last statistical iteration

included pruning the selected covariates using correlation measures to produce a minimally

correlated subset of variables. Adjusting first for the subset of covariates and secondarily the

selected and pruned covariates, statistical analyses were performed to detect an association

between the outcome and each bin from BioBin.

Lastly, elastic net models were generated using all available covariates and low frequency

bin data. In this more traditional application of elastic net, 10 cross validations were per-

formed. First, subsets of the data were split into training (0.632) and testing sets. For each

training set, 500 bootstrapped samples were used to estimate optimal alpha and lambda

parameters with minimal cross validation error and to build a final model. Prediction ac-

curacy, sensitivity, and specificity measurements were obtained by applying the final model

to the testing set. This process was completed independently over 10 cross validations. The

final models, selected variables, coefficients, and accuracy from each cross validation were

compared.

In addition to varying binning parameters and statistical tests, various subsets of co-

variates were used to adjust the analyses. Each analysis was tested without adjusting for

any covariates, adjusting only with significant principal components (with respect to ex-

plaining genetic variance), adjusting with all available covariates, adjusting for covariates

based on variable selection, and adjusting for covariates based on variable selection and

then pruned using correlation between covariates. Significant principal components were

calculated using the Tracy-Widom statistic available in the Eigensoft package [130].

BioBin parameters

BioBin has a number of configurable parameters when performing analyses. These are

described in Chapter III. In the following analysis examples, a binning threshold minor

allele frequency of 5% was chosen. Gene bin analyses were performed using “no weight”

and “minimum weight” approaches. Several of the analyses described use filters to separate
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variants based on function. Nonsynonymous variants and predicted damaging variants were

calculated using the Ensembl Variant Effect Predictor (VEP), which includes results from

SIFT and PolyPhen-2 [72, 73, 74, 75]. A variant was labelled “damaging” if SIFT or

Polyphen-2 identified the variant as damaging at any level (SIFT: “deleterious”, PolyPhen-

2: “possibly damaging”, “probably damaging”).

The CF exome data were binned based on gene regions determined by the NCBI Entrez

gene source [61]. Depending on the analysis (PA or PF), approximately 15,000 gene bins

were created. Several binning strategies were used: minimum weights or no weights, nonsyn-

onymous variant filters, deleterious variant filters, and functional variant filters. Functional

variant filters combined all nonsynonymous variants in a bin, but assigned custom weights

to increase the influence of nonsynonymous variants (1.1) and predicted deleterious variants

(1.2).

Pathway analyses were performed using multiple sources available in LOKI (see Chap-

ter III). Similar parameter sweeps and statistical methods were applied to pathway analyses

as previously described for the gene feature analyses.

Results and discussion

Pulmonary function phenotype

The pulmonary phenotype analyses were performed on 114 cases (severely affected pul-

monary function) and 122 (mildly affected pulmonary function) controls. Several of the

covariate measures were highly correlated with the phenotype, including FEV measure-

ment, age, and height. The impact of covariate correlation is very important to result

interpretation. For instance, when one of the covariates is highly predictive of the phe-

notype, separation can occur. Correlations between two or more “independent” variables

can lead to a non-uniform p-value distribution and possibly an increase of false-positive

results. In Figure 33, quantile-quantile plots (QQ plots) are shown for a few results from

the pulmonary function analysis. In this analysis, no variant weight was used and only
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nonsynonymous variants were binned.

Figure 33a shows the unadjusted QQ plot, which does not quite fit the expected uniform

distribution. Figure 33b shows the QQ plot adjusting for covariates listed in the caption.

This plot is highly abnormal; all of the expected log p-values are 0. In the results, these are

actually infinite log p-values. Figure 33c shows the QQ plot adjusted for ONLY covariates

using variable selection (without correlation pruning). Lastly, Figure 33d shows the same

data as Figure 33c except using a Firth logistic regression instead of a maximum likelihood

estimated logistic regression which is sensitive to separation.

In the example shown in Figure 33b, the offending covariate is FEV, which was correlated

to the measure used to phenotype individuals as severe or mild phenotypes and highly

correlated to height and age. If a correlated predictor variable is critical to the analysis, one

can use Firth regression, a penalized maximum likelihood estimator which better estimates

coefficients and standard errors in cases of perfect or near perfect separation. As shown

in Figure 33d, the penalized regression manages error much better than standard logistic

regression and produces more uniform log p-values.

After evaluating the p-value distribution of models which used the ML logistic regression,

variable selection with correlation pruning that included only significant principal compo-

nents best resolved the issue of separation, i.e., two or more correlated predictors were not

perfectly predicting the outcome. There were no highly significant hits from the PF gene

bin analysis, which might be expected given the small sample size and data stratification

present, e.g. different sequencing technologies, study phase, study sites, etc. However, Firth

regression provided the most reliable results. A few of the top ranked results were biolog-

ically relevant and interesting (results are shown in Table 22). The p-values provided for

each bin are uncorrected for multiple testing, such as Bonferroni correction. This analysis

adjusted for selected covariates pruned for correlation or significant principal components,

using no variant weights, and binning only nonsynonymous variants.

None of the results shown in Table 22 are significant after Bonferroni correction. A few

of the results PPP1R9A, EPS8L1, and FERMT1 are categorically related to cytoskeletal

structure, which is potentially pertinent since severely affected lung phenotypes are likely

to be fibrotic. Two other results involve ion channels, SGK3 is a protein kinase involved
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(a) Unadjusted analysis (b) Adjusted for all covariates

(c) Adjusted for select subset of uncorrelated co-
variates

(d) Adjusted for all covariates using FIRTH re-
gression

Figure 33. Quantile-quantile plots for pulmonary function (PF) analysis illustrating effect of perfect
separation in PF data. (a) QQ plot for unadjusted gene bin analysis using ML logistic regression.
(b) QQ plot for adjusted gene bin analysis using ML logistic regression, analysis adjusted for top
10 principal components (PC), gender, sequence technology, FEV measurement, age, height, and
site (c) QQ plot for adjusted gene bin analysis using ML logistic regression, analysis adjusted for
selected variables from elastic net ranking and post-ranking elimination of highly correlated variables:
PC1, PC8, PC9, PC10 and height (d) QQ plot for adjusted gene bin analysis using FIRTH logistic
regression, analysis adjusted for top 10 principal components (PC), gender, sequence technology,
FEV measurement, age, height, and site
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with ion channel regulation. However, another member of the SGK family, SGK1, regulates

CFTR conductance [134, 135]. Lastly, ANO4 is a calcium-mediated chloride ion transport,

essential for Cl- secretion in epithelial cells, smooth muscle peristalsis, and olfactory sig-

naling. The relationship between ANO4 and CFTR has been tested in mice but requires

further research [136].

Recurrent Pseudomonas aeruginosa phenotype

The PA phenotype analyses were performed on 87 cases and 94 controls. Again, many of

the covariates were highly correlated. In Figure 34, quantile-quantile plots (QQ plots) are

shown for few of the results from the PA analysis. The expected log p-values from a uniform

distribution are shown by the red line, observed log p-values are shown in black. In the

particular analysis shown, all nonsynonymous variants were binned with a functional weight

applied, i.e., nonsynonymous variants received a weight of 1.1 and predicted deleterious

variants received a weight of 1.2.

As shown in Figure 32, median age, median FEV measurement, and median height

are correlated in the PA data. Figure 34a shows the unadjusted QQ plot, which does

not quite fit the expected uniform distribution. Figure 34b shows the QQ plot adjusting

for all possible covariates (listed in the caption). This plot has an unusual observed p-

value distribution with several observed infinite log p-values. Figure 34c shows the QQ

plot adjusted for ONLY covariates using variable selection (without correlation pruning).

Figure 34d shows the QQ plot adjusted for covariates using variable selection and correlation

pruning. In this case, site and height variables were dropped due to high correlation with

other selected variables. Figure 34e shows the QQ plot after adjusting for only significant

principal components using the Tracy-Widom statistic [130]. Lastly, Figure 34f shows the

same data as Figure 34d except using a Firth logistic regression instead of a maximum

likelihood estimated logistic regression which is sensitive to separation.

After evaluating the p-value distribution of models which used the ML logistic regression,

variable selection with correlation pruning and using only significant principal components

best resolved the issue of separation. However, Firth regression provided the most reliable

results. A few of the top results using Firth regression are listed in Table 23.
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(a) Unadjusted analysis (b) Adjusted for all covariates

(c) Adjusted for select covariates (d) Select covariates and pruned

(e) Significant principal components (f) Select covariates-FIRTH regression

Figure 34. Quantile-quantile plots for Pseudomonas aeruginosa infection (PA) analysis (a) unad-
justed gene bin analysis using ML logistic regression, (b) adjusted for top 10 principal components
(PC), gender, sequence technology, FEV measurement, age, height, site, and PA culture using ML
logistic regression, (c) gene bin analysis adjusted for selected variables from elastic net ranking using
ML logistic regression, (d) adjusted for selected variables from elastic net ranking and post-ranking
elimination of highly correlated variables using ML logistic regression,(e) ML logistic regression ad-
justed for significant principal components (PC), (f) FIRTH logistic regression adjusted for same
variables as Figure 34c.

126



There is only one significant result from the PA gene bin analysis after Bonferroni

correction, which might be expected given the small sample size and the aforementioned

data stratification present (e.g., different sequence technology variables, phase variables,

site variables, etc). However, some of the top ranked results were biologically relevant and

interesting. Results from a PA analysis adjusting for selected covariates pruned for correla-

tion or significant principal components, using minimum variant weights, and binning only

nonsynonymous variants are shown in Table 23. The p-values for each bin are unadjusted

for multiple test correction, i.e. prior to a Bonferroni correction.

Several factors are important to consider when interpreting these results; significance,

bin size, and direction of effect. Only ACER3 meets significance after a multiple test

correction. With only two loci in the bin, and particularly because one group (cases) does

not have any variants in this bin, it is important to consider stratification. This could be

explained with sequence technology differences or differences in variant calling.

Many results appear protective of recurrent PA infection, i.e., there are more variants

in controls than cases. The number of variants in each group shown in Table 23 is the sum

of variants in that particular group. In the PA analysis, the sample size is uneven, there

are seven more controls than cases. Therefore, the sum of variants shown in Table 23 does

not immediately translate to effect size.

Some results listed in Table 23 do not appear to have any extensive relationships with

infection, CFTR, or cystic fibrosis in the literature but do have some relevancy. For ex-

ample, SMG6 encodes a protein responsible for nonsense mediated decay (NMD), which

is the mechanism used to degrade defective CFTR proteins with premature stops. How-

ever, there is no literature supporting a direct association of SMG6 with cystic fibrosis

or infection [138]. Another example is FAM120A. According to IntAct, a database of in-

teracting proteins, FAM120A physically interacts with the CFTR protein according to an

“anti bait coimmunoprecipitation” experiment, but there is no literature further defining

this relationship [139]. The last example is MLLT4, which does not contain any direct links

in the literature to CF, but is associated with elevated states of immune response. This is

potentially interesting since much of the damage to lung epithelial cells is caused by chronic

inflammation and bacterial response.
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A few of the results in Table 23 have more relevant relationships with cystic fibrosis,

CFTR, or infection. Three are discussed in further detail below.

The ACER3 bin contains only two variant sites and was the only bin to remain signifi-

cant after Bonferroni correction. ACER3 encodes an alkaline ceramidase that metabolizes

ceramide to form lysolipid sphingosine. Both ceramide and sphingosine are signaling lipids;

ceramide is involved in inflammation and apoptosis and sphingosines primarily induce cell

proliferation and differentiation. Severe mutations in ceramidases can lead to lysosomal

storage disease, but an imbalance between ceramide and sphingosine can lead to an ac-

cumulation of ceramide and cell death on lung epithelial cells [140, 141]. Teichgräber et

al. published the pioneer observation of ceramide accumulation. In Cftr -deficient mice,

an accumulation of ceramide in pulmonary epithelial cells resulted in age-dependent pul-

monary inflammation, death of respiratory epithelial cells, deposits of DNA in bronchi and

high susceptibility to severe Pseudomonas aeruginosa infection. In their particular mouse

model, heterozygous genetic deficiency of acid sphingomyelinase (Asm) or administration

of an Asm blocker, such as amitriptyline, normalized pulmonary ceramide and prevents

all pathological findings, including susceptibility to infection [140]. In humans, acid sphin-

gomyelinase (SMPD1 ) proteins convert sphingomyelin to ceramide [133].

In Table 23, DHCR7 has more variants in controls than cases. DHCR7 encodes the

enzyme 7-dehydrocholesterol reductase that catalyzes the conversion of 7-dehydrocholesterol

to vitamin D3 using sunlight. Recent results suggest that DHCR7 has been under selection

in recent evolutionary history to allow European populations to avoid severe vitamin D

deficiency as populations moved away from Africa and the equator. In the setting of cystic

fibrosis, which is predominant in Caucasian populations, this is quite interesting. However,

even more interesting are the implications of vitamin D deficiency, which include: cancer,

autoimmune disease, infection, and cardiovascular disease [137]. Active vitamin D is a

immune modulator; in an example by Holick, immune cells exposed to Mycobacterium

tuberculosis up-regulate the vitamin D receptor gene. Increased production of active vitamin

D produces cathelicidin, a peptide that can destroy many infectious agents. Low serum

levels of active vitamin D prevent this innate immune response, which results in increased

and more aggressive infections [142].
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Lastly, CYBA is considered. Inflammation in the lung epithelial cells in patients with

CF begins at an early age and is predominated by neutrophils. In CF patients, the persis-

tent inflammation fails to resolve the recurrent bacterial infections. It is thought that the

damage caused by neutrophils in CF is due to excessive reactive oxygen species production,

thus inducing airway damage and promoting bronchiectasis and fibrosis in the lungs [143].

In Table 23, CYBA is shown to have more variants in cases than controls. CYBA has

been previously associated with autosomal recessive chronic granulomatous disease (CGD),

characterized by a lack of reactive oxygen production in neutrophils to kill pathogens, re-

sulting in a diminished immune system and excessive bacterial and fungal infections [144].

Excessive or lack of reactive oxygen species production by neutrophils can cause chronic

and severe infection.

Pathway and elastic net analyses

Lastly, a pathway burden analysis was compared to an elastic net approach using PA data.

Again, none of the pathway results were significant after Bonferroni correction for multiple

testing. Most of the top ranked results were BioGrid interaction groups; many had at least

one bin from the top hits listed in Table 23. A few were unique signals, for example, Bi-

oGrid ID:637466 represents a physical interaction between CKS2 and LDHB. Cyclin kinase

2 plays a critical regulatory role in meiosis and mitosis. Abnormal expression has been

associated with many types of cancer [145]. Lactase dehydrogenase B encodes a subunit of

lactase dehydrogenase, which converts pyruvate to lactate and NAD to NADH. The expres-

sion of LDHB can also be unregulated in cancers [133]. Another top hit included BioGrid

ID:120309, which represents a physical interaction between CTPS2 and SPG21. CTPS2

encodes a catalyzing enzyme to convert CTP to UTP and deamination of glutamine to glu-

tamate. Cells with increased cell proliferation also exhibit increased activity in CTPS2 [71].

The protein encoded by SPG21 binds to CD4 to repress T cell activation. A mouse knock-

out of SPG21 had almost two fold difference of CFTR expression in brain tissue [146], but

a clear relationship for how these interactions might be linked with chronic PA infection is
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unclear. SPG21 could regulate CFTR expression or this could be a false positive result in

the expression data, future studies are needed to confirm.

In the 10 cross-validations of the elastic net, only two yielded models with non-zero

coefficients. The accuracy of both models in the respective test data set was 89%, but

there was only one coefficient common to both models, PPAP2C. PPAP2C is a member of

the phosphatidic acid phosphatase family (PAP). The function of this PAP is to convert

phophatidic acid to diacylglycerol, participate in de novo synthesis of glycerolipids, and

phospholipase mediated signal transduction [71]. It is also involved in the sphingolipid

metabolism described in the previous section for ACER3.

In one of the two models formed during cross validations, there were six non-zero coef-

ficients. Three of which could be distantly mapped using IMP [147] to genes related to cell

cycle. The network for CDK2, PPAP2C, and DNAJC9 is shown in Figure35. CDK2 is a

member of the Ser/thr protein kinase family, it is important for G1/S phase transition in

the cell cycle. DNAJC9 encodes a heat shock protein that can also map back to cell cycle

regulation.

Conclusions

Care must be take to exclude or manage highly correlated covariates if performing ML

logistic regression analyses. As shown in Figure 33 for the PF analysis, the log p-values

were essentially unreliable using maximum likelihood logistic regression. FEV values were

correlated with the diagnosis of severe pulmonary function because the FEV measures

part of the diagnostic criteria. Firth regression requires considerably more computational

resources, but is highly recommended in analyses with covariate correlation.

Clinical and demographic covariates were used to build a model predicting the pheno-

type; therefore, the bias generated from unaccounted degrees of freedom in the secondary

regression analysis was likely unsubstantial. The results from this variable selection analy-

sis, which served to reduce error in the resulting models, were more consistent with expected

distribution of p-values than ML regression. A penalized likelihood estimator better controls
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Figure 35. Gene set network for one of the top models. Three out of the six nonzero coefficients
were connected using IMP.
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errors when any correlation is present in the data.

Previously, authors of the dbGaP cystic fibrosis dataset published a study identifying

DCTN4 as a likely candidate gene modifier of PA infection using only the phase I data from

this study. The authors used an additive rare variant threshold approach (RVT1) approach

with a minor allele frequency threshold of 12.5% [119, 148]. After Bonferroni correction,

DCTN4 was significantly associated with chronic infection (adjusted p-value 0.025). Twelve

out of 43 cases in the phase I data had a missense mutation in DCTN4 [119]. In the PA

analysis using only nonsynonymous variants described in this thesis and all phase I and phase

II individuals, DCTN4 had 4 loci. Sixteen variants were present in cases and 10 variants

were present in controls (p-value = 0.3349, unadjusted for multiple testing). The results are

likely not replicated in our study because the sample size was doubled by including phase

2 individuals, different minor allele frequency cutoffs were used, individuals were excluded

that did not cluster with European descent populations, and potential noise contribution

from neutral variants.

The pathway analysis and elastic net analysis did not yield any exceptional results.

However, an important lesson can be learned. Noise contribution and variants of opposite

effect have been discussed many times in this thesis (Chapter III and Chapter IV) and

ultimately reduce power to identify true associations. Pathway analyses, such as the one

presented above, have increased noise and most likely have increased numbers of variants

with opposite effect. There are more variants included in the bin analysis, since multiple

gene bins are collapsed into one pathway bin. But more importantly, pathways have known

positive and negative regulators that can impact downstream function. A missense variant

upstream in a negative regulator might increase overall function of a particular pathway,

but a similar variant elsewhere could have a different effect. Therefore, until better variant

selection methods are available for BioBin, pathway analyses utilizing burden tests are

unlikely to contribute new information to low frequency variant analyses.

An alternate to the burden test or a machine learning technique is preferable for network

analyses. The potential for pathway analyses using nonburden tests is somewhat better since

these tests allow variants to be binned together even if the direction of effect is different

among variants. Alternatively, variants binned in a similar way will allow tools such as

133



elastic net algorithms to build effective models from the data. This approach also benefits

from the flexibility to add common variants to analyses. The elastic net models produced

from the PA analysis do have some relationship with cell cycle regulation, but the fact that

this model was not replicated in each cross validation decreases the likelihood it has any

significance to the PA phenotype.

Conservative correction for the total results of all conducted analyses would eliminate

all significant results. In previous sections where multiple test correction has been men-

tioned, the p-values were corrected for only the test performed within the context of a

single analysis. For example, if a single bin analysis resulted in 15,000 bins, the Bonferroni

correction would only account for those bins, not for every 15,000 bins created for additional

parameters (weight testing, etc).

Lastly, most of the results discussed in this chapter were not significant after a multiple

test correction. This could be related to sample size and/or the stratification introduced

by multiple sequencing technologies, three separate exome capture kits, and multiple col-

lection/sequence sites. However, the type I errors were well-controlled and the results could

be prioritized for follow-up studies. Several of the bins in the PA gene analysis were par-

ticularly interesting in the context of cystic fibrosis disease, the CFTR gene, and chronic

Pseudomonas aeruginosa infection.
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CHAPTER VII

CONCLUSIONS

To explain additional phenotypic variation in common complex disease, it is imperative

to consider genetic variation beyond common single nucleotide polymorphisms. Rare vari-

ant analyses are appealing since effect sizes are potentially larger and increasingly available

in next generation data sets. However, to improve power, one must consider groups of

rare variants with similar properties. The most powerful application of collapsing methods

groups detrimental variants with other detrimental variants to effectively “build” a de-

tectable signal. Alternatively, the least powerful application of a collapsing method would

group variants with opposite directions of effect or include a significant number of variants

that contribute to noise but no meaningful signal. BioBin is a novel collapsing method that

uses allele frequency data and biological information to bin rare variants.

BioBin is unique because it is driven by a powerful database of biological/computational

knowledge, does not require any one explicit statistical paradigm, and provides bins with

direct interpretations of biology. The user can easily test complicated and interesting hy-

potheses on many features. LOKI provides access to integrated biological knowledge (path-

ways, groups, interactions, ECRs, regulatory regions, etc.), which is valuable to researchers

that do not want to spend considerable effort to combine this knowledge manually. Ad-

ditionally, the output of BioBin can be subsequently analyzed using the association test

most appropriate for their specific scientific question. For any given bin analysis, many

statistical tests including those from other published collapsing methods can be applied to

BioBin output.

In this thesis, the benefits for studying low frequency variants and the advantages of

using biological knowledge from BioBin have been outlined. In Chapter II, the properties

of low frequency variants and their potential contributions to heritability are described.

In addition, multiple published methods to study low frequency variants are reviewed.
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Chapter III provides a thorough overview of the BioBin software and relevant analysis

parameters or options. Extensive simulation studies testing BioBin and its various weights

and statistical tests are presented in Chapter IV. Chapter V chronicles a study of population

stratification in low frequency variant bins using Phase I 1000 Genomes data. Lastly,

Chapter VI contains demonstration analyses from two applications of BioBin to natural

data sets.

Because of the technological revolution resulting in increased available sequence data

and available biological knowledge, BioBin will become an even more useful analysis tool.

The ability to quickly form and test unique, interesting, and biologically relevant hypotheses

using aggregated low frequency variation will aide scientists in revealing hidden heritability

for common complex disease.

Evaluation of the analyses presented

Strengths of this approach

BioBin provides a tool for researchers with insurmountable data sets to utilize vast biological

knowledge for hypothesis generation. BioBin is a novel automation of binning analyses that

provides limitless flexibility. Users are able to bin at many levels of information: introns,

exons, genes, pathways, regulatory regions, and multiple other combinations. The Library

of Knowledge Integration (LOKI) database provides an assortment of established publicly

available databases to guide binning. The structure of LOKI also allows users to import

additional or external knowledge sources to satisfy individual binning needs.

Binning methods increase power over single low frequency variant association tests.

BioBin reliably identifies regions or collections of variants with differences in low frequency

variant distributions associated with the outcome of interest. It also affords users the ability

to perform complex filtering and weighting to increase the power to detect association for

any given bin.

Unlike other available methods, BioBin software is not restricted to any particular sta-
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tistical test. Users are able to apply burden and nonburden tests and machine learning

methods to BioBin output. This flexibility encourages users to identify and utilize statisti-

cal tests that best fit their data and hypothesis.

Limitations of this approach

In many cases, binning approaches are underpowered to detect true associations. Although

filtering and weighting approaches are available in BioBin, more work is needed to overcome

noise contributed by neutral variants or diminished signals from many variants of opposite

effect (i.e.., detrimental versus protective effects). In the implementation described in this

thesis, BioBin is limited by known biological knowledge. For example, the user is not able

to filter variants beyond lists of variants in known databases (e.g. 1000 Genomes Project

database), currently available prediction algorithms (e.g., SIFT or PolyPhen-2), or custom

knowledge files. Nonburden tests or additional methods of filtering should be added to the

binning analysis pipeline to overcome this loss of power.

Another limitation of using sequence data are genome reference. Variant calling format

(VCF) files are a common output from next-generation sequencing studies and are the

standard input file for BioBin. These files essentially contain all variation with respect

to the human reference genome. In theory, variation with respect to some standard is

exactly what should be compared in a bin analysis. In reality, the absence of a variant

with regard to the reference sequence and thus absence from a VCF file can also be due to

missingness (failed to meet quality standard to call variant with confidence) or off-target

sites (not within target region of exome capture kit). This problem will only be alleviated

when projects routinely sequence high depth of coverage (> 30x) and consistent capture

technology is used throughout the study.

The foundation of the BioBin approach is ultimately based on base pair proximity and

biological knowledge. Using BioBin implies that a collection of rare variants from a pre-

defined region confer an increased odds or risk of the phenotype of interest. For example,

causative low frequency variants within a gene increase the odds of developing schizophre-

137



nia. Regardless of feature, every bin generated collapses variants based on contiguous

genomic coordinates. Of course, this limits the user to identifying collections of variants

defined proximity in genomic space, though this may not correspond to biological function

(interregion bins).

Lastly, the biggest limitation of any binning approach is data quality and size. In order

to reliably identify meaningful associations, artifact signals causing false positive associ-

ations must be smaller than the signal of interest (i.e., favorable signal to noise ratio).

Current study designs have not afforded this opportunity. In efforts to progress genomic

research and be considerate of costs, many studies combine samples from multiple plat-

forms/sites/ancestral backgrounds to increase power to study rare variants. Unfortunately,

these studies suffer from stratification due to ancestry, imprecise phenotyping, site-specific

sequence technology, differing target capture kits, and ambiguous/inconsistent data pro-

cessing pipelines. In addition, larger sample sizes are needed to establish reliable allele

frequency calculations and increase the number of binnable variants.

BioBin is reliable at detecting bins with differences in low frequency variant burden;

however, many times those differences are because a disproportionate number of controls

were sequenced with a different technology or capture kits. Due to the process of locus

selection, BioBin is sensitive to data quality and stratification. Statistical results from

BioBin output can be misleading if confounding factors are not considered and/or prevented.

Binning considerations

Study design

Good study design is critical in low frequency variant studies. Do et al. considers sample

selection to be the most critical component in exome-sequencing studies [6]. It is important

to catalogue potential samples and consider the most relevant study design:

1. Population samples
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2. Case/control studies

3. Families segregating Mendelian traits

Since the cost of sequencing is still quite expensive, researchers must carefully select

the study design and samples to be sequenced. In most cases, it is beneficial to focus on

extreme phenotypes [6].

Another consideration in sample selection is ancestry. The geographic distribution of low

frequency variants is highly dependent on ancestry; refer to Chapter V for more information

about ancestral differences in low frequency variant burden. Extreme care must be taken to

accurately match case and control groups in low frequency variant studies [6]. It is relatively

easy to incur false positive results due to population stratification and convenience control

samples most often are not the best matched controls. Unfortunately, it is unclear that

principal components can reliably and adequately adjust for population stratification in

low frequency variant studies.

In addition to carefully matching cases and controls for ancestry, it is imperative to apply

strict guidelines for the handling of case/control samples. Bias and type I errors can easily

result from study designs that sequence and process samples differently: sequence tech-

nology, sequence site, and variant calling pipelines. Although it is currently prohibitively

expensive, sequence studies will be more reliable when samples can be sequenced in dupli-

cate and perhaps on more than one technology or at more than one site. Concordant data

will enhance the accuracy of the analysis results.

Considering all of these recommendations, the ideal study for a BioBin analysis would

include at least 4000 extreme phenotypic cases (N=2000) and controls (N=2000) from

a single cohort study of similar ancestry. The phenotype should have well established

heritability. Thousands of samples are needed to establish reliable allele frequency estimates

generalizable to the sample population. Careful sample selection with regard to phenotype

and ancestry will increase the power of finding an association and decrease potential error

inducing noise. To identify the majority of variants with high specificity, filtered raw reads

should have at least 20x coverage at 80-95% of the sequence [6]. In an ideal study, each

sample would have whole-genome sequence data with a mean depth of coverage greater than
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or equal to 50x. At this level of coverage, the number of variants identified is less correlated

to depth of coverage [6]. Samples would be sequenced and processed at the same center

with nominal error rates. Whole genome sequence is preferred because it provides many

more avenues of discovery outside of coding regions. Higher mean coverage and controlled

sequencing and processing reduces the number of errors and potential stratification in the

data. The larger sample size and carefully phenotyped samples will increase the power of

finding true associations.

Replication in rare variant analyses

Statistical replication is a critical step to validate genomic study results. Most commonly,

replication is performed in a similar but independent dataset and the replicating signal

must have the same direction of effect in the same SNP or a SNP in very high LD with

the originally associated SNP [149]. This is often referred to as a “signal replication” since

association with any tag SNP represents the same signal.

Others hold the stringent view that a signal must be detected in the same SNP to be

considered a true replication; in this text defined as a “strict replication.” In common

variant association tests, which hinge on tag SNPs being in high LD with other common

variants, strict replication is not practical. For example, SNP1 and SNP2 are in very high

LD with each other. In a published study, authors only investigated SNP1 and found it to

be associated with phenotype X. If a second group of researchers published an association

between phenotype X and SNP2, this would not be considered a replication using “strict”

replication guidelines. Since common variant studies utilize SNP-tagging for genotyping

and association analyses, it is impractical to believe that results from a statistical test prove

definitive causation. Most putative SNPs with a common allele frequency can be accurately

tagged by more than one tag SNP. It is also impractical from a genotyping standpoint.

Platforms vary in genomic coverage and strict replication across two studies may not be

possible based on available genotypes. If constrained to strict replicate identification, many

signal replications will be missed. However, in rare variant analyses, which are most often
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in low LD or in very low frequency haplotypes, strict replication is more applicable.

In current literature, rare or low frequency single variant replications generally adhere

to the definition for strict replication. Guey et al. detail steps for replication in low

frequency analyses. The authors suggest first detecting an association in extreme phenotype

samples, and then replicating in a similar population or cohort using random sampling.

The extreme phenotypic sampling allows for variant prioritization, but also suffers from

“winner’s curse” similar to observations made from GWAS [149, 150], where the resulting

association signals in an extreme phenotypic sample study are often overestimated. To

assess the true effect size, the prioritized variants must be assessed in a randomly sampled

population of similar ancestry to the original sample. In addition, to accurately state

that a variant was replicated or not replicated, the replication dataset must be adequately

powered to detect an association [149]. For researchers seeking strict replication of rare

variant associations, data sets must be quite large [48, 150].

The concept of strict replication can be applied to common and rare single variant

analyses; however, for binned analyses the interpretation of replication is somewhat less

clear. To illustrate, consider the following example: GeneA bin is significant after primary

analysis. Researchers want to replicate the finding in a similar independent data set of

adequate size for single variant associations. If there were seven variants in the GeneA bin,

how many would have to be significant in single variant association tests to be considered a

replication of the GeneA signal? If only one variant replicated, could this still be considered

a replication of the GeneA signal? If the direction of effect changed for one variant compared

to the original direction of GeneA, would this diminish support of replication? If a bin

analysis was repeated and GeneA was significant with the same direction of effect, is this

adequate evidence for replication? What if the significant GeneA bin in the replication

set had only a subset of variants found in the original sample? Lastly, how could strict

replication be interpreted if there were epistatic interactions between variants in the bin?

Replication for bin analyses do not the follow the same interpretation as single variant

analyses. Variants with opposing directions of effect can (unfortunately) fall into the same

bin. Completely neutral variants are quite commonly binned with variants that contribute

to an association signal. Therefore, it would be illogical to require every variant in a
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significant bin to have an individual significant association in a replication study. It would

also be insensible to determine that every significantly associated signal must be the same

direction of effect as the original associated bin. This would require the exact same variants

to be found across multiple sequencing studies, no more and no less. This contradicts a

major benefit of binning studies, allelic heterogeneity. The idea behind rare variant binning

analyses is not that a single variant causes every instance of a studied phenotype, it is that

a collection or group of variants occurring in a functionally similar manner can manifest as

similar or the same phenotype. Secondly, variants contributing only noise to the original

signal should not necessarily be present again in the replicating signal. There may be new

neutral variants or only a subset of the original neutral variants in the replication results.

This change does not affect the interpretation of the replication.

Another complicating factor is linkage disequilibrium. Some variants in bins will be a

part of rare haplotypes in the same bin. A single bin could contain multiple haplotypes

and/or independent variants. Therefore, the application of signal replication can not be the

gold standard in binning results replication.

One last definition for replication could be considered in low frequency bin analyses,

functional replication. Essentially, what evidence can be found in a second independent

sample to support replication that results in a similar functional outcome? In the example

above, GeneA was significant in the original data set and researchers were seeking statistical

replication of this signal. In a replication set, any subset or expanded set of loci in GeneA

with a significant association supports functional replication. This could be from strict

replication from single variant associations, signal replication from haplotypes found within

the bin, or from bin replication. One particular challenge of functional replication is data

quality and interpretation. For example, functional replication of a single low frequency

variant requires larger sample sizes. Functional replication of a bin analysis requires a

cohort of similar ancestry, careful phenotyping, and adequate sequencing (depth of coverage,

consistent technology, etc). These are challenging for a research team, but are becoming

more common in the literature.

As larger data sets become available, replication will be important to validate binning

studies which are currently underpowered and potentially suffer from “winner’s curse.”
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While strict validation is most likely the gold standard (second only to molecular validation),

it is important to consider the context of binning analyses. Binning analyses focus on

functional units of information, e.g. low frequency variation in GeneA leads to phenotype

X. Variation within a bin can be neutral and variants with opposite effects can be binned

together. Follow-up analyses can include: single variant associations in large data sets,

haplotype analyses in large data sets, further binning analyses, or biological replication in

in vitro or in vivo systems. Each of these provide useful evidence for functional replication.

Future improvements to BioBin

Binning

Accurately and precisely binning variants that contribute to a signal, while minimizing the

inclusion of variants that only contribute noise, will increase the likelihood of detecting an

association. This is currently performed using filtering methods, such as removing variants

found in publicly available databases collected from “healthy” individuals or binning only

nonsynonymous or predicted damaging variants. Other methods use “step-up” approaches

or “sliding windows” to intermediately test the strength of the association signal, and prune

out variants that do not positively impact the strength of association [49, 54].

Improved binning should be more stochastic in nature, less reliant on databases of

“healthy” individuals and ultimately not limited to coding regions. A future step could

include using machine learning techniques such as random forest or evaporative cooling

implementations to prioritize variants that are most likely to contribute to an association

signal. Machine learning algorithms can guide the user to rank and ultimately select which

variants in a bin to keep and which should be dropped before performing a statistical

test [127]. The obvious potential hurdle is the computational resources needed to perform

this analysis, and deciding whether it should be performed on all low frequency variants or

separately for each bin of variants. Likely, the latter will be more informative since a single

variant can affect genes and pathways differently. Future low frequency variant analysis
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pipelines should creatively consider new methods to filter in/out variants to build the most

powerful association signal.

Novel statistical tests

Lastly, new statistical tests are needed to broaden the options available for low frequency

variant testing. Currently, if successful filters are applied and variants contributing to

the signal are in the same direction, burden tests are most powerful. If variants have

different directions of effect or varying effect sizes, nonburden tests are more powerful.

Some published statistical tests are designed for case-control studies, others do not allow

for covariate adjustment. There is a need for unbiased testing to critically evaluate the

effectiveness of each test on multiple versions of simulated data. It is unlikely one test is

superior in every scenario. In addition, new statistical tests are needed to better evaluate

small sample sizes and ignore variants that contribute to noise. Given the variety of tests

available and lack of analytical standards, users should carefully test type I error and power

in simulations for new statistical methods.

Future of rare variant analyses

Data integration and complex modeling

Although low frequency variants have frequently been published to explain additional her-

itability and resolve loci for Mendelian traits, low frequency variants most likely do not

act independently in the genomic variation spectrum. Similar to the era of GWAS, after

single variant association testing did not explain all of the heritability of a trait, researchers

began to search for epistatic interactions and build more complex models in an effort to

glean more information from the data. The same will be done in next-generation sequencing

data. Once the novelty of significant low frequency variant associations has been exhausted,

researchers will reconsider the complexity of biology and variation in the genome. Methods

for rare variant analysis should be easily adaptable to data integration techniques.
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Rare variant interactions

Statistical interactions between rare variant hits are also likely to contribute to heritability.

In low frequency analyses, the user often focuses on a genomic unit, usually a gene. If

binned together, epistatic interactions between rare variants can be captured within the

same bin (in many burden and nonburden tests). However, low frequency variants between

genes in a pathway and/or other types of “-omic” data can act in a non-additive manner

to affect the trait or phenotype of interest. Additional work should be done to implement

a pipeline to search for such interactions.

Combining common and rare variants

Currently, a few methods allow users to combine common and rare variants for analysis [21,

37, 49]. Models can be built to expand bins to include both common and rare variants or

create rare variant bins and combine with common single variant analyses [5]. Similarly,

algorithms such as Lasso could be used to select potentially important parameters in a

model [127]. Further work should be done in developing these pipelines since it is likely

that rare and common variants act in concert to affect or potentially cause a phenotype.

“Omic” modules

The most important future direction for low frequency variant analyses is data integration.

Data integration is the structural foundation needed to combine common and rare variants,

test interactions, and perform many other analyses that more closely resemble the true

mechanisms of biology. Biofilter, a tool developed in the Ritchie lab is currently being

expanded to build “omic” modules, an algorithm that will enable multiple types of genetic

data to be integrated. For example, if a user has methylome data, transcriptome data,

sequence data, and environmental variables, the extension of Biofilter will be able to build

modules based on relationships in the data. Consider the tumor suppressor gene CDH4

as an example, the center of the module is established by the DNA genomic location of

the gene, CDH4 is located at chr20:60,074,477-60,515,673 [71]. All other links between

data and CDH4 will map back to these coordinates. Links would be established to include
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common variants and low frequency variant bins in or nearby CDH4. Biofilter would map

relevant data to the root of the module (genomic location), i.e. hypermethlyation patterns

on the CpG island overlapping CDH4 promoter [151], pertinent expression data (for CDH4

and known regulatory elements), and environmental variables that relate to function in this

region.

The CDH4 “omic” module describes the data integration component of future analyses.

The next step will be to use these relationships to build testable models with machine

learning or regression techniques. To build models, one must consider relationships within

a single “omic” module or alternatively expand the search space using a variety of LOKI

sources. For example, a user might want to create pairwise interaction models between all

of the elements in the CDH4 module as well as models between all of the omic modules

involved in the cell adhesion molecule pathway [62]. This could be accomplished using

neural networks that will initially include all of the data in the relevant “omic” modules,

build multiple neural networks, and evaluate phenotype prediction power from generated

models [152]. This data integration/machine learning pipeline is advantageous because it

reduces the search space for model creation, allows for nonlinear models to be built, and

better estimates the complexity of biology.

Summary

BioBin is a novel method to collapse low frequency variants based on biological knowledge.

There are many available options in BioBin that can be configured to answer a variety of

scientific questions. Although, there are still challenges in the field of genomic research,

particularly with regard to sequence data consistency and quality, there are exciting op-

portunities to use collapsing methods such as BioBin to explore more complex biological

process using data integration and advanced modeling.
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