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CHAPTER I 

 

INTRODUCTION 

 

This dissertation focuses on intracellular and intercellular signaling during meiosis. 

Meiosis is a conserved biological process that all sexually reproductive animals use to 

generate haploid gametes (sperm or oocyte) from a diploid individual. Defects in meiosis 

might produce aneuploid gametes, which are the leading genetic causes of human 

infertility, pregnancy losses, and congenital birth defects. Since the mechanisms that 

regulate meiosis are extraordinarily conserved among species, studies in model organism 

like Caenorhabditis elegans can provide insights into meiotic errors in humans. My 

dissertation work suggests that the trafficking of an integral membrane protein within the 

oocyte regulates this protein function during meiosis. This work provides new insights 

into the control mechanisms that regulate meiotic progression, with potential information 

concerning this receptor signaling in vertebrate systems. To introduce this study and help 

you understand my experiments, I shall present a brief overview of meiosis, with 

particular emphasis on the meiotic stages that I have been studying and the mechanisms 

that control this biological process.  I will also introduce some background on the protein 

that I have been studying and the intracellular trafficking that regulates the function of 

this receptor within the oocyte.  
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The Regulation of Meiotic Maturation  

In sexually reproducing organisms, a diploid germ cell (2n) uses meiosis to 

generate haploid gametes (1n), which reunite to form a diploid organism (2n) by 

fertilization. In meiosis, a germ cell (2n) first replicates its DNA, which is then followed 

by two rounds of cell divisions without an intervening S-phase. In the first meiotic 

division, which is termed the reductive division, homologous chromosomes segregate 

from each other. The daughters therefore have a haploid number of chromosomes but a 

diploid amount of DNA. At meiosis II, which is called the equational division, and which 

does not involve DNA replication, the daughter cells undergo a mitosis-like division, 

which separates sister chromatids (Fig. 1). To ensure the faithful segregation of 

homologous chromosomes, three meiosis-specific steps are carried out at meiotic division 

I: 1). homolog pairing and the formation of synaptonemal complex; 2). meiotic 

recombination that locks the homologous chromosomes together; and 3). separation of 

homologous chromosomes to opposite poles of the meiotic spindle at the end of meiosis I 

(Fig. 1) (reviewed by Champion and Hawley 2002).  These well regulated steps help 

ensure that all the gametes inherit exactly one copy of each homologous chromosome 

pair. Problems that arise during meiosis may result in missegregation of the 

chromosomes, which can lead to infertility, miscarriage, or birth defects such as Down 

syndrome (trisomy 21; reviewed by Hassold and Hunt 2001; Wolstenholme and Angell 

2000; Sanderson et al., 2008). Thus, understanding the underlying mechanisms of 

meiosis is very important for identification of new therapies to cure human infertility, and 

avoiding pregnancy losses and congenital birth defects.  



Figure 1. The cell divisions of meiosis 

One pair of homologous chromosomes is shown in each cell.  At premeiotic phase, each 
chromosome duplicate to produce two sister chromatids, which are held together by 
cohesin. At meiotic prophase each chromosome pairs with its homologous chromosome 
to generate a bivalent structure that contains four chromatids. Genetic recombination 
occurs between paired homologous chromosomes. At meiotic metaphase I, paired 
homologous chromosomes align at the metaphase plate, and the meiotic spindle forms. At 
meiotic anaphase I, homologous chromosomes separate from each other and move 
towards the spindle poles, while the sister chromatids are still held together by cohesin at 
the centromere. Cytokinesis occurs and one cell divides into two cells with the haploid 
chromosomes number and diploid amount of DNA. Completion of first meiosis, followed 
by second meiosis, which is mitosis-like division soon after. In meiosis II, the cohesin at 
the centromeres is dissolved, causing the two sister chromatids to separate from each 
other. Adapted from Molecular Biology of the Cell, Garland Publishing, NY, 1994. 
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Meiosis 

Meiosis I starts with prophase I, in which duplicated homologous chromosomes 

pair with each other, followed by formation of a specialized structure, called the 

synaptonemal complex, and genetic recombination between homologs. The next phase of 

meiosis I is meiotic metaphase I, in which the homologous chromosomes align along an 

equatorial plane that bisects the spindle, a structure formed with microtubule fibers 

during cell division. Anaphase I is the stage that follows metaphase I, in which 

homologous chromosomes separate from each other to form two haploid sets. The last 

phase of meiotic division I is telophase, in which homologs arrive at the spindle poles. At 

the end of telophase, a new nuclear membrane surrounds each haploid set and 

cytokinesis, the pinching of the cell membrane, occurs to complete the creation of two 

daughter cells. Thus meiosis I generates two daughter cells that each have half the 

number of chromosomes but each chromosome consists of a pair of chromatids (Fig. 1). 

Because my dissertation work is focusing on the process that occurs during meosis I, it is 

very necessary for me to explain what happens in meiosis I: How do homologous 

chromosome pair? What holds them together at metaphase I to ensure the faithful 

segregation of homologs? How do homologs separate from each other at the end of 

meiosis?  

Matching duplicated homologous chromosomes is the first step of meiosis I. The 

homologous chromosomes recognize each other and align along their lengths forming 

transient interactions. How the homologous chromosomes identify each other is not so 

clear, and the underlying mechanisms vary between organisms (reviewed by Gerton and 

Hawley 2005). Several mechanisms have been suggested to contribute to homolog 
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recognition, including specialized pairing centers and telomere clustering (reviewed by 

Gerton and Hawley 2005). Studies from C. elegans and Drosophila suggest that 

homolog-recognition regions play important roles (McKim and Hayashi-Hagihara 1998; 

McKim et al., 1993). Several specific homologous recognition regions have been 

identified at the end of each chromosome in C. elegans (Dernburg et al., 1998). Only 

chromosomes bearing homologous recognition regions are capable of homologous 

pairing and recombination (McKim et al., 1988, and 1993). In organisms with a 

heterogametic sex (eg. XY), pairing of sex chromosomes, which occurs between non-

homologous chromosomes, is regulated by rDNA regions and a pseudoautosomal region 

of the sex chromosomes (McKee and Karpen, 1990; McKee et al., 1992). In Drosophila, 

mitotic cells exhibit high levels of homologous alignment, and the gametocytes have 

already undergone homologous chromosome alignment before meiosis begins (Metz 

1926). In S. pombe, centromere association plays an important role during homolog 

pairing: the centromeres of homologous chromosomes pair with each other and mediate 

bipolar attachment to the spindle pole at meiosis I (Ding et al., 2004). The same study, as 

well as other investigations, also suggests that telomeres cluster at the periphery of the 

nuclear envelope, and bring the homologs together to facilitate alignment (Ding et al., 

2004; Chikashige et al., 1994, 1997; Cooper et al., 1998; Nimmo et al 1998). Disruption 

of telomere clustering results in decreased homolog recombination. This obeservation 

indicates that telomere clustering facilitates homologous alignment, which is important 

for recombination (Cooper et al., 1998; Nimmo et al 1998). Studies from a number of  

organisms, including Drosophila and humans suggest that different chromosomes occupy 

particular domains within the nucleus, and chromosome territories are involved in 
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maintaining homolog alignment and pairing. In humans and Drosophila spermatogonia, 

homologous chromosomes are separated into regions, and these chromosome territories 

promote the maintenance of chromosome pairing (Vazquez et al., 2002; Scherthan et al., 

1996). This early pairing brings the homologous chromosome close to each other and 

aligns them roughly along their lengths. 

Double strand breaks (DSBs), which initiate meiotic recombination (see below), 

play a very important role in promoting homologous alignment and pairing in some 

species, such as yeast, mice and human, but double strand breaks are dispensable for 

synapsis and synaptonemal complex formation in other species, including C. elegans and 

Drosophila (reviewed by Page and Hawley 2003).  Meiotic recombination is initiated by 

double strand breaks, introduced by Spo11, a topoisomerase type II-like protein. 

Depletion of Spo11 in yeast or mice results in reduced synapsis between homologous 

chromosomes but does not affect pairing and synaptonemal complex formation in C. 

elegans and Drosophila (Giroux et al., 1989; Romanienko et al., 2000, Dernburg et al., 

1998; McKim and Hayashi-Hagihara 1998). Spo11 introduces a DSB probably by using 

its catalytic site tyrosine to nucleophilically attack the phophodiester backbone of the 

DNA. After breaking the double strand of DNA, Spo11 remains covalently bound to the 

5’ end of each single strand DNA overhangs (Fig. 2). Resection of the 5’ end of the DSB 

requires a conserved DNA repair protein complex Rad50-Xrs-Mre11. The resection of 

the duplex ends exposes the 3’ single stranded tail, which will search for and interact with 

its homologous DNA. Homologous DNA searching is facilitated by Rad51 and Dmc1, 

which bind to the 3’ DNA tail (Fig. 2). The interaction of the 3’ single stranded tail with 

its homologous DNA allows homologous pairing to occur (Fig. 2). As several DSBs and 
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homology-searching occur along the chromosome, the chromosome axes become stably 

aligned (Tesse et al., 2003). Depletion of Rad51, a DSB repair protein, results in reduced 

recombination in S. cerevisiae, and ablation of Dmc1, a DSB repair protein, eliminates 

synapsis of homologous chromosomes (Cohen et al., 2002; Dresser et al., 1997). 

After establishment of transient, rough pairing between the homologous 

chromosomes, synapsis occurs to stabilize the intimate association of the homologs along 

their lengths. Synapsis involves the assembly of the synaptonemal complex, which is a 

meiosis-specific proteinaceous structure that links the cores of paired homologous 

chromosomes (Fig. 3). During synapsis, homologous chromosomes are aligned along 

their lengths and are attached in the synaptonemal complex, which is a tripartite structure 

consisting of two lateral elements and a central element (Fig. 3). The lateral elements are 

derived from the axial elements of the homologous chromosomes, and the lateral 

elements are connected to transverse filaments. The structural constituents of lateral 

elements include synaptonemal complex protein 2 (SCP2) and SCP3 in mice, both of 

which are putative DNA binding proteins. SCP2 and SCP3 are essential for lateral 

element formation, since inactivation of scp3 in mice results in elimination of lateral 

elements and causes homolog pairing abnormalities (Yuan et al., 2000; 2002). Red1p, 

Hop1p and Mek1p have been suggested to be the lateral element proteins in S. cerevisiae 

(Hollingsworth et al 1990; Smith and Roeder 1997). red1p mutants do not form lateral 

elements, whereas hop1p mutants display abnormal lateral elements (Loidl et al 1994; 

Rockmill and Roeder 1990); homolog pairing is reduced in both red1p and hop1p 

mutants. The transverse filaments contain SCP1 in mammals and Zip1p in yeast.  

 



Figure 2.  Pathways of double-strand break (DSB) and DSB repair 
 
A DSB is initiated by Spo11. After DSB break, Spo11 binds to 5’ end of the ssDNA 
strand overhangs. The resection of 5’ end of the DSB requires a conserved DNA repair 
protein complex-Rad50-Xrs-Mre11. Dmc1 and Rad51, two RecA homolog, binds to the 
3’ end of ssDNA and perform homolog searching. The Dmc1-Mei5-Sae3 together with 
Mnd1-Hop2 complexes mediates stable invasion of 3’-single stranded DNA to the 
homologous chromosome, resulting in a D-loop structure formation. Once the 3’ end tail 
recognizes its homolog, 3’ end tail annealing to the homologous DNA and starts to DNA 
repair using the homologous DNA as a template. DNA repair synthesis results in the 
extending the 3’ end DNA strand tail and filling in the single strand gaps. This results in 
formation of holliday junctions. Modified from Gerton and Hawley 2005. 
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Figure 3. Synaptonemal complex structure 
 
A. Synaptonemal complex (SC) of C. elegans visualized by TEM. SC comprised of a 
central region and a pair of lateral elements. Scale bar equals 500 nm. Reprinted from 
Colaiacovo, 2006. 
B. Schematic graph of synaptonemal complex. SC composed of the lateral elements (red) 
that anchor the chromatin loops and a central element (blue), transverse filaments (black 
lines). Modified from Molecular Biology of the Cell, Garland Publishing, NY, 1994. 
C. Molecules within a synaptonemal complex. Transverse filament (TF) protein 
molecules structure is shown to the left. TF proteins interact with axial element (or lateral 
element) of one chromosome and another TF element that are attached to the homologous 
chromosome. Genetic recombination occurs between homologs. Modified from Heyting, 
2005. 
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Although SCP1 and Zip1p do not share sequence similarity, the transverse filaments they 

form have structural similarities. These transverse filament proteins form dimers through 

their coiled coil regions, and interact with lateral elements through their C termini, and 

interact with opposing dimers through their N-termini (Dong and Roeder 2000). The 

localization of SCP1 is independent SCP3, since in SCP3 mutant mice, SCP1 still 

localizes to the short fragmented fibers between homologous chromosomes (Yuan et al 

2000). Transverse filaments play important roles for crossover maturation; and disruption 

of Zip1 in yeast or c(3)G in Drosophila blocks crossover events (Borner et al., 2004). 

Beside its important role in homologous chromosome pairing, DSBs also induce 

genetic recombination. Once the appropriate homolog is identified, genetic 

recombination occurs. DSBs have been shown to initiate cross overs in yeast, 

Drosophila, C. elegans and mammals (Lichten and Goldman 1995; Keeney et al., 1997; 

McKim and Hayashi-Hagihara 1998; Dernburg et al., 1998; Romanienko and Camerini-

Ostero 1999). Artificially inducing DSBs by γ ray radiation can produce meiotic cross 

overs, bypassing the requirement for Spo11 (Dernburg et al., 1998). Crossing over is 

facilitated by many proteins that function in the DSB repair pathway, including Dmc1, 

Rad51, Mei5, Sae3, Mnd1, and Hop2 (Fig. 2). Rad51 is a homolog of eukaryotic RecA 

that catalyzes homology search and DNA strand exchange, and Rab51 participates in 

homologous recombination and DSB repair both in mitosis and meiosis. Yeast lacking 

Rad51 exhibit reduced meiotic recombination compared to the wild type (Cohen et al., 

2002). Dmc1, a homologue of E. coli RecA, is a meiosis specific DNA strand exchange 

protein, and Dmc1 forms a complex with Mei5 and Sae3 (Dresser et al., 1997; Hayase et 

al., 2004). The Dmc1-Mei5-Sae3 complex, together with a Mnd1-Hop2 complex, 
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mediates stable invasion of 3’ single stranded DNA into the homologous chromosome, 

resulting in the formation of displacement-loop structure at the homologous duplex (Fig. 

2). After invading the homologous chromosome, the 3’ DNA strand acts as a primer to 

initiate DNA repair synthesis using the displacement loop of the homologue as a 

template, which results in extending the 3’ DNA strand tail and filling in the single strand 

gaps. This results in formation of a Holliday junction, in which strands are exchanged 

between the interacting duplexes (Fig. 2). Two Holliday junctions form a double Holliday 

junction (reviewed by Cromie and Smith 2007). Deletion of Dmc1, Mei5, Sae3, Mnd1, or 

Hop2 in yeast or mice leads to a reduction of homologous synapsis and recombination to 

similar extents (Rabitsch et al., 2001; Leu et al., 1998; Petukhova et al., 2003; Zierhut et 

al., 2004). In principle, recombination might occur between homologues or between 

sister chromatids, or even between ectopic locations that share some homology. To 

ensure that DNA-exchange only happens between homologs, meiotic cells need a specific 

mechanism to regulate this recombination. Dmc1, Red1, Hop1, and Mek1 have been 

reported to regulate this interhomologue recombination in S. cerevisiae, and depleting 

any of these proteins decreases the number of DSBs and increases the incidence of 

intersister chromatid recombination, resulting in meiotic missegregation defects 

(Schwacha and Kleckner 1997; Bishop et al., 1999; Wan et al., 2004; Niu et al., 2005).  

Besides its involvement in DSB initiation and repair pathways, the synaptonemal 

complex has been suggested to be required for meiotic cross overs in Drosophila and 

yeast. Depletion of the synaptonemal complex protein c(3)G, a transverse filament 

component, abolishes synaptonemal complex formation and meiotic recombination 

(reviewed by Rasmussen and Holm, 1984; Smith and King 1968).  
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Meiotic recombination does not occur at a uniform rate along the homologous 

chromosomes. On the contrary, DSBs concentrate at particular sites called hotspots, 

where cross overs take place. Genome-wide studies in S. cerevisiae using Spo11-based 

chromatin immunoprecipitation suggest that DSB hotspots tend to occur in the promoter 

regions and are suppressed at the centromeric and telomeric domains (Wu and Lichten 

1994).  The total number of crossovers is low, but even small chromosomes receive at 

least one crossover. This is because too many cross-overs would result in chromosome 

instability and failure to segregate properly (Koehler et al., 1996). Once an obligate 

crossover per chromosome occurs, a gradient of suppression around each crossover 

decreases the possibility of additional crossovers at nearby regions, which is a 

phenomenon called crossover interference. This crossover interference ensures that 

genetic crossovers are spread out throughout the chromosome. The synaptonemal 

complex has been reported to mediate this crossover interference (Sym and Roeder 

1994).  

The crossover event produces a connective structure, visualized microscopically 

as a chiasma, between the two homologues (Fig. 3). The chiasma structure holds the 

oriented homologous chromosomes on the meiotic spindle during metaphase I. As I 

mentioned previously, the faithful segregation of homologous chromosomes requires 

homologous chromosome pairing and formation of chiasmata to lock the paired 

homologs together. During prometaphase, chromosomes are organized relative to the 

developing spindle; chiasmata lock the bivalents and orient the two homologous 

centromeres such that they face opposite spindle poles (McKim and Hawley 1995). The 

oppositely oriented centromeres then attach to the closest meiotic spindle.  
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Cohesin plays a critical role in chromosome segregation at meiosis. As mentioned 

above, cohesion is required for the lateral elements of the synaptonemal complex. 

Meiosis cohesion proteins comprise Rec8, Stag3, Smc1β, SA3. It has been proposed that 

the cohesin complexes form a ring structure that associates with sister chromatids (Fig. 

4). To ensure proper chromosome segregation in both meiotic divisions, sister chromatid 

cohesion needs to be released at two distinct steps (Buonomo et al., 2000). First, cohesin 

needs to be released at the chromosome arms, but must remain attached at the chiasma 

and centromeres at metaphase I. At the onset of anaphase I, the cohesin protein Rec8 

between chiasmata are cleaved by separase, but the cohesin between centromeres is still 

preserved, which holds sister chromatids together as they move towards the spindle pole 

(Fig. 4). Centromeric cohesion at meiosis I is protected by the centromeric protein 

shugoshin (Shugoshin means “guardian spirit” in Japanese; Ishiguro and Watanabe 

2007). At anaphase II, cohesin between sister centromeres is dissolved by separase, 

which causes separation of sister chromatids (Fig. 4). Thus, Rec8 along the chromosome 

arm region and the centromeres is cleaved in a stepwise manner in two successive stages 

of meiosis. The release of cohesin at the centromeres at meiosis I results in premature 

separation of sister chromatids and missegregation of homologs, which causes non-

disjuntion (Bickel et al.,2002).  

To ensure the faithful segregation of homologous chromosome during meiosis I, a 

bipolar meiotic spindle needs to form. The microtubule arrays of the bipolar spindle 

attach to the kinetochores of the homologous chromosomes. In the oocytes of humans, 

nematodes, and many insects, meiotic spindles form in the absence of centrosomes and 

centrioles, which are the microtubule organization centers in mitotic cells.  



Figure 4. Cohesin complex at meiosis 
 
Cohesin complex is localized along the sister chromotids at meiotic prophase. At 
metaphase I, the cohesin along the sister chromatid arms are resolved, but the arm 
cohesin distal to chiasmata is still intact for holding the homologs together. At 
anaphase I, separase gets activated and cleaves the arm cohesin distal to the 
chasmata. The cohesin complex at the centromere region is protected by Sgo, 
therefore centromere cohesin is preserved to hold the sister chromatids together at 
the end of meiosis I. At anaphase II, the separases gets activated again and 
dissolves the cohesin at the centromeres, which leads to the separation of sister 
chromatids. Adapted from Amon lab homepage. 
http://web.mit.edu/amonlab/research.htm 
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Acentriolar spindle formation starts with a mass of microtubules attaching to the 

chromosomes; and chromosomes functions as the microtubule nucleation center to form 

the bipolar spindle (McKim and Hawley 1995). This hypothesis is supported the 

observation that one chromosome is sufficient to form a bipolar spindle in Drosophila 

and other organisms (Theurkauf and Hawley 1992; and Waters and Salmon 1995). DNA 

coated beads can nucleate acentriolar spindle in Xenopus egg extract (Hecld et al., ). At 

the assembly of the meiotic spindle, a tight link between kinetochores and microtubules 

needs to be established.  The microtubule motor protein dynein plays an important role in 

meiotic spindle formation, and disruption of microtubule components leads to meiotic 

arrest due to the activation of spindle assembly checkpoint (described beblow) (Brunet 

and Maro 2005). Kinetochore structures are critical for correct chromosome segregation. 

The kinetochore is a trilaminar structure that localizes at the centromeres of each sister 

chromatid and interacts with the plus ends of the spindle microtubules (Fig. 5). The 

trilaminar structure of kinetochores consists of an inner layer containing conserved 

centromere proteins (CENPs), an outer layer containing microtubule interacting proteins, 

such as CENP-E, and spindle assembly checkpoint proteins. Kinetochores capture 

microtubules to form kinetochore fibers, and align and biorient homologous 

chromosomes at the spindle equator under spindle tension. Chiasmata hold the 

homologous chromosomes together and resist the pulling force of the spindle 

microtubules toward the poles until anaphase begins. Once the chromosomes are under 

full tension of spindle fibers, the spindle assembly checkpoint is released and anaphase 

starts. Alterations of kinetochore-microtubule tension will trigger the spindle assembly 

checkpoint and result in delayed anaphase entry (Kapoor et al., 2000). The poleward 
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movement of chromosomes is mediated by kinetochore proteins including dynein, 

CENP-E, and MCAK. CENP-E regulates chromosome alignment, and dynein promotes 

the movements of the chromosome towards the spindle pole (Wood et al., 1997). MCAK 

promotes disassembly of kinetochore-fibers, which are the microtubules that attach to the 

kinetochore, to power chromosome poleward movement. The spindle assembly 

checkpoint mechanism proteins such as Mad1, Mad2, BubR1, Bub1, Bub3, and Mps1 are 

known to be recruited to the kinetochore before the onset of metaphase. The spindle 

assembly checkpoint proteins monitor the attachment and tension of microtubules to the 

kinetochore, therefore, ensuring accurate chromosome segregation by delaying anaphase 

until all the chromosomes are correctly aligned on the metaphase plate. Specifically, the 

spindle assembly checkpoint prevents anaphase by inhibiting the anaphase-promoting 

complex/cyclosome (APC/C), whose activity is required for onset of anaphase. The 

APC/C is a multisubunit E3 ubiquitin ligase that triggers degradation of multiple 

substrates. APC/C catalyzes the assembly of polyubiquitin chains on substrate proteins, 

which targets them for degradation by the 26S proteasome. Upon release from the spindle 

assembly checkpoint, the APC/C targets proteins such as cyclin B and securin for 

degradation. The degradation of securin causes activation of separase, which cleaves 

cohesion proteins Rec8 at the chiasma (reviewed by Peters 2006)(Fig. 4). Cohesin 

cleavage releases the homologous chromosomes, and chromosomes undergo poleward 

movement by the tension of the spindle fiber.  

 My dissertation work focuses on a stage of meiotic prophase I during oogenesis, 

termed meiotic maturation, which defines the transition from prophase to metaphase I.  

 



Figure 5. Kinetochore structure  
 
Kinetochore localizes at the centromeres of each sister chromatid and interacts with the 
plus ends of spindle microtubules. Adapted from 
http://www.colorado.edu/MCDB/MCDB1150/ohd/kinetochoreattach.jpg 
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In most female animals, oocytes arrest at meiotic prophase I for a prolonged time and 

resume meiosis in response to hormonal signaling. I have used C. elegans as a model 

organism to study this conserved biological process. To help you understand what 

mechanisms regulate this meiotic arrest, and what mechanisms release this meiotic arrest, 

I will explain meiotic arrest and meiotic maturation and the underlying mechanisms by 

comparing the known molecular pathways in several mammalian and non-mammalian 

systems.  

 

Oocyte meiotic maturation 

In most female animals, oocytes arrest at meiotic prophase I for a prolonged time and 

resume meiosis in response to hormonal signaling. The process by which oocytes transit 

from prophase I to metaphase I is called oocyte meiotic maturation. Meiotic maturation is 

accompanied by nuclear envelope breakdown, meiotic spindle formation, and 

cytoskeletal changes. Oocyte meiotic maturation must be temporally coordinated with 

oocyte growth and ovulation in order to prepare the oocytes for fertilization and 

subsequent embryogenesis. Therefore, intercellular and intracelluar signals need to 

function together to regulate oogenesis. After completion of the first meiotic division, 

oocytes get released from the ovary through ovulation. In mammals, including humans, 

mature oocytes arrest again at metaphase II until fertilization (Fig. 6). Although the time 

length of oocyte meiotic arrest varies among species, the underlying mechanisms that 

regulate oocyte meiotic arrest and meiotic maturation are strikingly conserved (reviewed 

by Masui 2001). In this section, I will explain the mechanisms that regulate meiotic I 
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arrest (primary arrest) and meiotic II arrest (secondary arrest) and the mechanisms that 

regulate the release of these two meiotic arrests. My dissertation has been focused on the 

primary oocyte meiotic arrest in C. elegans, which is the only meiotic arrest in C. 

elegans.(see Fig. 6 for detail) Mammalian oocytes grow in a follicle consisting of somatic 

granulosa cells and the oocyte (Fig. 7).  Granulosa cells are compartmentalized into outer 

mural granulosa cells and inner cumulus cells by a cavity, the antrum that is filled with 

protein and hormones that have been secreted by follicle cells and the oocyte. The 

granulosa cells surrounding the oocyte inhibit meiotic maturation. Indeed an oocyte can 

spontaneously resume meiosis after removal from an antral follicle (Pincus and Enzmann 

1934). Oocytes arrested at meiotic prophase I resume their meiosis and proceed to 

meiosis II in response to LH stimulation, which acts at the level of the mural granulosa 

cells. The mechanisms that tightly regulate oocyte meiotic arrest have been very well 

elucidated. Maturation-promoting factor (MPF) is the key protein complex that regulates 

meiotic maturation (see below for details). Upon activation of MPF, the nuclear envelope 

breaks down, meiotic spindle assembles, and homologous chromosomes separate to 

opposite spindle poles.  

It was reported in 1967 that progesterone can induce complete meiotic maturation of 

Xenopus oocytes that had been isolated from follicles (Masui 1967). Further studies were 

conducted by injecting progesterone into denuded oocytes, and it was found that the 

externally applied but not injected progesterone was capable of inducing meiotic 

maturation (Masui and Markert 1971; Ecker and Smith 1971). Furthermore, Masui 

showed that transferring cytoplasm from maturing oocytes or early embryos into 

immature oocytes induces maturation of the recipient oocytes (Masui and Market 1971).  



Figure 6. Oocyte Meiotic Maturation and Egg Activation 
 
The oocytes of most animal species arrest in meiotic prophase I. In response to a 
hormonal stimulus, oocytes begin meiotic maturation: the nuclear envelope breaks down 
(GVBD), as the oocyte enters M-phase from prophase. The point of fertilization is 
species-specific. (I). Fertilization occurs after maturation but prior to completion of 
meiosis I, such as C. elegans. (II), fertilization occurs at metaphase or anaphase I, such as 
Drosophila. (III), fertilization occurs at metaphase II, such as mouse. (IV) fertilization 
occurs after completing meiosis such as sea urchins. Reprinted from Greenstein, 2005. 
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Figure 7. Development of the mammalian ovarian follicle 
 
The follicle consists of somatic cells (green) surrounding an oocyte (red). The primordial 
follicle consists of an oocyte arrested in meiotic prophase I and a few follicle cells 
surround it. While the follicle grows, oocyte size increases, cortical granule and zona 
pellucida start to appear. The surrounding granulosal cells proliferate, and an antrum 
forms. In response to the FSH signal, follicle grows further in size and one becomes the 
dominant antral follicle. A surge of LH stimulates the oocyte to resume meiosis, as well 
as ovulation of the mature oocyte. Adapted from Molecular Biology of the Cell, Garland 
Publishing, NY, 1994. 
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The MPF complex is present in the oocyte cytoplasm in an inactive form, pre-MPF, 

which is activated by progesterone stimulation. MPF activity is regulated by 

phosphorylation and dephosphorylation of Cdc2 at threonine14 (T14), tyrosine15 (Y15), 

and threonine 161 (T161) sites. Phosphorylation of Cdc2 at T161 is controlled by cyclin-

dependent activating kinase (CAK). Wee1/Myt1 inhibits Cdc2 activity by 

phosphorylating Cdc2 at T14/Y15. The inhibition of Cdc2 by phosphorylation at 

T14/Y15 can be removed by a phosphatase Cdc25 (Mueller et al., 1995; Fig. 8). Cyclin 

and cyclin dependent kinase are evolutionarily conserved and play critical roles in the 

regulation of mitotic and meiotic cell cycle. (Nurse, 1990).  

In mouse oocytes, meiotic arrest depends on a high level of cyclic AMP within the 

oocyte, and the oocyte resume meiosis in response to LH, whose target is the somatic 

cells that surround the oocyte and not the oocyte itself (Conti et al., 2002, Richards et al., 

2002). In mammals, it was thought for a long time that cAMP is produced in follicle cells 

and diffuses through gap junctions to the oocyte (Anderson and Albertini 1976; 

Bornslaeger and Schultz, 1985). Recently, new data suggest that cAMP is produced by 

the oocyte, through the G protein coupled receptor GPR3 activated Gs protein (Mehlmann 

et al., 2002). This new hypothesis is supported by the evidence that the denuded mouse 

oocytes are prevented from spontaneous maturation when they are injected with cAMP 

analogs (Cho et al., 1974). Furthermore, blocking Gαs function with antibodies or with a 

dominant-negative Gαs construct can maintain denuded oocytes in meiotic arrest 

(Mehlmann et al., 2002; Kalinowski et al., 2004), and Gpr3 mutant mice exhibit 

spontaneous oocyte maturation within the follicle independent of LH stimulation 

(Mehlmann et al., 2004). In Xenopus oocytes, the activity of adenylyl cyclase is 
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maintained by Gα and Gβγ subunits of Gs protein as well (Maller and Krebs 1977; Gallo 

et al., 1995). The signaling pathway downstream of cAMP is incompletely understood. 

High cAMP levels within the oocyte causes inactivation of Cdc2 by phosphorylation at 

T14/Y15 (Duckworth et al., 2002). Protein kinase A acts downstream of cAMP and plays 

an important role in inhibiting pre-MPF activation: blocking protein kinase A activity is 

sufficient to induce oocyte maturation. Protein kinase A regulates the activities of 

phosphatase Cdc25 and the Wee1/Myt1 kinase, the two regulators of the cyclin B-Cdc2 

complex (Han and Conti, 2006) (Fig. 9). Wee1/Myt1 is a dual-specific kinase that 

associates with the membrane. Wee1/Myt1 kinase inhibits MPF activity by 

phosphorylating Cdc2 at T14/Y15 sites, whereas phosphatase Cdc25 activates MPF by 

removing the inhibitory phosphorylation of T14/Y15 sites of Cdc2 (Han and Conti, 2006; 

Gould and Nurse 1989) (Fig. 9). Inactivating Myt1 can trigger meiotic maturation in the 

absence of progesterone in Xenopus oocyte (Nakajo et al., 2000). 

Progesterone stimulation causes a decrease in adenylyl cyclase activity and cyclic 

AMP levels in Xenopus oocytes, and these decreases are both necessary and sufficient for 

MPF activation (reviewed by Sadler and Maller 1985; Maller and Krebs 1977; Huchon et 

al., 1981) (Fig. 9). In the Xenopus oocytes, meiotic maturation requires new protein 

synthesis, as the protein synthesis inhibitors can block progesterone induced MPF activity 

and oocyte maturation (Wasserman and Masui 1975). Translation of Mos protein has 

been well documented as being important for initiating oocyte maturation, and injection 

of Mos protein into immature Xenopus oocytes is sufficient to induce oocyte maturation 

(Sagata et al., 1988, 1989A and 1989B). During meiotic arrest, mos mRNA is masked 

and is unable to be translated.   



Figure 8. Activation of maturation promoting factor  
 
MPF consists of two subunits cyclin B and cyclin dependent kinase CDK1. Wee1 
phosphorylates CDK1 at T14 and Y15 which inhibits MPF activity. CAK phosphorylates 
T161 of CDK1, and this phosphorylation is very important for MPF activity. 
T14/Y15/T161 phosphorylated CDK1 bound cyclin B forms the preMPF complex. 
preMPF is activated by Cdc25 which dephosphorylates T14/Y15 of CDK1. Adapted from 
Molecular Cell Biology, Freeman and Company, fourth Edition, 2000. 
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Figure 9. Mammalian oocyte meiotic arrest and resumption 
 
GPR3 activates Gs, which stimulates adenylyl cyclase to cause an elevation of cAMP. 
cAMP activates protein kinase A, which leads to phosphorylation and inactivation of 
Cdc25. Because Cdc25 is an activator of CDK1/cyclin B, inactivation of Cdc25 results in 
inactivation of the MPF complex. PKA also stimulates the activity of the WEE1/MYT1 
kinase that phosphorylates and inactivates MPF. This signal network maintains oocyte 
arrest in meiotic prophase (left). In response to LH signaling, cAMP levels decline, and 
PKA is inactivated. Because the inhibitory inputs have been removed, Cdc25 
dephosphorylate CDK1, which leads to activation of MPF. MPF promotes meiotic 
resumption (right). Modified from Mehlmann, 2005. 
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Progesterone stimulation decreases PKA activity and along with Aurora-A-dependent 

phosphorylation of CPEB, causes activation of the protein synthesis machinery. mos 

mRNA is posttranscriptionally modified by cytoplasmic polyadenylation, and this 

modification of mos mRNA results in its translation. Similar to Xenopus meiotic arrested 

rat oocytes express mos-mRNA but have no detectable levels of the Mos protein in the 

oocyte. Although injection of mos can induce maturation of Xenopus oocytes, the story is 

not necessarily simple, because mos mutant mice still undergo meiotic maturation with 

subsequent subtle abnormalities such as diffused spindle and loosely condensed 

chromosomes(Araki et al., 1996). The mos null mutant phenotype suggests that 

mos/MAPK is not necessary for meiotic maturation in mouse. High levels of cAMP 

inhibit mos mRNA polyadenylation to negatively regulate Mos protein expression 

(Josefsberg et al., 2004). Expression of Mos activates the MEK-MAPK-p90Rsk cascade, 

which results in direct phosphorylation and inactivation of Myt1 (reviewed by Palmer 

and Nebreda 2000). p90Rsk  associates with and phosphorylates Myt1, which decrease 

Myt1 inhibition of Cdc2. Plx1, a polo like kinase, is activated in response to progesterone 

and in turn phosphorylates and actives Cdc25 (Qian et al., 2001). Overexpressing a 

constitutively active Plx1 can induce Cdc25 activation and subsequent MPF activation 

(Qian et al., 2001). Interestingly, Cdc25 is also phosphorylated by Cdc2, and this primary 

phosphorylation is a prerequisite for Cdc25 phosphorylation and activation by Plx1.  This 

suggests that there is a positive feedback loop leading to activation of MPF upon 

phosphorylation of Cdc25 and Wee1/Myt1 proteins by Cdc2 kinase and Plx1(Abrieu et 

al., 1998). Activation of Cdc25 and inactivation of Myt1 converge on the activation of 

cyclin B-Cdc2. Ringo/Speedy, a regulator of Cdc2, has also been reported as a newly 
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synthesized protein in response to progesterone stimulation; and Ringo/Speedy may 

regulate Cdc2 activity by phosphorylation (Karaiskou et al 2001, Ingvar et al., 1999).   

 After undergoing meiotic division I following release from meiotic prophase, 

most vertebrate oocytes arrest again in meiotic metaphase II. This secondary meiotic 

arrest is characterized by the presence of a metaphase spindle and high Cdk1 activity. 

The second meiotic arrest is mediated by cytostatic factor (CSF), and this second meiotic 

arrest is therefore termed the CSF arrest (reviewed by Tunquist and Maller 2003). CSF 

activity was first described by Masui as well: injection of cytoplasm from a secondary 

arrested (MII arrest) oocytes into blastomeres of a two-cell staged embryo arrests these 

cells in metaphase (Masui and Markert 1971).  Mos protein has been document as a 

component of CSF, because depletion of Mos protein from cytoplasm prepared from 

second arrested oocytes is incapable of arresting blastomere in mitosis (Sagata et al., 

1989). In addition, injecting mos mRNA into embryonic blastomeres can arrest them in 

metaphase, which mimics CSF activity (Sagata et al., 1989). CSF activity emerges after 

progesterone stimulation and is present in metaphase II arrest oocytes, and declines upon 

fertilization (Tunquist and Maller 2003). CSF blocks meiotic metaphase by preventing 

degradation of cyclin. Multiple lines of evidence suggest that CSF inhibits anaphase-

promoting complex/cyclosome (APC/C) (Lorca et al., 1998; Tunquist and Maller 2003). 

First, the Mos/MAPK/p90Rsk pathway activates the spindle assembly checkpoint protein 

Bub1, which blocks APC/C activity (Schwab et al., 2001). Second, CSF activity in CSF-

arrested oocytes is unaffected when the structure of the spindle is disrupted chemically 

(e.g. nocodazole; Tunquist and Maller 2003). Third, blocking Mad2, a spindle assembly 

checkpoint protein, prevents release from CSF arrest upon calcium stimulation (Peter et 
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al., 2001). Lastly, Cdc20/Fzy, a component of APC/C, is required for exit from CSF 

arrest (Lorca et al., 1998). Although the Mos/MAPK/p90Rsk pathway plays an important 

role in establishing the secondary arrest, this pathway is dispensable for maintaining MII 

arrest (Tunquist et al., 2002). The maintenance of MII arrest is mediated by Emi1, which 

prevents APC/C activity by binding to Cdc20. Depletion of Emi1 is sufficient for release 

from MII arrest (Reimann and Jackson 2002). Emi appears to be a key component of 

CSF. First, introducing Emi into two-cell blastomeres blocks mitosis, which resembles 

CSF activity. Second, Emi1 is necessary and sufficient for MII arrest in Xenopus oocytes. 

Finally, depleting Emi from CSF extracts destroy the ability to induce blastomere arrest 

after injection into two-cell embryos (Reimann et al., 2001; Reimann and Jackson 2002). 

However, Ohsumi et al disagree that Emi is a component of CSF. They can not detect 

Emi in CSF-arrested oocytes, and exogenous Emi1 is unstable when added to maturing 

oocytes and CSF extracts (Ohsumi et al., 2004). Thus whether Emi is a component of 

CSF is controversial. 

  The meiotic arrest at metaphase II is released upon fertilization. The released 

oocyte proceeds from metaphase to anaphase, followed by protrusion of second polar 

body. Sperm binding to the egg causes calcium (Ca2+) influx, which actives calcuim-

binding protein, calmodulin. The importance of the Ca2+ influx has been strengthened by 

the observation that oocyte can be release from second meiotic arrest by injecting Ca2+ 

directly to the oocyte (Lohka and Maller 1985, Lorca et al., 1991). Activated calmodulin 

then activates calmodulin- dependent kinase II (CaMKII), which causes degradation of 

cyclin B. Activated calmodulin also activates a calcium dependent protease, calpian that 

degrades Mos (Lorca et al., 1991). The degradation of cohesin, which results in the 
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separation of sister chromatids, is dependent on the level of calcium. Egg activation can 

also cause cyclin B degradation, which results in loss of MPF activity and exit from 

metaphase II. The addition of constitutive active CaMKII to CSF extract is sufficient to 

induce degradation of cyclin B to inactive of MPF, and to destroy the ability of CSF 

extract to arrest two-cell embryo blastomeres (Lorca et al., 1993). CaMKII also directly 

activates APC/C by either phosphorylating the APC/C component protein cdc20 or by 

regulating the binding of Emi1 to cdc20 (Tunquist and Maller 2003).  

 

C.elegans as a model organism for studies of oocyte meiotic maturation and 
maturation. 

Meiotic errors can generate aneuploid embryos upon fertilization. In humans, 

most aneuploidies lead to miscarriage, although a few of them can survive to term.  

Aneuploid humans suffer from severe developmental, physiological, and mental 

disturbances (Pont et al., 2006). For example, Down syndrome is due to 21 trisomy, 

which occurs in one out of 800 babies. Patients who have Down syndrome suffer from 

mental and physical developmental retardation. In humans, maternal age is the most 

significant risk factor for aneuploidy, and a majority of meiotic errors arise from defects 

in meiosis I (reviewed by Hassold and Hunt 2001). Although meiotic maturation plays 

such an important role in human fertility and pregnancy, it is very difficult to study 

meiotic maturation in humans, because the human oocytes and follicles are relatively 

inaccessible for practical and ethical reasons. However, the maternal age of the mice is 

also associated with increased frequency of meiotic errors (reviewed by Hassold and 

Hunt 2001).  The mouse has been considered as a strong model for studying the 
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underlying mechanism of meiotic errors. However, it is also relatively difficult to study 

oocyte meiosis in mice. Besides the expense in culturing oocyte, the development process 

of mouse oocyte cannot be observed continuously in the intact animals, and the genetic 

approaches are time consuming and expensive as well.  

The nematode C. elegans has been considered a model for studies of meiotic 

maturation to complement studies in vertebrates (reviewed by Hubbard and Greenstein 

2000). C. elegans hermaphrodites have a female reproductive tract but produce sperm 

and self-fertilized. C. elegans is amenable to genetic manipulation to manage the 

presence and absence of sperm and oocytes by using mutant strains (Hodgkin et al., 1998; 

Schedl and Kimble 1988; Schedl et al., 1989; Ellis and Schedl 2007). C. elegans has five 

pairs of autosomes and one pair of sex chromosome. The sex of C. elegans is determined 

by the ratio of sex chromosomes to autosomes. If the sex chromosome pair is XX, then C. 

elegans will be a hermaphrodite. A XO combination in the sex chromosome pair will 

produce a male. The XO combination in male is the spontaneous loss of X chromosome. 

A male can cross with hermphrodites (Meneely and Herman, 1979). The short 

reproductive life cycle and the linear progression of meiosis within the gonad make the 

adult worm a particularly attractive model to study meiotic maturation (reviewed by 

Hubbard and Greenstein, 2000). Full-grown oocytes mature and are ovulated and 

fertilized in a single file and assembly-line-like fashion (McCarter et al., 1999) (Fig. 10). 

Lastly, the transparency of C. elgans makes it possible to visualize meiotic maturation 

progression in living animals, and indeed the meiotic progression has been documented  

in detail by video recordings (McCarter et al., 1999; Rose et al., 1997). The ultrastructure 

of the C. elegans oocyte has been described in details as well (Hall et al., 1999). 
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The C. elegans reproductive tract consists of two U-shaped gonad of arms, each 

of which are followed by a spermatheca, where sperm are stored, and joined by a 

common uterus, where embryos develop (Fig. 10). The distal region of a gonad arm is a 

syncytium with common cytoplasm (rachis) and germ cell nuclei (germ cells), separated 

by incomplete membranes. In the adult hermaphrodite, germline nuclei proliferate by 

mitotic division in the distal region (Fig. 11). As the germline nuclei migrate away from 

the distal region, they enter meiotic prophase I, and the initial pairing of the 

chromosomes takes place here, which is called the transition zone (Dernburg et al 1998; 

Fig. 11). As the germ cells migrate away from distal, they proceed through leptotene, 

zygotene and enter pachytene before reaching the loop region of the gonad, where 

apoptotic cell death occurs. Apoptosis occurs in approximally 50% of the pachytene-

stage female meiotic germ cells. These apoptotic germ cells function like nurse cells to 

provide proteins and mRNA to the surviving oocytes (Gumienny et al., 1999). When the 

germ cells transit through the loop region (where the gonad bends ventrally) they enter 

diakinesis, and become fully enclosed by plasma membranes (Fig. 10). Therefore, 

oocytes develop, mature and form a queue in the adult proximal gonad arm. Oocyte 

growth is mediated by the cytoplasmic flow from the distal gonad to developing oocytes 

near the bend region (Wolke et al., 2007). mRNA, mitochondria, and other protein are 

synthesized in the gonad distal region and flow promixally into developing oocytes. This 

cytoplasmic flow is regulated by the actomyosin network (Wolke et al., 2007). Yolk 

granules also contribute to the size of the oocyte. York protein is synthesized by the 

intestine, and is secreted into the pseudocoelom (Kimble and Sharrock, 1983).  

 



Figure 10. C. elegans hermaphrodite 
 
The reproductive system of a C. elegans hermaphrodite consists of two U shaped gonad 
arms (each followed by a spermatheca) which are connected by a common uterus. 5 pairs 
of somatic sheath cells surround each germ line. Germ cells proliferate mitotically at the 
distal gonad arm, and enter meiosis more proximally. Oocytes cellularize in the proximal 
gonad arm. The most proximal oocyte matures and ovulates into the spermtheca where 
fertilization occurs. Fertilized oocytes enter the uterus where embryonic cell division 
begins. Reprinted from Miller et al., 2001. 
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Figure 11. The structure of adult hermaphrodite gonad 
 
A. Dissected gonad from a wild-type adult hermaphrodite showing oogenic meiotic 
progression. B. Immunofluorescent micrograph of the somatic gonadal sheath cells. 
Nuclei is in blue and myofilaments is in red  and green.  
C. Gap junction (gj) between oocyte and proximal sheath cell. All the graphs are 
reprinted from Greenstein, 2005.  
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The yolk proteins pass through a basal lamina and sheath cell pores, and internalize into 

oocyte and store in membrane bound organelles (Hall et al., 1999). Internalization of york 

protein into oocyte is mediated by york receptor RME-2 (recepter mediated endocytosis) 

(Grant and Hirsh 1999). These cellularized oocytes form a queue in the proximal region 

of a gonadal arm and arrest at diakinesis awaiting for a signal from sperm to trigger 

meiotic maturation (McCater et al., 1999). The most proximal oocyte matures, ovulates 

into the spermatheca, and undergoes fertilization there. Afterwards, the second most 

proximal oocyte occupies the most proximal position and undergoes meiotic maturation 

23 minutes later. Therefore, meiotic maturation occurs in an assembly-line fashion in the 

proximal gonad arm (McCarter et al., 1999).  

C. elegans hermaphrodites first produce sperm then they switch to oogenesis after 

reaching adulthood. In hermaphrodites, sperm are limiting for self fertility; a 

hermaphrodite produces ~300 sperm and about 300 progeny. In adult hermaphrodites, the 

most proximal oocyte matures and ovulates every 23 minutes in each gonad arm in the 

presence of sperm. In contrast, oocytes undergo meiotic arrest when sperm are consumed 

in older adult hermaphrodites or in certain mutants such as fem-1,2,3 or fog-1,2,3 which 

are females due to disruptions in germline sex determination mechanisms (McCarter et 

al., 1999).  This meiotic arrest can last for many hours but is released by mating with 

sperm that are introduced into the reproductive tract (McCarter et al., 1999). Since sperm 

are stored in spermatheca, which is separated from the proximal goand arm, sperm must 

release a signal to trigger oocyte meiotic maturation at a distance. This sperm signal was 

identified in our lab (Miller et al., 2001). Miller et al., (2001) injected sperm conditioned 

medium into the fog-2 female uterus, and found that this sperm conditioned medium is 
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sufficient to promote oocyte meiotic maturation and ovulation. Further, they purified the 

activity of sperm conditioned medium and identified major sperm protein (MSP) as the 

signal that sperm release to trigger oocyte meiotic maturation. Multiple lines of evidence 

suggest that MSP is the signal that sperm use to promote oocyte meiotic maturation. First, 

MSP biochemically purified from sperm conditioned medium or from sperm extracts can 

signal oocyte meiotic maturation after introducition into the female uterus. Second, 

recombinant MSP purified from bacteria is sufficient to induce oocyte meiotic maturation 

in female C. elegans as well as in females of another species, C. remanei. Third, antibody 

raised against MSP can reduce the oocyte meiotic maturation rate. Lastly, MSP injection 

can increase the activation of MAPK in the proximal gonad, which is an important event 

during oocyte meiotic maturation (Miller et al., 2001). Soon after, Miller et al., (2003) 

found that an integral membrane protein, VAB-1/Eph is the oocyte receptor for MSP. 

This hypothesis is supported by numerous lines of evidence. First, vab-1 null mutation 

greatly reduce the binding of fluorescently labeled MSP to dissected hermaphrodite 

gonad. This binding is both saturable and competable. (Reinke et al., 2000). Second, 

expression of VAB-1 in COS-7 cells is sufficient to confer MSP binding activity. Third, 

VAB-1 negatively regulates oocyte meiotic maturation in the absence of sperm, and this 

inhibition can be released by MSP. Finally, I found that purified MSP can interact with 

the VAB-1 ectodomain in vitro. Kosinski et al., (2005) later discovered that sperm release 

MSP by a vesicle budding mechanism to signal oocyte meiotic maturation from a 

distance (Kosinski et al 2005). VAB-1 functions in parallel with CEH-18, a POU-

homeoprotein, to negatively regulate oocyte meiotic maturation and MAPK activation in 

the absence of sperm (Fig. 12).  



Figure 12. A sperm-sensing control mechanism regulates oocyte meiotic maturation and 
MAPK activation.  
 
Sperm release MSP, which binds to VAB-1 and other receptor(s) on oocytes and sheath 
cells. MSP promotes oocyte M-phase entry (maturation), MAPK activation, and 
ovulation by antagonizing ephrin/Eph receptor (EFN-2/VAB-1) and sheath cell-
dependent (CEH-18) inhibitory inputs. Reprinted from Miller et al., 2003. 
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MSP antagonizes this inhibition to promote oocyte meiotic maturation (Fig. 12). This 

working model is based on several lines of evidence. First, both vab-1(0);fog-2 and ceh-

18(0);fog-2 females display an increased rate of oocyte meiotic maturation comparing to 

fog-2 females. Second, vab-1(0);ceh-18(0);fog-2 females exhibit an synergistic effect 

comparing to vab-1(0);fog-2 or ceh-18(0);fog-2 and oocyte meiotic maturation rate of 

vab-1(0);ceh-18(0);fog-2  is independent of sperm. However, it was unclear at the time 

how VAB-1 inhibits oocyte meiotic maturation and how MSP antagonizes this inhibition. 

I was interested in answering these two questions, and that is what I focused on during 

my thesis research. By collaborating with J. Amaranath Govindan, we identified five 

genes that function in a common pathway with VAB-1 to negatively regulate oocyte 

meiotic maturation.  These five genes are disabled protein (DAB-1), a STAM homolog 

(PQN-19), protein kinase C (PKC-1), a vav family GEF (VAV-1), and a small GTPase 

(RAN-1). I also recognized that the intracellular trafficking of VAB-1 is a key feature in 

the inhibition of oocyte meiotic maturation when MSP is absent. Further I showed that 

regulation of VAB-1 trafficking by MSP is part of the mechanism by which MSP results 

in a high rate of meiotic maturation. Since my dissertation work involves an investigation 

of Eph receptor signaling and trafficking, I will give an overview about Eph receptors in 

the next section. 

 

Eph Receptor Signaling  

Eph receptors comprise the largest superfamily of receptor tyrosine kinases (RTKs). 

Most RTKs are monomers, and their domain structure includes an extracellular ligand-
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binding domain, a transmembrane domain, and an intracellular tyrosine kinase domain 

(reviewed by Schlessinger, 2000). Epidermal growth factor receptor was the first receptor 

tyrosine kinase to be identified, and the general importance of tyrosine kinases in 

intracellular communication was recognized soon after (reviewed by Carpenter and 

Cohen 1990). Stanley Cohen and Rita Levi-Montalcini shared the Nobel Prize in 

Physiology or Medicine in 1986 for their discovery of growth factors. Ligand binding to 

the EGF receptors results in oligomerization of the receptor, with subsequent 

autophosphorylation of the receptor tyrosine kinase domain (reviewed by Carpenter and 

Cohen 1990). The activated tyrosine kinase then induces formation of signaling complex, 

which further activates signal transduction cascades. The major signaling pathways 

regulated by RTKs are the Ras-p42/44 mitogen-activated protein kinase (MAPK) 

pathway and the phosphoinositide-3 kinase (PI3-kinase) pathway. RTKs are involved in 

cell growth or survival by functioning directly on gene transcription or indirectly through 

production of second messengers (reviewed by Schlessinger, 2000). In C. elegans, 

activation of the EGF receptor tyrosine kinase LET-23 activates the LET-60 Ras/MAPK 

pathway, leading to the induction of development of the hermaphrodite vulva, which is 

an organ required for egg laying.  

 The first Eph receptor was identified as a receptor tyrosine kinase in a hepatoma 

cell line in 1987 as part of the human genome project (Hirai et al., 1987). This divergent 

receptor was pulled out in a screen for a v-fps homologous sequence from an 

erytheropoietin-producing hepatocellular (Eph) carcinoma cell line (Hirai et al., 1987). In 

the past twenty years, many Eph receptors have been identified in a variety of species 

mainly from vertebrates, but also in simple organisms such as sponges, C. elegans, and 
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Drosophila (Drescher, 2002). Eph receptors constitute the largest class within the 

receptor tyrosine kinase superfamily.  

A major question for the field was whether Eph receptors have ligands. The 

identification of Eph receptor ligands were conducted through an expression cloning 

strategy.  Three ligands that bound to the Eph receptor extracellular domain were 

recovered from a cDNA library, and were name “ephrins” (Davis et al., 1994). To date, 

sixteen vertebrate Eph receptors and nine ephrins have been identified, and human are 

known to have fourteen Eph receptors and eight ephrins. The genes that encode Eph 

receptors and their ligands are present throughout the animal kingdom (Boyd and 

Lackmann 2001). Although numerous Eph receptors and ephrin ligands exist in higher 

species, both the structure and function of Eph receptors and their ligands are 

extraordinarily conserved (Boyd and Lackmann 2001). Ephrin ligands are divided into 

two groups based on their structure: EphrinAs (A1–A6) are membrane proteins that 

utilize a glycosyl phosphatidyl inositol (GPI) group as a membrane anchor. By contrast, 

ephrinBs (B1-B3) are transmembrane proteins that have a short cytoplasmic tail (Kalo 

and Pasquale 1999) (Fig. 13). Eph receptors are also grouped into two subclasses based 

on their sequence similarity and their ligand binding affinity: most type A (A1-A10) Eph 

receptors bind to ephrinAs, and type B (B1-B6) Eph receptors bind to ephrinBs, with a 

few exceptions (e.g., EphA4 binds both types of ephrins, and EphB2 binds to ephrinA5) 

(Himanen and Nikolov 2003A and 2003B, Himanen et al., 2004) (Fig. 13). In humans, 

there are nine EphA receptors that bind to five ephrinA ligands and five EphB receptors 

that bind to three ephrinB ligands.  
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The C. elegans genome encodes four ephrins (EFN-1 to -4) and one Eph receptor 

(VAB-1) (George et al., 1998, Wang et al., 1999, Chin-Sang et al., 1999, Chin-Sang et 

al., 2002). Because C. elegans only has one single Eph receptor, this organism is a very 

attractive model for studying Eph receptor signaling, which provides a useful 

complement for studies in vertebrate systems (George et al., 1998). The first mutant 

alleles of vab-1 were isolated by Sydney Brenner based on their variable abnormal 

morphology including a notched head, which results from a morphological defect near 

the tip of the head, defective mail tail morphogenesis, and variable embryonic and larval 

lethality (Brenner, 1974). vab-1 was positionally cloned by George et al., (2000), and 

found to encode an Eph receptor tyrosine kinase. The VAB-1 sequence is equally similar 

to EphA and EphB receptors and thus may be a common ancestor of the two vertebrate 

subclasses. The vab-1 mutant embryonic phenotype was characterized as well: vab-1 

shows developmental defects, and mutants arrest at a variety of stages. Importantly, 

arrested vab-1 null mutant embryos displayed severe defects in cell movements during 

ventral epidermal enclosure (George et al., 2000). Further investigation showed that 

VAB-1 is expressed in neuroblasts for regulation of epidermal morphogenesis. These 

results suggest that VAB-1 is required for epidermal morphogenesis during embryonic 

development. Around the same time, a mammalian ephrin-B1 ligand sequence was used 

to search for homology in the C. elegans genome database, which led to the identification 

of four ephrins in C. elegans: efn-1, efn-2, efn-3, and efn-4 (Wang et al., 1999). The four 

ephrins in C. elegans are predicted to be GPI modified, and therefore belong to the 

ephrinA subclass. efn-1, enf-2, enf-3 single null mutants display epidermal 

morphogenesis phenotypes similar to vab-1 null mutants but with lower penetrance. 



Figure 13. ephrin and Eph structure 
 
The Eph receptor extracellular region consists of ephrin binding domain (globular 
domain), cysteine rich-region, followed by FN-III repeats. The Eph receptor intracellular 
portion consists of a juxtamembrane domain, follow by a kinase domain, a SAM domain 
and a PDZ binding motif. EphrinA is a GPI anchored protein, whereas ephrinB is a 
transmembrane protein possessing a small cytoplasmic tail with PDZ binding motif at its 
C-terminal. Both the extracellular domain of ephrinA and ephrinB possesses a receptor 
binding domain. Reprinted from Kullander and Klein, 2002. 
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efn-1;efn-2;efn-3 triple mutants display enhanced embryonic lethality compared to the 

single efn mutants. efn-1;efn-2;efn-3 triple mutants also display reduced 

autophosphorylation of VAB-1. EFN-1, EFN-2, EFN-3, and EFN-4 bind to VAB-1 in 

vitro. These data suggest that EFN-1, 2, and 3 function redundantly to serve as ligands for 

VAB-1 (Wang et al., 1999, Chin-Sang et al., 1999, Chin-Sang et al., 2002). efn-4 mutants 

also display a defect in embryonic morphogenesis. Somewhat surprisingly, efn-4 null 

mutations show synergistic interactions with vab-1 null mutations, suggesting that these 

two genes function in separate pathways. Because VAB-1 is the only member of Eph 

receptor family in C. elegans, this observation raises the possibility that EFN-4 has 

another receptor, which is not closely related in sequence to the canonical Eph receptors. 

Interestingly, efn-4 does not display synergistic interactions with a mutation in the mab-

20 gene, which encodes a semaphorin. This result is consistent with the possibility that 

EFN-4 and MAB-20 might function in a common pathway during C. elegans 

embryogenesis (Chin-Sang et al., 2002).  

Eph receptors are single transmembrane proteins that have an intracellular 

catalytic domain and an extracellular ligand binding domain (Fig. 13). The extracellular 

domain of Eph receptors also contains a cysteine-rich region and two fibronectin type-III 

repeats (Lackmann et al., 1998). The ephrin binding domain is a highly conserved Ig-like 

motif and is necessary and sufficient for ligand recognition and binding (Labrador et al., 

1997; Himanen et al., 1998).  The cysteine-rich region facilitates the low affinity binding 

of ephrins, and the two fibronectin type-III repeats are involved in receptor dimerization 

(Smith et al., 2004). The intracellular portion of Eph receptors contains a juxtamembrane 

domain, a kinase domain, a sterile-α-motif (SAM) domain, and a PSD95/Dlg/ZO1 
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(PDZ)-binding motif (reviewed by Pasquale, 2005). The juxtamembrane domain 

regulates the phosphorylation of the kinase domains, and the PDZ-binding motif is 

important for interacting with PDZ domain proteins (Holland et al., 1997; reviewed by 

Pasquale 2005) (Fig. 13). The ephrinB ligand structure includes an extracellular Eph-

binding domain, a linker region, a transmembrane segment, a cytoplasmic region, and a 

PDZ binding motif (Toth et al., 2001; Nikolov et al., 2005) (Fig. 13). EphrinAs have a 

similar extracellular domains but are attached to the cell via a 

glycosylphosphatidylinositol, a lipid anchor (Nikolov et al., 2007) (Fig. 13).  

Crystal structures of EphB2, ephrinB2, ephrin-Eph dimer and tetramers reveal 

that ephrinB2 inserts its loop into a hydrophobic channel on the EphB2 receptor surface 

(Chrencik et al., 2006; Himanen et al., 2002). In solution, the extracellular domains of 

Eph and ephrin form high affinity heterodimers, which pair to form a tetrameric ring-like 

assembly with two distinct interfaces (Pasquale, 2004) (Fig. 14). The larger interface is 

responsible for high-affinity dimerization of the ligand-receptor complex, whereas the 

smaller interface is responsible for assembling the heterodimer of the ephrin-Eph 

complex into a circular tetramer (Himanen et al., 2001, 2002, Chrencik et al., 2006, 

Smith et al., 2004). Ligand-induced clustering of Eph receptors is essential for kinase-

dependent and kinase-independent Eph signaling (reviewed by Egea and Klein 2007). 

Receptor preclustering is required for soluble ephrin proteins to induce robust Eph 

phosphorylation and signaling in the nervous system (Davis et al., 1994) (Fig. 14). 

However, the regulation of Eph–ephrin clustering under physiological conditions is not 

understood.  

 



Figure 14. ephrin-Eph interaction 
 
A. Ephrin interacts with Eph. One ephrin binds (pink head) to one Eph receptor (blue 
head), then these dimer interact with another pair of dimers to form a tetramer which 
leads to ligand-receptor clustering. Interaction of ephrin and Eph receptor causes 
autophosphorylation (phospho group shows in yellow) of the Eph receptor 
juxtamembrane (black loop of Eph receptor), which leads to conformation change of 
juxtamembrane domain. The conformational changes of the juxtamembrane domain 
removes the inhibition of this domain, which results in kinase (green) catalytic activity. 
Eph binding to ephrin also results in phosphorylation of the cytoplasmic tail of ephrin.   
B. Schematic graph of ephrin-Eph tetramer. Eph binds to ephrin through high affinity 
dimerization interface, then one dimmer interacts with another pair of dimer through low 
affinity tetramerization interface. Ephrin-Eph tetramers can interact with each other at the 
oligomerization interface. Both graphs are modified from Himanen et al., 2007. 
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Since both Eph receptors and ephrin ligands are membrane proteins, in most cases, Eph 

receptors on one cell interact with ephrin ligands on another cell (trans interaction) (Egea 

and Klein 2007). The interaction of Eph receptor and ephrins can also occur in the same 

cell (cis interaction) (Yin et al., 2004). 

 Ephrin binding to Eph receptors leads to activation of the Eph receptor kinase. 

There are two hypotheses for how this activation occurs. In one hypothesis, ephrin 

binding locks the receptors together in an orientation that favors phosphorylation of 

kinases in trans (Huse and Kuriyan 2002). The activation of Eph receptor kinase activity 

involves the phosphorylation of the kinase domain activation loop. The unphosphorylated 

form of the kinase loop blocks the kinase active site, and phosphorylation removes this 

inhibition. The active kinase then phosphorylates other molecules and initiates 

downstream signaling cascades (Murai and Pasquale 2002). The second hypothesis, 

which derives from crystal structure of intracellular region of EphB2, proposes that the 

juxtamembrane region regulates the kinase activity (Binns et al., 2000; Wybenga-Groot 

et al., 2001). In the absence of ephrinB2 ligands, the EphB2 receptor tyrosine kinase 

activity is regulated by the juxatamembrane domain. The unphosphorylated 

juxatamembrane domain forms a well-ordered helical structure that interacts intimately 

with the N-terminal lobe of the kinase domain and results in inactivation of the kinase 

domain. Phosphorylation of the juxtamembrane domain causes a conformational change 

that releases the structural constraints that distort the kinase active site (Wybenga-Groot 

et al., 2001). Upon phosphorylation, the solvent-exposed juxtamembrane domain also 

leads to interaction of Eph receptor with its downstream signaling proteins. 
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An interesting characteristic feature of Eph receptors and ephrin ligands is that 

they are capable of bidirectional signaling. (Zhao et al., 2006; Egea and Klein, 2007; 

Aoto and Chen, 2007; Pasquale, 2008). Upon ephrin binding, Eph receptors are activated 

and send a forward signal to the receptor-expressing cell. At the same time a reverse 

signal is also induced in the ephrin ligand-expressing cell (reviewed by Pasquale 2005; 

Egea and Klein 2007) (Fig. 15). The forward signaling is carried out by Eph receptors 

and modulates the actin cytoskeleton through activation of guanine nucleotide exchange 

factors (GEFs), which regulate axon guidance in the development of the nervous system 

(Noren and Pasquale, 2004). Forward Eph receptor signaling depends on tyrosine kinase 

activity. Disruption of the Eph receptor kinase domain impairs forward signaling, but 

reverse signaling is unaffected (reviewed by Davy and Soriano 2005; Egea and Klein 

2007). Reverse signaling requires Src family kinase (SFK), which can activate ephrinB 

by phosphorylation. The transient tyrosine phosphorylation of ephrinB by SFK creates 

binding sites for SH2 domain-containing scaffolding proteins like Grb4, which controls 

actin dynamics and cell migration (Cowan and Henkemeyer, 2001). Reverse signaling 

through the cytoplasmic domain of ephrinB2 is required for axon pathfinding (Cowan et 

al, 2004). Although ephrinA ligands lack an intracellular domain that could recruit 

scaffolding molecules, they employ associated transmembrane proteins to modulate cell 

adhesion. (Davy and Soriano, 2005). EphrinAs can also interact with EphAs in cis, which 

prevents trans interaction and silences EphA forward signaling (Carvalho et al., 2006; 

Yin et al., 2004). 

 

 



Figure 15. Bidirectional signaling of Eph receptors 
 
Both ephrin A-Eph A and ephrin B-Eph B activate bidirectional signaling. Trans-
interaction of Eph receptor and ephrins induces forward signaling at the receptor 
expressing cells and reverse signaling at the ligand expressing cells. The interaction of 
ephrin and Eph receptor can happen in cis, where this interaction can inhibit the signal. 
Reprited from Arvanitis and Davy, 2008. 
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Eph receptors and ephrins are implicated in a variety of processes, such as regulation of 

cell proliferation, survival, migration, cell-cell adhesion, axon guidance, and insulin 

secretion (reviewed by Zhao et al., 2006; Himanen et al., 2007; Kuijper et al., 2007; 

Merlos-Suarez et al., 2008). The best-characterized effect of Eph receptor signaling is 

retraction of cells upon contact with ephrin-expressing cells (reviewed by Halloran and 

Wolman 2006). In the central nervous system, cell-cell contact of Eph-expressing cells 

and ephrin-expressing cells regulates cell-cell attraction/repulsion, migration and 

adhesion during development. These interactions also participate in synaptic functions in 

adult animals. There are several hypotheses about how contact of Eph receptor-

expressing cells with ephrin-expressing cells could result in cell-cell repulsion. One well-

accepted theory invokes proteolytic cleavage (Fig. 16). Upon EphA receptor binding to 

ephrinA, the metalloprotease ADAM10 and other proteases cleave the extracellular 

portion of the ephrin. The shedding of ephrinAs releases the molecular tethering between 

the cells and causes termination of cell-cell adhesion (Mancia and Shapiro, 2005; Janes et 

al., 2005) (Fig. 16). Another popular theory about how cell-cell attraction switches to 

cell-cell repulsion is that rapid internalization removes ephrin-Eph complexes from the 

cell surface and enables the detachment of cells (Fig. 16). Cell culture assays suggest that 

the interaction of cells expressing EphB receptors with cells expressing ephrinBs results 

in the rapid formation of intracellular vesicles containing ephrinB-EphB complexes in 

both cell populations (Zimmer et al., 2003, Marston et al., 2003, Cowan et al., 2005, Irie 

et al., 2005). The EphB receptor kinase domain regulates the internalization of ephrinB-

EphB into EphB-expressing cells. Whereas, the internalization of ephrinB-EphB into 

ephrinB-expressing cells is mediated by the cytoplasmic tail of ephrinB. Truncation of 
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the ephrinB intracellular domain leads to preferential internalization of ephrinB-EphB 

into Eph-expressing cells, whereas the truncation of EphB intracellular kinase domain 

causes preferential internalization of ephrinB-EphB complex into ephrin-expressing cells. 

Blocking transendocytosis by C-terminal truncation of both EphB2 and ephrinB1 causes 

prolonged cell adherence and reduces cell repulsion (Marston et al., 2003; Zimmer et al., 

2003). Currently, very little is known about what proteins regulate endocytosis of 

ephrinB-EphB complexes. Actin polymerization, Rac activity, and the Rac exchange 

factor Vav have been suggested to be required for internalization of ligand-receptor 

complex and cell retraction (Marston et al., 2003; Cowan et al., 2005). One report 

suggests that clathrin-mediated endocytosis accounts for the internalization of ephrin-Eph 

complexes by ephrin-expressing cells (Parker et al., 2004). Another report indicates that 

caveolin-1 regulates endocytosis of ephrin-Eph complexes into Eph-expressing cells 

(Vihanto et al., 2006). These studies also suggest that the Eph receptor and its effectors 

may signal from an intracellular compartment after endocytosis (Marston et al., 2003; 

Zimmer et al., 2003). However, it is unclear in which compartment Eph receptors 

generate their signal, and how intracellular trafficking regulates Eph receptor downstream 

signaling. Interestingly, my study of VAB-1/Eph receptor signaling during oocye meiotic 

maturation in C. elegans indicates that intracellular trafficking is the key mechanism that 

regulates VAB-1/Eph function as a negative regulator. I found that the VAB-1/Eph 

receptor functions within or in transit to the endocytic recycling compartment. Blocking 

VAB-1/Eph exit from the endocytic recycling compartment by inactivating cellular 

trafficking regulators like rab-11 or rme-1 results in constitutive inhibition of oocyte 

meiotic maturation even in the presence of the VAB-1 antagonist MSP.  



Figure16. Two models of how Eph receptor regulates cell-cell attraction turns to cell-cell 
repulsion 
 
A. Endocytosis model. Ephrin-expressing cells contact Eph-expressing cells can result in 
bidirectional endocytosis of the ligand-receptor complex, which leads to the cell-cell 
adhesion switch to cell-cell repulsion.  
B. Protease cleavage model. Ephrin-expressing cells contact with Eph-expressing cells 
causes ADAM10 metalloproteinase cleavage of the extrallular portion of ephrin, blocks 
the cell-cell attractions resulting in cell-cell repulsion. Reprinted from Egea and Klein, 
2007. 
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Surprisingly, VAB-1/Eph internalization is independent of ephrins, as depletion all the 

four ephrins in C. elegans does not affect VAB-1/Eph localization.  

Eph receptors play critical roles in tumorigenesis and metastasis, and high Eph 

receptor levels positively correlate with angiogenesis in many tumor types, including 

lung and breast. Eph receptors were identified in carcinoma cells, which suggests a role 

in tumorigenesis (Hirai et al., 1987). EphA1 overexpression has been reported in various 

carcinoma cell lines, including lung, and ovary cancers (Hafner et al., 2004; Herath et al., 

2006). EphA2 and ephrinA2 have been suggested as transcriptional targets of the tumor 

suppressor proteins p53, and EphA2 overexpression has been associated with pancreatic 

adenocarcinoma invasion (Dohn et al., 2001; Duxbury et al., 2004). EphB2 

overexpression correlates with ovarian and breast cancer, suggesting that EphB2 is 

involved in tumorigenesis (Wu et al., 2004; 2006). Interestingly, the EphB4 receptor has 

both tumor-suppressing and tumor-promoting functions (Noren et al., 2006; Davalos et 

al., 2006; Stephenson et al., 2001). EphB4 can prevent tumor progression by inhibiting 

cell motility and invasion and by facilitating apoptosis (Noren et al., 2006). On the other 

hand, EphB4 receptor can trigger angiogenesis, which promotes tumor growth 

(Stephenson et al., 2001). Recently, Ephrin-Eph signaling has also been shown to 

regulate insulin secretion. While, ephrin-A reverse signaling stimulates insulin secretion, 

Eph A forward signaling inhibits insulin secretion (Konstantinoval et al 2007).  

Although ephrins are the well-known ligands for Eph receptors in some cases, 

Eph receptors can function independently and appear to signal in concert with other 

pathways, for example, the fibroblast growth factor (FGF) pathway. Overexpression of 

EphA4 in Xenopus embryos induces ectopic posterior protrusions, and inactivation of 
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FGF rescues this phenotype, which indicates that FGF could be involved in the EphA4 

signaling. (Park et al. 2004). Wnt proteins can antagonize EphB function during axon 

guidance; and it has been suggested that the Wnt pathway terminates Eph receptor 

signaling by endocytosis of Eph receptors. Wnt may also upregulate Eph receptors and 

downregulate ephrin ligands (Schmitt et al., 2006). Eph receptors and calcium channels 

also interact with each other and facilitate reciprocal communication. Eph receptors can 

interact with calcium channel- NMDA receptor, and can promote NMDA receptor 

clustering (Takasu et al., 2002). On the other hand, increased intracellular calcium 

promotes Eph degradation.  Interesting, Corrigan et al., (2005) report that there is 

crosstalk between NMDA and VAB-1/Eph signaling during oocyte meiotic maturation in 

C. elegans.  

 There is also crosstalk between Eph receptors and MAPK signaling during cell 

adhesion and cytoskeletal plasticity. Different Eph receptor family members have been 

implicated in activation or inhibition of MAPK in different cell types. EphA2 activation 

of the MAPK pathway plays critical roles in cell detachment in breast and prostate cancer 

cell lines (Pratt et al., 2002). However, EphB2 inhibits MAPK signaling, and this 

inhibition is necessary for ephrin-induced neurite retraction in mammals (Elowe et al., 

2001). EphA2 inhibits the MAPK pathway when it is expressed in endothelial and 

epithelial cell lines (Miao et al., 2001). The integration of Eph and MAPK signaling 

pathways is highly conserved as supported by studies of the Eph receptor in C. elegans. 

In C. elegans, VAB-1/Eph receptor inhibits MAPK activation in the oocytes in the 

absence of MSP/sperm (Miller et al., 2003; Govindan et al., 2006).   
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 Eph receptor also exhibits crosstalk with G protein signaling in C. elegans. 

Govindan et al., (2006) demonstrated that somatic G protein pathways regulate oocyte 

meiotic maturation (see Chapter II for details). In the absence of MSP/sperm, Gαo/i 

signaling inhibits oocyte meiotic maturation in parallel to VAB-1/Eph signaling. In the 

presence of MSP/sperm, Gαs promotes oocyte meiotic maturation.  Interesting, I found 

that somatic G proteins regulate VAB-1/Eph trafficking. In the absence of MSP/sperm, 

Gαo/i promotes VAB-1/Eph trafficking into the endocytic recycling compartment. By 

contrast, in the presence of MSP/sperm, Gαs inhibits VAB-1/Eph traffikcking into 

endocytic recycling compartment, where VAB-1/Eph functions to inhibit oocyte meiotic 

maturation. Since G protein signaling is part of the story of my dissertation, I will give a 

very brief introduction about G protein signaling.  

 

G Protein Signaling   

Guanine nucleotide-binding proteins are called G proteins, and they function in 

intercellular signaling by regulating second messenger cascades. G proteins are active 

when bound to guanosine triphosphate (GTP), and are inactivate when bound to 

guanosine diphosphate (GDP) (Fig. 17). G proteins and their cellular roles were first 

discovered by Gilman and Rodbell, who shared the Nobel Prize in Physiology or 

Medicine in 1994. Gilman and Rodbell found that G-proteins act as signal transducers, 

which transmit and modulate signals in cells. G proteins receive multiple signals from the 

exterior, integrate them and thus control fundamental life processes in cells. (Rodbell 

1971; Northup at el., 1980). Stimulatory G proteins, Gs, are activated by ligand binding 
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to a G-protein coupled receptor, and this activation produces a second messenger, cyclic 

AMP. G proteins consist of two distinct protein families: heterotrimeric G proteins, and 

small GTPases. Heterotrimeric G proteins, also known as large G proteins are made of 

three subunits: alpha (α), beta (β), and gamma (γ). β and γ subunit form a dimer that 

function as a unit and can only be dissociated by denaturation. The α subunit has a high 

affinity binding site for GDP/GTP. In the GDP bound state, the α subunit binds to a βγ 

subunit and is inactive, whereas the GTP bound form of the α subunit dissociates from 

the βγ subunit and serves to regulate effector proteins. GPCRs activate G protein by 

exchange of GDP to the GTP bound form of G protein, which activates downstream 

signal transduction pathways (Fig. 16). Small GTPases are monomeric G proteins, and are 

homologous to the α subunit of large G proteins.  

 GPCR-associated G proteins are bound to the intracellular surface of plasma 

membrane and consist of Gα and the tightly associated Gβγ subunits. Ligand binding to 

the GPCR results in a conformational change and the Gα subunit becomes bound with 

GTP in place of GDP (Reviewed by Oldham and Hamm, 2007 and 2008). The GTP 

binding to the Gα subunit causes a conformation change of Gα, which results in the 

dissociation of Gα from the Gβγ subunit. In terms of Gs protein, the free Gα subunit then 

binds to and activates different effectors and downstream signal transduction cascades 

including adenylyl cyclase (Marrari et al., 2007, Sprang et al., 2007). Adenylyl cyclase 

hydrolyzes ATP to produce cAMP (Fig. 16). cAMP acts as a second messenger that 

interacts and activates protein kinase A (PKA), which can phosphorylate downstream 

targets.  



Figure 17. G protein signaling 
  
In the inactive state, GDP bound Gα associates with Gβγ. When a ligand binds to G 
protein coupled receptor (GPCR), GDP changes to GTP, which results in a 
conformational change of Gα subunit. This conformation change causes dissociation of 
Gα from Gβγ. Free GTP bound Gα actives adenylyl cyclase, which catalytes the  
production of cAMP. Adapted from Steve Cook, 2002-2008.  
http://www.steve.gb.com/images/science/g_protein_coupled_receptor.png 
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Four general types of Gα subunits that have been elucidated to date, Gαs, Gαi, 

Gαq/11, and Gα12/13 (reviewed by Gilman 1994). These four types of Gα subunits share a 

common mechanism but activate different downstream targets and cause different 

signaling outputs (Lambert et al., 2008, Penn and Benovic, 2008). Whereas Gαs 

stimulates production of cAMP, Gα o/i inhibits the production of cAMP from ATP. Gαq/11 

stimulates membrane-bound phospholipase C β that cleaves PIP2 into two second 

messengers, IP3 and diacylglycerol (DAG). Gα12/13 is involved in Rho family GTPase 

signaling to control cell migration (Lambert et al., 2008, Penn and Benovic, 2008). In C. 

elegans, twenty-one Gα, two Gβ, and two Gγ have been reported to date. Among them, 

gsa-1 encodes a Gαs, goa-1 encodes a Gαi/o, egl-30 or gqa-1 encodes a Gαq, and gpa-12 

encodes a Gα12/13 (Brundage et al., 1996; Jansen et al., 1999; Korswagen et al., 1997; Park 

et al., 1997; Segalat et al.,1995). Adenylyl cyclase also activates the GTPase activity of 

the Gα subunit. The activated Gα subunit then hydrolyzes GTP to GDP. GDP bound Gα 

subunit then recycles back to the Gβγ dimer to restore the original heterotrimer and waits 

for a new signaling cycle. The GTP-bound α subunit can interact with the GPCR and 

thereby reduce its affinity for ligand. The ligand is then released from the receptor, and 

the system is back to the resting state (Gilman, 1994). The ability of the heterotrimeric G 

protein to bind the GPCR is dependent on sites located within all three subunits of the G 

proteins (Gilman, 1994). Four types of Gα, and five types Gβ and seven types Gγ subunits 

have been reported so far. The different Gα subunit and Gβγ subunit determines which of 

G protein coupled to which particular type of receptor (Gilman, 1994).  
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Studies from my dissertation suggest that G proteins play a major role in 

regulating VAB-1/Eph receptor trafficking. Govindan et al., (2006) reported that somatic 

Gαo/i inhibits oocyte meiotic maturation in parallel with VAB-1/Eph in the absence of 

sperm and that Gαs promotes oocyte meiotic maturation in the presence of MSP/sperm 

(please see details in Chapter II). I found that there is crosstalk between the somatic G 

protein pathway and the oocyte VAB-1/Eph receptor pathway during oocyte meiotic 

maturation: somatic G proteins regulate VAB-1/Eph trafficking in the oocytes. These 

findings enhance our understanding of the mechanisms that regulate oocyte meiotic 

maturation. Because of its involvement in VAB-1/Eph signaling, an overview of 

intracellular trafficking is presented in the next. 

 

Receptor Trafficking and Signaling  

 

Receptor trafficking regulates signaling  

 In my dissertation work, I found that intracellular trafficking is a key mechanism 

that regulates intracellular signaling by the VAB-1/Eph receptor. To provide a 

background for understanding my experiments, I will start with a general description of 

how intracellular trafficking is involved in receptor signaling.  

Receptor trafficking can affect intercellular signaling at many levels. In some 

cases, endocytosis and endosomal trafficking can attenuate signaling (Le Roy and Wrana 

2005). In the other cases, endocytic trafficking regulates ligand and receptor activation 
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(reviewed by Gonzalez-Gaitan, 2003a; 2003b; Fischer et al., 2006). In some signaling 

pathways, ligand/receptor complexes signal from endosomes. For instance, binding of 

TGF-β to the TGF β receptor induces heterodimerization of type I and type II receptors. 

Formation of the ligand/receptor complexes triggers a serial phosphorylation event, in 

which the type II receptor phosphorylates the type I receptor, which then phosphorylates 

R-Smad (Xu 2006). Phosphorylation of R-Smad causes its nuclear translocation. The 

phosphorylation of R-Smad occurs in endosomes, and this action needs the assistance of 

Sara (Smad anchor for receptor activation). An endosome-associated protein, Sara is an 

adaptor that links type I TGF receptors and R-Smads (Tsukazaki et al. 1998). 

Internalization of type I receptor is critical for bringing it to Sara and R-Smad in 

endosome, once phosphorylated in the endosome, Smad then moves into the nucleus 

wehre it generates transcriptional complexes on the basis of specific DNA-binding 

(Massague 1998) (Fig. 18). 

Hedgehog (Hh) signaling is another example of how endocytosis is involved in 

intercellular communication. Hh binding to Patched (Ptc) removes the inhibition of 

activity of smoothened (Smo) protein resulting in downstream signaling (reviewed by 

Hooper and Scott 2005). Endocytosis has been proposed to be involved in Hh signaling. 

In the absence of the Hh ligand, Smo is mainly localized to endosomes, whereas Ptc can 

be found on endosomes and on the plasma membrane. Upon Hh binding to Ptc, Ptc 

trafficks into lysosomes for degradation, while Smo shuttles to the plasma membrane and 

is activated (Denef et al., 2000; Incardona et al., 2002; Zhu et al., 2003) (Fig. 19). 

Translocation of Smo is important for its activation since a mutant Smo that is localized 
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to the plasma membrane constantly, is constitutively active (reviewed by Ingham and 

McMahon, 2001). 

The Notch signaling pathway provides another example of how endocytosis in 

one cell affects signaling in neighboring cells. In the Drosophila peripheral nervous 

system, the sensory organ precursor (SOP) cell undergoes a mitotic division to generate a 

neural precursor cell (pIIb) and a nonneural cell (pIIa) (Emery et al., 2005). The cell fates 

of pIIb and pIIa are determined by Notch signaling. The Notch receptor is a single 

transmembrane protein whose ligand is Delta. Asymmetrical distribution of endocytic 

components in a SOP cell determines the fates of its daughter cells. The cell that 

internalizes becomes a signal-sending cell, pIIb, whereas its neighboring cell becomes a 

signaling-receiving cell, pIIa (Emery et al. 2005). Endocytosis of Delta in signaling cells 

is critical for Notch signal activation in receiving cells. Mutations that block Delta 

internalization in the signaling cell pIIb fail to activate Notch signaling in the receiving 

cell pIIa. Delta binding to Notch receptor results in protease cleavage of the Notch 

receptor: the extracellular domain is cleaved by an ADAM protease, and the intracellular 

domain is cleaved by the γ–secretase complex. After being cleaved by proteases, the 

Notch receptor intracellular domain is released and transported into the nucleus to 

activate target gene expression (reviewed by Le Borgne et al. 2005). The mechanism by 

which Delta internalization in the signal-sending pIIb cell regulates Notch signaling in 

the signal receiving pIIa cell has been revealed and two hypotheses have been proposed. 

One model proposes that internalization of the Delta/Notch receptor complex in the pIIb 

cell facilitates the cleavage of the extracellular domain of the Notch receptor in the pIIa 

cell (Parks et al. 2000) (Fig. 20)  



Figure 18. Endocytic trafficking regulates TGFβ signaling 
  
TGF-β binding the TGFβ receptor induces heterodimerization of type I and type II 
receptors. Formation of ligand/receptor complex triggers phosphorylation of both type II 
and type I receptors. Phosphorylated receptor dimmers are then internalized into the cell, 
and phosphorylated Smad in the endosomes with the assistance of Sara, protein that links 
the TGFβ receptor dimer to the Smad. Phosphorylation of R-Smad causes its nuclear 
translocation, where it regulates transcription. Modified from Fischer et al., 2006. 
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Figure 19. Intracellular trafficking regulates Hedgehog (Hh) signaling  
 
In the absence of the Hh ligand, Smo is mainly localized to endosomes, whereas Ptc 
distributes to endosomes and to the plasma membrane. Upon Hh binding to Ptc, Ptc 
traffics into lysosomes for degradation, while Smo shuttles to the plasma membrane and 
is activated. Modified from Fischer et al., 2006. 
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Figure 20. Intracellular trafficking regulates Notch signaling 
  
Addition of ubiquitin to the Delta C-terminal region results in internalization of Delta. 
Internalized Delta sorts into recycling endosomes and further recycles back to the plasma 
membrane. This recycled Delta is activated. The active Delta binds to Notch receptor 
resulting in protease cleavage of the Notch receptor. The extracellular domain of Notch is 
cleaved by an ADAM protease, and the intracellular domain is cleaved by the γ–secretase 
complex. The Notch receptor intracellular domain is then released and transported into 
the nucleus, where it function in transcription regulation. Modified from Fischer et al., 
2006. 
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Another model proposes that internalization and further endosome processing of Delta in 

the pIIb cell activates Delta, and this activated Delta then recycles back to the plasma 

membrane to activate Notch receptor in the pIIa cell (Wang and Struhl 2004; Emery et al. 

2005, Jafar-Nejad et al 2005) (Fig. 20). Blocking recycling of Delta in the signal sending 

pIIb cell prevents activation of Notch signaling in the receiving cell pIIa (Emery et al., 

2005).  

 

Endocytosis and intracellular trafficking 

How does a cell surface receptor like Eph gets internalized into an intracellular 

compartments, and how is this intracellular trafficking regulated? To help you understand 

my dissertation work on intracellular trafficking of the Eph receptor, I will briefly 

describe how a cell-surface receptor gets internalized into the cell interior by introducing 

the two major modes of endocytic trafficking. Then I am going to introduce the 

mechanisms that regulate intracellular vesicle sorting and fusion. 

 

Clathrin-dependent endocytosis and its signaling 

 One way a cell surface receptor is internalized into the cell interior is through 

clathrin-dependent endocytosis (reviewed by Ungewickell and Hinrichsen 2007; Mayor 

and Pagano 2007). To understand how clathrin-dependent endocytosis occurs and how 

vesicles are formed from the plasma membrane and bud off to form free vesicles, I will 

describe clathrin and its accessory proteins, such as adaptor protein AP2 and the disabled 

homolog Dab2. Then, I will describe how clathrin is assembled on the cell surface to 

form a clathrin-coated vesicle and what mechanisms regulate this process. 
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 The life of a clathrin-coated vesicle starts with the recruitment of clathrin, 

adaptor proteins and other accessory proteins, such as a cell surface receptor, to a 

particular region of plasma membrane (Santini et al., 2002; Fig. 21). After flat lattices 

assemble, the lattices curve into coated pits, which then pinch off from the plasma 

membrane by a process called fission forming  coated-vesicles form. Soon thereafter 

clathrin and the adaptor proteins are released from the vesicle, forming an uncoated 

vesicles, which fuses with the early endosome.  The contents inside the vesicles usually 

get passed into lysosomes for degradation, and the receptor on the endosome sometimes 

gets transported into recycling endosomes for recycling back to the plasma membrane. 

The released soluble clathrin and adaptor proteins can become engaged in a new round of 

coated vesicle assembly (reviewed by Ungewickell and Hinrichsen 2007, Benmerah and 

Lamaze 2007, Mousavi et al., 2004, Johannes and Lamaze 2002) (Fig. 21).  

Two main proteins found in coated pits are clathrin and the heterotrimeric protein 

AP-2. Clathrin contains a three-legged structure with three heavy and three light chains, 

called a triskelion (Schmid et al., 1997; Greene et al., 2000; Fig. 22) The heavy chain of 

clathrin regulates binding of clathrin to adaptor proteins, and is necessary for establishing 

clathrin into an enclosed basket structure, while the light chain modulates the assembly 

state of the clathrin triskelion (Greene et al., 2000; Ybe et al., 1998). Clathrin interacts 

with some endocytic proteins mostly through their clathrin box motif, such as the 

LLNLD sequence of AP-2 (Ter Haar et al., 2000). Clathrin is essential for clathrin-

dependent endocytosis, depletion of clathrin blocks uptake of certain extracellular 

molecules, such as low density lipoprotein (Fielding and Fielding 1996).  

 



Figure 21. Clathrin and AP2  
 
A. Schematic representation of Clathrin-dependent endocytosis. Epsin binding to PIP2 
induces membrane invagination. Ligand binding to the receptor recruits AP-2 and other 
adaptor proteins such as AP180, which mediate the assembly of a clathrin-coated 
structure. The budding of deeply invaginated clathrin pits is regulated by dynamin and 
actin filaments. Adapted from Mousavi et al., 2004. 
B. A closer view of the fission of the clathrin-coated vesicle. Adapted from Ungewickell 
and Hinrichsen, 2007. 
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Figure 22. Clathrin and AP2. 
 
A. EM image of clathrin-coated pits. Reprinted from Molecular Biology of the Cell, 
Garland publishing, NY, 1998. 
B. Schematic of clathrin cage. One clathrin is shown in light blue. Reprinted from 
Johnson and Goodsell, 2007. 
C. Schematic representation of clathrin and AP2 domain structure. Adapted from 
Mousavi et al., 2004. 
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AP-2 is a large adaptor protein for clathrin-dependent endocytosis and contains 

four subunits: α, β2, µ2, δ (Heuser and Keen 1988)(Fig. 22). The α subunit of AP-2 

functions in targeting the AP-2 complex to the plasma membrane; it also binds certain 

endocytic proteins bearing DPF or DPW motifs. The β2 subunit helps the complex bind 

clathrin, and this binding promotes clathrin lattice assembly. The β2 subunit also 

functions to specifically select cargo for endocytosis (Owen et al., 2000). The µ2 subunit 

contributes to recognition and sorting of the cargos and binds to β2 subunits to assist 

assembly of the AP-2 complex (Aguilar et al., 1997). In addition, AP-2 specifies the 

localization of clathrin assembly by interacting with phosphoinositides of the plasma 

membrane and subsequently recruits and promotes polymerization of clathrin (Page and 

Robinson 1995). The AP2 adaptor protein can also associate with other endocytic 

accessory proteins and holds its central position among all the endocytic proteins. Cell-

culture studies suggest that the AP2 adaptor is associated with all the coated structures at 

the plasma membrane. In addition, disruption of AP eliminates most of the clathrin-

coated structures and blocks the uptake of certain intracellular ligand proteins. More 

importantly, inactivation of AP in C. elegans, Drosophila, and mice causes lethality of 

the animals. 

Other adaptor proteins have been reported to be present in clathrin-coated pits, 

such as AP180/CALM (clathrin assembly lymphoid myeloid leukaemia), Epsin (Eps15-

interacting protein), Eps15, Dab2, and Numb (Ye and Lafer 1995; Kalthoff et al., 2002; 

Salcini et al., 1999; Morris et al., 2002; Santolini et al., 2000). These proteins bind to 

clathrin and the AP2 adaptor complex, and they also promote assembly of clathrin (Fig. 

22). In addition, Dab2 may have a role in receptor sorting as well as being part of the 
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general endocytic machinery. Dab2 protein is a putative tumor suppressor protein that  is 

implicated in cell surface receptor turnover. Dab2 is a complex molecule with an N 

terminal phosphotyrosine binding (PTB) domain, which binds to multiple cell-surface 

receptors bearing FxNPxY motifs (Mishra et al., 2002). Dab2 also bears a DFP motif, 

which is sufficient for targeting Dab2 to clathrin-coated pits. Dab2 binds to 

phosphoinositides and AP2 through its DFP motif (Morris and Cooper 2001). Moreover, 

a recombinant Dab2 is sufficient to initiate the formation of clathrin-coated vesicles from 

phosphoinositide-containing lipids (Mishra et al., 2002). Dab2 has been found to 

associate with members of the LDL receptor family and it is involved in internalization of 

the LDL receptor-like protein megalin (Morris and Cooper 2001). Analysis of conditional 

knockout Dab2 mice indicates that the structure of clathrin-coated pits is decreased in 

renal tubule cells, and mutant mice display defects of amino acid and vitamin uptake, 

which is also a characteristic feature of megalin mutants (Morris et al., 2002). 

 Coated pits have a basket-like appearance with pentagonal or hexagonal lattices 

formed from polymerized clathrin (Heuser, 1980; Fig. 21). Clathrin coated pits occupy 

~0.5-2% of the area of the plasma membrane (Brown and Peterson 1999). The specific 

sites that clathrin coated pits assemble are called coated-pit zones, and the number of 

these sites is limited. The size of the clathrin-coated pits is ~100 nm in diameter and is 

dependent on the amount of polymerized clathrin in the coated pits. There are two 

mechanisms that have been suggested for the assembly of the clathrin triskelion into the 

coat of a budding vesicle (reviewed by Mousavi et al., 2004). The most common view 

suggests that clathrin triskelions form a flat hexagonal lattice first, then transform into 

closed spheres by converting hexagons to pentagons (Heuser et al., 1980, Reviewed by 
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Pearse and Bretscher,1981; Pearse and Crowther,1987; Santini and Keen, 2002). This 

view is consistents with the idea that flat lattices serve as precursors of coated pits. An 

alternative view, however, is that a flat lattice functions as a reserved site for quickly 

recruiting more clathrin (Kirchhausen, 2000a,b). Coated pits are assembled by 

incorporating cytosolic clathrins into the growing lattice, and recruiting hexagon and 

pentagon into the right location. Therefore, no tranformation between hexagons and 

pentagons is required.   

Several membrane lipids, such as PtdIns(4,5)P2 and PtdIns(3,4,5)P3, have been 

proposed to be involved in vesicle formation (reviewed by Haucke, 2005, Simonsen et 

al., 2001). The inner shell of the coated pits is composed of a layer of adaptor proteins 

which connect to the plasma membrane and clathrin (Vigers et al., 1986). Epsin, for 

example, can insert a short helix into the cytoplasmic leaflet of the plasma membrane in 

association with PtdIns(4,5)P2.This action results in membrane bending and subsequent 

coated pit formation (Ford et al., 2002). In addition to phosphoinositide and adaptor 

proteins, cell surface receptors, which are targeted for internalization, may also contribute 

to specifying the nucleation site of clathrin (Martin, 2001). The internalized receptors 

could specify the nucleation sites of clathrin by recruiting AP-2 or other adaptor proteins,  

then subsequently assembling clathrin to form coated pits. Alternatively, the receptors 

could incorporate into the clathrin flat lattice and serve as the nucleation site for 

recruiting more clathrin into the lattice and further assemble coated pits (Pearse and 

Crowther, 1987) (Fig. 21). Besides receptors, other cell surface proteins, such as 

synaptotagmins, have been suggested for serving as the binding site of AP-2 at the 

plasma membrane (Pearse and Crowther, 1987).  
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AP180/CALM and AP-2 have been suggested to play a critical role in regulating 

the size of the coated pits (Ye and Lafer 1995, Tebar et al., 1999). Endocytic adaptor 

proteins induce the initiation of membrane budding, with clathrin then stabilizing the 

budding membrane. Once the budding membrane is stabilized, the coated pits can serve 

as the recruiting site for selecting more cargos for internalization. Coated pits can also 

recruit motor proteins and fusion factors that can subsequently regulate the mobility and 

fate of the vesicles once endocytosed (Tebar et al., 1999; Ford et al., 2001; Zaremba and 

Keen, 1983).  

 After the clathrin lattice has assembled, the shallow coated pits forms (Fig. 20). 

Several observations suggest that clathrin-coat assembly can provide the driving force for 

membrane invagination to form shallow coated pits (Larkin et al., 1986; Mahaffey et al., 

1989; Lin et al., 1991). First, purified clathrin can assemble into coated vesicles in vitro, 

and the size of the coated structure is similar to that of the endogenous coated vesicles 

(Mahaffey et al., 1989; Moore et al., 1987). Second, the energy needed to bend a clathrin 

lattice is similar to the energy needed for invaginating the plasma membrane (Jin and 

Nossal, 1993). Other investigators, however, disagree with this model and suggest that 

there are many other mechanisms involved in this process. This view favors the 

possibility that clathrin stabilizes the budding structure rather than initiating the 

invagination (Farge et al., 199; Sheetz and Singer, 1974).  

Deeply invaginated coated pits form from the shallow coated pits. The 

characteristic feature of deeply coated pits is the presence of a neck structure, which is 

also the specific site of fission (Fig. 21). The formation of deeply coated pits involves 

endophilin and dynamin (Takei et al., 1999, Muhlberg et al., 1997). Dynamin is recruited 
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to the shallow coated pits in its GDP-bound form; GDP exchange to GTP causes dynamin 

molecules to form a helical collar structure at the neck of coated pits. Dynamin then 

hydrolyzes GTP using its GTPase activity. This GTP hydrolysis action can cause the 

tightening of the dynamin ring around the necks of deeply invaginated coated pits, and 

causes vesicle fission to form free vesicles (Takei et al., 1995; Sever et al., 1999; 

Sweitzer et al., 1998). Dab2 disabled protein has also been reported to be involved in the 

formation of deep coated pits (Morris et al., 2002). Endophilin interacts with dynamin 

and functions as a downstream effector of dynamin. HIP1/R protein, which gets recruited 

into the growing coated structure, connects the clathrin coat to actin filaments (Schmidt et 

al., 1999). Dynamin’s GTPase activity is critical for actin assembly at the endocytic site. 

In order to form a free vesicle, deeply invaginated pits need to bud off from the plasma 

memrbane. This fission event involves endophilin, dynamin, and actin polymerization 

(Farsad et al., 2001; Morris et al., 2002). The actin motor protein myosin can also attach 

to the coated structure and pull the dynamin ring towards the plasma membrane, and the 

vesicles towards the cytoplasm (Morris et al., 2002). Once the neck structure is 

established, boundary forces at the lipid interface will aid the fission as well.  

There are two mechanisms by which surface receptors can be internalized by 

coated pits. One way is by constitutive endocytosis: surface receptors are accidently 

brought into the coated pits by lateral diffusion of the lipid bilayer. Once there, the 

receptors are captured by the components of the coated pits (reviewed by Ungewickell 

and Hinrichsen 2007; Mayor and Pagano, 2007). In constitutive endocytosis, receptors 

undergo continuous internalization and recycling (Waterman et al., 2001). Thus, most 

constitutive endocytosis is ligand-independent (Bretscher and Pearse, 1984). This 
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internalization takes up marcromolecules and viruses from extracellular spaces, and it 

also regulates the amount of the surface receptor. Adaptor proteins recognize and bind to 

these types of receptors and incorporate these receptors into coated pits. The interaction 

of adaptor proteins and endocytic receptors is mediated by internalization signals, which 

are localized in the cytoplasmic tails of the receptors. Alternatively, a ubiquitin (Ub) 

polypeptide can be added to the cytoplasmic domain of the receptors during 

posttranslational modification. This Ub polypeptide can server as the internalization 

signal sequence of the receptor (Collawn et al., 1990; Oleinikov et al., 2000; Weissman et 

al., 2001).  

Another type of endocytosis is ligand-induced internalization, in which the 

surface receptors are selected into the coated pits. Ligand binding to these receptors, such 

as EGF binding to the EGF receptor, triggers a conformational change of the receptor, 

which results in receptor dimerization (Lemmon et al., 1997). Dimerization of the 

receptor subsequently activates receptor auto-phosphorylation, and the phosphorylated 

receptor then recruits adaptor proteins to the cytoplasmic tail of the receptors. The 

associated adaptor proteins then trigger the assembly of clathrin, and a clathrin-coated 

struture forms. This type of internalization can regulate receptor signaling by regulating 

the postendocytic fate of the receptor.  

Clathrin-dependent endocytosis has been reported to be involved in 

internalization of various receptors and extracellular ligands. Receptor tyrosine kinase-

family members, such as the EGF receptor and the Eph receptors, are internalized 

through clathrin-dependent endocytosis. Cytokine receptors, such as growth hormone 

receptors, are also internalized by clathrin-dependent endocytosis (Irie et al., 2005).  
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Certain types of G protein coupled receptors are brought into the cell by clathrin-

mediated internalization (Wolfe and Trejo 2007; Hanyaloglu and von Zastrow 2008). The 

internalization of all of these receptors plays a critical role for their downstream signal 

transduction, since blocking endocytosis results in constitutive signaling.  

My analysis of Eph receptor trafficking indicates that the internalization of the 

Eph receptor is partially dependent on clathrin-dependent endocytosis. In the absence of 

MSP/sperm, VAB-1/Eph largely localizes to the endocytic recycling compartment of the 

oocyte; there is no detectable level of VAB-1/Eph on the plasma membrane. However, 

depleting clathrin-dependent endocytosis pathway components such as clathrin, DAB-1, 

which is the C. elegans Dab2 homolog, or dynamin results in a small portion of the VAB-

1/Eph receptors localizing to the plasma membrane in female worms (see details in 

Chapter III).  

 

Caveolae-mediated endocytosis 

 Another well-characterized pathway that can internalize cell surface receptors is 

caveolae-mediated endocytosis (Gong et al., 2008; Lajoie and Nobi, 2007; Mayor and 

Pagano, 2007; Cheng et al., 2006) Caveolae are small flask-shaped invaginations (~50 to 

80 nm in diameter) on the cell surface. The reason that I present caveolae-mediate 

endocytosis here is that Scheel et al., (1999) reported that caveolin-1 (cav-1), a 

component of caveolae (see below for details), is involved in meiotic progression in C. 

elegans, based on RNAi findings. This report suggests that inactivation of cav-1 causes 

germ cells to progress through meiotic prophase more rapidly. However, the cav-1 
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potential null mutant does not display these phenotypes, which makes their conclusions 

somewhat doubtable. Interestingly, Sato et al., (2006) described the germline CAV-

1::GFP expression, which shows a similar localization pattern as VAB-1::GFP in the C. 

elegans adult hermaphrodite gonad. CAV-1::GFP localizes to intracellular vesicles that 

are distribute throughout the oocyte cytoplasm (Sato et al., 2006). In addition, a study of 

Eph receptor signaling in CHO-EphB1 cells suggests that EphB1and EphA2 interact with 

caveolin-1 upon ephrin stimulation and that EphB1 localizes in the caveolae structures. 

These three findings led me to test whether VAB-1/Eph is internalized into the oocyte 

through caveolae-mediated endocytosis. I found that VAB-1/Eph receptor localization is 

unaffected by the presence and absence of cav-1. To help you understand how caveolin-1 

might regulates caveolae-mediated endocytosis, and what is caveolae, I will very briefly 

explain caveolae-mediate endocytosis. 

Caveolae were first identified in 1950s in the heart endothelium, and were named 

because of their cave-looking shape (Palade, 1953). Caveolae were subsequently found in 

most cell types, and the shape of caveolae is dynamic, varying from cell to cell, and is 

also dependent on the physical status of the cell. Caveola is a striated coated vesicle 

which is composed of caveolins (Glenney 1993; reviewed by Gong et al., 2007; Lajoie 

and Nobi, 2007; Ishikawa et al., 2005). There are three types of caveolin: caveolin 1, 

caveolin 2, and caveolin 3 (Parton 1996; Parton and Simons, 2007). Caveolin-1 is 

expressed in various cell types and is the key component of the caveolae coat and 

essential for caveolae formation (Mora et al., 1999; Drab et al., 2001). Besides its 

essential role in caveolae biogenesis, caveolin-1 is also involved in lipid uptake and 

regulation, transcellular transport, cellular signaling, and the entry of viruses (reviewed 
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by Goetz et al., 2008; Shatz and Liscovitch, 2008). Caevolin-2 is associated with 

caveolin-1 in many cell types and it can form a heteroligomer with Caevolin-1 (Das et al., 

1999). Caevolin-2 can not form caveolae by itself in vitro, and removal of caveolin 2 

does not affect the expression of caveolae in vivo (Razani et al., 2002). Caveolin-2 needs 

the assistance of caveolin 1 to generate caveolae, and the protein stability of caveolin-2 is 

dependent on caveolin 1 (Li et al., 1998).  Caveolin-3 is only present in muscle cells, and 

it can drive caveolae formation by itself in vitro (Song et al., 1996; Tang et al., 1996). 

Besides caveolin proteins, caveolae are also enriched in steroid and sphingolipids. Thus, 

caveolae are involved in lipid rafts (reviewed by Lajore and Nabi, 2007). Cholesterol is a 

key component of lipid rafts and is essential for caveolae formation. Cholesterol binds 

caveolin-1, and this binding triggers caveolin-1 oligomerization. Cholesterol also 

upregulates caveolin-1 transcription, and depletion of cholesterol causes reduced 

caveolae formation (Rothberg et al., 1992).   

 Caveolae can localize protein complexes such as GPCRs (Ostrom and Insel, 2004; 

Insel et al., 2005). The interaction of GPCRs and caveolin is important for localization of 

GPCR to the caveolae and critical for subsequently GPCR sorting and trafficking to the 

plasma membrane. G proteins are enriched in caveolae and directly interact with caveolin 

1. The interaction of G protein and caveolin 1 is very important for keeping Gα proteins 

in the inactive GDP-bound state. Agonist stimulation causes Gα redistribution to the 

cytosol by exchanging GTP for GDP. Thus, segregation of Gα subunits in caveolae and 

interaction with  caveolin 1 determine the initiation of cell-specific G protein pathways. 

Several steroid hormone receptors also localize in the caveolae. The 

compartmentalization of steroid hormones in caveolae facilitates their interaction with 
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steroid hormonal receptors, which are essential for estrogen-induced downstream 

signaling.  

 

 Vesicle Transport and Trafficking   

 In my dissertation work, I found that VAB-1/Eph mainly localizes in the 

intracellular vesicles of the oocyte in C. elegans. In the absence of sperm, VAB-1/Eph 

receptor mainly localizes in the endocytic recycling compartment, while in the presence 

of sperm, VAB-1/Eph receptor is largely excluded from the endocytic recycling 

compartment. Thus, it is quite necessary to explain about recycling endosomes, and how 

the endocytic vesicles traffic to the recycling endosomes or some other compartments, 

such as lysosomes, and what mechanism regulates these trafficking events.  

After internalizing into the cell, these clathrin-dependent and caveolae-mediated 

endocytic vesicles traffic inwardly into the cell. Vesicle transport plays a critical role in 

trafficking molecules from one compartment to another (reviewed by Corbeel and 

Freson, 2008; Kummel and Heinemann, 2008; Vassilieva and Nustrat, 2008). The 

selectivity of molecule trafficking is key for maintaining the functional organization of 

the cell. If the selectivity of trafficking is lost, the cell can not carry out its normal 

cellular function. After budding off from the plasma membrane, the vesicle loses its coat 

very quickly.  Once the vesicle is decoated, the target-target interaction signal is exposed, 

and the uncoated vesicles can interact with other cellular compartments, such as early 

endosomes (Fig. 23).  

 

 



Figure 23. Endocytic trafficking 
 
A schematic representation of endocytitc trafficking. After internalization into the cell, 
the clathrin-coated vesicle very quickly loses its clathrin coat. After decoating, the vesicle 
fuses with early endosome. Then the ingested contents either get recycled back to the 
plasma membrane, or transport into lysosome for degradation. Modified from Sorkin and 
von Zastrow, 2002. 
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After fusing with the early endosomes, which is the sorting vesicle, the internalized 

protein either get shuttled into recycling endosomes and sent back to the plasma 

membrane, or it gets targeted into multivesicular bodies and enters late endosomes, and 

finally transported into lysosomes for degradation or trafficking into exosomes for further 

secretion (reviewed by Vassilieva and Nustrat, 2008; Fig. 23). The vesicles move by 

diffusion over short distances, and move by motor proteins (kinesins or dynein) along 

micrutubules over long distances. Due to constant flux of the membrane material, 

organelles of the endomembrane system constantly lose their own characteristic protein 

marker and constantly receive proteins markers that may change the organelle’s fate 

(reviewed by Corbeel and Freson 2008). Therefore, coordinated budding and fusion of 

each organelle and between organelles is essential for maintaining the function of a cell. 

Docking of the vesicles to the accepter compartment is specific, and this docking 

involves SNARE proteins. There are two types of SNAREs, vesicle SNAREs (v-

SNARE) and target SNAREs (t-SNARE) (reviewed by Quick; 2006). v-SNARE is 

incorporated into the vesicle membrane, whereas t-SNARE is incorporated into the target 

membrane (reviwed by Bunger, 2005; Fig. 24). The specific binding of v-SNAREs and t-

SNAREs regulates the docking of the vesicles to its target compartment (Fig. 24).  Once 

the vesicles dock on the target membrane, several other proteins join the SNARE 

complex to form fusion complexes, and this action results in the fusion of the vesicles 

with the target membrane (reviewed by Hong, 2005).   

 Ras-associated binding (Rab) proteins also play important roles in vesicle 

trafficking, including vesicle formation, motility, tethering, and fusion to target 

membrane (Wickner and Schekman, 2008; Fig. 24). To date, more than 60 human Rabs 
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are identified. Rab proteins interact with different Rab-associated proteins that regulate 

Rab conformation changes and mobility (Kawasaki et al., 2005). GEF (guanine 

nucleoide-exchange factors) and GAPs (GTPase activating proteins) regulate the Rab 

cycle between active GTP-bound and inactive GDP-bound forms. The cycle of Rab 

proteins between GTP- and GDP- bound forms regulates the ability of Rabs to bind their 

downstream effectors. Rabs are synthesized as soluble cytoplasmic proteins, which are 

inactive in their GDP bound form. REP (Rab escort protein) binding to Rab-GDP results 

in addition of two geranylgeranyl groups to the Rab C-terminus. The addition of these 

prenyl groups on Rabs allows Rabs to attach into the lipid bilayer of the organelle. To 

bind to the organelle membrane, GDF needs to displace GDI, and this membrane 

attachment can be fixed by converting Rab-GDP to Rab-GTP with the assistance of GEF 

(Guanine nucleotide exchange factor). The membrane attached GTP bound Rabs then can 

bind to its effector proteins that promote vesicle docking and fusion. After completing 

their function, Rabs hydrolyze GTP through their intrinsic GTPase activity, which is 

stimulated by GAP (GTPase activating protein). Subsequently, Rab-GDP is extracted 

from the membranes by RabGDI (GDP dissociation inhibitor) and locates into the cytosol 

again as GDP-bound form.  Therefore, Rab proteins continuously cycle between the 

cytosol and different membranes. Different Rabs are associated with different 

endosomes, and they regulate endosome-endosome or endosome-plasma membrane 

fusion (reviewed by Zerial and Mcbride 2001; Corbeel and Freson, 2008; Grosshans et 

al., 2006; Markgraf et al., 2007; table 1). Rab-5 is associated with early endosomes, Rab-

4 is associated with sorting endosomes and recycling endosomes, Rab-11 is associated 

with recycling endosomes, and Rab-7 is associated with late endosomes and lysosomes.  



Figure 24. Vesicle fusion 
 
A. Schematic graph of vesicle fusion process. Adapted from 
courses.bio.psu.edu/.../tutorials/tutorial6.htm 
B. Schematic graph of the mechanism controls vesicle fusion. Adapted from 
http://www.steve.gb.com/science/protein_targeting.html 
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Tabel 1. Localization and function of Ran proteins 
 
Rab Rab localization Rab function 

Rab-4 EE, RE, PM EE-PM sorting/ recycling  

Rab-5 CCV,  EE, PM Formation of CCV from PM, 
regulate CCV-EE and EE-EE 
homotypic fusion, EE motility 

Rab-7 LE and Lys Required for EE-LE transport 
and LE-Lys fusion 

Rab-9 LE, TGN  LE -TGN transport 

Rab-11 RE, TGN, PM Recycling through perinuclear 
RE, exocytosis from TGN to 
PM, implicated in polarization 
of the Drosiphila oocyte  

 
Modified from Miguel et al., 2002. 
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These Rab proteins not only serve as the characteristic marker for these endosomes, they 

also regulate endosomal fusion. Rab-5 regulates cargo segregation into clathrin-coated 

vesicle (CCV) and together with their effectors promoting vesicle mobility and 

homotypic early endosomal fusion. In contrast to Rab-5, Rab-15 inhibits cargo transport 

into early endosomes. Rab-4 regulates early endosomal-recycling endosomal fusion. In 

early endosomes, molecules, which are destined to be recycled, get sorted into Rab-4 

enriched microdomains and then recycles quickly back to the plasma membrane.  Rab-11 

regulates recycling endosomal and plasma membrane fusion. Rab-7 regulates molecules, 

which are destined for degradation, to be transported from Rab-5 positive early 

endosomes into Rab-7 positive late endosomes. In addition, Rab-7 also functions to 

transport proteins from late endosomes to lysosomes. Rab-9 regulates recycling of certain 

molecules, such as mannose 6’-phosphae receptor, from late endosomes to trans-Golgi 

network. Therefore, the association of Rab proteins with organelles is dynamic during 

protein trafficking. Rab proteins mediate intracellular vesicle trafficking by serving as 

scaffolding platforms to temporally and spatially control protein transportation. How a 

cargo is transported from one endosome compartment to another, such as from Rab-5 

positive endosomes to rab-7 positive late endosome, is not very clear. One hypothesis is 

the endosome maturation theory. In this view, Rab-5 positive early endosomes grow in 

size and gradually lose their Rab-5 and effectors (early endosome associated proteins), 

and at the same time acquires Rab-7 and effector proteins. By this Rab conversion 

reaction, endosomes mature from early endosomes to late endosomes.  
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CHAPTER II 

 

IDENTIFICATION OF NEGATIVE REGULATORS OF OOCYTE MEIOTIC 
MATURATION 

 

Introduction 

 Oocytes of most sexually reproducing animals arrest in meiotic prophase and 

actively maintain their arrest for prolonged periods–up to fifty years in humans.  In 

response to hormonal signaling, oocytes resume meiosis in the highly conserved process 

of meiotic maturation, which prepares the oocyte for fertilization (Voronina and Wessel, 

2003; Yamamoto et al., 2006).  Oocyte meiotic maturation is defined by the transition 

between diakinesis and metaphase of meiosis I, and is accompanied by nuclear envelope 

breakdown, cortical cytoskeletal rearrangement, meiotic spindle assembly, and 

chromosome congression.  Chromosome missegregation in female meiosis I represents 

the leading cause of human birth defects (e.g., Down syndrome).  Because advanced 

maternal age is the most significant risk factor (Hassold and Hunt, 2001), the 

mechanisms that maintain meiotic diapause and preserve oocyte vitality are of intense 

interest. 

           Great strides have been made in understanding the control of cell-cycle 

progression during the meiotic maturation process, culminating in the discovery of the 

Maturation Promoting Factor (Cdk1/cyclin B; Masui, 2001).  Mitogen-activated protein 

kinase (MAPK) cascades also play an important role in controlling meiotic progression 

(Fan and Sun, 2004).  By contrast, comparatively less information is available about the 
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intercellular signaling pathways that regulate meiotic resumption.  Unifying conclusions 

from studies in vertebrate and invertebrate systems are that soma-germline interactions 

play a crucial role and that regulation involves both positively- and negatively-acting 

pathways (Voronina and Wessel, 2003).  As meiotic maturation signals have been 

characterized in several invertebrate systems, studies in these organisms may offer both 

comparative and mechanistic insights. 

               In C. elegans, sperm export the major sperm protein (MSP) by a vesicle 

budding mechanism to trigger oocyte MAPK activation and meiotic maturation (Fig. 

33A; Miller et al., 2001; Miller et al., 2003; Kosinski et al., 2005).  MSP is also the key 

cytoskeletal element required for the actin-independent amoeboid locomotion of 

nematode spermatozoa (Bottino et al., 2002).  Since hermaphrodites produce only a fixed 

number of sperm, meiotic maturation rates are initially high for the first two days of 

adulthood, but decline as sperm are used for fertilization and the MSP signal disappears 

(Kosinski et al., 2005; McCarter et al., 1999).  Similarly, in sex-determination mutants of 

C. elegans, which fully feminize the hermaphrodite gonad (e.g., fog-2 or fog-3), oocytes 

arrest until sperm are supplied by mating.  In C. elegans, the vital processes of meiotic 

maturation and ovulation are tightly coupled to sperm availability through a complex 

regulatory network involving both negative and positive controls.  Parallel genetic 

pathways defined by vab-1, which encodes an ephrin receptor, and ceh-18, which 

encodes a POU-homeoprotein expressed in gonadal sheath cells but not oocytes, together 

compose an MSP-sensing control mechanism that inhibits meiotic maturation, MAPK 

activation, and ovulation when sperm are not present in the reproductive tract (Fig. 33A; 

Miller et al., 2003).  Negative regulators of meiotic maturation, such as vab-1 and ceh-18, 
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are identified by RNAi knockdown or loss-of-function mutations that cause females to 

mature oocytes in the absence of the MSP signal.  In contrast, positive regulators, such as 

oma-1 and oma-2, which encode two TIS-11 zinc-finger proteins expressed in the germ 

line (Detwiler et al., 2001), are identified by RNAi knockdown or loss-of-function 

mutations that reduce or block meiotic maturation in hermaphrodites in the presence of 

the MSP signal. 

 In collaboration with J. Amaranath Govindan, a former graduate student in our 

lab, we report the results of a comprehensive RNAi screen undertaken to identify 

regulators of meiotic diapause in the absence of the MSP signal.  This genome-wide 

RNAi screen identified 16 new negative regulators of meiotic maturation.  Four 

conserved proteins, DAB-1, PQN-19, PKC-1, and VAV-1, function with the VAB-1 

MSP/Eph receptor in oocytes.  In parallel to the VAB-1 MSP/Eph receptor pathway, 

antagonistic Gαo/i and Gαs signaling pathways define negatively- and positively-acting 

somatic cell inputs, respectively.  Gαs signaling is necessary and sufficient to trigger 

oocyte MAPK activation and meiotic maturation, which it does in part by antagonizing 

inhibitory sheath/oocyte gap-junctional communication.  This finding, together with the 

results from mammalian systems (Jamnongjit and Hammes 2003; Mehlmann, 2005), 

suggest that the involvement of the Gαs pathway may be an ancestral feature of meiotic 

maturation signaling. 
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Material and methods  

 

Genetics 

Standard culture and genetic techniques were carried out (Brenner, 1974) at 20 

°C, except where indicated otherwise.  Alleles used are described in WormBase 

(http://www.wormbase.org).  The strains used were described (Miller et al., 2003), or as 

follows (all alleles in DG strains have been outcrossed at least 3 time with the wild type): 

DG1859 [gsa-1(pk75)/hT2(qIs48)I], KG421 [gsa-1(ce81gf)I], KG524 [gsa-1(ce94gf)I], 

DG1848 [gsa-1(ce81gf)fog-3(q443)/hT2(qIs48)I], DG1847 [gsa-1(ce94gf)fog-

3(q443)/hT2(qIs48)I], DG1803 [inx-22(tm1661)]; DG1852 [pqn-19(ok406) I], DG1856 

[goa-1(sa734)I], MT2426 [goa-1(n1134rf)I], DG1813 [goa-1(sa734)fog-

3(q443)/hT2(qIs48)I], DG1865 [goa-1(n1134rf)fog-3(q443)/hT2(qIs48)I], DG1853 [dab-

1(gk291)II], DG1804 [dab-1(gk291)/mIn1II;fog-2(q71)V], DG1841 [vab-1(dx31)dab-

1(gk291)/mIn1II;fog-2(q71)V], PS1493 [dpy-20(e1362)IV;syIs9(pMH86 + pJMGoQL)], 

DG1854 [pkc-1(ok563)V], KG532 [kin-2(ce179rf)X], DG1849 [kin-2(ce179rf)X;fog-

3(q443)/hT2(qIs48)I]. 

 

RNA Interference 

Genome-wide RNAi screening employed a modification of the method of Kamath 

et al. (Kamath et al., 2003).  HT115(DE3) bacterial strains were grown overnight in 500 

µl LB media containing 50 µg/ml ampicillin and 30 µl of each culture was plated per well 
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onto M9-NGM medium (42.3 mM Na2HPO4, 22.1 mM KH2PO4, 8.6 mM NaCl, 18.7 mM 

NH4Cl, 1 mM CaCl2, 1 mM MgSO4, 0.5 % casamino acids, 2 % agar, 0.2 % β-lactose, 5 

µg/ml cholesterol, 25 µg/ml carbenicillin) and incubated overnight at 22°C for induction 

of dsRNA.  Five L3-stage fog-2(q71) female worms were placed in each well (35 mm) 

and incubated at 22°C.  Twenty four hours later, any males that were inadvertently plated 

were removed from the cultures.  Each screening experiment utilized unc-22 as a positive 

control for RNAi efficacy, and the empty vector (L4440) as a negative control. Cultures 

were screened on the second day of adulthood for the presence of unfertilized oocytes on 

the bacterial lawn or within the uteri of the adults.  All Class I clones were rescreened and 

confirmed in more than five experiments; whereas all Class II clones were confirmed by 

rescreening at least twice.  The insert DNA of class I clones was sequenced to verify gene 

identity. 

 

Phenotypic Analysis and Immunofluorescence 

Oocyte meiotic maturation rates and MAPK activation were analyzed as 

described (Miller et al., 2001).  Oocyte meiotic maturation, ovulation, and sheath cell 

contractions were observed by time-lapse videomicroscopy, and gonads were dissected, 

fixed, and stained for immunofluorescence microscopy as described (Rose et al., 1997).  

Wide-field fluorescence and DIC microscopy employed a Zeiss Axioskop microscope 

using 40X, 63X, or 100X (NA1.4) objective lenses.  Images were acquired with an 

ORCA ER (Hamamatsu) charge-coupled device camera using OpenLab (Improvision) 

software.  All exposures were in the dynamic range of the detector and each individual 
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photograph in a montage employed the same exposure time.   The following antibodies 

were used: Anti-DAB-1 antibody (Kamikura and Cooper 2003), Anti-GOA-1 antibody 

(kindly provided by Michael Koelle), anti-MSP (Kosinski et al., 2005), and Cy2- or Cy3-

conjugated secondary antibody (Jackson ImmunoResearch Laboratories).  Student’s t-

Test was used to assess statistical significance as indicated. 

 

MSP-VAB-1 Eph Receptor Interaction 

The sequence encoding VAB-1ECT (residues 1-558) was amplified using the 

PCR and subcloned into the pcDNA3.1D TOPO (Invitrogen).  The sequence of VAB-

1ECT-6His was confirmed by DNA sequencing.  The expression vector was introduced 

into 293F cells by transfection with 293fectin (Invitrogen) according to the 

manufacturer’s instructions. Cell culture supernatants were collected 72 hours after 

transfection and VAB-1ECT-6His was precipitated with ammonium sulfate (30% 

saturation).  The protein pellet was dissolved in 50 mM sodium phosphate (pH 8.0); 300 

mM NaCl and purified on Ni-NTA agarose (Qiagen).  MSP-142 was purified as 

described (Baker et al., 2002). Binding reactions were carried out in 100 µl volumes 

containing 100 nM MSP-142 and  14 nM VAB-1ECT-6His for 2 hours at 4°C.  Two 

methods were used to isolate the MSP-VAB-1ECT complex.  In method 1, 2 µg of an N-

terminal-specific MSP polyclonal antibody was added and incubated for another 2 hours 

at 4°C, followed by addition of 5 µl of Protein-A Sepharose (Amersham Biosciences).  

Following an additional incubation of 1.5 hours at 4°C, beads were washed four times 

with RIPA buffer (10mM Tris pH7.4, 150mM NaCl, 5mM EDTA, and 0.25% NP40), 
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and processed for western blotting with monoclonal anti-MSP antibodies, or anti-V5 

antibodies (Invitrogen) for detecting VAB-1ECT.  In method 2, the MSP-VAB-

1ECT6His complex was isolated with 5 µl Ni-NTA agarose beads with an incubation of 

1.5 hours at 4°C. 

 

Results  

 

Identification of Negative Regulators of MSP Signaling Using a Genome-Wide RNAi 
Screen 

 MSP promotes oocyte meiotic maturation by antagonizing two parallel negative 

regulatory circuits:  an oocyte VAB-1 Eph receptor pathway and a somatic gonadal 

sheath cell pathway defined by the POU-homeoprotein CEH-18 (Fig. 25A; Miller et al., 

2003).  We reasoned that additional components of the VAB-1 and CEH-18 pathways 

were likely to function as negative regulators and we sought to identify them using a 

genome-wide RNAi screen (Figure 25B). J. Amaranath Govindan performed this screen 

using a fog-2(q71) female sterile strain in which oocytes arrest at prophase of meiosis I 

and are retained in the gonad arm due to the absence of MSP.  We screened for rare 

RNAi clones in which meiotic maturation and ovulation occur at elevated rates and 

unfertilized oocytes are laid onto the bacterial lawn in increased numbers despite the 

absence of MSP (Figure 25B and Table 2). 

 We identified 175 clones that fell into two categories depending on their 

consequence for gonadal structure:  class I (17 clones) had no appreciable effects; 
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whereas class II (158 clones) caused defects in gonadal morphology.  The disruption of 

gonadal integrity observed following RNAi of class II clones limits our ability to study 

their roles in MSP signaling to varying degrees.  Thus, here we focus on the seventeen 

class I positive clones (Table 2).  Class I genes encode several proteins with well 

characterized intercellular signaling functions, such as components of multiple G-protein 

signaling pathways (goa-1, kin-2, gpb-1, and gsa-1), protein kinase C (pkc-1), a 14-3-3 

protein (par-5), and a disabled homolog (dab-1).  RNAi to class I genes had no apparent 

effects on germline sex determination, yet we verified the absence of MSP by 

immunostaining in all cases (Table 2).  The fact that ceh-18 was identified validates the 

rationale and effectiveness of the screen.  This screen did not identify vab-1, nmr-1, and 

itr-1, three known negative regulators of meiotic maturation (Miller et al., 2003; Corrigan 

et al., 2005).  Within class I, the level of derepression of meiotic maturation differed 

between clones (Table 2).  Remarkably, RNAi of goa-1 and kin-2 resulted in 

approximately 60% of the wild-type rate in the presence of sperm.  MSP is sufficient to 

activate MAPK in female gonads when assessed with antibodies to the diphosphorylated 

activated form of MPK-1 MAPK (MAPK-YT; Miller et al., 2001).  RNAi to six genes 

(goa-1, kin-2, gpb-1, inx-14, inx-22, and ptc-1) resulted in MAPK activation in the 

absence of MSP (Table 2 and Figure 26).  These results thus define new negative 

regulators of the meiotic maturation process and highlight the complexity of the signaling 

pathways involved. 

 

 



Figure 25.  A genome-wide RNAi screen for negative regulators of oocyte Meiotic 
maturation 
 
A. Oocytes undergo meiotic maturation in an assembly-line fashion in response to 
MSP signaling.  The oocyte VAB-1 Eph receptor pathway and a sheath cell 
pathway, defined by CEH-18, negatively regulate oocyte MAPK activation and 
meiotic maturation.  MSP antagonizes these inhibitory inputs to promote meiotic 
maturation. 
B. Flowchart for the genome-wide RNAi screen in a fog-2(q71) female-sterile 
background.  Most clones have no effect on meiotic arrest (panel at lower left), 
whereas RNAi of 17 clones results in MSP-independent meiotic maturation 
without disrupting gonadal morphology (panel at lower right). 
 

115



 

116



Figure 26.  RNAi to several negative regulators causes MSP-independent MAPK 
activation in oocytes 
 
(A-F). Fluorescence micrographs showing MAPK-YT staining (red) in oocytes.  
MAPK-YT staining is observed in the most proximal oocyte of wild-type 
hermaphrodites (A), but not in fog-2(q71) females (B).  By contrast MAPK-YT 
staining is observed in fog-2(q71) females following goa-1(RNAi) (C), kin-
2(RNAi), (D), inx-14(RNAi) (E), and gpb-1(RNAi) (F).  goa-1(RNAi) or goa-
1(null) females exhibit expanded MAPK-YT staining to distal oocytes, though the 
specific pattern of relative staining intensities, such as the alternating peaks of 
staining in panel (C) can be variable.  inx-22(RNAi) and ptc-1(RNAi) also result in 
MSP-independent MAPK activation (Table 2).  Scale bar represents 10 µm. 
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Table 2. Negative Regulators of Meiotic Maturation Identified in a Genome-Wide RNAi Screen 

Genea 

 
 

Description 
 

MSPb 
Oocyte Maturation 

Rate in Females 
(hr-1 gonad arm-1)c 

MAPK 
Activationd 

Control Wild-type hermaphrodite + 2.50 ± 0.41 (17) 25/25 (+) 
Controle fog-2(q71) unmated female – 0.16 ± 0.10 (17) 1/20 (–) 
Control fog-2(q71) mated female + 2.42 ± 0.35 (14) 18/18 (+) 
goa-1 Heterotrimeric Go/i α protein subunit – 1.67 ± 0.38 (36)f 14/15 (+) 
kin-2 cAMP-dependent protein kinase (regulatory subunit) – 1.50 ± 0.30 (9)f 9/13 (+) 
gpb-1 Heterotrimeric Gβ protein subunit – 0.88 ± 0.24 (21)f 13/18 (+) 
gsa-1 Heterotrimeric Gsα protein subunit  – 0.37 ± 0.18 (12)g 1/19 (–) 
rpt-3 Component of 26S proteasomeh – 0.44 ± 0.15 (25)f 1/14 (–) 
inx-14 Gap junction protein (innexin family) – 0.99 ± 0.30 (21)f 17/17 (+) 
inx-22 Gap junction protein (innexin family) – 0.90 ± 0.36 (30)f 15/18 (+) 
ran-1 Ran GTPase – 0.72 ± 0.13 (6)f 0/18 
ceh-18 POU-Homeo domain transcription factor     – 0.45 ± 0.18 (12)f, i 1/17 (+) 
arf-1.1 Arf-family GTP binding protein – 0.64 ± 0.28 (10)f 1/19 (–) 
ptc-1 Patched receptor – 0.60 ± 0.27 (18)f, j 12/15 (+) 
phi-11 Splicing factor 3B, subunit 1k – 0.50 ± 0.15 (10)f 0/15 
par-5 Encodes 14-3-3 protein – 0.49 ± 0.20 (28)f 0/17 
pqn-19 Signal-transducing adaptor molecule (STAM) – 0.48 ± 0.34 (12)g  0/17 
pkc-1 Protein kinase C – 0.44 ± 0.11 (9)f 1/17 (–) 
vav-1 Vav-GEF proto-oncogene homolog – 0.42 ± 0.13 (15)f 0/16 
dab-1 Disabled homolog – 0.38 ± 0.14 (15)f 0/16 
a , Shown are class I positive clones, RNAi of which does not appreciably alter gonadal morphology. The identity of 
the clones was verified by DNA sequencing. 
b, The absence of MSP in unmated female gonads was confirmed by staining with monoclonal anti-MSP antibodies. 
c, Oocyte maturation rates are expressed as the number of maturations per gonad arm per hour and were measured in 
two-day-old adult fog-2(q71) females (excepting the wild-type hermaphrodite control). The number of worms 
scored is given in the parentheses.  
d, The fraction of gonads arms showing MAPK-YT staining.  MAPK activation was further classified according to 
whether the observed staining was strong or weak, indicated by (+) or (–), respectively. 
e, Mock RNAi using the empty vector, L4440, served as a control. 
f, P<0.001 compared to control(RNAi) in fog-2(q71) females. 
g, P<0.01 compared to control(RNAi) in fog-2(q71) females. 
h, RNAi of many 26S proteasome components resulted in gonadal defects and scored as class II positives in the 
screen. 
i,  ceh-18(mg57);fog-2(q71) females have a maturation rate of 0.75 ± 0.32. 
j, ptc-1(ok122) unc-4(e120);fog-2(q71) females have a maturation rate of 0.56 ± 0.26. 
k, Many splicing factors were identified as class II positives. 
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Germline and Somatic Pathways Regulate Meiotic Maturation 

The somatic cells surrounding the oocyte play a key role in negatively regulating meiotic 

progression in mammals and C. elegans (Miller et al., 2001; Pincus and Enzmann, 1935). 

In C. elegans, the gonadal sheath cells form gap junctions with oocytes and these gap 

junctions are rare or absent in ceh-18 mutants (Rose et al., 1997; Hall et al., 1999), 

suggesting their importance. Gap-junctional communication between sheath cells and 

oocytes are a critical aspect of the negative control of meiotic maturation, as our screen 

identified two innexin components (inx-14 and inx-22) of invertebrate gap junctions 

(Starich et al., 2003). To determine whether negative regulators function in the soma or 

the germ line, we conducted RNAi analysis in an rrf-1(null) mutant background (Table 

3).  rrf-1 encodes an RNA-dependent RNA polymerase (RdP) that is required for normal 

RNAi responses in many somatic cells (Sijen et al., 2001), but is dispensable for germline 

RNAi, which employs the EGO-1 RdP (Smardon et al., 2000).  Thus, an RNAi response 

in an rrf-1(null) female background is indicative of a germline function, whereas a 

significantly reduced response suggests gene function in the soma.  As a control, we 

conducted ceh-18(RNAi) and observed elevated meiotic maturation rates in the female 

background, but not in rrf-1 females (Table 3), consistent with the idea that ceh-18 is 

required for normal sheath cell differentiation and function (Rose et al., 1997).  By 

contrast, vab-1 functions in the germ line using this test (Miller et al., 2003).  The rrf-1 

RNAi test suggests that the function of eleven genes, including inx-14 and inx-22, is 

needed in the germ line for full repression of meiotic maturation (Table 3).  By contrast, 

the function of four genes (goa-1, kin-2, gpb-1, and rpt-3) is predominantly somatic using 

this test (Table 3).  This observation suggests that control of meiotic maturation in C. 



 
 

121 

elegans involves somatically acting Gαo/i and Gαs signaling pathways, an idea that we 

explore further below. The slight RNAi responses observed in rrf-1(null) females for 

goa-1, kin-2, gpb-1, and rpt-3 might be due to residual somatic effects, as under our 

conditions, unc-22(RNAi) produces overt muscle twitching and weak uncoordination in 

5.3% of rrf-1(null) animals (n=228). Nonetheless, we cannot exclude the possibility that 

these genes may also have some germline functions.  Genetic mosaic analysis of goa-1 

and kin-2 in a female background will be needed to test this possibility.  

 

DAB-1, a Disabled Homolog, Functions in the VAB-1 Eph/MSP Receptor Signal 
Transduction Pathway for the Control of Meiotic Maturation 
 

Previous data using an in situ binding assay indicated that labeled MSP binds 

specifically and saturably to C. elegans gonads and that vab-1(null) gonads exhibit a 

significant reduction in MSP binding (Miller et al., 2003).  VAB-1 was similarly shown 

to be sufficient for conferring specific MSP binding to cultured mammalian cells 

following transient transfection (Miller et al., 2003).  These data, coupled with the 

finding that vab-1 is required in the germ line for full repression of meiotic maturation in 

the absence of MSP, led to the hypothesis that VAB-1 is one of several oocyte and sheath 

cell receptors that respond to the MSP signal.  To more fully test the hypothesis that 

VAB-1 is an MSP receptor, I examined whether MSP directly binds the VAB-1 

ectodomain in vitro at submicromolar concentrations.  The VAB-1 ectodomain (VAB-

1ECT) was expressed as a 6His-fusion in mammalian cells using its endogenous 

secretion signal peptide and purified from the culture supernatant (Figure 27A and B).   

 



 
 
 

 

Table 3. Parsing the Function of Negative Regulators to 
the Germ Line or Soma. 
 
 
 
    
RNAi 

 
Oocyte Maturation  
Rate in Femalesa                

(N) 

 
Oocyte Maturation  
Rate in rrf-1(null) 

Femalesb  (N)  

Control 0.17 ± 0.14  (15) 0.20 ± 0.10  (12) 
ceh-18 0.44 ± 0.16  (11)c 0.21 ± 0.10  (10)f 
goa-1 1.51 ± 0.20  (10)d 0.50 ± 0.20  (16)g 
kin-2 1.45 ± 0.60  (12)d 0.54 ± 0.16  (15)g 
gpb-1 1.03 ± 0.20  (12)d 0.44 ± 0.22  (16)g 
gsa-1 0.37 ± 0.22  (13)e 0.21 ± 0.20  (10)f 
rpt-3 0.51 ± 0.16  (12)c 0.30 ± 0.18  (12)f 
inx-14 1.03 ± 0.22  (12)e 0.88 ± 0.34  (12)g 
inx-22 0.84 ± 0.13  (12)e 1.00 ± 0.31  (16)g 
ran-1 1.00 ± 0.30  (6)e 1.39 ± 0.32  (5)g 
arf-1.1 0.53 ± 0.20  (9)e 0.45 ± 0.28  (12)h 
ptc-1 0.63 ± 0.13  (12)e 0.74 ± 0.17  (14)g 
phi-11 0.50 ± 0.20  (12)e 0.58 ± 0.30  (11)g 
par-5 0.80 ± 0.29  (11)e 0.71 ± 0.29  (14)g 
pqn-19 0.46 ± 0.17  (12)e 0.47 ± 0.14  (13)g 
pkc-1 0.48 ± 0.16  (12)e 0.40 ± 0.10  (7)g 
vav-1 0.44 ± 0.11  (11)e 0.48 ± 0.20  (14)g 
dab-1 0.39 ± 0.15  (11)e 0.43 ± 0.10  (8)g 
a, Meiotic maturation rates were measured in a fog-
3(q443) female background. 
b, Meiotic maturation rates were measured in rrf-
1(pk1417);fog-3(q443) double mutant females. 
c, P<0.01 compared to the rate following RNAi in the 
rrf-1(null) female background.  
d, P<0.001 compared to the rate following RNAi in the 
rrf-1(null) female background. 
e, P>0.1  compared to the rate following RNAi in the rrf-
1(null) female background. 
f, P>0.1  compared to the rate following control RNAi in 
the rrf-1(null) female background. 
g, P<0.001 compared to the rate following control RNAi 
in the rrf-1(null) female background. 
h, P<0.01 compared to the rate following control RNAi 
in the rrf-1(null) female background. 
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I assessed the binding by incubating MSP with VAB-1ECT-6His and isolating the 

complex by immunoprecipitation with anti-MSP N-terminal-specific antibodies or using 

Ni-NTA agarose.Using this test, MSP and VAB-1ECT-6His exhibit direct binding 

(Figure 27C), with approximately 10% of the MSP bound under the binding conditions 

used.  These data add further support to the idea that meiotic maturation is controlled in 

part by a VAB-1 MSP/Eph receptor signal transduction pathway.   

To identify genes that play a major role in the vab-1 pathway, we set three 

stringent genetic and phenotypic criteria.  First, the RNAi inactivation of a vab-1 pathway 

gene should derepress meiotic maturation to a similar extent as a vab-1(null) mutant.  

Second, the RNAi inactivation of a vab-1 pathway gene should not exhibit additive or 

synergistic interactions with a vab-1(null) mutant.  Finally, the RNAi inactivation of a 

vab-1 pathway gene should synergize with a ceh-18(null) mutant.  We considered the 

eleven genes (inx-14, inx-22, ran-1, arf-1.1, ptc-1, phi-11, par-5, pqn-19, pkc-1, vav-1, 

and dab-1), whose activity is needed in the germ line for full repression of meiotic 

maturation, as candidates for functioning in the VAB-1 MSP/Eph receptor signal 

transduction pathway.  Four of these genes meet these initial criteria, DAB-1, a disabled 

homolog, PKC-1, a protein kinase C homolog, PQN-19 a STAM homolog, and VAV-1, a 

Rho-family guanine-nucleotide exchange factor (Figure 27D and E; Table 6).  Of these 

four genes, only vav-1 was previously implicated in Eph receptor signaling by the finding 

that Rho family GEF Vav2 interacts with the EphA4 receptor and promotes ephrin-

triggered endocytosis (Cowan et al., 2005). 

As a further test that dab-1, vav-1, pkc-1, and pqn-19 function as part of the vab-1 

pathway, we examined the effect of null mutants and RNAi of these genes on oocyte 
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MAPK activation in hermaphrodites (Fig. 35F-K and data not shown). vab-1(null) 

hermaphrodites exhibit an expanded pattern of MAPK activation in which MAPK-YT 

staining extends to distal oocytes (Fig. 35G; Miller et al., 2003). Similarly, dab-1(gk291 

or RNAi), pkc-1(ok563 or RNAi), pqn-19(ok406 or RNAi), and vav-1(RNAi) 

hermaphrodites display expanded patterns of MAPK-YT staining in oocytes (Fig. 35H-

K), suggesting that these genes, like vab-1, function as germline negative regulators of 

MAPK activation.  We only analyzed vav-1 using RNAi because a vav-1(null) mutation 

is lethal (Norman et al., 2005). Additionally, vab-1 functions in parallel to ceh-18 in the 

negative control of oocyte MAPK activation:  vab-1(null); ceh-18(null) females show 

MAPK-YT staining in oocytes despite the absence of MSP (Miller et al., 2003).  By this 

criteria, dab-1, vav-1, pkc-1, and pqn-19 behave similarly to vab-1, as MAPK-YT 

staining is observed when RNAi is carried out for these genes in a ceh-18(null) mutant 

female background (Figure 31). 

Because strong conclusions regarding genetic pathways are not possible without 

phenotypic analysis of null mutations, I analyzed meiotic maturation phenotypes in 

deletions alleles of dab-1, pkc-1, and pqn-19, which are predicted to significantly reduce 

or eliminate gene function.  To further explore the involvement of dab-1 disabled, I 

analyzed meiotic maturation rates in females homozygous for a dab-1 null mutation, 

gk291, which deletes exons two and three, including the phosphotyrosine-binding domain 

(Kamikura and Cooper, 2003; 2006).   These dab-1(gk291) null mutant females exhibit 

increased meiotic maturation rates [0.42 ± 0.14 (n=22)] compared to normal females 

[0.16 ± 0.1(n=17), P<0.001].  This increase in meiotic maturation rate is similar to that 

observed in vab-1(null) mutant females [0.38 ± 0.25 (n=18)].  



Figure 27.  Genetic and biochemical analysis of the VAB-1 Eph/MSP receptor 
pathway 
 
(A-C) MSP binds the VAB-1 ectodomain (VAB-1ECT).  (A) VAB-1ECT with its 
endogenous signal peptide and V5 and 6-His epitope tags was expressed in 293F 
cells.  (B) Western blot probed with anti-V5 antibodies showing VAB-1ECT 
secretion into the culture medium.  (C) In vitro interaction between MSP and 
VAB-1ECT.  Purified MSP-142 (100 nM) was incubated with partially purified 
VAB-1ECT (14 nM) and the complex was isolated by immunopreciptation with 
MSP antibodies and protein-A Sepharose (lanes 1-4) or using Ni-NTA agarose 
(lanes 5-7). 
(D-K) Evidence that PQN-19, PKC-1, DAB-1, and VAV-1 function with the 
VAB-1 Eph/MSP receptor.  (D) Organization of signaling domains in VAB-1 
pathway proteins.  PQN-19 contains VHS (VPS-27/Hrs/STAM), UIM (ubiquitin-
interaction motif), and SH3 domains. PKC-1 contains C1, C2, kinase, and a 
protein kinase C domains. DAB-1 contains a phosphotyrosine-binding (PTB) 
domain.  VAV-1 contains CH (calponin homology), C1, RhoGEF, SH2, and SH3 
domains.  (E) Measurement of oocyte meiotic maturation rates following dab-1, 
vav-1, pqn-19, pkc-1, or control RNAi in fog-2(q71), vab-1(dx31);fog-2(q71), or 
ceh-18(mg57);fog-2(q71) female genetic backgrounds.  Each of the four genes 
synergize with ceh-18 but not vab-1.  Error bars represent s.d.  (F-K) Fluorescence 
micrographs showing MAPK-YT staining (red) in oocytes.  In wild-type 
hermaphrodites (F), MSP-dependent MAPK-YT staining is observed in proximal 
oocytes (typically oocytes –1 through –3). (G) MAPK-YT staining is extended to 
three to eight proximal oocytes in vab-1(null) hermaphrodites, consistent with the 
idea that vab-1 is a negative regulator of meiotic maturation and MAPK activation 
in oocytes [7].  Similarly, dab-1(null) (H), pqn-19(null) (I), pkc-1(null) (J), and 
vav-1(RNAi) hermaphrodites (K) exhibit an extended MAPK-YT staining pattern 
similar to that of vab-1(null) hermaphrodites (G). 
(L-O) DAB-1 is expressed in oocytes.  Western blot detection of DAB-1 (53 kDa) 
in the wild-type, but not dab-1(gk291) hermaphrodites (L).  Fluorescent detection 
of DAB-1 in oocytes from wild-type hermaphrodites (M) and fog-2(q71) females 
(N), but not dab-1(gk291) hermaphrodites (O).  DAB-1 is cortically enriched 
when sperm are present. 
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Further, vab-1(null)dab-1(null) double mutant females exhibit a meiotic maturation rate 

of 0.43 ± 0.19 (n=22), consistent with the idea that these two genes function in a common 

pathway. Additional evidence supporting the idea that dab-1 functions in an oocyte 

pathway comes from the finding that DAB-1 protein localizes to the oocyte cytoplasm 

and is enriched at the oocyte cell cortex between oocytes (Fig. 27M) in a pattern similar 

to VAB-1::GFP (Miller et al., 2003). Strikingly, DAB-1 protein localization is altered in 

the absence of sperm, no longer exhibiting cortical enrichment between oocytes (Figure 

27N).  Recent data indicate that DAB-1 physically interacts with the VAB-1 intracellular 

domain in vitro (Cheng et al., 2008, see chapter III). In contrast to dab-1, I did not 

observe elevated meiotic maturation rates in pqn-19(ok406)fog-3(q443) females, which 

displayed rates (0.10 ± 0.15; n=22) similar to unmated female controls. Likewise, meiotic 

maturation rates in pkc-1(ok563);fog-3(q443) females, though slightly elevated (0.18 ± 

0.20; n=24), were significantly lower than those of vab-1 females (P<0.001).  Thus, for 

pqn-19 and pkc-1, the analysis of meiotic maturation rates in a female background led to 

a different conclusion from the RNAi and MAPK activation studies described above.  To 

reconcile this discrepancy, I analyzed oocyte meiotic maturation by time-lapse 

videomicroscopy and noticed that pqn-19(ok406) and pkc-1(ok563) hermaphrodites 

exhibited an incompletely penetrant (~33%) delay in nuclear envelope breakdown during 

oocyte meiotic maturation.  I made the same observation in dab-1(gk291) hermaphrodites 

and similar data were published for vav-1(null) mutant hermaphrodites for which the 

lethal pharyngeal defects were transgenically rescued (Norman et al., 2005). Since this 

delay in nuclear envelope breakdown is not observed in vab-1(null) mutants, I conclude 
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that dab-1, pkc-1, pqn-19, and vav-1 may also have redundant functions as positive 

regulators of meiotic maturation, through vab-1-independent pathways. 

 

Necessity and Sufficiency of Somatic Gαo/i Signaling in the Control of Meiotic 
Maturation and Oocyte MAPK Activation 
 

The strongest negative regulator of meiotic maturation identified in the RNAi 

screen is goa-1, which encodes a heterotrimeric Gαo/i protein previously shown to 

regulate locomotion, egg-laying, and male mating behaviors (Mendel et al., 1995; Segalat 

et al., 1995).  goa-1(RNAi) in a female background triggers meiotic maturation and 

MAPK activation in oocytes despite the absence of MSP (Table 2 and Figure 28C).  

Extending these RNAi results using genetics, we found that goa-1(sa734) null mutant 

females exhibited significantly higher meiotic maturation rates than control females and 

they showed MSP-independent MAPK activation in oocytes (Table 4, compare lines 4 

and 2, and Figure 28C, P<0.001).  The goa-1(n1134) reduction-of-function (rf) allele 

behaved similarly (Table 4, compare lines 6 and 2, and Figure 28E, P<0.001).  Meiotic 

maturation rates were lower in goa-1(sa734) null mutant females compared to goa-

1(RNAi) females, however, most likely because the goa-1(sa734) females appeared 

starved and produced fewer oocytes.  Consistent with this interpretation, goa-1(n1134rf) 

females were healthier and exhibited higher meiotic maturation rates than null mutant 

females, and goa-1(sa734) hermaphrodites had lower rates than the wild type (Table 4, 

compare lines 1-7).   

 



Figure 28. Gαo/i and Gαs signaling antagonistically regulate oocyte MAPK 
activation 
 
(A-L) Fluorescent micrographs showing MAPK-YT staining (red) in oocytes 
following  the indicated genetic or RNAi perturbations of the Gαo/i and Gαs 
pathways in hermaphrodites (A, G, H, I, L) or females (B-F, J, K).  Scale bars 
represent 10 µm. 
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Table 4  Genetic analysis of G-protein signaling 

 Genotypea 
 

Sperm 
(yes/no) 

Oocyte 
Maturation  

Rateb 

 
MAPK 

Activationc 
1. Wild-type hermaphrodite yes 2.50 ± 0.41  (16) on 
2.  fog-3(q443) unmated no 0.17 ± 0.14  (15) off 
3.  fog-3(q443) mated yes 2.29 ± 0.43  (20) on 
4.  goa-1(sa734) fog-3(q443) female no 0.47 ± 0.17  (30) on 
5.  goa-1(sa734)hermaphrodite yes 1.23 ± 0.18  (15) on 
6.  goa-1(n1134)fog-3(q443) female no 1.06 ± 0.25  (16) on 
7.  goa-1(n1134) hermaphrodite yes 2.55 ± 0.40 (18) on 
8.  oma-1(RNAi);oma-2(RNAi) hermaphrodite yes 0.06 ± 0.07 (13) off 
9.  oma-1(RNAi);oma-2 (RNAi); goa-1(sa734)fog-3(q443) 

female 
no 0.00 ± 0.00  (13) off 

10.  oma-1(RNAi);oma-2 (RNAi); goa-1(sa734) hermaphrodite yes 0.00 ± 0.00  (17) off 
11.  goa-1(gf) hermaphrodited yes 0.76 ± 0.62  (19) on 
12.  kin-2(ce179 rf);fog-3(q443) female no 0.64 ± 0.23  (14) on 
13.  gsa-1 (RNAi) wild-type hermaphrodite yes 0.30 ± 0.11  (17) off 
14.  Control (RNAi); vab-1(dx31) hermaphrodite  yes 2.44 ± 0.60  (15) on 
15.  gsa-1 (RNAi); vab-1(dx31) hermaphrodite yes 0.20 ± 0.17  (15) off 
16.  Control (RNAi); kin-2(ce179 rf) hermaphrodite yes 1.92 ± 0.59  (12) on 
17.  gsa-1 (RNAi); kin-2(ce179 rf) hermaphrodite yes 1.78 ± 0.46  (15) on 
18.  gsa-1(ce81 gf) fog-3(q443) female no 0.38 ± 0.14  (12) on 
19.  gsa-1(ce94 gf) fog-3(q443) female no 0.44 ± 0.13  (13) on 
20.  gsa-1(pk75)/+ hermaphrodite yes 1.60 ± 0.40  (10) on 
21.  Control (RNAi); rrf-1(pk1417) hermaphrodite yes 2.39 ± 0.50  (12) on 
22.  gsa-1 (RNAi); rrf-1(pk1417) hermaphrodite yes 2.06 ± 0.40  (15) on 
23.  gsa-1 (RNAi); goa-1(sa734) hermaphrodite yes 0.14 ± 0.10  (16) off 
24.  gsa-1 (RNAi); goa-1(n1134) hermaphrodite yes 0.34 ± 0.20  (14) off 
25.  gsa-1 (RNAi); goa-1(sa734)fog-3(q443) no 0.16 ± 0.10  (10) off 
26.  Control (RNAi); ceh-18 (mg57) hermaphrodite  yes 1.76 ± 0.44  (15) on 
27.  gsa-1 (RNAi); ceh-18(mg57) hermaphroditee yes 1.78 ± 0.36  (16) on 
28.  oma-1;oma-2 (RNAi); gsa-1(ce94 gf)fog-3(q443) female no 0.00 ± 0.00  (12) off 
a , Genotypes utilized null mutations unless where indicated by “gf” or “rf” for gain-of-function and reduction-of-
function mutations, respectively. The position and morphology of sheath cell nuclei were unaffected by RNAi of 
gsa-1, kin-2, or goa-1, or in mutants of these genes. 
bMeiotic maturation rates were measured in two-day-old adult animals.  
c, MAPK activation was scored as described above, with “on” denoting strong staining in proximal oocytes and 
“off,”  an absence of staining.   
d, The PS1493 transgenic strain that expresses constitutively-activated GOA-1(GαoQL) under the control of goa-
1 promoter was used. 
e , ceh-18 mutant sheath cells respond to RNAi, as gfp(RNAi) could silence lim-7::gfp expression in a ceh-
18(mg57) mutant background. 
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Time-lapse videomicroscopy of meiotic maturation and ovulation in goa-1(n1134)fog-

3(q443) (n=8) and goa-1(RNAi);fog-2(q71) (n=8) females indicated that nuclear envelope 

breakdown, cortical cytoskeletal rearrangement, and ovulation all occurred normally 

despite the absence of MSP. 

MSP-dependent MAPK activation and meiotic maturation require the downstream 

action of OMA-1 and OMA-2, two TIS-11 zinc-finger proteins expressed in the germ line 

(Detwiler et al., 2001).  No MAPK activation or meiotic maturation is observed in goa-

1(sa734);oma-1(RNAi);oma-2(RNAi) or goa-1(n1134);oma-1(RNAi);oma-2(RNAi) 

hermaphrodites and females (Fig. 27D, Table 3, lines 9 and 10, and Fig. 32).  Thus, Gαo/i 

likely functions upstream or in parallel with OMA-1/OMA-2 to repress meiotic 

maturation in the absence of the MSP signal, with the caveat that RNAi is not necessarily 

equivalent to null mutations in genetic epistasis experiments.  To test whether GOA-1 

activity is sufficient to repress meiotic maturation, we measured meiotic maturation rates 

in hermaphrodites expressing constitutively-activated GOA-1(Q205L) under control of 

the goa-1 promoter (Mendel et al., 1995) and observed that meiotic maturation rates were 

reduced by 70% despite the presence of MSP (Table 4, line 11).  These results suggest 

that goa-1 activity is needed to fully repress meiotic maturation in the absence of MSP 

and that it is also sufficient to partially repress meiotic maturation in the presence of 

MSP.  Since transgenes are ordinarily silenced in the germ line (Kelly et al., 1997), this 

data constitutes a further line of evidence suggesting goa-1 functions in the soma.  

The analysis of goa-1(RNAi) in an rrf-1 mutant female background described 

above suggests that goa-1 functions in the somatic control of oocyte meiotic maturation 

(Table 3).  



Figure 29.  Expression of GOA-1 in the soma is sufficient to inhibit MAPK 
activation in oocytes 
 
(A-E) Fluorescent micrographs of dissected gonads stained for GOA-1 (red) and 
DNA (blue).  GOA-1 is expressed in sheath cells, oocytes, and spermathecal cells 
of wild-type hermaphrodites (A) and fog-2(q71) (B) and fog-3(q443) (not shown) 
females.  In females, GOA-1 is cortically enriched between oocytes (B).  No 
GOA-1 staining is observed in goa-1(sa734) mutants (C).  GOA-1 staining in 
oocytes is significantly reduced following goa-1(RNAi) in an rrf-1(null)fog-
3(q443) mutant female background (D).  Note, GOA-1 staining between oocytes is 
reduced in the medial focal plane, comparing panels (D) and (B), yet staining in 
the sheath (Sh) and spermatheca (Sp) persists.  GOA-1 staining also persists when 
viewed in superficial focal planes (E) in goa-1(RNAi);rrf-1(null)fog-3(q443) 
females with punctate staining possibly corresponding to the sheath cell processes 
(arrowheads). 
(F) Fluorescence micrograph of MAPK-YT staining following goa-1(RNAi) in a 
rrf-1(null)fog-3(q443) mutant female background.  MAPK-YT staining is not 
observed, suggesting that GOA-1 expression in the soma (D and E) is sufficient to 
repress MAPK activation in oocytes. 
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Since goa-1 is maternally required for positioning mitotic spindles in embryonic 

blastomeres (Bastiani and Mendel, 2006), we examined the expression of GOA-1 in 

dissected gonads of hermaphrodites and females using specific antibodies (Figure 29).  In 

hermaphrodites, we observed cytoplasmic staining in oocytes as well as staining that 

appeared to be in the surrounding sheath (Figure 29A). No staining was observed in goa-

1(sa734) null mutants or following goa-1(RNAi), confirming the specificity of the 

antibodies (Fig. 29C and data not shown).  In dissected gonads from females, we 

observed cortical enrichment of GOA-1 between oocytes as well as staining that appeared 

to be in the sheath (Figure 29B).  Since sheath cell and oocyte plasma membranes are in 

close apposition and the sheath cells are extremely thin (~0.2 µm; Hall et al., 1999), we 

needed a way to visualize GOA-1 expression in sheath cells separately from oocytes.  

Thus, we reduced the expression of GOA-1 in the germ line by performing goa-1 RNAi 

on rrf-1 females and stained the dissected gonads with anti-GOA-1 antibody.  In these 

goa-1(RNAi);rrf-1 female gonads, cortical GOA-1 staining between oocytes is 

significantly reduced through medial focal planes, yet staining persists in the thin layer 

surrounding oocytes, consistent with sheath cell expression (Figure 29, D and E).  The 

gonadal sheath cells insert finger-like projections between oocytes that can only be 

resolved by electron microscopy (Hall et al., 1999).  In these goa-1(RNAi);rrf-1 female 

gonads, punctate staining is observed between oocytes mainly in superficial focal planes, 

suggesting that GOA-1 may be present in the sheath cell processes (Figure 29E).  

 

 



 
 

Table 5.  Effect of vab-1 and ceh-18 mutations on meiotic maturation rates following RNAi 
of class I genes in the absence of sperm 
 

Gene 
(RNAi) 

Oocyte Maturation 
Rate in Femalesa  

(N) 

Oocyte Maturation 
Rate in vab-1(null) 

Femalesb 
(N) 

Oocyte Maturation 
Rate in ceh-18(null) 

Femalesc 
(N) 

Controld 0.16 ± 0.10 (17) 0.38 ± 0.25 (18) 0.65 ± 0.25 (12) 

goa-1 1.67 ± 0.38 (36) 2.19 ± 0.35 (17) 0.92 ± 0.30 (19) 

gpb-1 0.88 ± .24 (21) 1.63 ± 0.36 (15) 0.64 ± 0.21  (27)  

inx-22 0.90 ± 0.36 (30) 1.90 ± 0.25 (10) 0.99 ± 0.30 (22) 

inx-14 0.99 ± 0.30 (26) 1.94 ± 0.28 (21) 0.67 ± 0.25 (11) 

par-5 0.49 ± 0.20 (28) 0.80 ± 0.25 (26) 0.82 ± 0.28 (17) 

kin-2e 1.50 ± 0.30 (9) 1.70 ± 0.26 (15) 0.83 ± 0.47 (17) 

rpt-3 0.44 ± 0.15 (25) 0.82 ± 0.19 (5) 0.45 ± 0.18 (15) 

arf-1.1 0.64 ± 0.28 (10) 0.44 ± 0.14 (13) 0.73 ± 0.19 (14) 

ptc-1 0.60 ± 0.27 (18) 0.75 ± 0.24 (10) 0.59 ± 0.09 (7) 

gsa-1 0.37 ± 0.18 (12) 0.52 ± 0.25 (12) 0.79 ± 0.22 (9) 

ran-1 0.72 ± 0.13 (6) 0.80 ± 0.19 (6) 1.30 ± 0.23 (12) 

phi-11 0.50 ± 0.15 (10) 0.44 ± 0.20 (10) 0.53 ± 0.21 (12) 

dab-1 0.38 ± 0.14 (15) 0.41 ± 0.24 (10) 1.77 ± 0.32 (18) 

vav-1 0.42 ± 0.13 (15) 0.48 ± 0.18 (10) 1.79 ± 0.20 (10) 

pkc-1 0.44 ± 0.11 (9) 0.55 ± 0.28 (13) 1.45 ± 0.40 (18) 

pqn-19 0.48 ± 0.34 (12) 0.33 ± 0.20 (13) 1.40 ± 0.16 (12) 
a, Meiotic maturation rates were measured in a fog-2(q71) female background. 
b, Meiotic maturation rates were measured in a vab-1(dx31);fog-2(q71) females. 
c, Meiotic maturation rates were measured in a ceh-18(mg57);fog-2(q71) females.  ceh-18 
mutant sheath cells respond to RNAi, as gfp(RNAi) could silence lim-7::gfp expression in a 
ceh-18(mg57) mutant background. 
d, Mock RNAi using the empty vector, L4440, served as a control. 
e,  Worms fed kin-2(RNAi) become lethargic and bloated with unfertilized oocytes on the 
second day of adulthood. 
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We stained dissected gonads from these goa-1(RNAi);rrf-1 mutant females with MAPK-

YT antibodies and observed an absence of MAPK activation in the proximal gonad, 

suggesting that goa-1 activity might be sufficient in the soma to negatively regulate 

MAPK activation in oocytes (Figure 29F).  Since the sheath cells mediate the ceh-18-

dependent inhibition of MAPK activation and meiotic maturation, which in turn is 

antagonized by MSP (Miller et al., 2003), we tested whether ceh-18 and goa-1 

genetically interact. 

The high meiotic maturation rate (1.67 ± 0.38) observed following goa-1(RNAi) 

in a fog-2(q71) background depends on ceh-18(+) function because goa-1(RNAi) in a 

ceh-18(null);fog-2(q71) background results in a lower meiotic maturation rate (0.92 ± 

0.30; see Table 5).  This result is consistent with a model in which goa-1 functions in the 

sheath cell control of meiotic maturation or acts in parallel to ceh-18. A role for goa-1 in 

the soma is additionally suggested by the observation that the basal sheath cell 

contraction rate is elevated in goa-1(n1134)fog-3(q443) and goa-1(RNAi);fog-2(q71) 

females (data not shown).  Genetic epistasis analysis between Gαo/i, Gαs, ceh-18, and 

innexins (see below) further supports a role for goa-1 in regulating sheath/oocyte 

communication. 

 

A Somatic Gαs Signaling Pathway is Necessary and Sufficient to Promote Meiotic 
Maturation 

In canonical Gαs signaling, activated Gαs stimulates adenylyl cyclase resulting in 

production of cAMP, which binds the regulatory subunit of cAMP-dependent PKA 

thereby releasing the active catalytic subunit (Cabrera-Vera et al., 2003).  We identified 
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kin-2, which encodes the regulatory subunit of cAMP-activated protein kinase, as a 

strong negative regulator of meiotic maturation and found that kin-2 functions 

somatically to inhibit meiotic maturation and MAPK activation in oocytes (Table 2 and 

Table 4, and Figure 26D, and data not shown).  Time-lapse videomicroscopic analysis of 

kin-2(RNAi) in fog-2(q71) females (n=4) indicates that meiotic maturation occurs 

normally and that basal sheath cell contractions are elevated despite the absence of MSP.  

Consistent with the RNAi results, kin-2(ce179rf) females exhibit increased meiotic 

maturation rates compared to control females (Table 4, compare lines 12 and 2, P<0.001), 

and they display MAPK activation in proximal oocytes (Figure 28F).  These results 

predict that gsa-1, which encodes cAMP-stimulatory Gαs, should function to promote 

meiotic maturation.  Surprisingly, our RNAi screen identified gsa-1 as a weak negative 

regulator of meiotic maturation in the absence of sperm (Table 2). 

To resolve this paradox, we reasoned that gsa-1 might have an MSP-dependent 

function in promoting meiotic maturation through the canonical pathway and a weak 

MSP-independent function in inhibiting meiotic maturation through a non-canonical 

pathway.  Importantly, our RNAi screen could not reveal a positive role for gsa-1 

because it was conducted in the absence of the MSP signal.  Consistent with this 

hypothesis, gsa-1(RNAi) in a wild-type hermaphrodite background results in a 90% 

reduction in the meiotic maturation rate (Table 4, compare lines 13 and 1), and strikingly 

blocks MAPK activation in proximal oocytes (Figure 28G).  Further, gsa-1(RNAi) can 

block meiotic maturation and MAPK activation in the vab-1(null) mutant hermaphrodite 

background where MAPK activation is ordinarily expanded to distal oocytes (Table 4, 

compare lines 14 and 15 and Figure 28H).  Gαs signals through the canonical pathway to 
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promote meiotic maturation because gsa-1(RNAi);kin-2(ce179rf) hermaphrodites undergo 

meiotic maturation at 93% of the rate of kin-2(ce179rf) hermaphrodites treated with 

control RNAi, and their proximal oocytes contain activated MAPK (Table 4, compare 

lines 16 and 17, and Figure 28I).  Since the gsa-1(pk75) null mutant is a larval lethal 

(Korswagen et al., 1997), we examined gsa-1 (pk75)/+ heterozygous hermaphrodites and 

observed a significant 36% reduction in the meiotic maturation rates (Table 4, compare 

lines 20 and 1, P<0.001).  We also noted that gsa-1(pk75)/+ hermaphrodites moved 

slowly and were slightly egg-laying defective but were otherwise healthy and well-fed, 

suggesting that gsa-1 is haploinsufficient for multiple phenotypes.  We performed gsa-

1(RNAi) in rrf-1(null) hermaphrodites and observed similar meiotic maturation rates and 

MAPK activation as rrf-1(null) hermaphrodites treated with control RNAi (Table 4, 

compare lines 21 and 22), suggesting that gsa-1 function may be sufficient in the soma 

and dispensable in the germ line.  Consistent with these data, we found that 

extrachromosomal arrays bearing transcriptional and translational gsa-1::gfp reporter 

constructs are expressed in the somatic sheath cells (data not shown). Recently, 

Seongseop Kim, a graduate student in our lab, generated rescuing gsa-1 fusion and found 

that gsa-1 expresses in the somatic sheath cells (Kim S. and Greenstein D. unpublished 

results).  

To examine whether gsa-1 activity is sufficient to promote meiotic maturation, we 

examined two dominant gain-of-function (gf) gsa-1 alleles, ce94gf and ce81gf, which are 

predicted to stabilize the GTP-bound form of Gαs through G45R and R182C 

substitutions, respectively (Schade et al., 2005).  gsa-1(ce94gf) and gsa-1(ce81gf) 

females display elevated meiotic maturation rates and MAPK activation in oocytes 
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despite the absence of MSP (Table 4, compare lines 18, 19, and 2, and Figure 28J).  No 

MAPK activation or meiotic maturation was observed in oma-1(RNAi);oma-

2(RNAi);gsa-1(ce94gf) hermaphrodites or females (Table 4, compare lines 19 and 28, 

and data not shown), suggesting that Gαs is either an upstream regulator, or functions in 

parallel.  These data are consistent with a model in which somatic gsa-1 activity is 

necessary and sufficient for promoting meiotic maturation and MAPK activation in 

oocytes. 

 

Gαo/i Antagonizes Gαs Signaling to Repress Meiotic Maturation in the Absence of MSP 

Since Gαo/i activity is required for repressing meiotic maturation in the absence of 

MSP, and Gαs signaling is necessary and sufficient to promote meiotic maturation, we 

asked whether goa-1 negatively regulates gsa-1 in analogy to the regulation of the Gαq 

egl-30 pathway by goa-1 in neurons (Bastiani and Mendel, 2006).  We performed gsa-

1(RNAi) on goa-1(sa734) and goa-1(n1134) hermaphrodites and females and observed 

low meiotic maturation rates and an absence of MAPK activation in proximal oocytes 

despite the presence of MSP (Table 4, lines 23-25, Figure 28K).  This result suggests that 

the important function of Gαo/i in blocking meiotic maturation when sperm are 

unavailable for fertilization operates via the control of Gαs signaling, or through the 

regulation of a parallel pathway. 

 A key clue of how gsa-1 might promote meiotic maturation comes from the 

observation that gsa-1(RNAi);ceh-18(null) hermaphrodites exhibit normal meiotic 
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maturation rates and show MAPK activation in oocytes (Table 4, compare lines 26 and 

27, Figure 28L). How might gsa-1’s function to promote meiotic maturation become 

dispensable in the absence of ceh-18 activity?  In ceh-18(null) mutants, sheath cells and 

oocytes are not in close apposition and sheath/oocyte gap junctions are rare or absent 

(Rose et al., 1997; Hall et al., 1999).  Our RNAi screen identified inx-14 and inx-22 as 

germline negative regulators of meiotic maturation and MAPK activation in the absence 

of sperm (Table 2, Figure 26D and Table 3).  Since oocytes have only been observed to 

form gap junctions with sheath cells (Hall et al., 1999), inx-14 and inx-22 likely encode 

oocyte components of sheath/oocyte gap junctions.  Since sheath/oocyte gap junctions 

must be lost when oocytes lose contact with sheath cells during ovulation, we considered 

the possibility that Gαs signaling promotes meiotic maturation in part by destabilizing 

inhibitory sheath/oocyte gap junctions.  To test this possibility, we conducted gsa-1;inx-

14 double RNAi experiments in wild-type and inx-22(tm1661) backgrounds under 

conditions in which we could verify that both RNAi treatments were effective (Table 3).  

Whereas meiotic maturation was blocked following gsa-1(RNAi) in the wild type and inx-

22(tm1661) backgrounds, meiotic maturation occurred normally following gsa-

1(RNAi);inx-14(RNAi) in the inx-22(tm1661) background.  Importantly, meiotic 

maturation was blocked following gsa-1(RNAi) inx-14(RNAi) in the wild type.  This 

result suggests that reduction of both inx-14 and inx-22 function is needed to bypass the 

requirement for gsa-1 for normal meiotic maturation.  Taken together, these data suggest 

that Gαs signaling may promote meiotic maturation in part by affecting the synthesis or 

stability of sheath/oocyte gap junctions, or through action in a parallel pathway (Figure 

30).   



 
 

Table 5.  Effect of vab-1 and ceh-18 mutations on meiotic maturation rates following RNAi 
of class I genes in the absence of sperm 
 

Gene 
(RNAi) 

Oocyte Maturation 
Rate in Femalesa  

(N) 

Oocyte Maturation 
Rate in vab-1(null) 

Femalesb 
(N) 

Oocyte Maturation 
Rate in ceh-18(null) 

Femalesc 
(N) 

Controld 0.16 ± 0.10 (17) 0.38 ± 0.25 (18) 0.65 ± 0.25 (12) 

goa-1 1.67 ± 0.38 (36) 2.19 ± 0.35 (17) 0.92 ± 0.30 (19) 

gpb-1 0.88 ± .24 (21) 1.63 ± 0.36 (15) 0.64 ± 0.21  (27)  

inx-22 0.90 ± 0.36 (30) 1.90 ± 0.25 (10) 0.99 ± 0.30 (22) 

inx-14 0.99 ± 0.30 (26) 1.94 ± 0.28 (21) 0.67 ± 0.25 (11) 

par-5 0.49 ± 0.20 (28) 0.80 ± 0.25 (26) 0.82 ± 0.28 (17) 

kin-2e 1.50 ± 0.30 (9) 1.70 ± 0.26 (15) 0.83 ± 0.47 (17) 

rpt-3 0.44 ± 0.15 (25) 0.82 ± 0.19 (5) 0.45 ± 0.18 (15) 

arf-1.1 0.64 ± 0.28 (10) 0.44 ± 0.14 (13) 0.73 ± 0.19 (14) 

ptc-1 0.60 ± 0.27 (18) 0.75 ± 0.24 (10) 0.59 ± 0.09 (7) 

gsa-1 0.37 ± 0.18 (12) 0.52 ± 0.25 (12) 0.79 ± 0.22 (9) 

ran-1 0.72 ± 0.13 (6) 0.80 ± 0.19 (6) 1.30 ± 0.23 (12) 

phi-11 0.50 ± 0.15 (10) 0.44 ± 0.20 (10) 0.53 ± 0.21 (12) 

dab-1 0.38 ± 0.14 (15) 0.41 ± 0.24 (10) 1.77 ± 0.32 (18) 

vav-1 0.42 ± 0.13 (15) 0.48 ± 0.18 (10) 1.79 ± 0.20 (10) 

pkc-1 0.44 ± 0.11 (9) 0.55 ± 0.28 (13) 1.45 ± 0.40 (18) 

pqn-19 0.48 ± 0.34 (12) 0.33 ± 0.20 (13) 1.40 ± 0.16 (12) 
a, Meiotic maturation rates were measured in a fog-2(q71) female background. 
b, Meiotic maturation rates were measured in a vab-1(dx31);fog-2(q71) females. 
c, Meiotic maturation rates were measured in a ceh-18(mg57);fog-2(q71) females.  ceh-18 
mutant sheath cells respond to RNAi, as gfp(RNAi) could silence lim-7::gfp expression in a 
ceh-18(mg57) mutant background. 
d, Mock RNAi using the empty vector, L4440, served as a control. 
e,  Worms fed kin-2(RNAi) become lethargic and bloated with unfertilized oocytes on the 
second day of adulthood. 
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Figure 30.  A model for the parallel control of meiotic maturation in C. elegans by 
antagonistic G protein signaling from the soma and an oocyte MSP/Eph receptor 
pathway  
 
The germline and soma meiotic maturation control network is depicted in two 
states, according to whether the MSP signal is absent (left panel) or present (right 
panel).  Gαο/i negatively regulates meiotic maturation and oocyte MAPK 
activation and antagonizes a Gαs pathway that promotes maturation.  The Gαs 
pathway is drawn showing the involvement of the regulatory subunit (KIN-2) of 
cyclic-AMP-dependent protein kinase A (PKA) and adenylate cyclase (ACY).  
Genetic evidence is presented here for the involvement of kin-2, both acy-
4(ok1806) and acy-4(tm2510) null mutant allele are sterile, which suggest that 
ACY-4 is required for oocyte meiotic maturation(J.A.G. and D.G., unpublished 
results).     Unidentified sheath cell GPCRs are proposed to receive the MSP signal 
in parallel to VAB-1 on the oocyte, such that GPCR’s coupled to Gαo/i are 
antagonized by MSP, whereas Gαs-coupled receptors are stimulated by MSP.  The 
Gαs pathway is proposed to directly destabilize the inhibitory sheath/oocyte gap 
junctions, but a parallel function is equally consistent with current genetic data.  
The CEH-18 POU-homeoprotein localizes to sheath cell nuclei where it functions 
in the control of sheath cell differentiation and function, in part, by directly or 
indirectly affecting the assembly of sheath/oocyte gap junctions.  DAB-1 and 
VAV-1 function in the VAB-1 MSP/Eph receptor pathway in the germ line. 
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Figure 31. vav-1,pqn-19, pkc-1, and dab-1 negatively regulate oocyte MAPK 
activation in parallel to ceh-18 
 
(A-E) Fluorescence micrographs showing MAPK-YT staining (red) in oocytes.  
No MAPK-YT staining is seen in oocytes in ceh-18(mg57);fog-2(q71) females 
following control RNAi (A), however, MAPK-YT staining is observed following 
vav-1(RNAi) (B), pqn-19(RNAi) (C), pkc-1(RNAi) (D), and dab-1(RNAi) (E) in the 
ceh-18(mg57); fog-2(q71) background (D).  Scale bar, represents 10 µm. 
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Figure 32.  Oocyte MAPK activation in goa-1(n1134) hermaphrodites and females 
is dependent on OMA-1/OMA-2 function 
 
(A-F) Fluorescence micrographs showing MAPK-YT staining (red) in oocytes 
from hermaphrodites (A-D) and females (E and F) of the indicated genotypes.  
oma-1(RNAi); oma-2(RNAi) prevents MAPK activation in wild-type (B), goa-
1(n1134) (D), and goa-1(n1134)fog-3(q443) (F) genetic backgrounds.  Scale bar 
represents 10 µm. 
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 Table 7. Oocyte meiotic maturation rate measurements  

 
 
    RNAi 

 
Oocyte maturation  

rate in femalesa                
(N) 

fog-3(q443) 0.05±0.105               (23) 
pqn-19(ok406);fog-3(q443) 0.10±0.150               (22) 
pkc-1(ok563);fog-3(q443) 0.182±0.20               (24) 
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While further studies will be needed to test this model at cell biological and 

ultrastructural levels, these data are consistent with studies in several systems, which 

show that G protein signaling can promote the assembly or disassembly of gap junctions 

(Lampe et al., 2001; Ouyang et al., 2005; Somekawa et al., 2005). 

 

Discussion  

Previous studies demonstrate that somatic and germline regulatory pathways work 

in concert to control oocyte meiotic maturation (Yamamoto et al., 2006; Mehlmann, 

2005).  Here we employed a genome-wide RNAi screen to define new regulators of 

oocyte meiotic maturation in C. elegans. The set of regulators defined in this screen 

comprises 17 highly conserved proteins (Table 2), which mediate meiotic maturation 

signaling functions in the somatic gonadal sheath cells or oocytes. The RNAi screen 

identified four genes (dab-1, vav-1, pqn-19, and pkc-1) satisfying multiple genetic criteria 

expected of genes functioning in the vab-1 Eph receptor pathway (Figure 30).  vab-1 was 

previously shown to be necessary for complete MSP binding to gonads using an in situ 

binding assay and also to be sufficient to confer specific MSP binding activity to cultured 

mammalian cells (Miller et al., 2003).  Data presented here showing that the VAB-1 

ectodomain directly binds MSP, taken together with functional genetic analyses, provide 

strong evidence that MSP promotes meiotic maturation in part by antagonizing an Eph 

receptor signaling pathway in oocytes as proposed (Miller et al., 2003). Recently, it was 

suggested that VAB-1 may switch from a negative regulator to a redundant positive 

regulator of meiotic maturation upon binding MSP (Corrigan et al., 2005). Consistent 
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with the possibility that negative regulators of meiotic maturation may also have 

redundant activating functions, we found that mutations in dab-1, pqn-19, and pkc-1 

confer an incompletely penetrant delay in nuclear envelope breakdown during meiotic 

maturation and a similar observation was made previously for vav-1 (Norman et al., 

2005).  The maturation-promoting redundant functions of dab-1, pqn-19, pkc-1, and vav-

1 are likely through a vab-1-independent pathway because vab-1(null) mutations do not 

exhibit delays in nuclear envelope breakdown.   The mechanisms by which the vab-1 

pathway represses meiotic maturation and MAPK activation in oocytes in the absence of 

MSP will take additional work to decipher.  Nonetheless, the conserved vab-1 pathway 

genes described here are likely to mediate analogous signaling functions in mammals.  In 

fact, a recent study of Eph receptor signaling during axonal guidance in mammals found 

a critical role for a homolog of VAV-1, the Rho family guanine nucleotide exchange 

factor Vav2 (Cowan et al., 2005). 

 Our findings suggest that antagonistic Gαs and Gαo/i protein signaling pathways 

play a predominant role in mediating the control of meiotic maturation likely by the 

gonadal sheath cells.  Gαo/i defines a negatively acting pathway, whereas Gαs defines a 

positively acting pathway (Fig. 30).  In part, Gαs may promote meiotic maturation by 

antagonizing inhibitory sheath/oocyte gap-junctional communication.  Since gsa-1(RNAi) 

is epistatic to goa-1(null) mutations, Gαo/i signaling might inhibit the Gαs pathway at 

some level, perhaps by interfering with the activation of Gαs or possibly through 

inhibition of adenlyate cyclase.  Alternatively, Gαs and Gαo/i may converge at some point 

far downstream, in effect, defining parallel regulatory inputs.  Nonetheless, these results 

lead us to suggest that the gonadal sheath cells have the dual function of inhibiting 
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meiotic maturation in the absence of MSP, and promoting it in the presence of MSP.  We 

speculate that unidentified MSP receptors (Miller et al., 2003) may be G-protein-coupled 

receptors (GPCRs) expressed in the gonadal sheath cells (Fig. 30).  Our results illustrate 

that the control of meiotic diapause in C. elegans involves multiple layers of control 

involving both the soma and the germ line.  This multi-tiered control mechanism may be 

important for tightly repressing meiotic maturation when sperm are unavailable, while 

also enabling graded responses that match the meiotic maturation rate to the number of 

sperm in the reproductive tract. 

Our findings highlight interesting parallels and underscore fundamental 

differences between the control of meiotic maturation in C. elegans and mammals.  In 

both cases, the somatic gonad may function to promote or inhibit meiotic progression 

depending on the hormonal status of the organism.  For example, the removal of oocytes 

from large antral follicles causes meiotic resumption in most mammals (Pincus and 

Enzmann, 1935; Edwards, 1965).  At the same time, luteinizing hormone (LH) receptor 

signaling in the mural granulosa cell compartment of the ovary promotes meiotic 

maturation in part through the triggered release of EGF-like ligands that induce meiotic 

resumption (Park et al., 2004).  The LH receptor is Gαs-coupled GPCR, and thus in 

mammals and C. elegans, Gαs signaling in somatic cells has a meiotic maturation-

promoting function.  In contrast, Gαs signaling within oocytes involving the GPR3 

orphan GPCR plays a critical role in promoting meiotic arrest in mice (Mehlmann et al., 

2002; Mehlmann et al., 2004; Kalinowski et al., 2004).  In mammals, these multiple 

levels of control, involving the somatic gonad and the germ line, may serve to maintain 

oocyte homeostasis during the prolonged meiotic arrest, while at the same time 
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integrating the behaviors of the somatic gonad and the germ line so as to coordinate 

nuclear and cytoplasmic meiotic maturation events with ovulation.  In humans, defects in 

female meiosis I represent the leading cause of congenital birth defects and miscarriage 

and the frequency of these meiotic errors increases with maternal age (Hassold and Hunt 

2001).  In the aging ovarian environment, defective hormonal signaling responses may be 

a factor underlying the high rate of aneuploidy (Hodges et al., 2002; 2005).  Since goa-

1(null) mutations cause non-disjunction during female meiosis (J. A. G. and D. G., 

unpublished results), signaling defects may also contribute to aneuploidy in C. elegans.  

The conserved regulatory genes described here are therefore expected to facilitate an 

understanding of how perturbations in hormonal signaling might contribute to 

aneuploidy. We defined germline and somatic signaling pathways that maintain meiotic 

arrest of C. elegans oocytes in the absence of the MSP signal. The underlying logic of 

meiotic diapause control in C. elegans and mammals is remarkably similar–both utilize 

multiple layers of control involving the soma and the germ line and G protein signaling 

can promote or repress meiotic maturation depending on cellular context. 
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CAPTER III 

 

REGULATED TRAFFICKING OF THE MSP/EPH RECEPTOR DURING 
OOCYTE MEIOTIC MATURATION IN CAENORHABDITIS ELEGANS 

 

Introduction 

Studies of several conserved signal transduction pathways reveal a close 

connection between receptor trafficking and signaling output (González-Gaitán, 2003; 

von Zastrow and Sorkin, 2007).  For example, internalization of ligand-bound EGF 

receptor via clathrin-mediated endocytosis is a known mechanism for desensitization.  

Other observations suggest that endocytosis of the EGF receptor is important for 

signaling (Vieira et al., 1996) and that signaling within endosomal compartments may be 

critical (Wunderlich et al., 2001).  In the Delta/Notch signaling pathway, endocytosis and 

recycling of Delta in signaling cells is required for Notch activation in responding cells 

(Seugnet et al., 1997; Wang and Struhl, 2004; Emery et al., 2005; Jafar-Nejad et al., 

2005; Fischer et al., 2006).  Epsin-dependent trafficking through Rab11-positive 

recycling endosomes is apparently required to convert the Delta ligand to an active form 

(Wang and Struhl, 2004; Emery et al., 2005).  Studies of intercellular signaling during 

axonal guidance show that endocytosis of ephrin/Eph receptor complexes, dependent on 

the Vav2 Rho-family GEF, is required for a switch from contact-mediated adhesion to 

repulsion (Marston et al., 2003; Zimmer et al., 2003; Cowan et al., 2005).  Here I 

examine the role of Eph receptor trafficking during meiotic maturation signaling in 

Caenorhabditis elegans. 
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 In C. elegans, oocyte meiotic maturation, a necessary step for ovulation and 

fertilization, is coupled to sperm availability (Fig. 33).  In the absence of sperm, oocytes 

arrest in meiotic prophase for prolonged periods, whereas in the presence of abundant 

sperm, meiotic maturation, ovulation, and fertilization occur at a rapid pace (McCarter et 

al., 1999).  Meiotic maturation rates are tightly linked to the number of sperm present; 

hermaphrodites produce a fixed number of sperm, and when they are consumed by 

fertilization, meiotic maturation rates progressively decline (Kosinski et al., 2005).  

Available evidence is consistent with the hypothesis that extracellular MSP, which forms 

a graded distribution in the proximal gonad of hermaphrodites and mated females, is the 

signal that provides the basis for the tight regulation of meiotic maturation (Kosinski et 

al., 2005; Miller et al., 2001; Miller et al., 2003; Govindan et al., 2006; Harris et al., 

2006; Corrigan et al., 2005).  MSP is sufficient to trigger activation of oocyte mitogen-

dependent protein kinase (MAPK) activation in proximal oocytes (Miller et al., 2001), a 

conserved step in the regulation of meiotic maturation (Lee et al., 2007; Liang et al., 

2007).  Oocytes and sheath cells sense MSP/sperm through an oocyte MSP/Eph receptor 

and unidentified receptors (Miller et al., 2003).  MSP-domain proteins are highly 

conserved and recently the MSP-domain protein VAPB, which is mutated in 

Amyotrophic Lateral Sclerosis type 8 (Nishimura et al., 2004), was shown to be a ligand 

for Eph receptors in Drosophila and mammals (Tsuda et al., 2008).  The VAB-1 

MSP/Eph receptor negatively regulates oocyte meiotic maturation in the absence of 

sperm, and MSP counteracts this regulation (Miller et al., 2003; Govindan et al., 2006; 

Corrigan et al., 2005). Gαs signaling is required for oocyte meiotic maturation and 

functions in the somatic gonad as indicated by cell-specific RNAi experiments (Govindan 
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et al., 2006) and genetic mosaic analysis (J. A. G. and D.G., unpublished results).  

Somatic Gαs signaling functions in part to antagonize sheath/oocyte gap-junctional 

communication (Govindan et al., 2006).  A key unanswered question is how oocyte and 

sheath cell pathways function coordinately to produce appropriate meiotic maturation 

responses to graded MSP distributions.  Here I show that the presence of MSP/sperm has 

a major effect on VAB-1 localization, which may be part of the cellular mechanism 

underlying the meiotic maturation response. 

 In this study, I use a functional VAB-1::GFP fusion expressed in C. elegans 

oocytes to evaluate the connection between receptor trafficking and signaling.  I present 

several lines of evidence suggesting that a recycling VAB-1 Eph receptor inhibits oocyte 

meiotic maturation in the absence of the MSP ligand.  Further, we provide evidence that 

the accumulation of VAB-1::GFP in the RAB-11-positive endocytic recycling 

compartment is inhibited by non-cell autonomous Gαs signaling in the presence of 

MSP/sperm.  The modulation of VAB-1 MSP/Eph receptor trafficking in oocytes by Gαs 

signaling in the gonadal sheath cells might contribute to coordinating meiotic maturation 

rates with sperm availability. 

 

 

 

 

 



Figure 33.  A Model for the control of meiotic maturation in C. elegans by an oocyte 
MSP/Eph receptor pathway and antagonistic G-protein signaling from the soma 
 
The germline and soma meiotic maturation control network is depicted in two states, 
according to whether the MSP signal is absent (left) or present (right).  DAB-1 and VAV-
1 function in the VAB-1 MSP/Eph receptor pathway in the germ line.  Gαο/i negatively 
regulates meiotic maturation and oocyte MAPK activation and antagonizes a Gαs 
pathway that promotes maturation.  The Gαs pathway is drawn showing the involvement 
of the regulatory subunit (KIN-2) of cyclic-AMP-dependent protein kinase A (PKA) and 
adenylate cyclase-4 (ACY-4).  Unidentified sheath cell G-protein-coupled receptors 
(GPCRs) are proposed to receive the MSP signal in parallel to VAB-1 on the oocyte, 
such that GPCR’s coupled to Gαo/i are antagonized by MSP, whereas Gαs-coupled 
receptors are stimulated by MSP.  The Gαs pathway is proposed to antagonize inhibitory 
sheath/oocyte gap junctions (See details in Chapter II; Whitten and Miller, 2007).  The 
CEH-18 POU-homeoprotein localizes to sheath cell nuclei where it functions in the 
control of sheath cell differentiation and function, in part, by directly or indirectly 
affecting the assembly of sheath/oocyte gap junctions. 
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Materials and methods 

 

Nematode Culture, Genetics, and Strains 

Standard culture and genetic techniques were carried out (Brenner, 1974) at 20°C, 

except transgenic lines were maintained at 25°C to reduce the potential of transgene 

silencing.  The presence of mutations in cav-1, efn-2, and efn-3 was confirmed by PCR.  

Genes, alleles, and balancer chromosomes are described in WormBase 

(http://www.wormbase.org).  The following strains were used: CZ337 vab-1(dx31)II, 

DG1612 vab-1(dx31)/mIn1[dpy-10(e128) mIs14]II; fog-2(q71)V, DG1853 dab-

1(gk291)II, DG1804 dab-1(gk291)/mIn1[dpy-10(e128) mIs14]II; fog-2(q71)V, CZ2611 

vab-2(ju1) efn-2(ev658)IV; efn-3(ev696)X, RB1679 cav-1(ok2089)V, DH1201 rme-

1(b1045)V, DG2305 vab-1(dx31)II; rme-1(b1045)V, BC277 unc-46(e177) dpy-

11(e224)V, DG2100 tnIs12 [pie-1p-vab-1::gfp + rol-6(su1006)], DG2102 unc-

119(ed3)III; tnIs13V [pie-1p-vab-1::gfp + unc-119(+)], DG2101 vab-1(dx31)II; fog-

2(q71)/+V; tnIs12, DG2190 fog-3(q443)/hT2(qIs48)I; tnIs13V, OD70 unc-119(ed3)III; 

ltIs44V [pie-1p-mCherry::PH(PLC1delta1) + unc-119(+)] (Kachur et al., 2008, a gift of 

Anjon Audhya and Karen Oegema), DG2189 fog-3(q443)/hT2(qIs48)I; tnIs13 ltIs44V, 

DG2148 vab-1(dx31)/mIn1[dpy-10(e128) mIs14]II; tnIs13/+ fog-2(q71)V, DG2161 dab-

1(gk291)II; tnIs13V, DG2199 dab-1(gk291)/mIn1[dpy-10(e128) mIs14]II; tnIs13/+ fog-

2(q71)V, DG2158 cav-1(ok2089)IV; tnIs13V, DG2200 rme-1(b1045) tnIs13V, DG2160 

tnIs13 ltIs44V, DG2147 tnIs13/+ fog-2(q71)V, DG2431 vab-2(ju1) efn-2(ev658)IV; 

tnIs13 fog-2(q71)/+V; efn-3(ev696)X, DG2448 vab-2(ju1) efn-2(ev658)IV; fog-
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2(q71)/+V; efn-3(ev696)X, RT201 pwIs40 [pie-1p-mRFP::rab-7 + unc-119(+)], a gift of 

Barth Grant, DG2390 pwIs40; tnIs13 fog-2(q71)/+V, RT193 pwIs39[pie-1p-mRFP::rab-

11 + unc-119(+)], from Barth Grant, DG2391 pwIs39/+; tnIs13/+ fog-2(q71)/+. 

 

RNA Interference and Phenotypic Analysis 

RNA interference (RNAi) experiments were conducted at 22°C as described 

(Govindan et al., 2003), except rab-11.1(RNAi) was conducted by injecting double-

stranded RNA into the intestine of L4 hermaphrodites and females.  To prepare rab-11.1 

double-stranded RNA, a complementary DNA template was prepared using the PCR 

from C. elegans first-strand cDNA using the primers: 

rab-11F1  5’-ATGGGCTCTCGTGACGATGAATAC-3’  

rab-11R1  5’-ACACTGCTTCTTTGGTGGGTCGGA-3’ 

To introduce T7 promoter sequences at both ends, a second round of the PCR was 

conducted using the primers T7rab-11F2 and T7rab-11R2: 

5’-TAATACGACTCACTATAGGGAGGGGTTGTTCTGATTGGAGACTCAGG-3’ 

5’-TAATACGACTCACTATAGGGAGGCGCTGGCGAAGGAATGATTGT-3’ 

In vitro transcription was conducted using the MEGAscript RNAi kit (Ambion).  DNA 

sequencing was used to confirm the identities of RNAi clones from the Ahringer library 

(Kamath et al., 2003).  The control for the RNAi feeding experiments was bacteria 

containing the L4440 vector.  For injection RNAi experiments double-stranded RNA for 
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T26G10.4 served as a control as this treatment had no effect on the meiotic maturation 

rate.  Oocyte meiotic maturation rates were measured and MSP injections were 

conducted as described (Miller et al., 2001; Miller et al., 2003) except that MSP was 

expressed and purified from E. coli using the method of (Baker et al., 2002).  Meiotic 

maturation rates were measured on day one of adulthood (24 hours after L4 at 20°C).  All 

staining and injection experiments were repeated at least twice and at least forty animals 

or gonads were examined.  Student’s t-test was used to assess statistical significance. 

 efn-4(RNAi) in an efn-1(ju1); efn-2(ev658) efn-3(ev696) background results in a 

large oocyte phenotype, which is not observed in vab-1(dx31) null mutants (Sarah 

Moseley and Andrew Chisholm, pers. comm.). Their result suggests that ephrins can have 

vab-1-independent functions in germline development.  I observed this large oocyte 

phenotype after conducting efn-4(RNAi) in an efn-1(ju1); efn-2(ev658) efn-3(ev696); 

tnIs13 background, confirming that the efn-4(RNAi) treatment was efficacious. 

Previously it was reported that efn-2(ev658); fog-2(q71) unmated females have an 

elevated meiotic maturation rate compared to fog-2(q71) females, but they exhibit lower 

meiotic maturation rates than vab-1(dx31); fog-2(q71) females (Miller et al., 2003).  To 

determine whether other ephrins might contribute to the vab-1-mediated inhibition of 

oocyte meiotic maturation, I examined efn-1(ju1); efn-2(ev658) efn-3(ev696); fog-2(q71) 

females; these animals exhibited a meiotic maturation rate of 0.11 ± 0.12 meiotic 

maturations per gonad arm per hour (n=11).  While the basis for this effect is unclear, as 

these animals are sickly, one possibility is that ephrins may have maturation-inhibiting 

and -promoting functions or there could be additional vab-1 ligands.  This possibility is 
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consistent with the results of Sarah Moseley and Andrew Chisholm (pers. comm.) that 

ephrins can have vab-1-independent functions during germline development. 

 Corrigan et al. (Corrigan et al., 2005) reported that UNC-43 Ca2+/calmodulin-

dependent protein kinase II (CaMKII) activation, as detected by anti-phospho CamKII 

(pThr286, Sigma), is dependent on MSP/sperm, vab-1, and nmr-1.  No staining was 

observed in oocytes from unc-43(n1186) and unc-43(e408) mutants (Corrigan et al., 

2005).  To examine the effect of endocytic recycling on vab-1 signaling, we attempted to 

evaluate the effects of rab-11.1, rme-1, dab-1, and ran-1 on the UNC-43 

phosphorylation.  I used two staining methods, the procedure used in (Corrigan et al., 

2005)  and the method of (Kramer et al., 1990), as modified below.  I used anti-phospho 

CamKII antibodies purchased from Sigma and also provided by Michael Miller.  Both 

sources of antibody produced the same staining patterns. For wild-type hermaphrodite 

gonads, the staining patterns I observed matched those previously reported [19], however, 

I also observed identical staining patterns in unc-43(e408) hermaphrodites, vab-1(dx31) 

hermaphrodites, nmr-1(ak4) hermaphrodites, and fog-2(q71) females, which were 

previously reported not to stain (Corrigan et al., 2005).  The basis for this discrepancy is 

unclear. 

 

Generation of Transgenic C. elegans Strains Expressing VAB-1::GFP in the Germ 
Line 

The plasmid (pHC12-23), which encodes a C-terminal GFP fusion to VAB-1 

using the pie-1 promotor, was constructed in several steps.  At each step of this and all 

plasmid constructions, DNA sequencing confirmed that no unwanted mutations were 
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introduced during site-directed mutagenesis and PCR.  First, site-directed mutagenesis 

was used to introduce an AscI restriction site in the full-length vab-1 cDNA clone 

(pCZ64) near the 3’ end of the gene (the XhoI site at genomic position 4590476) to 

produce pHC6-4.  The primers used for site direct mutagenesis were:  

CAscIF1 5’-

AGAACGACGAGACCGCCTGGCGCGCCGCGAGAAGAGGGATTCTTT-3’  

and CAscIR1 5’-

AAAGAATCCCTCTTCTCGCGGCGCGCCAGGCGGTCTCGTCGTTCT-3’.   

 Second, a GFP coding sequence with synthetic introns was amplified by PCR 

from plasmid pPD9577 (a gift of Andy Fire), such that an in frame AscI site was 

introduced at both ends, using the primers:  GFPF1 5’-

AAGGCGCGCCGATGAGTAAAGGAGAAGAA-3’ and GFPR1 5’-

AACGGCGCGCCTAGTTCATCCATGCCATG-3’.  The amplified gfp fragment was 

introduced into pHC6-4 to produce pHC8-41.  

 Third, the VAB-1::GFP coding segment with the synthetic introns from pHC8-41 

was amplified, such that attB1 and attB2 sites were introduced at the 5’- and 3’-ends, 

respectively, using primers:  B1VF1 and B2VR1 

5’-

GGGGACAAGTTTGTACAAAAAAGCAGGCTATACCATGCGGTTGTACAATTCG

-3’  

5’-GGGGACCACTTTGTACAAGAAAGCTGGGTCTAAACAAAGAATCCCTC-3’ 
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The Gateway recombination BP reaction was used to introduce the attB1 vab-1::gfp 

attB2 fragment into the entry vector pDONR221(Invitrogen) to produce pHC10-1.  

Finally, vab-1::gfp was inserted into the pie-1 promoter destination vector pID2.02 (a gift 

of Geraldine Seydoux) using the Gateway LR reaction to generate the expression clone, 

pHC12-23.  Transgenic lines were generated by microinjection (Kelly et al., 1997) and 

microparticle bombardment (Praitis et al., 2001).  For the generation of complex arrays, 

microinjections employed 60 µg/ml PvuII-digested genomic DNA, 5 µg/ml EcoRI-

digested pRF4 (Kramer et al., 1990), and 2 µg/ml SnaBI-digested pHC12-23.  Using 

microinjection, six out of twenty-six transgenic lines expressed VAB-1::GFP in the germ 

line.  One of these, tnIs12, was a spontaneous integrant; the site of insertion was not 

mapped.   Using bombardment, five of five transgenic lines expressed VAB-1::GFP in 

the germ line.  One of these, tnIs13, was integrated into LGV, as shown by linkage to 

unc-46 and dpy-11.  

 

Immunostaining and Fluorescence Microscopy 

 Fluorescence microscopy employed a Zeiss motorized Axioplan 2 microscope with 

a 63x PlanApo (NA1.4) objective lens and an apotome adaptor.  Fluorescence images 

were acquired with an AxioCam MRm camera and Axiovision acquisition software 

(Zeiss).  eGFP and mCherry were imaged using 49002ET and 49008ET filter sets 

(Chroma), respectively.  All exposures were within the dynamic range of the detector and 

there was no cross talk between fluorophores.  Pixel intensities were measured in 

arbitrary fluorescent units.  DNA was detected with DAPI.  For mRFP::RAB-7 /VAB-
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1::GFP and mRFP::RAB-11/VAB-1::GFP samples, images were acquired using a Nikon 

Eclipse TE200 inverted microscope equipped with the PerkinElmer confocal imaging 

system (PerkinElmer Life and Analytical Sciences, Boston, MA), and Hamamatsu’s 

Orca-ER digital camera with a 60X PlanApo (NA1.4) objective. 

   Immunohistochemistry of dissected gonad preparations was performed as 

described (Rose et al., 1997) except that short fixations were employed to preserve the 

GFP fluorescence.  Briefly, gonads were dissected and fixed with 2% paraformaldehyde 

for 5 minutes at room temperature.  Methanol post-fixation was not used, as it caused a 

significant loss of the GFP signal.  Primary and secondary antibody (Cy3-conjugated 

anti-rabbit antibodies; Jackson ImmunoResearch; 1:5000) incubations were performed at 

room temperature for four and two hours, respectively.  Antibodies used were as follows:  

RAB-11 and RAB-7 (Poteryaev et al., 2007); a gift of A. Spang; both used at 1:100); 

RAB-5 (Audhya et al., 2007; Poteryaev et al., 2007); gifts of A. Audhya and K. Oegema 

and A. Spang; used at 1:100); RME-1, RME-2, and EEA-1 (Sato et al., 2006; Gran et al., 

2001; Grant et al., 1999); gifts from Barth grant; used at 1:50); monoclonal anti-MSP 

4A5 (Kosinski et al., 2005).  and monoclonal anti-Ran (Clone ARAN1, Sigma, used at 

1:200 in Fig. 37D and 1:1000 overnight in Fig. 43).  Staining with succinylated wheat 

germ agglutinin (WGA, Vector Laboratories; 25 µg/ml) was for four hours at room 

temperature. 
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Biochemical Purification of VAB-1-ICD-interacting Proteins 

The VAB-1 intracellular domain (residues 583-1122) was expressed as a C-terminal 

fusion to Maltose-binding protein (MBP).  Inclusion of the first two residues of the 

intracellular domain (KK, residues 581-582) resulted in proteolysis, and thus these were 

deleted.  The VAB-ICD was amplified from pCZ64, such that FseI and AscI sites were 

introduced at the 5’- and 3’-ends, respectively.  Primers used were: 

VMPF2:  5’-ATTGGCCGGCCGTCGAAGAATCGGAAACAGATGAGC-3’ 

VMPR1:  5’-AAGGCGCGCCCTAAACAAAGAATCCCTCTTCTCGAGG-3’. 

The amplified fragment was digested with FseI and AscI and ligated to a T7 promoter 

pMal-derivative (gift of Ethan Lee).  The resulting plasmid, 5litcvab-1, was used for 

MBP-VAB-1-ICD expression in E. coli BL21::DE3.  Four liter cultures were grown at 

37°C in LB containing 100 �g/ml ampicillin  to A600=0.6, upon which the culture was 

induced with 0.5 mM IPTG for four hours.  Purification of MBP-VAB-1-ICD was 

performed using amylose-Sepharose followed by ion-exchange chromatography on a 

HitrapTM Q HP column using an AKTA Prime FPLC system (GE Healthcare).  FPLC 

purification was required to remove degradation products produced in E. coli.  The 

resulting MBP-VAB-1-ICD was approximately ~90% pure as evaluated by SDS-PAGE.  

Maltose-binding protein (MBP) was produced from E. coli containing the parent vector 

and purified using affinity purification.  To prepare affinity resins, MBP-VAB-1-ICD (3 

mg) was coupled to 2 ml of Sulfolink resin (Pierce) according to the manufacturer’s 

instructions, and MBP (10 mg) was coupled to 4 ml CNBr-activated Sepharose 4B (GE 
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Healthcare).  The efficiency of coupling was confirmed by SDS-PAGE analysis.  For the 

negative control column, I used Sulfolink resin blocked with 50 mM cysteine. 

 Synchronized day-1 adult hermaphrodites (~30 ml of packed worm pellet) were 

resuspended in 1X PBS containing complete EDTA-free protease inhibitors (Roche) and 

1 mM PMSF.  All subsequent steps were performed at 4°C.  Worms were lysed using a 

French Press at 16,000 psi and the lysate was centrifuged at 200,000 x g for 45 minutes.  

The lysate was loaded onto a MBP-Sepharose column (4 ml) equilibrated with 1 X PBS, 

and the flow through was loaded onto cysteine-blocked Sulfolink column.  Half the flow 

through was loaded onto a MBP-VAB-1-ICD-Sulfolink column (2 ml; experimental 

column) and half was loaded onto a cysteine-blocked Sulfolink column (2 ml; control 

column).  Both experimental and control columns were washed successively with 10 

column volumes of the following buffers: 1 X PBS; 1 mM EDTA (buffer 1), followed by 

buffer 1; 500 mM NaCl, followed by buffer 1; 1 M NaCl, followed by 100 mM glycine 

pH 7.0.  Bound proteins from experimental and control columns were eluted with 100 

mM glycine pH 2.0 and precipitated with 5% trichloracetic acid.  Peak protein fractions 

from the MBP-VAB-1-ICD column, as identified by SDS-PAGE and silver staining, and 

the corresponding fractions from the control column were trypsin-digested and identified 

by liquid chromatography-tandem mass spectrometry by the Vanderbilt Proteomics 

Laboratory in the Mass Spectrometry Research Center using the Sequest algorithm and 

proteins from WormBase.  The non-specific background present in the experimental and 

control columns consisted mainly of ribosomal proteins and E. coli contaminants, 

presumably from the worm food.  I recovered two tryptic peptides from RAN-1 (142-
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NLQYYDISAK-153 and 153-SNYNFEKPFLWLAR-165) in the experimental column 

but not the control, representing 11.2% coverage of RAN-1. 

 

Analysis of Protein-protein Interactions 

Expression plasmids encoding Glutathione-S-transferase (GST) fusions to DAB-1 

fragments were kindly provided by Jonathan Cooper (Kamikura and Cooper, 2006).  

GST-DAB-1(53-546), GST-DAB-1(53-435), GST-DAB-1(53-252), and GST were 

expressed in E. coli BL21::DE3 and purified using Glutathione-Sepharose (a gift of 

Ethan Lee).  MBP-VAB-1-ICD (1 µg), or MBP as a negative control, were incubated 

with individual GST-DAB-1 protein derivatives (~1 µg), or GST as a negative control, in 

100 µl volumes containing 50 mM Tris-HCl (pH 7.4); 2 mM EDTA; 150 mM NaCl; 1% 

NP-40, at 4°C for 2 hours.  Glutathione-Sepharose (5 µl) beads were then added to the 

protein mixtures and incubated for 2 hours at 4°C.  Complexes were isolated by 

centrifugation and washed three times in 1 ml of  binding buffer.  Western blots were 

probed with the following antibodies:  anti-GST (a gift of Ethan Lee), anti-DAB-1 

(Kamikura and Cooper, 2003), anti-MBP (New England Biolabs), and anti-VAB-1(1094-

1118)E6450. 

 The RAN-1 coding sequence was amplified from CEORF clone K01G5.4 

(OpenBiosystems) using primers RAN100F and RAN100R: 

5’-GAATTCGGATCCATGTCTGGTGGAGACGGC-3’ 

5’-GAATTCGGATCCTTAAAGATCATCGTCGTCATC-3’ 
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The amplified ran-1 fragment was digested with BamHI and ligated with BamHI-

digested pBG102 vector (provided by the Center for Structural Biology, Vanderbilt 

University), which provides N-terminal 6His and SUMO epitope tags.  6His-SUMO-

RAN-1 and the 6His-SUMO control were expressed in E. coli BL21::DE3 and purified 

on Ni-NTA agaraose (Qiagen) according to the  manufacturer’s instructions.  MBP-VAB-

1-ICD (1 µg) or MBP were incubated with 6His-SUMO-RAN-1 (2 µg) or 6His-SUMO in 

a volume of 100 µl of 1 X PBS buffer at 4°C for 2 hours.  Amylose-Sepharose beads (5 

µl) were then added to the protein mixture and incubated at 4°C for 2 hours.  Protein 

complexes were isolated by centrifugation and washed with 1 ml of 1 X PBS buffer three 

times.  Western blots were probed with anti-MBP, anti-6His (Invitrogen), and anti-VAB-

1. 

 

Results 

 

Sperm-Dependent Localization of the Oocyte MSP/Eph Receptor 

To examine the localization and trafficking of the oocyte MSP/Eph receptor, I expressed 

VAB-1::GFP in the germ line using the germline-specific pie-1 promoter (Fig. 34).  I 

obtained eleven transgenic lines that express VAB-1::GFP in the germ line in identical 

patterns (two integrants and nine extrachromosomal arrays).  To determine whether the 

VAB-1::GFP fusions are functional, I tested whether the oocyte meiotic maturation 

regulatory defects conferred by the vab-1(dx31) null mutation were rescued by the VAB-

1::GFP in the integrated lines.  Previous studies showed that VAB-1 functions as a 
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negative regulator of oocyte meiotic maturation in the absence of the MSP ligand (Miller 

et al., 2003).  Oocytes arrest at meiotic prophase in the absence of MSP, and thus, fog-

2(q71) homozygotes, which lack spermatogenesis and are therefore females, display low 

meiotic maturation rates (0.06 ± 0.07 maturations per gonad arm per hr; n=21; Fig. 34A) 

relative to that of wild-type hermaphrodites (2.64 ± 0.40 maturations per gonad arm per 

hr; n=18).  In contrast, vab-1(dx31); fog-2(q71) females exhibit a moderate derepression 

in meiotic maturation rates (0.34 ± 0.10 maturations per gonad arm per hr, n=22, 

p<0.0005 compared to unmated females).  Since expression of the VAB-1::GFP fusion in 

the germ line restores the tight regulation of  meiotic maturation in the absence of MSP 

[Fig. 34A; maturation rate=0.06 ± 0.06 maturations per gonad arm per hr, n=18; 

p<0.0005 compared to vab-1(dx31); fog-2(q71) females; p>0.4 compared to fog-2 

females], I conclude that the VAB-1::GFP fusion is biologically active.  I was 

unsuccessful in generating VAB-1-specific antibodies for immunostaining experiments 

despite scores of attempts (H.C., and D.G., unpublished results).  Besides possessing the 

ability to rescue a null allele, localization of the VAB-1::GFP fusion is dependent on the 

vab-1-pathway gene dab-1, as described below. 

 The VAB-1::GFP fusion can be visualized throughout the germ line of living 

adult hermaphrodites (Fig. 34B).  In the distal germ line, VAB-1::GFP localizes to the 

plasma membrane of the syncytial germ cells as visualized using an mCherry::PH domain 

fusion (Figures 34B and 34E and 39).  Thus, the VAB-1::GFP fusion can efficiently 

traffic to the plasma membrane in distal germ cells.  

 



Figure34.  MSP/sperm alters the localization of the VAB-1 MSP/Eph receptor 
 
(A) VAB-1::GFP negatively regulates meiotic maturation in the absence of MSP/sperm.  
Meiotic maturation rates were measured in fog-2(q71) female backgrounds of the 
indicted genotypes.  (B-G) Fluorescence micrographs of VAB-1::GFP in living adult 
hermaphrodites (B, E), unmated fog-2(q71) females (C, F), MSP-injected unmated 
females (D), and chc-1(RNAi) unmated females (G), visualized in central or cortical 
optical sections [left and right panels, respectively (B-D)]. (E-G) The oocyte plasma 
membrane (middle panels) was visualized with mCherry::PH(PLC1delta1) (Kachur et al., 
2008). in centrally located optical sections.  The VAB-1::GFP channels and merged 
images are shown as indicated.  Insets show magnified views of the indicated regions, 
showing the 0.5-1.0 µm VAB-1::GFP ring-like structures; arrows indicate the oocyte 
plasma membrane.  Note that there is detectable VAB-1::GFP at the oocyte plasma 
membrane in hermaphrodites (E) and chc-1(RNAi) females (G).  In unmated females (F), 
cortical VAB-1::GFP vesicles are located adjacent to the plasma membrane, and the GFP 
signal at the plasma membrane is below the detection limit.  Hermaphrodites and MSP-
injected females exhibit a decreased VAB-1::GFP signal, and twice the exposure time 
was used in (B, D, E) compared to (C, F, G).  (H-K)  Oocyte membrane proteins 
visualized in dissected gonad preparations of hermaphrodites (H, J) and unmated females 
(I, K) using anti-RME-2 antibodies (H, I) and succinylated-WGA (J, K).  RME-2 
localization is sperm-independent, whereas sperm cause an increase in internal WGA-
staining vesicle numbers.  Oocytes are numbered, with –1 denoting the most proximal 
oocyte.   Scale bars represent 10 µm. 
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The plasma membrane localization observed in the distal germ line stands in sharp 

contrast to the localization observed in proximal oocytes of adult hermaphrodites 

(Figures 34B and 34E), where it is known that MSP/Eph receptor signaling occurs 

antagonistically to ephrin/Eph receptor signaling (Miller et al., 2003).  In proximal 

oocytes, VAB-1::GFP is predominantly associated with intracellular vesicles both in the 

interior and at the cortex (Fig. 34B).  The VAB-1::GFP-containing intracellular vesicles 

vary in size from small puncta to large (0.5-1.0 µm diameter) ring-like structures (Figures 

34B and 34E).  Cortically localized VAB-1::GFP-containing vesicles abut, or are 

adjacent to, the plasma membrane (insets, Figures 34B and 34E), and only a small 

fraction of the VAB-1::GFP signal exhibits colocalization with the mCherry::PH domain 

plasma membrane marker (insets, Fig. 34E).  In unmated fog-2(q71) females, VAB-

1::GFP is highly enriched in cortically-localized vesicles (Figures 34C and 34F); fewer 

VAB-1::GFP-containing vesicles are found in the oocyte interior, and detectable levels of 

the VAB-1::GFP signal fail to accumulate at the plasma membrane in the steady state 

(insets Fig. 34F).  The cortically-localized vesicles are highly enriched just beneath the 

plasma membrane. The mean fluorescence intensity of the VAB-1::GFP signal at the 

cortex was higher in females than in hermaphrodites (52.48±7.6 versus 32.14±6.16 

arbitrary fluorescence units, respectively, p<0.0005, n=10).  Mated female animals 

exhibit a VAB-1::GFP localization pattern identical to that of hermaphrodites (Table 8).  

Here, I analyze VAB-1::GFP localization in multiple genetic backgrounds and 

experimental situations, which affect either the hermaphrodite or female patterns (a 

summary of all the VAB-1::GFP localization patterns are found in Table 8).  
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To determine whether the effects of sperm were specific for VAB-1::GFP, or more 

general, I examined the localization of the RME-2 yolk receptor.  I found that RME-2 

localization, as detected in dissected and fixed gonads, was the same in the presence and 

absence of sperm (Figures 34and 34I). Other receptors and intracellular vesicles may 

respond to the presence of sperm, however, because I observed that staining with the 

succinylated lectin wheat germ agglutinin (WGA), which detects N-acetylglucosamine-

modified structures, resulted in a markedly different staining pattern in hermaphrodites 

versus females. In females, oocytes exhibit cortically-enriched WGA-positive structures 

and reduced internal staining (compare Figures 34J and 34K). To determine whether 

MSP is sufficient to alter VAB-1::GFP localization, I examined the effects of injecting 

MSP into the uterus of unmated females.  I found that injection of 200 nM MSP into 

unmated females (n=40) was sufficient to alter the global VAB-1::GFP localization 

pattern such that it resembled that observed in hermaphrodites (Fig. 34D).  The effects of 

MSP on VAB-1::GFP localization were slow to develop, taking approximately 90 

minutes.  By contrast, activation of sheath cell contraction, oocyte MAPK activation, and 

meiotic maturation typically commence within 30-40 minutes post-injection.  Since 

sperm continuously release MSP (Kosinski et al., 2005), the situation following MSP 

injection differs from that in hermaphrodites or mated females in that the MSP signal is 

only present transiently. Thus, the relocalization of VAB-1::GFP in oocytes could be part 

of a chronic response to abundant quantities of MSP/sperm.  Consistent with this 

possibility, I observe that the VAB-1::GFP fusion exhibits progressive cortical 

enrichment in distal oocytes as sperm become depleted in hermaphrodites (data not 

shown).   



Figure 35.  MSP signaling affects the accumulation of VAB-1::GFP in recycling 
endosomes 
 
(A-G) Fluorescence micrographs of VAB-1::GFP expression and RAB-11 staining in 
dissected and fixed gonads; insets in the upper right are magnified views of the oocyte 
cortex, and insets in the  lower left are magnified views of the oocyte interior.  In wild-
type hermaphrodites (A), dab-1(RNAi) fog-2(q71) females (D), ran-1(RNAi) fog-2(q71) 
females (E), and goa-1(RNAi) fog-2(q71) females (G), VAB-1::GFP is largely excluded 
from the RAB-11-positive compartment.  In fog-2(q71) females (B), rme-1(b1045) 
hermaphrodites (C), and gsa-1(RNAi) hermaphrodites (F), VAB-1::GFP accumulates in 
the RAB-11-positive compartment.  (H) Spinning disc confocal image of mRFP::RAB-11 
and VAB-1::GFP localization in living females (left panel) and hermaphrodites (right 
panel).  Scale bars represent 10 µm. 
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Figure 39.  VAB-1::GFP Localization to Early Endosomes is MSP/sperm-independent 
 
(A) VAB-1::GFP is localized to the plasma membrane in distal germ cells.  The oocyte 
plasma membrane (middle panel) was visualized with mCherry::PH(PLC1delta1) [49].  
The VAB-1::GFP and mCherry:PH channels and merged images are shown as indicated.  
Insets show magnified views of the distal germ cells showing co-localization of the 
VAB-1::GFP and mCherry::PH signals.  (B-C) Fluorescence micrographs of VAB-
1::GFP expression and EEA-1 staining in dissected and fixed gonads from 
hermaphrodites (B) and unmated females (C), visualized in cortical optical sections; 
insets are magnified views of the indicated regions. (D-E) Fluorescence micrographs of 
VAB-1::GFP and RAB-5::mCherry expression, visualized in cortical optical sections 
from living hermaphrodites (D) and unmated females (E); insets are magnified views of 
the indicated regions.  A small fraction of VAB-1::GFP localizes in EEA-1-positive or 
RAB-5-positive structures in both the presence and absence of MSP/sperm.  This result 
suggests that the steady-state localization of VAB-1::GFP to early endosomes is 
MSP/sperm independent.  We observed no overlap between VAB-1::GFP and EEA-1 or 
RAB-5::mCherrry in the oocyte interior (data not shown).  (F-G) Spinning disc confocal 
fluorescence micrographs of VAB-1::GFP and mRFP::RAB-7 expression, visualized in 
interior optical sections from living hermaphrodites (F) and unmated females (G).  The 
mRFP::RAB-7 expression signal exhibits a uniform distribution pattern in oocytes 
irrespective of the presence of sperm.  There is no evidence for enrichment of RAB-7 at 
sites of VAB-1::GFP accumulation. Similar results were obtained using anti-RAB-7 
antibodies (data not shown).  Scale bars represent 10 µm. 
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Taken together, these data suggest that the presence of MSP alters VAB-1::GFP 

trafficking, which could be part of the mechanism by which the continued presence of 

MSP promotes high rates of meiotic maturation. 

 

VAB-1::GFP is Enriched in the Endocytic Recycling Compartment in the Absence of 
Sperm 

To address the possibility that the sperm-dependent changes in VAB-1::GFP 

localization might reflect alterations in vesicle trafficking, I used antibodies against RAB-

5 (Audhya et al., 2007) and EEA-1 (Sato et al., 2006), RAB-7 (Poteryaev et al., 2007), 

and RAB-11 (Poteryaev et al., 2007) as markers for early, late, and recycling endosomes, 

respectively, and asked whether the VAB-1::GFP vesicles might be associated with any 

of these compartments. (Figures 35 and 39).  In unmated females, I observed that VAB-

1::GFP and RAB-11 exhibited extensive co-localization at the cortex (Fig. 35B).  By 

contrast, I observed that only a small fraction of the VAB-1::GFP-containing vesicles 

stained positively for RAB-11 in the presence of sperm (Fig. 35A). I obtained similar 

results using mRFP::RAB-11 and VAB-1::GFP (Fig. 35H).  I did note, however, that the 

fraction of VAB-1::GFP vesicles that stained positively for RAB-11 increased in more 

distally localized oocytes (Fig. 35A and data not shown), which are exposed to lower 

extracellular MSP levels (Kosinski et al., 2005). 

 I considered the possibility that VAB-1::GFP traffics to the plasma 

membrane from recycling endosomes in the absence of MSP/sperm but is cleared by 

endocytosis.  Consistent with this possibility, a detectable fraction of the VAB-1::GFP 

signal at the oocyte cortex exhibits co-localization with the early endocytic markers EEA-
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1 and RAB-5 in both the absence and presence of MSP/sperm (Fig. 39).  Endocytosis 

occurs via clathrin-dependent and -independent mechanisms.  Thus, I tested whether 

knocking down the expression of the clathrin heavy chain using RNAi affects VAB-

1::GFP localization. When I conducted chc-1(RNAi) in  a fog-2(q71) female background, 

I observed modest but detectable levels of VAB-1::GFP at the plasma membrane (inset, 

Fig. 34G), suggesting that VAB-1::GFP can traffic to the plasma membrane in the 

absence of sperm but is cleared by endocytic processes.  Because caveolin has been 

implicated in endocytic processes (Hommelgaard et al., 2005) and CAV-1::GFP is 

associated with vesicles in C. elegans oocytes (Sato et al., 2006), I analyzed VAB-1::GFP 

localization in the cav-1(ok2089) deletion allele that removes the entire coding sequence 

of the caveolin-1 homolog.  I observed that the localization of VAB-1::GFP was not 

affected by cav-1(ok2089) in the presence of sperm (Table 8).  Since RAB-7 exhibits a 

uniform staining pattern in oocytes in the presence and absence of sperm, when 

visualized either by anti-RAB-7 antibody staining or using a mRFP::RAB-7 fusion, the 

co-localization studies were less informative using this marker (Fig. 39 and data not 

shown). I have not been able to address whether VAB-1::GFP might traffic to lysosomes 

in the presence of sperm because lysotracker-Red-staining methods are not effective in 

oocytes.  I observed no apparent change in VAB-1::GFP localization in the presence or 

absence of sperm following RNAi to vps-28 and vps-37, which encode components of the 

endosomal sorting complex required for transport-I complex that mediates lysosomal 

degradation of ubiquitinated proteins (Fig. 40).  I did note, however, that vps-28(RNAi) 

and vps-37(RNAi) delayed VAB-1::GFP degradation in embryos (Fig. 41). 

 



Figure 40.  Localization of VAB-1::GFP in hermaphrodites is regulated by rab-11.1 and 
rme-1 
 
(A-E) Fluorescence micrographs of VAB-1::GFP expression in the following genotypes 
and experimental situations:   rab-11.1(RNAi) by injection (A); rme-1(b1045) (B); dab-
1(gk291) (C); vps-28(RNAi) (D); vps-37(RNAi) (E).  Hermaphrodites and unmated 
females were examined (left, and right panels, respectively).  Scale bars represent 10 µm. 
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Figure 41.  vps-28 and vps-37 promote VAB-1::GFP degradation in the embryo 
 
Fluorescence micrographs of VAB-1::GFP expression in embryos.  The wild-type 
embryos VAB-1::GFP signal is not apparent after the 4-cell stage.  Both vps-28(RNAi) 
and vps-37(RNAi) cause VAB-1::GFP to accumulate in large foci that persist in embryos 
beyond the 16-cell stage.  Scale bars represent 10 µm. 
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The finding that VAB-1::GFP is enriched in a RAB-11-positive compartment in 

the absence of sperm raises the possibility that a recycling receptor may be functional in 

inhibiting oocyte meiotic maturation when MSP is absent.  This hypothesis has two key 

predictions:  first, promotion of VAB-1 localization to the endocytic recycling 

compartment in hermaphrodites should reduce the meiotic maturation rate; and second, 

genes required for VAB-1 localization to the endocytic recycling compartment in the 

absence of MSP/sperm should function as negative regulators of oocyte meiotic 

maturation.  Both these predictions have been met.  To test the first prediction, I 

examined rme-1(b1045) mutants (the second prediction is tested below).  rme-1 encodes 

a conserved Eps-15 homology domain-containing protein that is required for normal 

endocytic recycling in C. elegans and mammalian cells (Grant et al., 2001; Lin et al., 

2001).  In unmated females, RME-1 localizes to the oocyte cortex between the plasma 

membrane and the cortically-localized VAB-1::GFP vesicles (data not shown).  The 

VAB-1::GFP localization patterns were similar in rme-1(b1045) hermaphrodites and 

females, both resembling the normal female pattern (Fig. 40 and Table 8). Interestingly, 

in rme-1(b1045) mutant hermaphrodites, the VAB-1::GFP and RAB-11 fluorescence 

signals exhibit an increased overlap at the cortex in comparison to wild-type 

hermaphrodites (Fig. 35A and 35C).  By contrast, the global localization of vesicle-

associated proteins, as detected by WGA staining, is unaffected (Fig. 36A and 36C).  To 

examine whether this altered localization might have functional consequences, I 

measured the oocyte meiotic maturation rate in rme-1(b1045) mutant hermaphrodites.  I 

found that rme-1(b1045) mutant hermaphrodites display lower oocyte meiotic maturation 

rates than wild-type hermaphrodites (1.67 ± 0.35 maturations per gonad arm per hr, n=19, 
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versus 2.64 ± 0.40, n=18, p<0.0005). I tested the possibility that the reduction in meiotic 

maturation rate in rme-1(b1045) hermaphrodites might be caused by a defect in sperm 

recruitment to the spermatheca (sperm-storage compartment), as this has been observed 

in mutants defective for the rme-2 yolk receptor (Kubagawa et al., 2006). This is unlikely 

to be the case because I observed normal sperm retention in the spermathecae of rme-

1(b1045) adult hermaphrodites (Fig. 42). In addition, I observed a normal distribution of 

extracellular MSP within the spermatheca (Fig. 42).  Importantly, vab-1(dx31); rme-

1(b1045) double mutant hermaphrodites exhibit meiotic maturation rates similar to those 

of vab-1(dx31) hermaphrodites (2.05 ± 0.45, n=20; and 2.01 ± 0.23 maturations per 

gonad arm per hr, n=21, respectively), which are both higher than rme-1(b1045) single 

mutants (p<0.005).  Similarly, dab-1(RNAi) in an rme-1(b1045) mutant background 

increases the oocyte meiotic maturation rate (data not shown).  To further investigate the 

role of VAB-1 trafficking in the regulation of oocyte meiotic maturation, I used RNAi to 

deplete rab-11.1, which is required for receptor recycling to the plasma membrane from 

recycling endosomes, and also for trafficking from the trans-Golgi network to the plasma 

membrane (Sato et al., 2008).  RNAi of rab-11.1 in a hermaphrodite background resulted 

in a cortical enrichment of VAB-1::GFP resembling that observed in unmated females 

(Fig. 40).  By contrast, rab-11.1(RNAi) did not alter VAB-1::GFP localization in unmated 

females (Fig. 40).  In hermaphrodites, rab-11.1(RNAi) caused a reduction in the meiotic 

maturation rate (1.18 ± 0.65 maturations per gonad arm per hr, n=23) compared to the 

RNAi control (2.41 ± 0.55 maturations per gonad arm per hr, n=20; p<0.0005).   

 

 



Figure 42.  Spermatozoa localize to the spermatheca and release MSP in rme-1(b1045) 
mutants 
 
DIC micrograph of a rme-1(b1045) hermaphrodite (top panel); the inset shows 
spermatozoa in the spermatheca.  MSP visualized in the spermatheca (SP) of a rme-
1(b1045) hermaphrodite using immunofluorescence (bottom panels); spermatozoa stain 
intensely and extracellular MSP fills the spermathecal lumen surrounding the 
spermatozoa. Scale bars represent 10 µm. 
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By contrast, rab-11.1(RNAi) in vab-1(dx31) hermaphrodites had no effect on the 

meiotic maturation rate (2.01 ± 0.67 maturations per gonad arm per hr, n=20, compared 

to 2.03 ± 0.42 maturations per gonad arm per hr, n=20 in the RNAi control; p> 0.4).  

Taken together, these data show that interfering with efficient receptor exit from the 

endocytic recycling compartment causes a vab-1-dependent reduction in the oocyte 

meiotic maturation rate in hermaphrodites. 

 

DAB-1/Disabled and RAN-1, but not Ephrins, Regulate VAB-1::GFP Trafficking in 
the Absence of Sperm 

To determine whether negative regulators of oocyte meiotic maturation affect VAB-1 

localization to the endocytic recycling compartment in females, I began by analyzing 

genes in the vab-1 arm of the meiotic maturation signaling pathway.  Since ephrin 

binding can trigger Eph receptor endocytosis in mammalian cells (Cowan et al., 2005), I 

first asked whether VAB-1::GFP localization is ephrin dependent.  C. elegans has four 

ephrin genes (efn-1, efn-2, efn-3, and efn-4), but only efn-1, efn-2, and efn-3 have been 

implicated in vab-1 signaling (Chin-Sang et al., 1999; Wang et al., 1999).  By contrast, 

efn-4 has been shown to function in semaphorin signaling (Chin-Sang et al., 2002; 

Ikegami et al., 2004). I analyzed efn-1(ju1) efn-2(ev658); efn-3(ev696) triple mutant 

females and hermaphrodites and found that the VAB-1::GFP localization pattern was 

unchanged (Fig. 43).  Since efn-4(RNAi) in these strains led to no further changes in 

VAB-1::GFP localization (Fig. 43), I conclude that VAB-1::GFP localization in oocytes 

is ephrin independent; however, I cannot exclude the possibility that VAB-1 trafficking 

depends on uncharacterized non-ephrin ligands in the absence of sperm.  
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Previously, I identified dab-1 as a negative regulator of oocyte meiotic maturation 

and presented genetic data that are consistent with the interpretation that vab-1 and dab-1 

function in a common pathway to negatively regulate meiotic maturation in the absence 

of sperm (Govindan et al., 2006).  I analyzed VAB-1::GFP localization following dab-

1(RNAi) and in dab-1(gk291) null mutants in female and hermaphrodite backgrounds.  I 

observed that VAB-1::GFP was no longer enriched in a RAB-11-positive compartment 

following dab-1(RNAi) in a female background (Fig. 35D). The VAB-1::GFP pattern in 

dab-1(RNAi) females resembled that seen in wild-type hermaphrodites with the majority 

of vesicles localizing in the interior of the oocyte and a small fraction on the plasma 

membrane (Fig. 35A and 35D).  The same result was obtained using dab-1(gk291) 

mutant females (Fig. 40).  By contrast, I observed no change in the VAB-1::GFP pattern 

in dab-1(RNAi) or dab-1(gk291) hermaphrodites, compared to wild-type hermaphrodites 

(Fig. 36A and 36E and Fig. 40).  Thus, dab-1 is only required for VAB-1::GFP 

trafficking in a female background in which the majority of the receptor is recycling.  

Because dab-1 and Disabled homologs have been implicated in vesicle trafficking and 

endocytosis (Morris et al., 2001; Kamikura and Copper 2003; 2006), I examined the 

effects of dab-1 on the global localization of vesicle-associated proteins using 

succinylated-WGA staining.  I observed that dab-1(RNAi) did not affect the localization 

of WGA-staining vesicles in the presence or absence of sperm (Fig. 36D and 36E).  

Interestingly, the VAB-1::GFP vesicles are WGA-negative following dab-1(RNAi) only 

in the absence of sperm (compare Fig. 36D and 36E), suggesting that DAB-1 plays a 

critical role in promoting the female mode of VAB-1::GFP trafficking.   

 



Figure 43.  Localization of VAB-1::GFP is ephrin-independent 
 
(A-E) Fluorescence and DIC micrographs of VAB-1::GFP expression in the following 
genotypes:   efn-1(ju1) efn-(ev658)2; efn-3(ev696) triple mutant hermaphrodite (A); efn-
1(ju1) efn-2(ev658); efn-3(ev696); fog-2(q71) female (B); efn-1(ju1) efn-2(ev658); efn-
3(ev696); efn-4(RNAi) hermaphrodite (C); efn-1(ju1) efn-2(ev658);efn-3(ev696); efn-
4(RNAi); fog-2(q71) female (D); and a mpk-1(ga111ts) hermaphrodite (E).  Scale bars 
represent 10 µm. 
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Figure 36.  DAB-1 and RAN-1 affect VAB-1::GFP trafficking in the absence of 
MSP/sperm 
 
(A-H) Fluorescence micrographs of VAB-1::GFP expression and WGA staining in 
dissected and fixed gonads; insets in the upper right are magnified views of the oocyte 
cortex and insets in the  lower left are magnified views of the oocyte interior.  VAB-
1::GFP mainly localizes to WGA-positive vesicles in wild-type hermaphrodites (A), fog-
2(q71) females (B), rme-1(b1045) hermaphrodites (C), dab-1(RNAi) hermaphrodites (E), 
gsa-1(RNAi) hermaphrodites (G), and goa-1(RNAi) fog-2(q71) females (H).  In contrast, 
VAB-1::GFP extensively localizes to WGA-negative vesicles in dab-1(RNAi) fog-2(q71) 
females (D) and ran-1(RNAi) fog-2(q71) females (F).  Scale bars represent 10 µm. 
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Taken together, these results suggest that dab-1 is specifically required for VAB-1::GFP 

to localize to the endocytic recycling compartment in the absence of MSP/sperm. 

Moreover, when dab-1 function is disrupted in the absence of sperm, VAB-1::GFP 

accumulates in an interior vesicular compartment with different characteristics as 

assessed by WGA staining. 

Prior work has shown that the PTB domain of Disabled proteins can bind the 

intracellular domain of receptor proteins and serve as adaptors (Howell et al., 1999).  

Thus I examined whether DAB-1 could interact with the VAB-1 intracellular domain 

(VAB-1-ICD) in vitro.  I expressed and purified VAB-1-ICD as an amino-terminal fusion 

to the maltose binding protein (MBP-VAB-1-ICD) and performed pull-down experiments 

using DAB-1(53-546) fused to  glutathione S-transferase. I found that GST-DAB-1(53-

546) can interact with MBP-VAB-1-ICD but not with MBP (Fig. 37A).  By contrast, 

GST does not interact with MBP-VAB-1-ICD (Fig. 37A).  Two additional DAB-1-

deletion derivatives, GST-DAB-1(53-435) and GST-DAB-1(53-252), also bind MBP-

VAB-1-ICD in vitro (data not shown).  The DAB-1 PTB domain binds FxNPxY motifs 

in the intracellular domain of receptors.  The VAB-1-ICD has a related motif 

(GLNHVY), but I have not determined whether this motif is critical for vab-1 function or 

DAB-1 binding. 

 Our prior work suggested that PKC-1, a protein kinase C homolog, PQN-19, a 

STAM homolog, and VAV-1, a Rho family guanine-nucleotide exchange factor, may 

function in the vab-1 pathway to inhibit meiotic maturation when MSP is absent 

(Govindan et al., 2006).  I did not observe any VAB-1::GFP localization changes after 

pkc-1(RNAi), pqn-19(RNAi), or vav-1(RNAi) in females or hermaphrodites (Table 8).   



Table 8.  Summary of VAB-1::GFP localization patterns 

Relevant genotype or 
experimental treatmenta 

VAB-1::GFP localization 
pattern in female backgroundb 

VAB-1::GFP localization 
pattern in hermaphrodite  
background 

Wild type Fc-e  H 
Mated female Hc  .A.N 
cav-1(ok2089)  H .D.N
Wild type, MSP injection  Hc, d  .D.N 
rme-1(b1045) Fd  F 
rab-11.1 (RNAi) injection Fd  F 
vps-28(RNAi) Fd H f 
vps-37(RNAi) Fd H f 
efn-1(ju1);efn-2(ev658);efn-
3(ev696) 

Fc  H 

efn-1(ju1);efn-2(ev658);efn-
3(ev696);efn-4(RNAi) 

Fc  H 

dab-1(RNAi) Hc, d, g  H 
dab-1(gk291) Hc, g  H 
pkc-1(RNAi) Fc, d  H 
pqn-19(RNAi) Fc, d  H  
vav-1(RNAi) Fc, d  H 
ran-1(RNAi) Hc, d, g  H 
goa-1(RNAi) Hc, d  H 
inx-22(RNAi) Hc, d  H 
inx-14(RNAi) Hc  H 
kin-2(RNAi) Hc  H 
gsa-1(RNAi) Fc  F 
oma-1(RNAi);oma-2(RNAi)  F .D.N
mpk-1(ga111ts)  F .D.N
aAll strains contained tnIs13 

bfog-2(q71), fog-2(oz40), fog-3(q443), fog-1(q253ts), or fem-1(hc17ts) as indicated. 
cfog-2(q71) females were analyzed. 
dfog-3(q443) females were analyzed. 
efog-2(oz40), fog-1(q253ts), and fem-1(hc17ts) were also analyzed. 
fVAB-1::GFP degradation in embryos is delayed. 
gThe VAB-1::GFP-containing compartment is WGA negative. 
N.A., not applicable; N.D., not determined. 

MSP/sperm

Female pattern (F) Hermaphrodite pattern (H)
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Figure 37.  DAB-1 and RAN-1 bind to the VAB-1 intracellular domain 
 
(A)  In vitro interaction of GST-DAB-1(53-546) and MBP-VAB-1-ICD.  Complexes 
were isolated using Glutathione Sepharose.  MBP and GST served as negative controls. 
Western blots were probed with anti-MBP (top panel) and anti-GST (middle and bottom 
panels).  The bottom panel shows the position of GST and breakdown products of GST-
DAB-1(53-546). (B)  Biochemical purification of VAB-1-ICD-interacting proteins.  A 
flow chart depicts the purification strategy starting with 30 ml of packed adult 
hermaphrodites.  The bottom panel shows the sequence of RAN-1 tryptic peptides that 
were retained on the MBP-VAB-1-ICD column at high stringency, but were absent from 
the empty column control.  (C)  In vitro interaction of 6His-SUMO-RAN-1 and MBP-
VAB-1-ICD.  Complexes were isolated using Amylose Sepharose.  6His-SUMO and 
MBP served as negative controls. Western blots were probed with anti-6His (top panel) 
and anti-MBP (middle and bottom panels).  The bottom panel shows the position of MBP 
and breakdown products of MBP-VAB-1-ICD.  (D) Cortical views of VAB-1::GFP 
expression and RAN-1 staining in dissected and fixed gonads from female (upper panel) 
and hermaphrodite animals (lower panel); insets in the upper left are magnified views of 
the indicated regions.  Scale bars represent 10 µm. 
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Thus, these three genes might influence vab-1 signaling in a manner not dependent on 

trafficking, as apparent by examination of the VAB-1::GFP localization pattern.  

 I sought new regulators of VAB-1::GFP trafficking using affinity purification of 

VAB-1-ICD-interacting proteins (Fig.  37B). I reasoned that proteins that bind to VAB-1-

ICD at high stringency [retained by 1M NaCl, but not 0.1 M glycine pH(2.0)] might 

function in VAB-1 signaling or trafficking. Using this method, I specifically recovered 

two peptides from RAN-1 (Fig.  5B, 11.2% coverage) in the mass spectrometry data from 

the MBP-VAB-1-ICD column but not the control.The non-specific background largely 

consisted of ribosomal proteins.  Consistent with these data, RAN-1 binds the MBP-

VAB-1-ICD but not the MBP control in pull-down assays (Fig. 37C). Previously, We 

identified ran-1 as a negative regulator of oocyte meiotic maturation that functions in the 

germ line (Govindan et al., 2003).  Because ran-1 is an essential gene that functions in 

many processes, including nucleocytoplasmic transport and microtubule dynamics and 

organization (Joseph, 2006), I used RNAi to analyze interactions with other negative 

regulators of meiotic maturation.  These data were consistent with the possibility that 

ran-1 functions in vab-1-dependent and -independent pathways (Govindan et al., 2003).  

I examined VAB-1::GFP localization following ran-1(RNAi) in female and 

hermaphrodite genetic backgrounds. In these analyses, ran-1 behaved similarly to dab-1:  

I observed reduced overlap between VAB-1::GFP and RAB-11 at the oocyte cortex in the 

absence of sperm (Fig.  35E); and VAB-1::GFP localized to an interior WGA-negative 

compartment (Fig. 36F).  By contrast, ran-1(RNAi) had no apparent effect on VAB-

1::GFP localization and trafficking in hermaphrodites (Table 8). Antibodies raised to the 

C-terminus of human RAN specifically detect C. elegans RAN-1 in immuno-staining 
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experiments (Fig. 44). I used these antibodies to compare the localization of RAN-1 and 

VAB-1::GFP.  I observed a similar degree of association between VAB-1::GFP and 

RAN-1 in the presence and absence of sperm (Fig. 37D). Taken together, these data 

suggest that ran-1 and dab-1 promote VAB-1::GFP trafficking into the endocytic 

recycling compartment in females and this might be part of the mechanism by which they 

inhibit oocyte meiotic maturation and MAPK activation when MSP is absent.  

 

Somatic G-protein Signaling Influences VAB-1::GFP Localization 

Previous data suggested that regulation of oocyte meiotic maturation in C. elegans 

involves the vab-1 pathway in oocytes (Miller et al., 2003), Govindan et al., 2006; 

Corrigan et al., 2005) and parallel inputs from Gαs and Gαo/i protein signaling pathways 

from the gonadal sheath cells (Fig. 33; Govindan et al., 2003).  A genome-wide screen 

for negative regulators of oocyte meiotic maturation identified goa-1, which encodes 

Gαo/i, and inx-22 and inx-14, which encode innexin/pannexin components of gap-

junctional channels that function downstream of Gαs signaling (Fig. 33).  Since goa-1 and 

inx-22 function to inhibit meiotic maturation when MSP/sperm is absent, I examined 

VAB-1::GFP localization after conducting RNAi in a female background.   In a female 

background, goa-1(RNAi) and inx-22(RNAi) causes VAB-1::GFP to be largely excluded 

from a RAB-11-positive compartment (Fig. 35G and 45), as is typically observed in wild-

type hermaphrodites (Fig. 35A).   

 



Figure 44.  Specificity of anti-Ran antibodies 
 
Fluorescence micrographs of RAN-1 staining in dissected gonads from control(RNAi) 
(top panel) and ran-1(RNAi) hermaphrodites (bottom panel).  L1-stage hermaphrodites 
were treated with RNAi using the feeding method.  No staining was observed following 
ran-1(RNAi).  Because ran-1(RNAi) severely disrupts gonadal development, it was 
formally possible that ran-1(RNAi) interferes with the gonadal accumulation of a cross-
reacting protein. We tested this possibility by ran-1(RNAi) feeding of L3-stage larvae.  
Under these conditions, oocytes were produced but ran-1 staining was diminished (data 
not shown).  Scale bars represent 10 µm. 
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Figure 45.  GSA-1, INX-22 and OMA-1/2 affect VAB-1::GFP localization 
 
(A)  Fluorescence micrographs of VAB-1::GFP and mCherry::PH expression in living 
gsa-1(RNAi) hermaphrodites.  (B-G) Fluorescence micrographs of VAB-1::GFP 
expression in dissected gonads from inx-22(RNAi); fog-2(q71) females (B, F), oma-
1(RNAi); oma-2(RNAi) hermaphrodites (C, G), and dab-1(gk291) hermaphrodites (D) 
and females (E).  RAB-11 (B, C) and WGA (D-G) staining were also examined.  Insets 
show magnified views of the oocyte cortex (upper right) and the interior (lower left).  
Scale bars represent 10 µm. 
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Similarly, goa-1(RNAi) or inx-22(RNAi) in female worms caused the global pattern of 

vesicle-associated proteins to resemble that typically seen in wild-type hermaphrodites 

(compare Fig. 36A, 36H, and 45).  I also observed similar effects following inx-14(RNAi) 

and kin-2(RNAi) in unmated females (Table 8). These results suggest that VAB-1::GFP is 

actively maintained in the endocytic recycling compartment in the absence of MSP/sperm 

and this localization is dependent on Gαo/i signaling in the gonadal sheath cells and 

sheath/oocyte gap-junctional communication. 

 Genetic mosaic analysis now shows that gsa-1 and acy-4, which respectively 

encode Gαs and adenylate cyclase, are required in the sheath/spermathecal cell lineages 

for oocyte MAPK activation and meiotic maturation (J. A. G. and D. G., unpublished 

results).  Thus, I examined the effect of Gαs signaling on VAB-1::GFP localization.  

Following gsa-1(RNAi) in a hermaphrodite background, I observed that VAB-1::GFP-

containing vesicles were cortically localized in a RAB-11-positive compartment (Fig.  

3F), as typically seen in unmated females (Fig. 35B), and detectable levels of VAB-

1::GFP were not observed at the plasma membrane, as visualized using the mCherry::PH 

domain marker (Fig. 45).  I observed that gsa-1(RNAi) in a hermaphrodite background 

appears to have a global effect on the localization of vesicle-associated proteins, as 

revealed by WGA staining (Fig. 36G).  This result further indicates that the Gαs signaling 

in the gonadal sheath cells can regulate membrane protein trafficking in oocytes.  
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Discussion 

Our results suggest a model in which a recycling MSP/Eph receptor functions to inhibit 

oocyte meiotic maturation in the absence of MSP/sperm (Fig. 38).  The localization of 

VAB-1::GFP to the endocytic recycling compartment is dependent on DAB-1 and RAN-

1, which both participate in the negative regulation of meiotic maturation in the absence 

of MSP/sperm (Govindan et al., 2003) and interact with the VAB-1 intracellular domain.  

In the absence of DAB-1 or RAN-1, VAB-1::GFP localizes to a new compartment that is 

defined by its lack of staining with WGA.  The requirement of DAB-1 and RAN-1 in 

VAB-1::GFP trafficking is only observed in the absence of MSP/sperm.  For this reason, 

I favor the hypothesis that DAB-1 and RAN-1 promote VAB-1::GFP endosomal 

trafficking into the recycling pathway in the absence of MSP/sperm (Fig. 38). In this 

model, the absence of DAB-1 and RAN-1 excludes VAB-1::GFP from the recycling 

compartment and favors trafficking to a different compartment in which the 

modifications detected by WGA staining are removed. Alternatively, DAB-1 and RAN-1 

may function in VAB-1::GFP export from the Golgi, as has been proposed for DAB-1 in 

EGL-17 export (Kamikura et al., 2003).  If DAB-1 and RAN-1 are required for efficient 

VAB-1::GFP export, however, this requirement must be dispensable in the presence of 

MSP/sperm.  Since I purified RAN-1 as a VAB-1-ICD-interacting protein from 

hermaphrodite protein extracts, I think it unlikely that VAB-1 trafficking in the 

hermaphrodite mode is regulated at the level of RAN-1 binding. 

When MSP/sperm is present, somatic Gαs function is required to exclude VAB-

1::GFP from the endocytic recycling compartment.   



Figure 38.  A model for VAB-1 trafficking and signaling in the control of meiotic 
maturation 
 
In the absence of MSP/sperm (left panel), VAB-1 traffics to the endocytic recycling 
compartment (ERC). The accumulation of VAB-1 in the endocytic recycling 
compartment in the absence of MSP/sperm depends on DAB-1 and RAN-1 and 
sheath/oocyte gap-junctional communication but not ephrins.  VAB-1 is proposed to 
signal while either in or in transit to the endocytic recycling compartment to inhibit 
oocyte MAPK activation and meiotic maturation.  In the presence of MSP/sperm (right 
panel), VAB-1 is largely excluded from the endocytic recycling compartment, and 
traffics away from the oocyte cortex (EE, early endosome; LE, late endosome; L, 
lysosome).  This MSP/sperm-mode of VAB-1 endosomal sorting requires Gαs signaling 
in the gonadal sheath cells.  
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The exclusion of VAB-1 from the endocytic recycling compartment is important for an 

efficient meiotic maturation response as indicated by our analysis of an rme-1 null mutant 

and rab-11.1(RNAi). Somatic Gαs signaling is also likely required for the localization of 

many other oocyte vesicle-associated proteins, as revealed by WGA staining.  This result 

suggests a model in which the sheath cells may play a role as the major sensor of 

MSP/sperm and regulate the ability of the oocyte to sense and respond to MSP/sperm 

(Fig. 38).  Are the alterations in vesicular trafficking I observe in the presence of 

MSP/sperm, and which require somatic Gαs signaling, a consequence of meiotic 

maturation or a regulatory response?  At present, I cannot distinguish between these two 

possibilities.  On the one hand, an rme-1 mutation and rab-11.1(RNAi) result in vab-1-

dependent reductions in the oocyte meiotic maturation rate.  Also, depletions of the weak 

negative regulators pkc-1, pqn-19, and vav-1 have no effect on VAB-1::GFP localization, 

despite the fact that these genes inhibit meiotic maturation in females to similar extents as 

dab-1(Govindan et al., 2003).  On the other hand, the CCCH zinc-finger proteins, OMA-

1 and OMA-2, which are redundantly required in the germ line for meiotic maturation 

(Detwiler et al., 2001), affect the global localization of vesicle-associated proteins in the 

oocyte (Fig. 45).  In addition, MSP injection experiments suggest that alterations in 

VAB-1::GFP localization represent slower responses than MAPK activation.  In fact, 

mpk-1(ga111ts) mutant hermaphrodites accumulate VAB-1::GFP at the oocyte cortex in 

the female pattern at the non-permissive temperature (Fig. 43).  Whether oma-1/oma-2 

and mpk-1 affect VAB-1::GFP as a consequence of meiotic maturation or a feedback 

response is unclear. Possibly, recompartmentalization of negative regulators in the germ 

line may contribute to sustaining high rates of meiotic maturation when sperm are 
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plentiful. Interestingly, meiotic maturation results in the translocation of the DYRK-

family kinase MBK-2 from the oocyte cortex to the cytoplasm, which is needed for its 

role in promoting the oocyte-to-embryo transition (Stitzel et al., 2006; 2007; Maruyama 

et al., 2007).  The reorganization of the oocyte during meiotic maturation may occur in a 

stepwise fashion, first inactivating negative regulators, then promoting the activity of 

effectors needed for completing meiosis and early embryonic development.  MSP 

signaling has also been shown to reorganize the oocyte microtubule cytoskeleton, and 

this response requires Gαs and oma-1/2 (Harris et al., 2006). The coordinate regulation of 

endosomal recycling and microtubule organization by MSP signaling is intriguing: the 

importance of the microtubule cytoskeleton in vesicular trafficking is well established; 

and microtubule dynamics and organization are documented to be affected by rab-11 ( 

Dollar et al., 2006; Zhang et al., 2008). 

Regulated endosomal trafficking of Eph receptors has been shown to be critical 

for axonal repulsion in the vertebrate nervous system (Marston et al., 2003; Zimmer et 

al., 2003; Cowan et al., 2005).  The ephrin-dependent endocytosis of Eph receptors 

requires the small GTPase Rac, which plays a major role in reorganizing the actin 

cytoskeleton during Eph receptor-promoted cell retraction in concert with Rho and Cdc42 

(Groeger et al., 2007).  The finding that phosphorylated Eph receptors are present in 

intracellular vesicles following ephrin binding suggests that Eph receptors may signal 

from intracellular vesicles (Marston et al., 2003; Zimmer et al., 2003).  Our finding that a 

recycling VAB-1 Eph receptor may be active in negatively regulating meiotic maturation 

in the absence of MSP is consistent with the idea that signaling may continue within the 

cell after initial ligand engagement.  This study reinforces the view that endosomal 
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trafficking and signaling are intimately linked, as has been found for several other highly 

conserved signal transduction pathways (González-Gaitán, 2003; von Zastrow and 

Sorkin, 2007).  MSP-domain proteins are highly conserved, and recently the MSP-

domain protein VAPB, which is mutated in Amyotrophic Lateral Sclerosis type 8 

(Nishimura et al., 2004), was shown to be a secreted ligand for Eph receptors in 

Drosophila and mammals (Tsuda et al., 2008).  Therefore, our findings of the regulated 

trafficking of the MSP/Eph receptor during meiotic maturation of the C. elegans oocyte 

and its modulation by Gαs signaling in the gonadal sheath cells may have wider 

relevance. 
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CHAPTER IV 

 

GENERAL DICUSSION AND FUTURE DIRECTIONS 

 

Summary  

In most females, oocytes arrest in meiotic prophase I for a prolonged period of 

time, and resume meiosis in response to hormonal signaling (Masui, 2001). Defects in 

meiotic processes may result in aneuploid gametes, which would cause infertility, 

embryonic lethality, or birth defects (Hassold and Hunt 2001). Therefore, understanding 

the underlying mechanisms controlling oocyte meiotic maturation might help us to 

identify new therapies for improving human health. In my dissertation work, I used C. 

elegans as a model organism to study this conserved biological process. In C. elegans, 

sperm release MSP via a vesicle budding mechanism to promote oocyte meiotic 

maturation (Miller et al., 2001; Kosinski et al., 2005). In the absence of sperm, oocyte 

VAB-1/Eph receptor and somatic sheath cell pathways act in parallel to inhibit oocyte 

meiotic maturation (Miller et al., 2003). MSP antagonizes VAB-1/Eph receptor and 

sheath cell inhibitory function to promote oocyte meiotic maturation (Miller et al., 2003). 

My work addresses the molecular mechanism that regulates VAB-1 function as a 

negative regulator during oocyte meiotic maturation in the absence of MSP/sperm, and 

the mechanism by which MSP antagonizes VAB-1 function to promote oocyte meiotic 

maturation. My work suggests that intracellular trafficking of VAB-1/Eph receptor is the 

key mechanism that regulates VAB-1/Eph receptor function as an inhibitor of oocyte 
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meiotic maturation. VAB-1/Eph receptor functions in or in transit to from the recycling 

endosome to negatively regulate oocyte meiotic maturation in the absence of MSP/sperm. 

MSP antagonizes VAB-1 entering into recycling endosomes to counteract VAB-1’s 

function. I further provided evidence showing that DAB-1/disabled functions in a 

common pathway with VAB-1/Eph, and binds VAB-1 intracellular domain in vitro, and 

promotes VAB-1/Eph receptor trafficking into the recycling endosomes in the absence of 

MSP/sperm. Moreover, I identified a small GTPase RAN-1 in a biochemical purification 

as a protein that interacts with VAB-1 intracellular domain. RAN-1 functions as a 

negative regulator of oocyte meiotic maturation, and acts in a common pathway with 

VAB-1/Eph receptor. RAN-1 also promotes recycling endosomal transport of VAB-

1/Eph receptor. In addition, in collaboration with J. Amaranath Govindan, we found that 

somatic G protein function in the somatic sheath cells to regulate oocyte meiotic 

maturation. In addition, I found that somatic G protein pathway regulates VAB-1 

trafficking through crosstalk. In this section, I present a summary of the major findings 

and discuss a model how VAB-1 inhibits oocyte meiotic maturation and how MSP 

antagonizes VAB-1’s function. I will also discuss some future studies need for testing my 

model. 

 

Regulated trafficking controls VAB-1/Eph receptor function during oocyte meiotic 
maturation  

In C. elegans, in the presence of sperm, oocytes undergo meiotic maturation in 

response to a sperm signal, MSP (McCarter et al., 1999, Miller et al., 2001). Whereas, in 

the absence of sperm, oocytes arrest at meiotic prophase I, and this meiotic arrest is 
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regulated by the VAB-1 MSP/Eph receptor and a somatic sheath cell pathway (Miller et 

al., 2003). In order to address how VAB-1 might regulate meiotic arrest, and how MSP 

might antagonize VAB-1’s function, I used genetics, cell biology, and biochemistry to 

investigate these mechanisms.  

In order to identify genes that regulate VAB-1’s function, I collaborated with J. 

Amaranath Govindan, who conducted a genome wide RNAi screen looking for negative 

regulators of oocyte meiotic maturation. He identified sixteen genes, and four of which 

function in a common pathway with the VAB-1/Eph receptor. We showed that DAB-

1/Disable1, PQN-19/STAM homolog, PKC-1/protein kinase C, and VAV-1/GEF 

function in the germline to negatively regulate oocyte meiotic maturation in the absence 

of sperm. In addition, we also identified the somatic G protein pathways that regulate 

oocyte meiotic maturation. Using a biochemical purification strategy to identify proteins 

that interact with VAB-1 intracellular domain, I identified that RAN-1 a small GTPase 

binds to VAB-1 intracellular domain. Govindan also found that RAN-1 functions in the 

germline and acts in a common pathway with VAB-1.  

More importantly, by using a germline expressed biological functional VAB-

1::GFP fusion protein, I showed that VAB-1 is enriched in the endocytic recycling 

compartment in the absence of sperm, and is largely excluded from the endocytic 

recycling compartment upon the stimulation of MSP/sperm. I also showed that MSP is 

sufficient for changing VAB-1 localization. Furthermore, I showed that the recycling 

VAB-1 inhibits oocyte meiotic maturation, because blocking exit of VAB-1 from the 

endocytic recycling compartment inhibits oocyte meiotic maturation in the presence of 

MSP/sperm. In addition, I showed that Disabled DAB-1 and RAN-1 GTPase promotes 
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VAB-1::GFP trafficking into the endocytic recycling compartment in the absence of 

sperm. Somewhat surprisingly, I found that somatic G protein also regulates VAB-

1::GFP trafficking.  Taken together, My finding suggest that regulated trafficking is a key 

mechanism that DAB-1/disabled and RAN-1/GTPase regulate VAB-1/Eph receptor’s 

function as a inhibitor of oocyte meiotic maturation and that MSP antagonizes VAB-1 

function by regulating its trafficking.  

 

Further outstanding questions 

 My findings that regulated trafficking is a key mechanism that regulates oocyte 

meiotic maturation, raises additional questions. For example, how does VAB-1 inhibit 

oocyte meiotic maturation in or in transit to from the endocytic recycling compartment? 

How does MSP regulate VAB-1 trafficking? How do DAB-1 and RAN-1 regulate VAB-

1 trafficking? How do somatic G proteins regulate VAB-1 trafficking in the oocytes? 

How does MSP interact with VAB-1? One question which is not quite related to my 

findings, but I found to be interesting, is what are the other MSP receptor(s), which are 

likely to be GPCR? I will now explain the potential strategies that can be used to address 

these questions.  

 

How does endocytic recycling regulate VAB-1 function as a negative regulator of 
oocyte meiotic maturation 

 The most interesting question that I want to ask is how recycling VAB-1/Eph 

negatively regulates oocyte meiotic maturation. Since VAB-1/Eph is a receptor tyrosine 
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kinase, one possibility is that VAB-1 gets phosphorylated and becomes activated in the 

endocytic recycling endosomes, where VAB-1 inhibits oocyte meiotic maturation. VAB-

1 inhibits VAB-1 might interact with its effector in recycling endosomes. To test this 

hypothesis, a specific antibody that can recognize tyrosin phosphorylated VAB-1 is 

needed to examine whether VAB-1/Eph receptor gets phosphorylated only in the 

endocytic recycling endosomes. This woud be technically demanding because the in vivo 

phophorylation sites would forst have to be definded.  In addition, VAB-1/Eph receptor 

might inhibit oocyte meiotic maturation by activating VAB-1 downstream effectors 

which are localized in the endocytic recycling endosomes. To test this hypothesis, 

proteins that are associated with VAB-1::GFP vesicles need to be identified. In addition, 

to understand how VAB-1/Eph receptor functions in the endocytic recycling endosomes 

and what molecules regulate VAB-1/Eph receptor trafficking, it is also very important to 

know what links VAB-1/Eph receptor signaling to oocyte meiotic arrest. Oocyte meiotic 

maturation is regulated by MPF complex in most animals. How VAB-1 inhibits MPF 

complex activity and what signal cascades lie between VAB-1 and MPF? Since 

inactivation of MPF is regulated by phosphorylation, and VAB-1/Eph receptor is a 

tyrosine kinase, it is possible that VAB-1/Eph receptor kinase is activated in the recycling 

endosomes, then activated VAB-1 triggers a series of phosphorylation events which 

eventually inactivates MPF. To test all these hypotheses, we need to know what proteins 

are associated with VAB-1 vesicles.  

Recently, I did some preliminary experiment to purify the VAB-1 vesicles. I 

homogized the 15 ml C. elegans adult female worms that carrying VAB-1::GFP.  

   



Figure 46. Fractionation of VAB-1::GFP vesicle 
  
A. Strategy of fractionation of VAB-1::GFP vesicle. 30 ml packed female worms 
carrying VAB-1::GFP were homogenized then were roughly fractionationed by 
centrifugation. The pellet of 30,000xg were collected and resuspended in buffer, then 
were applied to centrifugation on a sucrose gradient (10%-40%). Centrifugation fractions 
were analyzed by using anti-VAB-1 and anti-RAB-11 antibodies.  
B. VAB-1::GFP cofractionations with RAB-11. VAB-1::GFP were pelleted in fraction 
with relative high sucrose concentration. Endogenous VAB-1 is associated with VAB-
1::GFP in this fractionation strategy. RAB-11 is also enriched in fractions containing 
VAB-1::GFP.  
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Then I performed fractionation of this worm extract by centrifugation and I found that 

most VAB-1::GFP and endogenous VAB-1 are distributed in a fraction that pellet at 

~30,000 xg centrifugation force. I further purified VAB-1::GFP vesicles by 

centrifugation on a sucrose gradient (10%-40%) and found that VAB-1::GFP and 

endogenous VAB-1 are enriched in fractions of higher sucrose concentration (Fig. 46). 

Then I used an anti-VAB-1 specific antibody to immunoprecipitate VAB-1::GFP vesicles. 

My preliminary results suggest that endogenous VAB-1 is always associated with VAB-

1::GFP fractions and endocytic recycling marker RAB-11 is always associated with 

VAB-1::GFP fraction as well. To further identify the VAB-1::GFP vesicle components, I 

will scale up my purification and use mass spectrometry strategy to identify the proteins 

that associated with VAB-1::GFP vesicles. I can also test the VAB-1::GFP 

phophorylation status in this vesicles by mass spectrometry.  I expect some of the 

proteins that associate with VAB-1::GFP vesicles are negative regulators of oocyte 

meiotic maturation, and they are activated by VAB-1. To test this hypothesis, once I have 

the protein list of VAB-1::GFP vesicles, I will inactivate those candidate gene in female 

background by RNAi or use the genetic null mutants if they are available. Then I am 

going to examine whether those gene candidates are negative regulators of oocyte meiotic 

maturation. Alternatively, VAB-1 could inhibit oocyte meiotic maturation by inactivating 

some positive regulators, to test this hypothesis, I will examine the gene candidates that 

associate with VAB-1::GFP vesicles  to see whether they promote oocyte meiotic 

maturation in the vab-1(0) female background. 

Another interesting questions is what regulates VAB-1 trafficking. In my 

dissertation work I found that rab-11 and rme-1 promotes VAB-1::GFP recycling in the 
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presence of sperm. endocytic trafficking is a quite complex process, and endocytic 

trafficking proteins need to function in a orchestra to regulate these processes. Since 

RAB-11 is associated with the endocytic recycling compartment, I hypothesize that some 

other trafficking proteins that regulate VAB-1 localization must be associated with VAB-

1::GFP vesicles as well. To test this hypothesis, I will analyze the proteins candidates that 

associate with VAB-1::GFP vesicles to test whether they affect endocytic recycling. I 

will conduct a VAB-1::GFP localization analysis after inactivating the VAB-1::GFP 

vesicle gene candidates by RNAi or use genetic null mutants in the presence/absence of 

sperm. In addition, I will test whether these gene candidates affect general trafficking 

process by examing whether they regulate oocyte yolk uptake.  

 

How MSP regulate VAB-1 trafficking 

 The enrichment of VAB-1::GFP in the endocytic recycling compartment in the 

absence of sperm or in the absence of Gαs allows me to ask whether MSP regulates 

VAB-1 trafficking indirectly.How MSP antagonizes VAB-1 from entering into the 

endocytic recycling compartment appears not to be due to changes in the general 

endocytic machinery in presence/absence of sperm, since the endocytic trafficking 

component proteins (e.g. RAB-11, RAB-5, EEA-1, RAB-7, clathrin, caveolin-1) do not 

change their localization in the presence or absence of sperm (Grant et al., 1999; Grant et 

al., 2001; Sato et al., 2006;). Thus the presence of MSP must change VAB-1 structure 

somehow to expose VAB-1 to some trafficking regulators that are not accessible to VAB-

1 in the absence of sperm. Alternatively, MSP might activate or inactivate some VAB-1-
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specific trafficking regulators.  To test my hypothesis, it is very important to know what 

is associated with VAB-1::GFP vesicles in the presence of sperm. Then I could test 

whether these proteins affect VAB-1::GFP trafficking in the presence or absence of 

sperm. If they promotes VAB-1::GFP trafficking into its functional endocytic recycling 

compartment in the presence of sperm, it suggests that MSP antagonizes their trafficking 

function. If these protein candidates inhibit VAB-1 entering into its functional endocytic 

recycling compartment in the presence of sperm, it suggests that the MSP activates the 

trafficking function of these endocytic proteins.  

 

How do DAB-1 and RAN-1 regulates VAB-1 trafficking 

 My dissertation work suggests that DAB-1/disabled promotes VAB-1 trafficking 

in the absence of sperm. DAB-1 is a homolog of mammalian Dab2 protein, which is a 

putative tumor suppressor protein implicated in cell surface receptor turnover. Dab2 is a 

complex molecule with N terminal phosphotyrosine binding (PTB) domain, which binds 

to multiple cell-surface receptors bearing FxNPxY motif. Multiple studies suggest that 

the tyrosine residue of this FxNPxY motif is essential for Dab2 binding. I found a similar 

motif GLNHVY at the intracellular portion of VAB-1/Eph receptor, and I confirmed that 

DAB-1 interacts with VAB-1 intracellular domain in vitro. However, whether GLNHVY 

of VAB-1 is required for DAB-1 binding and VAB-1 internalization is unclear. To 

answer this question, a VAB-1 mutation without GLNHVY motif needs to be generated 

to test the binding activity with DAB-1 protein. If this GLNHVY motif is required for 

VAB-1 binding to DAB-1, a mutant VAB-1::GFP which does not bear the GLNHVY 
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motif can be generated and analyzed for its localization. If this mutant VAB-1::GFP 

localizes only at the oocyte membrane, this would suggest that the GLNHVY motif of 

VAB-1 is required for its internalization. If this mutant VAB-1::GFP, which does not 

bear GLNHVY motif,  displays a hermaphrodite  pattern, this result would suggest that 

DAB-1 is not required for VAB-1 internalization but is required for VAB-1 to enter the 

endocytic recycling compartment.  

Very interestingly, I found that localization of DAB-1 is dependent on sperm. In 

the absence of sperm, DAB-1 distributes uniformly throughout the oocyte (female 

pattern, Fig. 27), however, in the presence of sperm, DAB-1 is highly enriched at the 

oocyte cortex (hermaphrodite pattern, Fig. 27). This localization change is probably due 

to endocytosis, since blocking the endocytic process by incubating female worms at 4ºC 

for 1 hour alters DAB-1 localization from the female pattern to hermaphrodite pattern. 

These observations suggest that the MSP/sperm signal might alter DAB-1 trafficking 

mode.  

I identified RAN-1, a small GTPase, in a biochemical purification as a protein 

that interacts with the VAB-1 intracellular domain. RAN-1 is a negative regulator of 

oocyte meiotic maturation that acts in a common pathway with VAB-1. Ran is well know 

for its regulatory role during nuclear transport. Ran has also been implicated in mitotic 

spindle assembly. Studies suggest that RanGTP can induce assembly of both microtubule 

asters and spindle-like structures in the egg extracts in the absence of chromatin and 

centrosomes. (carazo-salas et al., 2001, Wilde et al., 2001) and increased RanGTP can 

override the spindle checkpoint and activates the APC/C in Xenopus egg extract. By 

contrast, increasing hydyolysis of RanGTP restores the checkpoint activity (Carazo-Salas 
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et al., 2001; Wilde et al., 2001). Ran has also been implicated in regulating nuclear 

envelope assembly (Askjaer et al., 2002; Clarke and Zhang 2001; Hetzer et al., 2005). 

My studies suggest that Ran is also involved in vesicle trafficking. How Ran regulates 

VAB-1/Eph receptor trafficking is unclear. RCC1, a guanine nucleotide exchange factor 

(GEF), is associated with chromatin, where it catalyses Ran to exchange its GDP for GTP. 

RanGAP is enriched in cytoplasm where it stimulates Ran hydrolyzing GTP to GDP. Ran 

binding protein 1 is also enriched in the cytoplasm and it regulates Ran transport cargoes 

from nucleus to the cytosol. Therefore, RanGTP is highly concentrated in the nucleus, 

and RanGDP is concentrated in the cytoplasm. Since VAB-1 localizes in the vesicles in 

the cytoplasm, I propose a hypothesis in which RanGAP and RanBP1 might be required 

for RAN’s function in regulating VAB-1 localization. To test this hypothesis, analysis of 

VAB-1::GFP localization needs to be conducted after depleting Ran cycling proteins: 

such as ran-2/RanGAP, npp-9/RanBP1 using RNAi 

 

How do somatic G proteins regulate VAB-1 trafficking in oocytes 

It was somewhat surprising that I found somatic G protein pathways affect VAB-

1 trafficking in the oocytes. Govindan found that somatic G protein pathways play a 

major role for regulating oocyte meiotic maturation in response to sperm signaling 

(Chaptor II; Govindan J.A. and Greenstein, D. unpublished results). This finding might 

explain how VAB-1 functions in concert with G proteins to regulate a fully on/off oocyte 

maturation when sperm is abundant/absent, and the moderate rate of oocyte maturtion in 

between (Kosinski et al., 2005).  How G protein signaling from somatic cells affect 
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VAB-1::GFP trafficking is an intriguing question to me. Interestingly, MSP signaling has 

also been shown to reorganize the oocyte microtubule cytoskeleton, and this response 

requires Gαs (Harris et al., 2000). Moreover, the importance of the microtubule 

cytoskeleton in vesicular trafficking is well established; and microtubule dynamics and 

organization are documented to be affected by rab-11. (Dollar et al., 2002; Zhang et al., 

2008). Thus, it seems likely that G protein signaling regulates microtubule dynamics, 

which facilitate VAB-1 vesicle trafficking. Since cytoskeletal elements (ie. actin or 

microtubule) are critical for vesicle trafficking, I predict that disrupting the cytoskeleton 

will change VAB-1 localization. However, I am more interested in the specific 

mechanism by which signaling reorganizes microtubule in oocytes. 

 

How does MSP interacts with VAB-1 

 The interaction between MSP domain containing protein and Eph receptor is 

evolutionary conserved. Human VAPB, a MSP domain containing protein, is associated 

with Amyotrophic lateral sclerosis (ALS), and the MSP domains of VAP proteins are 

cleaved and secreted to function as ligands for Eph receptors (Tsuda et al., 2008). 

However, how MSP binds to VAB-1 is still unclear. Although the crystal structure of 

MSP suggests that MSP has an immunoglobulin-like fold (Bullock et al., 1996), 

mammalian Eph receptor crystal structure has been revealed as well. But how MSP 

interacts with VAB-1/Eph receptor is still unclear. Which amino acids of MSP are 

required for VAB-1 interaction; which parts of VAB-1 interact with MSP? To address 

these questions, the crystal structure of MSP-VAB-1 complex needs to be analyzed, and 
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analysis of interaction of MSP mutations to VAB-1 ectodomain needs to be conducted. 

Analysis of VAB-1 mutations that interact with MSP protein to test which domain of 

VAB-1 binds MSP can be performed as well. Studies suggest that MSP can antagonize 

ephrin ligand binding to Eph receptor, and the crystal structure of ephrin-Eph complex 

suggest that ephrin inerts its loop into Eph receptor channel. I predict that in the MSP-

VAB-1 crystal structure, MSP binds to Eph using the same Eph receptor channel that 

ephrins use. 

 

What are the other MSP receptor(s) 

  This question is quite intriguing to me although is not derived from my 

dissertation work. VAB-1 is a MSP receptor in the oocyte, however, multiple lines of 

evidence suggest there are other receptors for MSP. The identification of G protein 

signaling in sheath cells that function as regulators of oocyte meiotic maturation suggests 

that multiple GPCR, which couple to Gαs, Gαo/i and Gαq are involved (Govindan and 

Greenstien, unpublished results). These GPCRs are predicted to be expressed in sheath 

cells.  
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