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CHAPTER I 

 

INTRODUCTION 

 

Imaging Angiogenesis 

Once avascular tumor volumes reach approximately 1-2 mm
3
 further growth is no 

longer supported by passive diffusion of nutrients, but requires the recruitment of new 

vasculature to the tumor mass (1).  The recruitment of new vasculature, or angiogenesis, 

is a believed to be a characteristic trait of nearly all malignant cancers (2). Angiogenesis 

in a non-pathological state typically results in the formation of normal vasculature, 

hierarchically organized from large (arteries) to small (capillaries), whereas in 

pathological states the resulting vasculature is often fragile, leaky, poorly organized, and 

contains incomplete vessel connections (3). The differences between healthy and 

abnormal vasculature is one aspect that can be investigated through magnetic resonance 

imaging (MRI).  

Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) is an 

imaging technique that can be used to investigate vascular properties of tumors including, 

for example, blood vessel perfusion and permeability, blood volume, and the 

extravascular extracellular volume fraction. DCE-MRI probes these characteristics 

through analysis of dynamic voxel or region of interest (ROI) signal-intensity curves 

obtained before, during, and after injection of a paramagnetic contrast agent (CA) such as 

gadopentetate dimeglumine, Gd-DTPA, (Magnevist, Wayne NJ). In healthy vasculature 

Gd-DTPA predominantly remains within the vessel and is cleared by the kidneys. 

However, in abnormal vasculature with highly permeable vessel walls, it leaks into the 
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surrounding tissue space. As the CA travels through the vasculature and extravasates into 

tissue, the local T1, T2, and T2
*
 are shortened, to a degree depending on the local 

concentration of CA thereby resulting in a change in the measured signal-intensity. Time 

dependent variations of the signal-intensity curve are related to local physiological 

properties (e.g., vessel wall permeability, blood flow, blood volume, and extravascular 

space) which can be investigated through pharmacokinetic modeling (4) making it a 

valuable tool in preclinical and clinical studies of, for example, anti-angiogenic 

treatments (5). 

 DCE-MRI data can be analyzed qualitatively, for example, observing tissue 

enhancement after CA injection to delineate tumor tissue from normal tissue, or 

quantitatively to extract values describing CA uptake or tumor characteristics. One class 

of semi-quantitative approaches that does not require modeling of CA kinetics are 

measures such as wash-in rate and the initial area under the curve (iAUC).  The wash-in 

rate is defined as the maximum slope between injection of the CA and the peak CA 

intensity, and has been used to distinguish the early enhancement of tumor tissue from 

healthy tissue (6). Similarly, iAUC measurements have been used to monitor response to 

anti-angiogenic therapies (7); however, the exact physiological meaning of iAUC 

remains unclear (8,9). Both wash-in rate and iAUC describe heterogeneity of CA uptake 

and are a mixed measurement of blood flow, vessel permeability, and interstitial space 

(9). Individual components of a tumor’s vasculature system (e.g., blood flow) can be 

examined individually through pharmacokinetic modeling of the CA. These 

pharmacokinetic models describe the uptake, distribution, and clearance of the injected 
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CA within the body allowing parameters describing the vasculature and tumor 

environment to be assessed. 

 

Components of Quantitative DCE-MRI 

In order to perform quantitative DCE-MRI, three data sets are required of the 

tissue under investigation:  1) a pre-contrast T1 map, 2) serial T1-weighted images 

obtained before, during, and after the injection of a paramagnetic CA, and 3) the time rate 

of change of the concentration of CA in a nearby feeding vessel, the so-called vascular 

input function (VIF). An example VIF, shown in Figure 1, consists of a three distinct 

characteristics, the rapid wash-in (labeled in the figure as ―a‖), the peak CA concentration 

in the plasma (b), and the washout (c), that need to be estimated to  describe CA kinetics 

in blood.  

 

 
Figure 1: An example VIF acquired from the linguofacial artery in a rat. Following 

injection of a bolus of a CA, Cp rapidly increases (a), reaches its peak (b) concentration 

during the first pass, and subsequently decreases (c) due to distribution and elimination. 

Point (a) represents the rapid wash-in of a bolus of CA 
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Capturing both the rapid wash-in and the peak concentration require high temporal 

resolution sampling. The washout portion, however, can be characterized with lower 

temporal resolution sampling. Accurately estimating these distinct parts in a VIF is 

extremely challenging, particularly in small animals where small vessel sizes impedes 

direct VIF measurement.  

 

Measuring the Vascular Input Function  

In general, there are three main ways to acquire the VIF: 1) through arterial blood 

sampling (10),  2) assuming a functional form (e.g., bi-exponential decay) of the VIF 

(11), and 3) directly from a vessel visible in the imaging data (11-13).  Arterial blood 

sampling is considered the ―gold standard‖ as it allows direct measurement of the CA 

concentration. However in small animals where the total blood volume is about 2 mL for 

mice and 16 mL for rats (14), blood sampling is both limited by the number of samples 

that can be acquired and the achievable temporal resolution.  One study by Wedeking et 

al (15) characterizing the plasma distribution of Gd-DTPA in rats acquired 22 samples 

over 90 minutes. After injection with the CA, the initial rapid rise was sampled every 30-

seconds followed by samples spaced 1-minute, 10-minutes, and 15-minutes apart during 

the washout portion. This study showed that after the CA concentration reaches its peak 

in the blood its washout can be described by bi-exponential decay. A later study by 

Nagaraja et al (10) in rats compared MRI-measured VIFs to blood sampled VIFs. The 

MRI-measured VIF was selected from venous blood in the superior sagittal sinus, 

whereas after the MRI examination the blood sampled VIF was collected from the 

femoral artery following a second injection of the CA. This study improved the temporal 
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resolution for the arterial blood sampling by characterizing the rapid rise of CA every 5-

seconds and the washout of the CA every 60-seconds, but required blood sampling after 

the DCE-MRI acquisition. Alternatively, assuming a functional form of the VIF can 

provide a well characterized and a high signal-to-noise ratio (SNR) curve. A functional 

form can be generated through fitting a model describing CA kinetics to a VIF acquired 

through (for example) arterial blood sampling or direct imaging of blood vessels. One 

common form describes CA washout through bi-exponential decay (15), a modification 

of which includes two linear fits describing the rapid rise of the CA prior to the peak (16). 

In this application, the two exponentials refer to the distribution of the CA between 

compartments and the elimination of CA in the compartments by the kidneys (17).  

Functional descriptions of the VIF allow high SNR VIFs to be disseminated through 

publication or generated from low SNR data. An early example using a functional form 

of the VIF is in Tofts et al (17), where VIF data from the literature (18) was fit to a bi-

exponential decay and used to characterize CA concentration in plasma. Another 

functional form derived from an average of a cohort of VIFs consists of a combination of 

a Gaussian and an exponential modulated by a sigmoid (19).  Similar to the bi-

exponential decay models it characterizes the rapid rise, peak concentration, and 

washout; however, this new form allows the recirculation of the CA to be characterized 

and included in the washout phase. More recently, these functional forms were applied 

and compared to individual and population-averaged VIFs by McGrath et al (11) as a 

proposed alternative to low temporal resolution or low SNR VIFs.  In this study, the bi-

exponential form provided the closest agreement to estimates of K
trans

 and ve derived 

using a measured VIF.  The VIF described by a Gaussian and an exponential modulated 
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by a sigmoid provided closer agreement for estimates of vp compared to the bi-

exponential model. The closer agreement to vp obtained by this model was suggested to 

be a result of the introduction of a recirculation peak into the model, which may be 

critical in assessing vp accurately.  

The VIF may also be acquired directly from the imaging data if a well-resolved 

blood pool from a feeding vessel is present within the field of view (FOV). One approach 

is to include either the heart or a major artery within the field of view (11,20). This can be 

challenging in small animals where small vessel sizes make it difficult to select blood 

pools devoid of partial volume effects. In preclinical work, this may restrict tumor 

implantation sites or require larger FOVs and the use of larger imaging coils. If a major 

blood pool is not within the FOV of the tumor, interleaving the target tissue (e.g., a 

tumor) with an additional slice containing the vessel, or through dual coil acquisition of a 

peripheral artery or vein (21), can provide an imaging derived measure of the VIF. Dual 

coil approaches typically involve the use of two surface or volume coils to image both the 

tumor and either the tail or heart. Both interleaving approaches lessen the potential need 

of a compromise between the desired VIF and tumor locations. 

 All of these image-based approaches, however, require high temporal resolution 

acquisitions to capture the VIF’s rapid uptake and washout of the CA. Conversely in 

tissue, CA uptake and washout can be accurately characterized at a lower temporal 

resolution. Additionally, in pre-clinical cancer studies high spatial resolution is desired to 

observe tumor heterogeneity. Tumors do not consist of just a single tissue type but 

consist of multiple tissue types resulting in a range of tumor properties (22,23). These 

image-based approaches therefore require a technical balance between high spatial and 
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temporal resolution acquisitions in order to characterize both tumor heterogeneity and the 

VIF. 

 

Population-Averaged VIF 

Two alternative imaging derived approaches that alleviate the technical 

constraints of acquiring both high spatial and temporal resolution images are the 

reference region method and the use of a population-averaged VIF. In a reference region 

analysis, parameters and the signal-intensity time course from a reference tissue are used 

in pharmacokinetic analysis to calibrate CA uptake in tumors (24). This allows the high 

temporal resolution acquisition required to characterize the VIF to be replaced by a 

reference tissue whose CA uptake and washout can be characterized at a lower temporal 

resolution. Rather than acquire a VIF for each individual subject, some investigators have 

explored using a population-averaged VIF built from a cohort of subjects and 

subsequently used for pharmacokinetic analysis (11,19,25-28). Exchanging an individual 

based VIF with a population-averaged VIF reduces the considerable temporal resolution 

and SNR restrictions required for individual VIF measurements, thereby potentially 

allowing improved characterization of the tumor environment. An early investigation by 

Simpson et al (29) in rats on the optimization of VIF acquisition suggested the use of a 

population-averaged VIF for measuring perfusion. The population-averaged VIF resulted 

in errors up to 60% when a common dose was used for each rat; however, when rats were 

injected with a dose proportional to their mass these errors dropped to 20%. These 

observed errors in perfusion estimates may arise from both experimental (e.g., anesthetic 

agent, duration of anesthesia, dose per mass) and physiological (e.g., disease state, blood 
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pressure, heart rate) variations between the individual and the cohort. A study by Pickup 

et al (30) in mice preferred the use of an individual VIF over the population-averaged 

VIF due to considerable inter-animal variability in the VIF resulting in inconsistencies 

between parameters derived from both VIFs. (It should be noted, however, that this study 

included only four mice in the data set.)  Contrary to these two studies, Parker et al (19) 

generated a population-averaged VIF from 23 patients (ages ranging from 18-80 years) 

with advanced cancer and demonstrated that a high-temporal-resolution population VIF 

had increased sensitivity to therapy induced changes. Following this McGrath et al (11) 

compared (in rats) the repeatability and sensitivity of pharmacokinetic parameters 

estimated using an individual VIF, a population-averaged VIF, and functional forms fit to 

the population-averaged VIF. Increased sensitivity and repeatability of model estimates 

was observed for both the raw data population-averaged VIF and the bi-exponential 

model fit of this data over the individual VIF. An additional clinical study by Meng et al 

(28) compared the ability of parameters obtained with the population-averaged and the 

individually acquired VIF to predict prostate cancer biopsy results. No significant 

difference was observed between predicted biopsy results obtained through either VIF. A 

more recent study with rats investigated the effect of heart rate on pharmacokinetic 

parameters extracted using a population-averaged VIF from DCE-CT to those extracted 

through a reference-region approach (26). No significant difference was observed 

between the population-averaged VIF and reference region approaches for rats with the 

same heart rate; however, when heart rate was increased by 30% a 19-43% difference 

was observed between reference region and the population-averaged VIF. Most recently, 

a study by Loveless et al (27),  compared the VIF in mice using two different CAs of 
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varying molecular weight and reported very high correlation (concordance correlation 

coefficient > 0.850) for K
trans

 parameters estimated using population and individual VIFs 

with Gd-DTPA. 

Following the work of Loveless et al (27), the goal of this study is to perform a 

careful comparison between individual and population-averaged VIFs derived from a 

cohort of rats bearing brain tumors. The individual and population based VIFs were used 

to extract physiologically relevant parameters through DCE-MRI modeling and the 

resulting parameters were statistically compared at both the voxel and ROI level.    
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CHAPTER II 

 

EXPERIMENTAL METHODS 

 

Pharmacokinetic Modeling Theory  

 Pharmacokinetic modeling is a quantitative tool that can be used in the analysis of 

DCE-MRI data. Through analysis of these data, parameters describing vessel wall 

permeability, blood flow, blood and extravascular volume fractions can be extracted. A 

commonly used model, developed by Kety (31) and applied to DCE-MRI (4), consists of 

two compartments: the concentration of the CA in blood/plasma space (Cp) and the 

concentration of the CA in tissue space (Ct). The two compartment model, shown in 

Figure 2, includes two transfer constants describing the exchange of CA between 

compartments.  

 

 
Figure 2: Two compartment model describing concentration of the CA in the plasma 

space (Cp) and in the (extravascular) tissue space (Ct). Movement between compartments 

is described by rates K
trans

 and K
trans

/ve.  
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It is straight forward to write down the relevant differential equation describing this 

situation: 

 
 

        
 

transt trans

p t
e

dC t
KK C t C t

vdt .
 [1] 

In words, Eq. [1] describes the time rate of change in Ct as the amount of CA entering Ct 

from Cp minus the amount of CA leaving Ct and entering Cp.  The transfer constant K
trans

 

describes the movement of the CA from Cp to Ct, while K
trans

 divided by the extravascular 

extracellular volume fraction ve (K
trans

/ve) describes the movement of the CA from Ct 

back to Cp. The physiological meaning of K
trans

 depends on assumptions of tissue 

characteristics. Tissues where flow is much greater than blood vessel permeability are 

said to be permeability limited, while areas with highly permeable blood vessels but weak 

blood flow are flow limited. In tumors, tissues are assumed to be either permeability 

limited or a combination of both flow and permeability limited.  Eq. [1] is a first order 

ordinary differential equation which can be solved by (for example) the Laplace 

Transform method to yield: 

    
   

0

  
  

trans
e

t
K v t utrans

t pC t K C u e du  [2] 

Not included in the model displayed in Figure 2 is the effect of a significant 

vascular component in the region under investigation. Avascular tissues consist of both a 

cellular and an extracellular component, while vascular tissues consist of a cellular, a 

vascular, and an extravascular extracellular component. In tumors undergoing 

neovascularization this vascular space can affect CA pharmacokinetics and, if not 
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included in the pharmacokinetic model, result in overestimation of K
trans

. Figure 3 shows 

an adaptation of Figure 2 to include the vascular component. 

 

 
Figure 3: An extension of the model in Figure 2, this model accounts for both a plasma 

space and an extracellular extravascular space as CA compartments within the tissue 

space. Here K
trans

 and K
trans

/ve describe the movement of CA in between different the two 

different tissue space components 

 

Ct can now be calculated by adding the concentration of CA in the extracellular 

extravascular space, Eq. [2], and Cp resulting in Eq. [3]: 

    
   

 
0

  
    

trans
e

t
K v t utrans

t p p pC t K C u e du v C t  [3] 

In order to use the Toft’s model in Eq. [2] and its extension presented in Eq. [3], to 

extract pharmacokinetic parameters a  T1 map, a set of  T1-weighted images before, 

during, and after injection with a CA, and knowledge of the CA kinetics in blood is 
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needed. Typically changes in local R1 (≡ 1/T1) due to the addition of a paramagnetic CA 

can be estimated via Eq. [4]: 

  1 1 10R r CA R  
,
 [4] 

where the concentration of the CA, [CA], its relaxivity, r1, and the pre-contrast R1 value, 

R10, is known. However, in DCE-MRI the concentration of the CA in a given voxel or 

ROI is not known a priori and must be determined. Additionally, Eq. [4] is adjusted to 

reflect only the extravascular extracellular space (ve) of the tissue and plasma 

compartments. Rearranging to solve Eq. [4] for Ct yields: 

   1 10

1

( )
t

e

R t R
C t

r v





 [5] 

Similarly, after rearranging to solve for Cp and excluding the cellular volume, or 

hematocrit (h), Eq. [4] becomes: 

  
 

1 10

1

( )

1
p

R t R
C t

r h




 
 [6] 

Ideally T1 maps (≡ 1/R10) would be acquired at each time point, however, T1 changes too 

rapidly for this approach to be feasible. Instead a baseline T1 map is acquired to calibrate 

future changes as observed in the set of serial T1-weighted images. Using a spoiled 

gradient echo sequence a R1 time course can be extracted from a signal-intensity curve 

via Eqs. [7] and [8]: 

  
 

 
0

1

0

sin cos1
ln

sin

 



   
   

  

S S t
R t

TR S S t
, [7] 
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where TR and α are scan parameters, S0 was defined as 

 
 

10

10
0

1 cos

1 sin





 

 

  
  

   

TR R

pc TR R

e
S S

e
, [8] 

where Spc is the pre-contrast signal intensity. By extracting dynamic signal intensity data 

of voxel or ROI within tumor tissue Ct can be determined using Eqs. [5, 7-8] and using 

the VIF Cp can be determined using Eqs. [6-8]. 

In this work, both the standard (ST) model, Eq.[2], and the extended (EX) model, 

Eq. [3], are used in evaluating DCE-MRI data sets. These models provide insight into 

both predominately avascular and vascular tissues. The definition of the tissue space in 

the ST model assumes that either the tumor tissue is avascular or has a negligible 

vascular component.  However, if the vascular component of tissue space is significant, 

as is the case in many tumors undergoing neovascularization, the EX model may be more 

accurately describe Ct. 

 

Animal Model 

 Female Sprague-Dawley rats (n = 8, 234–270 g) were anesthetized, given 

analgesic and inoculated with C6 glioma cells (1×10
5
 cells) via stereotaxic injection. CA 

was injected through a jugular catheter placed within 24 h of imaging. During each MRI 

procedure body temperature was maintained near 37 ˚C by a flow of warm air directed 

over the animal and respiration was monitored using a pneumatic pillow.  Each rat was 

anesthetized using 2% isoflurane in oxygen for all surgical and imaging procedures. All 

experimental procedures were approved by Vanderbilt University’s Institutional Animal 

Care and Use Committee. 
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DCE-MRI 

 While imaging procedures are described in more detail elsewhere (12), we briefly 

present the salient features. MRI was performed using a 9.4 T horizontal-bore magnet 

(Agilent, Santa Clara, CA, USA). A pre-contrast map of T1 (i.e., T10) was generated with 

data from an inversion-recovery snapshot experiment-repetition time (TR) = 12s, with 10 

TIs logarithmically spaced between 0.250 and 11 s, two averaged excitations, 128 × 128 

samples, 32 × 32 mm field of view prior to the injection of the CA. Two slices were 

acquired during the DCE-MRI experiment, one through the center of the brain tumor and 

another through the neck containing the major vessels feeding the brain. The DCE-MRI 

protocol consisted of a standard spoiled gradient-echo sequence with TR/TE/α = 10 

ms/2.1 ms/15˚, a 96 × 96 acquisition matrix, and two averaged excitations; this protocol 

resulted in a temporal resolution of approximately 2 seconds. Dynamic images were 

collected before, during, and for 20 minutes after manually delivering a 200 µl bolus of 

0.05 mmol kg
-1

 Gd–DTPA (Magnevist, Wayne, NJ) over 5 s. 

 

Data Analysis 

 For each animal, the pre-contrast T1 map was used to identify the tumor ROI from 

which an R1 tissue time course was extracted for each voxel. This R1 tissue time course is 

then related to Ct via Eq. [5], where R10 ≡ 1/T10, and r1 was assigned 3.8 mM
-1

s
-1 

(32). A 

(conservative) five to ten voxel ROI was then manually drawn around the linguofacial 

artery in the neck from which voxels exhibiting partial volume effects were eliminated by 

visual inspection and the remaining voxels were averaged to form the VIF. Using a 

model of fast water exchange (33) across red blood cell membranes, the R1 time course of 
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the VIF was converted to Cp via Eq. [6], where blood R10 was assigned 0.435s
-1

 (34) and 

h was set to 0.46.  After aligning the arrival times of the individual VIFs (VIFind), the 

mean of seven of the eight VIFind was used to create the population-averaged VIF 

(VIFpop). Rat number two was excluded from the VIFpop calculation for having a VIFind 

outside of one standard deviation from the calculated mean.  Errors introduced by inflow 

effects were minimized through an iterative process based on the approach by Li et al 

(20).  Briefly, each animal’s VIFind and VIFpop were scaled so that the concentration time 

course of a 50 voxel ROI in the temporalis muscle yielded a ve of 0.11 (20,35,36). The 

scaled VIFind and VIFpop for each animal were used with the Ct time courses from the 

tumor to extract K
trans

, ve, and vp via both the ST and EX models through a non-linear 

fitting constrained to non-negative values in MATLAB R2012a (Natick, MA, USA). 

Additionally, the VIFpop was then fit to Eq. [9] to generate a functional form of the VIF 

used in this study: 

   1 1 2 2exp( ) exp( )pC t a m t a m t     
,
 [9] 

where the summation of a1 and a2 refer to the amplitude of the first pass of CA and  m1 

and m2 refer to decay constants describing the washout of CA due to exchange with 

compartments and clearance through kidneys, respectively. 

 After fitting the voxel data to the ST and EX models the coefficient of 

determination, r
2
, was calculated to measure the closeness of fit to the voxel data. Voxel 

fits with a returned r
2
 < 0.6, or estimated parameters outside a physiologically relevant 

range (0 < K
trans

 < 1 min
-1

, 0 < ve < 1, and 0 < vp < 1) were removed from subsequent 

analyses.  
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Statistical Analysis 

 Agreement between pharmacokinetic parameters determined by fitting Ct to the 

ST (K
trans

 and ve) and EX (K
trans

,ve, and vp) models with both VIFind and VIFpop were 

examined. The parameters estimated with VIFpop (K
trans,pop

, ve,pop, and vp,pop) and VIFind 

(K
trans,ind

, ve,ind, and vp,ind) were paired (e.g., K
trans,ind

 (ST) with K
trans,pop 

(ST)) and 

compared at both the voxel and ROI levels. The paired data for each animal was then 

compared based on its Pearson correlation coefficient (PCC), concordance correlation 

coefficient (CCC), and by linear regression. Concordance correlation coefficients 

measures the agreement between two variables and was calculated using Eq. [10] 

 
,

2 2 2

2

( )

pop ind

pop ind pop ind

CCC


   




  
, [10] 

 where σpop and µpop are the standard deviation and mean for a given parameter (e.g., 

K
trans

, ve, or vp) estimated with VIFpop, σind and µpop are the standard deviation and mean 

for the same parameter estimated with both VIFind, and σpop,ind is the covariance between 

the two variables (37). Confidence intervals for the individual voxel fits were calculated 

using nlparci (non-linear regression parameter confidence intervals) in MATLAB 

R2012a.  
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CHAPTER III 

 

RESULTS 

 

Population-averaged VIF 

The population-averaged VIF is presented in Figure 4a (black line) where the gray 

lines represent one standard deviation from the population-averaged VIF. Both the peak 

and the washout share a similar standard deviation (19.0% and 18.1% of the mean, 

respectively). Figure 4b shows an example dynamic R1 time course obtained from a 

single voxel along with the fit to the EX model using both the VIFind and VIFpop.  

 

 
Figure 4. Panel (a) displays a population averaged VIF and the standard deviation at 

each time point; individual AIFs were tightly grouped resulting in a small difference 

between the standard deviations at the peak and during the washout period. Panel (b) 

shows an example voxel R1 time course within a tumor fit with both the individual and 

population based VIFs,  both of which show a good fit to the measured R1 time course (r
2
 

= 0.8720 and 0.8780, respectively). 

 

The inset in Figure 4b shows the population and individual based ΔR1 (≡ R1b(t)-R10) and 

Cp time courses for the VIF which were used for the EX and ST fitting. The VIFind and 
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VIFpop based fits resulted in r
2
 values of 0.8720 and 0.8780, respectively. The scaling 

factors used to minimize errors introduced by inflow effects for VIFind and VIFpop were 

3.3051 ± 1.0344 and 3.4554 ± 0.6552, respectively. Additionally the VIFpop fitted to a bi-

exponential model, Eq.  [9], was described by a1 = 0.0594 ± 0.0028  mM, m1 = 0.5843 ± 

0.0604 min
-1

, a2 = 0.0900 ± 0.0027 mM, and m2 = 0.0369 ± 0.0027 min
-1

. 

 

ROI Analysis 

The results of ROI analysis are presented in Figure 5a and Table 1. Fig. 5a is a 

combined plot of all ST and EX parameters estimated with VIFind (y-axis) plotted against 

the corresponding VIFpop (x-axis) estimates for all animals. In these figures, the black 

lines represent the 45
o
 line while the individual points represent parameters from ROI fits 

and their respective 95% confidence intervals. The PCC provides a measurement of the 

strength of the linear relationship between parameters estimated using VIFpop and VIFind, 

and may assume a value between -1 and 1. A PCC of 1 indicates a perfect positive linear 

correlation between the two groups, whereas a PCC of -1 indicates a perfect negative 

linear correlation. The groups are not linearly correlated if PCC is equal to zero. 

Similarly, CCC provides a measurement of the absolute agreement between parameters 

estimated using VIFpop and VIFind, and may assume a value between 0 and 1. A CCC 

equal to 1 indicates perfect correlation, while a CCC equal to 0 indicates complete 

independence between the two groups. For the ROI analysis, a strong linear relationship 

was observed between parameters estimated using VIFpop and VIFind with all parameters 

having PCCs greater than 0.8770. Additionally, ROI analysis resulted in CCCs greater 

than 0.8219 indicating a high level of correlation between VIFpop and VIFind estimates of 
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both ST and EX parameters. ST estimates of K
trans

 and ve had increased PCCs (PCC = 

0.9783 and 0.9992) over EX estimates of K
trans

 and ve (PCC = 0.9775 and 0.9985). 

Likewise, ST estimates of K
trans

 and ve also had increased CCCs (CCC = 0.9565 and 

0.9948) over EX estimates of K
trans

 and ve (CCC = 0.9433 and 0.9941). 

 

Table 1-CCC and Linear Regression for ROI Model Estimates 

Parameter  CCC (95% CI)  PCC (95% CI)  Slope  Intercept 

K
trans

 (ST)  0.9565 (0.9388 0.9742)  0.9783 (0.9718 0.9832)  1.1832
a
  -0.0002 

ve (ST)  0.9948 (0.9884 1.0012)  0.9992 (0.9990 0.9994)  1.0041  0.0001 

K
trans

 (EX)  0.9433 (0.9234 0.9631)  0.9775 (0.9709 0.9827)  1.2555
a
  -0.0001 

ve (EX)  0.9941 (0.9872 1.0009)  0.9985 (0.9981 0.9989)  0.9928
a
  0.0001 

vp (EX)  0.8219 (0.7922 0.8516)  0.8770 (0.8429 0.9040)  1.2444
a
  -0.0001 

a
Slope significantly different from 1 (P < 0.05). 

 

Voxel Analysis 

 The estimated parameters obtained by fitting the voxel level Ct time courses to the 

ST and EX models with both VIFind and VIFpop
 
were compared across all animals. Panel 

(b) in Figure 5 shows the voxel results of ST parameter K
trans

 estimated with the VIFind 

(y-axis) plotted against the VIFpop (x-axis) estimated results for an individual animal. 

Panels (c)-(f) show similar data for the ST parameter ve
 
and EX parameters K

trans
, ve, and 

vp. 
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Figure 5. Estimates of pharmacokinetic parameters obtained from fitting dynamic data 

with the individual (y-axis) and population (x-axis) based VIFs. In these panels the black 

line represents the 45
o
 line while the individual points represent parameter values 

returned from voxel fits and their respective 95% confidence intervals. The results of ROI 

analysis for all parameters obtained from ST and EX models are displayed in panel (a). 

PCCs and CCCs, displayed in Table 1, above 0.9783 and 0.9565 were observed for ST 

parameters, indicating a strong correlation and agreement between VIFind and VIFpop 

estimated parameters. Specifically, both ST and EX estimates of ve resulted in PCCs and 

CCCs greater than 0.9985 and 0.9941, respectively. Panels (b-c) represent the voxel level 

analysis for ST parameters, whereas panels (d-f) represent those obtained from the EX 

model. With the exception of vp (EX), VIFpop estimated parameters exhibited a strong 

linear relationship (PCC > 0.9159) with VIFind estimates. 

 

The PCC along with its 95% confidence intervals computed for each animal and 

parameter are presented in Tables 2-3. ST and EX estimates of K
trans

 and ve returned from 

voxel data analysis resulted in PCCs ranging from 0.9159 to 0.9965 indicating a strong 

linear relationship between the VIFind and VIFpop estimated parameters. However, the vp 

estimates using the individual and population based VIFs displayed a weaker linear 
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correlation, as seen in Fig. 5f and quantified with by the PCC value (PCC < 0.7174). The 

results of linear regression between the parameters returned from the VIFpop and VIFind 

analyses are presented in Tables 2-3. The linear regression of ST model estimates of K
trans

 

and ve resulted in 13 of the 16 fits with slopes significantly different from one, whereas 

the EX model had 12 of 16 fits with slopes significantly different from one (P < 0.05). 

Likewise for intercept results, 10 of the 16 ST parameters and 14 of the 16 EX 

parameters had intercepts significantly different from zero (P < 0.05). Of the 25 slopes 

which were significantly different from zero, 11 were from overestimation of K
trans

 in fits 

using VIFpop and seven were from underestimation of ve in fits using VIFpop.  

 

Table 2-Linear Regression Results of Standard Model Voxel Estimates 

Rat 

# 

PCC (95% CI) 
 

Slope 
 

Intercept 

K
trans

 ve 
 

K
trans

 ve  
 

K
trans

 ve  

1 0.9870 (0.9810 0.9912) 0.9954 (0.9933 0.9969)  0.7192
a
 1.0806

a
  0.0044

b
 -0.0033 

2 0.9802 (0.9716 0.9863) 0.9950 (0.9926 0.9965)  0.7948
a
 1.0422

a
  0.0046

b
 0.0010 

3 0.9941 (0.9920 0.9957) 0.9939 (0.9917 0.9955)  0.8361
a
 1.0366

a
  0.0025

b
 0.0015 

4 0.9872 (0.9820 0.9908) 0.9963 (0.9948 0.9974)  0.8797
a
 1.0311

a
  0.0012

b
 -0.0014 

5 0.9917 (0.9870 0.9947) 0.9901 (0.9845 0.9937)  0.8612
a
 0.9825  0.0021

b
 0.0091

b
 

6 0.9808 (0.9679 0.9885) 0.9960 (0.9934 0.9976)  1.3226
a
 1.0232  0.0125

b
 -0.0086

b
 

7 0.9965 (0.9949 0.9976) 0.9886 (0.9832 0.9923)  0.9752
a 

0.9831  0.0004 0.0052 

8 0.9924 (0.9901 0.9942) 0.9946 (0.9946 0.9968)  1.3664
a
 0.9248

a
  -0.0120

b
 0.0123

b
 

a
Slope significantly different from 1 (P < 0.05). 

b
Intercept significantly different from 1 (P < 0.05). 

 

The high level of agreement observed in panels (b)-(f) of Figure 5 is quantified in 

Table 4 by the CCC and its 95% confidence interval. Visually, and confirmed in Tables 



23 
 

2-3, the ST estimates of K
trans

 and ve (panels b-c) are more closely focused around the 45
o
 

line than the EX estimates (panels d-e). For most rats, ST estimates of K
trans

 and ve 

resulted in increased PCCs (16 of 16) and CCCs (15 of 16) over their EX model 

counterparts. Likewise, ve (ST and EX) estimates had increased PCCs (11 of 16) and 

CCCs (13 of 16) over the K
trans

 (ST and EX) pair. A notable difference between the 

parameters estimated from the ST and EX models is the tighter confidence intervals for 

PCC and CCC values for ST parameters, while confidence intervals for vp estimates are 

larger. 15 of 16 CCC confidence intervals obtained for K
trans

 (ST) and ve (ST) are less 

than those for K
trans

 (EX) and ve
 
(EX). 13 of 16 PCC confidence intervals obtained for 

K
trans

 (ST) and ve (ST) are also less than those for K
trans

 (EX) and ve
 
(EX). Similarly 15 of 

16 CCC confidence intervals obtained for the ST and EX estimates of ve
 
are less than 

those for the ST and EX estimates of K
trans

. 13 of 16 PCC confidence intervals obtained 

for the ST and EX estimates of ve are also less than those for ST and EX estimates of 

K
trans

. In general, a weak correlation (CCC < 0.6141) was observed between estimates of 

vp estimated using VIFpop and VIFind. Although excluded from the VIFpop calculation, both 

a strong linear relationship (PCCs > 0.9582) and strong agreement (CCCs > 0.8972) was 

observed for both ST and EX estimates of K
trans

 and ve for rat number 2.  
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CHAPTER IV 

 

DISCUSSION AND CONCLUSIONS 

 

A substantial challenge to performing quantitative DCE-MRI in small animals is 

the measurement of the VIF. While there are imaging and non-imaging approaches that 

can provide a reasonable estimate of the VIF, each method has its limitations. The 

necessity for high temporal resolution for imaging based estimates of the VIF 

significantly restricts the SNR, FOV, and spatial resolution available to characterize the 

tumor itself. Additionally, the small vessel size of laboratory animals may also constrain 

tumor implantation and imaging sites or require increasing the FOV to include a large 

blood pool. Finally, to better investigate tumor growth, angiogenesis, or treatment 

response multiple slice or 3D data sets are desired which will result in either a decreased 

spatial resolution and/or a FOV in order to maintain a temporal resolution appropriate for 

VIF estimation. One way to acquire multi-slice, high spatial resolution DCE-MRI data—

without forfeiting a high temporal resolution VIF—is to use a population based VIF. This 

work has reported on the implementation and agreement between a population-averaged 

VIF and an individually acquired VIF in rats.  

To address the overestimation of ve observed in Skinner et al (12)  a scaled VIF 

was used.  One potential cause for ve overestimation is the inflow effect on T1-weighted 

images. Blood moving into the imaging slice which may not have fully experienced the 

previous RF excitation pulse results in an overestimation of the initial excited signal and, 

therefore, a decrease in the detection of a change in signal intensity. This inflow effect of 
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blood decreases the magnitude of the measured VIF resulting in an increased ve as a 

result of overestimation of Ct. By using an iterative scaling process, we calibrated the 

measured VIF to a known ve within the field of view (i.e., we assumed that the VIF 

should return a ve of 0.11 for the temporal muscle (20,38). The reference tissue 

calibration allows for the underestimation of the VIF to potentially be corrected resulting 

in less overestimation of tissue ve. Although similar to the reference region method, this 

approach does have one simplifying advantage to calibrating the VIF. The reference 

region approach relies on knowledge of the true value of both ve and K
trans

 in the 

reference tissue, whereas, in the calibrated VIF approach, only knowledge of ve is needed 

to calibrate the VIF. If only ve is used in a reference region approach, then a three 

parameter fit is required (K
trans

 and ve of the tissue of interest, as well as Ktrans of the 

reference region) and these are well-known to be more unstable than two parameter fits.  

While it is true that K
trans

 could be used in either the calibration procedure or a reference 

region approach, estimates of K
trans

 for the reference tissue of (say) muscle vary 

considerably more than ve and this would result in a systematic error in the K
trans

 

estimates of the tissue of interest that scales approximately linearly with the error in the 

K
trans

 of the reference tissue (24). Thus, using ve to ―normalize‖ the VIF is a reasonable 

way forward that results in a numerically more stable fitting algorithm than a standard 

reference region approach. Additionally, the repeatability indices for K
trans 

and ve (0.076 

and 0.107, respectively) estimated using image derived VIFs are lower than those 

obtained for K
trans 

and ve (0.222 and 0.204, respectively) through the reference region 

method (39,40). The decreased repeatability indices suggest that a VIF driven approach 

may be able to distinguish smaller statistically significant changes in K
trans 

and ve. 
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The VIFs measured directly from the imaging data exhibited small (< 20%) 

standard deviations from the average VIF and is below the range previously reported in 

rats (11) and within the range observed in other studies (19,27). The minimal difference 

between the standard deviations at the peak concentration and the washout portions 

suggest that neither portions were more affected than the other by experimental (e.g., 

injection dose, injection rate) or physiological (e.g., heart rate, disease state, clearance 

rate) variability. The tight grouping of individual VIFs could account for the high 

correlation between K
trans

 (and ve) values returned from analyses that employed the 

VIFpop and VIFind.  

The motivation of using a population-averaged over an individual VIF is the 

potential for high spatial resolution images to characterize tumor heterogeneity.  Initially, 

high temporal resolution images are still needed to generate the VIFpop, but future 

experiments using the resulting population based VIF benefit by the decrease in required 

temporal resolution and the increases in spatial resolution, and/or SNR, and/or FOV. 

Investigating tumor properties as a whole through ROI analysis, however, is a useful tool 

to capture overall tumor properties and can be used clinically to, for example, grade 

gliomas using extracted K
trans

 values (41). In this effort, ROI analysis of ST and EX 

estimates of K
trans

 and ve suggests that using the VIFpop provided parameters statistically 

similar, as observed by CCCs > 0.9433, to those produced with the VIFind. Compared to 

voxel estimates of vp, the ROI estimates of vp suggest that using VIFpop provided 

increased similarity to VIFind parameters. This increase in similarity may arise from 

increased sensitivity of voxel fit parameters to deviations from the ―true VIF‖. At the 

voxel level, if the VIFind was assumed to result in more accurate vp estimates, the ―true 
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VIF‖ would be more similar to the VIFind than the VIFpop. At the ROI level the ―true VIF‖ 

is a combination of the ―true VIF‖ from every voxel and is more likely less biased 

towards the VIFind and approximately equally similar to both the VIFind and VIFpop.  

The results of this study also suggest that ROI and voxel estimates of ve using the 

VIFpop produced more statistically similar values and stronger linear relationships to 

VIFind estimates than estimates of K
trans

. The increased agreement of ve over K
trans

 in this 

study may be traced back to the use of a scaled VIF over an unscaled VIF. By calibrating 

VIFind and VIFpop to a reference tissue’s ve, variations between VIFind’s and VIFpop’s, 

specifically in washout amplitude, were decreased. Additionally, the higher PCC and 

CCC observed in ST model estimates over their EX model counterparts at both a voxel 

and ROI level, suggest either an increase sensitivity to variations between VIFpop and 

VIFind due to the inclusion of the plasma space within the tissue space in Figure 3. The 

results of linear regression helped identify significant over- and underestimation of 

parameters estimated by VIFpop.  The over- and underestimation of these parameters, 

however, suggests that using VIFind and VIFpop estimates to determine a precise tumor 

state may have differing results. However, if the over- or underestimation is consistent, 

the difference between two VIFind and VIFpop measurements may exhibit the same trend. 

Additionally the fewer significant over- and underestimation of ve compared to K
trans

 

supports previous observations that VIFpop produced stronger agreement to VIFind 

estimates. 

Although using a population-averaged VIF may allow improved characterization 

of the tumor environment by reducing the temporal resolution and FOV constraints, it 

may not capture physiological differences between animals due to their disease 
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progression. In other studies experimental or physiological variation between animals 

was shown to effect VIFpop estimates of model parameters (2626,29). However, assuming 

that experimental procedures remained consistent between animals, physiological 

variation did not seem to affect the degree to which VIFpop estimated parameters agree 

with VIFind parameters.  

To summarize, individual VIFs in eight rats were collected using an interleaved 

DCE-MRI procedure following an injection with Gd-DTPA. Using both the standard and 

extended models, pharmacokinetic parameters were extracted from fits using an 

individual VIF as well as the average of the individual VIFs (i.e., the population based 

VIF). The parameters estimated from the individual and population-averaged VIF based 

analyses were then compared. The results of this study indicate that both K
trans

 and ve 

estimated using a population based VIF have a high level of agreement those estimated 

using an individual VIF. Thus, the use of a stringent injection protocol, ideally an 

automated syringe pump, we propose that individual vascular input functions can be 

obtained and combined to form a population vascular input function providing a suitable 

replacement for an individual VIF when one is not readily available.  

 

Future Directions 

The availability of measurements describing the molecular, cellular, and 

physiological characteristics of tumors provided by non-invasive imaging has increased 

in recent years. In particular, MRI and PET have matured to the point where they can 

provide noninvasive, quantitative, and 3D characterizations of, for example, blood flow, 

vessel permeability, blood volume, cellularity, hypoxia, metabolism, and cell 
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proliferation. One way to capitalize on the wealth of available information is to 

incorporate it into a realistic biophysical model of tumor growth that can be used to 

predict tumor growth and therapy response on an individual basis. By introducing 

imaging data into these models, terms requiring information available typically only by 

highly invasive methods (surgery, biopsy, or animal sacrifice) or within idealized (in 

vitro) systems can be replaced with terms supported by imaging data and then directly 

compared to in vivo tumor growth. One imaging method that can be used to populate the 

parameters in an appropriate model is DCE-MRI.  

The goal of my current project is to incorporate quantitative multi-modality 

imaging into a biophysical model of tumor growth and treatment response. Using MRI 

and PET, data describing cellularity (diffusion weighted MRI, DW-MRI), proliferation 

(sequential DW-MRI data), blood volume fraction (DCE-MRI or quantitative blood 

oxygenation level dependent MRI, qBOLD-MRI), blood flow (DCE-MRI), oxygen 

saturation (qBOLD-MRI), and glucose concentration (FDG-PET) can be incorporated 

into a particular model of tumor growth. We hypothesize that high spatial resolution 

images are critical to the accuracy of this model, thus all the data—including DCE-

MRI—needs to be acquired at the highest (reasonable) spatial resolution. The results of 

this current study support the development of a population-averaged VIF for use in 

quantitative DCE-MRI analysis. By using a population-averaged VIF over an 

individually acquired VIF, high temporal resolution can be traded for increased SNR, 

multiple slices, or increased spatial resolution. The result of which allows the 

incorporation of high spatial resolution DCE-MRI data into a model of tumor growth and 

angiogenesis. Incorporating data from MRI and PET into appropriate models of tumor 
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growth will potentially lead to a more pre-clinical and clinically relevant approach to 

tumor modeling that allows direct comparison between predicted and experimentally 

observed tumor characteristics. 
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