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CHAPTER I

THE STANDARD MODEL

I.1 The elementary particles

According to our present knowledge, the world around us is built up from a few elementary

particles, which are hold together by four basic interactions [1]. The building blocks are spin-

1
2
fermions of two types: quarks and leptons, while the interactions are transmitted by bosons

with integer spin. These particles are regarded elementary in the sense that they are point

like without internal structure1 up to the present limit of 10−18 − 10−19 m.

The known leptons are the electron (e−), the muon (µ−) and the tau-lepton (τ−) with

electric charge2 Q = −1, and the corresponding neutrinos νe, νµ and ντ with electric charge

Q = 0. The six leptons can be arranged into three families or generations:


 νe

e−





 νµ

µ−





 ντ

τ−




Each generation of leptons is associated with a conserved quantum number, the lepton

number (Le, Lµ, Lτ ), which is +1 for leptons and −1 for anti-leptons. The properties of

leptons are summarized in Table. I.1.

The existence of a non-zero neutrino mass is a long standing question in particle physics.

In the last couple of years, researchers at the Super-Kamiokande detector in Japan and the

Sudbury Neutrino Observatory in Canada achieved a major breakthrough at this front by

finding evidence for the flavor oscillation of neutrinos produced in the upper atmosphere [2]

1However, there are attempts to describe the quarks and leptons as composites of more fundamental
ingredients, such as preons, in order to better understand some of their properties.

2All charges are given in units of the elementary charge e = 1.6× 10−19C.
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Table I.1: The properties of leptons.

Name Spin [�] Charge [e] Le Lµ Lτ Mass [MeV/c2]
e− 1/2 −1 1 0 0 0.511
νe 1/2 0 1 0 0 ∼ 0
µ− 1/2 −1 0 1 0 105.6
νµ 1/2 0 0 1 0 < 0.17
τ− 1/2 −1 0 0 1 1777
ντ 1/2 0 0 0 1 < 18.2

and in the sun [3], respectively. Since the effect depends on the difference in the squared

mass of the neutrino species involved in the oscillation, this result implies a non-zero but

tiny mass for the neutrinos.

Like the leptons, the quarks also have six different types or flavors. They are called up

(u), down (d), charm (c), strange (s), top (t) and bottom (b) and can be also arranged into

three generations: 
 u

d





 c

s





 t

b




The electric charge of the up-type quarks (u, c, t) is Q = +2/3, while the down-type quarks

(d, s, b) have Q = −1/3. The quarks have a conserved quantum number analog to the

lepton number called baryon number (B), which is B = 1/3 for quarks and B = −1/3

for anti-quarks without distinction between the generations. The quarks have an additional

degrees of freedom, the color, which can be of three types. The color was first proposed as

an ad hoc quantum number in order to solve the problem related to the existence of hadrons,

such as ∆++ ∼| uuu >, built up from the same quarks having symmetric space-flavor-spin

wavefunction in apparent contradiction with the Pauli principle but later they proved to

be more fundamental as the source of the strong interaction. Properties of the quarks are
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shown in Table I.2. In addition to the 12 fermions there are 12 corresponding antiparticles

associated with each of them.

Table I.2: The properties of quarks.

Name Spin [�] Charge [e] B Mass [MeV/c2]
u 1/2 2/3 1/3 ∼ 5
d 1/2 −1/3 1/3 ∼ 7
c 1/2 2/3 1/3 1270± 50
s 1/2 −1/3 1/3 150± 30
t 1/2 2/3 1/3 (174± 17)× 103

b 1/2 −1/3 1/3 4250± 100

In contrast to the leptons, all evidence point to the fact that quarks can not exist as

isolated free particles in nature but they are confined into the experimentally observed matter

particles, the hadrons. Hadrons are colorless (color singlet) particles consisting of either three

quarks with different colors (| qqq >), called baryons, or a quark and anti-quark (| qq̄ >),

called mesons. From the properties of the quarks, it follows that all hadrons have integer

electric charge (Q = 0,±1,±2), and that the baryons have half-integer spin (S = 1/2 or

S = 3/2) and B = 1 baryon number (or B = −1 for anti-baryons), while the mesons have

integer spin (S = 0: pseudoscalar or S = 1: vector) and B = 0 baryon number.

The four fundamental interactions are the gravitational, electromagnetic, weak and strong

forces. In classical physics, these interactions are mediated by a continuous physical entity,

called field, which has momentum, energy and other properties. Apart from the gravitational

field3, the other three interaction fields can be quantized in terms of creation and destruction

3Gravity is different from the other three interactions since the gravitational ”field” is the feature of the
space-time and lacks the properties characteristic for the other fields. Therefore, attempts to quantize the

3



operators in quantum field theory and the interaction can be interpreted as the exchange

of spin-1 bosons (intermediate vector bosons or gauge bosons), which are the quanta of the

field and carry the properties associated with the field.

The electromagnetic, the weak and the strong interactions are mediated by the photon

(γ), the three weak bosons (W±, Z0) and the eight gluons (gα, α = 1, ..8), respectively.

The properties of the vector bosons are summarized in Table I.3. It is well known that the

range of the interactions is inversely proportional to the mass of the intermediate boson.

Hence, the electromagnetic interaction has an infinite range because the mass of the photon

is zero. In contrast, the weak interaction has a short range (∼ 10−16m) because of the heavy

mass of the W and Z bosons. The mass of the gluons is zero, however, the range of the

strong interaction is not infinite as it is expected but approximately 10−15 m due to an extra

physical property, the quark confinement resulting from the self-interaction of the gluons.

Since the gluons carry color charge (in fact they are bicolor particles) they interact not just

with the quarks but also with each other. The weak bosons are also self-interacting while

the photons are not.

Table I.3: The properties of the vector bosons.

Name Spin [�] Charge [e] Mass [MeV/c2]
Photon (γ) 1 0 < 2× 10−19

W± 1 ±1 80.4× 103

Z0 1 0 91.2× 103

Gluon (gα, α = 1, ...8) 1 0 0

gravitational field in the same fashion as the other fields has failed so far. However, it is expected that the
gravitational interaction would be mediated by spin-2 bosons, called gravitons, since the gravitational field
is described by a second-rank energy-momentum tensor in general relativity.
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The nuclear force, which binds colorless protons and neutrons into nuclei, is the result

of a residual strong interaction between the quark constituents of the nucleons. This is

somewhat similar to the residual electrical interaction that gives rise to the force that binds

electrically neutral atoms into molecules. The long range part of the nuclear forces can be

described very accurately as the exchange of mesons (π, ρ and ω) between the nucleons.

As we have seen, three generations of fermions (leptons and quarks) are known to exist,

however, there is no any known physical principle that would forbid adding more generations

with the same properties but presumably heavier mass. Additional charged leptons or quarks

could easily escape detection if they are very heavy4. However, if additional neutrinos would

exist with mass less than MZ/2, then the Z0 boson would decay to them with the same

rate as it decays to other neutrino species. Results from collider experiments measuring the

invisible partial decay width of the Z0 resonance [4] confirm that there are indeed only three

light neutrinos and three corresponding fermion generations. In addition, the abundance of

the light elements predicted by the Big Bang Nucleosynthesis theory is consistent with the

observations only if three neutrino species are considered [5].

I.2 Symmetries of the Standard Model

All known phenomena related to the elementary particles and their interactions are ex-

tremely well described in the theoretical framework of the Standard Model (SM), which has

successfully passed very precise tests (see for example [6, 7, 8]). The SM is a gauge field the-

ory, which combines quantum field theory with the symmetry principles of the interactions.

The relevant symmetry of the SM is

SU(3)C ⊗ SU(2)L ⊗ U(1)Y ,

4The t quark was discovered only in 1995
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which includes the symmetry group of the strong interactions, SU(3)C , and the symmetry

group of the unified electroweak interactions, SU(2)L ⊗ U(1)Y .

SU(N) is the group of unitary transformations in the N -dimensional complex vector

space, which leave the inner product unchanged and have determinant +1. These transfor-

mations can be represented by N ×N complex matrices or 2N2 real numbers. The unitary

requirement (U † = U−1) imposes N2 conditions, leaving N2 independent number to repre-

sent the transformations. The extra condition on the determinant of the matrix implies that

these transformations can be fully represented by N2 − 1 real numbers. Any transformation

of the SU(N) group can be written in terms of N2−1 generators (Tk) and the same number

of continuous parameters (Θk):

U = exp(−i
Θ
T ) = exp

(
−i

N2−1∑
k=1

ΘkTk

)
. (I.1)

The generators of the group span a vector-space, called algebra, with the commutation

relations as an additional operation:

[Ti, Tj] = ifijkTk, (I.2)

where the elements of the fijk antisymmetric tensor are the structure constants of the algebra.

The generators can be represented by traceless Hermitian matrices, which are the three 2×2

Pauli matrices (Tk =
σk

2
, k = 1, 2, 3) in case of SU(2) and the eight 3×3 Gell-Mann matrices

(Tk = λk

2
, k = 1, ...8) in case of the SU(3) group [10]. We say that a physical system has

a symmetry group if the Hamiltonian (or Lagrangian) of the system is invariant under the

transformations represented by the group.

In SU(3)C , the subscript C refers to colors, which act as the source of the strong interac-

tion, just like the electric charge is the source of the electric field. The 3 refers to the three
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color states, which are in the fundamental representation of the group having dimension

three.

SU(2)L ⊗U(1)Y [11] is the combination of the weak isospin group, SU(2)L, where the L

refers to the left-handed character of the weak interactions, and the weak hypercharge group

U(1)Y . The source of the charged weak interaction is the third component of the weak

isospin, T3, and operates only on left-handed particles5 with negative helicity (ie. with the

spin aligned opposite to the momentum). The left-handed particles are arranged in doublets

with weak isospin T = 1/2 and T3 = ±1/2 in each generation, so that the neutrinos (up-type

quarks) are the weak isospin partners of the corresponding electrons (d-type quarks), e.g.
 νe

eν




L


 u

d




L

.

The right handed particles form isospin singlets with T = T3 = 0. Right-handed neutrinos

(and left-handed anti-neutrinos) do not exist in the minimal SM, therefore there are three

right-handed particles in each generation, e.g.

eR uR dR.

The source of the U(1)Y group is the so called weak hypercharge (Y), which is related to the

electric charge (Q) and the weak isospin via the Gell-Mann-Nishijima relation:

Q = T3 +
Y

2
. (I.3)

The quantum number Y is equal to B − L (2Q) for left (right) handed particles and it is

conserved since T3 and Q are conserved. The weak and electromagnetic interactions are

5The left-handed and right-handed fields are defined by the help of the chirality operator γ5 =
−iγ0γ1γ2γ3, e.g.

eL =
1

2
(1− γ5)e eR =

1

2
(1 + γ5)e.
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unified in that sense that the symmetry group U(1)Q generated by the electric charge and

associated with the electromagnetic interactions is a subgroup of the total electroweak group:

U(1)Q ⊂ SU(2)L ⊗ U(1)Y .

Altogether 15 different fermion states exist in each generation: 2 (1) left (right) handed

leptons and 2× 3 (2× 3) left (right) handed quarks6. These 15 states fall into five separate

multiplets under the SU(3)C ⊗ SU(2)L ⊗ U(1)Y symmetry. For the first generation these

multiplets are


 ugL ubL urL

dgL dbL drL




1/3

(
ugRu

b
Ru

r
R

)
4/3

(
dgRd

b
Rd

r
R

)
−2/3


 νL

eL




−1

eR−2,

where the superscripts g, b and r refer to the different color states of the quarks. The color

SU(3) group acts horizontally, while the weak SU(2) vertically and the weak hypercharges

are as indicated.

I.3 Principle of local gauge invariance

Continuous symmetries can be classified as global or local gauge symmetries depending

on whether the continuous parameters of the transformation are or are not functions of the

space time coordinates. Continuous symmetries play a crucial role in nature. For example,

if a physical system is invariant under a global symmetry transformation then, according to

Noether’s theorem, there exist a current and an associated charge that are conserved. In

addition, by promoting the global symmetry to local, the originally free theory transforms

into an interacting theory containing new vector boson fields, the so called gauge fields [9].

6The factor of 3 comes from the three different colors.
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The number of these gauge boson fields is equal to the number of the generators of the

symmetry group: one in case of SU(1), three for SU(2) and eight for SU(3).

In order to outline how the gauge principle works, we start with the Lagrangian density

of a free fermion with mass m described by the Dirac field ψ (the Dirac conjugate field is

defined as ψ̄ = ψ†γ0):

Lfree = ψ̄ (iγµ∂µ −m)ψ. (I.4)

It is obvious that the above Lagrangian is invariant under global unitary transformations,

U , defined by Eq. I.1, which transform the field as

ψ(x) → ψ′ = Uψ(x) (I.5)

since U is independent of x:

ψ̄′ (iγµ∂µ −m)ψ′ = ψ̄U † (iγµ∂µ −m)Uψ = ψ̄U †U (iγµ∂µ −m)ψ = ψ̄ (iγµ∂µ −m)ψ. (I.6)

Now, we can require invariance under local instead of global gauge transformations when

the transformations are allowed to depend on the space-time coordinate x: U(x). In this case

the kinetic term is no longer invariant under the ψ(x) → ψ′(x) = U(x)ψ(x) transformation:

ψ̄′ (iγµ∂µ)ψ
′ = ψ̄U † (iγµ∂µ)Uψ = ψ̄

[
iγµ∂µ + iγµ(U †∂µU)

]
ψ. (I.7)

The most economic way to make the Lagrangian invariant under local gauge transformations

is replacing the derivative ∂µ with the covariant derivative Dµ, which is required to transform

as the ψ field itself (Eq. I.5):

Dµψ → Dµψ
′ = UDµψ. (I.8)

To achieve this we have to introduce gauge fields, which transform properly under the local

gauge transformations and interact with the fermion fields.
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This principle has played a crucial role in building a consistent theory of the SM. The

gauge theory based on the local transformations of the U(1)Q group is called Quantum

Electrodynamics (QED), which is the most successful theory in particle physics. The gauge

theory based on local color transformations of SU(3)C is Quantum Chromodynamics (QCD)

[12], while the gauge theory based on the local transformations of the group SU(2)L⊗U(1)Y

is called Electroweak Theory [13, 14]. The SM is the gauge theory based on the total local

symmetry of the combined group SU(3)C ⊗ SU(2)L ⊗ U(1)Y .

The covariant derivative, which transforms properly under local gauge transformations

of the total SU(3)C ⊗ SU(2)L ⊗ U(1)Y group of the SM, can be written as

Dµ = ∂µ +
ig′

2
BµY +

ig

2

3∑
k=1

W k
µσk +

igs
2

8∑
k=1

Gk
µλk, (I.9)

where

• Bµ is the vector field associated with the weak-hypercharge boson of U(1)Y ,

• W k
µ (k = 1, 2, 3) are the vector fields associated with the three weak bosons of SU(2)L,

• Gk
µ(k = 1, ..8) are the vector fields associated with the eight gluon fields of SU(3)C .

The new kinetic term, iψ̄γµDµψ, in the Lagrangian contains the interactions between the

fermion fields and the new vector bosons. For instance, the strong interaction between the

quarks and gluons is described by the Lagrangian

Ls
int = −gsGk

µJ
µ
k = −gsGk

µψ̄γ
µλk
2
ψ , (I.10)

where J µ
k is the conserved current implied by the global SU(3)C symmetry. The strength

of the interactions is proportional to the parameter gs, called the coupling constant.
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In order to include the propagation of the boson fields in the Lagrangian we have to add

a local gauge invariant kinetic term for each boson field:

Lboson = −1

4
FµνF

µν . (I.11)

The second rank field strength tensors, Fµν ’s, are given as

∂µBν − ∂νBµ (I.12)

∂µW
k
ν − ∂νW

k
µ + gεklmW l

µW
m
ν (I.13)

∂µG
k
ν − ∂νG

k
µ + gfklmGl

µG
m
ν (I.14)

for the three different boson types, where εklm’s and fklm’s are the structure constants of

the SU(2) and SU(3) algebra, respectively. As we can see there is an important difference

between the first field strength tensor and the last two. The latter ones contain an extra

term which leads to three- and four-boson terms in the boson kinetic term given by Eq. I.11.

These represent the self interaction of the weak and strong interaction bosons characteristic

for any non-Abelian gauge theory, such as those represented by the SU(2)L and SU(3)C

groups.

The self interaction of the gluons result in the antiscreening of the color charge at large

distances by the vacuum, which causes the strong interaction to get weaker and weaker at

short distances (large energies), in contrast to the strength of the electromagnetic interaction

that gets stronger at short distances due to the screening of the electric charge at large

distances 7. This property is called asymptotic freedom and explains why the quarks inside

7The screening around an electric charge is the result of the vacuum polarization effect caused by virtual
electron-positron pairs created and annihilated continuously by the field. Because of this effect, one expe-
riences an effective charge smaller than the bare charge at large distances. If the electric charge is probed
at shorter distances (higher energies), one penetrates the shielding deeper and observes more of the bare
charge. The color charge is surrounded by virtual qq̄ pairs, which has a similar screening effect as the e+e−

11



a hadron appear quasi free despite the fact they are tightly bound, and why it is so difficult

to separate a quark from a hadron (quark confinement8).

The gauge fieldsW k
µ and Bµ do not represent the physical gauge bosons of the electroweak

theory: W±
µ , Z0

µ and Aµ. The latter ones can be obtained from the former ones by the

following relations

W±
µ = 1√

2
(W 1

µ ∓ iW 2
µ)

Z0
µ = cosΘWW

3
µ − sinΘWBµ

Aµ = sinΘWW
3
µ + cosΘWBµ,

(I.15)

where ΘW , is the weak angle, which defines the rotation in the neutral sector (sin2ΘW =

0.2255± 0.0021). Then the interactions of the electroweak bosons with the fermions can be

expressed as

LEW
int = − g√

2
(W+

µ J µ
+ +W−

µ J µ
−)−

g

cosΘW

Z0
µJ

µ
NC − eAµJ µ

em, (I.16)

where the weak coupling constant g = e/ sinΘW . The charged weak currents are given by

J µ
+ =

∑
f

ψ̄fLγ
µσ+ψfL J µ

− =
∑
f

ψ̄fLγ
µσ−ψfL, (I.17)

where the summation runs over the left-handed lepton and quark weak isospin doublets, and

σ± are the isospin raising and lowering operators:

σ+ =
1

2
(σ1 + iσ2) =


 0 1

0 0


 , σ− =

1

2
(σ1 − iσ2) =


 0 0

1 0


 . (I.18)

pairs has on the the electric charge. However, gluon-gluon pairs are also produced around the color charge
because of the gluon self-interaction and they have an opposite effect: it causes the interaction to grow at
large distances. This antishielding has a larger contribution than the shielding due to the qq̄ pairs and makes
the coupling decrease at small distances.

8The larger the distance among the quarks the more energy needed to separate them further. The
increased energy of the color field between the separated quarks transforms into mass producing new quark-
antiquark pairs, which then recombine with the old quarks to form hadrons instead of free quarks.

12



The neutral weak current and electromagnetic current are written as

J µ
NC =

∑
f

gfLψ̄fLγ
µψfL +

∑
f �=ν

gfRψ̄fRγ
µψfR (I.19)

J µ
em =

∑
f

Qf ψ̄fLγ
µψfL +

∑
f �=ν

Qf ψ̄fRγ
µψfR, (I.20)

where the sum runs over left-handed doublets and right-handed singlets and the couplings

depend on the third component of the weak-isospin and the charge of the fermion as well as

the weak angle:

gL = T3 −Q sinΘW , gR = −Q sinΘW . (I.21)

As we mentioned earlier, the three weak bosons, W± and Z0, are different from the other

gauge bosons in that they are massive particles. However, the requirement of local gauge

invariance does not allow addition of mass terms, such as M2
WWµW

µ, to the Lagrangian.

These two facts together indicates that the SU(2)L ⊗ U(1)Y group is not a symmetry of

the vacuum. In contrast, the photon and gluons being massless reflects that U(1)Q and

SU(3)C are good symmetries of the vacuum. The spontaneous symmetry breaking of the

SM Lagrangian

SU(3)C ⊗ SU(2)L ⊗ U(1)Y → SU(3)C ⊗ U(1)Q

by means of the Higgs Mechanism provides the proper masses to the weak bosons and the

fermions. We outline this in the next section.

I.4 Spontaneous symmetry breaking: Goldstone bosons and the Higgs mechanism

A physical system has a spontaneously broken symmetry if the interactions governing the

dynamics of the system possesses the symmetry, that is the Lagrangian describing the system

is invariant under the symmetry transformations, but the dynamics of the system leads to a
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degenerate set of ground states (lowest energy states; also called vacuum states), which are

not invariant under that symmetry. Of course, only one of these equivalent vacuum states

is manifested, and therefore, it conceals the symmetry of the theory.

This phenomenon can be illustrated by the infinitely extended ferromagnet near the

Curie temperature, TC . The interactions between the spins or magnetic dipole moments are

invariant under spatial rotation. Above the Curie temperature, the orientation of the spins

are disordered in the absence of an external magnetic field and the medium displays an exact

rotational symmetry: the average magnetization is zero and there is no preferred direction

in space. In contrast, for temperatures below TC , the system has a non-zero spontaneous

magnetization since the interactions between the neighboring magnetic moments favors the

parallel alignment of spins. Since the direction of the spins are arbitrary, there are infi-

nite possible ground states, each corresponding to one possible spatial direction and having

the same energy. However, none of these states are rotationally invariant since there is a

privileged direction. The spontaneous symmetry breaking manifests itself when the system

chooses one among these infinite possible non-invariant ground states.

Other examples can be found in systems that goes through second order phase-transitions

such as superconductors, where Cooper pairs of electrons are formed below the critical tem-

perature and the density of the Cooper pairs plays the same role as the direction of spon-

taneous magnetization of the ferromagnet in the above example. Ginzburg and Landau

provided a phenomenological theory of superconductivity [15] and this was the precursor of

the theory adopted later in the SM.

An important consequence of spontaneous symmetry breaking is the appearance of mass-

less particles as it is described by the Goldstone Theorem [16]:

If the Lagrangian of a theory is invariant under a continuous symmetry that is
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not a symmetry of the physical vacuum, | 0 >, then there must exist one massless

spin-zero (scalar or pseudoscalar) boson associated to each broken generator T

of the original symmetry group, which does not leave the vacuum invariant9 (i.e.

T | 0 > �= 0). These modes, called Nambu-Goldstone bosons or simply Goldstone

bosons, are the zero-energy excitations that connect possible distinct vacuum

states (the state T | 0 > is an eigenstate of the Hamiltonian with the same

eigenvalue (E0) as the vacuum since HT | 0 >= TH | 0 >= E0T | 0 >).

Since this theorem plays an important role in this thesis, we provide a formal proof in

Appendix A.

We should note that, the Nambu-Goldstone boson arising from the spontaneous break-

down of a continuous symmetry is massless only if the symmetry is exact. If there is a small

explicit symmetry breaking, either already in the Lagrangian or due to quantum mechanical

effects such as anomalies, then the Goldstone boson acquires a small mass and it is called

pseudo Nambu-Goldstone boson.

An example for Nambu-Goldstone bosons in particle physics is the spontaneous chiral

symmetry breaking of the strong interaction Lagrangian, which implies the existence of three

Goldstone bosons identified with the three pions. The fact that the pions have a non-zero

mass is the consequence of the soft extra explicit break down of the chiral symmetry due to

the non-zero mass of the quarks.

The Goldstone Theorem holds for spontaneously broken global symmetries only. If the

spontaneously broken symmetry is a local gauge symmetry the Higgs Mechanism operates

9This means that
exp(iΘT ) | 0 >≈ (I + iΘT ) | 0 > �=| 0 > .
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[17]: The would-be Goldstone bosons associated to the global symmetry breaking do not

manifest explicitly in the physical spectrum but instead they combine with the normally

massless gauge bosons and provide the gauge bosons with mass. The number of gauge

bosons that acquire mass is equal to the number of these would-be Goldstone bosons.

In order to implement the Higgs Mechanism in the Standard Model we have to introduce

a complex SU(2) doublet field10, the so called Higgs field (with hypercharge Y = 1):

Φ =


 φ+

φ0


 ; φ+(0) =

1√
2

(
φ
+(0)
1 + iφ

+(0)
2

)
. (I.22)

The interaction of this field with the the gauge particles is described by the kinetic term of

the Lagrangian

LH = (DµΦ)
†(DµΦ)− V (Φ). (I.23)

The effective self-interaction potential of the Higgs field is given by

V (Φ) = µ2Φ†Φ + λ(Φ†Φ)2, (I.24)

where µ and λ > 0 are parameters. The presence of the covariant derivative

Dµ = ∂µ +
ig′

2
BµY +

ig

2

Wµ
σ (I.25)

instead of the normal derivative in the kinetic term ensures local gauge invariance of the

Lagrangian under SU(2)L ⊗ U(1)Y rotations.

The lowest energy state (vacuum) must be constant everywhere so that the kinetic term

is zero and it can be obtained from the condition

δV (Φ) = Φ† [µ2 + 2λ(Φ†Φ)
]
δΦ = 0 (I.26)

10The minimal supersymmetric extension of the Standard Model assumes two complex doublets.
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for any variation δΦ. Depending on the sign of the parameter µ2 there are two possible

distinct cases:

If µ2 > 0, the effective potential has a unique minimum at Φ = 0. The vacuum (lowest

energy state) preserves the SU(2)L ⊗ U(1)Y symmetry of the Lagrangian. The particle

spectrum consists of four massive scalar mesons (φ
+(0)
1 , φ

+(0)
2 ), each with mass µ, and four

massless gauge bosons (W k
µ , Bµ).

If µ2 < 0, the potential has a local maximum at Φ = 0 and the absolute minimum of the

potential now occurs when11

| Φ |2=| φ+ |2 + | φ0 |2= −µ2

2λ
≡ v2

2
. (I.27)

However, the vacuum must be neutral (φ+ = 0), and therefore, has the form

Φ0 =


 0

φ0


 , | φ0 |= v√

2
. (I.28)

which corresponds to a continuum of distinct states being degenerate in energy. In addition,

the vacuum of the system must be uniquely represented by a particular phase. Either of

these vacuum states violates the original SU(2)L ⊗ U(1)Y symmetry since σkΦ0 �= 0 and

Y Φ0 = +1Φ0 �= 0. At the same time they possess U(1)Q symmetry because

QΦ0 =

(
T3 +

Y

2

)
Φ0 =

1

2
(σ3 + Y )Φ0 =


 1 0

0 0




 0

φ0


 =


 0

0


 (I.29)

With a suitable definition of the coordinates, we can chose a vacuum state, such that

φ0 = v and the small fluctuations around this vacuum state can be parameterized as

Φ = exp(i
ζ(x)
σ)


 0

v + h(x)


 . (I.30)

11The quantity v is called the vacuum expectation value of the scalar field Φ. It can be expressed as
v = (

√
2GF )

−1/2 ≈ 246 GeV, where GF is the Fermi constant, the low energy coupling strength of the weak
interaction.
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The three real fields ζ are excitations of the field along the potential minimum; they

connect the distinct vacuum states. These fields correspond to the massless Goldstone bosons

of the global SU(2) symmetry. However, in local gauge theory these unphysical fields can

be eliminated by the local gauge transformation:

Φ → Φ′ = exp(−i
ζ(x)
σ)Φ, (I.31)

which implies the appropriate transformations of the gauge fields. Therefore, the three

would-be Goldstone bosons entirely disappear from the Lagrangian and they reappear only

as the longitudinal component of the three massive weak-bosons associated with SU(2).

The forth gauge boson, the photon, remains massless reflecting the invariance of the vacuum

under U(1)Q. Finally, the h(x) field becomes massive with mass MH =
√
2 | µ | through

self-interaction and shows up in the spectrum as an extra scalar particle called the Higgs

boson.

The discovery of the massive W± and Z0 gauge bosons at CERN in pp̄ collisions in

1983 [18] was the first experimental evidence for the spontaneous symmetry breaking of the

electroweak interactions. However, the symmetry breaking sector of the Standard Model

is not experimentally confirmed yet since the search for the Higgs boson has failed so far

because of its large mass. However, the ALEPH collaboration reported [19] the observation

of a 3σ excess beyond the expected background in the data collected during the extended

run of the LEP (Large Electron-Positron Collider) at CERN in year 2000. This excess is

mainly due to three events which are consistent with the production of the Standard Model

Higgs boson with a mass around 114 GeV/c2. The task to find conclusive evidence for

the existence of the Higgs boson remains for the current experimental run of the upgraded

Tevatron pp̄ collider at Fermilab and/or the future LHC (Large Hadron Collider), which is
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under construction at CERN and will start to operate around 2006.

The fermions can also interact with the scalar Higgs field (Yukawa coupling), which

provides them with mass. In case of the quarks the Lagrangian of the interaction is given by

Lq
YW = −guYW

[
q̄LΦ̄uR + ūRΦ̄

†qL
]
− gdYW

[
q̄LΦdR + d̄RΦ

†qL
]
, (I.32)

where Φ̄ = iσ2Φ
∗, while for leptons it is

L�
YW = −g�YW

[
�̄LΦeR + ēRΦ

†�L
]

(I.33)

Note that, no mass term appears for the neutrinos in the Standard Model. The coupling

strengths gfYW are fundamental parameters of the Standard Model12 and their values are

chosen to give the proper mass for the fermions.

I.5 Quark mixing

The previously outlined theory of electroweak interactions displays a symmetry between

the leptons and quarks: the three generations of leptons and the three generations of quarks

have identical charged current weak interactions. The Lagrangian describing the charged

current weak interactions (Eq. I.16) for leptons takes the form

L�
EW = − g√

2
[(ν̄eLγ

µeL + ν̄µLγ
µµL + ν̄τLγ

µτL)W
+
µ + h.c.], (I.34)

where h.c. is the hermition conjugate of the first three terms. We can see that the charged

current weak interactions operate on the disconnected weak-isospin lepton doublets, as re-

quired by the separate conservation of the family lepton numbers.

12The Standard Model contains 18 parameters, that are necessary to fit all the observed data at low
energy. Half of these parameters are related to the masses of the 6 quarks and the 3 charged leptons. Other
parameters are the mass of the Z0 weak boson (MW is not independent from MZ and sin2 ΘW ), the Higgs
boson’s mass, the electromagnetic coupling constant (α), the strong coupling constant (αs(MZ)), the weak
angle (sin2 ΘW ) and four parameters related to the quark mixing matrix (see next section).
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If one now replaces the lepton fields in the above Lagrangian with the corresponding

quark fields from the same generation (i.e. νe → u, e → d etc.) then the Lagrangian of

charged current weak interactions for quarks arose. However, there is a significant difference

between the two fermion species: the quarks bear color charge in contrast to the leptons

and consequently interact strongly besides the electroweak coupling. As a result, the quark

weak eigenstates do not coincide with the mass eigenstates defined by the total Hamilto-

nian including the strong interactions. However, the weak eigenstates can be expressed as

linear combinations of the mass eigenstates. The mixing was first parameterized for three

generations by Kobayashi and Maskawa [20] in terms of a 3 × 3 complex unitary matrix V

operating on the charge Q = −1/3 quark mass eigenstates (d, s, b):




d′

s′

b′


 =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb







d

s

b


 . (I.35)

This relationship is the generalization of the four-quark mixing, which was parameterized by

a single real number, the Cabibbo angle (ΘC) [21]
 d′

s′


 =


 cosΘC sinΘC

− sinΘC cosΘC




 d

s


 . (I.36)

This means that, the weak interaction really operates on the following weak-isospin quark

doublets: 
 u

d′





 c

s′





 t

b′


 ,

and then the Lagrangian of the charged current weak interaction in the quarks sector is

Lq
EW = − g√

2
[(ūLγ

µd′L + c̄Lγ
µs′L + t̄Lγ

µb′L)W
+
µ + h.c.]. (I.37)
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If we use Eq. I.35 to express the weak eigenstates then the first term in Eq. I.37 reads as

− g√
2
ūLγ

µd′LW
+
µ = − g√

2
(VudūLγ

µdL + VusūLγ
µsL + VubūLγ

µbL)W
+
µ . (I.38)

That is the u quark couples to the s and b quarks, too, and not exclusively to the d quark.

The same holds for the c and t quarks. As we can see from this example, the relative strength

of the charged current weak coupling between the up-type quarks and the down-type quarks

is proportional to the corresponding matrix element of V . In contrast to the charge current

interactions, the neutral current weak interactions among the quarks are diagonal similarly to

the case of the lepton sector since the mixed-quark terms cancel each other (GIM mechanism

[14]). This feature of the model implies the absence of flavor-changing neutral weak-currents

(e.g. s→ d), which is experimentally confirmed at the current precision.

In contrast to the case of two particle generations where one real parameter is sufficient

to parameterize the elements of the Cabibbo matrix (see Eq. I.36), we need nine parameters,

three real angles and six imaginary phases, to fully describe the Cabibbo-Kobayashi-Maskawa

quark-mixing matrix. Five out of the six phases are removable leaving only one imaginary

phase. Within the framework of the Standard Model, CP violation13 can occur only if this

remaining phase is non-zero. The four remaining parameters are fundamental constants of

the Standard Model and their accurate measurement is very important. A great deal of effort

has been invested into the precise measurement of the individual matrix elements, which can

be determined from weak decays of the relevant quarks or, in some cases, from deep inelastic

neutrino scattering.

13According to the CPT theorem, the combined application of charge conjugation (C), parity reversal
(P ) and time reversal (T ) is an exact symmetry of any local field theory, such as the Standard Model. The
strong and electromagnetic interactions preserve all three symmetries separately, while the weak interaction
violates both C and P . In 1964, a small CP symmetry violation was discovered in K0 decays. This year, the
Belle (at KEK-B, Japan) and the BaBar (at PEP-II, SLAC) collaborations announced the long anticipated
observation of non-zero CP violation in the B0 − B̄0 system [22].
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Several parametrizations of the CKM matrix exist in the literature. Among these, the

most favored is that proposed by Wolfenstein [23]:

V ≈




1− λ2/2 λ Aλ3(ρ− iη)

−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1


 , (I.39)

in which A, ρ and η are real number close to unity. λ ≡ sin ΘC ≈ 0.22 is an expansion

parameter and terms of order λ4 ≈ 10−3 or higher are dropped. This parametrization

demonstrates that the CKM matrix is close to diagonal and consequently the off-diagonal

charged weak couplings among the quarks are highly suppressed (Cabibbo suppression).

The unitarity constraint on V (V †V = V V † = I) imposes six normalization conditions

on the rows and columns of the matrix (corresponding to the diagonal elements of I). The

off-diagonal places in V †V = V V † = I give six orthogonality conditions for two different

rows or columns of the matrix, such as

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 1 (I.40)

between the first and third columns. Each of these equations require three complex quantities

to vanish and therefore can be represented by a triangle, the so called unitarity triangle, in

the complex plane. All six triangle have the same area, which is non-zero if CP violation

occurs. Since Vcb and Vcd are real to a very good approximation, we can choose to orient the

db-triangle corresponding to Eq. I.40 so that VcdV
∗
cb lies along the real axis. This triangle

shown in Fig. I.1 has attracted the most attention due to the relative accessibility of its

sides and angles to experiments. The combination of these measurements can be used to

test unitarity and the validity of the Standard Model.
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Figure I.1: The db unitarity triangle represented by Eq. I.40. The experiments that can be
used to determine its sides and angles and check the consistency of the Standard Model are
shown.
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CHAPTER II

SPONTANEOUS FAMILY SYMMETRY BREAKING AND FAMILONS

II.1 Family (flavor) symmetry

After the muon was discovered and its properties and interactions were found to be

identical to those of the electron except for corrections resulting from its heavier mass, Isidor

Rabi asked the famous question: ”Who ordered that?”. Since that time a bunch of additional

(elementary) particles have been discovered and were eventually arranged in three identical

fermion families based on their interaction properties. In the limit of vanishing mass, the

three fermion generations are indistinguishable with respect to the strong and electroweak

interactions. Rabi’s question is now replaced by an equally difficult one: Why do fermions

repeat themselves three times, only to have a different mass spectrum?

The total Lagrangian of the Standard Model can be written as

LSM = Lfree + Lint + LYW, (II.1)

where Lfree is the Lagrangian of the free fermions (and gauge fields), Lint is the Lagrangian

describing interaction between the fermions and the gauge fields, and LYW is the Yukawa

interaction between the fermions and the Higgs field, which provides the fermions with mass.

In order to understand the problem of particle families better, we imagine that we can turn on

the terms of the above Lagrangian separately one after the other. In the absence of gauge and

Yukawa interactions, the Standard Model Lagrangian has a U(45) global symmetry, which

represents the freedom of being able to interchange any of the 15 fermion states of the three

families with one another. If we now add the gauge interactions to the free Lagrangian, then
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the 15 states in each family are divided into five multiplets (see section I.2) and the U(45)

symmetry of the Lagrangian is broken to U(3)5 corresponding to interchanging fermions of

a given multiplet from one family to another. When the Yukawa couplings are also turned

on, the fermions are endowed with mass and the family (flavor) symmetry is lost: the flavor

group U(3)5 is explicitly broken to U(1)B ⊗ U(1)L.

The main objective of particle physics for over half a century has been to understand the

origin of the fermion mass hierarchy and weak mixing pattern, which in the Standard Model is

simply parameterized in terms of many fundamental, however arbitrary, coupling constants,

that are merely fit to the data. This problem is not solved by the ”vertical” extensions of the

Standard Model either: these theories can successfully unify the apparently separate gauge

interactions and bring some order to the scattered multiplets of quarks and leptons within

each family1 but they can not bring us closer to the ultimate understanding of the family

structure of particles.

It seems appealing to extend the model by assuming that there exist a subgroup of the

flavor group, which is an exact symmetry of the total Lagrangian but it is not manifest in

the vacuum since the observed particle masses are different from one family to the other.

This spontaneously broken ”horizontal” symmetry can be discrete, continuous and local,

1These unification theories are very attractive from this point of view: in the SU(5) [24] extension the
15 particle states are organized into only two representations of the symmetry group. A more promising
extension of SU(5) to the larger SO(10) group [25] makes possible to unite all fermions of a family into a
single multiplet. In fact, this single representation can accommodate 16 fermion states, that is one more
than the 15 degrees of freedom of the Standard Model family. The quantum numbers of this extra family
member is identical to those of a massive right-handed neutrino, which was proposed to solve the problem
of the non-vanishing neutrino mass in the Standard Model. As we saw before, the Standard Model in its
conventional form does not allow non-zero neutrino mass (see section I.4) in growing contradiction to the
recent observation of the neutrino oscillation mentioned in section I.1. However, a singlet right-handed
very massive fermion, which is consistent with all symmetries and requirements of the Standard Model, can
generate small mass for the observed neutrinos via the so called ”see-saw” mechanism [26].
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continuous and global, or it might be a combination of these. Among these, the most attrac-

tive is the possibility of a spontaneously broken continuous global family symmetry, which

implies the existence of massless Nambu-Goldstone bosons (see section I.4), called familons

[27]. However, spontaneously broken global symmetries were considered unacceptable in any

realistic model for a long time since the massless Goldstone bosons could potentially medi-

ate neutral current processes and would give rise to non-relativistic long-range r−1 potential.

Later, it turned out that Goldstone bosons associated with a global symmetry broken at a

very large energy scale will couple weakly to matter and need not to be feared [28]. Thus

continuous global symmetries can be considered as a candidate for the spontaneously broken

family (flavor) symmetry [27, 29] and we explore this possibility in this thesis.

The idea of spontaneously broken continuous global symmetries and the existence of

the associated Goldstone bosons is not unprecedented in particle physics. A spontaneous

violation of global U(1) lepton-number symmetry was proposed in extensions of the Standard

Model in order to generate mass for the neutrinos. This model leads to massive right-

handed Majorana neutrinos and the mass for the left-handed neutrinos is generated by the

coupling of this extra neutrino to leptons through the Higgs field (”see-saw” mechanism).

The Nambu-Goldstone boson associated with this model is the majoron, which has several

varieties depending on the different schemes for breaking the lepton-number symmetry [30].

A spontaneously broken continuous global symmetry would also provide solution for an

other deficiency of the Standard Model: the so called strong CP problem [31]. In the strong

interaction Lagrangian, there is a term2

L = Θ
αs

8π
GaµνG̃

µν
a (II.2)

2Here Gµν stands for the gluon field strength tensor.
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that violates P and T (and CP as well). Since this term contributes to the electric dipole

moment of the neutron, the strong experimental bound on dn requires that Θ < 10−9, even

though any value is equally likely because it is a free parameter. To solve this problem,

Peccei and Quinn proposed an additional global (pseudo) symmetry U(1)PQ that can set

the Θ parameter to zero [32]. Since this symmetry is spontaneously broken by the vacuum,

there is an associated pseudo Nambu-Goldstone boson, the almost massless axion3, in the

theory [33].

Reiss [29] and Wilczek [27] suggested the possibility that the Peccei-Quinn (PQ) sym-

metry might be a small part of a larger flavor symmetry group and therefore the strong CP

problem would be automatically solved in this case. Also, Chang and Senjanovic [34] found

that, the PQ symmetry is a very natural consequence of a theory based on the combination

of the ”vertical” SO(10) local gauge symmetry and a ”horizontal” SU(N) global family sym-

metry. Furthermore, this theory favors three families (N = 3) if the lepton-number breaking

is tied to the family and PQ symmetry breaking.

Finally, we would like to mention a cosmological motivation as well. A massive unstable

neutrino (typically the tau-neutrino) was advocated in several cosmological scenarios related

to big-bang nucleosynthesis [35] and large scale structure formation [36] in order to obtain

reasonable agreement between theory and observations. However, visible neutrino decays to

photons or electrons are severely constrained by observation of supernova SN 1987A since

these decays would have increased the visible luminosity of the supernova with respect to its

3The small mass of the axion is the consequence of the small explicit breaking of the symmetry due to
quantum mechanical anomalies with the gluons. In the original theory, the spontaneous symmetry breaking
was assumed at the electroweak scale v ∼ 246 GeV, which resulted in too strong axion coupling and too large
mass which was excluded experimentally. One possible way to save the idea is to bring up the Peccei-Quinn
symmetry breaking scale so that the coupling of the axion to fermionic matter is suppressed to a level, that
is not in violation with existing limits. These models are called invisible axion models and two types of them
were discussed widely in the literature: the DFSZ or GUT axion and the KSVZ or hadronic axions.
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neutrino luminosity. In addition, ντ decay to three neutrinos is also excluded since no flavor

violating τ decays, which would be implied by SU(2)L gauge invariance, were observed. On

the other hand, the tau-neutrino decaying to a lighter neutrino and a massless boson such

as the familon would solve the problem.

II.2 Familon Interaction

Familons, the massless Nambu-Goldstone bosons associated with a spontaneously broken

family symmetry, couple derivatively to the flavor current [28]. At low energies, the coupling

can be described by the effective Lagrangian [27, 28, 37]

Lf =
1

F
(∂µf

a)J aµ, (II.3)

where fa are the familon fields, J aµ are the flavor currents and F is the energy scale at

which the global flavor symmetry is spontaneously broken and the familon is generated. The

index a distinguishes the independent familon fields associated with the broken generators

T a of the family symmetry group4.

The most general flavor current composed of two fermion fields is an arbitrary mixture

of vector and axial-vector currents

J aµ = ψ̄′
iγ

µ(gV + gAγ
5)T a

ijψ
′
j , (II.4)

written in terms of the fermion flavor eigenstates, ψ′
i and ψ

′
j, with i and j being the flavor

indices 5. The second quantized ψj represents the annihilation operator of fermion j, while

ψ̄i refers to the creation of fermion i. gV and gA are relative coupling constants of the

vector and axial-vector currents, respectively, for which g2V + g2A = 1. The details of the

4Of course, the number of the independent familons is one if the broken family symmetry is U(1).
5Since the familon is neutral it can couple to two quarks with the same charge only (either two u-type or

two d-type quarks). Therefore, the flavor indices are generational indices as well.
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interactions depend on the particular family symmetry group that is broken. For example,

if the Lagrangian has O(N) symmetry, then the generators Tij are anti-symmetric tensors,

which can not generate flavor-diagonal interactions. However, flavor-diagonal interactions

can also occur in this particular case due to the quark mixing effects discussed in section I.5.

Let’s assume that, the flavor eigenstates ψ′ are related to the mass eigenstates ψ by

ψ′ = V ψ, where V is a 3 × 3 unitary matrix, such as the CKM matrix in case of the

down-quark sector. Then the J aµ current is given in the mass-eigenstate basis by

J aµ = ψ̄iγ
µ(gV + gAγ

5)V †T a
ijV ψj . (II.5)

In the following, we will denote the transformed matrix V †T a
ijV as T a

ij. If we substitute the

above form of the flavor current to Eq. II.3, the familon interaction can be written as

Lf =
1

F
(∂µf

a)ψ̄iγ
µ(gV + gAγ

5)T a
ijψj . (II.6)

By partial integration it takes the form

Lf = − 1

F
fa∂µ

[
ψ̄iγ

µ(gV + gAγ
5)T a

ijψj

]
= − 1

F
fa
[(
∂µψ̄i

)
γµ(gV + gAγ

5)T a
ijψj + ψ̄iγ

µ(gV + gAγ
5)T a

ij (∂µψj)
]

= − 1

F
fa
[(
∂µψ̄i

)
γµ(gV + gAγ

5)T a
ijψj + ψ̄i(gV − gAγ

5)T a
ijγ

µ (∂µψj)
]
,

(II.7)

where in the last step we used the anticommutation relation {γµ, γ5} = 0, that is γµγ5 =

−γ5γµ. Now we can substitute the Dirac equation of the fermion field and its conjugate:

iγµ∂µψ = mψ − iγµ∂µψ̄ = mψ̄, (II.8)

to get

Lf = − i

F
fa
[
miψ̄i(gV + gAγ

5)T a
ijψj −mjψ̄i(gV − gAγ

5)T a
ijψj

]
= − i

F
faψ̄i

[
gV (mi −mj) + gA(mi +mj)γ

5
]
T a
ijψj .

(II.9)
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However, this form of the Lagrangian is valid only for on-shell fermions, such as external

leptons, while in hadronic matrix elements and processes including off-shell fermions, the

most general form given by Eq. II.6 must be used.

Equation II.9 demonstrates an important property of the familon interactions, namely

that, in the fermion mass eigenstate basis, the flavor conserving couplings (ψi = ψj) of

the familon are always axial-vector type, while the flavor changing couplings may have both

vector and axial-vector parts. Since the long-range potentials arise as a consequence of flavor

conserving interactions between nucleons or electrons, the long-range potential mediated

by familons must be axial-vector type. In the r → ∞ limit (or q → 0, where q is the

momentum transferred to the familon) the potential resulting from the familon exchange is

a spin-dependent tensor potential V (r) ∼ [s1 ·s2−3(s1 · r̂)(s2 · r̂)]r−3 [28]. A family symmetry

breaking scale F ≥ 10 − 100 GeV ensures the invisibility of the non-relativistic potential

conveyed by the familon in ”fifth-force” experiments [38].

As we can see, the strength of the familon interaction is inversely proportional to F , the

family symmetry breaking scale: the larger F , the weaker the interaction. However, the

coupling strength depends also on the relative couplings gV (A) and the matrix elements Tij .

Therefore, it is convenient to define a normalized family symmetry breaking scale by

Fij =
F√

(gV Tij)
2 + (gATij)

2
(II.10)

and similarly with only vector or axial-vector type interaction by

F V
ij =

F

gV Tij
and FA

ij =
F

gATij
. (II.11)

We can determine these quantities experimentally in a model independent manner but we

have to make an assumption about the structure of the broken family symmetry (the gener-

ators T ) in order to extract the value of F itself.
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II.3 Previous experimental and astrophysical constraints

The coupling strength of familons to matter and therefore the family symmetry breaking

scale can be constrained from astrophysical considerations. For example, any light and

weakly coupled Nambu-Goldstone boson such as the familon could carry away a large amount

of energy from the interior of stars. In order to be consistent with the standard stellar

evolution scenario, the coupling of the Goldstone bosons must be bounded. Unfortunately,

this type of calculations can bound only the flavor-diagonal (axial-vector) interactions of the

familons with the electrons and the nucleons since second and third generation particles are

absent in almost all astrophysical objects. Results of detailed calculations [39] in various

stellar objects, such as the Sun, red giants, white dwarfs and neutron stars, led to a family

breaking scale larger than 107 − 109 GeV with the best limit on FA
ee ≥ 7× 109 GeV.

Somewhat better and more reliable constraints on the familon coupling to the first and

second generation particles can be obtained from laboratory experiments. As described in

the previous section, familons may be produced in flavor changing processes, that can lead

to decays like K → πf or µ → e(γ)f , which were studied experimentally with very high

sensitivity. The results of these measurements and the resulting family symmetry breaking

scales were summarized by Feng et al. [37] and reproduced in Table II.1. As we see the

Table II.1: Experimental bounds on the normalized family symmetry breaking scale defined
by Eq.’s II.10 and II.11 for the first two generations [37].

Decay Branching Ratio Fij

K+ → π+X0 B < 3× 10−10 [40] F V
sd > 3.4× 1011 GeV

µ+ → e+X0 B < 2.6× 10−6 [41] F V
µe > 5.5× 109 GeV

µ+ → e+γX0 B < 1.1× 10−9 [42] Fµe > 3.1× 109 GeV
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strongest bound on any family symmetry breaking scale is derived from the K+ → π+X0

decay, where X0 denotes any neutral massless weakly-interacting particle. However, this

limits only the vector coupling of the familon since the matrix element < π | d̄γµγ5s | K >

is zero (see details in next section) and so the axial-vector component does not play a role

in this decay. On the other hand, µ → e(γ)f decays has the advantage that both vector

and axial-vector couplings come into play and enables us to derive the combined symmetry

breaking scale Fµe as it is the case in [42]. The slightly better limit obtained by [41] bounds

only the family symmetry breaking scale with vector coupling (F V
µe) since the experimenters

measured the positrons emerging from polarized muons in a direction opposite to the muon

polarization and assumed isotropic positron emission, which holds with the parity conserving

vector coupling (µ̄γµe) only.

We now compare these bounds to those available in the third generation. Since all three

neutrino species can be found in the core of a supernova, bound on the familon coupling to

ντ can be obtained by supernova observation (e.g. the supernova SN 1987A in the Large

Magellanic Cloud). If the familons emitted by the tau-neutrinos would carry away a substan-

tial amount of the energy, then it would alter the duration of the neutrino pulse and effect

the agreement between the theory and observation. The possible effect of the familons were

calculated in [43] and the bound on F were deduced in [37] for diagonal and off-diagonal ντ

coupling. The lower bound on6 FL
ντντ is around 2× 103 GeV at the maximum allowed value

of the tau-neutrino mass of 18.2 MeV and it becomes less stringent with decreasing mass.

6For neutrinos, it is more convenient to write the familon interaction Lagrangian given by Eq. II.6 in the
form

Lf =
1

F
(∂µf

a)ψ̄iγ
µ

[
(gV + gA)

1 + γ5

2
+ (gV − gA)

1− γ5

2

]
T a
ijψj , (II.12)

where (1 + γ5)/2 and (1− γ5)/2 are the left and right-handed projection operators. Since neutrinos are left
handed only, therefore only the first component plays a role in their interactions and we can place a bound
only on FL

ij = F/(gLTij), where gL = gV + gA.
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The lower limit on the off-diagonal FL
ντνµ scale is smaller by a factor of 1.2.

The astrophysical bounds on the first generation of particles can also be used to infer

constraints on flavor diagonal familon couplings to all other particles because the latter ones

can induce familon couplings to the electrons or nucleons at loop level [37]. Dominant contri-

bution to the induced coupling is from Z0−f mixing, where the Z0 couples to the e, or u or d

quark, and the Z0 and f are coupled through a loop of a third generation particle. Although

these induced couplings are suppressed by loop factors, the first generation couplings are

strong enough to give promising bounds on familon couplings to the third generation. This

kind of coupling is proportional to the mass square of the particle in the loop, therefore, the

best limit can be deduced on the coupling to the top quark:

FR
tt > 1.2× 109GeV. (II.13)

The bounds on the familon coupling to the b quark and the tau-lepton are

FR
bb > 6.1× 105GeV

FR
ττ > 2.5× 104GeV.

(II.14)

By taking into account flavor mixing effects, Feng et al. [37] also inferred bounds on familon

coupling to the third generation quarks from bounds on the first generation obtained from

supernova observation:

FL
bb > 3× 104GeV

FL
bs > 3× 106GeV

FL
bd > 1× 107GeV

FL
tt > 7× 105GeV

(II.15)

Although, some of the bounds derived from astrophysical considerations are fairly stringent,

we have to note that they are strongly model-dependent.
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More reliable bounds on the family symmetry breaking scale including the third gen-

eration were derived by Feng et al. [37] from considering familon contributions to neutral

meson mixing and existing bounds on rare leptonic decays of B mesons. In the case, when

the spontaneously broken family symmetry group is real (e.g O(N) group), then the same

real familon field couples to the quark current and its hermition conjugate:

Lf = i
Tbd
F

(∂µf)[d̄γ
µ(gV + gAγ5)b− b̄γµ(gV + gAγ5)d], (II.16)

and therefore contribute to neutral B0 − B̄0 mixing. The contribution of the familon inter-

action to the mass splitting is

∆M
(f)
B0 ≡| MB0 −MB̄0 |≈ 5

6

f 2
B0mB0

(FA
bd)

2
, (II.17)

where fB0 is the familon decay constant (see Appendix B). Vector like familon interactions

does not contribute to the mass splitting in the heavy quark approximation when MB0 ≈

mb. Assuming that the familon contribution is responsible to the total mass splitting and

taking fB0 ≈ 175 MeV, then the resulting conservative lower bound on the family symmetry

breaking scale with axial coupling is

FA
bd > 6.4× 105GeV. (II.18)

Similar bounds can be obtained on FA
cu and FA

sd from the D0 and K0 meson mass splitting.

Rare leptonic decays of neutral mesons, such as B0 → τ+e− via familon exchange is

possible only if the same familon couples to both quarks and leptons, which is guaranteed in

grand unified models, where the quarks and leptons are in the same gauge multiplet. The

decay rate is given by [37]

Γ(B0 → τ+e−) ≈ 1

8π

f 2
B0m2

τ (M
2
B0 −m2

τ )

(FA
bdFτe)2

, (II.19)
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if we neglect the mass of the lighter lepton. From this type of measurements we can extract

bound only on the product FA
bdFτe. The limits on the flavor scales from current experimental

bounds [44] are summarized in Table II.2.

Table II.2: Experimental bounds on the normalized family symmetry breaking scales from
rare meson decays [37].

Decay Branching Ratio Bound

B0 → τ±e∓ B < 5.3× 10−4 (FA
bdFτe)

1/2 > 3.5× 103 GeV
B0 → τ±µ∓ B < 8.3× 10−4 (FA

bdFτµ)
1/2 > 3.1× 103 GeV

B0 → µ±e∓ B < 5.9× 10−6 (FA
bdFµe)

1/2 > 2.8× 103 GeV

A direct experimental bound on the family symmetry breaking scale for the third genera-

tion is available in the leptonic sector only. This is based on the measurement of τ decay into

a light lepton plus an unobservable particle by the ARGUS collaboration [45]. The results

are given in Table II.3. As we can see these bounds on the family symmetry breaking scale

Table II.3: Experimental bounds on the normalized family symmetry breaking scales from
τ → �X0 decays [37].

Decay Branching Ratio Bound
τ− → µ−X0 B < 4.6× 10−3 Fτµ > 3.6× 106 GeV
τ− → e−X0 B < 2.6× 10−3 Fτµ > 4.4× 106 GeV

are significantly lass stringent for the third generation couplings than for those involving the

first two generations (Table II.1).

The lack of experimental bound is more pronounced in the hadronic sector since no
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bounds involving the third generation quarks have been reported yet. However, the ALEPH

collaboration reported a preliminary limit on the b → sνν̄ branching ratio B(b → sνν̄) <

7.7 × 10−4 [46], which was scaled by Feng et al. [37] to get a limit on the inclusive decay

b→ sf :

B(b→ sf) < 1.8× 10−3. (II.20)

This corresponds to a bound on the normalized family symmetry breaking scale of

Fbs > 6.1× 107GeV. (II.21)

II.4 The goal of the analysis

As we saw in the previous section, constraints on transitions mediated by familons be-

tween the first and second generations were studied extensively in contrast to the third

generation where existing experimental bounds are much weaker (in the leptonic sector) or

do not exist at all (in the hadronic sector). At the same time, models have been proposed

[47] in which the strength of the familon coupling to the fermions is related to the mass

hierarchy of the particle generations, and therefore familons most strongly coupled to the

third generation.

The familon interactions described by the Lagrangian Eq. II.6 can induce the flavor

changing decay of the b quark to d or s quark b → (d, s)f , which can lead to the decay

of the B meson via the tree level diagram shown on Fig. II.1. As we will see in the next

section, the B decay to a pseudoscalar meson plus a familon, B → hf where h stands for

π or K meson, is governed by only the vector-type familon interaction. On the other hand,

the decay B → V f , where V is a vector meson, such as the ρ or K∗ meson, goes through

axial-vector coupling only.
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K*±, ρ± (K*0, ρ0)

f

Figure II.1: Feynmann graph of B meson decays via the b→ (d, s)f mechanism.

Although these exclusive B decays have smaller branching fractions than the inclusive

b → qdf (qd = d, s) decays, they have clear experimental signature due to the simple two-

body kinematics. However, the vector mesons, K∗ and ρ, are short lived resonances, which

decay by the strong interaction: K∗ → Kπ and ρ → ππ. Due to the short lifetime these

resonances have a wide mass distribution shown on Fig. II.2 as it is expected from the

energy-time uncertainty relation. Because of the wide invariant mass distribution, these

decay modes are highly contaminated with combinatoric background, when two unrelated

K (π) and π mesons are identified as a K∗ (ρ) candidate by accident. In contrast, the

B → hf decays have the advantage that they exhibit a clean experimental signature with a

single high energy π±/K± meson or a K0
S present in the final state, which can be detected

with high efficiency, without significant background from other B decays. Hence, we expect

higher sensitivity for the latter decay modes and we focus on them in this analysis.

We search for the B± → h±X0 and B0 → K0
SX

0 decays, where X0 represents any

massless neutral particle that, like the familon, couples to ordinary matter very weakly. The
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Figure II.2: Invariant mass distribution (in GeV/c2) of K+π− (solid histogram) and π+π−

pairs (dashed histogram) in Monte-Carlo simulated B0 → K∗0f and B0 → ρ0f events.

lack of signal allows us to obtain experimental bound on the vector coupling of the familon to

third generation hadrons for the first time. The analysis is sensitive to new physics including

any other massless weakly coupled neutral particles as well. However, we would like to

emphasize that, it is equally important to study the B → V f decays in order to place a

constraint on the axial-vector coupling of the familon.

II.5 B → hf decay rate

In this section we will show that there is a significant difference in the decay mechanism

between the two exclusive decays B → hf (h = π,K) and B → V f (V = ρ,K∗) and derive

the decay rate for B → hf decays.

The differential decay rate of a particle with mass M decaying to a two-body final state
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is given by (see e.g. [48])

dΓ =
1

2M
| M |2 dLIPS(2), (II.22)

where M is the decay amplitude (interaction matrix element) and dLIPS(2) is the two-body

Lorentz Invariant Phase Space element. The later quantity is defined by

dLIPS(2) =
1

16π2

pc.m.√
s
dΩ, (II.23)

where
√
s is the center of mass energy, which is equal to the mass of the parent particle in

case of decay, and pc.m. is the magnitude of the 3-momentum of either decay products in

the center of mass frame. In order to obtain pc.m. we apply the principle of momentum and

energy conservation for the case of a final state consisting of a massive particle (with mass

m) and a massless familon:

M =
√
p2c.m. +m2 + pc.m., (II.24)

which gives

pc.m. =
M2 −m2

2M
. (II.25)

Then the differential decay rate is

dΓ =
1

64π2

M2 −m2

M3
| M |2 dΩ. (II.26)

The decay amplitude is the matrix element of the interaction Lagrangian that governs the

decay sandwiched between the initial and final states (here D denotes the daughter meson,

which can be either pseudoscalar h or vector V ):

M = − < D(p′)f(q) | Lf | B(p) >

= − 1

F
< D(p′)f(q) | ∂µf q̄dγµ(gV + gAγ

5)Tbqdb | B(p) >

=
i

F
qµ < D(p′) | q̄dγµ(gV + gAγ

5)Tbqdb | B(p) >

=
i

F
Tbqdqµ

[
gV < D(p′) | q̄dγµb | B(p) > +gA < D(p′) | q̄dγµγ5b | B(p) >

]
.

(II.27)
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In Eq. II.27 p and p′ are the 4-momentum of the B meson and the daughter meson D,

respectively, q = p− p′ is the 4-momentum transfer to the familon, and the qd stands for the

relevant d or s quark field operator depending on the quark content of D.

The transition amplitude M is different for B → hf decays containing pseudoscalar

meson and for B → V f decays with a vector meson in the final state. Let’s see first the

case of the pseudoscalar meson final state, i.e. D = h in Eq. II.27. Since both h and B are

pseudoscalar mesons with JP = 0− spin-parity, the axial-vector matrix element must vanish7

and only the vector current contribute:

Mh = i
TbqdgV
F

qµ < h(p′) | q̄dγµb | B(p) > . (II.28)

The matrix element of the vector current can be expressed in terms of two dimensionless

form factors F0(q
2) and F1(q

2) [50]

< h(p′) | q̄dγµb | B(p) >= (p+ p′)µF1(q
2) +

M2 −m2

q2
qµ
[
F0(q

2)− F1(q
2)
]
, (II.29)

where F1(0) = F0(0) is required to remove the singularity at q2 = 0. In our case q2 = qµq
µ =

E2 − 
q2 = m2
f = 0 and hence the second term vanishes. Therefore, the decay amplitude is

simply

Mh = i
TbqdgV
F

qµ(p+ p′)µF1(0) = i
TbqdgV
F

(M2 −m2)F1(0). (II.30)

Since qµ = (p− p′)µ, we used the identity (p− p′)µ(p+ p′)µ = p2 − p′2 =M2 −m2 to obtain

the second form.

Let’s see now the case of decay to a vector meson plus familon B → V f . In this case the

hadronic matrix element of the vector current does not vanish and the two matrix element in

7From general considerations of Lorentz invariance follows that the matrix element of an axial-vector
current Aµ between two spinless meson having the same intrinsic parity is zero, < 0± | Aµ | 0± >≡ 0, see
e.g. Chapter 10 in [49]

40



Eq. II.27 can be parameterized in terms of four independent form factors, V (q2) and Ai(q
2)

with i = 0, 1, 2, [50]:

< V (p′) | q̄dγµb | B(p) >=2iεµναβ
ενp

′
αpβ

M +m
V (q2),

< V (p′) | q̄dγµγ5b | B(p) >=(M +m)

[
εµ − ε · q

q2
qµ
]
A1(q

2)

− ε · q
[
(p+ p′)µ

M +m
− M −m

q2
qµ
]
A2(q

2)

+ 2m
ε · q
q2

qµA0(q
2).

(II.31)

However, the tensors associated with V (q2), A1(q
2) and A2(q

2) are orthogonal to qµ (see for

example Chapter 16 in [49]) so that these terms vanish when we substitute Eq. II.31 to the

expression of M (Eq. II.27), resulting:

MV = 2im
gATbqd
F

ε · qA0(0). (II.32)

As we can see, only the vector coupling plays a role in the decay to a pseudoscalar meson

B → hf (h = π,K), while the decay to a vector meson B → V f (V = ρ,K∗) goes through

axial-vector coupling only. Using these different decay modes we can obtain information

separately on the vector and axial-vector components of the familon interaction. Since we

focus our attention to the B → hf decays in this thesis, we derive the partial decay rate for

these modes.

By substituting the decay amplitude Mh (Eq. II.30) in Eq. II.26, the differential decay

rate for B → hf decays reads as

dΓ(B → hf) =
1

64π2

(M2 −m2)3

M3

| F1(0) |2
(F V

bqd
)2

dΩ. (II.33)

After integrating over the total solid angle
∫
dΩ = 4π, the partial decay rate is equal to

Γ(B → hf) =
1

16π

(M2 −m2)3

M3

| F1(0) |2
(F V

bqd
)2

, (II.34)
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where we used the definition of the normalized family symmetry breaking scale with vectorial

coupling, F V
bqd

, defined by Eq. II.11.

By measuring the decay rate, which is related to the branching ratio (B) of the decay

through the formula

Γ(B → hf) = BΓ =
B
τ
, (II.35)

where Γ and τ are the total decay rate (decay width) and life-time of the B meson, respec-

tively, we can extract the family symmetry breaking scale with vectorial coupling, F V
bqd

. To

do this we also need the value of the weak transition form factor F1(q
2) at zero momentum

transfer.

The weak transition form factors are usually calculated by using non-perturbative meth-

ods, such as constituent quark models, QCD sum rules or lattice QCD, which makes the

theoretical uncertainties quite large. The form factor F1(q
2) can be parameterized by

F1(q
2) =

F1(0)

1− q2/M2
P

, (II.36)

where M2
P is the pole mass. The results from different calculations are compared in a recent

paper by Melikhov and Stech [51]. The values for F1(0) ranges from 0.25 − 0.36 in case of

B → K transitions, while they are between 0.27 and 0.305 for B → π transitions. These two

ranges are consistent since the two form factors are expected to agree in the flavor symmetric

limit. We adapted the value F1(0) = 0.25 resulting from QCD sum rules [52], which gives

the most conservative (i.e. the lowest) value of the symmetry breaking scale for a particular

decay rate, to extract both F V
bd and F V

bs from our experiment.
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CHAPTER III

EXPERIMENTAL APPARATUS

The data analyzed in this study were accumulated by the CLEO II detector located at the

Cornell Electron Storage Ring (CESR) at Cornell University in Ithaca, NY. In this chapter

the properties of CESR and CLEO are described in some detail.

III.1 The Cornell Electron Storage Ring (CESR)

The Cornell Electron Storage Ring was constructed in 1977-79, and started operation in

1979. CESR is a symmetric1 electron-positron collider, in which the electrons and positrons

travel in opposite direction and collide head-on at the only interaction point on the south

side of the ring. The center of mass energy of the collisions (
√
s = 2Ebeam) can be adjusted

between 9− 12 GeV but CESR usually operates around the energy of the Υ(4S) resonance

at
√
s = 10.58 GeV.

The acceleration of the electrons and positrons to the desired energy is performed sepa-

rately. First the positron beam is accelerated and stored in the storage ring, followed by the

acceleration of the electron beam. The main components of the accelerator system are the

linear accelerator (LINAC), the synchrotron and the storage ring itself. They are shown on

Fig. III.1 along with the different experimental areas.

The acceleration process starts at the electron source where electrons are emitted from

a heated filament. The LINAC pre-accelerates the electrons to 300 MeV energy under the

1That is the energy of the electron and positron beam is equal. In this arrangement, all of the kinetic
energy of the particles is converted into new matter in the collision and there is no energy loss in the form
of recoil motion of the collision products.
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Figure III.1: Layout of the Cornell Electron Storage Ring.

action of a microwave electric field. On the other hand, positrons are produced by pair

production at about halfway in the LINAC where the electrons strike a tungsten foil at

approximately 140 MeV energy. The positrons are separated from other particles produced

in the collision and accelerated up to 200 MeV energy in the remaining length of the LINAC.

In the next step, the electrons or positrons are injected into the synchrotron, in which they

travel in a circular orbit under the influence of 192 3 m long bending dipole magnets. Further

acceleration is achieved by four linear accelerators placed among the bending magnets. It

takes approximately 4, 000 revolutions or about 0.01 s for the particles to reach the required

energy around 5 GeV when they are transferred into the storage ring.

The storage ring, which has a circumference of 768 m shares the same tunnel 12 m
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underground with the synchrotron. It uses the same guide field principle as the synchrotron

to keep the particles on orbit while quadrupole and sextuple magnets are focusing the beams.

The particles circulate in the ring about 390, 000 times per second for about an hour, which

requires good quality vacuum (∼ 10−9 torr) and very precise tuning of the magnets to

minimize beam scattering. The energy spread of the beam at 5.3 GeV is ∼ 3.8 MeV.

Due to the curved orbit, each electron and positron looses approximately 0.5 MeV energy

per revolution via synchrotron radiation. The synchrotron radiation, which is emitted in

the form of high energy X-rays, is a valuable research tool used by the Cornell High Energy

Synchrotron Service (CHESS) facility for material science, biology and other interdisciplinary

studies. The lost energy is restored to the beam by 500 MHz radio-frequency cavities placed

at a few places among the magnets.

The electrons and positrons are not continuously distributed along the ring but they

travel in bunches. Since the electron and positron bunches are counter-rotating in the same

ring, two pairs of electrostatic separators yield differential horizontal closed orbits (’pretzel’

orbits) to avoid collision outside the interaction region. At the beginning of operations three

and later seven nearly equally spaced bunches (shown on Fig. III.1) were directed into

head-on collisions. In order to significantly increase the number of bunches in each beam

the configuration was changed in 1994 so that the bunches collide with a small horizontal

crossing angle of ±2.1 mrad. Since that time CESR has been operating with nine trains of

bunches and has steadily increased the number of bunches in each train from the initial two

to the current five. With the total 45 bunches present CESR can produce up to 370 mA

current per beam. The successive improvements in the accelerator technology at Cornell

were crucial to continuously increase the luminosity of CESR.

The performance of a collider is quantitatively measured by its luminosity L, which is
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the coefficient of proportionality between the event rate (R) of a given process and the cross

section (σ) of that particular process

R = Lσ. (III.1)

The luminosity depends on the beam parameters, such as the transverse bunch profile,

number of particles in the bunches and the collision rate between the bunches. The luminosity

at CESR/CLEO is measured by processes like e+e− → µ+µ−, which are characterized by

high and well-known cross section and have high efficiency in the detector. Recently, an

instantaneous luminosity of 1.25 × 1033 cm−2s−1 has been achieved. However, the most

critical quantity is not the instantaneous luminosity but its integrated value over a given

time-interval
∫
Ldt, which is measured in nb−1, pb−1 or fb−1.2 Fig. III.2 demonstrates how

the monthly integrated luminosity of CESR increased during the course of operation. The

best integrated luminosity values delivered by CESR are 73pb−1 during a day (in April 2001),

1.55fb−1 in the month of December, 2000, and 6.35fb−1 in the year of 2000.

2They are read as ’inverse nano-/piko-/femto-barn’. Since 1b= 10−24cm2, they are equivalent to
1033cm−2, 1036cm−2 and 1039cm−2, respectively.
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Figure III.2: CESR’s monthly integrated luminosity from 1989− 2001.

III.2 The CLEO II Detector

The first detector at the south interaction region of CESR was installed in September

1979. In the course of numerous upgrades CLEO has received new and improved detector

sub-systems and finally reached the status that we call CLEO II [54] in 1989. The purpose

of the detector is to measure the momentum, energy, charge, type, starting position and

other important parameters of the majority of particles created in the e+e− annihilation at

the center of the detector.

CLEO II is a multipurpose detector containing more than 25, 000 individual detection

elements designed to provide excellent charged and neutral particle reconstruction efficiency
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and resolution. The main components of the detector are the charged particle tracking

system, the time of flight system, the crystal calorimeter, the superconducting coil and the

muon tracking system. Vertical cross-section of the detector parallel to the beam line can

be seen on Fig. III.3. CLEO II covers approximately 95% of the total solid angle only since

it has to provide space for the beam pipe passing through and has to accommodate the

rear-earth-cobalt (REC) permanent magnet quadrupoles, which are the final elements of the

beam-focusing system near the interaction region.

Unfortunately, the detector is not able to measure all particles created in the e+e− an-

nihilation. Charged particles are missed due to the finite solid angle of the detector, the

finite efficiency, and interaction with the detector material, which can distort the measure-

ment. However, the main difficulties are associated with neutral particles, whose detection

efficiency depends on the particle type very much. The K0-short can be measured easily

trough its decay to a positively and a negatively charged pion at a secondary vertex position

distinctive from the primary interaction point from which most of the particles originate.

Photons can generally be measured quite accurately in the crystal calorimeter. Similarly,

π0’s decaying almost exclusively to two gamma photons are easily detectable, which is im-

portant since π0’s make up a large portion of the neutral particle spectrum. On the other

hand, detection of neutron and K0-long is extremely difficult since they decay to charged

particles usually outside the fiducial volume of the detector. Finally, neutrinos, which are

produced very often in quark and lepton decays are impossible to measure due to their very

weak interaction with the detector elements.

A typical e+e− → Υ(4S) → BB̄ event reconstructed with the detector is demonstrated

on Fig. III.4.

Trajectories of charged particles are reconstructed using a system of three concentric
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cylindrical wire chambers: a 6-layer straw-tube chamber, a 10-layer precision drift chamber,

and a 51-layer main drift chamber. The main drift chamber also provides a measurement

of the specific ionization loss (dE/dx) used for particle identification. The time of flight

system measures the flight time of particles, which combined with the momentum also helps

in identifying the particle type. Photons are detected in the CsI electromagnetic calorimeter

only but charged particles reaching the calorimeter also leave their distinctive signature in
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it. The superconductive magnetic coil outside the crystal calorimeter induces 1.5 T uni-

form axial magnetic field. Under the influence of this field, charged particles travel on a

curved trajectory (helix) through the drift chamber and their momentum and charge can be

computed from the curvature of the track. The muon chambers consisting of proportional

counters embedded at various depths in the steel absorber distinguish the highly penetrating

muons from other charged particles.
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The CLEO II detector went through a major upgrade in 1995, when the innermost straw-

tube chamber was replaced with a three-layer, double-sided silicon vertex detector [55], and

the gas in the main drift chamber was changed from an argon-ethane to a helium-propane

mixture. These modifications led to an improved particle identification and momentum

resolution. Approximately 2/3 of the data used in this analysis were collected with the

upgraded CLEO II.5 detector.

The detector subsystems are described in detail in the following sections.

III.2.1 Tracking Detectors

The three wire chambers of the tracking system rely on the same principle of work but

different design specifications make them suitable for different purposes, and therefore, the

combined system can achieve a better performance than a single chamber. All three wire

chambers have a cylindrical shape with the common axis aligned with the beam line. They

are filled with an appropriate gas mixture and contain only hundreds or thousands of thin

wires strung parallel to the symmetric axis. The wires are arranged in a cell structure so that

each sense (or anode) wire is surrounded by several field (or cathode) wires. The charged

particle traveling through the detector leaves a track behind by ionizing the atoms of the

gas. The electric field in a cell located along the path of the particle drives the ionization

electrons toward the sense wire at the center of the cell. The accelerating primary electrons

gain enough energy to produce an avalanche of thousands of electrons through secondary

ionization. The electron shower reaches the sense wire within a few nanosecond and produces

an electric signal. By measuring the time between the pulse in the wire and the arrival of

the particle in the detector and knowing the drift velocity of the electrons in the gas (∼ 50

µm/ns) the closest approach of the particle to the sense wire can be determined and the
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path of the particle can be reconstructed with high precision in the r − φ plane (azimuth

measurement).

The polar angle measurement (that is measuring the hit location in the z-direction) are

usually achieved by the combination of segmented cathode pads made of aluminium foil

bonded on Mylar sheets, installed on the inner surface of the chambers, which measures the

image charge of the electron avalanche in the adjacent cells. To provide further measurement

in the longitudinal direction the charge at both ends of the wires can be measured (charge

division measurement) as well since an asymmetric hit on the wire results in different charge

measurement at the two ends. The drift chambers provide a uniform acceptance in azimuth

for the polar angles 26◦ < θ < 154◦ (| cos θ |< 0.9), however, track reconstruction efficiency

is slightly higher for | cos θ |< 0.71 due to the reduction of layers in the main drift chamber.

Precision Tracking Layer Detector

The innermost wire chamber in CLEO II is the Precision Tracking Layer (PTL) detector,

which is installed between the beam pipe and the vertex detector. The 3.5 cm radius beam

pipe is made of beryllium to minimize the amount of material in the way of particles entering

the detector. It has a thickness of 0.5 mm with a 25 µm silver coating on the inside surface

for protecting the detector from synchrotron radiation.

The 50 cm long PTL is a 6-layer straw-tube drift chamber with 64 axial sense wires in

each layer. The sense wires are made of 15 µm gold plated tungsten. The field cage for

each wire is defined by an aluminized Mylar tube instead of cathode wires. To resolve the

left-right ambiguity, that is, to tell which side of the center of the cell the particle passed, the

layers are shifted by half a cell in azimuth from layer to layer (see Fig. III.5). The sense wires

are kept at +1500 V relative to the field tube. The PTL detector was filled with 50%− 50%
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argon-ethane (C2H6) mixture initially, but later it was operated with di-methyl-ether.

Sense Wire
Field Tube

3.5cm

4.5cm

7.6cm

Figure III.5: Cross section of the PTL detector.

The PTL measured the azimuthal direction of the particles near the interaction point

with a precision of around 50 µm, which is essential to separate secondary vertices from the

primary interaction point. However, it did not provide longitudinal (z) measurement.

Vertex Detector

The Vertex Detector (VD) is an intermediate drift chamber installed between the PTL

detector (the SVX later) and the outer main drift chamber. It contains 800 Ni-Cr sense

wires and 2272 Al field wires arranged into 10 layers of small hexagonal cells as shown on

Fig. III.6. All wires are axial, and are divided into two groups with 64 cells per layer in the

first five layers and 96 cells in each of the outer five layers. Sequential layers are off-set by

half a cell to resolve left-right ambiguity. The sense wires are kept at voltages +2200 V and
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Figure III.6: A section of the VD and PTL detectors.

+2400 V depending on the cell size while the field wires are grounded. The detector operates

with 50%− 50% argon-ethane gas mixture at a pressure of approximately 1.4 atmosphere.

The VD is more suitable for early track separation than the main drift chamber because

of its smaller cell size. In addition, the momentum of low momentum tracks, which can

reach only a few layers in the outer drift chamber due to their high curvature, is better

measured in the VD. The precision of the position measurement in the r−φ plane is around

100−150 µm. Longitudinal (z) measurement is provided by two layers of segmented cathode
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pads divided into 8 azimuthal sections on the inner surfaces of the wire chamber walls (Fig.

III.7). Segmentation along the beam direction is ∼ 6−7 mm. The longitudinal measurement

is enhanced by charge division measurement on both ends of the sense wires. These methods

give a resolution of ∼ 750 µm in the z direction.

0.9m

Outer
Cathode
Strips

Inner
Cathode
Strips

Carbon
Filament
Tube

Figure III.7: Cathode strips on the Vertex Detector.

Outer Drift Chamber

The main (or central) Drift Chamber (DR) is a 2 m long, 1.9 m diameter, 51-layer wire

chamber containing 12, 240 sense wires and 36, 240 field wires. The chamber used to operate

with a 50%− 50% argon-ethane gas mixture at 1 atmosphere until the CLEO II.5 upgrade

when the gas was changed to a 60%− 40% helium-propane mixture. The DR has small

rectangular cells with one sense wire in the center surrounded by 8 field wires. The sense
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wires are 20 µm diameter gold plated tungsten while the field wires are 110 µm gold plated

Al (in the inner 40 layers) or gold plated Co-Be (in the outer 11 layers). Sense wire voltage

is kept at +2000 V while the field wires are grounded.
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Figure III.8: Wire layer structure in the main Drift Chamber.

Out of the 51 concentric rings of wire, 40 contains axial wires, while 11 contains stereo
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wires where one end of the ring is twisted with respect to the other end creating a small

stereo angle 3◦ − 7◦. The axial layers are arranged into groups with three or five sense-wire

layers. Each group contains layers with equal number of wires per layer (96 in the first group

and 384 in the last one). Adjacent layer groups with different number of wires per layer are

separated by a stereo layer. Like in the other two wire chambers, the cells are shifted by

half a cell in neighboring axial layers to resolve the left-right ambiguity. The structure of

the cells and layers of the DR is shown on Fig. III.8.

The axial sense wires can measure the position of the particle in the r − φ plane with

a precision of 100 − 200 µm depending on the distance of the track from the sense wire in

the cell. The longitudinal (z) position is provided by the stereo sense wires and segmented

cathode layers. The inner cathode layer is divided into 16 sections in azimuth while the

outer cathode has 8 azimuthal sections. The longitudinal segmentation is 1 cm.

Charged particles are not detected below a momentum of 65 MeV/c because of the

material in the particle path. The transverse momentum resolution of the detector is δpt = 64

MeV/c at pt = 5.28 GeV/c. Resolution in azimuthal (φ) and polar (Θ) angle is δφ = 1 mrad

and δΘ = 4 mrad, respectively.

Besides the position and momentum measurement, the DR also provides particle iden-

tification information based on the specific ionization energy loss (dE/dx). The energy loss

of a charged particle in the gas of the main drift chamber depends on the particle’s veloc-

ity. Hence, particles with the same momentum but different mass lose different amount of

energy per unit distance when passing through the DR. The pulse height on an anode wire

situated along the particle’s track is proportional to the energy loss in that particular cell.

In order to statistically increase the significance of the measurement, the truncated mean of
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all the individual hit pulse heights3 associated with a particular track is taken as the best

estimator of dE/dx for that track. Drift distance, entrance angle and polar angle corrections

are applied to each individual hit. Fig. III.9 shows dE/dx as the function of the momentum

for different particle types. The separation between the different particle types is very good

at low momentum but it diminishes as the momentum increases.

Figure III.9: Ionization energy loss (dE/dx) as the function of the momentum.

3The distribution of the individual pulse heights along a given track does not follow a Gaussian distri-
bution. There is an enhancement at the high side of the distribution (Landau tail) due to hard collisions
leading to large fluctuations of the mean pulse height. In order to reduce the Landau tail, 30− 40 % of the
highest pulse heights are dropped when calculating the mean. At the same time, the lowest 5 % of the pulse
heights are also dropped to reduce noise effects.
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III.2.2 Silicon Vertex Detector

The innermost wire chamber, the PTL detector, was replaced with a three-layer double-

sided Silicon Vertex Detector (SVX) in 1995 during the upgrade of the detector from CLEO

II to II.5. At the same time, the radius of the Be beam pipe was reduced to 2.0 cm permitting

the placement of the first layer of the SVX detector at a distance of only 2.35 cm from the

beam axis. The layout of the SVX is shown on Fig. III.10.

Double Sided Silicon Detector
(DSSD)

2.35 cm  Radius

3.25 cm Radius
DSSD DSSD

4.69 cm Radius

4.81 cm Radius
DSSD

Beryllium
Beampipe

Fiber Composite
Supports

Beryllium Oxide
Supports

Beryllium
Beampipe

2.0 cm Radius

Fiber Composite Beryllium Oxide
HybridsSupports

20 cm

Figure III.10: End view (top) and side view (bottom) of the SVX Detector.
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The detector consists of 96 silicon wafers, each of them containing implants on both sides.

The inward side has n-implant stripes separated by 105 µm and arranged perpendicular to

the beam axis for position measurement in z-direction. The opposite side is covered by p-

implant stripes parallel to the beam axis and separated by 112 µm for position measurement

in azimuth. When a charged particle crosses a silicon detector, it liberates charge carriers

(electron-hole pairs) in the depleted p− n junction, which are collected out on both sides of

the wafers by the applied bias voltage. The SVX is inherently more accurate than the PTL

detector without introducing significant amount of extra material. The SVX has a position

resolution of 12 − 18 µm, which leads to precise vertex reconstruction and improved track

parameters (such as the Θ polar angle of tracks).

III.2.3 Time-of-Flight Detector

The time-of-flight system (ToF) of the CLEO II detector provides primary trigger for

data recording and also used as an alternative tool for particle identification. The ToF

measures the flight time of particles produced at the interaction point with a resolution of

∼ 140 ps. This time information combined with the momentum of the particle (measured

by the drift chamber) gives a constraint on the particle mass and helps in the identification.

Separation of different particles is illustrated on Fig. III.11.

The ToF system consists of 64 barrel and 2 × 28 endcap counters located immediately

outside of the main drift chamber and fastened to the inside surface of the crystal calorimeter.

The ToF covers 97% of the 4π solid angle. The active material of the counters is Bicron

BC-408 plastic scintillator, which produces a flash of light when a charged particle passes

through it. The induced light is detected by photo-multiplier tubes (PMT). At each end of

the barrel scintillators a bent lucite light guide provides connection to the PMT outside the
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Figure III.11: Time of flight measurement of the particles’ speed (β) versus the momentum.

magnetic field. Dimensions of a barrel counter is shown on Fig. III.12. The endcap counters

are 4.8 cm thick trapezoidal sectors and each of them is connected directly (without light

guide) to a single PMT, which is situated inside the magnetic field with the tube axis parallel

to the field.

III.2.4 Electromagnetic Calorimeter

The electromagnetic crystal calorimeter (CC) consists of a barrel and two endcap sections

containing 7800 thallium-doped Cesium Iodide (CsI) crystals and covering 95% of the solid

angle. The size of each CsI block is 5 cm2 by 30 cm. In the barrel region the blocks are

arranged so that they point toward the interaction point. In order to reduce the material in

front of the crystals, the whole calorimeter was placed inside the superconducting solenoid
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Figure III.12: Barrel time-of-flight counter.

magnet. The barrel region, which covers the polar angle range 45◦ − 135◦ has the smallest

amount of material in front of it. Unfortunately, a larger amount of material (such as the

drift chamber endplate and readout electronics) stands between the interaction region and

each endcap thereby reducing their effectiveness compared to the barrel region.

Heavy charge particles entering the calorimeter lose some of their energy by ionizing and

exciting the atoms of the crystal, which deexcite by emitting light. In contrast, high energy

photons and electrons induce an electromagnetic cascade (shower) of secondary electrons

and photons via e+e− pair production and bremsstrahlung. The energy of the secondary

electrons eventually falls below the critical energy when they dissipate energy by ionization

and excitation rather than generation of more shower particles. Four silicon photodiodes

mounted on a lucite window on the rear face of each crystal convert the scintillation light

into electrical signal. A clustering algorithm combines the signals from adjacent crystals in

order to correctly reconstruct the total energy deposited by a particular shower. Photons are

identified by those showers that are not associated with a charged track in the drift chamber.

Typical photon energy resolution at 100 MeV (5 GeV) is 3.8% (1.5% ) in the barrel and 5.0% 

(2.6% ) in the endcap region. Angular resolution is 11 mrad (3 mrad) in the barrel and 19

mrad (9 mrad) in the endcap at energy of 100 MeV (5 GeV).

62



The crystal calorimeter is crucial to find and reconstruct particles that decay into photons.

π0 → γγ’s and η0 → γγ’s are reconstructed with mass resolution ∼ 5− 6 MeV.

The information provided by the calorimeter together with the momentum measure-

ments in the drift chamber is also used to distinguish electrons from other charged particles.

Electrons, in contrast to heavy hadrons, usually lose all of their energy in the calorimeter.

Therefore, the E/p ratio peaks at 1.0 for electrons while it is close to zero for other particles

as it is demonstrated on Fig. III.13. This quantity combined with other information, such

as the dE/dx measurement, the lateral shape of the shower produced by the particle as well

as the distance between the projected track position and the shower location makes powerful

electron identification possible.

E/p

electrons
muons
π and K

0 0.5 1 1.5 2

Figure III.13: The ratio of shower energy to momentum for different charged particle types.
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III.2.5 Superconducting Magnet and Muon Detector

The CLEO II superconducting solenoid magnet provides a uniform 1.5 T magnetic field

parallel to the beam axis. The magnet is installed outside the electromagnetic calorimeter

and has a length of 3.5 m and inner diameter of 2.9 m. The two-layer superconducting coil is

wound from Cu-NbTi embedded into 5×16 mm2 pure Al jacket. The operating current is 3.3

kA. The coil is cooled by liquid helium using a self-regulating thermosiphon circulation flow

system, which utilizes the buoyancy of lower density heated He to drive the liquid around

the circuit.

The magnetic coil is surrounded by three layers of return yoke around the barrel region

and pole pieces at each end for the purpose of magnetic flux return. Each layer of return

yoke has a thickness of 36 cm and the gap between the layers is 9 cm. The iron of the return

yoke and the pole pieces are part of the muon identification system.

Muons unlike other charged particles are highly penetrating and can travel large distances

through matter without interaction. Therefore, the muon detectors are nested between the

return yoke layers so that only the muons can reach these detectors and all other charged

particles are stopped in the thick iron slabs. The three sets of barrel muon detectors outside

of each return yoke layer is shielded by 36, 72 and 108 cm iron absorber4, respectively, and

cover the polar angle range 45◦− 135◦. There is one set of muon chambers behind each pole

piece which covers the angular range between 30◦ − 48◦ so that the whole muon detector

system covers 85% of the total solid angle. There is a 2.5 cm thick iron outside the outermost

m uon chambers for protection and radiation shielding.

The muon detectors are plastic streamer counters operating in a similar manner as the

4The mean free path between inelastic collisions (or nuclear interaction length) in iron is 16.8 cm. The
total thickness of the iron absorbers is equivalent to 7.2 − 10 nuclear interaction lengths depending on the
direction of the track.
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drift chambers in the center of the detector. The counters are 8.3 cm wide and 5 m long

and are divided into 8 section as it is shown on Fig. III.14. The plastic housing is coated

with graphite inside to provide a cathode for the eight 50 µm diameter silver-plated Cu-Be

anode wires. The chambers are filled with 50%− 50 % argon-ethane mixture and the anodes

operate at 2.5 kV. The space resolution of one counter is around 2.4 cm.

81mm

1mm

9mm

10mm

Figure III.14: Structure of a plastic streamer muon chamber.

Each iron gap and the exterior of the iron absorber is instrumented with a detector unit

or super-layer composed of three layers of counters (see Fig. III.15) for increased efficiency.

Each layer provides hit information in two orthogonal coordinates. The azimuth coordinate

of a hit is obtained by the position of the anode, while the coordinate along the counter

is determined by charge division read-out at both ends of the anode wires and the copper

pickup strips on the exterior of the counters.
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Figure III.15: Cross section of a muon detector super-layer.

III.2.6 CLEO Triggers and Data Acquisition System

Trigger System

Approximately 10 million e+e− beam collisions occur in every second. However, it is

impossible to record all the data produced at every time a bunch crossing occurs because of

two reasons. One reason is the limited storage capabilities; if an ’event’ happens thousands

of electronic channels can fire above threshold, which means several kB data each time. At

the same time, it takes couple of ms to read out and write to disk or tape such amount of

data, and the detector can not accept any new data until this procedure is finished resulting

in some dead-time for the detector.

On the other hand, the vast majority of the events that occur are noise or uninterested

background events and only a couple of them is interesting for us. Therefore, we have to filter

out the unwanted events and find only those that are worth to record for future analysis. For

this filtering purpose CLEO has developed a three-level trigger system, which is an optimal
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combination of hardware and software decisions to recognize certain event characteristics

in real time during data taking [56]. Earlier fast and simple hardware filters are supposed

to eliminate much of the noise before higher level increasingly sophisticated and more time

consuming filters further scrutinize the event. The flow chart of the CLEO trigger decisions

is shown on Fig. III.16.

Gate
Enable

Gate
Disable

Detector
Read Out

L2?

L1?

L0?

Crossing

PD Logic

BLT Logic

TSP Logic

TF Logic

CC Logic

DR

TF

CC

N

N

N

VD

Figure III.16: Block diagram of the CLEO trigger system.

The subsequent levels of trigger are referred as Level0 (L0), Level1 (L1) and Level2 (L2).
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L0 is a fast simple discrimination based on the trigger information coming from the time-of-

flight scintillators (TF), the electromagnetic calorimeter (CC) and the vertex detector (VD).

It is looking for events that might have tracks in them. After L0 the event rate falls down to

about 20 kHz. If the L0 trigger requirement is satisfied the detector is frozen and preparation

for the next trigger decision begins. It takes about 1 µs to initiate the L1 trigger, which

implies a 2% dead time at the 20 kHz L0 rate. The L1 trigger uses crude track information

coming from the central drift chamber (DR) in addition to the CC, TF and VD trigger

signals. There are several L1 trigger combinations set by the experimenter. If none of these

are satisfied the detector resumes data taking. If any of the L1 trigger criteria is met then

the corresponding set of L2 criteria is examined in the next step. The L1 trigger reduces the

event rate to 30-50 Hz. Initiating the L2 trigger, which uses only vertex detector and drift

chamber information, requires ∼ 50 µs per event resulting in a dead time < 0.25% . If no

proper L2 criteria are met the system is reset and the detector is released to accept a new

event, otherwise the data is read out from the detector elements. The total read out takes

approximately 10 ms which means 5− 10% dead time at the L2 trigger rate of 5− 10 Hz.

Data Acquisition System

Once an event passed the L2 trigger the signals from the detector electronics must be

read out. Analog signals are shaped, amplified and digitized. A final software test of data

quality (sometimes called Level3 trigger), which filters out most of the events caused by

a beam particle hitting the beam-pipe (beam-wall events) making up typically 25% of the

total events passing the L2 trigger is initiated. All data from the sub-detector elements are

put into one data record by the event builder, which makes sure that the data in one record

comes from the same event trigger. The event builder also formats the data into sequential
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(ZEBRA) records and writes them to an online disk. Finally, the data on the disk is copied

to tape.

Besides the data flow control, the detector elements should also be monitored and con-

trolled. CESR is not running continuously since the beam intensity is deteriorating with

time due to beam-gas collisions and other reasons. After a certain time, usually 45 − 60

minutes, it is more efficient to fill up and reshape the beams. This procedure, which takes

approximately 10 minutes, naturally divides the data collection into separate runs. Data

taking must be stopped at the end of each fill and restarted when CESR is topped off and

e+e− collisions start again. During the injection period, the high voltage supply of the track-

ing detectors must be turned off. All of these hardware functions and settings are controlled

by the data acquisition system (DAQ) which is shown on Fig. III.17.
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Figure III.17: Block diagram of the CLEO data acquisition system.
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CHAPTER IV

DATA SAMPLE

IV.1 Upsilon resonances

The basic physics process taking place in the e+e− collision is the annihilation into a

virtual photon, which then produces a fermion-antifermion pair. We can get another e+e−

pair (Bhabha scattering), µ+µ−, τ+τ− or other QED events, such as γγ or e+e−γ. An other

common process is the production of a qq̄ quark-pair of five different flavors (q=u, d, c, s, b)

that are accessible at the energy of CLEO1. The most interesting for us is the b-quark which

has a mass of around 5 GeV.
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Figure IV.1: Hadron cross section in e+e− annihilation as the function of the center of mass
energy of the collision in the vicinity of the Upsilon (Υ) resonances.

The b-quark is produced in resonances, the Upsilon (Υ) resonances, which are the massive

1The sixth quark, t, is too heavy (m ≈ 173 GeV) to be produced at the center of mass energy of the
collision (

√
s ≈ 10.5 GeV)
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bound states of a b and an anti-b (b̄) quark (bottomium). The first four resonances are

depicted on Fig. IV.1, which shows the production cross section of multitrack final states in

the energy range 9.44 − 10.62 GeV. The Upsilon resonances sit on the top of a continuum

background, which includes τ+τ− and qq̄ production of the light quarks q = u, d, c, s.

11S0

23DJ

21P1

11F333S1

21D2

13DJ

33PJ31P1

23PJ

23S1

31S0

42S1

21S0

13S1

13PJ

13FJ

11P1

11D2

2MB

10200

10000

10400

10600

9800

9400

9600

M
as

s 
(M

eV
)

1600800-006

Verified

Figure IV.2: Spectrum of the bottomium (bb̄) system.

The spectrum of the Upsilon resonances along with other bottomium states is shown on

Fig. IV.2. The different bb̄ states are distinguished by their quantum numbers, N2S+1LJ ,
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where N is the radial quantum number, S is the spin quantum number, L and J are the quan-

tum numbers associated with the relative orbital angular momentum between the quarks2

and the total angular momentum of the system 
J = 
L+ 
S, respectively.

The Upsilon (Υ) resonances are the 3S1 states, in which the quark-pair has zero orbital

angular momentum (S-state) and parallel spin (J = S = 1). These states are shortly

referred as Υ(1S), Υ(2S) etc. The first three Upsilon resonances are relatively long-lived

and hence they are narrow resonances compared to the Υ(4S),3 which lies just above the

energy threshold of B and B̄ meson production
√
s = 2MB = 10.56 GeV. This new decay

channel

Υ(4S) → BB̄,

available for the forth resonance makes it short lived and wider than the other three reso-

nances.

IV.2 On-resonance and off-resonance data

Most of the time CESR runs at the energy of the Υ(4S) resonance at
√
s = 10.58 GeV.

At this energy the e+e− → Υ(4S) → BB̄ cross section is approximately 1 nb while the

continuum production cross section is about 3.5 − 4 nb (see Fig. IV.1). Therefore, only

∼ 20% of the on-resonance data sample contains BB̄ events and the rest is background.

In order to study the non-BB̄ events in this sample, CERS runs 60 MeV below the Υ(4S)

resonance roughly one third of the time to collect an off-resonance data sample, which does

not contain any BB̄ events.

2The notation is the same as in atomic spectroscopy, that is S, P , D, and F denote states with L =
0, 1, 2, 3� orbital angular momentum.

3The difference in the width of the resonances are not apparent on Fig. IV.1 because the energy spread
of the beam makes the narrow resonances wider.
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The data sample is divided into datasets, each of which covers a continuous period of

running. The divisions between the datasets are marked by any change in the detector

geometry. In this analysis we used the datasets from 4s2 to 4sT given in Table IV.1. One

third of the data ending with the 4sG dataset was collected with the CLEO II configuration

of the detector. The data collected by the upgraded CLEO II.5 detector begins with the 4sH

dataset.

The whole data sample represents an integrated luminosity of 13.8 fb−1. Out of this,

9.2 fb−1 was collected on the Υ(4S) resonance and 4.6 fb−1 was taken off resonance. We

designated an event as on-resonance (off-resonance) if its beam energy is Ebeam > 5.285 GeV

(Ebeam < 5.280 GeV). The on-resonance sample contains approximately 9.7 ± 0.2 million

BB̄ pairs. The uncertainty of this number is related to the variation in the determined cross

section from dataset to dataset and the error in the trigger efficiency.

When we are doing B physics we are interested only the BB̄ events in the on-resonance

data sample. However, we are not able to separate these events from the continuum back-

ground. If we hunt for a particular B-meson decay mode we have to chose characteristic

variables that show significant difference between the signal and the background events. Of

course, if we want to maintain a reasonable signal selection efficiency, especially in case of a

very rare decay, it is impossible that the set of selection criteria filters out every background

event. Using the off-resonance data sample, which contains only continuum background

events, one can model the non-BB̄ events in the on-resonance sample and their contribution

can be statistically subtracted.

In order to do this continuum subtraction we have to normalize the off-resonance data

sample to the statistics of the on-resonance sample. As we know, the rate of a particular

process, such as qq̄ or tau-pair production, is equal to the product of the luminosity and
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Table IV.1: Summary of the CLEO II/II.5 datasets.

Data
Set

Dates
Integrated

Luminosity (pb−1)
4s2 11 NOV, 1990 − 04 JUN, 1991 672.0
4s3 18 SEP, 1991 − 17 FEB, 1992 680.2
4s4 10 APR, 1992 − 26 MAY, 1992 317.5
4s5 09 JUL, 1992 − 05 OCT, 1992 342.7
4s6 03 NOV, 1992 − 19 JAN, 1993 316.5
4s7 16 MAR, 1993 − 06 JUL, 1993 461.3
4s8 01 AUG, 1993 − 27 SEP, 1993 274.4
4s9 22 NOV, 1993 − 10 JAN, 1994 340.1
4sA 20 JAN, 1994 − 28 FEB, 1994 190.8
4sB 19 MAR, 1994 − 16 MAY, 1994 140.9
4sC 16 JUN, 1994 − 15 AUG, 1994 141.5
4sD 15 SEP, 1994 − 09 OCT, 1994 98.0
4sE 09 OCT, 1994 − 01 NOV, 1994 128.8
4sF 03 NOV, 1994 − 28 NOV, 1994 145.9
4sG 19 JAN, 1995 − 09 APR, 1995 456.6
4sH 16 NOV, 1995 − 11 MAR, 1996 521.0
4sJ 03 APR, 1996 − 08 JUL, 1996 677.0
4sK 19 AUG, 1996 − 28 OCT, 1996 595.0
4sL 17 NOV, 1996 − 10 MAR, 1997 1080.6
4sM 05 APR, 1997 − 17 JUN, 1997 531.8
4sN 19 JUN, 1997 − 17 AUG, 1997 714.3
4sP 15 OCT, 1997 − 09 FEB, 1998 1103.6
4sQ 27 FEB, 1998 − 21 APR, 1998 559.9
4sR 21 APR, 1998 − 08 JUN, 1998 499.1
4sS 27 JUN, 1998 − 05 OCT, 1998 1214.3
4sT 10 NOV, 1998 − 15 FEB, 1999 1583.3
Total 13787
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the cross section of that process R = Lσ. The cross section of these processes scales as the

inverse square of the center of mass energy of the e+e− collision,
√
s = 2Ebeam,

σ ∝ 1

s
∝ 1

E2
beam

. (IV.1)

Hence, the normalization factor between the on-resonance and off-resonance sample can be

calculated as

R =

∑
i∈on−res Li/E

2
i∑

i∈off−res Li/E2
i

, (IV.2)

where Li and Ei are the integrated luminosity and average beam energy of the ith data-run,

and the sum in the numerator (denominator) runs over the on-resonance (off-resonance)

data-runs with Ei > 5.285 GeV (Ei < 5.280 GeV). We obtained R = 1.998 for the entire

data sample, which is consistent to 2.0 within the 2% error of this quantity and therefore we

use d the later number in our analysis. The 2% error is due to the systematic uncertainty in

the luminosit y of the data samples.

IV.3 Monte Carlo simulation of events

Simulated events play a very important role in the analysis. First of all, this is the

only way to model the signal events and to study the signal shapes, such as the momentum

and angular distributions of particles. By comparing these shapes to those expected in the

background we chose the variables that are most effective to distinguish the signal from the

background. In order to minimize the effect of statistical fluctuations and human bias, it

is best to minimize exposure to the measured data. Therefore, beside the simulated signal

events, we also use simulated background events (with 3 − 5 times as much statistics as

the measured background) to find the best selection criteria that enhance the signal in the

greatest extent relative to the background. Finally, the signal simulation is used to determine
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signal selection efficiency.

CLEO uses an elaborate Monte Carlo scheme to generate simulated events that looks just

like real data in format. This simulation reproduces the interactions after the e+e− collision,

the propagation of particles through the detector and their interaction with its material, and

the signal processing. These three main steps are described below.

• Event generator: The program called QQ simulates particle production and their decay

down to stable particles. The different decay chains are generated randomly but in

the correct proportion based on the information provided by the Particle Data Group

[53]. However, the user is allowed to modify the decay chains, branching fractions or

particle properties to simulate BB̄, qq̄ or any signal event needed.

• Detector simulation: CLEOG, a package based on GEANT [57], simulates the detector

response to the particles generated by QQ. It maintains a database of all the material in

the CLEO detector and models how a particle will react to the material. The particle

propagates through the material in steps, and each step a random number is thrown

to decide how much energy the particle looses and how its direction changes. CLEOG

also simulates the response of the detector electronics.

• Event Reconstruction: The detector hits from CLEOG are passed to the standard

event reconstruction software, called PASS2, that is used with the real data. The only

essential deference compared to the treatment of the data is that detector noise and

beam related background are superimposed on the CLEOG output events to make

them look more realistic. The noise events are random trigger events taken by CLEO

with no beams in the machine, while the beam related background is physics hits

stripped from events, such as e+e− → µ+µ−.
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The Monte Carlo generated events are recorded in the same format as the data events but

they contain extra information that allows us to match reconstructed particles to a generated

particle. This information can be used to study if reconstructed signal modes are correct

but they can not be used when we determine the signal selection efficiency. The simulated

events must be processed in the same way as the data in order to avoid any bias. Although,

CLEO’s Monte Carlo simulation does a remarkably good job of simulating data, one has

to cross-check the MC results with data and correct them if necessary or incorporate the

uncertainties into the systematic error appropriately.

A tremendous amount of generic Monte Carlo events that simulate BB̄, qq̄ and tau-

pair events were generated by the combined effort of the collaboration. This data is stored

primarily on tapes and copied to staging disks with a turnaround time of 3−4 weeks, where

they are available via a computing farm. However, if one is doing an analysis s/he has to

generate signal and specific background events needed that particular analysis.

In order to study our signal shapes and efficiency, we generated 90 thousand events to

simulate each of the decay modes, B± → π±f , B± → K±f and B0 → K0
Sf . In each

generated events, one of the B mesons was required to decay into the light meson plus

the familon, while the other was allowed to decay generically. The familon was defined as a

neutral, massless, spin-zero stable particle (similar to a neutrino except for the spin). In case

of the charged B decays, half of the signal Monte Carlo forced the B+ to decay into familon

mode, and the other half forced the B− to decay. 1/3 (2/3) of the events were generated

by using the parameters corresponding to the CLEO II (II.5) version of the detector and

were properly distributed over the various running conditions so that the simulated sample

correctly reflects the real data sample. In addition, we also generated samples to simulate

specific rare decay modes of the B mesons, which are not included in the generic BB̄ sample,
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to further study their contribution to the background.
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CHAPTER V

SEARCH FOR B → hX0 DECAYS

We saw in Chapter II that the off-diagonal coupling of the familon to the flavor current

can lead to the decay of the bottom quark to other down-type quarks: b → qdf (qd = d, s).

This decay mechanism can induce the decay of the B meson to a lighter pseudoscalar (spin-

0 and odd-parity) meson and the familon through vector-like coupling. The lowest order

Feynmann diagram corresponding to this decay is depicted on Fig. V.1.

u (d) u (d)

b s, d

B± (B0) K±, π± (K0)

f

(FV bs(d))
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Figure V.1: Feynmann graph for B → (π,K)f decay.

Since the familon interacts very weakly with ordinary matter its detection is hopeless with

our detector system. Only the light meson partner of the familon is observable accompanied

by a large amount of missing energy associated with the elusive familon. In this chapter,

we describe the search for two-body B meson decays into a final state containing a light

pseudoscalar meson h and a massless neutral weakly-interacting particle X0, such as the
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familon.

We restricted our analysis for the following decay modes:

• B± → π±X0,

• B± → K±X0, and

• B0 → K0
SX

0.

The most relevant properties of the mesons involved in this analysis are summarized in Table

V.1 based on Ref. [53]. The charged π and K mesons has a long lifetime and they are easily

detectable with the drift chamber. On the other hand, the K0 meson is neutral and has

two manifestations corresponding to the even (K0
S) and odd (K0

L) CP eigenstates1. As it

can be seen from the Table, the K0
L has a much longer lifetime than the K0

S and therefore it

travels further and most of the time it decays outside the detector. In contrast, the K0
S can

be easily identified through its decay to π+π− (with a relative branching fraction of around

69% ), which occurs within a few cm from the primary interaction point. Since CLEO’s vertex

detector is suitable for finding this secondary vertex with a good efficiency we searched for

final states containing only the K0
S meson decaying to π+π−.

V.1 Analysis Strategy

We are looking for events when one of the B mesons produced in the e+e− → Υ(4S) →

BB̄ process decays to the desired modes mentioned in the previous section. In such events,

one observes the light meson (h = π±, K±, K0
S) plus a number of other particles coming from

the decay of the second B.

1At least, neglecting a small CP violation effect.
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Table V.1: Properties of the mesons. I is the isospin quantum number, JP is the intrinsic
spin and parity quantum number, M is the mass, τ is the mean lifetime and c is the speed
of light. The dual entries in the K0’s line correspond to K0

S / K0
L.

Meson (qq̄) I JP M [MeV/c2] τ [ps] cτ [cm]
B+ (ub̄), B− (bū) 1/2 0− 5279 1.653 0.0496
B0 (db̄), B̄0 (db̄) 1/2 0− 5279 1.548 0.0464
K+ (us̄), K− (sū) 1/2 0− 494 12386 371
K0 (ds̄), K̄0 (sd̄) 1/2 0− 498 89.35 / 51700 2.68 / 1551
π+ (ud̄), π− (dū) 1 0− 140 26033 780

Due to the two-body decay structure, the daughter meson from the B → hX0 decay is

produced with a well defined momentum in the center of mass frame of the decaying B (see

section II.5), namely

pc.m.
h =

1

2
MB

(
1− m2

h

M2
B

)
≈ MB

2
= 2.64 GeV/c, (V.1)

where MB and mh are the mass of the B and the light meson, respectively. However, in

the lab frame its momentum is spread between 2.48 � plabh � 2.80 GeV/c due to Doppler

broadening:

plabP ≈ pc.m.
P

(
1 +

pB
MB

cos θP−B

)
≈ pc.m.

P (1 + 0.06 cos θP−B) (V.2)

(pB ≈ 0.32 GeV/c is the momentum of the B meson and θP−B is the angle between the

directions of the B and the daughter meson in the lab frame). The momentum distribution

of reconstructed pions in simulated signal B− → π−f events is illustrated on the upper plot

of Fig. V.2.

All other particles and photons detected in a signal event must come from the decay of

the second B meson. One possible strategy might be to fully reconstruct the second B using

some of its hadronic decay modes. Although, this method would reduce the background
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Figure V.2: Momentum distribution of the daughter meson in signal and background. Top:
momentum distribution of π− in the B meson’s rest frame (solid) and the lab frame (dashed)
for Monte-Carlo simulated B → π−f sample. Bottom: momentum distribution of the meson
candidate in Monte-Carlo simulated background (histograms) and data (dots).

level significantly, it would also seriously limit the sensitivity of the analysis because of the

small branching fraction of the appropriate decay modes. Instead, we applied kinematic

constraints dictated by energy and momentum conservation to select candidate events. This

method relies on the good hermeticity of the CLEO II detector, that is on the fact that most

of the particles, which were produced in the e+e− collision are detected.

It can be seen on the lower plot of Fig. V.2 that the dominant b → c decays, which
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are simulated in the BB̄ Monte-Carlo sample, do not contribute to the momentum range

accessible for the light meson between 2.48 − 2.80 GeV/c. On the other hand, rare b → u

and b → s processes can produce high momentum π or K mesons, but typically with other

energetic particles which will spoil the reconstruction of the other B decay in the event.

Decays such as B+ → π+K0
L, B

+ → K+νν̄ and B− → τ−(h−ν)ν̄ will contribute at high

momentum but are highly suppressed.

Therefore, the dominant background comes from continuum e+e− → qq̄ (q = u, d, c, s)

events. The contribution of this background can eventually be statistically subtracted using

the off-resonance data sample. However, since this background is large enough to overwhelm

any signal, it is important to eliminate as much of that as possible and enhance the sig-

nal relative to the background. For this purpose, we exploited the difference in the decay

topology of BB̄ and continuum qq̄ events.

V.2 Event Selection

In this section we describe the detailed methods and selection criteria, which we used

to choose candidate events out of the tens of millions of events collected with the CLEO II

detector.

V.2.1 Particle selection

We accepted events with at least four charged tracks. This criteria eliminates a large

portion of the e+e− → �+�− (� = e, µ, τ) events, which makes up approximately 1/3 of the

background, and leaves essentially hadronic events only.

The most important signature of the signal events we are hunting for is the presence of a

high momentum charged π, K or a K0
S decaying subsequently into a π+π− pair. We have to
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make sure that the track selected as the daughter meson candidate is well reconstructed and

not a spurious or poorly measured track. For this purpose, we essentially used the standard

track quality criteria, which were developed by the CLEO collaboration in order to make

rare B decay analysis effective [58].

• To avoid that our signal track is a ’ghost’ track assembled from unrelated or missed hits

in the drift chamber we selected charged particles from the list of well-reconstructed

tracks and required to have hits in more than 30% of the tracking layers through which

it passes and that the RMS residual for all the hits is between 20 and 600 µm.

• We chose tracks originating near the e+e− primary interaction point based on the

impact parameter in both r− φ and r− z plane: we required z-distance ≤ 25 mm and

radial distance ≤ 3 mm between the collision point and the point of the track which

is closest to the beam axis.

• We rejected electrons as a candidate track based on the log-likelihood (R2ELEC) which

combines the specific energy loss (dE/dx) along the track in the drift chamber, the

ratio of the associated shower energy deposited in the CsI calorimeter to the track

momentum (E/p) and several shower shape variables:

R2ELEC =
∑

variables

ln

(
Pe

Pnot e

)
, (V.3)

where Pe (Pnot e) is the probability of that the track is (not) an electron. The distribu-

tion of this variable for electrons and π, K mesons is shown on Fig. V.3. We required

R2ELEC < 0 for a candidate track. E/p is the most powerful variable to distinguish

electrons from other particles. It is close to 1 for electrons while it is < 1 for hadrons

and muons (see Fig. III.13).
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Figure V.3: Electron identification.

Muons were rejected based on the penetration depth in the flux return iron around the

detector. We required that to be less than three nuclear interaction lengths.

• One way to distinguish between charged pions and kaons with the CLEO II detector is

the specific ionization energy loss (dE/dx) measured in the main drift chamber. This

quantity is shown as a function of the particle momentum on Fig. III.9 for different

particle types. Although, the distinguishing power between π’s and K’s is good below

0.7 GeV/c it is less effective above 1.0 GeV/c as it is demonstrated on Fig. V.4. This

two plots show the distribution of the variable which measures how many sigma away

the truncated mean of the dE/dx distribution of a track is from the expected mean of
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pions (left plot) and kaons (right plot):

S =
(dE/dx)measured − (dE/dx)expected

σ
. (V.4)

Since the daughter meson is expected in the momentum range between 2.48 − 2.80

GeV/c, where the separation between the pions and kaons is practically impossible,

we just combined the two charged decay modes by requiring the charged track to be

consistent with either the pion or the kaon hypothesis within 2.5 standard deviations

(σ).
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Figure V.4: Specific ionization energy loss with respect to the pion (left) and kaon (right)
expectation for tagged π and K tracks with pk/π > 1 GeV/c in Monte-Carlo simulated
samples. The dE/dx difference is measured in σ units.

• We accepted candidate tracks with a polar angle between 26o and 154o with respect

to the beam axis (| cosΘ |< 0.9). This criterion discards tracks near the edge of the

drift chamber.

• K0
S candidates were reconstructed using a pair of π+ and π− tracks originating from
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a secondary vertex with a clear displacement from the primary interaction point. The

invariant ππ mass was required to be within 10 MeV/c2 of the known K0
S mass. In

addition, the reconstructed K0
S candidate had to point back to the primary vertex and

the number of hits between the primary vertex and the secondary vertex had to be

minimal.

• We selected tracks with momentum between 2.1 and 3.1 GeV/c. Tighter criterion on

the momentum was determined by a precise optimization procedure described later.

V.2.2 Kinematic requirements for the rest of the event

In our signal events all other particles beside the energetic light meson coming from the

B → hX0 decay must be consistent with the decay of the other B meson. Hence, for an

ideal signal event in which all the decay products are observed and perfectly measured

EB = Erest,

pB = prest

(
i.e. MB =

√
E2

B− | prest |2
)
,

(V.5)

where EB and MB are the energy and invariant mass of the B meson, and (Erest,prest) is the

4-momentum of all detected particles except the light meson (h),

Erest =
∑
i �=h

Ei prest =
∑
i �=h

pi. (V.6)

We calculated Erest and prest using all well-reconstructed charged tracks as well as the

neutral showers which were not matched to a good track (to avoid double counting). Tracks

had to satisfy the same track-quality criteria as the signal meson (see previous section) except

that they were not required to point back to the primary interaction point. Thus, tracks

produced at secondary vertices, such as those from K0
S → π+π−, Λ0 → p+π−, and γ → e+e−
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conversion, were counted as well. Since the pion is the most abundant particle occurring in

hadronic events we assigned the π mass to all tracks when determining the momentum and

energy of the tracks from the kinematic fit. Tracks with momentum above 5.3 GeV/c were

discarded. Good showers with energy between 50 MeV and 5.0 GeV were counted if they

had a polar angle between 26o and 154o with respect to the beam axis (| cosΘ |< 0.9). We

rejected showers produced in earlier beam crossings.

Since CESR is a symmetric collider the energy of each B meson produced in the process

e+e− → Υ(4S) → BB̄ must be equal to the energy of the e− (e+) beam. Therefore, we can

substitute EB = Ebeam in the above expressions to define the beam-constrained B mass and

energy difference as our kinematic observables:

M =
√
E2

beam− | prest |2,

∆E = Erest − Ebeam.

(V.7)

For an ideal signal event ∆E must be zero and M must be the known B meson mass 5.28

GeV/c2.

Despite the fact that the CLEO detector covers almost the total 4π solid angle and has

a very good efficiency, not all particles are measured. Charged particles can escape from

detection through the beam pipe or interaction with the detector material can distort the

measurement or make it impossible. Since the detection efficiency is not 100% and it is worse

for low momentum tracks we can miss a particle even if it is within the acceptance of the

detector. However, the main source of information loss is related to neutral particles, which

are extremely difficult (e.g. neutrons and K0
L) or entirely impossible to measure (such as

neutrinos produced in semileptonic decays of quarks). Therefore, the distribution of M and

∆E is altered with respect to the expectation.

Distribution of M and ∆E for Monte-Carlo generated samples are shown on Fig. V.5.
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Figure V.5: Distribution of beam constrained mass M (top) and energy difference ∆E
(bottom) for signal (S, solid histogram), continuum e + e− → qq̄ (dashed histogram) and
BB̄ (dotted histogram) simulated Monte Carlo samples.

Although, the beam-constrained B mass distribution peaks at 5.28 GeV/c2 for signal as it

is expected, it has a long tail because of the information loss mentioned in the previous

paragraph. Due to the same reason, the ∆E distributions are widened and the peak of the

signal distribution is shifted below zero. However, there is a clear difference between signal

and background, especially in the distribution of M , which can be used to suppress the

background resulting from both unwanted BB̄ and continuum qq̄ events.
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V.2.3 Continuum Suppression

As we pointed out in Section V.1 the constraint on the momentum of the signal meson

(h) eliminates most of the background coming from B meson decays via the dominant charm

decay of the b quark (b→ cW ), which is simulated in the generated BB̄ Monte-Carlo sample.

Other than that only rare charmless B decays, proceeding through b → uW or b → qd

(qd = d, s) penguin mechanisms, can contribute to the background but these processes are

suppressed and have a branching fraction of � 10−5.

CleoXD
Run: 48790 Event: 5

Figure V.6: Distribution of particles in a typical BB̄ event. The curves in the central region
are reconstructed charged tracks along the hit wires (black dots). The black segments in the
outer region represents hits in the electromagnetic calorimeter.

Hence, the main contribution to the background comes from continuum e+e− → qq̄
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CleoXD
Run: 48790 Event: 15

Figure V.7: Distribution of particles in a typical qq̄ event. The curves in the central region
are reconstructed charged tracks along the hit wires (black dots). The black segments in the
outer region represents hits in the electromagnetic calorimeter.

(q = u, d, c, s) events as it was demonstrated on Fig. V.2. In order to suppress this type

of background we can take advantage of the difference in the decay distributions of qq̄ and

signal BB̄ events. The B mesons are produced nearly at rest (pB ≈ 320MeV/c) through

the decay of the Υ(4S) resonance. Therefore, their decay products can go in any direction

resulting in an isotropic event distribution. Distribution of tracks and neutral showers in

the detector are shown on Fig. V.6 for a typical BB̄ event. In contrast, the two quarks

produced in the process e+e− → qq̄ have a substantial amount of momentum because of the

small rest mass of the accessible u, d, c and s quarks compared to the total energy of the
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reaction (10.58 GeV). After hadronization, the two large momentum quarks produce back

to back showers of particles, called jets. This two-jet structure is demonstrated on Fig. V.7.

Event Shape Variables

We can define several event shape variables, which reflect the difference in the event

distribution of signal and continuum background, and can be used to enhance the signal

to background ratio. We give a short description of those variables, which are used in our

analysis.

Momentum flow: We divide the space around the axis defined by the direction of the

signal meson into nine concentric double cones as it is shown on Fig. V.8. The ith cone covers

the polar angle from (i− 1)10◦ to i10◦. The momentum flow in each cone is calculated as

π / Κ

Figure V.8: Illustration of the double cones used to calculate the momentum flow variables.
Only four out of the nine cones are shown.

∑
j∈ithcone

pj , (V.8)

where the sum runs over all the tracks and showers pointing into the ith cone. We used the

same set of tracks and showers, which was selected to calculate the M and ∆E variables of

the second B meson. The momentum in the forward and backward cones were combined to

end up with nine momentum flow variables.
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Figure V.9: Distribution of the momentum flow variables in the nine concentric cones for
B± → h±X0 decay. Dots represent the off-resonance continuum e+e− → qq̄ data while the
histograms show simulated signal (solid) and continuum background (dashed) for compari-
son. The histograms are normalized to the area of the data.

Figure V.9 and V.10 show the distribution of these variables for simulated signal and

continuum Monte-Carlo events and off-resonance e+e− → qq̄ sample. We can note the

difference between the signal and continuum background distributions. While the signal

events distribute momentum proportional to the solid angle covered by the cone, the qq̄

events tend to deposit more momentum along the direction of the signal meson candidate.

| cosΘ� |: ΘB is the flight direction of the B meson with respect to the e+e− collision
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Figure V.10: Distribution of momentum flow variables in the nine concentric cones for
B0 → K0

SX
0 decay. Dots represent the off-resonance continuum e+e− → qq̄ data while the

histograms show simulated signal (solid) and continuum background (dashed) for compari-
son. The histograms are normalized to the area of the data.

(”beam”) axis. Angular momentum conservation requires the cosine of this angle to exhibit

a 1− cos2ΘB distribution while the continuum background should have a flat distribution.

Since we are not able to reconstruct the momentum of our B meson decaying to the light

signal meson and the undetectable familon, we used the rest of the observed particles in the

event to ”quasi”-reconstruct the direction of the other B. Unfortunately, the distribution of

the other B direction in the signal is flattened as it is shown on Fig. V.11, due to the fact
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that the momentum of the B meson is small compared to the daughters’ momentum and

that the detector and the track-reconstructing software is unable to recover every particle

precisely.
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Figure V.11: Distribution of | cosΘB | variable. Dots represent off-resonance data while the
histograms are simulated signal (solid) and continuum qq̄ (dashed) Monte-Carlo samples.
The histograms are normalized to the area of the data.

Although, the distribution of our cosΘB variable does not show the characteristics ex-

pected for a strictly reconstructed B meson, there is a definite difference between the signal

and background distributions, which proved to be useful to suppress the latter.

| cosΘ� |: Θh is the flight direction of the signal meson with respect to the beam axis.

As Fig. V.12 shows the cosΘh distribution for continuum background peaks around ±1,

that is in the direction of the beam axis, while it is flat for signal events.
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Figure V.12: Distribution of | cosΘh | variable. Dots represent off-resonance data while the
histograms are simulated signal (solid) and continuum qq̄ (dashed) Monte-Carlo samples.
The histograms are normalized to the area of the data.

The behavior of the background can be explained if we consider that the direction of the

signal meson candidate picked from one of the two back-to-back hadron jets must be close to

the jet axis. When the jet axis lies close to beam axis one or more particles from the other jet

opposite to the signal meson have a good chance to escape from detection through the beam

pipe. Therefore, these events can mimic a signal event due to the missing momentum/energy

and have a better chance to pass the preliminary kinematic selection criteria on M and ∆E

and produce the excess in the cosΘh distribution around ±1.

The sharp cut off at 0.9 in the distribution of | cosΘh | on the plot for B± → (π±, K±)X0

is the result of the selection criterion on the signal meson candidate (see section V.2.1). We

did not require a similar criterion on the polar angle of the K0
S candidate. However, the
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| cosΘK0
S
| distribution (lower plot on Fig. V.12) gradually approaches zero around 0.9

since reconstruction efficiency gets worse close to the beam axis (the two pions from the

subsequent decay of the K0
S are emitted forward due to its large momentum).

R2: This variable is the second order normalized Fox-Wolfram moment: H2/H0. The

nth order Fox-Wolfram moment [59] is defined by

Hn =
∑
i,j

pipj
E2

Pn(cosΘij), (V.9)

where we sum over all particle pairs in the event, pi(j) are the momentum of the particles, E

is the total energy of the event, Pn is the nth order Legendre polinom and Θij is the angle

between the momentum vectors. Since P0(x) ≡ 1 it can be seen that H0 is only a kinematic

normalization.

R2 is close to zero for isotropic events while it approaches 1 as the event gets more jet-like.

In the extreme case with two co-linear particles

P2(cosΘ) =
1

2
(3 cos2Θ− 1) = 1 (V.10)

and it results R2 = 1. The distribution of R2 for signal and qq̄ continuum background is

shown on Fig. V.13. As a preliminary selection criteria to skim events we required R2 < 0.5.

| cosΘth |: Θth is the angle between the direction of the signal meson candidate and the

thrust axis of the rest of the event. The thrust axis is defined by the axis (with unit vector


t) on which the sum of the projection of the momentum vectors,
∑

i 
pi ·
t, is the largest. For

a single particle it is parallel to the momentum of the particle. In case of two particles it is

co-linear with the longer diagonal of the parallelogram spanned by the two momenta.

To define the thrust axis for the rest of the event we used those particles, which were

selected to calculate the M , ∆E, and the momentum flow variables earlier. In a qq̄ event,

the signal meson candidate is picked from the tracks making up the two jets and therefore

98



0

500

1000

1500

2000

2500

3000

3500

4000

0 0.1 0.2 0.3 0.4 0.5

B±→(π±,K±)X0

0

250

500

750

1000

1250

1500

1750

2000

0 0.1 0.2 0.3 0.4 0.5

B0→K0
SX0

R2

E
ve

nt
s/

B
in

Figure V.13: Distribution of R2 variable. Dots represent off-resonance data while the his-
tograms are simulated signal (solid) and continuum qq̄ (dashed) Monte-Carlo samples. The
histograms are normalized to the area of the data.

its direction is strongly correlated with the thrust axis of the rest of the event. Hence, the

distribution of cosΘth picks at ±1 for continuum background. In contrast, because of the

small momentum of the B mesons and the nearly isotropic angular distribution of the decay

products from the second B meson, the direction of the thrust axis of these particles with

respect to the direction of the signal meson candidate coming from the other B is random

in BB̄ events. Thus, the signal tend to have a flat cosΘth distribution as it is illustrated on

Fig. V.14.

cosΘempty�cone: This variable is the cosine of the maximum opening angle of the cone

opposite to the direction of the signal meson candidate, in which no other charged track, π0

or K0
S was detected (see Fig. V.15). For the purpose to calculate this variable we selected
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Figure V.14: Distribution of | cosΘth | variable. Dots represent off-resonance data while the
histograms are simulated signal (solid) and continuum qq̄ (dashed) Monte-Carlo samples.
The histograms are normalized to the area of the data.

K0
S’s using the same criteria, which were defined for the signal K0

S mesons (except the

momentum constraint) and we did not take into account the daughter pions as individual

charge particles again. The π0’s were reconstructed via their decay to γγ, which has a ∼ 99%

relativ e branching fraction. To eliminate fake γγ combinations we accepted candidates with

momentum larger than 100 MeV/c and required a satisfactory kinematic fit to the real mass

(χ2 ≤ 7).

In a continuum qq̄ event the cone opposite to the signal meson is heavily populated with

particles from the other jet, while in a signal event it has a quite small probability that one

of the decay products from the other B meson enters this cone (see Fig. V.16).

Although, each of the variables described here is capable of distinguishing signal events
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Figure V.15: Illustration of the empty cone. The arrows represent the momenta of particles
measured in the detector.

from background to some extent, their individual distinguishing power is strongly limited. In

addition, they are correlated with each other, that is if we restrict the values of one variable

then the distribution of the others will change. Therefore, it is necessary to combine our nu-

merous shape variables into one single variable, which concentrates the distinguishing power

of the individual variables and yields maximal discrimination between the signal and back-

ground. At CLEO, the technique of Fisher Discriminant [60] was successfully implemented

in several analysis (see for example [61]).

Fisher Discriminant Technique

The Fisher Discriminant is expressed as a linear combination of the input variables (xi)

described in the previous section:

F(x1, x2, ..., xN ) =

N∑
i=1

αixi, (V.11)
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Figure V.16: Distribution of | cosΘempty−cone | variable. Dots represent off-resonance data
while the histograms are simulated signal (solid) and continuum qq̄ (dashed) Monte-Carlo
samples. The histograms are normalized to the area of the data.

and the linear coefficients αi are determined as to maximize the separation between the

signal and continuum background

αi =
N∑
j=1

(U s
ji + U b

ji)
−1 × (µb

j − µs
j), (V.12)

where µj = 〈xj〉 is the mean of the distribution of the jth variable and Uji is the covariance

matrix between the variables

Uji = 〈(xj − µj)(xi − µi)〉 = 〈xjxi〉 − µjµi, (V.13)

and the superscript s and b denote signal and background, respectively.

In order to demonstrate how the α coefficients separate signal from background we look

at the special case when the input variables are uncorrelated for both signal and background,
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that is

Uji = 0 (j �= i). (V.14)

Then the covariance matrix becomes diagonal and only the σ2 variance of each variable’s

distribution shows up in it

Uji =




(σ1)
2 0 0 0 ...

0 (σ2)
2 0 0 ...

0 0 (σ3)
2 0 ...

... ... ... ... ...




(V.15)

since

Ujj = 〈(xj − µj)
2〉 = (σj)

2. (V.16)

Hence, the combination coefficients are simply given by

αi =
µb
i − µs

i

(σs
i )

2 + (σb
i )

2
, (V.17)

that is variables which have larger signal versus background separation (numerator) and

smaller variance (denominator) are weighted more heavily in the composition of the Fisher

Discriminant.

To determine the αi coefficients, that is to ”tune” the Fisher Discriminant, we need sep-

arate signal and continuum qq̄ background samples. We do not have too many choices with

the signal since the only source is our Monte-Carlo generated sample. Although, for back-

ground, we could use the off-resonance data, we decided to use the Monte-Carlo simulated

continuum samples instead. The quality of agreement between the distributions of each

variable for off-resonance data and the Monte-Carlo simulation justifies this choice. We use

the background data samples from off-resonance running as a check only and to determine

the systematic error associated with the Fisher selection criterion.
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We used only those events, which passed the pre-selection criteria on M , ∆E, R2 and

the tight momentum cut 2.47 < pK0
S
< 2.79 GeV/c or 2.49 < pπ±,K± < 2.81 GeV/c: 44, 185

B± → π±X0 (32, 581 B0 → K0
SX

0) signal MC events and 140, 818 (46,097) continuum qq̄

MC events. The resulting combination coefficients are given in Table V.2 for both decay

modes.

Table V.2: Combination coefficients of the variables in the Fisher Discriminant

Variable B± → (π±, K±)X0 B0 → K0
SX

0

Momentum Flow (0◦ − 10◦) 0.775 0.887
Momentum Flow (10◦ − 20◦) 0.685 0.876
Momentum Flow (20◦ − 30◦) 0.508 0.788
Momentum Flow (30◦ − 40◦) 0.260 0.555
Momentum Flow (40◦ − 50◦) 0.031 0.307
Momentum Flow (50◦ − 60◦) -0.169 0.106
Momentum Flow (60◦ − 70◦) -0.347 -0.081
Momentum Flow (70◦ − 80◦) -0.456 -0.218
Momentum Flow (80◦ − 90◦) -0.502 -0.283

| cosΘB | -0.222 -0.364
| cosΘP | 0.949 1.129

R2 1.786 0.730
| cosΘth | 0.520 0.486

cosΘempty−cone 0.056 0.239

Figures V.17 and V.18 show the distribution of the Fisher variables for simulated signal

and continuum samples as well as for off-resonance data. As we can see the distribution of

the Fisher Discriminant is approximately Gaussian (in fact, it is a bifurcated Gaussian) as it

is expected from the Central Limit Theorem. The Fisher Discriminant on these figures are

normalized to give distributions in the range 0 − 1. We can see again how well the Monte-

Carlo simulates the data. The separation between the signal and background distributions
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is around 95% (86% ) of the sum of the standard deviations of the two distributions (σs+σb)

in case of the charged (neutral) decay mode.

Fisher Discriminant
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Figure V.17: Distribution of the Fisher Discriminant for B± → (π±, K±)X0. Dots rep-
resent off-resonance data while the histograms are simulated signal (solid) and continuum
qq̄ (dashed) Monte-Carlo samples. The histograms for continuum MC is normalized to the
statistics of the off-resonance data while the signal distribution is plotted assuming a branch-
ing fraction of 3× 10−3. Inset shows the left tail of the continuum distribution.

A cut on the Fisher Discriminant represents a hyperplane, which separates signal events

from background in the 14-dimensional variable space. Although, this technique relies on the

assumption that the signal and background is linearly separable in this space, this seems to

be a reasonable assumption considering the distribution of our variables. This is the reason
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Figure V.18: Distribution of the Fisher Discriminant for B0 → K0
SX

0. Dots represent off-
resonance data while the histograms are simulated signal (solid) and continuum qq̄ (dashed)
Monte-Carlo samples. The histograms for continuum MC is normalized to the statistics of
the off-resonance data while the signal distribution is plotted assuming a branching fraction
of 7× 10−4. Inset shows the left tail of the continuum distribution.

why the absolute value of some of the variables (e.g. the cosine of the thrust angle), are taken

in the calculation since this transformation makes signal and background linearly separable.

However, there are more sophisticated methods, such as those based on neural network,

that can use a nonlinear algorithm to improve the separation in those cases when inherent

non-linear correlations exist among the input variables. But these methods become more

complicated with increasing number of variables, and convergence to a global optimum is not

guaranteed and depends on initial conditions. We chose the Fisher Discriminant technique
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because of its simplicity and it proved to be as powerful as other methods in several CLEO

analysis [62].

V.3 Optimization of Selection Criteria

As we mentioned earlier we applied some loose preliminary criteria on some of the vari-

ables in order to reduce the size of the data and get a manageable subset, which can be

further studied in a faster and more flexible way. Table V.3 summarizes these criteria for

both decay modes.

Table V.3: Summary of the skim cuts.

B± → (π±, K±)X0 B0 → K0
sX

0

Good π±/K± candidate
with 2.1 < pπ/K < 3.1 GeV/c

Good K0
s candidate

with 2.1 < pK0
s
< 3.1 GeV/c

R2 < 0.5 R2 < 0.5
M ≥ 5.2 GeV/c2 M ≥ 5.0 GeV/c2

−3.25 ≤ ∆E ≤ 1.0 GeV −3.5 ≤ ∆E ≤ 1.0 GeV

We have decided to do a ”cut-and-count” (also known as slice-and-dice) analysis, that

is, we set a branching ratio or an upper limit based on the number of events surviving

our selection criteria, which are designed to enhance the signal as much as possible relative

to the background. To avoid any bias introduced by statistical fluctuations in the data

we used Monte-Carlo generated samples in the process of cut optimization. In order to

measure quantitatively the effectiveness of a particular cut, we defined a quality factor,

which expresses the relative improvement in the signal significance:

Q =
G2

cut

G2
no cut

, (V.18)
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where Gcut (Gno cut) is the statistical significance of the signal after (before) the cut is applied.

The signal significance can be expressed as the ratio of the number of signal events to its

statistical error

G2 =
S2

(δS)2
. (V.19)

Let us assume that N events containing S signal and B background were observed in the on-

resonance sample: N = S+B. The background consists of two components, BB̄ events other

than our signal and continuum qq̄ events, B = BBB +Bqq (other continuum processes have

a negligible contribution). We can estimate these numbers using the Monte-Carlo samples:

S = αSMC , B
BB = βBBB

MC and Bqq = γBqq
MC . Then the statistical error on N assuming

Gaussian statistics is

(δN)2 = (δS)2 + (δB)2

=
(√

αSMC

)2
+

(√
βBBB

MC + γBqq
MC

)2

= αSMC + βBBB
MC + γBqq

MC .

(V.20)

On the other hand, to get the number of signal events we have to subtract the estimated

background from the observed N events, S = N − B′. Note, that B′ = BBB + Bqq is

the same background contribution as above but it is from an independent measurement.

We usually subtract the continuum background contribution using the off-resonance sam-

ple Bqq = gBqq
off , where g, the statistical normalization between the on-resonance and off-

resonance sample, is equal to 2.0 in our case (see Section IV.2). To estimate the BB̄ back-

ground we have no other choice than the Monte-Carlo sample. The error on B′ can be
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expressed as

(δB′)2 = β2(δBBB
MC)

2 + g2(δBqq
off)

2

= β2BBB
MC + g2Bqq

off

= β2BBB
MC + gγBqq

MC,

(V.21)

where we used the equivalence gBqq
off = γBqq

MC . Hence the statistical error on the number of

signal events is equal to

((δS)2 = (δN)2 + (δB′)2

= αSMC + (1 + β)βBBB
MC + (1 + g)γBqq

MC,

(V.22)

and then the signal significance is

G2 =
(αSMC)

2

αSMC + (1 + β)βBBB
MC + (1 + g)γBqq

MC

. (V.23)

The normalization factors (α, β, γ) used to scale the simulated samples to the data

together with the total event numbers are summarized in Table V.4. To estimate the number

of signal events in the on-resonance data sample we assumed a reasonable signal branching

fraction on the order of 10−5. We checked that the cut quality (Q) is not too sensitive to

this value: the optimum cut values hardly change if we choose a branching ratio below 10−4.

The number of qq̄ events in the on-resonance sample takes into account that approximately

2/3 of the continuum background is due to hadronic events and the rest results from QED

processes, which are not modeled in the simulated qq̄ sample.

We optimized the selection criteria on the momentum of the signal meson (pmeson), the

kinematic variables of the other B meson (M and ∆E) and the Fisher Discriminant (F)

composed from the shape variables. We selected cuts with maximum improvement in the

quality factor Q. The cuts were studied both individually and in combination with all the
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Table V.4: The number of events in the full data and Monte-Carlo samples and the scale
parameters between them.

B± → (π±, K±)X0 B0 → K0
sX

0

Signal BB̄ qq̄ Signal BB̄ qq̄
MC 180× 103 32.1× 106 97× 106 90× 103 30.4× 106 94× 106

On-res. Data 97 9.7× 106 31× 106 97 9.7× 106 31× 106

Scales 0.00054 0.30 0.32 0.0011 0.32 0.33

other cuts. The following six figures show the normalized distribution of the variables to-

gether with the dependence of the quality factor Q on the cut value while all the other

variables are restricted at their best values. The optimum cut values are given in Table V.5

for both decay modes. The somewhat looser cuts in case of the neutral mode resulted from

the cleaner K0
S identification.

Table V.5: Optimized selection criteria.

Variable B± → (π±, K±)X0 B0 → K0
sX

0

pmeson [GeV/c] 2.49− 2.81 2.47− 2.79
M [GeV/c2] > 5.245 > 5.24
∆E [GeV] −2.1−+0.3 −3.0−+0.4

F < 0.29 < 0.33
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π/K momentum

Momentum: B±→(π±,K±)X0
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Figure V.19: Optimization of the selection criteria on the signal meson’s momentum for
B± → (π±, K±)X0 decay. The upper plot shows the momentum distribution of the signal
meson candidate in simulated signal (solid), BB̄ (dotted) and continuum qq̄ (dashed) Monte-
Carlo samples. The lower plot shows the quality factor (Q) as the function of the cut value
for the low-momentum cut (solid) and the high-momentum cut (dashed). The vertical lines
represent the optimal cuts between which we accepted events.
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K0
S momentum

Momentum: B0→K0
SX0
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Figure V.20: Optimization of the selection criteria on the signal meson’s momentum for
B0 → K0

SX
0 decay. The upper plot shows the momentum distribution of the signal meson

candidate in simulated signal (solid), BB̄ (dotted) and continuum qq̄ (dashed) Monte-Carlo
samples. The lower plot shows the quality factor (Q) as the function of the cut value for
the low-momentum cut (solid) and the high-momentum cut (dashed). The vertical lines
represent the optimal cuts between which we accepted events.
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Kinematic Variables: B±→(π±,K±)X0
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Figure V.21: Optimization of the selection criterion on the M and ∆E for
B± → (π±, K±)X0 decay. The topmost plots show the two-dimensional scattered dis-
tribution of Monte-Carlo simulated signal (left) and continuum qq̄ (right) events in the
M −∆E plane. The box represents the optimal cut. Events outside the box were rejected.
One-dimensional distributions of M and ∆E variables for different Monte-Carlo samples
(notation is the same as on Fig. V.19) are shown together with dependence of the quality
factor Q on the cut value. The vertical lines represent the optimal cut.
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Kinematic Variables: B0→K0
SX0
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Figure V.22: Optimization of the selection criterion on theM and ∆E forB0 → K0
SX

0 decay.
The topmost plots show the two-dimensional scattered distribution of Monte-Carlo simulated
signal (left) and continuum qq̄ (right) events in the M −∆E plane. The box represents the
optimal cut. Events outside the box were rejected. One-dimensional distributions of M and
∆E variables for different Monte-Carlo samples (notation is the same as on Fig. V.19) are
shown together with dependence of the quality factor Q on the cut value. The vertical lines
represent the optimal cut.
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Fisher

Fisher: B±→(π±,K±)X0
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Figure V.23: Optimization of the selection criterion on the Fisher variable for
B± → (π±, K±)X0 decay. The left plot on the top shows the distribution of the Fisher
discriminant for signal (solid) and continuum qq̄ (dashed) Monte-Carlo samples. The over-
lapping curves show the smoothed histograms. Here the distributions are not normalized
to have the same height and therefore the BB̄ background is not visible. On the right in-
tegral distributions are shown (dotted histogram shows the BB̄ background distribution).
The lower plot shows the quality factor as a function of the cut value. The dots (dashed
histogram) represents the dependence resulting from using the original (smoothed) distribu-
tions.
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Fisher: B0→K0
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Figure V.24: Optimization of the selection criterion on the Fisher variable for B0 → K0
SX

0

decay. The left plot on the top shows the distribution of the Fisher discriminant for signal
(solid) and continuum qq̄ (dashed) Monte-Carlo samples. The overlapping curves show the
smoothed histograms. Here the distributions are not normalized to have the same height and
therefore the BB̄ background is not visible. On the right integral distributions are shown
(dotted histogram shows the BB̄ background distribution). The lower plot shows the quality
factor as a function of the cut value. The dots (dashed histogram) represents the dependence
resulting from using the original (smoothed) distributions.
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V.4 Event yields

Tables V.6 and V.7 list the number of events passing our optimized selection requirements

applied consecutively one after the other in on-resonance, off-resonance data, and simulated

signal MC samples. The overall signal selection efficiency determined by using simulated

signal Monte-Carlo sample is 7.2 ± 0.1% for the charged B decay mode and 6.6 ± 0.1% for

the n eutral B mode, where the error is statistical only.

Table V.6: Number of events passing each consecutive selection criteria in the B± →
(π±, K±)X0 analysis.

On-res. Off-res. MC Signal
Total events 57 million 23 million 180,000

Pre-selected events 157,919 73,671 90,211
Momentum selection 41,981 20,437 83,592
MB and ∆E selection 14,243 7,073 55,024

Fisher selection 74 32 12,896

Table V.7: Number of events passing each consecutive selection criteria in the B0 → K0
SX

0

analysis.

On-res. Off-res. MC Signal
Total events 57 million 23 million 90,000

Pre-selected events 64,207 31,230 36,953
Momentum selection 18,675 9,224 34,720
MB and ∆E selection 2,330 1,135 17,725

Fisher selection 44 14 5,973
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Figure V.25 shows the momentum distribution of the signal meson candidate in on-

resonance (filled dots) and off-resonance (empty dots) data samples along with the expected

distribution from simulated samples (histograms) after all selection criteria except for the

tight momentum constraint on the signal meson candidate were applied. The distributions

of the off-resonance data and simulated MC events are normalized to the statistics of the

on-resonance sample based on beam energy and luminosity (see Section IV.2 how these are

determined). The arrows enclose the interesting momentum range in which we counted

events. The number of on-resonance (off-resonance) events in the selected signal box is 74

(32) in case of the B± → (π±, K±)X0 and 44 (14) in case of the B0 → K0
SX

0 analysis.

The distribution of the events in the 2-dimensional M −∆E plain is shown on the two

top plots of Fig. V.26 and V.27 for on-resonance (left) and off-resonance data after all other

cuts were applied. The lower plots demonstrate the projected M (left) and ∆E (right)

distributions for the on-resonance samples (dots with error bars) together with the Monte-

Carlo predictions (histogram), which are the proper combination of qq̄ and BB̄ events scaled

to the components of the on-resonance data.

V.5 Background

The largest contribution to the events observed in the on-resonance sample comes from

e+e− → qq̄ process and it can be statistically subtracted using the off-resonance sample.

However, we have to check for other possible sources, which can contribute to the background,

beside the continuum qq̄ events.

The analysis of 32 (30) million generic BB̄ MC events, which contains only B decays

governed by the dominant b → cW process, found only 8 (3) events in the signal region of

the B± → (π±, K±)X0 (B0 → K0
SX

0) analysis. It translates into ∼ 2.4 and ∼ 1.0 expected
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Figure V.25: Momentum distribution of the signal meson in data and MC samples.

events contributing to the yield of the charged and neutral decay mode, respectively. In most

of the cases (8 out of the total 11 BB̄ simulated events) an energetic light meson produced

in the decay of a D meson coming from B → D�ν semileptonic decay played the role of

our signal meson that together with the accompanying neutrino having a large momentum

(p ∼ 1.8−2.1 GeV/c) and opposite direction to the meson could mimic our signal signature.
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Figure V.26: Distribution of B± → (π±, K±)X0 candidate events in M − ∆E plain and
one-dimensional projections.

Other B decay modes like B → ρ/ω/π�ν and B → hh (h = π,K) that are not simulated

in the generic Monte-Carlo sample can occasionally fake our signal and contribute to the

background. These decays proceed through b → uW charged current or b → s penguin

mechanism, which are suppressed with respect to the b → cW diagram, and considered to

be rare, however, their branching ratio can reach up to 10−3−10−4 in case of the semileptonic

modes and 10−5 in case of the hadronic modes. In order to study the impact of these decays
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Figure V.27: Distribution of B± → K0
SX

0 candidate events in M − ∆E plain and one-
dimensional projections.

for our analysis we generated 5000 MC events to simulate several two-body final states

containing ππ Kπ and KK mesons and 10000 events leading to B → π/ρe+νe decays.

The main characteristic differences between these decays and the signal are demonstrated

on the following three figures. On Fig. V.28, we can see that the signal meson candidate in

semileptonic decays has a much wider distribution due to the three-body decay structure and

only the high momentum tail of the distribution interferes with our signal region. Figures
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V.29 and V.30 show the distribution of some of the shape variables (R2, cosΘthrust and

cosΘempty−cone) as well as the kinematic variablesM and ∆E for selected two-body hadronic

decays and signal events. Based on these observables our analysis code is able to discriminate

against these events effectively even if a neutral pion orK0
S accompanies the energetic charged

meson. However, as it is apparent on Fig. V.29, characteristics of events with a final state

h±K0
L are very close to those of the signal due to the fact that the long living K0

L is able to

escape from detection, and therefore, they can mimic our signal signature.
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Figure V.28: Momentum distribution of the meson candidate in signal and semileptonic MC
samples.

Tables V.8 and V.9 summarize the branching ratio (B) of the different B decays together
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Figure V.29: Distribution of selected shape variables in signal and B → πK0 MC samples.
Final states with the different K0 components are plotted separately.

with the selection efficiency (ε) and the estimated contribution to the observed events. Al-

though, this estimate is very unreliable due to the large uncertainty in the branching ratios

it is evident that its contribution is at least an order of magnitude less than the continuum

background. To derive a conservative upper limit on B → hX0 we neglected the background

contribution due to B meson decays.

Since tau pair production (e+e− → τ+τ−) rate is almost as high as the BB̄ production
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Table V.8: Expected contribution of different B decay modes to the observed events in the
B± → (π±, K±)X0 analysis. B branching fractions are taken from [53, 63].

Decay mode ε Br(×10−5) Expected events
b→ cW ≈ 2.4

B± → π±π0 0.16%                  < 1.27 < 0.2
B± → K±π0 0.16%             1.16+0.30+0.14

−0.27−0.13 < 0.3
B± → π±K0 2.2%            1.82+0.46

−0.40 ± 0.16 < 5.0
B± → K±K0 2.2%                   < 0.51 < 1.1
B0 → π+π− 0.04%           0.43+0.16

−0.14 ± 0.05 ≈ 0
B0 → K±π∓ 0.04%           1.72+0.25

−0.24 ± 0.12 < 0.1
B0 → K+K− 0.04%                  < 0.19 ≈ 0
B0 → π−�+ν 0.12%                   18± 6 < 2.7

B± → ρ0(π+π−)e±ν < 0.01%                  < 21 ≈ 0

Table V.9: Expected contribution of different B decay modes to the observed events in the
B0 → K0

SX
0 analysis. B branching fractions are taken from [53, 63].

Decay mode ε B(×10−5) Expected events
b → cW ≈ 1.0

B0 → π0K0 0.08%        1.46+0.59+0.24
−0.51−0.33 < 0.2

B± → π±K0 < 0.01%    1.82+0.46
−0.40 ± 0.16 ≈ 0
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Figure V.30: Distribution of M and ∆E in signal and B → ππ MC samples.

rate at the energy of the Υ(4S) resonance and tau leptons prefer to decay into charged

meson(s) accompanied by a neutrino we also studied the background contribution from this

source. We found that no events out of 12 million simulated tau MC events passed our

selection criteria.
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V.6 Systematic error

We determined the signal selection efficiency (ε) of our analysis using Monte-Carlo gener-

ated events. It is very important to make sure that the simulated events correctly represent

the data. This is a very hard task since we lack any real signal events to which we could

compare our signal MC simulation and therefore, we have to use indirect methods to quan-

tify the uncertainty in the selection efficiency. We try to identify more or less independent

sources of uncertainty and determine what variation they cause in the final efficiency and

add their effects in quadrature to get the final systematic error. The different components of

the systematic error and their contribution are summarized in Table V.10. The cuts on the

fisher discriminant and the kinematic variables (M and ∆E) have the largest contribution

to the systematic error.

Table V.10: Summary of systematic errors in the signal efficiency.

Systematic contribution B± → (π±, K±)f B0 → K0
sf

Charged track(s) 1%                      2%
dE/dx cut 2%                        -
K0

s finding - 3%
Momentum 1%                       1%
MB and ∆E 6%                       6%

Fisher 11%                     16%
Signal MC 1/

√
N 1%                       1%

Total 13%                     18%

First, we selected hadronic events with at least three well reconstructed charged tracks

and shape parameter R2 < 0.5. The systematic error due to this selection is negligible

compared to others and we neglect it.
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We next search for a well reconstructed charged π/K track or K0
S decaying to π+π−.

Although, the track reconstruction efficiency is high, tracks can be lost for a variety of

reasons such as interaction with the detector material, decay in flight, noisy/inefficient wire

or confusion due to overlapping tracks. This raises the question whether the Monte Carlo

simulation of the detector response reliably models these inefficiencies. Intensive studies at

CLEO showed that the combined track finding and fitting efficiency is correctly reproduced

by the Monte Carlo to better than 1% [64]. Therefore, we assigned a conservative 1% 

systematic error to each charged track that we used as a signal meson coming from the B →

hX0 decay and added these errors linearly (i.e. 2% error in case of the signal K0
S → π+π−).

Due to the dE/dx cut on the charged meson candidate and additional uncertainty in the

reconstruction of the K0
S vertex we add a 2% and 3% error in quadrature to the tracking

efficiency error to arrive a total fractional uncertainty of 2.2% and 3.6% in the π±/K± and

K0
S tracks, respectively.

The efficiency of the tight momentum cut on the signal meson is 91.6% and 93.9% in case

of the charged and neutral decay mode, respectively. We assigned a 1% systematic error to

this cut.

We next consider the error due to the selection criteria on the kinematic variablesM and

∆E. If the shape of the signal in the Monte Carlo is not well modeled then we get an incorrect

efficiency: a wider (narrower) peak leads to lower (higher) efficiency than the actual value.

In a similar analysis that set upper limits on the leptonic decays of the B mesons B± → �±ν�

(� = e, µ, τ) at CLEO [65] the authors searched for a single lepton and calculated the beam

constrained mass M =
√
E2

beam − (prest)2 and energy difference ∆E = Erest − Ebeam from

the rest of the event in a similar way as we do. They checked the shape of the M and ∆E

distribution using two independent samples: the sample of fully reconstructed B tags (in
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which one of the B meson decay was reconstructed) and the sample of B → D∗�ν decays.

In their check the reconstructed B meson played the role of the signal B, and M and ∆E

were calculated from the remaining particles in the event. They compared data to the Monte

Carlo simulation and concluded that the agreement is satisfactory.

Namely, they found that the average difference in the width of the ∆E distribution

between the data and Monte Carlo was 8% . We could check how the yield of the signal in

our Monte Carlo simulation changes if we changed the width of our ∆E distribution by 8% .

This is equivalent to change the width of our cut with the same amount. We found that the

yield changes by 1.9% (1.5% ) in case of the charged (neutral) decay analysis. The shape of

the mass distributions was compared in the same analysis [65] by taking the ratio of data

and Monte Carlo distributions and fit the result with a straight line. They found the average

slope to be −1.4. A change in the slope of the M distribution in our signal Monte Carlo

with the same amount resulted in a 6.0% (5.6% ) change in the signal yield in the charged

(neutral) decay mode. We took the changes in the yields as the systematic error associated

with the ∆E and M cut and add them in quadrature to arrive at a total error of 6.3% and

5.8% in case of the B± → (π±, K±)X0 and B0 → K0
SX

0 analysis, respectively.

We estimated the systematic error due to the uncertainty in the signal shape of the

Fisher Discriminant in a similar manner. We compared the distributions resulting from off-

resonance data to that from continuum Monte Carlo and adopted the same uncertainty for

the signal. The change in the yield due to the appropriate change in the cut value gave the

systematic error.

We fitted the Fisher distributions after all other restrictions were applied to a bifurcated
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Gaussian parametrized as

F (x) = N




exp
(
− (x−x0)2

2σ2
L

)
if (x < x0)

exp
(
− (x−x0)2

2σ2
R

)
if (x > x0)

. (V.24)

The fitted parameters such as the center of the distribution (x0), the left and right side

standard deviations (σL, σR) are given in Table V.11. The results of the fits are displayed

on Fig. V.31 for off-resonance data (top), continuum (middle) and signal (bottom) Monte

Carlo. The agreement between the off-resonance data and the continuum (qq̄) Monte Carlo

Table V.11: Fisher Discriminant fit results.

Off-res. Data qq̄ MC Signal MC

B± → (π±, K±)f
x0
σL
σR

0.679± 0.003
0.145± 0.002
0.075± 0.002

0.679± 0.001
0.141± 0.001
0.076± 0.001

0.333± 0.001
0.089± 0.001
0.162± 0.001

B0 → K0
sf

x0
σL
σR

0.630± 0.011
0.131± 0.007
0.100± 0.007

0.636± 0.004
0.134± 0.002
0.096± 0.002

0.345± 0.002
0.093± 0.001
0.155± 0.001

is excellent. The fractional difference in the center of the distributions between data and

MC is less than 1%  for both decay modes. To be conservative we assumed a 2% error as

the uncertainty in the center of the signal distribution when we calculated the change in the

yield. The quadrature sum of the fractional differences in the standard deviations of the

distributions is 3.1% and 4.7% in case of the charged and neutral decay mode, respectively.

We assigned twice as much error to standard deviation of the signal distribution.

Instead of shifting the distribution or changing its shape with the required amount we

simply moved the cut value with the appropriate absolute amount to calculate the change in

the signal yield and we add the resulting fractional differences in quadrature to get the total
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Figure V.31: Fit to the Fisher (F) distributions.

change. The yield changed by 6.8% (9.1% ) in case of the charged (neutral) decay mode due

to the shift of the cut with an amount equivalent to the error of the central values of the

distributions. Since we cut only one side of the Fisher distribution therefore we shifted the

cut value with half of the amount corresponding to the error on the total sigma (σL + σR).

This shift resulted in 9.0% (13.2% ) change in the yield of the charged (neutral) decay. The

total change that we associated with the error of the Fisher selection is 11.3% and 16.0% .
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Finally, the limited signal Monte Carlo statistics of the signal samples contributes to the

error with 0.9% and 1.3% for the neutral B and charged B decay channels, respectively.

The total systematic error in the efficiency is 13.2% and 17.5% for the B± → (π±, K±)X0

and B0 → K0
SX

0 channels, respectively.

V.7 Upper limit on the branching ratio

We calculate the branching ratio based on the formula

B =
Non −RNoff

εNB
, (V.25)

where Non and Noff are the observed events in the signal region in the on-resonance and

off-resonance data samples, respectively, R is the normalization coefficient between the on-

resonance and off-resonance samples, ε is the signal selection efficiency and NB is the total

number of charged and neutral B mesons in the data sample.

We assumed equal production of charged and neutral B meson pairs from the decay

Υ(4S) → BB̄ and we did not assign an error to this assumption. This is consistent with a

recent measurement of the production ratio f+−/f00 = 1.04±0.07(stat)±0.04(syst) published

by the CLEO Collaboration [66]. Hence, the total number of charged (neutral) B mesons in

the denominator of the above equation is equal to the number of the BB̄ pairs in our data

sample NB = (9.7± 0.2)× 106 and we assigned the same error to NB that is associated with

the error in the number of B meson pairs (see Section IV.2).

As we saw in Section IV.2 the statistical normalization of the off-resonance sample to the

on-resonance one is consistent with 2.0 and the error is estimated to be 2% .

When we calculated the branching ratio we took into account these errors besides the

statistical error (
√
N) in the number of observed events and the systematic error in the signal
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selection efficiency (ε). The resulting central values are

B(B± → (π±, K±)X0) = (1.4± 2.1)× 10−5 (V.26)

B(B0 → K0
SX

0) = (2.5± 1.7)× 10−5 (V.27)

The error in the branching ratio is dominated by the statistical uncertainty in Non and Noff .

In order to derive a 90% confidence level upper limit on the branching ratio we used

the unified frequentist approach proposed by Feldman and Cousins [67] and adopted by

the Particle data Group [53]. This method is the generalization of the classical confidence

belt construction so that it yields intervals that automatically switch over from upper limits

to two-sided intervals as the signal becomes more statistically significant. We applied the

method recommended for the branching ratio with Gaussian error, when B is physically

bounded to non-negative values. The resulting upper limits are

B(B± → (π±, K±)X0) < 4.9× 10−5 (V.28)

B(B0 → K0
SX

0) < 5.3× 10−5 (V.29)

These limits constrain new physics leading to two-body B meson decays involving any

massless neutral weakly-interacting particle X0.

V.8 Constraint on the Family Symmetry Breaking Scale F V
bs(d)

We can apply the above upper limits to the case when X0 is a familon to obtain a

lower bound on the family symmetry breaking scale (F ) normalized by the generators of the

symmetry group (Tij) and with the relative strength of the vector coupling (gV ):

F V
bd(s) =

F

gV Tbd(s)
. (V.30)
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This quantity is related to the partial decay rate Γf (and branching fraction) by the formula

(see Section II.5)

F V
bd(s) =

[
M3

B

16π
β3 | F1(0) |2

Γf

]1/2
=

[
M3

B

16π
| F1(0) |2

τB
B

]1/2
, (V.31)

where τB is the lifetime of the B meson (see Table V.1) and we substituted for β3 = (1 −

m2
π/K/M

2
B)

3 ≈ 1. We choose the value of the form factor to be F1(0) = 0.25 that gives the

most conservative lower limit on the family symmetry breaking scale.

The limit on the B0 decay to K0
S together with the fact that B(B0 → K0f) = 2B(B0 →

K0
Sf) gives a a constraint

F V
bs > 6.4× 107GeV. (V.32)

If we assume that the familon couples to the d and s quark with the same strength (i.e.

F V
bs = F V

bd) then B(B → πf) = B(B → Kf) = 1
2
B(B → (π,K)f) and our upper limit on the

charged decay mode gives a little bit higher bound

F V
bd(s) > 1.3× 108GeV. (V.33)

133



CONCLUSION

A tremendous effort has been devoted to find the deep physical reason for the existence

of the mass hierarchy and weak mixing among the quarks and leptons. Despite the enormous

amount of data accumulated during the past three decades we still appear to be far from the

true understanding of the family structure of fermions and the origin of particle generations

(families).

A possible explanation based on a spontaneously broken continuous global family sym-

metry was suggested by Reiss [29] and Wilczek [27]. One of the most important consequence

of the spontaneous breakdown of this family symmetry is the existence of neutral massless

Nambu-Goldstone bosons, called familons. Familons can have flavor-conserving as well as

flavor-changing couplings with the fermions and the coupling strength is suppressed by the

energy scale at which the flavor symmetry is broken. In contrast to the first two generations,

experimental constraints on familons coupled to the third generation of fermions are quite

modest, the only weak constraint is in the leptonic sector from τ− → �−X0 (� = e, µ) decay.

Familons associated with a broken family symmetry are also motivated by cosmological

scenarios, such as big-bang nucleosynthesis and large scale structure formation, with a tau

neutrino decaying to a lighter neutrino and a massless boson.

Flavor-changing couplings between the b quark and the familon (f) would lead to the

decay B → hf (h = π,K) through vector coupling and B → V f (V = ρ,K∗) through axial

coupling. We have searched for the two-body decay of the B meson to a light pseudoscalar

meson h = π±, K±, K0
S and a massless neutral weakly-interacting particle X0 such as the

familon. We find no significant signal by analyzing a data sample containing 9.7 million BB̄

mesons collected with the CLEO detector at the Cornell Electron Storage Ring, and set a
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90% C.L. upper limit of 4.9× 10−5 and 5.3× 10−5 on the branching fraction for the decays

B± → h±X0 and B0 → K0
SX

0, respectively. These upper limits correspond to a lower bound

of approximately 108 GeV on the family symmetry breaking scale (with vector coupling) for

the third generation of quarks.

The results of this analysis was submitted to and accepted by the Physical Review Letters

for publication [68]. In addition, preliminary results were presented at the APS April Meeting

2000 [69].
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Appendix A

PROOF OF THE GOLDSTONE THEOREM

In this appendix we give a general proof of the Goldstone Theorem (Section I.4) for the

case of classical scalar fields using the same arguments as in Chapter 11 of [48]. Three other

proof can be found in [70].

We start with the Lagrangian of a theory involving several scalar fields φi(x)

L =
1

2

∑
i

(∂µφ
i)2 − V (φi). (A.1)

The lowest energy configuration is a set of constant fields φi(x) = φi
0 that minimizes the

potential V (φi):

∂V

∂φi

∣∣∣∣
φi
0

= 0. (A.2)

The small oscillations around this lowest energy configuration can be parametrized by

φi(x) = φi
0 + χi(x). Then, the potential V (φi) can be expressed in terms of the shifted

fields χi as

V (φi) = V (φi
0) +

1

2

∑
i

∑
j

(
∂2V

∂φi∂φj

)
φ0

χiχj + ... (A.3)

and the Lagrangian reads

L =
1

2

∑
i

(∂µχ
i)2 − 1

2

∑
i

∑
j

(
∂2V

∂φi∂φj

)
φ0

χiχj +O(χ3) (A.4)

plus an irrelevant constant. From this form we can see that the symmetric positive semi-

definite matrix (
∂2V

∂φi∂φj

)
φ0

= m2
ij (A.5)
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in the quadratic term is the mass matrix, whose eigenvalues give the masses for the fields

χi. We can show that, every continuous symmetry of the Lagrangian that is not a symmetry

of the vacuum (φi
0) gives rise to a zero eigenvalue of the above mass matrix, that is, the

corresponding field is a massless excitation.

A general continuous symmetry transformation of the φi fields can be expressed as φi →

φi + ΘF i(φ), where F i(φ) is an arbitrary functional of the fields and Θ is an infinitesimal

parameter. If we restrict the fields to be constant fields, then the kinetic (derivative) terms

in the Lagrangian given by Eq. A.1 vanish and the invariance of the Lagrangian under the

transformation requires

V (φi) = V
(
φi +ΘF i(φ)

)
≈ V (φi) + Θ

∑
i

F i(φ)
∂V

∂φi
, (A.6)

that is, ∑
i

F i(φ)
∂V

∂φi
= 0. (A.7)

If we differentiate this equation with respect to φj and set φ = φ0 then we obtain

∑
i

(
∂F i(φ)

∂φj

)
φ0

(
∂V

∂φi

)
φ0

+
∑
i

F i(φ0)

(
∂2V

∂φj∂φi

)
φ0

= 0. (A.8)

The first term is zero since the V potential has a minimum at φ = φ0 (see Eq. A.2).

Therefore, the second term must be zero as well:

∑
i

(
∂2V

∂φj∂φi

)
φ0

F i(φ0) = 0. (A.9)

This is trivial if F i(φ0) = 0, ∀i, that is, for transformations that leave the vacuum unchanged:

φi
0 → φi

0 +ΘF i(φ0) = φi
0, ∀i. On the other hand, if F i(φ0) is not a zero-vector, that is, the

transformation is not a symmetry of the vacuum (φ0), then the vector F i(φ0) is a non-trivial

eigenvector of the mass matrix with zero eigenvalue. QED.
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Appendix B

STUDY OF THE DECAYS B → τντ AND B → Kνν̄

The decays B± → τ±ντ followed by a subsequent decay of the tau-lepton to π±ντ and

B± → K±νν̄ have a very similar experimental signature: a charged meson, π or K respec-

tively, is accompanied by two invisible neutrinos. Our original analysis aimed to search for

the decay B± → h±X0 is somewhat sensitive to both of these decay modes since the neutri-

nos are invisible for the detector and we did not make an attempt to separate π and K signal

mesons from each other. However, the signal selection efficiency of our selection criteria for

these decay modes is much smaller since the light meson has a much wider momentum dis-

tribution in contrast to the case of the two-body decay B± → h±X0 (see Fig. B.3), and

therefore, the strict momentum cut on the signal meson eliminates a large portion of these

events.

The purely leptonic decays of charged mesons to lepton plus its neutrino such as the

B± → τ±ντ decay provide a unique opportunity to study the weak decay process in a clean

environment without the effect of strong interactions in the final state. In the Standard

Model, the leptonic decays proceed primarily through the annihilation of the constituent

quarks of the meson into a virtual W± boson as it is schematically shown on Fig. B.1. The

branching ratio of the B± → �±ν� (� = e, µ, τ) decay has a simple dependence on the B

meson decay constant fB, which parameterizes the overlap of the quark wavefunctions in the

meson, and the CKM matrix element Vub. Both fB and Vub are the subject of considerable

experimental and theoretical effort, but are currently known with an accuracy of only 20 −

30% . If Vub is obtained from other measurements, than the precise measurement of the
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Figure B.1: Feynmann graph for B+ → τ+ντ decay.

B → �ν� branching ratio may be the only way to determine the decay constant fB with

small theoretical uncertainty.

However, the expected value of B(B → τντ ) is very small, in the range (1− 10)× 10−5,

and the branching ratio of the decay to µ and e are even smaller by two and seven orders of

magnitude, respectively, because of the enhanced helicity suppression due to the lightness of

these leptons1. Therefore, with the current experimental technique the B → τντ decay can

be the only accessible purely leptonic decay despite of that the B → µ/eν decays have much

less background and higher reconstruction efficiency2.

On the other hand, the decay B → τντ could proceed through annihilation of the con-

stituent quarks into a Higgs boson according to the Type II two Higgs doublet model, in

which the u- and d-type quarks acquire their masses from the interaction with two separate

1Since the B meson is a spin-zero particle the leptons emerging from its decay must have anti-parallel
spins to conserve angular momentum. However, the (anti-)neutrinos has only one, left- (right-) handed,
helicity state available, therefore, the charged (anti-)lepton is forced to an unfavorable right- (left-) handed
helicity state. The unfavored helicity state is suppressed by a factor proportional to m2/M2

B.
2The modification of the analysis of the latter decay modes by adding a hard gamma photon to the final

state [71] can also be used to get experimental information on fB. According to theoretical calculations, the
branching ratio of the decays B → �νγ (� = e, µ) can reach 5× 10−6 [72] since helicity suppression does not
occur when the spin-0 B meson becomes a spin-1 B meson via emitting a γ photon before annihilation into
�+ ν [73].
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Higgs-fields [74]. Such a mechanism could enhance the decay rate significantly. Therefore,

experimental bounds on the the B → τντ branching ratio could probe physics beyond the

Standard Model as well.

Currently, the best upper limit on B(B± → τ±ντ ) comes from three measurements in the

Z0 → bb̄ system ranging from (5.7−16)×10−4 [75]. CLEO recently published a search using

full event reconstruction in the Υ(4S) → BB̄ system, which resulted in a 90% confidence

level upper limit of 8.4× 10−4 [76].

The decay B± → K±νν̄ proceeds through the flavor changing neutral current induced

b → sνν̄ decay governed by a single left handed operator obtained from Z0 electroweak

penguin and box diagrams (Fig. B.2), where the dominant contribution corresponds to a top

quark intermediate state. This makes the decay very sensitive for possible new physics since

b
t

s, d

W- W-

Z0

νl

νl

b
t

s, d

W-
W+

νl

νl

Figure B.2: Electroweak penguin (left) and box (right) mechanism for b→ s(d)νν̄ decay.

their contribution can be manifested only in the modification of this operator or introducing

a new right handed operator. The expected rate for b → sνν̄ is an order of magnitude

lower than for b → sγ, which is predicted to be (3.5 ± 0.3)× 10−4. Experimental limits on

the inclusive b → sνν̄ was set by ALEPH (< 7.7 × 10−4) [46], while limit on the exclusive

B → K∗νν̄ (< 1.0 × 10−3) and B → Kνν̄ (< 2.4 × 10−4) were measured by DELPHI [77]
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and CLEO [76], respectively.

We estimate the selection efficiency of our analysis for the B± → τ±(π±ν)ν and B± →

K±νν̄ events by using simulated Monte Carlo events. We generated 90, 000 Υ(4S) → B+B−

events in which one of the B meson was forced to decay to Kνν̄ with all the three neutrino

flavors being equally represented, while the other B was allowed to decay generically. Half

of the sample was generated with the B+ decaying to the signal mode, and the other half

simulated the B− decay. We used 3-body phase space and a constant matrix element in the

event generator since it gives essentially the same result (see [76]) as the matrix elements

defined in Ref. [52]. In case of the B → τντ analysis, 45, 000 events were generated in the

decay chain Υ(4S) → B+B−, followed by B− → τ−ν̄τ , and followed by τ− → π−ντ . In

both cases, 1/3 (2/3) of the events were generated by using parameters corresponding to the

CLEO II (CLEO II.V) detector and they were distributed appropriately over the various

running conditions.

However, there is a small kinematic difference between the two decays, which is apparent

on the momentum distribution of the daughter mesons on Fig. B.3. Due to angular momen-

tum conservation and the fact that the (anti-)neutrino has only left- (right-) handed helicity

state available, the τ− (τ+) from the B → τντ decay is fully polarized with its spin pointing

along (opposite) its momentum. In the subsequent decay τ → πντ the neutrino prefers to

be emitted with its spin aligned with the tau spin in the τ ’s rest frame because the pion

has zero spin. As a result, the neutrino tends to be emitted in opposite to the tau direction

and the pion gets most of the boost from the tau momentum [78]. Therefore, the pion from

B → τ(πντ )ντ decay tends to have larger momentum than the kaon from the B → Kνν̄

decay where no such a polarized intermediate state occurs. We generated the tau’s in the

correct polarization state during the MC simulation.
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Figure B.3: Momentum distribution of the mesons in B → τ(πν)ν (solid) and B → Kνν̄
(dashed) decays. The plot on the left shows the distribution in the rest frame of the B meson
while the plot on the right show the distributions in the lab frame. The sharp cutoff at 2.64
GeV/c on the left is smeared by the motion of the B (pB = 0.34 GeV/c) on the right. The
arrows on the right plot indicate the accepted momentum region.

The selection efficiency of our B± → h±X0 analysis for B → τ(πντ )ντ and B → Kνν̄

events is 1.2% and 0.8% , respectively. We assigned the same systematic error to the compo-

nents of the efficiency as in the B± → h±X0 analysis except for that the uncertainty due to

the finite MC sample is higher, 4% , resulting in a 14% overall uncertainty in the efficiency.

The branching ratio was calculated by the formula

B =
Non − RNoff

εNB
, (B.1)

but in case of the B → τν mode we multiplied the denominator with an extra factor of

0.118, the relative branching fraction of the τ → πν decay [53], which has not been taken

into account in the MC simulation of the decay chain. Using the number of observed events

Non = 74 ± 8.6 and Noff = 32 ± 5.7 along with R = 2.0 ± 0.04 and NB = (9.7 ± 0.2)× 106,
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the central values of the branching ratio are

B(B → Kνν̄) = (1.3± 1.8)× 10−4, (B.2)

B(B → τντ ) = (0.73± 1.04)× 10−3. (B.3)

The upper limits at 90% confidence level are determined by the unified frequentist approach

for Gaussian distributed data close to a physical boundary [67, 53]:

B(B → Kνν̄) < 4.3× 10−4 (B.4)

and

B(B → τντ ) < 3.2× 10−3. (B.5)
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