
i 
 

DETERMINING THE USE OF ELECTRONIC MEDICAL RECORDS IN GENETIC 

STUDIES OF MUTLIPLE SCLEROSIS 

 

By 

Mary Feller Davis 

 

Dissertation 

Submitted to the Faculty of the  

Graduate School of Vanderbilt University 

in partial fulfillment of the requirements  

for the degree of  

 

DOCTOR OF PHILOSOPHY 

in  

 

Human Genetics  

 

December, 2013 

Nashville, Tennessee 

 

Approved: 

William S. Bush, Ph.D., M.S. 

Jonathan L. Haines, Ph.D. 

Subramaniam Sriram, M.B., B.S. 

Joshua C. Denny, M.D., M.S. 

Thomas M. Aune, Ph.D. 



ii 
 

 

 

 

 

 

 

 

 

To my best friend and husband, Ryan 

and my beautiful daughter, Maggie  



iii 
 

ACKNOWLEDGEMENTS 

This study was supported by grants NS032830 (to Dr. Jonathan Haines), 

LM010685 (to Dr. Joshua Denny), P32GM080178 (to Vanderbilt University) and 

UL1TR000445 (to Vanderbilt CTSA). The contents of this paper are solely the 

responsibility of the authors and do not necessarily represent the official views of the 

National Center for Advancing Translation Sciences or the National Institutes of Health. 

Genotyping was performed by the DNA Resources Core at Vanderbilt University and 

genotype calling was performed by the Wellcome Trust Sanger Institute. The Center for 

Human Genetics Research core resources have been invaluable. 

There are many people who have contributed significantly to this work, both in 

scientific efforts and as support in other aspects of life. I am thankful for all who have 

contributed and sincerely apologize if I have missed someone. 

I would like to thank the patients at Vanderbilt University Medical Center for 

providing us with this exciting research opportunity. I would also like to thank the 

Vanderbilt Multiple Sclerosis Clinic for shedding further light on the EMR at VUMC and 

walking me through common clinical practices. 

I am grateful for my Ph.D. advisor, Dr. Jonathan Haines, for his mentoring and for 

believing in my potential enough to allow me to travel back and forth between 

Tennessee and Texas for the second half of my Ph.D. He has provided me with 

exceptional opportunities to attend and present at conferences and to gain experience in 

large collaborations.  

 I am grateful to the other members of my Ph.D. committee—Drs. William Bush, 

Joshua Denny, Subramaniam Sriram, and Thomas Aune. Dr. Bush continually expands 

my view on what can be done with the data available and is always willing to discuss 

new ideas. Dr. Denny has spent numerous hours tutoring me in the basics of 



iv 
 

programming and has painstakingly gone through code I have written line by line to 

assist me. Dr. Sriram has been an excellent teacher and shown great patience in helping 

me gain an accurate understanding of the clinical aspects of multiple sclerosis. The time 

spent in his clinic gave me insights I could not have gained in other way. Dr. Aune has 

been very gracious in sharing his expertise with me. His comments in my committee 

meetings were always greatly appreciated, not least for their directness and applicability 

to the issue at hand. 

 It is not possible to enumerate all of the ways the members of the Haines lab 

have benefitted me and this project. Dr. Nathalie Schnetz-Boutaud and Ping Mayo have 

taken me under their wings and provided a safe shelter where I could grow as a scientist. 

The postdoctoral fellows (Drs. William Bush, Brian Yaspan, and Jessica Cooke Bailey) 

and students (Drs. Rebecca Zuvich, Anna Cummings, and Olivia Veatch, Joshua 

Hoffman, and Laura D'Aoust) with whom I have overlapped have been wonderful to work 

with. Dr. Cummings was a very thorough and patient mentor when I joined the lab and is 

a wonderful friend. Dr. Veatch has been my comrade-in-arms from our first day in the 

Interdisciplinary Graduate Program at Vanderbilt and we have taken turns at 

encouraging one another through the challening times. When Laura joined the lab, she 

quickly became my go-to person every time my brain stalled, and she never let me down. 

 The support of family has been critical. Unwavering support from my family and 

my husband's family has given me the confidence I needed to pursue a PhD and then to 

continue persevering regardless of the obstacles. My dad, Dr. David Feller, has been an 

inspiration to me and I am grateful for his influence. The unending from encouragement 

from both my mom, Jolyn Feller, and my dad never ceases to motivate me. I have turned 

to family at every step of the way. The joy of seeing the happiness of my daughter, 

Maggie, always renewed me with energy and helped me find a smile on the most difficult 

days. 



v 
 

 My husband, Ryan, has been with me at every point. His loyalty, support, and 

love has never faltered and he is always there for me to lean on. He has read every 

paper I have written, listened to practice talks, and helped me with innumerable hours of 

preparation for my qualifying exams. And throughout it all, he soaks it in and never 

ceases to want to know more of what I am doing. When my enthusiasm for genetics is 

lacking, he lets me borrow his. 

  



vi 
 

TABLE OF CONTENTS 

Page 

 
ACKNOWLEDGEMENTS ............................................................................................... iii 
 
LIST OF TABLES ......................................................................................................... viii 
 
LIST OF FIGURES .......................................................................................................... x 
 
LIST OF ABBREVIATIONS ............................................................................................ xi 
 
Chapter 
 
I.  Introduction ..................................................................................................................1 

 
Multiple Sclerosis .........................................................................................................1 
Electronic Medical Records ........................................................................................22 
Discussion .................................................................................................................27 

 
II.  Sample Selection and Phenotype Extraction  ...........................................................28 

 
Case Sample Selection ..............................................................................................28 
Control Sample Selection ...........................................................................................37 
Algorithms to Extract Detailed Clinical Traits ..............................................................37 
Discussion .................................................................................................................49 

 
III.  Genetic Data Collection and Preparation .................................................................60 

 
ImmunoChip ..............................................................................................................60 
Sample Selection and Genotyping .............................................................................64 
SNP Calling ...............................................................................................................65 
Quality Control ...........................................................................................................66 

 
IV.  Genetic Analyses ....................................................................................................75 

 
Case-Control Analysis................................................................................................75 
Analyses of Clinical Traits of Disease Course ............................................................84 
Discussion ............................................................................................................... 100 

 
V.  Conclusions ........................................................................................................... 104 

 
Future Directions...................................................................................................... 109 

 
Appendix 
 
A.  Control Selection Algorithm .................................................................................... 113 
 
B.  Pseudocode for Clinical Trait Algorithms ................................................................ 118 
 



vii 
 

C.  R Template for Origin of First Symptom Analyses .................................................. 124 
 
D.  R Template for Time to SPMS Analysis ................................................................. 126 
 
REFERENCES ............................................................................................................ 128 
 

  



viii 
 

LIST OF TABLES 

 

Table                  Page 

1.1 Common neurological symptoms of MS ....................................................... 6 

1.2 Published twin studies of MS ..................................................................... 12 

1.3 Current list of known MS loci outside of the HLA region ............................. 15 

1.4 BioVU Demographics ................................................................................. 26 

2.1 Performance of case selection algorithms .................................................. 32 

2.2 Cases dataset demographics ..................................................................... 32 

2.3 Number of identified by each of the eight clinical trait algorithms ............... 47 

2.4 Statistics of algorithms compared to blinded manual review of 100  

 charts for all characteristics ........................................................................ 48 

2.5 Statistics of algorithms after additional modifications ................................. 48 

2.6 Number of clinical traits extracted per individual......................................... 51 

2.7 Counts of individuals for each origin of first neurological symptom ............. 57 

2.8 Counts of individuals by subtype ................................................................ 57 

2.9 Counts of individuals by each type of medication ....................................... 58 

3.1 SNPs requested by the IMSGC for inclusion on the ImmunoChip .............. 62 

3.2 Loci fine-mapped to completion on the ImmunoChip (submitted only  

 by the IMSGC) ........................................................................................... 63 

3.3 Samples extracted for each round of genotyping ....................................... 65 

3.4 Demographics for samples in the frozen QC dataset ................................. 69 

4.1 Logistic regression results for 110 known MS SNPs .................................. 77 

4.2 Most significant results for age of diagnosis regression analysis ................ 86 

4.3 Most significant results for age of diagnosis regression analysis after  

 exclusion of outliers ................................................................................... 87 



ix 
 

4.4 Most significant results for age of first neurological symptom  

 regression analysis .................................................................................... 89 

4.5 Most significant results for presence of oligoclonal bands .......................... 90 

4.6 Most significant results for MSSS ............................................................... 93 

4.7 Most significant results for the timed 25 foot walk analysis ......................... 94 

4.8 CNS origin of individuals used for analysis................................................. 97 

4.9 Most significant results for polytomous regression of origin of 

 first neurological symptom ......................................................................... 97 

4.10 Most significant results for time to SPMS analysis ....................................100 

  



x 
 

LIST OF FIGURES 

Figure                  Page 

2.1 Case selection algorithms .......................................................................... 30 

2.2 Follow-up length of individual records  ....................................................... 33 

2.3 Average number of ICD-9 codes (340) for "definitive type 2"  
 individuals .................................................................................................. 36 

2.4 Schematic of the algorithm to extract origin of first neurological  
 symptom .................................................................................................... 44 

2.5 Distribution of extracted EDSS scores ....................................................... 52 

2.6 Distributions of timed 25 foot walk scores as found in the  
 structured fields and extracted from the text of the clinical records............. 54 

2.7 Comparison of oligoclonal band results by source ..................................... 56 

3.1 X chromosome heterozygosity for all samples ........................................... 68 

3.2 Principle components for all samples ......................................................... 72 

4.1 Genetic risk scores excluding the HLA locus .............................................. 83 

4.2 Genetic risk scores including the HLA locus ............................................... 83 

4.3 Distribution of the ages of diagnosis........................................................... 85 

4.4 Distribution of the ages of first neurological symptom ................................ 88 

4.5 Distribution of MSSS .................................................................................. 92 

4.6 Timed 25 foot walks for 9 individuals.......................................................... 95  



xi 
 

LIST OF ABBREVIATIONS 

 

AAO age at onset 

ANA anti-nuclear antibodies 

BioVU Vanderbilt biobank 

BP base pair position 

BS brain stem 

CHR chromosome 

CNS central nervous system 

Coeff coefficient 

CSF cerebrospinal fluid 

CUI concept unique identifiers 

DZ dizygotic twin pairs 

EBV Epstein-Barr virus 

EDSS Expanded Disability Status Scale 

EMR electronic medical record 

GWAS genome-wide association study 

HLA Human Leukocyte Antigen 

IC ImmunoChip 

ICD International Classification of Diseases 

IMSGC International Multiple Sclerosis Genetics Consortium 

IRB Institutional Review Board 

IVMP intravenous methylprednisone 

kb kilobase 

LD linkage disequilibrium 

MA minor allele 



xii 
 

MAF minor allele frequency 

MHC major histocompatibility complex 

MRI magnetic resonance imaging 

MS multiple sclerosis 

MSFC Multiple Sclerosis Functional Composite 

MSSS Multiple Sclerosis Severity Score 

MZ monozygotic twin pairs 

n number of individuals 

NMO neuromyelitis optica 

NOS not otherwise specified 

ON optic nerve 

OR odds ratio 

P p-value 

PL Problem List 

PML progressive multifocal leukoencephalopathy 

PPMS primary progressive multiple sclerosis 

PPV positive predictive value 

PRMS progressive-relapsing multiple sclerosis 

QC quality control 

RA risk allele 

RAF risk allele frequency 

RRMS relapsing-remitting multiple sclerosis 

SC spinal cord 

SCID severe combined immunodeficiency 

SD Synthetic Derivative 

SNP single nucleotide polymorphism 



xiii 
 

SPMS secondary progressive multiple sclerosis 

UK United Kingdom 

VU Vanderbilt University 

VUMC Vanderbilt University Medical Center 

WTCCC Wellcome Trust Case Control Consortium 

WTCCC2 Wellcome Trust Case Control Consortium 2 

WTSI Wellcome Trust Sanger Institute 

 



1 
 

CHAPTER I 

 

INTRODUCTION 

 

Multiple Sclerosis 

 

Disease introduction 

Multiple sclerosis (MS) is a demyelinating disease of the central nervous system 

(CNS). The etiology of MS appears to be complex, involving genetic and environmental 

factors. Although much effort has gone into understanding these underlying causes and 

new information has come to light in recent years, there is still much to learn. 

MS is the second most common cause of neurologic disability in young adults, 

next to head trauma.(1;2) Diagnosis generally occurs early in life with the typical age of 

onset between 20 and 40 years, although juvenile forms do exist and some persons are 

diagnosed later in life. Females are affected more often than males—historically this 

gender ratio has been recorded as 2:1. Recent epidemiological studies suggest that the 

prevalence is increasing in women but not in men, driving the ratio closer to 3:1 in some 

areas of the world.(3) Prevalence rates vary by area of the world, from 190/100,000 in 

the north of Scotland(4), 110/100,000 in England and Wales(5), 62/100,000 in 

Hungary(6), 120/100,000 in western Greece(7), to 90/100,000 in Canada(8).  The 

prevalence of the disease also appears to be increasing in many populations.(3) MS is 

most common in Caucasians, although other ethnic groups are affected to some degree. 

There is a relationship between increasing distance from the equator and increased 

prevalence of the disease.(9;10) Part of this appears to be from a genetic predisposition, 

although studies of individuals who have moved closer or farther to the equator early in 
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life show the risk of developing MS is more linked to the place where the person spent 

their early years, as opposed to where their closer genetic relatives are from.  

Several risk factors are known in the environment and in genetics.(11-14) 

Several environmental factors are described here and genetic risk factors are discussed 

later in this chapter. As discussed above, increased distance from the equator has been 

associated with risk of developing MS. Low levels of Vitamin D in the serum are 

associated with overall risk.(15;16) The relationship between distance from the equator, 

Vitamin D levels, and MS risk is unclear. Both factors appear to contribute risk. 

Birth month has previously been associated with MS risk—with higher numbers 

of individuals with MS born in May, and decreased numbers in November(17), but a 

recent study suggests the association is due to confounding factors of year and place of 

birth.(18) Cigarette smoking is strongly correlated with MS(19;20), although this risk 

begins to diminish after a five year abstinence period.(21) Infections with Epstein-Barr 

virus (EBV) has been associated with MS in a number of studies.(22;23) Haahr et al. 

found the association only with late EBV infection; EBV infections occur later in 

developed countries, which could partly account for the greater incidence of MS in 

developed countries.(22)  

Clinical diagnostic criteria 

MS is a clinically defined disease and the diagnostic criteria have evolved over 

the last 30 years.(24-26) The current diagnostic criteria is the revised McDonald's criteria, 

requiring demonstration of disease dissemination in space and time. The most common 

way to meet these criteria is by magnetic resonance imaging (MRI).  

Marked changes on an MRI that are highly suggestive of MS are critical to a 

diagnosis. MS lesions occur in the brain in all patients diagnosed with MS, and in the 
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spinal cord of many patients. Patients who only exhibit lesions in the spinal cord are 

diagnosed with transverse myelitis, for which there is a fairly high conversion rate to MS 

in the first 3-5 years after diagnosis.(27) Lesions due to MS must be distinguished from 

other events that can alter an MRI, most notably cerebrovascular events. As individuals 

age, the accrual of a small number of lesions is normal. Distinguishing between normal 

aging changes and MS lesions makes diagnosis more difficult the older the person is—

lesions in a younger person are a fairly good indicator of disease. The main MRI 

sequences in use to gain information regarding changes due to MS are the T1, T2, and 

T2 flair images. T1 images are best for looking at the anatomy of the brain and brain 

volume. Brains in patients with MS typically atrophy at a faster rate than in normal 

patients.(28) MS lesions are more easily seen in T2 images, although the T2 flair (in 

which the water sequence is inverted) provides the clearest image to view lesions. The 

actual lesions do not differ visually on images from those of other causes, but there are 

some characteristic areas for lesions specific to MS, such as lesions in the 

periventricular area. Many patients’ MRIs show an accumulation of lesions around these 

ventricles over time. Juxtacortical lesions seen in a sagittal slice are often due to MS, as 

well as Dawson’s fingers, which are small projections of lesions up from the corpus 

callosum. Lesions in the spinal cord (in addition to the brain) are highly indicative of MS. 

Once an MS lesion is formed, it will generally be apparent on an MRI for the 

patient’s life; however, a difference in newly formed, active lesions compared to older 

lesions can be seen by using gadolinium. Gadolinium usually stays in the blood vessels, 

but in active lesions it leaks into the brain tissue due to breaches in the blood-brain 

barrier; hence, gadolinium-enhanced lesions typically represent active lesions. Most 

lesions remain active for six to eight weeks, until the blood-brain barrier heals itself.  
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For diagnosis, dissemination in space requires lesions in at least two of the four 

important areas of the CNS (periventricular, juxtacortical, infratentorial, and spinal cord). 

The requirement for dissemination in time can be met with new active lesions seen on 

an MRI that were not present on a baseline MRI or the presence of both gadolinium-

enhanced and non-enhanced lesions on the same scan.(26) The presence of oligoclonal 

bands in the cerebrospinal fluid and not in the serum could be used to confirm a 

diagnosis of MS when data from MRI was not conclusive in previous MS diagnostic 

criteria.(24) Oligoclonal bands are not part of the current MS diagnostic criteria; however, 

it is possible they will be included in future diagnostic criteria.(26) The current criteria 

suggest further research of oligoclonal bands to determine how they should be included.  

Another test frequently performed prior to diagnosis of MS is a blood test to 

check for the presence of anti-nuclear antibodies (ANA), a type of auto-antibody found in 

patients with autoimmune diseases. The primary disease associated with a positive ANA 

is systemic lupus erythematosus, although the test is positive in 22.5% of patients with 

MS.(29) Positive ANA values can be further described by the laboratory based on the 

binding pattern of the antibodies (speckled, diffuse, etc.), but for MS there is no typical 

pattern. As with oligoclonal bands, not all patients with MS have a positive result. Also, a 

positive ANA is less specific for MS than the presence of oligoclonal bands. 

Pathology 

The underlying pathology of the disease is not fully understood, but research 

strongly suggests there are autoimmune, inflammatory, and neurodegenerative disease 

processes involved. Patients with MS have characteristic lesions in the brain and spinal 

cord. In the formation of these lesions, the blood-brain barrier is compromised, leading to 

an influx of cells into the brain tissue in an inflammatory response, and eventual 
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neurodegeneration of axons occurs. Also occurring in the formation of the lesions is 

demyelination as the myelin sheath surrounding axons in the CNS is targeted for 

destruction, although whether this target is direct or indirect is unknown. There appears 

to be some level of remyelination that occurs in few lesions of MS, but it is not 

understood how this occurs, nor why it only occurs in some lesions. 

Disease course 

Clinical expression of the disease varies greatly among individuals. Temporary 

paralyses, optic neuritis, weakness in limbs, and cognitive difficulties are a few of the 

multitudinous ways MS can present. Progression of the disease also varies greatly and 

may be acute or gradual.  

Initial presentation of neurological symptoms due to MS generally begins when 

patients are in their mid to late twenties, but the age range expands from early teens to 

mid-sixties.(3)  Both the age and type of first neurological symptom aggregates in 

families, suggesting a genetic component to each.(1;3) There are no typical symptoms 

at onset—the range of symptoms at first presentation varies as widely as symptoms do 

throughout the disease course.  

The range of symptoms that can be experienced due to MS is large. (Table 1.1) 

Patients may experience any combination of these symptoms and some patients tend to 

be afflicted by certain symptoms more frequently than others. Common neurological 

symptoms due to MS originate from the optic nerve, brain stem, and spinal cord.(30) A 

diurnal pattern of fatigue in the morning and afternoon is seen in many MS patients. 

Uhthoff's phenomenon, a worsening of symptoms when the patient becomes overheated, 

and Lhermitte's sign, an electrical sensation felt when bending the neck forward, are also 
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characteristic symptoms. The "MS hug" felt by some patients is a squeezing sensation 

felt around the torso.  

 

CNS Symptom 

Optic nerve optic neuritis 

 
visual loss 

Brain stem speech diffiulties 

 
dysphagia 

 
diplopia 

 
trigeminal neuralgia 

 
tic douloureux 

 
incoordination 

 
ataxia 

 
vertigo 

Spinal cord limb weakness 

 
paresthesias 

 
Lhermitte's sign 

 
MS hug 

 
urinary incontinence 

 
erectile dysfunction 

 

There are four recognized subdivisions of clinical MS (relapsing-remitting, 

primary progressive, secondary progressive, progressive-relapsing); a person is 

classified into one of these categories based on the presence or absence of relapses or 

episodes and the rate of continual progression of disability.  

Relapses are episodes of acute neurological disability related to MS that last 

longer than 24 hours and resolve within days to weeks; often they can be attributed to 

active lesions in the corresponding area of the brain or spinal cord. The majority of 

patients (~85%) are initially classified as relapsing-remitting (RRMS); many of these will 

later convert to a secondary progressive phase (SPMS), which is classified as a stage of 

the disease with a lack of episodes, but a gradual worsening of symptoms over time. 

Table 1.1 Common neurological 
symptoms of MS 
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About 10% of patients are initially diagnosed with primary progressive MS (PPMS). 

These patients never experience relapses, but have a continual progression of 

neurological disability from the onset of the disease. A small subset of MS patients with 

progressive-relapsing (PRMS) experience continual progression of disability 

interspersed with periods of greater acute disability.  

It is not understood if these forms of MS represent different expressions of the 

same underlying pathology or different disease pathologies with similar clinical 

phenotypes. In MS studies, a major drawback to understanding differences between the 

subtypes is the small sample sizes available for patients with PPMS and RPMS. 

The symptoms experienced by individuals with MS vary greatly, as does the rate 

of progression of disability. Some patients may be able to walk independently 40 years 

after diagnosis while others may be wheelchair-bound within 5 years. The factors 

influencing the rate of progression are unknown. Part of the rate of disability is described 

by the subtype of MS, but there is a large amount of inter-individual variability even 

within subtypes. The stage of progression of disability due to MS is most commonly 

reported using the Expanded Disability Status Scale (EDSS) from 0 (no disability due to 

MS) to 10 (death due to MS).(31) It is reported in half point increments based on 

neurological and physical examinations.  Many of the higher scores represent 

milestones easily recognized—6: reliance on a cane or other walking assistance, 7: 

wheelchair bound, 9: confined to bed. However, intensive neurological examination may 

be required in some cases to determine an exact EDSS. Scores of 4-5.5 are difficult to 

determine in a clinic setting because they require testing how far the patient can walk 

unaided, up to 500 meters. This type of space and amount of time is often not available 

in a routine clinic visit. The lower scores, 0-4, can be scored in clinic visits during routine 

examinations. 
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The EDSS reports the level of disability a patient currently has but does not take 

into account the length of time the patient has had the disease, so it cannot accurately 

reflect the progression of the disease. To address this issue, the Multiple Sclerosis 

Severity Score (MSSS) was devised.(32) The MSSS assigns a patient a new index (0-10) 

that describes how fast of a “progressor” that person is in comparison to others with the 

same length of disease time. An index of 10 represents the person has progressed 

faster than 100% of patients, whereas an index of 3 represents a patient that has 

progressed faster than only 30% of patients with the same disease duration. The MSSS 

algorithm uses a patient’s EDSS score and the amount of time passed between the 

EDSS measurement and initial disease, and then compares this to a distribution of other 

patients to create the MSSS. The distribution used for comparison can be from the 

patients in a local dataset or a standard distribution provided with the software can be 

used.(32) 

Other scales can be used to measure disability in MS patients. Some scales 

focus on specific aspects of disability (e.g. bladder control scale), while others try to 

measure disability as a whole, similar to the EDSS. The Multiple Sclerosis Functional 

Composite (MSFC) was created for assessment in clinical studies to include often 

overlooked clinical dimensions, such as cognition, in an overall disability score.(33) One 

scale used independently and in the MSFC is the timed 25 foot walk. The timed walk is a 

simple test easily measured in the clinic setting—patients are timed while they walk 25 

feet. Use of walking aids is permitted. Longer walks indicate greater disease disability. 

Walking times are recorded and can be used to monitor disability, specifically of the 

lower limbs, over time.  
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Current treatments 

There is no cure for MS and current treatments are focused only on easing the 

symptoms of the disease. There are several treatments currently approved for MS, but 

all are for patients with relapsing forms of the disease. No FDA-approved treatment is 

available for patients with PPMS. Treatments for relapsing forms aim to decrease the 

rate of exacerbations. FDA-approved treatments include interferon β, glatiramer acetate, 

natalizumab, mitoxantrone, fingolimod , teriflunomide , and dimethyl fumarate.  

Interferon β treatments were approved for treatment of MS in the 1990s.(34) 

There are multiple forms of interferon β—IFN β-1a (brand names Avonex, Rebif) and 

IFN β-1b (brand names Betaseron, Extavia); all are self-administered injections. Avonex, 

Betaseron, and Extavia are given as subcutaneous injections once a week. Rebif is 

administered as an intramuscular injection three times a week. Due to the nature of 

interferons, many patients experience flu-like symptoms upon injection. These 

symptoms can be combated by taking ibuprofen or acetaminophen before injection. 

However, some patients cannot tolerate the symptoms from one or all of the interferon 

treatments and must be changed to other treatments. As with all types of injections, 

patients must rotate injection sites to decrease bruising, pain, and permanent damage. 

One difficult side effect of Rebif is that it dissolves the tissue around where it has been 

injected repeatedly; many patients have “craters” across their bodies. Most new patients 

have historically been offered interferons as their first line of treatment, due to their 

effectiveness in decreasing relapses and few life-threatening side effects. The major 

complications that result from interferons are possible liver damage and neutropenia, so 

patients on these treatments must have their liver levels and blood counts checked 

every three to six months. 
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Glatiramer acetate (brand name Copaxone) has been approved for treatment in 

RRMS patients and is self-administered as a subcutaneous injection. Patients on 

glatiramer acetate are not required to have any routine blood work done to test for 

serious side effects, such as liver failure, but patients do tend to experience greater 

injection site reactions than with interferon treatments.  

Natalizumab (brand name Tysabri) was approved for use in RRMS patients in 

November 2004 as an IV infusion once every four weeks, but was pulled from the 

market shortly thereafter. It is extremely effective in decreasing the number of relapses 

in patients, but two members of the clinical trials later developed progressive multifocal 

leukoencephalopathy (PML) as a result of taking the drug.(34) PML is caused by the JC 

virus in patients with decreased immune systems. In 2006, the drug was reintroduced 

into the market with a black box warning. Patients with MS are able to be on the drug if 

approved by a physician participating in the TOUCH Prescribing Program, and are 

closely monitored for any sign of PML. Research on natalizumab and PML continues. 

Risk of PML development is greatest (1 per 90) in patients who are positive for 

antibodies to JC-virus and have received more than 24 doses.(35)  

Mitoxantrone (brand name Novantrone) is given by intravenous infusion every 

three months, for up to 24 months. The goals of treatment are to reduce neurologic 

disability and relapses. Mitoxantrone can be used to minimize progression in addition to 

relapses; however, there is a lifetime cumulative dose limit due to possible cardiac 

toxicity, so it cannot be used throughout a patient's entire disease course. 

In November 2010, the first oral medication for MS was approved, fingolimod 

(brand name Gilenya). Fingolimod is a capsule that should be swallowed once per day. 

One benefit of an oral medication is that there will, hopefully, be a greater compliance in 
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taking the medication across the board. Since the introduction of fingolimod, two other 

oral medications have been approved by the FDA: dimethyl fumarate (brand name 

Tecfidera) and teriflunomide (brand name Aubagio).Dimethyl fumarate is taken by 

capsule two times per day, teriflunomide once per day. The primary aim of these drugs 

is the same as the injectable drugs, to prevent future relapses in a patient.  

Although most clinicians follow the McDonald criteria to diagnose definitive MS, 

many physicians will start a patient with probable MS (following evidence of only one 

episode) on MS-related treatments. One of the prominent reasons expressed for this 

practice of early treatment is based on the observation that patients who have fewer 

relapses in the first three years of the disease tend to have a milder disease course 

throughout their lives. It is unknown whether the early relapses cause the more severe 

progression down the road or if relapses and progression are separate manifestations of 

the disease, but the hope is that if the number of relapses can be decreased early in the 

disease it may benefit patients over time. 

Genetics of Multiple Sclerosis 

Genetic epidemiology  

Knowledge of the presence of genetic causes of MS is mostly founded on studies 

showing an increased relative recurrence risk, especially sibling recurrence risk. Sibling 

recurrence risk is 5%, and that of parents and children is 2%.(30) The frequency of 

conjugal multiple sclerosis is low (0.17%)(36) and lack of clinical concordance in 

published datasets of conjugal pairs concordant for MS suggest a genetic etiology, as 

does the increased risk in children of conjugal pairs.(37) Twin studies in the United 

States, Canada, the UK, and Denmark show higher concordance in monozygotic twins 

than in dizygotic twins.(38-42) (Table 1.2)  
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Country Number of twin pairs MZ concordance (%) DZ concordance (%) 

Canada 390 25 5 

USA/Canada 1123 13 4 

UK 105 25 3 

Denmark 178 24 3 

Italy 216 15 4 

France 54 6 3 

MZ: monozygotic twin pairs; DZ: dizygotic twin pairs 
 

While these studies provide convincing evidence of the genetic component of MS, 

it is interesting to note that twin studies from France and Italy do not show different 

concordance rates by zygosity.(43;44) The study of twins in France concluded 

concordance of "some form of clinical, radiological, or electrophysiological abnormality," 

whereas the majority of studies looked at concordance of clinically definite MS. It is 

possible some differences in outcomes may be because of this difference in clinical 

criteria. Heritability estimates of MS vary widely, but are in the range of 0.15 to 

0.76.(45;46) Adoption and stepsibling studies show no increased risk of MS for 

individuals living with an individual with MS who is not genetically related.(47;48) 

In summary, extensive familial studies such as those described here strongly 

support the hypothesis of a genetic component for multiple sclerosis. 

MS susceptibility loci 

Understanding the specific genetic components of multiple sclerosis is an 

ongoing process. The Human Leukocyte Antigen (HLA) region on chromosome 6p21 

was found to contribute significant risk to development of the disease in the 1970s.(12-

14) The DRB1*15:01 allele is the strongest association and the HLA region accounts for 

10-50% of the genetic component of MS.(14)  

Table 1.2 Published twin studies of MS 
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The decades following this exciting discovery were plagued with frustrations. 

Numerous linkage studies were performed that yielded no new insights into the genetic 

architecture of MS.(49;50) In 2007, a single nucleotide polymorphism (SNP) in the IL7R 

loci was discovered in a candidate gene study, and replicated in following studies.(51-53) 

Additional loci were discovered through genome-wide association studies (GWAS), 

including IL2RA, RPL5, CD58, CLEC16A, and EVI5.(52;54) 

In the following years, additional loci emerged that were either confirmed by 

replication or reached genome-wide significance. Understanding of the genetics of MS 

broadened significantly because of collaborations between independent groups. One 

major collaboration of note is the International Multiple Sclerosis Genetics Consortium 

(IMSGC). Several analyses performed by this group have added greatly to the overall 

knowledge of the genetics of MS.  

Loci discovered between 2007 and 2011 by additional GWAS and meta-analyses 

include CD226, CD6, IRF8, TNFRSF1A, and TYK2.(53;55;56) While these positive 

results were promising and helped to move the understanding of MS pathophysiology 

forward, the published literature suggests only 3% of the total variance of MS risk is 

conferred by the variants described thus far.(57)  

The density of polymorphisms and the extensive linkage disequilibrium at the 

HLA have made delving into the region difficult. However, larger sample sizes and 

advancements in genotyping technology made it possible to determine multiple 

independent effects in the HLA region in addition to HLA-DRB1*15:01, including HLA-

A*02:01, HLA-DRB1*03, and HLA-DRB1*13:03.(58-60) 

A collaborative effort by the IMSGC and Wellcome Trust Case Control 

Consortium (WTCCC) in 2011 produced the largest GWAS of MS to date.(60) This 
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analysis of 27,148 individuals (9,772 cases, 17,374 controls) and 465,434 autosomal 

SNPs confirmed previously identified and strongly suspected MS loci and identified an 

additional 29 novel loci. However, the risk conferred by each of these variants is small 

(odds ratios (OR) ~1.1-1.3) and, unfortunately, when we combine knowledge from all of 

these variants there is still a great portion of the genetics of MS left to be discovered.(57) 

A follow-up analysis was recently conducted by the IMSGC. In collaboration with 

other auto-immune disease groups, a custom genotyping array focusing on loci 

associated with auto-immune diseases was formed—the ImmunoChip. (The creation of 

the ImmunoChip is discussed in detail in Chapter III.) Dense coverage of known loci, 

including rare variants, and a substantial dataset allowed for fine-mapping of several of 

these regions. 14,498 MS patients and 24,091 controls were analyzed for 161,311 

autosomal SNPs and identified 135 potentially associated regions.(61) Replication was 

performed by combining the dataset with previous datasets for a combined total of 

80,094 individuals. 48 new risk variants for MS were identified, bringing the total number 

to 110 variants in 103 loci (Table 1.3), outside of the HLA region. Estimates suggest 

these variants explain 20% of the sibling recurrence risk.(62)  

The progress in the field of human genetics for MS has grown tremendously in 

the past six years. The loci identified paint a broader picture of the underlying genetic 

architecture of the disease. Even though the number of loci tops 100, these loci cannot 

explain all of the genetics of MS. Additional work is required. The inability to explain the 

genetics of disease even with numerous loci is not a situation unique to MS, but is a 

problem in the spotlight throughout the field of human genetics. This problem of “missing 

heritability” may be tackled by searching for additional variants, both rare and common. 

The discovery of any additional common variants will require datasets even larger than 

the tens of thousands of samples already studied, and will likely have very small effects.   
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CHR rsID BP RAF RA OR (95% CI) P-value Function Published rsID Published Gene 

1 rs3748817 2525665 0.6412 A 1.14 (1.10-1.18) 1.33E-12 intronic rs4648356 MMEL1 

1 rs3007421 6530189 0.123 A 1.12 (1.07-1.18) 9.61E-07 intronic - - 

1 rs12087340 85746993 0.08673 A 1.22 (1.15-1.29) 5.13E-12 intergenic - - 

1 rs11587876 85915183 0.7931 A 1.12 (1.07-1.17) 8.4E-08 intronic - - 

1 rs41286801 92975464 0.1441 A 1.20 (1.15-1.25) 7.92E-16 UTR3 rs11810217 EVI5 

1 rs7552544 101240893 0.5583 A 1.08 (1.05-1.12) 3.67E-06 intergenic rs12048904 VCAM1 

1 rs11581062 101407519 0.2947 G 1.05 (1.01-1.09) 0.012 intronic rs11581062 VCAM1 

1 rs6677309 117080166 0.8786 A 1.34 (1.27-1.41) 1.45E-28 intronic rs1335532 CD58 

1 rs666930 120258970 0.5268 G 1.09 (1.06-1.13) 7.49E-08 intronic - - 

1 rs2050568 157770241 0.5342 G 1.08 (1.05-1.12) 1.33E-06 intronic - - 

1 rs35967351 160711804 0.6726 A 1.09 (1.05-1.13) 1.7E-06 intronic - - 

1 rs1359062 192541472 0.8164 C 1.18 (1.13-1.23) 1.84E-13 intergenic rs1323292 RGS1 

1 rs55838263 200874728 0.7057 A 1.12 (1.08-1.17) 1.41E-09 intronic rs7522462 KIF21B 

2 rs4665719 25017860 0.2532 G 1.09 (1.05-1.13) 6.8E-06 intronic - - 

2 rs2163226 43361256 0.7147 A 1.10 (1.07-1.15) 7.02E-08 intergenic rs12466022 No gene 

2 rs842639 61095245 0.653 A 1.11 (1.08-1.15) 1.7E-09 ncRNA_intronic - - 

2 rs7595717 68587477 0.264 A 1.10 (1.06-1.14) 3.29E-07 intergenic rs7595037 PLEK 

2 rs17174870 112665201 0.7581 G 1.03 (1.00-1.07) 0.08835 intronic rs17174870 MERTK 

2 rs9967792 191974435 0.619 G 1.11 (1.07-1.15) 1.8E-09 intronic - - 

2 rs9989735 231115454 0.1822 C 1.17 (1.12-1.22) 7.84E-14 intronic rs10201872 SP140 

3 rs11719975 18785585 0.2693 C 1.09 (1.05-1.13) 5.39E-06 intergenic - - 

3 rs2371108 27757018 0.3835 A 1.08 (1.05-1.12) 2.06E-06 downstream rs11129295 EOMES 

3 rs1813375 28078571 0.4695 A 1.15 (1.12-1.19) 5.75E-18 intergenic rs669607 - 

3 rs4679081 33013483 0.5222 G 1.08 (1.04-1.11) 1.2E-05 intergenic - - 

3 rs9828629 71530346 0.6236 G 1.08 (1.05-1.12) 5.49E-06 intronic - - 

  

Table 1.3 Current list of known MS loci outside of the HLA region 
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CHR rsID BP RAF RA OR (95% CI) P-value Function Published rsID Published Gene 

3 rs2028597 105558837 0.92028 G 1.04 (0.98-1.11) 0.1786 intronic rs2028597 CBLB 

3 rs1131265 119222456 0.8037 C 1.19 (1.14-1.24) 1.97E-15 exonic rs2293370 TMEM39A 

3 rs1920296 121543577 0.6441 C 1.14 (1.11-1.18) 6.75E-15 intronic rs4285028 CD86 

3 rs2255214 121770539 0.518 C 1.11 (1.08-1.15) 1.72E-10 intergenic rs4308217 CD86 

3 rs9282641 121796768 0.91882 G 1.12 (1.05-1.19) 0.000586 UTR5 rs9282641 CD86 

3 rs1014486 159691112 0.4335 G 1.11 (1.07-1.14) 1.16E-09 intergenic rs2243123 IL12A 

4 rs7665090 103551603 0.5173 G 1.08 (1.05-1.12) 2.41E-06 intergenic rs228614 NFKB1 

4 rs2726518 106173199 0.55 C 1.09 (1.05-1.13) 1.23E-05 intronic - - 

5 rs6881706 35879156 0.7246 C 1.12 (1.08-1.16) 4.87E-09 intergenic rs6897932 IL7R 

5 rs6880778 40399096 0.598 G 1.10 (1.06-1.14) 1.7E-08 intergenic rs4613763 PTGER4 

5 rs71624119 55440730 0.7552 G 1.12 (1.08-1.17) 2.7E-09 intronic rs6859219 ANKRD55 

5 rs756699 133446575 0.8729 A 1.12 (1.07-1.18) 2.97E-06 intergenic - - 

5 none 141506564 0.6096 C 1.07 (1.04-1.11) 5.96E-05 intronic - - 

5 rs2546890 158759900 0.5234 A 1.06 (1.02-1.09) 0.000659 ncRNA_exonic rs2546890 IL12B 

5 rs4976646 176788570 0.3399 G 1.13 (1.09-1.17) 1.04E-12 intronic - - 

6 rs17119 14719496 0.812 A 1.11 (1.06-1.15) 1.91E-06 intergenic - - 

6 rs941816 36375304 0.1813 G 1.13 (1.08-1.18) 4.47E-09 intronic - - 

6 rs72928038 90976768 0.174 A 1.11 (1.07-1.16) 7.63E-07 intronic rs12212193 BACH2 

6 rs802734 128278798 0.6868 A 1.03 (0.99-1.06) 0.1577 intergenic rs802734 THEMIS 

6 rs11154801 135739355 0.366 A 1.11 (1.07-1.15) 2.35E-09 intronic rs11154801 MYB 

6 rs17066096 137452908 0.2294 G 1.14 (1.10-1.18) 5.91E-12 intergenic rs17066096 IL22RA2 

6 rs7769192 137962655 0.5464 G 1.08 (1.04-1.12) 0.000013 intergenic - - 

6 rs67297943 138244816 0.7841 A 1.12 (1.07-1.16) 4.83E-08 intergenic rs13192841 OLIG3 

6 rs212405 159470559 0.6228 T 1.15 (1.11-1.19) 1.43E-15 intergenic rs1738074 TAGAP 

7 rs1843938 3113034 0.4382 A 1.08 (1.05-1.12) 2.21E-06 intergenic - - 

  

Table 1.3 continued 
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CHR rsID BP RAF RA OR (95% CI) P-value Function Published rsID Published Gene 

7 rs706015 27014988 0.1819 C 1.14 (1.09-1.19) 1.29E-09 intergenic - - 

7 rs917116 28172739 0.2045 C 1.12 (1.07-1.16) 2.07E-08 intronic - - 

7 rs60600003 37382465 0.1033 C 1.16 (1.10-1.22) 2.53E-08 intronic - - 

7 rs201847125 50325567 0.6952 G 1.11 (1.07-1.15) 2.91E-08 intergenic - - 

7 rs354033 149289464 0.7427 G 1.03 (1.00-1.07) 0.07696 ncRNA_intronic rs354033 ZNF767 

8 rs1021156 79575804 0.2425 A 1.12 (1.08-1.16) 5.6E-10 intergenic rs1520333 IL7 

8 rs2456449 128192981 0.3637 G 1.10 (1.06-1.14) 2.21E-08 intergenic - - 

8 rs4410871 128815029 0.7175 G 1.12 (1.08-1.16) 1.98E-09 intergenic rs4410871 MYC 

8 rs759648 129158945 0.3068 C 1.09 (1.05-1.13) 2.82E-06 intergenic rs2019960 PVT1 

9 rs2150702 5893861 0.49 G 1.16 (1.10-1.22) 3.3E-08 intronic rs2150702 MLANA 

10 rs2104286 6099045 0.7215 A 1.21 (1.16-1.26) 7.61E-23 intronic rs3118470 IL2RA 

10 rs793108 31415106 0.5036 A 1.09 (1.06-1.13) 5.61E-08 intergenic - - 

10 rs2688608 75658349 0.5492 A 1.07 (1.03-1.10) 6.37E-05 intergenic - - 

10 rs1782645 81048611 0.4339 A 1.09 (1.05-1.13) 4.3E-07 intronic rs1250550 ZMIZ1 

10 rs7923837 94481917 0.6118 G 1.11 (1.07-1.14) 4.58E-09 intergenic rs7923837 HHEX 

11 rs7120737 47702395 0.1454 G 1.13 (1.08-1.18) 7.61E-08 intronic - - 

11 rs34383631 60793330 0.3961 A 1.11 (1.07-1.15) 5.69E-10 intergenic rs650258 CD6 

11 rs694739 64097233 0.6161 A 1.08 (1.04-1.11) 1.3E-05 intergenic - - 

11 rs533646 118566746 0.6845 G 1.10 (1.06-1.14) 3.6E-07 intergenic - - 

11 rs9736016 118724894 0.6275 T 1.10 (1.07-1.14) 2.2E-08 intergenic - - 

11 rs523604 118755738 0.5259 A 1.09 (1.05-1.13) 2.5E-07 intronic rs630923 CXCR5 

12 rs1800693 6440009 0.3979 G 1.14 (1.11-1.18) 6.92E-16 intronic rs1800693 TNFRSF1A 

12 rs12296430 6503500 0.189 C 1.14 (1.09-1.18) 3.62E-10 intergenic - - 

12 rs11052877 9905690 0.3642 G 1.10 (1.07-1.14) 5.37E-09 UTR3 rs10466829 CLECL1 

12 rs201202118 58182062 0.6677 A 1.14 (1.10-1.18) 7.4E-13 intronic rs12368653 CYP27B1 

  

Table 1.3 continued 
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CHR rsID BP RAF RA OR (95% CI) P-value Function Published rsID Published Gene 

12 rs7132277 123593382 0.1865 A 1.10 (1.06-1.15) 1.88E-06 intronic rs949143 MPHOSPH9 

13 rs4772201 100086259 0.8189 A 1.12 (1.07-1.17) 1.67E-07 intergenic - - 

14 rs2236262 69261472 0.4974 A 1.08 (1.04-1.11) 1.16E-05 intronic rs4902647 ZFP36L1 

14 rs4903324 75961511 0.1897 A 1.10 (1.05-1.14) 9.62E-06 intergenic rs2300603 BATF 

14 rs74796499 88432328 0.95409 C 1.31 (1.21-1.42) 8.47E-11 intronic rs2119704 GALC 

14 rs12148050 103263788 0.3491 A 1.08 (1.04-1.11) 1.47E-05 intronic - - 

15 rs59772922 79207466 0.8281 A 1.11 (1.06-1.15) 4.02E-06 intergenic - - 

15 rs8042861 90977333 0.4405 A 1.08 (1.05-1.12) 9.8E-07 intronic - - 

16 rs2744148 1073552 0.1767 G 1.09 (1.04-1.13) 0.000102 intergenic rs2744148 SOX8 

16 rs12927355 11194771 0.6779 G 1.21 (1.17-1.26) 8.19E-27 intronic rs7200786 CLEC16A 

16 rs4780346 11288806 0.2328 A 1.09 (1.05-1.13) 6.8E-06 intergenic - - 

16 rs6498184 11435990 0.8132 G 1.15 (1.10-1.21) 2.07E-10 intergenic - - 

16 rs7204270 30156963 0.5049 G 1.09 (1.06-1.13) 9.32E-08 intergenic - - 

16 rs1886700 68685905 0.1402 A 1.11 (1.06-1.16) 8.76E-06 intronic - - 

16 rs12149527 79110596 0.4706 A 1.08 (1.05-1.12) 1.74E-06 intronic - - 

16 rs7196953 79649394 0.2875 A 1.08 (1.04-1.12) 2.65E-05 intergenic - - 

16 rs35929052 85994484 0.8902 G 1.14 (1.09-1.20) 3.32E-07 intergenic rs13333054 IRF8 

17 rs12946510 37912377 0.4748 A 1.08 (1.04-1.11) 8.51E-06 intergenic - - 

17 rs4796791 40530763 0.3646 A 1.10 (1.06-1.14) 1.81E-08 intronic rs9891119 STAT3 

17 rs4794058 45597098 0.4999 A 1.07 (1.04-1.11) 1.63E-05 intergenic - - 

17 rs8070345 57816757 0.4533 A 1.14 (1.11-1.18) 5.43E-16 intronic rs180515 RPS6KB1 

18 rs7238078 56384192 0.7702 A 1.05 (1.02-1.10) 0.006288 intronic rs7238078 MALT1 

19 rs1077667 6668972 0.7858 G 1.16 (1.12-1.21) 3.54E-13 intronic rs1077667 TNFSF14 

19 rs34536443 10463118 0.95046 C 1.28 (1.18-1.40) 1.24E-08 exonic rs8112449 TYK2 

19 rs2288904 10742170 0.7688 G 1.14 (1.09-1.19) 9.57E-10 exonic - - 

  

Table 1.3 continued 
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CHR rsID BP RAF RA OR (95% CI) P-value Function Published rsID Published Gene 

19 rs1870071 16505106 0.2933 G 1.12 (1.08-1.16) 5.68E-10 intronic - - 

19 rs11554159 18285944 0.7303 G 1.15 (1.11-1.20) 2.58E-13 exonic rs874628 MPV17L2 

19 rs8107548 49870643 0.2545 G 1.09 (1.05-1.13) 1.98E-06 intronic rs2303759 DKKL1 

20 rs4810485 44747947 0.2473 A 1.08 (1.04-1.12) 1.78E-05 intronic rs2425752 CD40 

20 rs17785991 48438761 0.3483 A 1.09 (1.05-1.13) 6.42E-07 intronic - - 

20 rs2248359 52791518 0.5986 G 1.07 (1.03-1.10) 9.81E-05 intergenic rs2248359 CYP24A1 

20 rs2256814 62373983 0.1855 A 1.11 (1.07-1.16) 8.34E-07 intronic - - 

20 rs6062314 62409713 0.91863 A 1.10 (1.03-1.16) 0.003871 intronic rs6062314 TNFRSF6B 

22 rs2283792 22131125 0.5146 C 1.08 (1.05-1.12) 1.14E-06 intronic rs2283792 MAPK1 

22 rs470119 50966914 0.3892 A 1.07 (1.03-1.10) 0.000151 intronic rs140522 SCO2 

CHR: chromosome; BP: base pair position; RAF: risk allele frequency; RA: risk allele; OR: odds ratio; CI: confidence interval; P: p-value 
Results as published in the IMSGC ImmunoChip analysis (61)  

Table 1.3 continued 
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However, these current studies are optimally designed to detect common 

variants, and there is increasing interest and data suggesting that rare variants may also 

play a significant role in complex disease.(63) Other possibilities are to look at gene-

gene and gene-environment interactions to further understand the risk of MS. Interaction 

between HLA alleles in MS has been demonstrated (64) and a genome-wide gene-gene 

interaction study in trios found significant interactions between several genes.(65) These 

studies provide evidence of the role of genetic interactions in the risk of MS, and they 

highlight a need for further studies to evaluate these results and search for other 

significant interactions. Three published studies have investigated interactions between 

HLA loci and viruses but, again, additional replication studies are needed.(66-68) As 

discussed above, there are many known environmental risks, but little is understood of 

the impact of genetics on these risks. 

Published disease course analyses 

The heterogeneity in the clinical expression of the disease, along with previous 

knowledge of risk factors for MS, both environmental and genetic, strongly suggests 

greater heterogeneity in the risk factors for developing the disease.   

Most genetic studies to date have focused on genes conferring susceptibility to 

MS in general; few studies have looked at how genetic or environmental risks affect the 

clinical heterogeneity present in MS. There is the possibility that genetics plays a role in 

the expression of the disease, as well as susceptibility to MS. A family study by 

Barcellos et al. showed concordance for early clinical manifestations in families, and the 

data from this study support the hypothesis that non-HLA loci modulate varied clinical 

expression in individuals.(1) Another study by Hensiek et al. looked at familial effects on 

clinical disease course; they found concordance for age at onset (AAO) in families and 

clinical course between siblings. No concordance was seen for overall disease 
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severity.(69) On the environmental risk side, month of birth was associated with bout-

onset MS (RRMS, SPMS, PRMS) compared to PPMS in a study by Sadovnick et al.(70) 

No evidence was seen for association of month of birth to disease course, severity, or 

AAO. 

A few genetic studies on aspects of the MS clinical course have been conducted. 

A study of HLA with AAO, disease course, and severity (MSSS) in Scandinavian MS 

patients found association between HLA-DRB1*15 and AAO; this was replicated in an 

extended Scandinavian cohort.(71) Several analyses of clinical course were evaluated in 

the 2011 IMSGC and WTCCC paper.(60) AAO was analyzed in 8,715 cases and was 

also found to be correlated with DRB1*15:01. Each additional allele was associated with 

a decrease in AAO by 10.6 months on average, consistent with previous reports. (60;72) 

No strong associations were seen in analyses of disease course (bout-onset MS vs. 

PPMS) or severity (MSSS).  

In all, there are few published studies for MS clinical course. There is data to 

suggest the HLA region is implicated in AAO of MS in addition to overall susceptibility to 

the disease. There is no strong evidence for association of genetic loci to other aspects 

of clinical course, although whether this is due to the small number of studies performed, 

the approach of the studies, a need for larger sample sizes, or a true lack of genetic risk 

on these traits remains to be seen. 
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Electronic Medical Records 

 

The use of electronic medical records in research studies  

 Genetic studies focus heavily on risk of disease development. Few studies 

evaluate genetic risk of the varied clinical expression of a disease. This is largely due to 

the difficulties and expense of collecting detailed longitudinal data on the large number 

of individuals often required for studies of complex diseases. However, these data are 

frequently recorded in physician notes or dictated into medical records. While data 

recorded in medical records is generally less standardized than data collected expressly 

for research purposes, it is a rich resource that should not be overlooked for complex 

diseases, especially MS.  

Extracting data manually from medical records is tedious, time-consuming work 

that is prone to human error. The advent of electronic medical record (EMR) systems 

provides an opportunity to drastically shorten the time required to extract relevant 

medical information and decrease human error. These data represent a very rich, deep, 

and largely unexploited source of phenotypic information. The EMR system at Vanderbilt 

University Medical Center (VUMC) is twenty years old and provides a wealth of 

information that can be leveraged for research studies. This dataset is described below. 

Vanderbilt University Medical Center EMR 

VUMC instituted its first EMR system in the early 1990s and has continually 

upgraded and expanded the system since that time. Not all clinical specialties adopted 

its use simultaneously, but broad use of the system was seen early on. 

Relevant to this study, the Multiple Sclerosis Clinic at VUMC was established in 

1994 and serves as both a primary and tertiary center for the evaluation and treatment of 

MS. This clinic transitioned to computer-based documentation in 1997. There have been 
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five total clinicians at the clinic since its inception, including the three currently at the 

clinic. The clinic was begun, and continues to be directed, by Dr. Subramaniam Sriram. 

Currently, two of the clinicians see patients two and a half days a week; the third 

clinician sees patients five days a week. 4,142 visits occurred in one recent calendar 

year (July 2011 to June 2012), with the number of visits ranging from 288-379 per month. 

The majority of patients seen at the clinic have MS; however, the MS Clinic also serves 

patients with related diseases, such as neuromyelitis optica (NMO) and 

neurosarcoidosis.  

Before new patients are seen, a previous diagnosis of MS or a referral from a 

neurologist is required. Once admitted to the clinic, patients typically have appointments 

at the MS Clinic every six months if they are on MS treatments or every twelve months if 

not. Additional visits to check blood levels or provide treatment, such as natalizumab 

infusions, are conducted at the clinic, as well. Unless relapses correspond with the 

scheduled appointment, clinicians rarely see the patients during these episodes due to 

filled schedules. However, patients are strongly encouraged to call in during suspected 

relapses for counsel or symptomatic treatment. 

At the beginning of each visit, a timed 25 foot walk is conducted and recorded in 

the EMR. Medications are noted and evaluated for effectiveness. Previous and new 

symptoms are discussed by the patient and clinician to determine their relation to MS, 

and possible treatments and lifestyle changes may be discussed. MRIs are not 

requested by clinicians on any routine basis, but are requested on an as-needed basis to 

confirm current relapses, detect potential pathologic reasons for specific symptoms, or 

monitor the efficacy of treatment on reducing disease burden since lesions do not 

necessarily cause clinically observed symptoms. If a patient appears to have a decrease 

in relapses, which may indicate an effective treatment, but changes in the MRI show 
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subclinical levels of inflammatory disease activity (28), this suggests the treatment is not 

effective. MRIs at the MS Clinic are requested roughly every 2-3 years per patient as the 

physician desires to keep track of the disease and the efficacy of the treatments. 

Synthetic Derivative 

A de-identified research version of the VUMC EMR system is available for 

researchers via the Synthetic Derivative (SD).(73;74) The SD contains records derived 

from the EMR for over 2.3 million unique individuals, including inpatients and outpatients. 

Over one million of these records contain detailed longitudinal data. The average record 

is 100 kilobytes in size (roughly 30 pages of text). The SD contains data from multiple 

sources, include clinical narratives, diagnostic and procedural codes, intake and 

assessment forms, pathology, ECG, and echocardiogram reports, laboratory values, 

vital signs, medication orders, and genetic data. Image reports are included, the actual 

images are not.  

All clinical data are updated regularly to the SD to include patients new to VUMC 

and to append new data to clinical records of existing patients as they continue to 

access care at VUMC. The SD is 55% female. Race/ethnicity is included as an observer-

reported value. (https://starbrite.vanderbilt.edu/biovu/) 

To preserve the anonymity of individuals in the SD, identifying information is 

removed from each record, including names, places, and identifying numbers, and the 

dates in each person’s record are shifted consistently within a 364-day window in the 

past. A unique identifier is derived using a one-way hash from the patient's medical 

record number and is used to label the record in the SD. The original medical record 

number cannot be derived from the SD identifier. Access is restricted to Vanderbilt 
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University (VU) individuals and requires Institutional Review Board (IRB) approval and a 

Data Use Agreement.  

BioVU 

Another VUMC initiative is the Vanderbilt Biobank (BioVU), a de-identified DNA 

data bank. It was designed to enable discovery and confirmation of genotype-phenotype 

correlations and is a repository of DNA samples linked to their respective SD records. 

DNA is extracted from leftover blood from routine blood draws at VUMC and stored for 

future use. BioVU is an opt-out system; individuals can choose to be excluded by 

checking an indicated box on their annual consent form or by calling a phone number 

posted prominently in phlebotomy areas. (74;75) Blood samples from patients who opt-

out are tagged ineligible and are discarded prior to any DNA extraction. Prior to initial 

collection of BioVU samples in February 2007, several ethics communities, a community 

advisory board, and the legal department at VU were consulted. 200-400 samples per 

week currently accrue in BioVU. As of August 12, 2013, there are 170,024 samples from 

adult and pediatric clinic patients.  

DNA samples are scrubbed of patient identifying information and labeled with the 

same unique identifier as the corresponding SD record. Researchers can select samples 

of interest by using information contained in the SD and request aliquots of DNA for 

genetic studies. All genetic data generated for BioVU samples is re-deposited into the 

BioVU system for other researchers to use, thus expanding the database of information. 

Of the currently collected samples, 43% are male and 57% female (Table 1.4). 

The samples reflect the surrounding community, and are 67% from Caucasians and 10% 

African American. Records have a mean of 4.7 ± 4.6 years of history and most (97%) 

records have at least one medication indicated. In addition, 99% have one or more 
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procedure codes. (BioVU statistics taken from http://starbrite.vanderbilt.edu/biovu) Initial 

collection of samples occurred only in adult populations. Pediatric samples were 

included beginning in March 2010.(76) 

 

Demographic % 

Race 
 

Asian 0.9 

Black 9.4 

Hispanic 1.5 

American Indian 0.1 

Others 1.2 

White 67.2 

Unknown 19.6 

  
Gender 

 
Male 43 

Female 57 

  
Age 

 
>75 6.87 

71 to 75 5.25 

61 to 70 16.11 

51 to 60 18.66 

41 to 50 15.08 

31 to 40 12.01 

21 to 30 11.54 

11 to 20 7.6 

1 to 10 5.86 

<1 0.97 

 

The de-identified nature of BioVU prohibits any re-contacting of individuals. 

Because of this, no additional information can be acquired than what is stated in the SD. 

Also, if additional DNA is needed, the researcher must wait until the patient returns for 

future blood draws. 

Table 1.4 BioVU Demographics 
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Information is continually accrued in the EMR and this information is pushed 

through to the SD at frequent intervals. The information contained in this resource is not 

static, but continues to grow and provides additional data, longitudinally and depth-wise. 

 

Discussion 

 

 MS is a very heterogeneous disease, both in risk factors and clinical expression. 

The genetic risk of MS has been confirmed with astounding success through various 

family and genetic risk studies. Multiple loci within and 103 loci outside of the HLA locus 

have been replicated and confirmed to be associated with MS disease risk. Less 

understood is the genetic architecture of the clinical expression of the disease. One 

reason for this is the difficulty of collecting the detailed, longitudinal data needed for in-

depth studies. The advent of EMR systems provides an excellent opportunity for mining 

detailed clinical data. Combined with the growing knowledge of MS risk genetics, EMR 

data could be leveraged to produce more refined phenotypes to address the genetics of 

the clinical course of MS.  

The following chapters will discuss our investigation into the usefulness of EMR 

data in genetic studies of MS using the SD at VUMC. Algorithms were designed to select 

individuals based on MS disease status, as well as to extract details of the clinical 

course of the patients. Using the data derived from the EMR, we then performed genetic 

analyses for clinical traits of MS. 
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CHAPTER II 

 

SAMPLE SELECTION AND PHENOTYPE EXTRACTION 

 

The advent of EMR systems provides an opportunity to drastically shorten the 

time required to extract relevant medical information and decrease human error. Despite 

this promise, extracting information from EMRs can be challenging.  Typically, multi-

modal algorithms must be created by incorporating EMR components such as billing 

codes, medication data, laboratory values, and natural language processing to achieve 

high positive predictive values (PPV) to identify disease states.(73;77;78) Identification 

of more detailed phenotypes, such as those envisioned in “next-generation 

phenotyping”(79) and drug response phenotypes, is more challenging and is only 

recently being explored.(80;81)  

We worked to identify the opportunities available for data extraction from the SD, 

a de-identified version of the EMR at VUMC. (The SD is described in detail in Chapter I.) 

We developed algorithms to identify individuals with and without MS. After selection of 

these samples, we created additional algorithms to extract aspects of the clinical disease 

course of affected individuals.1 

Case sample selection 

Methods 

We utilized four previously published algorithms (73) to identify MS patients from 

this database; the algorithms focus on International Classification of Diseases (ICD-9) 

                                                

 

1 Sections of text from this chapter were taken from Davis MF, Sriram S, Bush WS, 
Denny JC, Haines JL. Automated extraction of clinical traits of multiple sclerosis in 
electronic medical records. J Am Med Inform Assoc 2013 Oct 22. 
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billing codes, prescribed MS treatments, and keywords located in narrative text. The first 

two algorithms identify patients who are strongly suspected to have a diagnosis of MS 

and need no further confirmation. These algorithms are labeled as "definitive type 1" and 

"definitive type 2." The remaining algorithms identify individuals missed by the "definitive" 

algorithms but for whom the information in their medical record is suggestive of MS. 

Further confirmation may be needed for these individuals and the algorithms are labeled 

"possible type 1" and "possible type 2." In order to improve the specificity and sensitivity 

of the results, we made minor modifications to three of these algorithms by increasing 

the number of ICD-9 codes for MS (340) required in the “definitive type 1” algorithm to 

require two or more instances and including the ICD-9 code for acute transverse myelitis 

(341.2) to the “definitive type 2” and “possible type 1” algorithms. (Final algorithms are 

shown in Figure 2.1) The algorithms are publicly available on PheKB 

(http://www.phekb.org/phenotype/multiple-sclerosis-demonstration-project). The 

“definitive type 1” algorithm identifies individuals with two or more ICD-9 billing codes for 

MS (340). The “definitive type 2” algorithm requires one or more non-specific billing 

codes (i.e. 341.9 demyelinating disease of the central nervous system), in addition to 

one or more medications given to MS patients and a mention of “multiple sclerosis” in 

the text of the records. Individuals identified by the “possible type 1” algorithms have one 

or more non-specific billing codes and keyword “multiple sclerosis.” The “possible type 2” 

algorithm relies solely on the recording of MS in the patient's Problem List (PL), which is 

a reference list of a patient's diagnoses and medications. The PL is supposed to be 

updated at every clinic visit, but issues arise with the PL when text from previous PLs is 

copied without revision. Many diagnoses and medications remain consistent over time, 

but not all do. The "cut and paste" issues with the PL should be considered whenever 

text of the PL is used. In this situation, MS is a lifetime diagnosis and copying the text 

from previous visits should not have introduced any errors in our analyses. 
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Figure 2.1 Case selection algorithms 
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Evaluation 

We manually reviewed the SD records for 367 individuals from across the four 

case algorithms to create a gold standard for MS case status. These individuals were 

selected randomly across each selection algorithm (113 “definitive type 1”, 56 “definitive 

type 2”, 148 “possible type 1”, 50 “possible type 2”), while ensuring at least 50 evaluated 

from each dataset. The record of each individual was appraised to determine the 

clinician's final diagnosis for MS. Initial diagnoses of MS were confirmed by evaluation of 

the end of the patient's medical record to ensure the diagnosis had not changed. For 

individuals who did not have an initial diagnosis stated by the clinician, additional 

evidence, including PLs, medications, and clinician references to MS, were used. Each 

individual was categorized as diagnosed with MS, possible MS, or no MS, based on 

clinician impressions.  

PPV were calculated as shown in Equation 2.1. True positives are individuals 

who were selected by the algorithm as cases and had an actual diagnosis of MS by a 

clinician (confirmed by manual review). False positives are patients who were identified 

by algorithm as having MS, but did not have a clinical diagnosis. PPV for case 

algorithms were calculated twice, with and without possible cases included as true 

positives. 

    
              

                             
       

Results 

 5,789 individuals were identified as cases by algorithms, with 4,060 (70%) 

individuals matching one of the “definitive” criteria (Table 2.1).  
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Algorithm Number of Samples PPV1 (%) PPV2 (%) 

Definitive Type 1 3975 96 96 

Definitive Type 2 85 64 79 

Possible Type 1 1315 16 64 

Possible Type 2 414 72 86 

Total 5789 - - 
1Possible cases counted as false positives; 2Possible cases counted as true positives; 
PPV: positive predictive value 
 

PPVs ranged from 16-96%. Reported demographics for all cases are listed in 

Table 2.2. Median follow-up time by individual is 4.6 years (range 0-20 years); the 

average follow-up time is 6.0 years. (Figure 2.2b) The average number of ICD-9 codes 

of 340 for individuals identified by the “definitive type 1” category is 14 (Figure 2.3)  

 

 

Gender # of Individuals 

Female 4484 

Male 1305 

Age 

 Median 54 

Range 8-107 

Known deceased 508 

Ethnicity 

 White 3513 

Black 440 

Asian 11 

Hispanic 16 

Native American 1 

Unknown 1808 

  

Table 2.1 Performance of case selection algorithms 

Table 2.2 Case dataset demographics 
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Figure 2.2 Follow-up length of individual records 
(a) Follow-up time for all individuals (b) Follow-up time for cases (c) Follow-up time for controls 

a 
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Figure 2.2 Follow-up length of individual records 

(a) Follow-up time for all individuals (b) Follow-up time for cases (c) Follow-up time for controls 

b 
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Figure 2.2 Follow-up length of individual records 

(a) Follow-up time for all individuals (b) Follow-up time for cases (c) Follow-up time for controls 

c 
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Figure 2.3 Average number of ICD-9 codes (340) for "definitive type 1" individuals 
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Control sample selection 

 

We created an algorithm to identify individuals to serve as controls. In addition to 

absence of MS, we desired to select individuals without any evidence of autoimmune 

diseases. The reasons were two-fold. One, there are many genetic similarities between 

MS and other autoimmune diseases (as described in Chapter I) and the presence of one 

autoimmune disease puts an individual at higher risk for developing other autoimmune 

diseases, such as MS. Two, we wanted any samples we extracted to be “super” controls 

that could be shared across disease studies. Descriptions of the autoimmune disease 

exclusions (ICD-9 codes and keywords) are listed in Appendix A. 40,000 individuals in 

BioVU met these criteria. The purpose of identifying control samples was for use in 

genetic analyses described in Chapters III and IV, and we narrowed down individuals 

meeting these first criteria by selecting 2,886 individuals that matched with case subjects 

on age, gender, and BMI. No significant differences were seen in length of follow-up time 

for individuals selected as cases and controls (t-test, two-sample assuming equal 

variances, p=0.14; Figure 2.2a,c). 

 

Algorithms to extract detailed clinical traits 

 

Methods 

 In our goal to extract disease course data of MS, we evaluated all aspects of the 

patients' medical records. We evaluated the first 60 SD records to develop a training set 

to determine what types of detailed clinical information related to the disease course of 

MS were frequently available and how they were expressed in the clinical notes. 

Detailed manual review of all text of the SD was carried out for these 60 cases by the 
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author of this work. Notes were kept on all data of MS disease course that were 

observed, including disease onset, EDSS, family history, symptoms, and treatments.  

Laboratory values for ANA and oligoclonal bands were pulled from structured 

fields, as well, for the first 899 subjects identified. ANA and oligoclonal band values were 

found in only a small subset of the records in the laboratory results field, and ANA was 

found very rarely in the clinical text. After discussion with clinicians at the MS Clinic, we 

concluded that this is likely because the tests were performed prior to patients being 

seen at VUMC. As the ANA is used primarily to detect lupus and is required for 

diagnosis of MS, we did not direct further efforts to extraction. Oligoclonal band results 

were often discussed in the narrative text. 

 Relapse information was documented in many of the records, but the information 

was not located in any particular areas. Relapses were discussed in clinic visits, in 

communications (phone and messaging), and referral letters. The level of detail 

describing the relapses was not consistent. For some patients, dates of relapses, the 

types of symptoms, and length of relapses were meticulously recorded. In other 

instances, broad references were made to suspected relapses. Information regarding 

relapses is available in the medical records; however, due to the complexity of this trait 

we opted to focus on more defined traits for our initial extraction algorithms. 

We identified 8 attributes for focus in this study: clinical subtype, presence of 

oligoclonal bands, year of diagnosis, EDSS score, timed 25 foot walk, year and origin of 

first neurological symptom, and MS medications. Oligoclonal bands and timed 25 foot 

walk scores have structured fields and are also reported in the text of the records. All 

other clinical traits are available only in the texts of the records. 
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Algorithms to extract clinical data from EMR text were implemented using Perl to 

access and search the records, which were stored in a MySQL database. Patient 

records were divided into each clinic note, PL, communication, etc. Algorithms were 

initially developed using 899 records as a training dataset and then evaluated using a 

test set of 4,890 records.  Our goal was to extract data explicitly stated in the medical 

records; we did not infer information (e.g. the clinical subtype) from descriptions in the 

text. Descriptions of the algorithms are below. Pseudocode for all algorithms, including 

the regular expressions used, is recorded in Appendix B. 

Clinical subtype 

The four clinical subtypes of MS are: relapsing remitting, secondary progressive, 

primary progressive and relapsing progressive.(82) Subtypes and 100 surrounding 

characters were extracted from clinic notes, letters and PL that mentioned MS, then 

recorded in a text file. Regular expressions matching the subtypes and abbreviations 

were used. Subtypes preceded or followed by words suggesting the clinician was not 

certain, such as ‘questionable’ or ‘possible’, were excluded by use of regular 

expressions. Since an individual may be classified with different subtypes over the 

course of their illness, all distinct subtypes mentioned for each individual were kept, 

along with the date of the clinic note in which the information was found. 

Oligoclonal bands 

Over 85% of patients with MS have antibodies present in the cerebrospinal fluid 

(CSF) and not in the serum.(83) These are referred to as oligoclonal bands and 

identifying these bands can aid clinicians in diagnosis of MS. Since such testing is often 

performed by referring providers (and not repeated at referral centers, such as VUMC), it 

is important to search the clinical documentation in addition to laboratory results. We 
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identified clinic notes, letters, and PLs mentioning oligoclonal bands and extracted 200 

characters surrounding the word ‘oligoclonal.’ The result was recorded as positive (i.e. 

the clinician stated the test was positive or two or more bands were present) or negative 

(i.e. the clinician stated the result was negative or no bands were present) using regular 

expressions. No result was reported if one band was observed (inconclusive result). In 

the event that a person had both a negative and a positive result reported, the algorithm 

ignored the data and no conclusive result was recorded. 

Year of diagnosis 

MS is a clinically defined disease and the diagnostic criteria have evolved over 

the last 30 years.(24-26) Hence, the diagnosis of MS made by the clinician on a 

particular patient was based on the set of criteria that were relevant and operative at the 

time of the diagnosis. We extracted the year of diagnosis as recorded by the clinician, 

regardless of the diagnostic criteria used. Clinic notes and letters in the EMR were 

examined to identify mentions of the words ‘diagnosis’ and ‘multiple sclerosis.’ We 

identified exact, e.g. ‘1975’, and relative, e.g. ‘three years ago’, dates that occurred 

within 70 characters of ‘diagnosis.’ 

To determine the most likely diagnosis year, we first looked at exact references 

and recorded the most frequent year as the diagnosis year in our database. If no year of 

diagnosis was recorded in an exact reference, we analyzed relative references in the 

same manner after conversion to a specific year. Identifying the most frequently reported 

year removed many typographical errors that were initially observed. 

Measures of progression of disease disability 

The EDSS (31) and timed 25 foot walk (84) are two measures used to monitor 

progression of MS disability. Both could be recorded in structured fields within the EMR 
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in a manner similar to laboratory values. At VUMC, EDSS does not have a structured 

field but is often mentioned in clinic notes. The MS Clinic created a structured field for 

the timed 25 foot walk in 2008; however, scores have been collected and recorded in the 

text since 1999. We created algorithms to extract both of these measures from the 

narrative text in the absence of structured fields. 

The EDSS has a range from 0 (no disability due to MS) to 10 (death due to MS), 

in increments of 0.5.(31) Scores 0.5-3.5 are determined by physical exam of the 

physician on various disability across functional systems of the body. Scores 4-5.5 

require determining how far a patient can walk unaided, up to 500 meters. Scores 6-9 

are relatively easy to score as they depend upon the walking aid a person employs. Six 

is a cane; seven is a walker, eight and above is bedridden. Half-point increments allow 

for the extent of reliance. The algorithm to extract these values from the text searched 

for ‘EDSS’ in notes, PL, and communications. Values (0-10) reported within 50 

characters after ‘EDSS’ were extracted, and the closest number within this context was 

recorded as an EDSS score. 

To capitalize on the longitudinal aspect of timed 25 foot walks before structured 

values were available in 2008, we selected notes, then lines of text, from the clinical 

notes that mentioned ‘timed walk’, ‘25 feet’, or ‘25 foot.’ Times were extracted and 

recorded in seconds. The final output of this algorithm also noted if a walking aid (e.g., 

cane) was mentioned. 

Year and origin of first neurological symptom 

Since the clinical diagnosis of MS requires the presence of two lesions 

disseminated in space and time, patients are rarely diagnosed at the first presentation of 

neurological symptoms. However, the initial presentation of neurological symptoms of 
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the disease may be important for research purposes and appears to aggregate in 

families (both the age and type of first neurological symptom).(1) While there are many 

references to symptoms in the narrative text, a complete neurological history must be 

investigated to be confident of identifying the first neurological symptom. We noticed that 

such a history was often reported in letters written from physicians at the MS Clinic to 

referring physicians. Information on initial presentation was available in other notes in 

the some patients' records, but this information was less structured and it certain cases it 

was difficult to determine if the symptoms described were in fact the first neurological 

symptoms. Referral letters appeared to be the easiest was to identify comprehensive 

neurological histories and we restricted our algorithms to these letters. If we were unable 

to extract the date and types of symptoms from these notes, the probability of extracting 

reliable information from other sources would be very small. 

Symptoms are highly variable when considered in detail, and we considered how 

best to classify first neurological symptoms. The most detailed would be to group 

patients with the same manifestations (e.g. right leg paresthesias, diplopia), but this 

would lead to many groups of small sample sizes. It would also require full details of the 

symptoms to be recorded. Many patients may remember numbness in one leg, but not 

which side, which would hamper this type of classification. We elected to categorize first 

symptoms based on CNS origination of the symptoms, brain stem, spinal cord, and optic 

nerve, as the data needed for this type of classification was available and likely to reflect 

underlying pathology. 

The algorithm to identify year of initial neurological symptom selected 100 

characters around phrases referencing the beginning of the disease course, i.e. ‘dating 

back’ and ‘began’. Specific dates were extracted from these phrases, either exact or 

relative. If more than one symptom year was identified, the earliest year was kept. 
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To identify the type of first neurological symptom, 250 characters surrounding 

phrases that referenced the beginning of the disease course were extracted and passed 

through the KnowledgeMap Concept Identifier,(85;86) which is a general purpose 

natural language processing system supporting negation and word-sense 

disambiguation, similar to MetaMap.(87) Concept unique identifiers (CUIs) representing 

neurological symptoms were selected as the output of interest, as identified using 

Unified Medical Language System semantic types (see Appendix B). We then used text 

keywords and CUIs to group the symptoms into CNS site of origin (brain stem, optic 

nerve, or spinal cord) using a list of MS related neurological symptoms we compiled. 

Symptoms that did not fall in one of these categories were marked as ‘other.’ If more 

than one origin was identified, all were recorded and the origin was marked 

polysymptomatic. Figure 2.4 provides a schematic of this algorithm. 

Medications 

Medications administered for the treatment of MS are fairly specific to this 

disease. MS medications are often discussed in a clinic visit with the patient and the 

patient is sent home with pamphlets to determine which medication they wish to start. 

Although VUMC has electronic prescribing tools, many outpatient prescriptions are only 

documented in the free text of clinical notes, clinical messaging systems, or PL, and this 

has been especially true of the MS Clinic. Discussion of MS medications in narrative text 

could be because the patient is on the medication, the patient failed the medication due 

to the continued progression of MS or excessive side effects, the clinician is considering 

the medication for the patient in the future, or the patient came into the clinic with 

questions regarding a specific treatment. To retrieve medications the patients were 

actually taking, we focused our efforts on extracting MS related medications from PL 

only. Medications are recorded in the PL only if a patient is on the medication. As some 

text from previous clinic visits is copied indiscriminately into new PLs, the PL is not a 
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 Figure 2.4 Schematic of the algorithm to extract origin of first neurological symptom 
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reliable source of the length of time a patient is on a medication. In this algorithm, our 

goal was to determine if a patient was ever on a medication and the difficulties in teasing 

apart the dates a patient was on the medication were not relevant.  

Extracted medications include interferon beta-1a, interferon beta-1b, glatiramer 

acetate, fingolimod, natalizumab, mitoxantrone, and teriflunomide. Text matching, using 

brand and generic names, was performed over the PL text to create a list of medications 

the patient had taken. Electronic prescribing tools automatically update the PL, so this 

method should also capture electronic prescriptions with near-perfect fidelity. 

Evaluation 

One hundred records were selected randomly from the test set for a blinded 

evaluation of the clinical trait algorithms. These records were reviewed manually for all 

clinical characteristics extracted by algorithms to define a gold standard. The reviewer 

recorded the information that the treating clinician(s) appeared the most confident in by 

the end of the record (i.e., year of diagnosis). The first 10 records were reviewed 

independently by Dr. Subramaniam Sriram, a board-certified neurologist and founder 

and chief of the MS Clinic, and the author of this work. Any discrepancies adjudicated by 

a second board-certified clinician (Dr. Joshua Denny), blinded to the source of 

discrepancy. Given high initial concordance, the author performed the manual 

abstraction of the following 90 records. Manual abstraction of the eight clinical traits took 

an average of 12.6 minutes per individual record, with a range of 1-40 minutes. 

Clinical trait data derived from manual abstraction was compared to data 

extracted via the algorithms designed in this study. Recall, precision, specificity, and F-

measure were calculated for all traits. 
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Results 

 Our algorithms extracted information for each clinical trait of interest in 903 (16%) 

to 3,523 (61%) individuals (Table 2.3). Specificity, precision, recall, and F-measure were 

calculated for each algorithm.(78) These measures use true and false positives, true and 

false negatives, and gold standard positives and negatives. True positives are values for 

a clinical trait found by algorithm that are an accurate representation of the trait in the 

text. A false positive is a value for a clinical trait found by algorithm that is not an 

accurate representation of the trait in the text (either no value is in the text or an 

incorrect value was extracted). A true negative is when no value is found by the 

algorithm and no value for the clinical trait exists in the text. A false negative is when the 

correct value that exists in the text was not found by the algorithm. Gold standard 

positives are values for clinical traits in the text confirmed by manual review. Gold 

standard negatives in these calculations are individuals for whom no value for the clinical 

trait was found in the text by manual review. Specificity (Equation 2.2) is a measure to 

evaluate if an algorithm can correctly identify when the trait of interest is absent. 

Precision, or PPV, (Equation 2.1) measures how believable the results identified by 

algorithm are, and recall (Equation 2.3) measures how much of the data in the text was 

missed by the algorithm. F-measure (Equation 2.4) evaluates the overall accuracy of 

the algorithm on a scale of 0 to 1 (1 being the best score). 
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Specificities for all algorithms were high, with seven of eight algorithms achieving 

specificity greater than 90% (Table 2.4). Precision ranged from 87% to 99%. For clinical 

subtype and timed 25 foot walk, recall was at least 90%. However, recalls for year of 

diagnosis and origin of first symptom were 33% and 23%, respectively. F-measure for all 

traits except year of diagnosis and origin of first symptom was above 70%.   

 

 

 

 

Clinical trait Individuals, n (%) 

Clinical subtype 3140 (54) 

Oligoclonal bands 1043 (18) 

Year of diagnosis 1053 (18) 

EDSS 903 (16) 

Timed 25-foot walk 3523 (16) 

Year of first symptom 2301 (40) 

Origin of first symptom 1288 (22) 

MS Medications 2586 (45) 

Table 2.3 Number of individuals identified by 
each of the eight clinical trait algorithms 
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Clinical trait Gold standard positives, n* Correctly identified, n* Recall, % Precision, % Specificity, % F-measure, % 

Clinical MS subtype 61 60 98 88 81 93 

Oligoclonal bands 28 20 71 87 97 78 

Year of diagnosis 51 17 33 89 100 49 

EDSS 75 61 81 94 100 87 

Timed 25-foot walk 120 99 83 99 100 90 

MS Medications 99 63 64 95 93 76 

Year of first symptom 56 24 43 100 100 60 

Origin of first symptom 62 14 23 88 100 36 

EDSS: Expanded Disability Status Scale 
*n refers to how many instances were recorded, not number of individuals. For EDSS, clinical subtype, timed 25-foot walk, medications, and origin 
of first symptom, this could be more than one per individual 

 

 

Clinical trait Gold standard positives, n* Correctly identified, n* Recall, % Precision, % Specificity, % F-measure, % 

Timed 25 foot walk 120 108 90 99 100 94 

Year of first symptom 56 31 55 97 100 70 

Origin of first symptom 62 21 34 88 93 49 

*n refers to how many instances were recorded, not number of individuals. For timed 25-foot walk and origin of first symptom, this could be more 
than one per individual 

Table 2.4 Statistics of algorithms compared to blinded manual review of 100 charts for all 
characteristics 

Table 2.5 Statistics of algorithms after additional modifications 



49 
 

After comparison to the gold standard was complete, we identified the need for 

minor changes in the algorithms for timed 25 foot walk, year of first symptom, and origin 

of first symptom, which significantly increased recall compared to the original algorithms 

at a nominal p-value of 0.05 (p=0.02, 0.03, 0.02, respectively; Table 2.5). During 

compilation into the database, some spaces and new lines were removed. We allowed 

for such changes by making spaces optional in regular expressions for timed walks and 

year and origin of first symptom. Additionally, we identified another note title that 

represented letters to referring physicians and included the year and origin of first 

symptom. The F-measure for the algorithm of origin of first symptom also significantly 

increased (p=0.02). 

 

Discussion 

 

 We identified a large number of individuals with MS and detailed clinical 

information with minimal cost and time requirements. 40,000 individuals, when restricted 

to individuals in BioVU, met our control requirements, providing an extremely large 

dataset for further use with any autoimmune disease dataset. Both the MS case 

algorithms and the algorithms to extract detailed MS information performed well, with 

precision for the clinical trait algorithms between 87-100%. We are unaware of any other 

published dataset of MS patients of this size that has such detailed clinical information. 

This dataset provides a rich resource for better understanding MS and also shows that 

extraction of detailed disease states and markers of prognosis in patients with chronic 

disease is possible and may yield a powerful tool in chronic disease research. 

Upon review, there were more false positives in the “possible type 1” category 

than desired. While only 16% had a diagnosis of MS, 64% were at least being 



50 
 

considered for MS to varying degrees. Of the individuals who did not fall in either of 

these categories, many were seen in the MS Clinic for other diseases, such as 

neurosarcoidosis. Depending on the purpose of the study, individuals identified by this 

algorithm should be used with caution. If it is used, we recommend a manual review of 

all records to confirm the diagnosis. No other trends were seen for false positives 

identified by the other algorithms. 

 While many studies have identified individuals serving as cases and controls for 

disease status from EMRs (73;77;88;89), this is one of the first studies to focus on 

specific clinical traits of a disease by text mining of the EMR. A few other studies have 

used text mining approaches to extract blood pressures, pacemaker implantations, and 

left ventricular ejection fractions as a marker of heart failure. (90-92) We have shown 

that detailed clinical information valuable to research studies is recorded in the medical 

records of individuals with MS and that this information can be extracted in a highly 

reliable manner. Such methods could potentially be applied across multiple EMRs, such 

as envisioned by the eMERGE network (93) and SHRINE. (94) 

 We aimed for high precision creating a reliable database of information, rather 

than focusing on high recall, although the resulting recall of many algorithms was indeed 

high. The ability to create highly specific algorithms for these clinical traits is due to a 

number of factors, many attributable to the nature of the disease studied. First, the 

diagnostic criteria of MS are straightforward and, if followed exactly, a diagnosis of MS is 

fairly certain, especially when this diagnosis is verified by a neurologist. Second, 

treatments for MS are rarely used in other diseases. Third, because VUMC has a MS 

Clinic, with only five total clinicians staffing it since its opening in 1997, a large number of 

clinic notes focused on MS disease course for each individual and much less variability 

in the style and content of clinic notes than may be found in other disease clinics with 
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larger staffs. It should be noted, however, that not all individuals whose records we 

analyzed were enrolled in the MS clinic or even seen by a VUMC neurologist. Some 

patients may have been seen at VUMC for other reasons and treated for MS elsewhere.  

 We found an average of 2.9 clinical traits per record. (Table 2.6) We extracted all 

eight clinical traits evaluated for only four individuals. All four individuals were identified 

by the "definitive type 1" algorithm. 715 individuals had no clinical traits extracted. It is 

interesting to note that these individuals were identified by all algorithms (259 "definitive 

type 1", 1 "definitive type 2", 264 "possible type 1", 191 "possible type 2").  The algorithm 

by which the individual is identified does not seem to indicate a lack of detailed clinical 

information. 

 

Clinical traits Individuals, n 

0 715 

1 867 

2 881 

3 1049 

4 1002 

5 810 

6 348 

7 113 

8 4 

 

We were initially surprised by the small percentage of patients (16%) with 

recorded EDSS scores. However, after consulting with clinicians at the MS Clinic, we 

discovered EDSS is rarely calculated due to the difficulty of scoring the midpoint scores 

in a clinic setting, which require ambulatory patients to walk up to 500 meters. It is likely 

due to these difficulties that we have found not all patients have a reported EDSS score 

and very few mid-scale scores are reported. (Figure 2.5) A spike is observed in the  

Table 2.6 Number of clinical traits 
extracted per individuals 
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Figure 2.5 Distribution of extracted EDSS scores 
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number of reported EDSS scores at six; this score depends upon the use of a cane, 

which makes it very easy to establish. Conversation with the clinicians and staff actually 

creating the notes in the EMR was important as we became familiar with this dataset 

and determined what would be the most productive traits on which to focus.  

 Beginning in 2008, timed 25 foot walks were also included in a structured field in 

the EMR at the MS Clinic after being recorded in a paper chart. We compared the 

structured field scores (9,733 scores) to those extracted from the text of the records 

(9,982 scores) and found no significant difference between the two datasets (t-test, two-

sample assuming equal variances, p=0.25), further validating NLP methods as a 

secondary means of data extraction. The distributions of scores appear very similar. 

(Figure 2.6) Of the overlapping dates between the two datasets, 2,445 scores were 

common in both and 2,220 (91%) of these were within one second of each other. 

Discrepancies less than one second often occurred from a rounded time being reported 

in either the structured field or clinic note. Many other discrepancies appeared to be 

typographical errors (i.e. 8.5 seconds instead of 5.5 seconds). Of the timed walks that 

occurred during overlapping dates, 638 were found only in the extracted dataset, and 

5,836 were recorded only in the structured field.  

The addition of a structured field for the timed 25 foot walk in 2008 provided a 

unique opportunity to determine how much data we are missing when we do not have 

access to the original record (in this case, a paper chart) and have to rely on mention in 

the clinical narrative. The accuracy of the extracted scores compared to those in the 

structured field was very high, giving credence to the belief that the scores recorded by 

the clinician in the text are a useful surrogate for the original record. However, we are 

aware of the large collection of scores that were not recorded in the clinical note—70% 

of scores recorded in the structured fields were not identified by our algorithm searching  
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Figure 2.6 Distributions of timed 25 foot walk scores as found in the 
structured fields and extracted from the text of the clinical records 
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the narrative text, and the high recall compared to manual abstraction leads us to 

believe this is because the scores were not mentioned in the text as opposed to failure 

of the script. It is interesting to note that a smaller subset of scores were recorded by the 

clinician in the text of the clinic note but evidently failed to be recorded in the structured 

field. 

 Structured fields in the EMR would be the most accurate way to extract data. 

Unfortunately these fields do not always contain the desired information due to the 

nature of the data or the EMR, and NLP provides an opportunity to recapture this data. 

One drawback to using EMR-derived data for laboratory values is that if the test was not 

performed at the primary institution (e.g. VUMC), it will not be reported in a structured 

field, as discussed earlier in this chapter. For example, the test for oligoclonal bands is 

most commonly ordered when trying to make a diagnosis of MS. Indeed, only 24% of 

cases had a value for oligoclonal bands in the relevant structured fields. Because this is 

a common test performed when diagnosing MS, the result is often echoed in the 

narrative text. We capitalized on clinic note references to extract this information in an 

additional group of individuals. 481 individuals had a result in the structured laboratory 

field and in the narrative text. The concordance between these two datasets was 97.1%, 

indicating a high reliability in the laboratory results recorded by the clinician in the text. 

By using the oligoclonal band result reported in the text in the absence of a structured 

field value, the sample size for this clinical trait increased by 38%. 

 The proportion of positive results for oligoclonal bands was similar between 

structured field and extracted results. (Figure 2.7) While the proportions are lower than 

published literature, which suggests over 85% of individuals have oligoclonal bands(83), 

this may be due to the timing of the tests. At the MS Clinic, tests for oligoclonal bands 

are rarely performed once a diagnosis has been established, so these results likely  
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Figure 2.7 Comparison of oligoclonal band results by source 
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reflect oligoclonal band presence upon diagnosis. It is known that this status can change 

and oligoclonal bands may be detected later in disease course. If the tests were 

performed at other points in the disease course, we would expect to see results more 

similar to the published percentage. 

 The counts of individuals with each subtype of MS and origin of first symptom 

that we extracted are listed in Table 2.7 and Table 2.8.  

 

 

CNS Origin Number of Individuals 

BS 407 

SC 632 

ON 161 

BS, SC 63 

BS, ON 10 

SC, ON 16 

BS, SC, ON 1 

Total 1290 

 

 

 

Subtype 
Number of 
Individuals 

RRMS 2380 

SPMS 1066 

PPMS 471 

RPMS 56 

Total 3973 

 

  

Table 2.7 Counts of individuals for each origin of 

first neurological symptom 

Table 2.8 Counts of individuals by subtype 
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Initially, we used MedEx(95) to extract medications. This proved to be a poor 

choice for our dataset. MedEx was designed to increase confidence in a medication 

being currently taken by requiring the presence of dosage and route information. The 

majority of MS medications are given in one dose and one type of administration and 

this information is often not noted in the clinic record. Thus, it is hard to differentiate, 

without further text processing, if a medication is being taken or being discussed for 

another reason. Because of these difficulties, we focused on extraction of medications 

from PLs, which contain active lists of medications for each patient. By doing this, we 

gained greater confidence in determining which medications a person had been on. 

However, PLs are not always updated, resulting in a lower recall rate than desired. The 

numbers of individuals on each medication are listed in Table 2.9. 

 

Medication Individuals 

interferon beta-1a 1440 

interferon beta-1b 541 

interferon NOS* 29 

glatiramer acetate 890 

fingolimod 35 

natalizumab 291 

mitoxantrone 128 

NOS: not otherwise specified 
*Includes individuals with mention of “interferon” 
but no indication of which type 

 

 The algorithms we have written are not overly intricate, yet have yielded an 

extensive amount of clinical data on a large population. The scripts described in this 

chapter searched for specific references by the clinician about clinical traits. They did not 

use the text to infer information, such as diagnosis year or clinical subtype, both of which 

could have been done to enhance recall. Specifically, we had very low recall in our 

Table 2.9 Counts of individuals for each type 
of medication 
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algorithm to extract diagnosis year. Upon review of instances of algorithm failure, many 

times we missed when a patient was diagnosed in the course of the record, as it is rare 

that a clinician would record the current year, instead stating, “I believe Mr. [NAME] fully 

meets the criteria for a diagnosis of MS” or simply listing “multiple sclerosis” as the final 

impression of the clinic visit. Algorithms targeting current diagnoses would greatly 

improve the recall of this clinical trait. 

 Through the work described in this chapter, we have shown that EMR databases 

are a rich resource of information of the detailed clinical course of multiple sclerosis. 

Much of this information is extractable from clinic notes by simple algorithms, with high 

specificity, precision, and recall. 
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CHAPTER III 

 

GENETIC DATA COLLECTION AND PREPARATION 

 

 After selection of cases and controls via the algorithms discussed in Chapter II, 

genotyping of samples with DNA occurred concurrently with the extraction of clinical 

traits. Of the 5,789 samples extracted by the case algorithms in Chapter II, 1,221 were 

part of BioVU and had DNA available for genotyping. The ImmunoChip, described below, 

was selected as the genotyping platform for this project because of the enrichment of 

loci associated with autoimmune diseases, including MS. We are exploring the genetics 

of clinical traits that have been studied very little, as evidenced by the small number of 

published studies described previously. Due to this, focusing on loci previously 

implicated in autoimmune diseases appeared prudent for genetic analyses of these traits 

as compared to an unfocused genome-wide evaluation. While a survey of these loci 

using the ImmunoChip is still a broad analysis covering a large portion of the genome, it 

allows us to focus on candidate loci. After genotyping and SNP calling, stringent quality 

control (QC) measures were employed to preserve the highest quality data possible. 

ImmunoChip 

The ImmunoChip consortium was formed in late 2009 from independent groups 

studying the genetics of autoimmune diseases. The explicit purpose of forming this 

collaboration was to build a custom genotyping array to fine-map genes implicated in 

their respective diseases, test for replication of significant hits, and investigate the 

shared genetics of autoimmune diseases. This chip is entitled the ImmunoChip and was 

created as a custom bead-array by Illumina. Several studies for various diseases using 

the ImmunoChip have been published. (96-101) 
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The 196,524 SNPs on the ImmunoChip were chosen in a variety of ways. In the 

first three categories listed below, each disease group was allotted a certain number of 

SNPs that could be on the chip. The final category is a catch-all for the remainder of 

SNPs on the chip. 

1) Fine-mapping of loci 

Loci chosen by the individual disease groups were required to contain a SNP that 

reached genome-wide significance for their disease (p < 5 × 10-8) and was replicated in 

another study.  All available SNPs at that time near the locus that passed quality control 

procedures at Illumina were included on the chip for fine-mapping. SNPs were selected 

using the available HapMap project (NCBI136/hg18) and 1000 Genomes data (February 

2010 release), primarily generated from individuals of European descent.(102-104) This 

was not considered a significant limitation as most autoimmune diseases (and thus the 

datasets) are more prevalent in European Caucasians.(82) 

2) High-density coverage of loci, but not mapped to completion 

Loci had to contain a SNP that reached a replicated genome-wide significance 

threshold, but replication of the association was not required. Selection of SNPs relied 

heavily on what SNPs were then available in the HapMap project, and additional SNPs 

were selected to capture the greatest amount of variation possible (i.e. tagging SNPs). 

3) Wildcards 

Each group was allotted SNPs that they could choose to put on the chip for any 

reason. For MS, the IMSGC asked for suggestions from investigators involved in this 

group, then compiled the combined list to submit to the larger consortium. If the SNPs 

could be added to the chip, they were, without any further criteria.  2,109 SNPs were 

originally submitted to the IMSGC from various investigators; this list was then prioritized 
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and submitted to the ImmunoChip consortium to be placed on the chip. 659 of these 

SNPs are represented on the final ImmunoChip. (Table 3.1). 

 

 

Submission Categories Requestor Requested Actual on Chip 

Wildcards IMSGC Total 2109 659 

 
Sawcer/UK 23 22 

 
Harbo/Norway 17 17 

 
Kockum/Sweden 1517 433 

 
Zuvich/Vanderbilt 120 118 

 
McCauley/Miami 405 50 

 
Hemmer/Germany 33 25 

    
Fine-mapping IMSGC 4801 1228 

 
WTCCC2 1130 1038 

  
Total 2868 

UK: United Kingdom; IMSGC: International Multiple Sclerosis Genetics Consortium; 
WTCCC2: Wellcome Trust Case Control Consortium 2 

 

 

4) Miscellaneous 

This category includes a conglomerate of SNPs: every known SNP for the major 

histocompatibility complex (MHC) was selected (6,293 SNPs), because of its large role 

in autoimmune disease, and a variety of SNPs were chosen by the Wellcome Trust 

Sanger Institute (WTSI), including every SNP from any disease that reached genome-

wide significance in the original WTCCC study (105), whether the disease was 

autoimmune related or not.  

275 loci are fine-mapped on the ImmunoChip (falling into one of the first two 

selection criteria categories). 21 of these loci (represented by 2,266 SNPs) were 

Table 3.1 SNPs requested by the IMSGC for inclusion on the ImmunoChip 



63 
 

uniquely submitted by the IMSGC and were selected from the most recent meta-analysis 

and existing GWAS data, published or preliminary.(60;106) These loci are listed in Table 

3.2, along with the corresponding SNP(s) in the locus that reached genome-wide 

significance in a previous study.  

Many other loci on the chip are of direct interest to MS, such as the MHC, and 

were submitted by multiple groups. The additional loci and individual SNPs covered on 

the chip are of interest to MS in that they have been implicated in other autoimmune 

diseases and are, therefore, plausible candidates for MS. 

 

 

Gene SNP 

CD58 rs2300747 

CD6 rs17824933 

CLEC16A rs11865121, rs12708716 

CYP27B1 rs703842 

ELMO1 rs11984075 

EVI5 rs11808092 

IFI30 rs874628 

IL12A rs4680534 

IL2RA rs2104286 

IL7R rs6897932 

IRF8 rs17445836 

KIF21B rs12122721 

MPHOSPH9 rs1790100 

PKIA rs967426 

RGS1 rs2760524 

STAT3 rs744166 

TMEM39A rs1132200 

TNFRSF1A rs1800693 

TRIM40 rs2285797 

TYK2 rs34536443 

UBASH3B rs7127978 

 

 

Table 3.2 Loci fine-mapped to completion on the 
ImmunoChip (submitted only by the IMSGC) 
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Sample Selection and Genotyping 

 

Samples were requested from BioVU (using the algorithms described in Chapter 

II) in three rounds as DNA became available for additional individuals identified by our 

algorithms. (Table 3.3) In the initial round of extraction, samples selected by the 

"possible type 1" were also manually reviewed. Individuals for whom a diagnosis of MS 

was not considered were excluded, to create a set of 139 samples identified by this 

algorithm. These samples all individuals identified by the other algorithms were extracted. 

Genotyping occurred at Vanderbilt University on the Illumina iScan in three batches over 

an 18 month period. All available case samples were pulled in the first round; 

subsequent pulls of DNA for cases were completed from newly acquired blood samples.  

Additional controls were also genotyped the second round of genotyping. These 

samples were identified via the algorithm described in Chapter II and matched with 

cases for age, BMI, and gender. Individuals were first selected at a 2:1 ratio, then an 

additional 595 samples were randomly selected from the remaining pool of control 

samples matched for additional genotyping. Samples that failed genotyping or QC in the 

first two rounds were re-genotyped in subsequent rounds when enough DNA was 

available. Samples were plated on 96-well plates with interplate and intraplate duplicates, 

and HapMap trios of various ethnicities (79 samples, 32 unique individuals). Cases and 

controls were randomized throughout the plates.  
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Algorithm Round 1 Round 2 Round 3 

Case Definitive 1 713 58 165 

Case Definitive 2 2 1 2 

Case Possible 1 139 28 42 

Case Possible 2 45 10 16 

Controls Original Matching 1677 167 0 

Controls Extended Matching 19 1 0 

Controls No BMI Matching 102 26 0 

Non-matched Controls 0 595 0 

 

SNP calling 

 

 192,402 autosomal SNPs were successfully genotyped in 3,808 experimental 

samples, which were called in conjunction with the IMSGC ImmunoChip dataset using 

OptiCall.(107) Samples in the IMSGC dataset were called in three groups at the WTSI. 

The samples genotyped at VUMC were called among 13,049 samples, including 

samples genotyped at Boston, France, Germany, Miami, and Virginia.(61) 

The selection of a calling algorithm to determine the genotypes of the samples 

was challenging due to the extensive fine-mapping and abundance of SNPs with low 

minor allele frequency (MAF). Several algorithms were evaluated, and genotypes for 

analysis were called at the WTSI in conjunction with other IMSGC samples. At the time 

the first VUMC samples were genotyped, the three prevailing and available calling 

algorithms were GenCall, GenoSNP, and Illuminus.(108;109) These three algorithms 

have been compared with respects to their accuracy.(110) Succinctly, Illuminus performs 

best when calling common variants, although GenoSNP performs better for rare variants. 

GenCall is the only approach that allows for calling of the X and Y chromosomes.  

Table 3.3 Samples extracted for each round of genotyping 
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Initially, calling was performed using both Illuminus and GenoSNP. SNPs highly 

concordant between the two calling algorithms were kept and extensive evaluation of the 

data was used to create a set of rules to determine which calls to keep for discordant 

SNPs, as well as determining which SNPs should be excluded from downstream 

analyses. At length, problems with the Illuminus algorithm were discovered. Concurrent 

to these issues, a new calling algorithm, OptiCall, had been released, which was better 

suited for this set of SNPs.(107) All IMSGC samples were recalled using OptiCall and 

these calls were used in the final analysis. For samples genotyped at VUMC, X 

chromosome SNPs and HapMap samples were called using the Illumina GenCall 

algorithm to check the gender assignment of all samples and concordance of HapMap 

samples.  

 

Quality Control 

 

 Strict sample and SNP QC measures were employed to ensure highest quality 

genotyping data was analyzed. 325 samples on poorly performing chips and individuals 

who later opted-out of BioVU were removed after calling in OptiCall. Of the samples on 

poorly performing chips, those with sufficient DNA concentration were re-genotyped in 

later batches. PLINK (111) was used to evaluate concordance, allele frequency, SNP 

and sample call rates, and relationships (identity by state, IBS). PLATO (112) was used 

to check reported genders by evaluating X chromosome heterozygosity. Individuals with 

heterozygosity less than 5% were presumed male and individuals with heterozygosity 

more than 5% were presumed female.  

Concordance between all duplicate HapMap samples was observed (>96%) and 

used to confirm correct plate orientation and efficient genotyping. Concordance to SNPs 
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also in 1000 Genomes data was observed. The ImmunoChip contains a vast number of 

low frequency SNPs (67,906 autosomal SNPs with MAF < 0.05 in our raw dataset); 

these low frequency SNPs are difficult to evaluate in a small dataset. This obstacle was 

overcome by utilizing the SNP QC of the IMSGC ImmunoChip analysis in the hope of 

eliminating some problems we would not have been able to identify with our smaller 

dataset, especially as the ImmunoChip is a custom-designed chip with less stringent QC 

in the chip design that standard chips. QC in the IMSGC dataset was stratified by 

country origin of the samples. 35,102 SNPs that failed QC in the US dataset in this 

analysis were removed prior to additional QC in our dataset.(61) These SNPs were 

excluded due to duplicate assays (801), cluster failures (151), mendelian errors (4,226), 

low call rate (7,558), Hardy-Weinberg disequilibrium (3,908), monomorphism (14,658), 

or differential missingness between cases and controls (3,800). 

In the remaining 157,300 SNPs and 3,483 samples, we performed additional QC 

measures. 164 samples identified as “compromised” blood samples in BioVU due to 

other conditions, including the presence of plasma cells in the blood, severe combined 

immunodeficiency (SCID), myeloma, Hodgkin’s lymphoma, lymphoma, leukemia, 

polycythemia vera, myelofibrosis, transfusions, and other neoplasms, were excluded. 

Each of these conditions could potentially affect the reliability of the DNA extracted from 

the blood. 

After exclusion of 826 SNPs with a call rate of less than 99% in our dataset, we 

additionally excluded 46 samples with call rates less than 99%. 19 samples with 

inconsistent reported and genetic genders based on X chromosome heterozygosity were 

excluded (13 samples reported female and 6 samples reported male). (Figure 3.1) One 

reported female was found to have a transgender operation recorded in the medical 

record, but gender in the records for all other samples were consistent throughout. 
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Figure 3.1 X chromosome heterozygosity for all samples 
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Pairwise IBS was calculated to identify duplicate samples and ascertain any 

related individuals. One of the 63 expected duplicate pairs did not show concordance 

and two pairs of unexpected duplicates were identified. One of the samples in the 

discordant reported duplicate pair was found to be an unexpected duplicate of another 

sample. All five samples involved in these errors were excluded. For each of expected 

duplicate pairs, the sample with the lowest call rate was dropped. At this point, our 

dataset was frozen and contained 156,474 SNPs and 3,189 samples (1,004 cases, 

2,184 controls). Demographics of these samples are shown in Table 3.4.  

 

 

 

Demographic Cases, n Controls, n Total, n 

Gender 
   

Female 787 1723 2510 

Male 216 461 677 

Age 
   

Median 51 52 52 

Range 20-92 20-92 20-92 

Known deceased 39 120 159 

Ethnicity 
   

White 730 1633 2363 

Black 102 205 307 

Asian 0 2 2 

Hispanic 1 4 5 

Native American 0 3 3 

Unknown 170 337 507 

 

 

Table 3.4 Demographics for samples in the frozen QC dataset 
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One of the cases was found to have conflicting information regarding a diagnosis 

of MS during the manual review evaluation of the case algorithms described in Chapter 

II. The phenotype of this individual was updated to ambiguous based on this information. 

The records of all individuals identified by "possible type 1" and "possible type 2" 

algorithms were reviewed manually to determine if a definite diagnosis of MS by a 

clinician had been given. Only individuals with a clinical diagnosis were used for 

subsequent analyses; 130 individuals with only possible or probable diagnoses were 

excluded. Six sibling pairs, five parent-offspring pairs, and one cousin pair were 

observed based on IBS. Due to the de-identified nature of BioVU, further confirmation of 

these relationships was not possible. In each analysis performed for MS risk and clinical 

traits in Chapter IV, we dropped the individual with the lowest call rate from each 

relationship pair present. For all analyses, SNPs with MAF < 0.05 were removed in the 

respective datasets. HWE was calculated and SNPs out of HWE were flagged at p < 1 x 

10-4 and evaluated further if they were significant in any analysis.  

Various ethnicities are represented in our dataset and a substantial number of 

our samples (507) have no reported ethnicity. When ignored, population substructure 

can cause spurious results in analyses. This can be combated two ways: samples can 

be stratified by ethnicity and analyzed separately or covariates representing the 

differences in population structure can be included in analyses. Due to the relatively 

small size of our dataset, we opted to include covariates and utilize all samples in each 

analysis. To this end, Eigenstrat analysis was run on the frozen dataset.(113) Plots 

showing the stratification of the samples using the first three principle components are 

displayed in Figure 3.2. The first and second principle components separate whites, 

blacks, and Hispanics, as identified in BioVU, into three groups (although there are few 

Hispanic samples in this dataset). The first and third principle components again 
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separate white and black populations. The second and third principle components tease 

apart the Asian and Hispanic samples in the dataset. All analyses described in Chapter 

IV were adjusted for the first three principal components. 
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Figure 3.2 Principle components for all samples 

(a) eigenvalues 1 and 2 (b) eigenvalues 1 and 3 (c) eigenvalues 2 and 3 

a 
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Figure 3.2 Principle components for all samples 

(a) eigenvalues 1 and 2 (b) eigenvalues 1 and 3 (c) eigenvalues 2 and 3 
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Figure 3.2 Principle components for all samples 
(a) eigenvalues 1 and 2 (b) eigenvalues 1 and 3 (c) eigenvalues 2 and 3 
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CHAPTER IV 

 

GENETIC ANALYSES 

 

 Through the work described in Chapters II and III, we created two large datasets, 

one of phenotype data and one of genotype data. After quality control of these data, we 

combined the phenotype and genotype data to conduct genetic analyses. Regression 

analyses were performed to test the significance of known MS loci in our dataset and for 

association to the clinical traits of MS. Genetic risk scores based on the 110 replicated 

MS-associated SNPs and a representative SNP from the HLA region were calculated for 

all individuals. Details of the types of analyses and results are discussed in this chapter. 

 

Case-control analysis 

 

 Our first analysis was to confirm known MS loci in our dataset. As these samples 

were selected via algorithms using medical records as opposed to first-hand interviews, 

we wanted to further validate the samples by confirming that this MS population shares 

the same genetic landscape as other confirmed datasets. Initial confirmation of MS loci 

was done in a pilot study of BioVU.(73) However, that study was done with 90 samples, 

which were all reviewed manually by a clinician. We have a much larger dataset that 

would be impossible to hand curate. Combined with the fact that many more loci are 

known to be associated with MS at the present time than at the time of the pilot study, 

we would expect to have greater ability to confirm associations with many loci. 

 110 MS-associated SNPs representing 103 regions, excluding the MHC, as 

published by 2013 are located on the ImmunoChip. We extracted 105 of these SNPs; 

the remaining five did not pass QC (rs4679081, rs7769192, rs2150702, rs533646, and 
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rs2744148). Samples identified by the two "possible" case algorithms that did not have a 

definitive diagnosis of MS upon manual review were not included, as discussed in 

Chapter III. We made no restrictions upon minor allele frequency at this point, although 

power calculations, as discussed below, were performed to take into account the likely 

ability we would have to detect effects with low minor allele frequency. We performed 

logistic regression analysis for MS disease status for all 105 SNPs in PLINK. (111) 

Logistic regression was also run on chromosome 6 to investigate the HLA region. The 

first three principle components as determined by Eigenstrat were included as covariates. 

(113) The inclusion of principle components allowed us to include all samples in this 

analysis regardless of ethnicity.  

The most significant SNP in the HLA region was rs9271775, with p = 9.73 x 10-30. 

45 of the other 105 known SNPs were significant at a one-sided p-value of 0.05. (Table 

4.1) We used a one-sided p-value for significance because we were looking for not only 

replication of an effect, but also the direction of the effect (concurrent with the direction 

of published results for each SNP). The effects of the significant SNPs were in the same 

direction as in the IMSGC ImmunoChip analysis.(62) 44 of the remaining 60 SNPs were 

in the correct direction. While these were not significant, the direction of their effects was 

consistent with previous studies, providing evidence that the underlying MS genetic 

architecture in our dataset is similar to previously reported datasets. Under a binomial 

distribution, this is significantly greater than the number of SNPs we would expect to see 

in the correct direction by chance (p = 1.97 x 10-4). 
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CHR ImmunoChip ID rsID BP MA MAF OR P Power IC OR IC RAF IC RA Allele Direction 

1 imm_1_2515525 rs3748817 2515525 G 0.38 1.03 0.61 0.70 1.14 0.64 A opp opp 

1 rs3007421 rs3007421 6452776 A 0.16 1.03 0.67 0.40 1.12 0.12 A same same 

1 rs12087340 rs12087340 85519581 A 0.08 1.16 0.14 0.66 1.22 0.09 A same same 

1 rs11587876 rs11587876 85687771 G 0.20 0.94 0.37 0.47 1.12 0.79 A opp same 

1 1kg_1_92748052 rs41286801 92748052 A 0.14 1.21 0.02 0.76 1.20 0.14 A same same 

1 1kg_1_101013481 rs7552544 101013481 G 0.41 0.90 0.08 0.39 1.08 0.56 A opp same 

1 rs11581062 rs11581062 101180107 G 0.29 1.05 0.46 0.20 1.05 0.29 G same same 

1 imm_1_116881689 rs6677309 116881689 C 0.16 0.73 0.00 0.94 1.34 0.88 A opp same 

1 rs666930 rs666930 120060493 A 0.45 0.90 0.06 0.47 1.09 0.53 G opp same 

1 rs2050568 rs2050568 156036865 A 0.49 0.99 0.89 0.41 1.08 0.53 G opp same 

1 imm_1_158978428 rs35967351 158978428 T 0.31 0.98 0.75 0.40 1.09 0.67 A opp same 

1 imm_1_190808095 rs1359062 190808095 G 0.20 0.99 0.93 0.69 1.18 0.82 C opp same 

1 imm_1_199141351 rs55838263 199141351 G 0.28 0.97 0.67 0.58 1.12 0.71 A opp same 

2 rs4665719 rs4665719 24871364 G 0.27 1.10 0.16 0.37 1.09 0.25 G same same 

2 1kg_2_43214760 rs2163226 43214760 G 0.30 0.86 0.02 0.47 1.10 0.71 A opp same 

2 imm_2_60948749 rs842639 60948749 G 0.34 1.05 0.42 0.56 1.11 0.65 A opp opp 

2 imm_2_68440981 rs7595717 68440981 A 0.27 1.21 0.00 0.44 1.10 0.26 A same same 

2 rs17174870 rs17174870 112381672 A 0.23 0.88 0.07 0.13 1.03 0.76 G opp same 

2 imm_2_191682680 rs9967792 191682680 A 0.38 0.88 0.04 0.54 1.11 0.62 G opp same 

2 imm_2_230823698 rs9989735 230823698 C 0.18 1.04 0.64 0.71 1.17 0.18 C same same 

3 1kg_3_18760589 rs11719975 18760589 C 0.27 1.04 0.57 0.38 1.09 0.27 C same same 

3 1kg_3_27732022 rs2371108 27732022 A 0.40 1.05 0.38 0.39 1.08 0.38 A same same 

3 1kg_3_28053575 rs1813375 28053575 A 0.45 1.04 0.56 0.81 1.15 0.47 A same same 

3 rs9828629 rs9828629 71613036 A 0.36 0.95 0.36 0.37 1.08 0.62 G opp same 

3 rs2028597 rs2028597 107041527 A 0.08 1.05 0.65 0.11 1.04 0.92 G opp opp 

  

Table 4.1 Logistic regression results for 110 known MS SNPs 
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CHR ImmunoChip ID rsID BP MA MAF OR P Power IC OR IC RAF IC RA Allele Direction 

3 imm_3_120705146 rs1131265 120705146 G 0.18 0.85 0.03 0.77 1.19 0.80 C opp same 

3 rs1920296 rs1920296 123026267 A 0.35 0.85 0.01 0.73 1.14 0.64 C opp same 

3 rs2255214 rs2255214 123253229 A 0.45 0.91 0.09 0.59 1.11 0.52 C opp same 

3 rs9282641 rs9282641 123279458 A 0.07 0.77 0.02 0.28 1.12 0.92 G opp same 

3 imm_3_161173806 rs1014486 161173806 G 0.42 0.97 0.62 0.55 1.11 0.43 G same opp 

4 rs7665090 rs7665090 103770651 A 0.47 0.87 0.02 0.39 1.08 0.52 G opp same 

4 rs2726518 rs2726518 106392648 A 0.39 0.92 0.16 0.43 1.09 0.55 C opp same 

5 imm_5_35914913 rs6881706 35914913 A 0.26 0.85 0.02 0.53 1.12 0.72 C opp same 

5 imm_5_40434853 rs6880778 40434853 A 0.39 0.93 0.19 0.50 1.10 0.60 G opp same 

5 imm_5_55476487 rs71624119 55476487 A 0.22 0.89 0.10 0.54 1.12 0.76 G opp same 

5 rs756699 rs756699 133474474 G 0.15 1.01 0.90 0.37 1.12 0.87 A opp opp 

5 imm_5_141486748 none 141486748 A 0.37 1.00 0.94 0.32 1.07 0.61 C opp opp 

5 imm_5_158692478 rs2546890 158692478 G 0.49 0.98 0.77 0.26 1.06 0.52 A opp same 

5 rs4976646 rs4976646 176721176 G 0.38 1.12 0.05 0.67 1.13 0.34 G same same 

6 rs17119 rs17119 14827475 G 0.22 0.97 0.67 0.39 1.11 0.81 A opp same 

6 rs9271775 rs9271775 32520558 G 0.23 2.23 0.00 1.00 2.63 0.17 G same same 

6 rs941816 rs941816 36483282 G 0.19 1.02 0.84 0.52 1.13 0.18 G same same 

6 imm_6_91033489 rs72928038 91033489 A 0.15 0.96 0.63 0.43 1.11 0.17 A same opp 

6 imm_6_128320491 rs802734 128320491 G 0.28 1.06 0.35 0.11 1.03 0.69 A opp opp 

6 rs11154801 rs11154801 135781048 A 0.34 1.12 0.07 0.54 1.11 0.37 A same same 

6 rs17066096 rs17066096 137494601 G 0.23 1.08 0.25 0.63 1.14 0.23 G same same 

6 imm_6_138286509 rs67297943 138286509 G 0.22 0.97 0.68 0.48 1.12 0.78 A opp same 

6 imm_6_159390547 rs212405 159390547 A 0.37 0.90 0.07 0.77 1.15 0.62 T opp same 

7 rs1843938 rs1843938 3079560 A 0.43 1.02 0.72 0.40 1.08 0.44 A same same 

7 imm_7_26981513 rs706015 26981513 C 0.19 1.30 0.00 0.56 1.14 0.18 C same same 
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CHR ImmunoChip ID rsID BP MA MAF OR P Power IC OR IC RAF IC RA Allele Direction 

7 imm_7_28139264 rs917116 28139264 C 0.28 1.19 0.01 0.48 1.12 0.20 C same same 

7 1kg_7_37348990 rs60600003 37348990 C 0.09 1.21 0.05 0.51 1.16 0.10 C same same 

7 imm_7_50296113 rs201847125 50296113 A 0.26 0.95 0.45 0.51 1.11 0.70 G opp same 

7 rs354033 rs354033 148920397 A 0.24 1.07 0.29 0.13 1.03 0.74 G opp opp 

8 1kg_8_79738359 rs1021156 79738359 A 0.30 1.12 0.09 0.55 1.12 0.24 A same same 

8 rs2456449 rs2456449 128262163 G 0.34 1.02 0.72 0.50 1.10 0.36 G same same 

8 rs4410871 rs4410871 128884211 A 0.26 0.93 0.28 0.55 1.12 0.72 G opp same 

8 imm_8_129228127 rs759648 129228127 C 0.31 1.19 0.00 0.40 1.09 0.31 C same same 

10 imm_10_6139051 rs2104286 6139051 G 0.24 0.92 0.21 0.90 1.21 0.72 A opp same 

10 rs793108 rs793108 31455112 A 0.46 0.99 0.91 0.48 1.09 0.50 A same opp 

10 rs2688608 rs2688608 75328355 C 0.49 0.89 0.04 0.32 1.07 0.55 A opp same 

10 imm_10_80718617 rs1782645 80718617 A 0.42 1.10 0.10 0.45 1.09 0.43 A same same 

10 rs7923837 rs7923837 94471897 A 0.35 0.90 0.09 0.53 1.11 0.61 G opp same 

11 rs7120737 rs7120737 47658971 G 0.15 1.13 0.11 0.47 1.13 0.15 G same same 

11 imm_11_60549906 rs34383631 60549906 A 0.41 1.15 0.02 0.57 1.11 0.40 A same same 

11 rs694739 rs694739 63853809 G 0.34 0.92 0.18 0.35 1.08 0.62 A opp same 

11 imm_11_118230104 rs9736016 118230104 A 0.39 0.86 0.01 0.49 1.10 0.63 T opp same 

11 imm_11_118260948 rs523604 118260948 G 0.49 0.99 0.92 0.45 1.09 0.53 A opp same 

12 imm_12_6310270 rs1800693 6310270 G 0.41 1.16 0.01 0.76 1.14 0.40 G same same 

12 ccc-12-6373761-G-C rs12296430 6373761 C 0.18 1.13 0.10 0.57 1.14 0.19 C same same 

12 imm_12_9796957 rs11052877 9796957 G 0.35 1.08 0.18 0.52 1.10 0.36 G same same 

12 seq-t1d-12-56468329-A-T rs201202118 56468329 T 0.29 0.88 0.05 0.67 1.14 0.67 A opp same 

12 imm_12_122159335 rs7132277 122159335 A 0.17 1.12 0.14 0.39 1.10 0.19 A same same 

13 1kg_13_98884260 rs4772201 98884260 G 0.19 0.83 0.02 0.46 1.12 0.82 A opp same 

14 imm_14_68331225 rs2236262 68331225 G 0.46 0.93 0.18 0.36 1.08 0.50 A opp same 
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CHR ImmunoChip ID rsID BP MA MAF OR P Power IC OR IC RAF IC RA Allele Direction 

14 rs4903324 rs4903324 75031264 A 0.19 1.01 0.87 0.36 1.10 0.19 A same same 

14 1kg_14_87502081 rs74796499 87502081 A 0.05 0.67 0.01 0.59 1.31 0.95 C opp same 

14 rs12148050 rs12148050 102333541 A 0.41 1.00 1.00 0.35 1.08 0.35 A same opp 

15 imm_15_76994521 rs59772922 76994521 G 0.23 0.88 0.07 0.37 1.11 0.83 A opp same 

15 rs8042861 rs8042861 88778337 C 0.50 0.97 0.64 0.41 1.08 0.44 A opp same 

16 imm_16_11102272 rs12927355 11102272 A 0.30 0.79 0.00 0.93 1.21 0.68 G opp same 

16 imm_16_11196307 rs4780346 11196307 A 0.23 1.19 0.01 0.37 1.09 0.23 A same same 

16 imm_16_11343491 rs6498184 11343491 A 0.16 1.05 0.54 0.61 1.15 0.81 G opp opp 

16 rs7204270 rs7204270 30064464 G 0.48 1.13 0.03 0.46 1.09 0.50 G same same 

16 imm_16_67243406 rs1886700 67243406 A 0.14 1.11 0.21 0.35 1.11 0.14 A same same 

16 rs12149527 rs12149527 77668097 A 0.44 1.16 0.01 0.40 1.08 0.47 A same same 

16 rs7196953 rs7196953 78206895 A 0.31 0.94 0.37 0.33 1.08 0.29 A same opp 

16 imm_16_84551985 rs35929052 84551985 A 0.10 0.80 0.02 0.42 1.14 0.89 G opp same 

17 imm_17_35165903 rs12946510 35165903 A 0.44 1.01 0.87 0.36 1.08 0.47 A same same 

17 imm_17_37784289 rs4796791 37784289 A 0.42 1.09 0.14 0.50 1.10 0.36 A same same 

17 rs4794058 rs4794058 42952097 A 0.49 1.12 0.05 0.35 1.07 0.50 A same same 

17 rs8070345 rs8070345 55171539 G 0.49 0.89 0.05 0.77 1.14 0.45 A opp same 

18 rs7238078 rs7238078 54535172 C 0.24 1.01 0.90 0.20 1.05 0.77 A opp opp 

19 rs1077667 rs1077667 6619972 A 0.19 0.90 0.16 0.69 1.16 0.79 G opp same 

19 imm_19_10324118 rs34536443 10324118 G 0.04 0.87 0.32 0.56 1.28 0.95 C opp same 

19 rs2288904 rs2288904 10603170 A 0.21 1.01 0.88 0.59 1.14 0.77 G opp opp 

19 rs1870071 rs1870071 16366106 G 0.32 1.16 0.02 0.56 1.12 0.29 G same same 

19 chr19_18146944 rs11554159 18146944 A 0.26 0.88 0.05 0.70 1.15 0.73 G opp same 

19 rs8107548 rs8107548 54562455 G 0.26 1.12 0.08 0.39 1.09 0.25 G same same 

20 imm_20_44181354 rs4810485 44181354 A 0.24 1.12 0.08 0.34 1.08 0.25 A same same 
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CHR ImmunoChip ID rsID BP MA MAF OR P Power IC OR IC RAF IC RA Allele Direction 

20 imm_20_47872168 rs17785991 47872168 A 0.32 1.05 0.45 0.43 1.09 0.35 A same same 

20 rs2248359 rs2248359 52224925 A 0.43 0.95 0.40 0.31 1.07 0.60 G opp same 

20 imm_20_61844427 rs2256814 61844427 A 0.18 1.09 0.24 0.44 1.11 0.19 A same same 

20 rs6062314 rs6062314 61880157 G 0.09 0.93 0.45 0.22 1.10 0.92 A opp same 

22 rs2283792 rs2283792 20461125 A 0.46 0.90 0.05 0.41 1.08 0.51 C opp same 

22 rs470119 rs470119 49313780 A 0.42 0.96 0.50 0.29 1.07 0.39 A same opp 

 
Power calculations are for one-sided p-values of 0.05; PLINK logistic regression outputs two-sided p-values. Hence, SNPs with p-values less than 
0.10 in this table are significant at a one-sided p-value of 0.05. 
CHR: chromosome; BP: base pairs; MA: minor allele; MAF: minor allele frequency; OR: odds ratio; P: two-sided p-value produced by PLINK; 
Power: power to detect the effect in our dataset using the ImmunoChip OR and RAF; IC OR: odds ratio found by the IMSGC ImmunoChip analysis; 
IC RAF: risk allele frequency in the IMSGC ImmunoChip dataset; IC RA: risk allele in the IMSGC ImmunoChip analysis; Allele: If the alleles tested 
in our analysis and the IMSGC analysis are the same; Direction: If the direction of effect is the same in our analysis and the IMSGC analysis; opp: 
opposite allele or direction, depending on column; same: same allele or direction, depending on column.  

Table 4.1 continued 



82 
 

To determine if we identified as many SNPs as we would expect, we calculated 

our power to detect each effect based on our sample size using a one-sided alpha value 

of 0.05 and the odds ratio and risk allele frequencies observed in the IMSGC 

ImmunoChip analysis. Power calculations were performed in QUANTO.(114;115) Our 

power to detect each risk allele is listed in Table 4.1. Based on these power calculations, 

we would have expected 50.5 SNPs to be significant at this level in this analysis, close 

to the number we detected. We did not calculate a p-value, but based on the number of 

significant SNPs and other SNPs that trended in the correct direction, these data 

strongly confirm a similar underlying MS genetic architecture of the case individuals 

selected via algorithm from the EMR to those previously reported. 

Genetic risk scores 

 We created a genetic risk score based on the known MS loci for each sample. To 

calculate this, we gave each SNP a weight based on the proportion of the total sum of 

the odds ratios. For each individual, this weight was multiplied by the number of risk 

alleles the patient carried. The scores for all SNPs were summed to create a genetic risk 

score. (Equation 4.1) This was done with and without inclusion of the most significant 

SNP in the HLA region in our dataset to ensure that the large effect of the HLA was not 

masking differences among the SNPs with smaller effects. Scores excluding the HLA 

are displayed in Figure 4.1. There was a highly significant difference between the risk 

scores for the cases and controls (t-test, two-sample assuming equal variances, p = 2.27 

x 10-32). 
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Figure 4.1 Genetic risk scores excluding the HLA locus Figure 4.2 Genetic risk scores including the HLA locus 
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Scores including the most significant HLA SNP are displayed in Figure 4.2. Significant 

differences between the risk scores for the cases and controls were seen (t-test, two-

sample assuming equal variance, p = 1.68 x 10-35). 

 

Analyses of clinical traits of disease course 

 

 By utilizing the disease course information extracted from the SD as described in 

Chapter II, we performed regression analyses for seven MS clinical traits. The outcomes 

evaluated were age at diagnosis, age at first neurological symptom, presence of 

oligoclonal bands, MSSS, timed 25 foot walk, CNS origin of first neurological symptom, 

and time to SPMS. The base dataset used for these analyses included all cases from 

the case-control analysis. Unless otherwise noted, SNPs with p-values less than 1 x 10-4 

are shown in the results tables.  

Age at diagnosis 

 The year of diagnosis was extracted via algorithm for 1,061 individuals as 

described in Chapter II. Birth date for all individuals was extracted. Age at diagnosis was 

calculated using the year of birth and year of diagnosis for all cases passing QC. 278 

individuals had the required information and were used for analysis. The range of ages 

at diagnosis for these individuals are displayed in Figure 4.3. None of these individuals 

were related based on IBS analysis. 48,744 SNPs with MAF < 0.05 were excluded. 

Linear regression was performed on the 278 individuals and 107,730 remaining SNPs, 

with the first three principle components as covariates.  
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Figure 4.3 Distribution of the ages of diagnosis 
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 The most significant SNPs are displayed in Table 4.2. Five of these SNPs cluster 

in or around SKAP2, a gene encoding the src signaling pathway protein. rs73067474 is 

located intronically; the other SNPs are within 4-7kb upstream. All SNPs in this region 

are in linkage disequilibrium (LD) (0.75 < r2 < 0.90) are located 300kb upstream from a 

novel MS locus detected in the IMSGC ImmunoChip analysis (rs706015). Also, SNP 

rs7804356 in this region (26,858,190bp) has been associated with type 1 diabetes.(116) 

 

 

CHR ImmunoChip ID rsID BP MA MAF BETA P 

7 imm_7_26666501 rs17290008 26666501 A 0.13 -5.85 2.24E-05 

7 imm_7_26686349 rs73075509 26686349 A 0.13 -5.85 2.24E-05 

7 imm_7_26696265 rs17291131 26696265 A 0.13 -5.85 2.24E-05 

7 imm_7_26666964 rs73073796 26666964 A 0.14 -5.60 2.62E-05 

2 rs2680836 rs2680836 2.22E+08 A 0.11 5.92 3.08E-05 

13 rs12877398 rs12877398 72019306 A 0.12 -5.69 4.69E-05 

20 rs388349 rs388349 15322019 A 0.06 7.88 6.99E-05 

7 imm_7_26823157 rs73067474 26823157 C 0.12 -5.52 9.58E-05 

CHR: chromosome; BP: base pairs; MA: minor allele; MAF: minor allele frequency; P: 
two-sided p-value 

 

 

No samples had an age of diagnosis outside of three standard deviations (5.3, 

70.0), but analysis after removal of five samples at the extremes of the distribution (18 < 

age < 58) showed different results (Table 4.3). A decrease significant in the SNPs on 

chromosomes 7 (p = 3.5 x 10-4) and 20 (p = 1.9 x 10-2) suggests these extreme ages 

were driving their significance. A locus on chromosome 3 not associated previously was 

significant at p = 9.42 x 10-6. The top four SNPs are in high LD (r2 > 0.98) and are 

Table 4.2 Most significant results for age of diagnosis regression analysis 
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located in CD80, a gene involved in T-cell proliferation. rs2228017 is a synonymous 

variant; the other SNPs are intronic. 

 

 

 

CHR ImmunoChip ID rsID BP MA MAF BETA P 

3 imm_3_120739878 rs491407 120739878 G 0.23 -4.55 9.42E-06 

3 imm_3_120746370 rs2228017 120746370 A 0.23 -4.55 9.42E-06 

3 imm_3_120748830 rs2692620 120748830 G 0.23 -4.55 9.42E-06 

3 imm_3_120741492 rs527172 120741492 A 0.23 -4.35 2.35E-05 

5 rs7723716 rs7723716 67246186 A 0.31 3.66 5.62E-05 

3 rs3913218 rs3913218 189336050 G 0.27 3.63 7.26E-05 

5 rs1490790 rs1490790 67243238 G 0.31 3.59 7.75E-05 

2 rs2680836 rs2680836 222179704 A 0.11 5.19 8.53E-05 

6 rs7767008 rs7767008 28738772 C 0.30 -3.85 8.58E-05 

2 rs12621276 rs12621276 37152649 A 0.30 3.58 9.60E-05 

5 rs2301010 rs2301010 109160360 G 0.09 -5.74 9.96E-05 

CHR: chromosome; BP: base pairs; MA: minor allele; MAF: minor allele frequency; P: 
two-sided p-value 

 

 

Age at first neurological symptom 

 Age at first neurological symptom was calculated using the year of first symptom 

extracted from the narrative text and the birth year. 349 individuals had genotype data 

and passed QC. These individuals were not related by IBS analysis. The distribution of 

these ages can be seen in Figure 4.4. The median age was 34 (mean 35 years, range 

14-67 years). 49,360 SNPs were excluded for MAF < 0.05, leaving 107,114 SNPs 

remaining for analysis. Linear regression was performed, with the first three principle 

components as covariates.  

Table 4.3 Most significant results for age of diagnosis regression analysis after 

exclusion of outliers 
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Figure 4.4 Distribution of the ages of first neurological symptom 
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 The most significant results are listed in Table 4.4.  The SNPs on chromosome 2 

are in complete LD in this dataset (r2=1; D'=1) and are located 550kb downstream from a 

MS locus discovered in the IMSGC ImmunoChip analysis.(62)  rs30749941 on 

chromosome 10 is 700kb upstream from another novel MS locus. SNP rs1467536 

significantly deviates from HWE in the controls of the overall dataset (p = 6.38 x 10-9) but 

only slight deviation in seen in the individuals in this analysis (p = 0.02). 

 

 

CHR ImmunoChip ID rsID BP MA MAF BETA P 

14 rs1467536 rs1467536 100131604 A 0.36 3.69 2.37E-05 

10 rs4746003 rs4746003 71208298 A 0.27 -3.58 6.02E-05 

10 1kg_10_30749941 rs306582 30749941 C 0.08 5.64 7.96E-05 

2 1kg_2_25414511 rs1465764 25414511 T 0.07 6.16 8.79E-05 

2 1kg_2_25419411 rs1550117 25419411 A 0.07 6.16 8.79E-05 

CHR: chromosome; BP: base pairs; MA: minor allele; MAF: minor allele frequency; P: 
two-sided p-value 
 

 

 

Presence of oligoclonal bands 

 We performed logistic regression for presence or absence of oligoclonal bands. 

Results from the structured field and extracted from the narrative text of the SD were 

used, with preference given to structured field results in cases of discrepancies (see 

description in Chapter II). Of the 316 genotyped cases that passed QC, 191 were 

positive for oligoclonal bands and 125 were negative for oligoclonal bands. One 

apparent parent-offspring pair was identified by pairwise IBS analysis.  Both individuals 

were negative for oligoclonal bands; one subject was removed. 48,420 SNPs with MAF 

< 0.05 were excluded. Regression analysis of the remaining 108,054 SNPs with the first 

Table 4.4 Most significant results for age of first neurological symptom 

regression analysis 
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three principle components was performed. The most significant results of this analysis 

are displayed in Table 4.5. rs6743119 in located in an intron of PRKCE, a protein kinase 

C involved in cellular signaling pathways, including neuron channel activation. 

rs9271366 is in the HLA region on chromosome 6. This specific SNP has been 

associated with ulcerative colitis. (117) 

 

 

CHR ImmunoChip ID rsID BP MA MAF OR P 

2 rs6743119 rs6743119 45813464 A 0.40 2.13 5.18E-05 

10 1kg_10_59518462 rs1759342 59518462 A 0.23 0.47 8.29E-05 

6 rs9271366 rs9271366 32694832 G 0.27 2.28 9.30E-05 

CHR: chromosome; BP: base pairs; MA: minor allele; MAF: minor allele frequency; OR: 
odds ratio; P: two-sided p-value 

 

 

 In light of the practices of the MS Clinic in testing for oligoclonal bands primarily 

at the time of diagnosis of MS, this was essentially an analysis for a genetic association 

to the presence of oligoclonal bands at time of diagnosis, as opposed to development of 

oligoclonal bands at any time in the disease course. 

MSSS 

 The prevailing measure for disease progression is the EDSS. However, this 

scale fails to take into account the length of disease course, which makes it difficult to 

compare disease severity between multiple individuals. For example, a person who 

requires walking assistance such as a cane within five years of diagnosis compared to a 

person who has relatively little disability and needs no walking assistance for forty years 

Table 4.5  Most significant results for presence of oligoclonal bands 
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after diagnosis suffer from very different disease courses. To aid in comparison between 

individuals, the MSSS was created. (32) This scale uses the EDSS scores and length of 

disease in a group of individuals to normalize the scores. The MSSS goes from 0 to 10, 

the same as the EDSS, but instead of representing the extent of disability, a score 

represents how many individuals have the same extent of disability as the person being 

tested. For example, an MSSS score of 5 indicates that 50% of people who have had 

MS as long as the individual of interest have lesser disabilities and an MSSS score of 3 

indicates that 30% of people who have had MS as long as the individual of interest have 

lesser disabilities. 

 We used MSSStest (32) to calculate MSSS for 79 individuals with an EDSS 

score and year of diagnosis, which was used to calculate length of disease in months. 

The global MSSS scale included with the program was used to calculate MSSS for our 

samples. We used this scale instead of creating one from our samples because the 

global scale dataset (9,981 individuals) was much larger than our dataset and provided a 

better sampling of EDSS distributions. For patients with more than one EDSS score 

recorded, the most recent score was used. The distribution of these scores for the 79 

individuals is shown in Figure 4.5.  

 Based on these individuals, 47,441 SNPs with MAF < 0.05 were removed prior to 

analysis. No individuals were genetically related. Linear regression for MSSS was 

performed for the remaining 109,033 SNPs using the first three principle components as 

covariates. The most significant results are listed in Table 4.6. The two SNPs with the 

lowest p-values, rs6718188 and rs12613548 (r2 = 0.78), are 170kb upstream and 7kb 

downstream, respectively, from SP3. SP3 is a transcription factor and affects the 

transcription of numerous genes throughout the genome. Another candidate gene based  



92 
 

  

Figure 4.5 Distribution of MSSS 
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on these results is MAPKAPK2, a kinase involved in inflammatory responses on 

chromosome 1. rs10863784 is in an intron of this gene. Lastly, rs2401399 is located 

40kb downstream of a SNP in CLEC1, which is a known loci associated with MS. The 

LD between the CLEC1 SNP (rs11052877) and rs2401399 is not strong in this dataset 

(r2 = 0.02; D' = 0.67). Also, this SNP is out of HWE in the controls of the larger dataset (p 

= 5.07 x 10-11), but no deviation from HWE is seen in these 79 samples (p = 0.31).  

 

 

 

CHR ImmunoChip ID rsID BP MA MAF BETA P 

2 rs6718188 rs6718188 174469857 A 0.33 -2.47 2.24E-06 

2 rs12613548 rs12613548 174544015 A 0.32 -2.22 2.11E-05 

6 rs9501747 rs9501747 1590552 A 0.08 -3.53 4.36E-05 

12 imm_12_9831209 rs2401399 9831209 A 0.07 -4.04 7.32E-05 

1 imm_1_204938407 rs10863784 204938407 G 0.09 3.40 8.15E-05 

 CHR: chromosome; BP: base pairs; MA: minor allele; MAF: minor allele frequency; P: 
two-sided p-value 
 

 

 

Timed 25 foot walk 

 The timed 25 foot walk is another measure used to monitor disease progression 

of MS. Of the 3,523 individuals with timed walks, 2,422 had at least two walks recorded 

(total 16,124 walks). As we wanted to evaluate overall disease progression, we elected 

to remove timed walk scores that appeared to be extended due to relapses—scores 

were removed if they were greater than five seconds longer than timed walks recorded 

Table 4.6 Most significant results for MSSS 
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before and after the walk in question. After removing 326 walks as possible relapses, all 

individuals had at least two walks remaining. We next identified individuals whose timed 

walks covered a period of at least one year to ensure we had a better view of overall 

disease progression; 321 individuals were excluded. 

519 of the remaining 2,101 individuals had genotype data and passed QC. The 

slope of the time walk scores in seconds per year was calculated based on the first and 

last recorded timed walks for each individual. The average slope was an increase of 

0.67 seconds per year, with a standard deviation of 5.40 seconds. Seven individuals that 

fell outside of three standard deviations were excluded.  

Timed walks for a subset of nine individuals, representative of all individuals, are 

shown in Figure 4.6. The length of time to walk 25 feet did not increase for all individuals; 

for many it stayed relatively constant, while for others it actually improved.  

49,729 SNPs with MAF < 0.05 were removed prior to analysis. Linear regression 

was run on 512 individuals and 106,745 SNPs using slope as the phenotype of interest 

and the first three principle components as covariates. The most significant SNPs are 

listed in Table 4.7. 

  

 

CHR ImmunoChip ID rsID BP MA MAF BETA P 

10 rs11201609 rs11201609 87157513 A 0.123 0.7303 2.76E-05 

10 rs7068623 rs7068623 87162243 T 0.1309 0.7008 4.08E-05 

10 imm_10_49682645 rs11101506 49682645 A 0.05078 0.991 8.08E-05 

10 imm_10_49683537 rs11101508 49683537 G 0.05078 0.991 8.08E-05 

CHR: chromosome; BP: base pairs; MA: minor allele; MAF: minor allele frequency; P: p-value 

Table 4.7 Most significant results for the timed 25 foot walk analysis 
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Figure 4.6 Timed 25 foot walks for 9 individuals 
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These SNPs cluster in two areas on chromosome 10. The first is in chromosome 

10q23.1, 200kb upstream from GRID1. GRID1 is a glutamate receptor and involved in 

synaptic plasticity in the CNS. This gene has been associated with anorexia 

nervosa(118), stearic acid plasma levels(119), pancreatic cancer(120), periodontal 

microbiota(121), and left ventricular cardiac wall thickness.(122) These phenotypes are 

not directly related to MS or the timed 25 foot walk, but they do indicate that GRID1 may 

affect a variety of phenotypes. The third and fourth SNPs in Table 4.7 are located at 

chromosome 10q11.22 in introns in the WDFY4 gene. No functional information is 

available for this gene. 

CNS origin of first neurological symptom 

 The CNS origin of first neurological symptom was extracted by algorithm from 

referral letters written by the clinician and categorized as brain stem, optic nerve, and 

spinal cord in origin. Individuals whose symptoms fell in multiple categories were 

designated polysymptomatic origins. For this analysis, we did not include individuals with 

polysymptomatic origins due to the low frequency of individuals in each possible 

combination of origins. From the individuals we were able to extract origins of first 

symptoms, 180 were genotyped, passed QC, and had a single origin of first neurological 

symptom. The counts of individuals with symptoms of each origin are listed in Table 4.8. 

No pairs of individuals were related according to pairwise IBS analysis. 50,003 SNPs 

were excluded based on MAF < 0.05 in this dataset. 

 Polytomous regression was run on 180 individuals and 106,471 remaining SNPs 

in R using the 'polytomous' package with the first three principal components as 

covariates. The dataset was broken into 1,000 SNP sets and run in parallel for analysis 

to decrease computational time. A template script for this analysis is shown in Appendix 

C. The analyses were run using an heuristic model of one versus the rest—individuals 
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with brain stem origin compared to those with optic nerve and spinal cord origins, 

individuals with optic nerve origin compared to those with brain stem and spinal cord 

origins, and individuals with spinal cord origins compared to those with optic nerve and 

brain stem origins. SNPs with the most significant results are shown in Table 4.9. 

 

 

Origin Individuals, n 

Brain stem 50 

Optic nerve 30 

Spinal cord 100 

 

 

 

CHR ImmunoChip ID rsID BP MA MAF BS (P) ON (P) SC (P) Odds 

9 rs4876968 rs4876968 90916697 A 0.11 8.09E-05 1.10E-01 1.37E-02 1.08 

5 rs1434660 rs1434660 136512738 A 0.50 2.30E-04 3.97E-01 5.94E-03 0.61 

8 rs1446534 rs1446534 118026220 A 0.24 3.72E-04 6.87E-01 3.24E-04 0.94 

12 rs7974348 rs7974348 120739096 G 0.19 2.23E-01 5.59E-05 2.40E-02 1.06 

12 rs1168671 rs1168671 120714231 G 0.20 4.72E-01 8.55E-05 9.74E-03 1.10 

6 1kg_6_30143320 rs9261281 30143320 A 0.09 6.67E-01 9.56E-05 8.54E-03 2.06 

1 1kg_1_67594675 rs10749775 67594675 C 0.16 1.21E-02 3.81E-02 1.76E-04 1.41 

9 rs1105191 rs1105191 15360575 G 0.43 1.68E-02 2.28E-02 1.78E-04 0.95 

5 1kg_5_159793919 rs17057795 159793919 G 0.42 5.40E-03 1.24E-01 2.60E-04 1.77 

CHR: chromosome; BP: base pairs; MA: minor allele; MAF: minor allele frequency; BS: 
brain stem; ON: optic nerve; SC: spinal cord; P: p-value; Odds: odds value 
corresponding to the p-value highlighted in blue 
 

 

 

Table 4.9 Most significant results for polytomous regression of origin of first 

neurological symptom 

Table 4.8 CNS origin of 

individuals used for analysis 
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 Several of the most significant results are of particular interest. rs4876968, 

associated with symptoms of brain stem origins, is located in an intron of SHC3, a 

signaling adapter differentially expressed in the brain and spinal cord. The expression 

pattern of this gene makes it a likely candidate for the CNS origin of neurological 

symptoms. rs9261281, associated with symptoms of optic nerve origins, is located in an 

active promoter region of PPP1R11. This gene is located in the MHC class 1 region and 

is an inhibitor of protein phosphatase. rs10749775, associated with symptoms of spinal 

cord origin, is intronic to IL12RB2, which is involved in Th1 cell differentiation. IL12RB2 

has been associated in other studies with Behçet's disease, which causes inflammation 

in blood vessels throughout the body(123;124), and primary biliary cirrhosis.(125;126) 

Time to SPMS 

 Individuals initially diagnosed with RRMS may transition to SPMS at any point in 

their disease course. We analyzed the time in years from diagnosis of RRMS to SPMS 

for genetic associations using Cox proportional hazards regression.  

 We identified clinical subtypes of MS based on the clinical text for each individual 

as described in Chapter II. We also identified year of diagnosis by algorithm. A major 

point of difficulty was determining when a patient actually transitioned to SPMS. There 

are no major distinctions between RRMS and SPMS and the change in diagnosis is 

based upon observations of the clinician. Discussion and monitoring for a possible 

transition to SPMS can occur over a period of years in the medical record. We focused 

on the clinical impressions given by the clinician to extract the subtype of MS from the 

record and excluded all references to subtypes that were not definite (see Chapter II). 

For each subtype, we extracted the date of the clinic note in which it was recorded. We 

also needed to confirm that the first instance of an SPMS diagnosis we identified was in 

fact the actual time of transition to SPMS. Some individuals became patients at VUMC 
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mid-point in their disease course, so the first recording of SPMS may not indicate the 

first time the diagnosis of SPMS was applicable. To confirm the time of transition to 

SPMS, we restricted our analysis to include individuals for whom we had identified a 

previous recording of RRMS. This allowed us to hone in on the actual transition time 

between the two subtypes of MS. The year of diagnosis and the date of the clinic notes 

with diagnoses of SPMS provided enough information to calculate the length of time of 

disease course to SPMS. However, the requirements for each individual to have a 

diagnosis of RRMS, a diagnosis of SPMS, and a year of diagnosis that we were able to 

extract limited the individuals for analysis quite stringently. 

 Individuals with RRMS who had not converted to SPMS still provided valuable 

information. Those with year of diagnosis were included in the analysis. Cox proportional 

hazard regression utilized all of these data in a time to event analysis. 

228 individuals had the required information, were genotyped, and passed QC. 

125 individuals had converted SPMS, 103 had not yet converted to SPMS. 48,371 SNPs 

with MAF < 0.05 were excluded. The remaining 108,103 SNPs were broken into 1,000 

SNP datasets and run in parallel to decrease computational time. Regression was run in 

R using the 'survival' package with the first three principal components as covariates. An 

example script for this analysis is shown in Appendix D. The most significant SNPs are 

listed in Table 4.10. 

 Three SNPs, rs776176, rs776175, and rs4761251, are located in introns of 

BEST1, a transmembrane protein. rs10885868 on chromosome 10q25.3 is in an intron 

of GFRA1, which is a receptor for GDNF and is involved in neuron survival and 

differentiation.(127;128) rs6952706 is located 17kb upstream from IRF5, a transcription 

factor that has been associated with other autoimmune diseases, including lupus 
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erythematosus(129;130), inflammatory bowel disease(125;131), systemic 

sclerosis(132;133), and rheumatoid arthritis.(134) 97 SNPs on the ImmunoChip were 

located in IRF5. After SNP pairwise pruning for r2, LD was calculated for 9 SNPs in this 

gene with rs6952706. r2 values did not indicate a high level of LD between this SNP and 

IRF5 (0.00 < r2 0.10). Finally, rs45509092 on chromosome 16p11.2 is in a small intron of 

ITGAX, a leukocyte-specific integrin. ITGAX has also been associated with lupus 

erythematosus.(135) 

 

 

CHR ImmunoChip ID rsID BP MA MAF Coeff P 

12 rs776176 rs776176 68328241 G 0.33 0.58 1.00E-05 

12 rs776175 rs776175 68328706 A 0.34 0.58 1.20E-05 

10 rs10885868 rs10885868 1.18E+08 A 0.37 -0.63 1.60E-05 

9 rs7032677 rs7032677 76437417 G 0.49 -0.59 3.60E-05 

12 rs249167 rs249167 93854404 T 0.25 0.63 3.80E-05 

12 rs4761251 rs4761251 68328535 G 0.46 0.57 4.50E-05 

1 rs10915314 rs10915314 4976182 C 0.27 0.56 4.80E-05 

7 imm_7_128348691 rs6957206 1.28E+08 A 0.10 0.78 7.10E-05 

16 imm_16_31278669 rs45509092 31278669 A 0.05 1.03 7.20E-05 

1 rs12141935 rs12141935 1.69E+08 C 0.26 0.56 9.00E-05 

6 rs2067002 rs2067002 52479378 G 0.21 0.58 9.30E-05 

CHR: chromosome; BP: base pairs; MA: minor allele; MAF: minor allele frequency; 
Coeff: coefficient; P: p-value 
 

 

Discussion 

 

 We replicated 45 SNPs of the known MS loci at a p-value of 0.05, in addition to 

the effect of the HLA locus. Based on power calculations, we would have expected to 

see 50.5 SNPs at this level; while our number is slightly lower, it is still in the range of 

Table 4.10 Most significant results for time to SPMS analysis 
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what we would have expected. Additionally, very few of the SNPs (16/105) showed an 

effect in the opposite direction of that in the published literature and all of these were 

under the significance level of 0.05. The overwhelming trend in the right direction for 

these SNPs lends further weight to the argument that this dataset of MS individuals has 

an underlying genetic architecture similar to that of published MS datasets. The genetic 

risk scores of the cases were significantly higher than the controls, which further 

supports the comparability of our dataset to other published datasets. Genetic risk 

scores included all SNPs, regardless of significance in our dataset. This difference was 

preserved when the representative HLA SNP was removed. 

Analyses were run among the cases for seven clinical traits. While extraction of 

traits from the SD in Chapter II occurred in a high proportion of individuals, the sample 

sizes for the genetic analyses were much lower. One reason is because only a portion of 

the samples in the SD were available in BioVU; DNA collection started in 2007 and is 

dependent upon routine blood draws. Additional cases could be extracted and used in 

the future, dependent upon DNA collection. We genotyped all cases with DNA available 

at the time of the study. Another reason for smaller sample sizes is because several of 

the clinical traits for genetic analysis, including MSSS and time to SPMS, required 

multiple traits extracted in Chapter II so we were only able to analyze individuals with 

both traits. MSSS requires both an EDSS score and age at diagnosis to calculate. Time 

to SPMS requires year at diagnosis and knowledge of the year of transition to SPMS. 

The dataset sizes could be increased by conducting a targeted manual review. If a 

manual review focused on genotyped individuals with one of the two required traits (such 

as presence of an EDSS score but not of year of diagnosis), it would not be as time 

intensive as a broad manual review of records. Any targeting should take into account 

the recall of the algorithms. For instance, the recall of the algorithm to extract subtypes 
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of MS is 98%; manual review to detect additional subtypes is unlikely to be highly 

productive.  

Genetic analyses were conducted for age at diagnosis, age at first neurological 

symptom, presence of oligoclonal bands, MSSS, timed 25 foot walks, CNS origin of first 

neurological symptom, and time to SPMS. While no results reached genome-wide 

significance or a Bonferroni corrected p-value of 1 x 10-6 (based on 100,000 SNPs), 

several SNPs were significant at 1 x 10-4. Multiple SNPs are in regions of interest, with 

candidate genes. The most significant result in any analysis was on chromosome 2 for 

MSSS (p = 2.24 x 10-6). This SNP is located near the SP3 genes, which is a transcription 

factor and involved in many pathways throughout the body. The most interesting result 

biologically was a SNP on chromosome 9 associated with origination of first neurological 

symptoms in the brain stem when compared with the spinal cord and optic nerve. This 

SNP is located in an intron of SHC3, which is expressed in different patterns throughout 

the CNS. Future studies delineating the expression of SHC3 in various parts of the CNS 

could yield greater insight into the possible role of this gene in the first neurological 

symptom displayed by MS patients. 

Additional studies with larger datasets would help to further define the 

significance of these results, especially if the genes identified could be targets of 

functional studies to determine their impact on MS clinical disease course. The addition 

of DNA samples in BioVU would greatly increase the power of genetic studies of clinical 

traits of disease, specifically studies that require the multiple clinical traits for a single 

analysis. 

We saw very few results for clinical traits in or near loci associated with MS risk. 

This was somewhat surprising as it is a plausible hypothesis that loci which show small 
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effects on risk may actually play a larger role in the overall disease course. We did not 

find very much evidence to support this hypothesis. However, many of the most 

significant SNPs were located in or around genes with functions that could be 

biologically implicated in the clinical trait analyzed.   
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CHAPTER V 

 

CONCLUSIONS 

 

 Multiple sclerosis is a disease with well-established genetic risk loci. The HLA 

locus plays the largest role in the genetics of MS, accounting for 10-50% of the 

heritability of MS.(14) In addition to the HLA locus, 110 SNPs in 103 loci have been 

confirmed as MS-risk loci.(61) While these SNPs have small effects individually, 

replication has shown that the effects do contribute to the overall risk of disease. The 

field has progressed rapidly in the last six years, burgeoning with new results. 

Collaborations, including the IMSGC, have resulted in large-scale studies that have 

detected loci that would have otherwise gone undetected. Studies of the genetics of MS 

continue to search for the remaining portion of the genetic effect. 

 The clinical expression of MS is extremely heterogeneous; age of onset, types of 

symptoms, disease courses, rates of progression, and disability levels may vary 

drastically between individuals. Some studies have shown familial aggregation of clinical 

traits of MS, but little is understood of the genetics of clinical expression. Part of this lack 

of knowledge is due to the small number of studies that have been performed. The 

genetics of clinical expression has not been fully explored. 

 Medical records provide a source of rich phenotypic information. EMRs provide 

opportunities to mine the information in medical records in an automated manner; this 

provides an opportunity to utilize data in medical records without the overwhelming 

amount of time it would take to review medical records manually. 

 We used four algorithms based on ICD-9 codes, medications, and text keywords 

to identify 5,789 patients with MS. Three of these algorithms performed with high 
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specificity; one algorithm ("possible type 1") mostly captured patients with the possibility 

of having MS, but not confirmed diagnoses. We recommend this algorithm be used in 

research studies only when confirmation of disease status by manual review can be 

obtained. We also created an algorithm to identify patients to be used as controls for our 

MS cases. In addition to exclusion of MS, we required patients to have no other 

autoimmune diseases. This algorithm found thousands of individuals, providing a large 

pool from which to pull subjects. We narrowed down this dataset by matching to our 

cases on age, sex, and BMI. All algorithms, except the "possible type 1" algorithm, 

performed very well in selecting individuals suitable for the subsequent studies we 

conducted.  

 A manual review of a subset of the records of 60 cases confirmed the depth of 

MS disease course data available. Age of onset, EDSS, family history, symptoms, and 

treatment data was collected from the narrative text. Data was available in many records 

for age of onset, symptoms, and treatment. EDSS was present in a smaller than 

expected number of individuals. After discussion with clinicians with the MS Clinic, we 

found this was due to the difficulty in scoring the EDSS in a clinic setting and a greater 

reliance upon the timed 25 foot walk as a progression measure. Family history, or lack 

thereof, did not appear to be reliably recorded.  

 After establishing the existence of clinical disease traits in the medical record, we 

created algorithms using MySQL and Perl to extract these data in a time efficient 

manner. Algorithms were created for year and type of first neurological symptom, year of 

diagnosis, presence of oligoclonal bands, EDSS scores, timed 25 foot walk scores, 

clinical subtype of MS, and medications. Manual review of 100 records in the test 

dataset was performed to create a gold standard to calculate statistics evaluating the 

performance of the algorithms. The algorithms performed very well, with high specificity. 
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The recall values for year of diagnosis and year and type of first neurological symptom 

were low. The data extracted was precise, but more than half of data present in the 

medical records for these traits was missed by the algorithms.  

 The presence of oligoclonal bands and the timed 25 foot walks provided 

additional opportunities to evaluate the accuracy of the data described in the narrative 

text of the clinical records. Oligoclonal bands are a laboratory value. For patients who 

had the test conducted at VUMC, we were able to compare the results extracted from 

the narrative text to the results in the structured fields for the laboratory test. The 

concordance was 97.1%, indicating that the clinician reported value in the text was 

concurrent with the actual laboratory result; few errors occurred in transcription of the 

result.  

 A structured field for the timed 25 foot walk was created for the MS Clinic in 2008, 

providing another opportunity to check the accuracy of a value transcribed into the 

narrative text. Of the dates that overlapped between the structured field walks and those 

extracted from the text, the concordance was 91%. Many of the other scores appeared 

to be typographical errors. The creation of the structured field allowed us to capture a 

glimpse of how many timed walks were omitted from the narrative text previous to that 

date; these scores were recorded in a paper chart and are not available to us. 70% of 

the timed walks in the structured field were not recorded in the clinic note, suggesting we 

are missing a vast number of timed walks prior to structured field creation. It is possible 

that the clinicians began to record the walk time in the clinic note less frequently after 

creation of the structured field because of the ease in accessing the timed walk. If this 

was the case, 70% would be an over-inflated estimate of missing scores prior to 2008. 

We compared the distributions of scores extracted by algorithm from the text and from 
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the structured field. There was no significant difference; if these distributions were 

different we would be concerned of a bias in which scores were recorded in the text. 

In summary, we identified the existence of detailed clinical course information for 

MS in a de-identified EMR. Several traits were extractable by algorithm with high 

specificity and precision. While some traits had low recall rates, the data extracted by all 

algorithms is accurate based on the medical records and could be used for research 

purposes.  

 We extracted DNA for all cases identified by algorithm who were part of BioVU. 

We also extracted DNA for controls for genotyping. All samples were genotyped on the 

ImmunoChip, a custom genotyping array focused on autoimmune disease loci. The 

calling of genotypes was difficult because of the presence of rare and common variants 

on the chip. After trial and error, the OptiCall program was used. Samples were called as 

part of the IMSGC ImmunoChip data; the larger number of samples aided in more 

accurate calling of the rare variants. Extensive sample and SNP quality control was 

performed. After QC, 156,474 SNPs and 3,187 samples (1,003 cases, 2,184 controls) 

were available for analysis. In this dataset, there are several pairs of cases related 

based on IBS (six sibling pairs, five parent-offspring pairs, and one cousin pair). As the 

records are de-identified, we cannot confirm the family structure of these individuals. In 

any analyses performed, one of each pair of related individuals was removed prior to 

analysis. 

 Logistic regression of the known MS loci was performed in cases and controls. 

46 of 106 SNPs that passed QC were replicated at p < 0.05. 44 of the remaining 60 

SNPs trended in the right direction even though they did not reach significant. Genetic 

risk scores based on these 106 SNPs were significantly higher in cases than controls   
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(p = 27 x 10-32). These results are as we would expect from a standard MS population, 

confirming the similarity of the genetics of MS with the BioVU population. 

 Using data collected by algorithms from the SD, we calculated seven phenotypes 

for genetic analysis: age at diagnosis, age at first neurological symptom, presence on 

oligoclonal bands, MSSS, timed 25 foot walk, CNS origin of first neurological symptom, 

and time to SPMS. Linear, logistic, polytomous, and Cox proportional hazard regression 

analyses, as appropriate, were performed using principle components as covariates to 

control for population structure. No genome-wide significant results were observed. Two 

SNPs, for age at first neurological symptom and MSSS, approached a Bonferroni 

corrected p-value of 1 x 10-6, based on analyses of 100,000 SNPs. rs9935467 was 

associated with increasing age at first neurological symptom at p = 4.12 x 10-6. It is 

located on chromosome 16. rs6718188, on chromosome 2, was associated with 

decreasing MSSS. This SNP is located 170kb upstream of SP3, a transcription factor. 

 An interesting candidate gene for rs4876968, a SNP associated with symptoms 

originating in the brain stem, is SHC3. SHC3 is a signaling adapter differentially 

expressed in the brain and spinal cord. Additional studies are needed, but a varied 

expression pattern of a gene would be plausible given the differences observed in the 

origin of the symptoms. 

 A major limiting factor for these analyses was the sample sizes. Five of the seven 

analyses required data from the three algorithms with low recall (year of diagnosis, year 

and origin of first neurological symptom). Improvement of recall for these algorithms 

could greatly increase the sample sizes for these analyses. 

 This collection of clinical data represents one of the largest databases of detailed, 

clinical traits available for research of MS. This work demonstrates that detailed clinical 
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information is recorded in the EMR and can be extracted for research purposes with high 

reliability. The analyses of clinical traits have brought further information to a field with 

minimal information available. While small in sample sizes, these analyses have 

provided a groundwork for future studies to expand upon. 

 

Future directions 

 

 There are several possible future directions for this project. For the work in the 

EMR, these include expanding the current algorithms for clinical traits, carrying the 

algorithms to other institutions, creating new algorithms, and applying the methods for 

algorithm development to other diseases. For the genetic work, analysis of additional MS 

samples as they are added to BioVU and collaboration with other research groups to 

increase sample size and power would aid these analyses.  

 Several of the algorithms for clinical traits presented in this work could be 

expanded to increase the sensitivity of explicitly stated values and to calculate values 

based on data in the text. The data extracted was reliable, but more than half of data 

present in the medical records for certain traits was missed by the algorithms. The 

medications script had low recall, largely because we restricted searching to PL. 

Broadening the algorithm to all clinic notes would likely increase sensitivity. The difficulty 

is doing this without sacrificing specificity, as seen when we used MedEx. Initial efforts 

could focus on clinic notes where there is a section for specific medications. If consistent 

formatting and language could be found, this would add in identifying medications 

currently taken. An ultimate goal would be to identify not just if a patient was ever on a 

drug, but to identify the start and stop points as well as the dosage. This information 
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would be useful in and of itself, and it could also be combined with other information, 

such as relapses and progression, to determine drug failure. 

 The script for age of diagnosis had low sensitivity for current diagnoses of MS, as 

discussed in Chapter II. Enhancing this script to identify clinic visits in which a diagnosis 

of MS is given would greatly increase sensitivity. This will likely require greater use of 

NLP to determine the confidence of the clinician in the clinical impressions of the visit, 

using grammar rules to distinguish a diagnosis of MS, a possible diagnosis of MS, and 

confidence that a diagnosis of MS is incorrect for a patient. 

 Currently, only explicit statements of EDSS scores are captured by the algorithm. 

However, it is possible that some scores may be calculated by the data in clinic visits to 

increase the number of EDSS scores for our samples. The easiest to calculate would be 

scores six through nine, which are based on the presence of walking aids or restriction 

to bed. Scores one through four would be difficult but could potentially be inferred from 

the physical examination. Scores 4 through 5.5, which require an understanding of how 

far a patient can walk, up to 500 meters, would be the most difficult and we would likely 

still experience an uneven distribution of scores. 

 The application of the subject selection and clinical trait algorithms proved to be 

great tools in creation of a large dataset of MS individuals with longitudinal disease 

course data at VUMC. Further use of these algorithms would be to apply them to EMR 

datasets in other institutions. The subject selection algorithms should be easily 

transferable as there are no parts of the algorithm that are specific to VUMC records. 

The transferability of the clinical trait algorithms is likely to vary. We expect the most 

difficult algorithms to transfer would the age and type of first neurological symptom. 

These algorithms rely on clinician specific wording to identify referral letters, with a 
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history with specific key words in these letters. The general principle could be carried 

over but evaluation of the clinic notes should be done to evaluate the format of the notes 

at the intended university or clinic. Presence of oligoclonal bands and timed 25 foot walk 

algorithms rely on no institution-specific formats. Ascertainment of structured fields at 

any institution should first be attempted; however, the ease with which we were able to 

identify these scores suggests NLP-derived algorithms would work well at other 

institutions if needed. Additional methods of recording the results in the text could be 

added if deemed necessary. For instance, abbreviations for the time walk, including “ft” 

and T25FW, were not seen in the records we reviewed but they may be used at other 

institutions. We know of no specific reasons why the algorithms for age at diagnosis, 

EDSS, and clinical subtype would not be transferable. The algorithm for medications 

would depend upon the existence of PL at the institution of interest. 

 We have shown in this work the feasibility to create algorithms to extract detailed 

clinical traits. Algorithms to extract additional clinical traits could be considered. 

Particularly, the identification of relapses in patients with RRMS would be desirable, 

along with relapse length, frequency, symptoms, and inter-relapse time. Possible 

approaches are identifying key phrases from the narrative text and communications. 

Patients do not always come in to the clinic when they are having a relapse, but they are 

encouraged to at least call in. When calling in, it is recorded in the communications and 

treatment may be offered by the clinician. The administration of steroids, such as 

intravenous methylprednisone (IVMP), could be used to indicate relapses. IVMP is 

generally not a routine medication for patients with RRMS, but is given to rapidly 

decrease inflammation in a patient with acute symptoms during relapses. Also, relapses 

could be inferred from a sudden increase in the timed 25 foot walk that is resolved by the 

next visit. This would require visits surrounding the timed walk in question and may miss 
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patients without prior timed walks and those who are lost to follow-up. Identification of 

relapses is likely not possible for patients who are not treated for MS at VUMC. Those 

treated at other institutions may have mention of relapses in clinic visits for other 

reasons, but a full history of relapses is unlikely to be recorded. 

 One of the most interesting results from the genetic analyses of clinical traits was 

for origin of first symptom. A SNP in an intron of SHC3 was associated with symptoms 

originating in the brain stem as opposed to the spinal cord and optic nerve. This gene is 

highly expressed in the brain. One expression study has shown that while it is expressed 

in various neuronal cell populations, the subcellular location of the protein varies 

drastically by cell type.(136) Another expression analysis shows that SHC3 is highly 

expressed in the frontal cortex, and at lower levels in the brain stem and spinal 

cord.(137;138) Additional studies to better the expression profile of this gene in various 

areas of the CNS could outline greater understanding of a possible role it may play in 

onset of neurological symptoms in MS. 

 We have honed several techniques to extract detailed disease course data from 

EMRs. These techniques could be applied to other diseases. MS was an excellent 

disease to work with because of the high precision in identifying individuals with the 

disease, several specific clinical traits that are explicit to MS and routinely recorded, 

frequent follow-up of the disease in clinics is observed, and there is a large number of 

patients with MS at VUMC for us to focus on due to the MS Clinic. These types of 

observations should be taken into account when selecting other diseases for which to 

apply these techniques. 
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APPENDIX A 

 

CONTROL SELECTION ALGORITHM 

 

 
Codes:  Record does not contain any of the following: 

070.2*  Viral hepatitis B with hepatic coma 

070.3*  Viral hepatitis without mention of hepatic coma 

070.51  Acute hepatitis C without mention of hepatic comal 

070.54  Chronic hepatitis C without hepatic coma 

070.7*  Unspecified viral hepatitis C 

150  Malignant neoplasm of the esophagus 

250.*  Diabetes Mellitus 

255.4  Corticoadrenal insufficiency (Addison’s disease) 

286.0  Congenital factor VIII disorder 

286.1  Congenital factor IX disorder 

286.2  Congenital factor XI deficiency 

714 Rheumatoid arthritis and other inflammatory polyarthropathies 

714.0 Rheumatoid arthritis 

714.1 Felty’s syndrome 

714.2 Other rheumatoid arthritis with visceral or systemic involvement  

714.30  Polyarticular juvenile rheumatoid arthritis, chronic or unspecified 

714.31  Polyarticular juvenile rheumatoid arthritis, acute 

714.32  Pauciarticular juvenile rheumatoid arthritis 

714.33  Monoarticular juvenile rheumatoid arthritis 

714.9  Unspecified inflammatory polyarthropathy 
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373.34  Discoid lupus erythematosus of eyelid 

695.4  Lupus erythematosus 

710.0  Systemic lupus erythematosus 

710.1  Systemic sclerosis 

710.3  Dermatomyositis 

710.4  Polymyositis 

710.2  Sjogren's disease 

493.*  Asthma 

530.85  Barrett’s esophagus 

555.*  Regional enteritis  

579.0  Celiac disease 

556.*  Ulcerative colitis 

571.6  Biliary cirrhosis 

571.8  Other chronic nonalcoholic liver disease – fatty liver, without mention of alcohol 

573.1  Hepatitis in viral diseases classified elsewhere   

 573.2  Hapatitis in other infectious diseases classified elsewhere 

 573.3  Hepatitis, unspecified 

576.1 Cholangitis 

 135 Sarcoidosis 

696  Psoriasis and similar disorders 

696.0  Psoriatic arthropathy 

696.1  Other psoriasis and similar disorders excluding psoriatic arthropathy 

696.8  Other psoriasis and similar disorders 

099.3  Reiter’s disease 

719.3  Palindromic rheumatism 

720.0  Ankylosing spondylitis 
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720.8  Other inflammatory spondylopathies 

720.81  Inflammatory spondylopathies in diseases classified elsewhere 

720.89  Other inflammatory spondylopathies 

720.9  Unspecified inflammatory spondylopathy 

721.2  Thoracic spondylosis without myelopathy 

721.3  Lumbosacral spondylosis without myelopathy 

245.2  Hashimoto’s thyroiditis 

242.0 Toxic diffuse goiter 

358.0  myasthenia gravis 

358.00  myasthenia gravis without acute exacerbation 

358.01  myasthenia gravis with acute exacerbation 

775.2  neonatal myasthenia gravis 

443.0 Raynaud’s syndrome 

 

KEYWORDS:  Record does not contain any of the following: 

Hepatitis B [hep B] 

Hepatitis C [hep C] 

Addison* 

Hemophilia  

rheumatoid [rheum] [reumatoid] [rhumatoid] arthritis [arthritides] [arthriris] [arthristis] 

[arthritus] [arthrtis] [artritis] 

Felty* 

juvenile [juv] rheumatoid [rheum] [reumatoid] [rhumatoid] arthritis [arthritides] [arthriris] 

[arthristis] [arthritus] [arthrtis] [artritis] 

juvenile [juv] arthritis [arthritides] [arthriris] [arthristis] [arthritus] [arthrtis] [artritis] 

juvenile [juv] RA 
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juvenile chronic arthritis [arthritides] [arthriris] [arthristis] [arthritus] [arthrtis] [artritis] 

Rheumatism 

Lupus [SLE] [lupos] [lupis] [lupas] 

Crohn* [crones] [crons] 

Ulcerative colitis [colitis] [colitus]  [UC] 

Inflammatory [inflamatory] [inflam] bowel disease [dx] [IBD] 

Sarcoidosis [sarcoid] [sarcodosis] [sarcadosis] 

psoriasis [soriasis] [psorisis] [psorasis] [psiorasis] 

Reiter* 

Regional enteritis 

Sjogren* [shogren*] [showgrens] [sjorgens] [sjogens] 

Asthma 

Barrett’s esophagus 

Esophageal cancer 

Celiac sprue 

Biliary cirrhosis [PBC] [primary sclerosing cholangitis] 

Non-alcoholic fatty liver [NAFLD] [non alcoholic fatty liver][nonalcoholic fatty liver] 

Non-alcoholic steatohepatitis [NASH} [non alcoholic steatohepatitis] [nonalcoholic 

steatohepatitis] 

Dermatomyositis [dermatomyocitis] 

Polymyositis [polymyocitis]  

Ankylosing [ankleosing] [rheumatoid] [rheum] [reumatoid] spondylitis [spondolitis] 

[spondylities] [spondilitis] 

Thoracic spondylosis  

Lumbosacral spondylosis 

Hashimoto thyroiditis 
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Chronic lymphocyctic thyroiditis 

Autoimmune thyroid disease [AITD] 

Grave* disease [dis] [dx] [dz] [syndrome] 

Myasthenia gravis 

Raynaud* disease [dis] dx] [dx] [syndrome] 

Degenerative joint disease [dis] [dx] [dz] 
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APPENDIX B 

 

PSEUDOCODE FOR CLINICAL TRAIT ALGORITHMS 

 

We have included the regular expressions used in Perl format. 

 Text  =~ /{regular expression}/{search functions} 

Subtype 

1.  Select clinic notes, problem list, letters, and research notes 

2. Select clinic notes that contain mention of a subtype of MS 

              / (?:(?:RR|SP|PP)[-\s]?(?:MS|multiple\ssclerosis))| 
                (?:(?:primary|secondary)[-\s]+progressive)| 
                (?:relapsing[-\s]remitting)| 
                (?:(?:progressive|relapsing)[,-\s\/](?:progressive|relapsing))| 
                (?:relapsing\s(?:multiple\ssclerosis|ms\s))/ 

3. Extract 50 characters before and after the subtype mentioned 

4. Identify subtype mentioned 

5. Identify the subtype as a negative value if the phrase before the subtype matched 
contains “not” in the phrase  

6. Identify the subtype as a negative value if any of the phrase contains other negative 
phrases 

/possibl|rule\sout| r\\o/ 

7. Delete subtypes marked as negative values 

8. Remove multiple occurrences of subtypes per person 

 

Oligoclonal bands 

1. Select clinic notes and letters 

2. Select notes that reference oligoclonal bands 

 /oligo/i 

3. Split notes into sentences 

 /(?:\.\s+)|(?:-(?:\s+)?){2,5}|(?:>\s?<)|\\n|<.?B>/ 

4. For each line, pull out 100 characters on either side of ‘oligoclonal’ 
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 /.{0,100}oligoclonal.{0,100}/i 

5. Search the phrase to find if a positive result was indicated and save it with the ID and 
note date 

 /(?:positive|\bpresent\b)(?:\s)?(?:\b\w{1,20}(?:\b\s)?){0,3}oligoclonal|oligoclonal.{0
,15}(?:positive)|in(?:\s)?CSF(?:\s)?only/ix 

 /[1-
9]\s?oligo|(?:two|three|four|five|six|seven|eight|nine|ten)\s?oligo|\+(?:\s)?oligo/ix 

6. Search the phrase to find if a negative result was indicated and save it with the ID and 
note date 

 /no(?:\s)?oligo|not(?:\s)?show.{0,20}oligo|negative.{0,20}oligo|band.{0,20}negativ
e|neg\s?oligo|band(?:s?\s?)neg/ix 

7. Remove duplicate results (ID and result-positive/negative) 

8. Mark individuals with both a positive and negative result as inconclusive 

 

Diagnosis Year 

1. Search all notes where the note content matches a form of diagnosis and multiple 
sclerosis 

 /diagnos(?:e[\sd]|is])/i && $refhead[4] =~ /multiple\ssclerosis|\bms\b/i 

2. Split the note into phrases 

 /(?:\.\s+)|(?:-(?:\s+)?)+|(?:>\s?<)|\\n/ 

3. If a phrase contains diagnos and multiple sclerosis in the same line, pull out diagnos 
and the 70 characters after 

4. Save the year mentioned in the sub-phrase, noting if an exact year was mentioned or 
a relative referenced was used (i.e. years ago) 

  /\d{4}/ 
 /(\d{1,2})\s+years\s+ago/ 
 /(one|two|three|four|five|six|seven|eight|nine|ten)\s+years\s+ago/) 

5. If # years ago, subtract the years from the date of the note and save as the diagnosis 
year 

6. Once all diagnosis years have been extracted and saved into a separate file: 

7. For each individual, count the number of times each year was mentioned with an 
exact reference 

7b. Output the year with the most counts as the final diagnosis year 
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8. For each individual without an exact year reference, count the number of times each 
year was mentioned with a relative reference 

8b. Output the year with the most counts as the final diagnosis year 

 

EDSS 

1. Select all notes 

2. Select notes that contain ‘edss’ 

 /edss/i 

3. Split matching notes into lines 

 /(?:\.\s+)|(?:-(?:\s+)?){2,5}|(?:>\s?<)|\\n/ 

4. In each line, extract ‘edss’ and the following 50 characters 

 /\bedss\b.{0,50}/i 

5. If the phrase contains digits preceded by non-letters, allowing for missing spaces 
(was5, is2.5, etc) 

 /(?:[^A-Za-z]|s)([\d][\d]?(?:\.[\d])?)/i 

 5b. If the score is less than or equal to 10 and contains a decimal 

  5bi. Save the number as the EDSS score 

 5c. If the score is less than or equal to 10 and does not contain a decimal 

  5ci. Add .0 to the number and save it as the EDSS score 

6. If the phrase contains a number written out, convert the number to an integer and 
save as the EDSS score 

 /is\s+(zero|one|two|three|four|five|six|seven|eight|nine|ten)/ 

7. Remove duplicate values (ID, Note_Date, EDSS_score)  

 

Timed 25 foot walk 

1. Select all notes 

2. Separate note into sentences 

/\.\s+/ 

3. Select the sentence mentioning 25 foot walk 

/timed?[\s-]*walk/i || $refhead[4] =~ /25[\s-]*feet/i || $refhead[4] =~ /25[\s-]*foot/i 
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4. Extract the number of minutes mentioned and convert it to 0-9 digits 

/([0-9][0-9]?)\s*minute/i 
/a\s+minute/i 
/one\s+minute/i 

5. Extract the number of seconds mentioned 

/([0-9][0-9]?.?[0-9]*)\s*sec/i 

6. Identify if a cane is mentioned without negative indication 

/cane/i 
/without [a|the] cane/i 

7. Identify if a walked is mentioned 

 /wheelchair/i 

8. Calculate the total number of seconds using the minutes and seconds 

 

Year of first neurological symptom 

1. Select letters and consultation notes 

2. Select the first part of notes that contain ‘multiple sclerosis’ and begin with ‘Dear XX’ 

 /multiple\s?sclerosis\s?/i 
 /dear.{0,1000}/i 

3. If the first 1000 characters of the note contain references to the history of the illness, 
save the 200 characters following the phrase of interest for further processing 

 /.{0,50}(dat(?:e|ing)\s?back|began)(.{0,200})/i 

4. If the saved text contains a four digit year, save it as the year of first symptom 

 /\d{4}/i 

5. If the saved text references to a date shifted to preserve anonymity (format ‘DATE 
month_abbreviation’), use this month and the date of the note in which it was found to 
identify if the current year or previous year is when the symptoms began 

 /DATE\[(.{3})/i 

6. If the saved text references a relative date (i.e. ‘years’ or ‘months ago’), use the 
current note date to calculate the year symptoms began 

 /\b(\w+)\s?years?/i 
 /\b(\w+)\s?months?/i 

7. Export all individuals with dates to a file 
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Origin of first symptom 

1. Select letters and consultation notes 

2. Select the first part of notes that contain ‘multiple sclerosis’ and begin with ‘Dear XX’ 

 /multiple\s?sclerosis\s?/i 
 /dear.{0,1000}/i 

3. If the first 1000 characters of the note contain references to the history of the illness, 
export the first part of the note into a new file labeled with the person ID and note ID 

 /.{0,50}(dat(?:e|ing)\s?back|began)(.{0,200})/i 

4. Run KnowledgeMap on all exported files 

5. Load KnowledgeMap results in MySQL 

6. Match concept unique identifiers (CUI) with concepts 

7. Extract the outputs in categories related to MS symptoms  
    (sty = semantic type of the concept ; cui_pn = concept unique identifier name) 

 Sty ~= /disease or syndrome/i 
 Sty ~= /sign or symptom/i 
 Sty ~= /finding/i 
 Sty ~= /organ or tissue function/i and cui_pn ~= /sensory function/i 

Match symptoms to their CNS origin, matching preference in the order below 

8. Identify symptoms that stem from the optic nerve  
    (sty = semantic type of the concept; cui_pn = concept unique identifier name) 

 Original text =~ /eye\b/i 
 cui_pn =~ /optic\sneuritis/i 
 cui_pn =~ /vis/i and original text =~ /loss|acuity|diminish|decreas/xi 

9. Identify symptoms originating in the brain stem  
    (cui_pn = concept unique identifier name) 

 Original text =~ /speech|dysphagia|face|diplopia|nystagmus/ix) 
cui_pn =~ /fac|trigeminal\sneuralgia|tic\sdouloureux|tremor/ix 

10. If original text matches arm or leg, distinguish limb complaints between brain stem 
and spinal cord 

 Original text =~ /arm|leg/ix 

 10a. If the original text mentions incoordination, identify as brain stem 

  /incoor/i 

 10b. If the original text mentions weakness or numbness, identify as spinal cord 

  /(weak|numb)/i 
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11. Identify other spinal cord symptoms 
       (cui_pn = concept unique identifier name) 

 Original text =~ /numb|tingl|band|hug|lhermitte/i 
 cui_pn =~ /paresth/i 

12. Identify urinary symptoms 
      (cui_pn = concept unique identifier name) 

 cui_pn =~ /urin|incontinence|bladder|bowel/ix  and cui_pn !~ /infect/i 

13. Identify walking/balance difficulties as brain stem origin 
      (cui_pn = concept unique identifier name) 

 cui_pn =~ /walk|ataxia|balance|dizz/ix 
 cui_pn =~ /vertigo/ix  

Original text =~ /vertigo/i 

14. Load data into database 

15. Match all symptom origins identified to each individual 

 

Medications 

1. Select all Problem Lists (PL) that contain ‘medication’ 

 /medication/i 

2. If any MS medications are found in the PL, print them out along with the ID and note 
date 

 /(?:interferon\sbeta.{0,2}1[ab])|       
   avonex|        
   rebif|         
   betaseron|        
   extavia|        
   glatiramer\sacetate|       
   copaxone|        
   fingolimod|        
   gilenya|        
   natalizumab|        
   tysabri|         
   mitoxantrone|        
   novantrone|        
   teriflunomide|        
   aubagio/ixg 
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APPENDIX C 

 

R TEMPLATE FOR ORIGIN OF FIRST SYMPTOM ANALYSES 

 

library(polytomous) 

library(Hmisc) 

 

##Read in origin categories 

p = read.table("[file path]/IID_pheno.txt", header=TRUE,sep="\t") 

##Read in eigenvalues 

e = read.table("[file path]/keepoutliers.pca.evec_first3_withheader.txt", 
header=TRUE,sep="\t") 

 

##genotypes were coded in an additive model in PLINK and split into different 

  #datasets with 1000 snps each 

   

#read in genotypes and merge with the origins and eigenvalues 

s = read.table("[file path]/split_dataset/recodeAXY.raw", header = TRUE, sep = " ") 

c = merge(s,e) 

f = merge(c,p) 

 

##Polytomous regression analysis 

#Cycle through each SNP (columns 7-1006) 

 

for (j in 1:1000) 

{ 

  index = j+6 #SNP column number 

 

  #Save column name into snp_id and rename column to 'SNP' 
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  snp_id <- names(f)[index] 

  names(f)[index] <- "SNP" 

   

  f$origin <- factor(f$origin) 

   

  anal <- f[,c("origin","e1","e2","e3","SNP")] 

  anal2 <- na.omit(anal) 

 

 

  #Run regression 

  a = polytomous(origin ~ SNP + e1 + e2 + e3, data=anal2) 

    

  #Revert column to SNP name 

  names(f)[index] <- snp_id 

    

  #Save results to a file 

  sink(file=paste("[file path]/setXY/summaryXY.",index,"up.txt",sep="")) 

  print(snp_id) 

  print(a$p.values) 

  sink() 

} 
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APPENDIX D 

 

R TEMPLATE FOR TIME TO SPMS ANALYSIS 

 

library(survival) 

 

##event indicator 

p = read.table("time_to_event_SPMS.txt", header = TRUE, sep = "\t") 

##eigenvalues 

e = read.table("[file path]/keepoutliers.pca.evec_first3_withheader.txt", 
header=TRUE,sep="\t") 

 

##genotypes were coded in an additive model in PLINK and split into different 

  #datasets with 1000 snps each 

   

#read in genotypes and merge with the event indicator and eigenvalues 

s = read.table(file=paste("[file path]/split_dataset/recodeAXY.raw",sep=""), header = 
TRUE, sep = " ") 

k = merge(s,p) 

f = merge(k,e) 

 

##Cox proportional hazards analysis 

  ### CYCLE THROUGH EACH SNP (columns 7-1006) 

  

for (j in 1:1000) 

{ 

 index = j+6 

 a = coxph(Surv(f$year_to_event, f$SPMS) ~ f[,index] + f$e1 + f$e2 + f$e3) 
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 ##Extract results to external file for further processing 

 sink(file=paste("[file path]/setXY/summaryXY.",index,".txt", sep="")) 

 print(a) 

 sink()  

}  
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