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SUMMARY 

 

The focus of this work was to develop a method to predict residue-residue contact in 

proteins and a de novo protein structure prediction method. The developed methods, 

BCL::Contact and BCL::Fold, were benchmarked on large sets of proteins and 

participated in Critical Assessment of Techniques for Protein Structure Prediction 

(CASP) experiments for validation and comparison with other methods in the field. All 

described work is implemented as part of BioChemistry Library, an object-oriented C++ 

library developed in the Meiler Lab for computational biology and cheminformatics 

research. 

Chapter I provides an introduction which includes a brief overview of protein structure 

and experimental methods for protein structure determination, followed by computational 

protein structure and residue-residue contact prediction, biennial assessment of these 

methods by CASP experiments, and methods for protein-protein structure comparison.  

Chapter II describes BCL::Contact, the residue-residue contact prediction method 

utilizing Artificial Neural Networks (ANNs) and how contact prediction can be used to 

improve computational protein structure prediction. Chapter III focuses on knowledge-

based energy potentials which are developed for scoring secondary structure elements in 

proteins and are used in conjunction with BCL::Fold, a novel de novo protein structure 

prediction algorithm. Chapter IV focuses on the minimization framework, as well as the 

moves utilized in BCL::Fold and provides an extensive benchmark of the method. 



xiii 

 

Chapter II is a reproduction of a first author paper “BCL::Contact – low confidence fold 

recognition hits boost protein contact prediction and de novo structure determination” 

published in 2010 in Journal of Computational Biology[1]. Chapter III and Chapter IV 

are reproductions of co-first authored manuscripts titled “BCL::Score – Knowledge-

based energy potentials for proteins with idealized secondary structure representation for 

de novo protein structure prediction” and “De novo prediction of complex and large 

protein topologies by assembly of secondary structure elements” respectively. Both of 

these manuscripts are submitted to PLoS Computational Biology and are result of 

collaborative work with Nils Woetzel.  

The protein structure prediction framework described in Chapter IV serves as the basis 

for BCL::EM-Fold[2], a method for utilizing cryo-EM density maps for protein structure 

prediction, as well as several other methods for which publications are currently under 

progress. These other methods include but are not limited to protein structure prediction 

for membrane proteins, multimeric proteins, integration of NMR, EPR restraints and loop 

building. 
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CHAPTER I 

 

INTRODUCTION 

 

Protein Structure 

Proteins are macromolecules responsible for diverse functions in biological systems. 

Distinct three dimensional structures that proteins adopt play crucial roles in their 

biological functions. Therefore, knowing the structure of a protein can reveal significant 

functional information. 

Proteins are composed of one or more polypeptide chains, where each chain is made up 

of a sequence of amino acids. The length of each polypeptide chain can vary between 

twenty to thousands of amino acids. The sequence or “primary structure” of a protein 

implies a concatenation of one letter abbreviations for amino acids found in the chain. 

Amino acids contain an amine group, a carboxyl group and a side-chain group which 

varies for each type of amino acid. Twenty genetically encoded amino acid types are the 

building blocks of proteins.  

Hydrogen bonds formed between the backbone amide hydrogen and the backbone 

carbonyl group lead to formation of secondary structure elements (SSEs) called α-helices 

and β-strands. Secondary structure of a protein refers to these stretches of secondary 

structure elements, whereas, tertiary structure is defined as the three-dimensional 

organization adopted by the packing of these SSEs. It is defined by primarily side chain 

interactions such as disulfide bridges, hydrogen bonds, ionic interactions, and van der 
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Walls interactions. Two or more polypeptide chains from the same protein or different 

proteins can also form interactions with each other, forming quaternary structure. 

 

Protein Structure Determination 

Experimental methods such as X-ray crystallography and nuclear magnetic resonance 

(NMR) can be utilized to determine the atomic coordinates, thus the tertiary structure of a 

protein. The experimentally determined structure files are commonly deposited in the 

Protein Databank (PDB)[3]. As of July 2011, the PDB contains 68,915 protein structures. 

These structures correspond to 17,699 unique clusters when filtered by 30% sequence 

identity. A large majority of these structures were determined using X-ray 

crystallography (60,652 structures) and NMR (7,840 structures) with the rest determined 

by electron-microscopy (254 structures), hybrid methods (36 structures) and other 

methods (133 structures). Despite these large numbers, many proteins of interest evade 

crystallization which is required for X-ray crystallography or are too large/unsuitable for 

NMR studies. More importantly, while membrane proteins account for nearly one third of 

current drug targets, there are only 1441 membrane protein structures deposited in the 

PDB. 

  

Protein Structure Prediction 

In the absence of knowledge of the atomic structure of a protein, computational methods 

can be utilized to predict secondary, tertiary, or quaternary structures for proteins of 

interest. With the increased availability of computational resources and the development 
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of complex and robust algorithms, these computational methods currently provide 

researchers an alternative to gain structural insight to protein of interest in cases where 

experimental methods are not applicable. 

Protein structure prediction methods can be divided into two broad categories; (1) 

template-based methods which rely on one or more template proteins with a determined 

structure and a high sequence similarity to the protein of interest, and (2) de novo 

methods which do not assume the existence of such template proteins. 

All protein structure prediction methods work on a given primary sequence information 

to generate a structural model with atomic coordinates. Depending on the method 

utilized, this process can take as little as few minutes. However, a single structural model 

does not provide high confidence structural insight. Conventionally, thousands of models 

are generated followed by a refinement step where only a small portion of the models are 

retained. The set of refinement protocols utilized depends on the method used for 

predicting models and can include filtering by predicted energies and clustering using 

structural distances. 

Computational methods for protein tertiary structure prediction are evaluated biennially 

in Critical Assessment for Techniques for Protein Structure Prediction (CASP) 

experiments [4, 5]. CASP provides a blind experiment setup to evaluate a large number 

of protein structure prediction methods with a consistent set of parameters and therefore 

provides assessment of the improvements in the field in addition to highlighting the 

strengths and weaknesses. The CASP committee works with structural biologists and 

structural genomics centers to acquire target sequences for which the tertiary structures 

have been experimentally determined or are about to be determined. During a three 
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month summer prediction season, the target sequences are relayed to participating 

methods and tertiary structural models predicted by these methods are collected. 

Typically, a 2-3 week prediction time is allowed for each target and ~100 targets are 

released in an overlapping fashion during this 3 month period. The target proteins are 

categorized into two groups; template-based modeling targets (TBM) and free modeling 

targets (FM) based on the availability and the sequence similarity of template proteins 

with known structure for the given target. Participating methods are also categorized into 

two groups as human predictors and servers. Methods participating in the server category 

have to provide a webserver where target submission and retrieval of the predicted 

models can be automated through a webserver interface with no human interference. For 

server groups, the prediction time allowed is typically much shorter than for human 

predictor groups, and is one to two days for most targets. In the 9
th
 round of the CASP 

experiment (CASP9), which was held in the summer of 2010, 139 server groups and 109 

human groups participated in the tertiary structure prediction category, while 129 targets 

for server groups and 60 targets for human groups were released. 102 out of the 129 

targets for server groups, and 46 out of the 60 targets for human groups had at least one 

TBM domain. 

In addition to tertiary structure prediction, CASP experiments also evaluate a variety of 

protein structure related categories. These include; residue-residue contact prediction 

(RR), identification of disordered regions (DR), function prediction (FN), quality 

assessment (QA) as well as refinement where the participating groups compete in a 

second prediction round to improve the accuracy of submitted models from the first 

round. 
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Protein Structure Comparison Methods 

Assessment of the quality of protein structural models generated by computational 

protein structure prediction methods requires methods for comparison with the native 

structure.  The most commonly used method is root mean square deviation (RMSD). 

RMSD measures the average distance between corresponding atoms in the two 

superimposed protein structures. For de novo predicted models, usually RMSD is 

calculated for only Cα atoms, while all backbone atoms or all atoms can be used for high 

accuracy evaluation of homology/template-based modeling.  

When benchmarking protein structure prediction methods on a large set of proteins of 

variable lengths, just relying on RMSD values causes issues due to the fact that a 6Å 

RMSD structural model for a small protein is actually easier to achieve than the same 

RMSD structural model for a larger protein. In order to evaluate prediction accuracies 

among benchmark proteins with varying lengths, a normalized RMSD value named 

RMSD100 is used[6]. By convention, structural models with less than 8Å RMSD are 

considered to have native-like topologies. 

In the early years of the CASP experiment RMSD was the only means for evaluation. 

However, since RMSD measures the best global superimposition, it is unable to 

recognize good local superimposed regions in structures, as in the case of multi-domain 

proteins. To overcome this issue, a variety of supplemental protein structure comparison 

methods have been developed. MaxSub[7] and Global Distance Test (GDT) [8] are both 

measures that put more importance on good local structural alignments rather than a good 

global structural alignment. GDT is calculated by the largest set of atoms that can be 

superimposed below a given distance cutoff and returned as the percentage of total 
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number of atoms. A variant of GDT measure, GDT_TS returns the average of GDT 

values for 1Å, 2Å, 4Å and 8Å distance cutoffs, while GDT_HA (for high accuracy 

comparison), is the average of GDT values for 0.5Å, 1Å, 2Å and 4Å distance cutoffs. 

 

Template Based Protein Structure Prediction 

Proteins with similar sequences are very likely to have similar tertiary structures. 

Template-based methods leverage this fact to predict tertiary models for given protein 

sequences. The process starts with identification of template proteins with determined 

structures and high sequence similarities (typically >30%) to the protein sequence of 

interest. The structural information of the template proteins serve as a starting point. In 

the absence of a single template protein with a very high sequence similarity, many 

methods combine structural information from multiple template proteins with lower 

sequence similarities.  

The successes of the template-based methods rely on the existence of such templates. 

Cozzetto et al[9] provides a good overview of template based methods that participated in 

CASP8 along with a detailed analysis of accuracies of the predicted models.  Zhang 

server[10] was the top ranking in the server category, while a large group of methods 

were considered to be top performing for the human category, including Rosetta, Zhang, 

Zhang-Server and TASSER[10-12]. 

 

 

 



7 

 

De novo Protein Structure Prediction 

De novo methods do not rely on the existence of template proteins for protein structure 

prediction. In theory, this makes de novo methods applicable to a larger set of proteins. 

Unlike template based methods where the template protein structure is used as the 

starting point, de novo methods have to assemble the structure from sequence information 

only, usually starting with an extended chain conformation. As expected, this tends to be 

a much more difficult task. Therefore, compared to template-based methods, the expected 

accuracies of de novo methods for proteins with high sequence similarity templates are 

lower. Another drawback arising from the increased complexity that comes with de novo 

methods is the significant increase in the structure conformations that need to be sampled. 

In order to overcome this increase in conformational search space, most de novo methods 

rely on a simplified energy function where side chain atoms are usually missing or 

represented with the “centroid” atoms that replace Cβ atom and represent the properties 

of the side chain. These kinds of simplifications in protein representation are also 

reflected in the energy functions used and are aimed to first make the energy landscape 

smoother and more importantly to allow faster calculation of energies. In addition to 

energy functions, most de novo methods also try to employ a more reductionist approach 

in their sampling strategies, by applying larger changes such as larger and more frequent 

phi/psi angle alterations in each step.  

De novo protein structure prediction typically starts with predicting secondary structure 

[13-16] and other properties of a given sequence such as -hairpins [17], disorder [18, 

19], non-local contacts [20], domain boundaries [21-23], and domain interactions [24, 

25]. System-learning approaches most commonly used in this field include artificial 
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neural networks (ANN), hidden Markov models (HMM), and support vector machines 

(SVM) [26, 27].  

This preparatory step is followed by the actual folding simulation. Rosetta, one of the 

best performing de novo methods, follows a fragment assembly approach [28-30]. For all 

overlapping nine- and three- amino acid peptides of the sequence of interest 

conformations are selected from the PDB by agreement in sequence and predicted 

secondary structure. Rosetta is capable of correctly folding about 50% of all sequences 

with less than 150 amino acids [31].The size limitation is due to the increase in 

conformational search space that needs to be sampled as the protein gets larger and in 

part due to the fragment assembly strategy. Replacement of fragments favors formation 

local-contacts, as in an ordered β-sheet, and therefore causes problems as proteins gets 

larger and are more likely to have complex topologies where non-local contacts are more 

readily observed. The simulation of the whole sequence as a connected chain prevents 

sampling different conformations easily since different topologies might require 

untangling of the loops and can easily cause knots. Although Rosetta is a de novo 

method, the generation of fragment libraries requires matching the given sequence to 

large database of available PDBs. Even if the fragments are relatively short in length, 

three- and nine- amino acids, the method expectedly performs better for proteins for 

which the fragment database has one or more high sequence similarity proteins. 
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Protein Structure Prediction using Limited Experimental Restraints 

For a large set of proteins, high resolution structural information is not attainable due to 

technical limitations of methods used. In such cases, a variety of experimental methods 

can be utilized to collect limited experimental restraints. These limited data sets, although 

insufficient for protein structure determination individually, can still serve as structural 

restraints or constraints. Such experimental restraints are becoming more readily 

available for challenging and interesting proteins and can be crucial in gaining structural 

and function insight as well as determination of further investigations.  

Cryo-electron microscopy (cryo-EM) is applicable to large proteins and macromolecular 

complexes (eg. viral capsid). The density maps obtained using cryo-EM can provide 

topological information with identification of α-helices starting at 9-10Å resolution, 

while β-strands can be identified at 4-5Å resolution. Electron paramagnetic resonance 

(EPR) can provide distance restraints between tagged amino acids, while mass 

spectrometry can be used to identify di-sulfide bonds. In addition, NMR can provide 

distance restraints, angle restraints and orientation restraints (residual dipolar couplings). 

Mass spectrometry coupled with chemical cross-linking can also provide low-resolution 

structural information. Lastly, small angle X-ray scattering (SAXS) and small angle 

neutron scattering (SANS) provide information of the shapes and sizes of proteins. 

These limited structural data sets are not equally distributed throughout the proteins but 

instead are more readily available for backbone and SSEs as observed in many examples 

[2, 32-34]. This preference can be due to dynamics and labeling strategies used, since 

SSEs tend to be more rigid compared to flexible loop regions. The structural information 

in these data sets may not be sufficient enough to build a high accuracy structural model 
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for a given protein. However, these restraints/constraints have a great impact when 

combined with computational protein structure prediction methods. The restraints can 

significantly limit the conformational search space that needs to be sampled for protein 

structure prediction. By doing so, the predicted models can achieve higher accuracy than 

present in the experimental data as the remaining conformational search space is sampled 

more densely.  

Over the last decade, a variety of protein structure prediction methods both template-

based and de novo have been developed/updated to integrate these experimental restraints 

[35-38]. In template-based methods, these additional restraints can help to achieve a very 

high accuracy model. For targets where template-based modeling is not applicable due to 

lack of high sequence similarity template proteins, these experimental restraints can be 

used in conjunction with de novo protein structure prediction methods to sample native-

like topologies more frequently. This integration can allow application of de novo 

methods to larger proteins to which de novo methods normally could not have been 

applied to with a reasonable amount of computational run time requirement and an 

acceptable level of expected accuracy in the predicted models. 

  

BCL::Fold 

BCL::Fold has been developed to address the current limitations of de novo protein 

structure methods in the field in applicability to larger proteins with complex topologies. 

The sequence assembly approaches employed by many de novo protein structure methods 

like Rosetta[28] have difficulty sampling conformations with an abundance of non-local 
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contacts, where parts of the sequence far away from each other in sequence order tend to 

be close to each other in three dimensional structure. This limitation is the direct result of 

simulating the folding of a protein by starting from an extended conformation. The size 

of the protein is another major bottleneck for de novo methods. Currently de novo 

methods perform well and are able to generate structural models with native-like 

topologies for proteins of lengths mostly below 150 residues.  

 

Figure 1 : Comparison of comparative modeling, BCL::Fold and Rosetta:  In 

comparative modeling backbone is constructed partially from alignment, followed by 

loop construction and side chain building. On the other hand, de novo methods, such as 

Rosetta, only take advantage of the decoupling of backbone placement and the side chain 

building. BCL::Fold also decouples the construction of loops from assembly of secondary 

structure elements, similar to comparative modeling. Although these decouplings make 

computation more feasible by splitting the total search space into manageable portions, 

they are not absolute and in order to address these issues SSE placement has to be refined 

before loop building and backbone needs to be refined when side chains are constructed. 

 

Traditionally construction of backbone of a protein has been separated from construction 

of side chain. This strategy is employed by both comparative modeling and de novo 

structure prediction methods (Figure 1). This decision is based on the assumption that 

overall placement of backbone is possible without explicit modeling of side chain atoms, 
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i.e. once the backbone is placed, the placement of side chains follow suite [39]. This 

approach can be further divided by decoupling of placement of SSEs and flexible loop 

regions as observed commonly in comparative modeling methods.  

BCL::Fold builds upon this hypothesis as a novel approach where secondary structure 

elements (SSEs); namely α-helices and β-strands are assembled together while loops are 

not explicitly represented and modeled (Figure 1). The lack of loop connectivity allows a 

more robust sampling of different placements of SSEs and aims to overcome the size and 

complexity limitation. This strategy also leverages the fact that SSEs are sufficient in 

most cases to define the topology of a protein. Similar to other de novo methods, 

BCL::Fold also decouples the building of side chains from the placement of backbone 

atoms. Another positive outcome of this approach is that complex topologies with 

abundance of non-local contacts can be easily sampled since locations of SSEs can be 

readily swapped with each other as long as they are not too far from each other so that the 

loop can be closed after the minimization has ended. More importantly, BCL::Fold 

provides a simple and efficient tool to sample topologies which can be followed by any 

suitable choice of loop building and side chain building method in the field. This strategy 

also fits very well with the general protocol of de novo methods, where a very large 

number of models are generated only to be filtered down to a small percentage by score 

or clustering. By using BCL::Fold building of loops and side chains can be avoided until 

the filtering/clustering is completed and only a subset of models are left to continue with 

making the overall process rather efficient. 
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Contact Prediction 

Two residues in a protein sequence are considered to be in “contact” if they are spatially 

close in the tertiary structure, conventionally with a Cβ-Cβ distance ≤8Å. In the absence 

of structural information, correct identification of all such contacting residue pairs in a 

given protein sequence can mediate structure determination using distance geometry 

methods [40, 41]. Contacts can be categorized into two groups based on the sequence 

separation (typically 12 amino acids) of residues that are in contact: (1) local contacts and 

(2) non-local contacts. Knowledge of even a small subset of non-local contacts can be 

extremely beneficial for protein structure prediction, since these contacts provide higher 

degree information than local contacts about the fold of a protein [42-44]. Therefore, 

contact prediction has been a topic of interest in the field of computational structural 

biology and can be utilized for inferring protein folding rates and pathways [45, 46] in 

addition to fold recognition [47, 48]. Similar to any experimental distance 

restraint/constraint, accurate prediction of contacts can improve the accuracy and the 

speed of de novo protein structure prediction by being used as an additional energy term 

and a filter for large number of generated models.  

Contact prediction methods are classified into two groups [48]: (1) sequence-based and 

(2) structure-based. Sequence-based methods often use evolutionary correlated mutations 

[24, 49-55] and machine learning approaches [55-62] such as artificial neural networks 

(ANNs), Hidden Markov models (HMMs), or support vector machines (SVMs) to predict 

contacts.  On the other hand, structure-based methods generally cluster best energy 

models generated by structure prediction techniques and pick the contacts that are 

observed most abundantly across the clusters [63-71].  As expected, structure-based 
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methods outperform sequence-based methods, especially if proteins of similar fold 

(templates) are available in the PDB and hence the predicted structural models are of high 

quality [64].  

 

BCL::Contact 

Although structure-based methods outperform sequence-based methods for contact 

prediction in terms of accuracy, in de novo protein structure prediction, applicability of 

structure-based methods is limited due to the absence of highly similar and complete 

structural templates in addition to being computationally expensive.  

BCL::Contact is a bi-modal contact prediction method that employs both sequence-based 

and structure-based contact prediction. The sequence-based mode distinguishes itself by 

employing specialized ANNs for each distinct contact type and was developed for 

providing predictions rapidly in order to be used as input to de novo protein structure 

prediction methods. On the other hand, structure-based mode utilizes a single ANN in 

conjunction with models generated from fold recognition servers. This bi-modal 

approach allows assessment on the impact of contact prediction in protein structure 

prediction in cases where no sequence homologs are readily available. 

BCL::Contact was designed to eventually be used in conjunction with BCL::Fold. With 

the integration of correlated mutations, BCL::Contact is planned to be added as an energy 

function and/or as an additional filter for discriminating native-like models in BCL::Fold. 
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BioChemistry Library 

BioChemistry Library (BCL) is a scientific software library developed in the Meiler 

laboratory. As of 2011, BCL consists of more than 500,000+ lines of code and 

encompasses a variety of applications. Two main focuses of the library are computational 

biology tools for proteins and cheminformatics research. In addition to these, the BCL 

library includes methods for protein secondary structure prediction, protein sequence 

alignment, representation and storage of biological data, protein-protein structural 

comparison, energy functions for evaluation of protein structures, descriptor generation 

for protein sequences for development of further machine learning based methods, 

database access, machine learning via Artifical Neural Networks (ANN), Support Vector 

Machines (SVM) and a very flexible minimization/optimization framework that supports 

Monte Carlo-based minimizations on proteins and other targets. 

Applications developed within BCL are released to the public via the BCL Commons 

website (http://bclcommons.vueinnovations.com/bclcommons) as well as via the Meiler 

lab website (http://www.meilerlab.org) as web servers. The releases for the applications 

are done concurrently with the publication of the corresponding methods. These 

applications are freely available to any academic entity, while a fee is charged for 

commercial uses. 

  

http://bclcommons.vueinnovations.com/bclcommons
http://www.meilerlab.org/
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CHAPTER II 

 

BCL::CONTACT – LOW CONFIDENCE FOLD RECOGNITION HITS BOOST 

PROTEIN CONTACT PREDICTION AND DE NOVO STRUCTURE 

DETERMINATION 

 

Introduction 

The contact prediction problem is defined as the identification of all spatially close 

residue pairs in the tertiary structure of a given protein sequence (conventionally Cβ-Cβ 

distance ≤8Å). The motivation to solve this problem is that a complete list of all contacts 

defines the fold of the protein and allows structure determination using distance geometry 

methods [40, 41]. However, even very incomplete lists of long range contacts can 

facilitate protein fold prediction by reducing the number of possible topologies 

sometimes to a unique solution [72]. 

It is important to understand that not all contacts within a fold have the same value for 

protein structure prediction. While local contacts (contacts between amino acids nearby 

in sequence) are more readily predicted (e.g. within an α-helix or β-hairpin), their ability 

to constrain the fold space is limited. The challenge is predicting contacts between 

residues distant in sequence (sequence separations larger than 12 amino acids). Knowing 

only a few of these contacts frequently allows the fold of a protein to be defined 

completely [42-44].   
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Therefore, contact prediction methods have the potential to improve the speed and the 

accuracy of de novo protein structure prediction methods in two ways [44]: they can be 

used to enrich for good models in large ensembles of structural models or they can 

directly be used to guide de novo folding simulations. Furthermore, contact prediction is 

useful for fold recognition [47, 48] and inferring protein folding rates and pathways [45, 

46]. 

Contact prediction methods can be classified into two groups [48]: (1) sequence-based 

and (2) structure-based. Sequence-based methods often use evolutionary correlated 

mutations [24, 49-55] and machine learning approaches [55-62] such as artificial neural 

networks (ANNs), Hidden Markov models (HMMs), or support vector machines (SVMs) 

to predict contacts.  

A powerful concept in sequence-based contact prediction is use of evolutionary 

correlated mutations[49, 73, 74]. From multiple sequence alignments, residue pairs are 

identified that are mutated concurrently between sequences in the alignment throughout 

evolution. Often spatially close residues are mutated to complement the initial mutation 

and maintain the protein’s structure and/or function [49]. Therefore, identification of such 

residue pairs yields potential residue-residue contacts. Halperin et. al [53] reviews use of 

correlated mutations for predicting inter-protein and intra-protein contacts and concludes 

correlated mutations by themselves can predict contacts with up to 20% accuracy [53]. In 

comparison, SAM_T06 by Shackelford and Karplus [68], implements a hybrid approach 

where information from correlated mutations along with various additional descriptors 

are used to train ANNs for predicting contacts with accuracies ranging up to ~60% for 

certain difficult targets while averaging ~25% for long distance contacts [44].  
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PROFCON [61], which ranked as one of the top groups in CASP6 also uses ANNs with 

descriptors including evolutionary profiles and secondary structure prediction. SVMCON 

uses similar descriptors with SVMs instead of ANNs, and is reported to achieve 27.7% 

accuracy for >= 12 residue sequence separation contacts [62]. A recent report by Wu and 

Zhang[64] introduces SVM-SEQ, a sequence-based contact predictor, and SVM-

LOMETS, a structure template-based predictor based on previously reported LOMETS 

[69] meta-threading server which uses predictions from 9 different threading algorithms. 

In their analysis of predictions for an independent data set, accuracy of SVM-LOMETS is 

39% and accuracy of SVM-SEQ is 23%. However when only new fold targets in CASP7 

are considered, SVM-SEQ outperforms SVM_LOMETS and reaches an accuracy slightly 

better than of SAM_T06. 

On the other hand, structure-based methods generally cluster best energy models 

generated by structure prediction techniques and pick the contacts that are observed most 

abundantly across the clusters [63-71]. PROSPECTOR_3.5 [70] implements a template-

based approach where it collects the contacts found in the tertiary models produced by 

TASSER_2.0 [70] and picks the ones that are commonly observed across tertiary models. 

SVM-LOMETS [64], as described before, uses a similar approach but instead depends on 

LOMETS meta-server.  As expected and as reported[64], structure-based methods 

outperform sequence-based methods, especially if proteins of similar fold (templates) are 

available in the PDB and hence the predicted structural models are of high quality [64]. 

However, in de novo protein structure prediction, applicability of structure-based 

methods is limited due to the absence of highly similar and complete structural templates. 
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Further, the computational intensity of protein structure prediction prior to contact 

prediction requires significant time and resources.  

BCL::Contact introduces a novel hybrid approach where the sequence-based mode only 

relies on sequence information and utilizes individual ANNs for each distinct contact 

type. The structure-based mode combines results from various fold recognition servers 

using a single ANN. Here we present evaluations and comparisons of both modes of 

BCL::Contact on predicting contacts. In particular, the value of fold recognition for 

contact prediction in the hard fold recognition and new fold categories are evaluated. The 

object of this work is to evaluate if consensus fold recognition results improve contact 

prediction even if no sequence homologs were unambiguously detected by the underlying 

fold recognition methods. Further, the impact of contact prediction on de novo tertiary 

structure determination is measured by testing the ability of predicted contacts to a) 

enrich for native-like models in a set of decoys or b) directly guide protein folding 

simulations using the Rosetta de novo protein folding algorithm [30]. 

 

Methods 

Contact Definitions and Contact Types 

We use a Cβ-Cβ distance of 8Å or less as a threshold for defining two amino acids as 

being in contact. A minimum sequence separation of 12 residues is required to 

exclusively focus on non-local contacts. Furthermore, the sequence-based mode uses five 

distinct contact types between secondary structure elements in the order as they appear in 

the protein sequence: helix-helix, helix-strand, strand-helix, strand-strand and sheet-sheet. 
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This distinction was introduced to test the ability of the ANN to specialize for specific 

types of interactions between secondary structure elements. It is limited to the sequence-

based mode due to the limited amount of training and test data available for the structure-

based methods. 

 

Protein Data Sets and Training Procedures 

For the sequence-based mode, a non-redundant (20% sequence similarity) 1834 protein 

subset of the Protein Data Bank (PDB) was selected using the PISCES server [75] . 10% 

of the structures were selected as an independent dataset and removed prior to training 

the ANNs. With the remaining 90%, 10 ANNs for each of the five contact types were 

trained in a cross-validation setup using a different non-overlapping 10% of the data as a 

monitoring data set. 

For the structure-based mode, 545 proteins which served as targets during 

LIVEBENCH7, LIVEBENCH8 and LIVEBENCH9 experiments [76] were used as the 

training dataset. 12% of these proteins (66) were withheld for independent testing. 

Independent ANNs were trained in a ten-fold cross-validation setup with non-overlapping 

monitoring data sets. 

For both modes, sequence-based and structure-based, the average output from the ten 

ANNs is reported as the prediction result. All ANNs were trained in a “balanced” fashion 

with 50% contacts and 50% non-contacts by under-sampling the non-contacts. In 

sequence-based mode, the 50% non-contacts were a mixture of “true non-contacts” and 

“wrong-contacts” (contacts between other types of secondary structure elements). The 
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large ratio of non-contacts to contacts would otherwise bias the ANN towards predicting 

non-contacts. 

 

Numerical Representation 

In the sequence-based mode of BCL::Contact, for every residue pair (i,j), two sequence 

windows centered around these residues are used to generate input. The length of the 

window is chosen as five amino acids (two neighbors on each side of the amino acid of 

interest) for β-strands and nine amino acids (four neighbors on each side of the amino 

acid of interest) for α-helices. Both windows cover approximately 12 Å or two periods of 

the secondary structure element type.  

Input to the ANNs (Figure 2) start with three position descriptors (1) number of residues 

N-terminal to i, (2) number of residues between i and j, (3) number of residues C-

terminal to j. These global descriptors are followed by following descriptors for each 

amino acid in the two windows; JUFO three-state secondary structure prediction 

(www.meilerlab.org, three numbers per amino acid) [15], amino acid property profiles 

(seven numbers per amino acid; sterical parameter, polarizability, volume, 

hydrophobicity, isoelectric point, helix probability and strand probability) [77], as well as 

position specific scoring matrices from PSIBLAST 20 numbers per amino acid)  [78]. 

Hence, the five ANNs had a variable number of inputs determined by the associated 

window lengths; helix-helix 543, helix-strand and strand-helix 423, strand-strand and 

sheet-sheet 303. All five ANNs had 16 hidden neurons, and one output neuron with an 

output range of [0, 1] with 0 being “non-contact” and 1 being “contact.” A consensus 

http://www.meilerlab.org/
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output is obtained from these five ANNs by weighing their prediction with the secondary 

structure predictions of both residues i and j as follows:  

 

 (                  )   

( ( )    ( )             (    ))( ( )    ( )              (   ))  

  ( ( )    ( )             (   ))

  ( ( )    ( )   (            (   )             (   )  ))⁄  

(1) 

  

Where H(x) is the secondary structure prediction α-helix probability of residue x and S(x) 

is the secondary structure prediction β-strand probability of residue x, HelixHelix(x,y), 

HelixStrand(x,y), StrandHelix(x,y), StrandStrand(x,y) and SheetSheet(x,y) are predicted 

probabilities of contact for the residue pair (x,y) from each individualized ANN. 

In the structure-based mode, the fold recognition results of 32 servers [79-98] that 

participated in the LIVEBENCH7, LIVEBENCH8 and LIVEBENCH9 experiments [76] 

were used as input (Table 1). The predictions were downloaded for 545 target proteins 

from the metaserver homepage (www.bioinfo.pl) [86]. The initial design of this method 

included only 24 servers, but no significant reduction in accuracy was observed. 

Nonetheless, reduction of number of servers used below a critical number or selective 

removal of the best fold-recognition servers is expected to have a negative effect on the 

accuracy of the method.  

 

 

 

http://www.bioinfo.pl/
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Table 1: List of tertiary structure prediction servers used by structure-based mode.  

3ds3 fugsa Pcomb Robetta 

3ds5 FUGU3 Pcons2 Sam-T99 

bas_b GenTHREADER Pcons3 Sam-T02 

bas_c INBGU Pcons4 SFST 

Blast Mbam PDB-Blast SHGU 

FFAS03 mGenTHREADER Pmodel3 SPARKS 

FOLDFIT orfBC Pmodel4 Supfampp 

FORTE1 ORFeus PROSPECT2 Wurst 

 

The input to ANN for the structure-based mode utilizes information from the models 

provided by these 32 servers in addition to similar sequence descriptors used by the 

sequence-based mode. A global agreement (GA) of the server predictions is calculated for 

each given target sequence as the fraction of contacts jointly predicted by all servers over 

the number of all predicted contacts. For every residue i and j , the input to the ANN 

consists of six global descriptors, (1) number of residues N-terminal to i, (2) number of 

residues between i and j, (3) number of residues C-terminal to j, (4) number of valid 

models from servers where coordinates for i and j were defined (NS), (5) number of such 

models in which i and j were found to be in contact (NC), and (6) the global agreement 

value GA for this given sequence. These global descriptors are followed by JUFO three-

state secondary structure prediction (three values per amino acid) and amino acid 

property profile (seven values per amino acid) for i and j. For each of the 32 servers two 

values are input: (1) the inverse of the minimum distance observed between i and j in the 

ten models available for each server (MD), (2) the agreement of this server’s predictions 

for i and j with all other servers (AG - if i and j predicted to be in contact by this server 

S1, iterate over every other server S2 that also predict i and j to be in contact and sum over 

the ratio of contacts S1 and S2 share). This process is illustrated in Figure 2. The ANN had 
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90 inputs, 32 hidden neurons, and one output neuron. The output range is [0, 1] with 0 

being “non-contact” and 1 being “contact.” 

 

 

Figure 2: Scheme for sequence-based and structure-based ANN contact prediction: 
(A) For a given sequence, contact predictions are calculated for every residue pair i and j. 

Sequence windows around positions i and j are taken into account in the sequence-based 

mode. (B) The numerical representation for both methods consists of sequence 

descriptors, single residue, and pair residue descriptors. The sequence descriptors include 

number of residues N-terminal to i, number of residues between i and j, and number of 

residues C-terminal to j. The sequence-based mode uses sequence windows centered on 

residues i and j of length 5 residues (2 neighbors on each side) for β-strands or 9 residues 

(4 neighbors on each side) for α-helices. (C) The numerical representations are fed to 

ANNs. The structure-based mode reports the output of the single ANN while for 

sequence-based mode, the outputs from the five specialized ANNs for individual contact 

types is obtained using equation (1). 
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ANN Training and ROC Curve Analysis 

The training algorithm was back-propagation of errors. The ANNs were trained until the 

root mean square deviation of the monitoring dataset was minimized (approximately 

10,000 training periods). Training takes about 24h on a single typical PC processor.  

The predictions from both methods were analyzed using receiver operating characteristics 

(ROC) curves. For all ROC curves, Area Under Curve (AUC) values are reported to 

quantify the improvement over a random predictor. 

All methods for training, analysis, and contact prediction are implemented in the 

BioChemistry Library (BCL), an in-house developed C++ programming library.  

 

Rosetta Model Building Guided by BCL::Contact  

Improving accuracy of protein structure prediction is one the most important aims behind 

development of contact prediction methods. Thus, in order to further analyze the 

performance of BCL::Contact, contact predictions from BCL::Contact have been used as 

additional input to the protein structure prediction program Rosetta[30]. 

Rosetta was modified to include an additional contact prediction score. Disregarding 

predictions below a certain threshold, Rosetta assigns bonuses in the energy function 

during the folding process for structures in which residue pairs predicted to be in contact 

are found within 8Å (Cβ-Cβ distance). Variations on the threshold were systematically 

tested on the benchmark set of proteins and 0.2 was found to give optimum performance.  

A subset of 17 structures was selected from all targets released in LIVEBENCH7, 

LIVEBENCH8, CASP5, and CASP6. The selection was based on having a size of less 
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than ~150 residues (limitations of Rosetta for de novo folding) [31] and being a hard fold 

recognition or de novo target without a known template (3D Jury J score lower than 50 

http://bionfo.pl [86]). The rationale for choosing hard fold recognition targets was to 

realistically test the impact of such low confidence fold recognition results on de novo 

protein structure determination. The resultant subset was formed of the following 

structures; 1hjz, 1j1t, 1j26, 1l3p, 1lxj, 1mzb, 1nek, 1oh1, 1ojg, 1owx, 1oz9, 1p0z, 1p57, 

1roc, 1sou, 1uan, 1v32. None of these structures was used in training any of the ANNs 

used by BCL::Contact. 

For all 17 proteins, 10,000 structural models were generated using Rosetta’s unaltered de 

novo folding protocol. The runs were then repeated for each protein with contact 

predictions from the sequence-based mode and with contact predictions from the 

structure-based mode as additional inputs.  

 

Enrichment of native-like de-novo models 

To test the ability of predicted contacts to select for native-like models and discriminate 

incorrect fold topologies, enrichment values were computed among the 10,000 models 

generated with Rosetta’s unmodified de novo folding protocol. The enrichment values of 

low-RMSD de novo models are calculated as follows: 

 

  
   

        
 

 

(2) 

where n is the total number of models (~10,000) and m is number of models in the top 

10% by  root mean square deviation (RMSD) that can also be found in the top 10% by 

http://bionfo.pl/
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the newly implemented Rosetta sequence-based and structure based contact scores, 

respectively. 

 

RMSD and MAXN% Distributions of de-novo Models 

The Rosetta models generated with and without the use of contact prediction as input 

were compared by their distributions of RMSD and MAXN% (percentage of residues that 

can be superimposed to the native within 4Å) [99] for all models generated for 17 

benchmark proteins.  Both of these values are computed within Rosetta. 

The top, 10
th
 percentile, and average values for RMSD and MAXN% are reported in 

Table 1 and Table 2 for all 17 proteins. For cases where improvements are observed, p-

values are calculated from one-tailed t-tests to assess the statistical significance of 

improvements. In addition, the distributions are presented in histogram plots in Figure 5.   
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Results and Discussion 

The Sequence-based mode correctly predicts 42% of native contacts with a 7% false 

positive rate while structure-based mode correctly predicts 45% of native contacts with a 

2% false positive rate.  

The sequence-based mode was tested with 183 proteins excluded from the training sets 

(10%). ROC curves for the average outputs for each contact type specific ANN and 

merged values (as described in Figure 2) are shown in Figure 3a along with the Area 

Under Curve (AUC) values. The helix-helix ANN achieves an AUC of 0.796. Helix-

strand and strand-helix ANNs have AUC values of 0.834 and 0.831, respectively. Sheet-

sheet contacts (0.784) and strand-strand contacts (0.789) are hardest for our method to 

predict correctly, because, in contrast to all other classes of contacts, distinguishing these 

contact types is not possible by predicted secondary structure. The consensus prediction 

method has an AUC value of 0.835. The significant deviations from the random predictor 

(the diagonal) for all ANNs indicate that the sequence-based mode is able to identify a 

substantial fraction of the non-local contacts correctly. With merged predictions and a 

threshold of 0.4, the sequence-based mode was able to correctly predict 42% of native 

contacts while identifying falsely 7% of non-contacts as contacts (Table 2). 

The structure-based mode has been benchmarked with 66 LIVEBENCH [76]  targets 

excluded from training. Figure 3b shows ROC curves displaying the average predictions 

for the independent dataset along with predictions from the sequence-based mode for the 

same dataset and corresponding AUC values. The structure-based mode (0.860) 

outperforms sequence-based mode (0.795) for these targets. The inset shows a clear 
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differentiation between sequence and structure-based modes in the region corresponding 

to higher predictions. 

 

Figure 3: Receiver Operator Characteristics (ROC) curves for sequence-based and 

structure-based modes: (A) The ROC curves for sequence-based mode using the 

independent data set of 184 proteins are plotted. Individual curves are presented for all 5 

ANNs specialized for individual contact types, the merged predictions, and the random 

predictor (diagonal). The helix-strand and strand-helix are represented with only one 

curve since they are virtually identical. The inset provides a magnification for the high 

confidence prediction region. AUC (Area under curve) values for these curves are 0.796 

(helix-helix), 0.834 (helix-strand), 0.831 (strand-helix), 0.789 (strand-strand), 0.784 

(sheet-sheet), and 0.835 (merged). (B) Plot shows ROC curve (same as (A)) for the 

structure-based mode benchmark on 66 LIVEBENCH targets excluded from the training 

and monitoring data sets. In addition, curves for the sequence-based mode for the same 
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66 targets and the random predictor are provided. The insert provides a magnification for 

the high confidence prediction region. The AUC values for these curves are 0.860 

(structure-based) and 0.795 (sequence-based). 

 

Table 2: BCL::Contact True Positive Rates (TPR) and False Positive Rates (FPR) 

Threshold 
Sequence-based Structure-based 

TPR FPR TPR FPR 

0.1 90 43 99 82 

0.2 77 24 97 67 

0.3 59 14 91 48 

0.4 42 7 80 28 

0.5 26 3 67 12 

0.6 13 1 56 5 

0.7 5 0 45 2 

0.8 1 0 34 0 

0.9 0 0 13 0 

True Positive Rates (TPR) and False Positive Rates (FPR) for both sequence-based mode and structure-

based modes of BCL::Contact for varying thresholds are reported. The standard deviation for contact 

predictions is smaller than 0.03 in both, sequence-based and structure-based mode. 

 

When predictions above a threshold of 0.7 are identified as contacts, 45% of native 

contacts and 2% of non-contacts in the independent data set are predicted to be contacts  

(Table 2). Since only 5-8% of residue pairs in proteins are found to be in contact, 

absolute numbers for false and true positives are roughly equal at this cutoff.  

In order to facilitate comparison of BCL::Contact with other methods, accuracy of the 

highest L, L/2 and L/5 predictions were calculated for each protein in the independent 

data set where L is the length of the protein of interest (Table 3). The sequence-based 

mode achieved accuracies of 12.2%, 15.4% and 20.9%, while the structure-based mode 

achieved accuracies of 67.4%, 72.7% and 77.0% when the highest L, L/2 and L/5 

predictions are considered. 
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Table 3: Percentage of true positives in highest L, L/2 and L/5 predictions 

pdb id 
Sequence-based Structure-based 

L L/2 L/5 L L/2 L/5 

1T5YA 7.3 6.3 0.0 89.6 91.7 100.0 

1N6UA 11.2 15.0 19.1 86.5 87.9 88.4 

1TC5A 18.3 28.6 52.6 94.4 100.0 100.0 

1VJGA 28.1 40.0 72.7 93.2 93.6 97.7 

1OE4A 10.4 13.6 16.0 95.2 100.0 100.0 

1R75A 11.2 19.7 28.6 35.0 47.9 53.6 

1O70A 13.4 17.1 18.8 40.7 49.4 61.5 

1SF8A 3.1 0.0 0.0 24.2 25.0 20.0 

1HL6B 11.9 13.3 26.7 69.5 81.3 96.7 

1MW5A 9.5 8.4 0.0 17.9 21.1 21.1 

1UX6A 9.0 7.9 0.0 37.8 42.9 40.9 

1VJUA 9.0 11.5 0.0 14.1 14.1 9.7 

1QYDA 14.5 25.3 38.7 93.4 94.9 100.0 

1NU7D 7.0 5.6 7.1 13.3 17.5 28.1 

1OMSA 19.5 26.2 33.3 58.5 68.9 70.8 

1UFOA 18.3 33.3 45.8 96.3 94.2 95.8 

1S1IF 2.4 2.4 0.0 98.2 98.8 97.0 

1PG6A 13.0 11.4 12.5 15.0 11.4 2.0 

1J1LA 12.2 16.3 48.3 90.8 91.8 91.4 

1PSYA 12.6 15.9 33.3 81.1 90.5 96.0 

1ODHA 13.6 15.9 11.8 35.0 46.6 60.0 

1UOCA 9.9 8.2 6.9 93.2 95.2 100.0 

1IZNA 17.2 24.8 48.3 54.8 60.7 65.5 

1M1LA 5.0 8.4 26.1 42.7 47.9 44.7 

1NNWA 16.4 14.1 0.0 97.3 100.0 100.0 

1MZKA 12.8 14.3 14.3 97.9 100.0 100.0 

1EI6A 8.3 16.0 39.0 88.6 95.6 97.6 

1O5HA 5.5 5.6 9.5 25.8 29.6 34.9 

1NW1A 11.5 15.7 32.6 87.6 92.6 98.9 

1J03A 17.3 23.1 60.0 97.1 96.2 100.0 

1S18A 8.9 10.7 30.3 49.1 58.3 83.6 

1SGOA 24.1 40.0 64.3 51.8 58.6 75.0 

1QV9A 13.9 19.6 50.0 85.0 98.6 100.0 

1NQDA 16.1 19.4 41.7 50.8 56.5 62.5 

1VKHA 26.0 42.0 66.7 78.0 79.7 76.4 

1O7DE 14.1 15.6 16.7 76.6 84.4 96.0 

1R71A 8.8 10.0 0.0 50.3 67.8 94.4 

1MJDA 36.5 42.1 54.6 75.7 87.7 95.7 

1RU8A 5.1 1.7 0.0 83.0 86.3 85.1 

1P97A 8.6 6.9 0.0 94.8 94.8 91.3 

1RQPA 17.2 29.1 33.3 61.1 77.5 91.7 

1UMHA 4.3 4.3 11.1 51.3 64.5 73.0 

1N05A 13.9 12.1 0.0 33.7 41.0 51.5 

1UW7A 12.4 13.9 0.0 38.6 52.8 62.1 

1NLXA 5.3 0.0 0.0 50.4 53.6 59.1 

1JOPA 15.3 20.5 26.7 63.7 68.0 67.7 

1L9KA 11.7 13.0 13.3 92.2 97.4 100.0 

1UETA 9.0 13.6 13.6 82.8 81.0 80.7 

1IQ6A 7.4 5.9 0.0 99.3 100.0 100.0 

1Q8RA 8.2 9.8 16.7 65.6 80.3 95.8 

1MZBA 15.9 14.5 0.0 93.5 98.6 100.0 

1P42A 11.0 11.7 22.2 44.2 58.4 66.7 

1NYCA 3.5 0.0 0.0 51.3 60.7 68.2 

1O0PA 11.3 18.9 40.0 99.1 98.1 100.0 

1USUB 0.0 0.0 0.0 56.7 68.6 76.5 
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pdb id 
Sequence-based Structure-based 

L L/2 L/5 L L/2 L/5 

1TE5A 6.9 9.2 7.7 74.0 65.4 61.5 

1RI6A 15.5 13.8 20.6 99.1 100.0 100.0 

1OW1A 7.1 12.1 10.5 27.8 32.3 33.3 

1R61A 9.5 9.5 0.0 71.4 79.1 83.3 

1Q5QA 24.3 36.6 46.2 98.1 97.7 100.0 

1N8NA 17.7 18.7 9.5 89.8 94.4 95.4 

1OEDB 0.0 0.0 0.0 16.9 20.5 24.0 

1V5PA 9.4 9.4 0.0 99.2 100.0 100.0 

1GVNB 18.6 22.1 31.0 68.4 81.4 89.7 

1NKVA 19.2 27.7 26.9 91.5 93.9 92.3 

average 12.2 15.4 20.9 67.4 72.7 77.0 

Percentage of true positives in highest L (the length of the protein of interest), L/2 and L/5 predictions for 

66 independent proteins excluded from training. The averages are reported in the last row. 

 

The Structure-based mode has been ranked as one of the three best methods in CASP6. 

The Structure-based mode has participated in CASP6.  The analysis done by Graña et al. 

[20], has placed the method as one the top three groups (out of 16 groups) in terms of 

accuracy and coverage. In analysis of 11 new fold targets (sequences with no structural 

homologues), the method achieved a mean accuracy of 16% and a mean coverage of 8%. 

BCL::Contact was also one of the few methods that predicted the non-local sheet 

topology for target 273 (PDB code 1WDJ) correctly (shown in Fig. 1f in Graña et al. 

[20]). Figure 4b shows the tertiary structure and the contact map with the predictions 

from the structure-based mode for protein 1V5P. The contact map indicates a significant 

overlay of native and predicted contacts in particular for within β-sheet topology while 

the non-local contacts within the β-sheet are correctly identified.   
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The Sequence-based mode predicted long distance contacts in CASP7 with up to 40% 

accuracy. 

The sequence-based mode of BCL::Contact has participated in CASP7 in the contact 

prediction category along with 16 other methods.  The results were analyzed in detail by 

Izarzaguza et al. [44] based on predictions for 19 selected targets composed of 15 free 

modeling targets and 4 template based modeling targets. Predictions were submitted for 

BCL::Contact for 18 targets out of these 19. In 14 of them, our predictions met the 

criteria of having at least L/5 (length of given sequence divided by 5) number of 

predictions for long distance contacts (>24 residue sequence separation). Due to the lack 

of a large subset of common targets for which most groups have submitted predictions, 

no clear ranking of all groups was obtained [44].  

The sequence-based method achieved an average accuracy of 4.6% and an average 

coverage of 2.4% for long distance contacts over 14 targets included in this analysis. 

However, in 50% of these targets none of the L/5 long-range contact predictions were 

correct. Our method achieved its best ranking (4
th
 out of 10) for target T0356_3 (PDB 

code 2IDB chain C) out of this set of targets, with an accuracy of 20.8% and coverage of 

14.8%. When L/10 instead of L/5 highest confidence predictions are considered for this 

target, the accuracy reaches 34%. When all targets (including the template-based 

modeling targets) are considered, our method predicted most accurately for target 

T0345_1 (PDB code 2HE3) which is not a free modeling target. For this target, our 

method achieved 40.5% accuracy and 5.5% coverage for L/5 highest predictions, while 

these values rise up to 61.1% and 26.7% respectively when L/10 highest predictions are 

considered. Figure 4a illustrates the structure of 2HE3 with residues corresponding to L/5 
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highest predictions highlighted in purple and the contact map that shows predictions 

submitted for this target. The accurate prediction of non-local contacts within the β-sheet 

is remarkable.   

 

Figure 4: BCL::Contact predictions mapped on tertiary structures and shown as 

contact maps: The contact maps are colored according to the scale shown from blue 

(contact probability of 0.0) to red (contact probability of 1.0) (A) Tertiary structure for 

CASP7 target T0345_1 (pdb code 2HE3) with residues corresponding to L/5 highest 

confidence BCL::Contact predictions in sequence-based mode highlighted in dark blue 

and the contact map corresponding to the predictions submitted in CASP7 for the same 

protein. The highlighted residues in the structure correspond to strand pairings between 

LEU61-PRO67 to ALA30-GLU34 and ALA30-GLUE34 to LYS156-ILE159. The 

magnified insets on the contact map correspond to these strand pairings. (B) The tertiary 

structure and the contact map with the predictions from the structure-based mode for 

target with LIVEBENCH id of 25864 (PDB CODE 1V5P). The high confidence 

predictions (red color) overlay with most of the native contacts (black boxes). The 

predictions lead to a true positive rate of 87% and false positive rate of 6%. The 

highlighted residues in the structure correspond to the strand pairing between PHE20-

GLU24 and ARG97-ALA102. The magnified inset on the contact map corresponds to this 

strand pairing and indicates a nearly perfect identification of these crucial non-local 

contacts. 
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Table 4: RMSD (Å) distributions for Rosetta folding runs for all 17 benchmark 

targets 

pdb 

id 

RMSD (Å) 

no-contact Sequence-based Structure-based 

top 10% avg top 10% avg p-value top 10% avg p-value 

1hjz 10.0 15.6 18.0 9.9 15.4 18.0 5.24E-02 9.5 13.9 16.7 1.13E-139 

1j1t 14.9 19.4 21.4 14.0 19.3 21.3 1.18E-06 15.3 19.2 21.0 1.22E-32 

1j26 9.6 15.7 18.1 9.1 15.3 17.9 2.74E-19 8.4 13.2 16.7 3.10E-121 

1l3p 4.3 9.8 12.7 3.8 9.9 12.9 N/I 3.6 5.1 7.6 0.00E+00 

1lxj 7.5 11.7 14.3 8.1 11.6 14.2 1.70E-02 8.2 12.8 15.2 N/I 

1mzb 6.5 11.8 14.3 5.8 11.4 14.0 5.54E-29 5.4 9.0 12.5 1.39E-182 

1nek 6.9 10.2 13.4 6.6 10.5 13.6 N/I 6.5 9.0 11.3 0.00E+00 

1oh1 7.9 12.3 14.4 7.9 12.2 14.2 2.19E-10 5.6 10.1 13.2 4.06E-117 

1ojg 6.2 11.6 14.5 6.5 11.7 14.4 1.02E-07 5.7 10.8 13.8 2.17E-35 

1owx 12.7 16.5 18.2 12.0 16.3 18.0 1.01E-17 9.2 14.6 16.9 2.74E-190 

1oz9 7.8 13.8 16.5 7.5 13.8 16.4 4.76E-01 6.3 11.8 15.0 1.11E-136 

1p0z 4.5 10.7 13.9 5.3 10.2 13.7 7.66E-15 4.3 7.0 12.1 4.13E-104 

1p57 10.8 14.2 15.7 11.0 14.0 15.7 9.69E-05 10.5 13.3 15.1 1.72E-70 

1roc 13.3 16.6 19.1 10.0 16.5 19.0 5.34E-05 12.0 16.0 18.6 1.02E-30 

1sou 11.2 16.6 19.1 10.4 16.7 19.0 1.30E-02 10.5 15.6 18.4 7.62E-45 

1uan 15.3 19.3 21.4 15.6 19.1 21.3 1.45E-06 14.6 18.2 20.5 4.80E-93 

1v32 7.5 11.5 13.5 7.6 11.3 13.4 2.81E-06 6.5 9.2 11.6 5.34E-284 

avg 9.2 14.0 16.4 8.9 13.8 16.3 - 8.4 12.3 15.1 - 

RMSD (Å) distributions for Rosetta folding runs for all 17 benchmark targets with no 

additional input and with input from sequence-based and structure-based modes of 

BCL::Contact. The top model, 10
th

 percentile, and average RMSD values are reported. 

For improved cases p-values from a one-tailed t-test are also reported. Runs for which the 

p-value did not improve are labeled as N/I. 
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Table 5: MAXN% distributions for Rosetta folding runs for all 17 benchmark 

targets 

pdb 

id 

MAXN% 

No-contact Sequence-based Structure-based 

top 10% avg top 10% avg p-value top 10% avg p-value 

1hjz 58.3 30.7 24.5 57.8 30.7 24.5 not improved 59.4 39.1 28.7 1.22E-133 

1j1t 27.5 16.7 13.9 28.8 17.2 14.0 6.37E-03 24.9 18.0 14.6 1.03E-33 

1j26 74.1 38.4 30.8 69.6 38.4 31.5 2.39E-15 73.2 45.5 35.7 1.04E-160 

1l3p 92.2 50.0 38.5 92.2 49.0 37.4 N/I 100.0 85.3 64.9 0.00E+00 

1lxj 80.8 50.0 41.7 80.8 48.1 40.4 N/I 66.4 46.2 41.8 2.07E-01 

1mzb 73.5 45.6 34.3 80.9 47.1 35.0 4.42E-10 82.4 64.0 49.5 0.00E+00 

1nek 64.6 43.4 33.0 69.9 42.5 32.3 N/I 69.0 48.7 36.9 2.04E-86 

1oh1 59.6 43.1 33.5 64.2 41.3 32.0 N/I 83.5 50.5 40.5 1.21E-264 

1ojg 71.3 47.8 38.5 73.5 47.8 38.2 1.30E-03 83.1 50.7 41.4 1.43E-54 

1owx 64.5 37.2 30.2 57.9 37.2 30.2 N/I 77.7 46.3 36.2 1.74E-209 

1oz9 68.0 42.0 32.8 72.0 41.3 32.4 N/I 76.7 48.0 38.1 1.12E-171 

1p0z 93.1 53.4 45.4 86.3 54.2 44.9 N/I 94.7 65.7 52.3 1.62E-167 

1p57 48.3 29.8 24.9 56.1 30.7 25.2 1.70E-05 44.7 32.5 26.5 1.52E-54 

1roc 36.1 22.6 18.9 38.1 23.2 19.2 6.67E-11 38.7 24.5 19.9 9.78E-34 

1sou 44.3 29.4 23.2 48.5 28.4 22.6 N/I 43.8 31.4 24.3 2.24E-21 

1uan 34.4 21.6 17.8 41.0 22.0 18.0 1.33E-10 40.5 25.6 20.3 4.35E-148 

1v32 72.3 45.5 35.9 69.3 45.5 36.1 1.58E-02 84.2 67.3 50.1 0.00E+00 

avg 62.5 38.1 30.5 63.9 37.9 30.2 - 67.2 46.4 36.6 - 

MAXN% (the percentage of residues that can be superimposed to the native within 4Å) distributions for 

Rosetta folding runs for all 17 benchmark targets with no  additional input and with inputs from sequence-

based and structure-based modes of BCL::Contact. The top model, 10th percentile and average MAXN% 

values are reported. For improved cases p-values from a one-tailed t-test are also reported. Runs for which 

the p-value did not improve are labeled as N/I. 

 

BCL::Contact induces up to 5 Å shift in average RMSD distributions and up to 26% shift 

in average MAXN% distributions when guiding de-novo folding 

For both modes, sequence-based and structure-based, shifts in RMSD and MAXN% are 

reported in Table 4, Table 5 and Figure 3. In RMSD plots (Figure 5a), any improvement 

on the accuracy of models generated would be signified as a decrease in the RMSD 

values of models. These shifts are observed clearly for all four targets when using the 

structure-based contact predictions. The sequence-based mode also leads to a decrease in 
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the RMSD values for 1v32, 1uan and 1j26, although not as pronounced as in the 

structure-based mode. 

 

Figure 5: RMSD and MAXN% histograms for Rosetta folding runs with and 

without BCL::Contact prediction as input: For proteins 1v32, 1uan, 1l3p, and 1j26 the 

(A) RMSD distributions with a bin size of 1 Å and (B) MAXN% percentage distributions 

with a bin size of 4% are provided as histograms. For each protein, distributions are 

reported for folding with no contact prediction input, with input from sequence-based 

contact prediction mode, and with input from structure-based contact prediction mode. 
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In MAXN% plots (Figure 5b), in contrast to RMSD plots, improvement would be 

represented by a shift to the right when inputs from BCL::Contact are supplied to 

Rosetta. Similar to RMSD plots, usage of the structure-based contact predictions results 

in distinct shifts whereas the sequence-based mode improves Rosetta only slightly for 

targets 1uan and 1j26. 

The sequence-based mode slightly improves the RMSD for the best model for 10 

proteins, 10
th
 percentile for 13 proteins and average for 15 proteins, while structure-based 

mode improves the RMSD for the best model for 15 proteins, 10
th
 percentile and average 

for 16 proteins. A similar improvement of MAXN% values is observed for a similar 

number of proteins. 

The structure-based mode provides an improvement of 1.3 Å in average RMSD values of 

all models produced, while also providing a 5.8% increase in the MAXN% distributions 

of the models generated. The sequence-based mode does not lead to any significant shift 

in the averages of both distributions. The structure-based mode performs exceptionally 

well for target 1l3p where it improves the RMSD of models on average by 5.1 Å (from 

12.7 to 7.6) while improving the MAXN% of models by 26.4% (from 38.5% to 64.9%). 

With predictions from the structure-based mode Rosetta is able to produce the best model 

with RMSD of 3.6 Å to the native structure and MAXN% value of 100%. 

In order to visualize the improvements provided by contact predictions in tertiary 

structure prediction, the best models by RMSD for 1l3p and 1oh1 are presented in Figure 

6. For 1l3p, contacts from both sequence-based mode and structure-based mode result in 

a more compact packing for the helices, indicated also by the improvements in RMSD 

from 4.3Å to 3.8Å and 3.6Å, respectively. In particular contacts predicted between amino 
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acids ALA168-PHE184, ALA168-PHE188, ALA171-PHE184, as well as ILE158-SER244, 

and ILE161-ILE240 help bring helices closer. In the case of protein 1oh1, sequence-based 

contact prediction does not result in an improvement of model accuracy. However, 

structure-based contact prediction results in an RMSD improvement of 2.3Å. The 

resultant model is the only model that has a well-defined sheet formation triggered by 

predicted contacts. The three highest predictions for the whole sheet region (residues 61 

to 92) correspond to native contacts between amino acid pairs LEU67-ILE77, GLU78-

LEU89, and ILE78-LEU89. 

 

Figure 6: Comparison of best Rosetta models by RMSD in folding runs: (A) The 

lowest RMSD Rosetta model for protein 1l3p (rainbow coloring scheme) is shown 

superimposed with the native structure (gray). Panels (B) and (C) display the best models 

by RMSD when contacts predict by sequence-based and structure-based modes are used 

as score. The RMSDs of the models are 4.3Å, 3.8Å, and 3.6Å, respectively. The black 
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arrows in panels (B) and (C) indicate strongly predicted contacts between amino acids 

ALA168-PHE184, ALA168-PHE188, ALA171-PHE184 as well as ILE158-SER244, 

ILE161-ILE240 facilitate improved helix packing. Panels (D-F) show lowest RMSD 

models for folding protein 1oh1. The RMSDs for the models are 7.9 Å, 7.9 Å and 5.6 Å, 

respectively. The black arrows in panel (F) indicate strongly predicted contacts between 

amino acids LEU67-ILE77, GLU78-LEU89 and ILE78-LEU89 that are responsible for 

improved in sheet formation. The highest 50 predictions for the same region also 

correspond to native contacts. 

 

 

BCL::Contact enriches for native-like models by factors of up to five 

Another possible use of contact prediction is the discrimination of native-like models 

from the pool of thousands of models produced in de-novo protein structure prediction 

runs. The discriminative power of contact predictions can be measured by enrichment 

values (Table 6). The sequence-based mode performs poorly for targets 1l3p and 1nek, 

while providing slight enrichments for the rest of the cases with an average enrichment of 

1.3. The structure-based mode achieves an average enrichment of 2.5, performing well 

for all targets except 1lxj. For example, the enrichment of 5.5 for target 1l3p maintains 

548 of the best 1,000 models by RMSD when selecting the top 10% of 10,000 models by 

contact score, where a random scoring scheming would yield only 100 of the best 1,000 

models by RMSD. 
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Table 6:  Enrichment values for Rosetta runs for all 17 benchmark targets 

pdb id Sequence-based Structure-based 

1hjz 1.7 3.0 

1j1t 1.3 1.6 

1j26 1.6 2.3 

1l3p 0.8 5.5 

1lxj 1.1 0.2 

1mzb 1.2 3.5 

1nek 0.6 4.3 

1oh1 1.7 2.0 

1ojg 1.3 2.4 

1owx 1.0 1.3 

1oz9 1.0 2.3 

1p0z 2.2 2.7 

1p57 1.3 2.5 

1roc 1.4 2.4 

1sou 1.4 2.2 

1uan 1.0 2.1 

1v32 1.1 2.9 

average 1.3 2.5 

Enrichment values for Rosetta runs for all 17 benchmark targets with inputs from sequence-based mode 

and structure-based modes of BCL::Contact 

 

Structure-based Contact Prediction Outperforms Sequence-based Contact Prediction 

even for hard Fold-Recognition Targets  

In all comparisons, the structure-based mode outperforms the sequence-based mode, 

which is expected since it utilizes tertiary structure prediction results. This holds even for 

hard fold recognition targets and new folds, demonstrating that even though no template 

can be confidently identified, some structures found by fold recognition servers have at 

least partial similarity with the target structure. However, usage of the structure-based 

mode requires the submission of the sequence to tertiary structure prediction servers. This 

leads to a long processing time whereas the sequence-based mode provides contact 
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predictions within short processing times. However, the accuracy of sequence-based 

mode is limited by the lack of descriptors for evolutionary correlated mutations which 

has been demonstrated to be one of the most successful approaches in contact prediction 

methods [24, 49-55, 62]. Further, it generates many long range predictions for residue 

pairs that reside in different registers of interfaces in a pair of secondary structure 

elements. These false positives could be eliminated by a subsequent filter that limits the 

number of high probability predictions for each pair of secondary structure elements.  

 

Conclusion 

In this chapter, we have presented BCL::Contact, a novel contact prediction method 

based on ANNs. BCL::Contact competed in both CASP6 and CASP7 experiments. The 

structure-based mode was ranked as one of the top three groups in CASP6. The 

sequence-based mode was able to identify crucial long range contacts in CASP7 for some 

of the new fold targets. While achieving up to ~40% accuracy for such contacts, 

performance was not evaluated for several other targets due to the selection criteria 

applied prior to evaluation.  

In addition to CASP experiments, both modes have been benchmarked for independent 

data sets. The sequence-based mode, when used with a threshold value of 0.4, was able to 

predict 42% of contacts correctly while identifying 7% of non-contacts falsely as 

contacts. The structure-based mode, when used with a threshold value of 0.7, achieved 

45% accuracy in predicting contacts while falsely predicting 2% of non-contacts as 

contacts. 
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When used in protein folding simulations, the sequence-based mode provided only slight 

improvements in RMSD distributions of models, while with structure-based mode 

resulted in a significant reduction of RMSD values observed. It is expected that, with the 

inclusion of additional descriptors, such as correlated mutations, the sequence-based 

mode will also be able to provide clear improvements for tertiary structure prediction. 

Both methods are capable of enriching for native-like folds in a set of protein models 

created with the Rosetta de novo folding protocol, although the structure-based mode 

achieves approximately twice as high enrichment factors.   

Despite the improvements in the experimental protein structure elucidation field, many 

proteins of interest still exist with little or no structural information available. Contact 

prediction methods that rely only on sequence information can be beneficial for structure 

prediction in such cases. Alternatively, with the emergence of new and better de novo 

tertiary structure predictions, contact prediction methods can increase their accuracy 

significantly by integration of models produced by such methods. BCL::Contact with 

both sequence-based and structure-based modes can be utilized in both of these 

situations. BCL::Contact is available to the scientific community at 

http://www.meilerlab.org/ . 

  

http://www.meilerlab.org/bcl_contact
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CHAPTER III 

 

BCL::SCORE - KNOWLEDGE BASED ENERGY POTENTIALS FOR 

PROTEINS WITH IDEALIZED SECONDARY STRUCTURE 

REPRESENTATION FOR DE NOVO PROTEIN STRUCTURE PREDICTION
1
 

 

Introduction 

Many protein structures have been determined using experimental techniques like x-ray 

crystallography [100] and NMR spectroscopy [101]. There are ~69,000 protein structures 

deposited in the Protein Data Bank (PDB) [102]. X-ray crystallography has the largest 

contribution with ~61,000 protein structures followed by ~8,000 protein structures 

determined by nuclear magnetic resonance (NMR) as of August 2011. Although the 

number of experimentally elucidated protein structures grows, challenges still exist. 

Membrane proteins are hard to express, crystallize and are usually too large to be studied 

by NMR [103]. Proteins that are only structured in the context of their biomolecular 

assembly like viruses or macromolecular machines can often be imaged to medium 

resolutions by cryo-EM [104] but crystal structures might not be obtained at high 

resolution in isolation for all participating proteins [105]. 

Protein structures which have close homologs within the scope of the PDB can be 

modeled to atomic resolution using comparative modeling [106]. If there are no 

homologs for the protein of interest in the PDB (or they cannot be detected), one has to 

                                                

1 This chapter was 
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apply de novo protein structure prediction algorithms. Rosetta is one of the most 

successful algorithms among the available tools for structure prediction from the amino 

acid sequence [30, 107]. Successes in fold determination – i.e. placement of the protein 

backbone to an accuracy of RMSD = 3-6Å – have been reported for proteins up to 160 

amino acids [108]. More recently high-resolution structure determination to an accuracy 

within the experimental error of the crystal structure (all atom RMSD < 1.5Å) has been 

reported for proteins of up to 80 amino acids [109]. Both limits can be further extended 

by the inclusion of sparse experimental NMR [110] or EPR restraints [38]. Rosetta folds 

the continuous amino acid chain – an approach that mimics the protein folding process 

but is in part responsible for the size limits stated earlier as non-local sequence contacts 

are difficult for the algorithm to explore. A strong linear correlation between Rosetta 

failure and contact order – a measure of non-local sequence contacts – has been reported 

[42]. 

The Rosetta energy function is a knowledge-based potential that contains an amino acid 

environment term defined by burial of hydrophobic residues, an amino acid pair 

interaction potential defined by all amino acid pair distances and a secondary structure 

packing potential which uses multiple vectors to represent the conformation of a 

secondary structure element defining an additional dot product for β-strand-β-strand 

pairing to capture the hydrogen bonding between them. This potential also uses the loop 

length connecting two SSEs as an additional variable [107]. Rosetta represents the side 

chains with a “centroid” atom to approximate the average position of the side chain for an 

amino acid. The potential also includes a volume exclusion or van der Waals potential.  
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Alternative approaches to the computational protein folding problem include different 

flavors of molecular dynamics simulations. They are not as successful in predicting 

protein structures, but for small peptides e.g. a three β-stranded protein, they can provide 

insights into folding pathways [111] or they can help to close the gap between predicted 

inaccurate low resolution protein structures and high resolution crystal structures with 

their first principle full atom force fields [112]. The molecular mechanics energy 

potentials in these simulations are typically derived from first principle physical 

interactions (bond-length, torsion-angles, vdW interactions, coulomb-interactions, etc.). 

Prominent examples of such energy functions include CHARMM [113] and AMBER 

[114]. These force fields work with full-atom models of the protein in question, an 

approach that requires intensive computations for energy evaluations. The long 

computational time that results from the high accuracy of these potentials hinders the 

applicability of these methods to simulations where large conformational spaces need to 

be sampled rapidly, as would be required for larger proteins. 

Here we introduce a comprehensive knowledge-based energy potential based on a 

simplified protein representation using only SSEs, i.e. α-helices and β-strands.  These 

SSEs are sufficient to define the fold of a protein in the absence of loop regions. 

Although the presented energy potential is specialized for models without loop regions, it 

can also be used to evaluate full-chain protein models. The energy potential includes 

individual terms for; (1) amino acid pair distances based on Cβ atom coordinates (HA2 

atom for Glycine), (2) amino acid solvation, (3) a secondary structure element packing, 

(4) β-strand pairing, (5) loop length, (6) radius of gyration, (7) contact order, (8) 

backbone phi/psi angles, (9) amino acid clash, (10) SSE clash and (11) loop closure. 
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The rationale for such an energy function is to push the size limit of de novo protein 

structure prediction by limiting the conformational space that needs to be searched in the 

folding simulation to the relative arrangement of SSEs. This approach is based on the 

hypothesis that interactions between SSEs define the core of the protein and are major 

contributors to the stability of the fold and should therefore be considered first in an 

energy evaluation of the protein fold. Loop or coil regions, on the other hand, add large 

conformational spaces to the search problem due to their internal flexibility but contribute 

little to the stability of the fold. Therefore these regions can be omitted for the energy 

evaluation in the initial stage of de novo protein fold prediction. 

 

Results 

A database of 4379 chains and 3409 protein structures covers the space of topologies 

seen in the PDB 

All knowledge based potentials described below have been derived from a databank that 

contained 4379 high resolution X-ray crystallography protein structures (R-factor 0.3 and 

better) with resolutions better than 2.0 Å only. A non-redundant set of proteins ( <25% 

sequence identity) was culled using the PISCES server [115]. All membrane proteins, 

Cα-only entries, and structures from sources other than X-ray crystallography were 

excluded. The minimum chain length was determined to be 40 residues to exclude 

peptides that do not form structured protein domains with a well-defined core. For each 

of the energy potentials statistical representations of the respective geometrical features 

have been collected over the entire database. 
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The inverse Boltzman relation converts statistics into free energy functions 

The collected statistical representations are converted into a free energy using: 

 ( )         (
         ( )

           ( )
) 

Where  ( ) is the energy function for   – being the geometrical feature observed,   – 

the gas constant,   – temperature,          ( ) – the probability with which that feature 

was observed and            ( ) the probability to observe that feature by chance. The 

propensity is reflected in the  ( )            ( )  term. The function  ( )  was 

converted into cubic- or bicubic-splines where appropriate [116]  to ensure continuous 

differentiability for possible use with gradient minimization. 

 

Amino acid pair distance potential 

In order to describe amino acid pair interactions, statistics for the Cβ-atom distance 

between pairs of amino acids (Xi, Xj) have been collected. For Glycine, the HA2 

hydrogen position was used (Figure 7A). Distances have been collected between 0 and 20 

Å in bins of size 1 Å. Only amino acid pairs with sequence separation of at least 10 

residues were considered in order to reduce the sequence bias. The background 

probability is derived by summing up all distance distributions of amino acid Xi’s type 

with any other amino acid type and the distributions of Xj’s amino acid type with any 



49 

 

other amino acid type. The raw counts and the sum of counts used for the background 

distribution were normalized to a sum of 1. These two distributions were divided by each 

other for each distance and splines were derived to yield the energy potentials (Figure 7). 

 

 

Figure 7: Amino acid pair distance and environment potential: (A) the idealized 

structure of 1ubi with Cβ and Hα2 atoms is shown with the distances between ILE 32 and 

LEU 56 (4.7 Å) and between LYS 11 and GLU 34 (8.3 Å). (B) selected amino acid pair 

distance potentials. (C) the transition function that is used between the lower and upper 

threshold in which the weight for the neighbor of considerations drops from 1 to 0 using 

half of a cosine function on the left. (D) the neighbor count energy potential for all 20 

amino acids with their three letter code. 
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The potentials obtained follow the expected trends (Figure 7B). For example, Alanine 

and Isoleucine as well as Leucine are expected to interact favorably with itself due to van 

der Waals (vdW) attraction, which is reflected in the negative energies for short 

distances. Lysine and Arginine with positively charged side chains are expected to 

experience Coulomb repulsion when approaching each other which is reflected in the 

positive energy for short distances. Phenylalanine and Tryptophan may engage in π-

stacking interactions, which are reflected in a preferred distance of 10 Å. Cysteine and 

Methionine do not have a preferred physical interaction resulting in a broad and not too 

low energy valley. 

Rarely observed distances (bin count < 5) are considered to be errors in the experimental 

assignment. These energy bins are assigned an energy value of 4.  

 

Amino acid environment potential 

In order to describe the preference of an amino acid to be either exposed to solvent or  

buried in the protein core, a function that counts the neighbors of an amino acid was used 

(Figure 7C): 

  (   )  ∑ (        (       ))

 

 

Where  ( ) is: 
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Weighing the actual neighbor count between               and                

smoothens the potential and enables gradient based minimizations. The thresholds have 

been optimized for a high inverse correlation of the neighbor count value with the MSMS 

solvent accessible surface area (SASA) approximation implemented in the molecular 

visualization package VMD [117]. The lower threshold is set to 4.0 Å, the upper 

threshold to 11.4 Å [118]. The background probability is the sum of all normalized 

distributions for any amino acid type. Counts of 1 are considered errors, and set to 0 

before normalizing the distributions. The resulting energy potential comprises 

interactions with the solvent but also with other residues in the core of the protein and 

encompasses Coulomb as well as van der Waals interactions (Figure 7D). Expected 

behavior can be observed for the potentials, e.g. Glycine with a small side chain and 

being nonpolar usually exhibits a high number of amino acid neighbors. Glutamate with a 

charged side chain has its minimum for a low neighbor count. 

 

Loop length potential 

In models without explicit representation of loop residues, it is important to guarantee 

that all consecutive SSEs can still be physically linked by the loop. Beyond the ability to 

physically link two SSEs with a fully extended loop, there are preferences for loops of a 

certain length to bridge a certain Euclidean distance (Figure 8A). To explore these 
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preferences, statistical data of the Euclidean distance between the ends of two SSEs with 

respect to the number of amino acids in the loop connecting those two SSEs have been 

collected. Using a constant background probability, the potential shown in Figure 8B was 

derived. For short sequence distances it is favorable that the Euclidean distance is short. 

Long Euclidean distances are forbidden by a positive energy. Euclidean distances below 

4 Å are impossible, because they would indicate that two SSE ends would clash which 

cannot be observed in nature. There is a nearly linear dependency between the number of 

residues and the Euclidean distance represented by the long valley in the energy profile. 

However, as loops get longer, the range of Euclidean distance they bridge become wider 

and less consistent. 

 

Figure 8: Loop closure potential: (A) two β-strands connected by a loop characterized 
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by the Euclidean distance between the two ends and the number of residues in the loop 

connecting those two ends. (B) the derived energy potential is shown, where the energy is 

a function of the number of residues in the loop and the Euclidean distance between the 

ends of the main axes. (C) representative phi-psi potential for Asparagine with clearly 

accessible and forbidden regions for the phi-psi angle combinations. 

 

β-Strand pairing potential 

This potential evaluates the pairing of β-strands to form β-sheets. It represents the 

likelihood of observing a twist of two β-strand fragments (Figure 9A) with respect to 

each other together with a distance between two β-strands. However, this potential does 

not check if actual hydrogen bonds can be built based on atom positions as it is purely 

based on the ideal fragment representation of the SSEs. The required refinement of the 

register shift is left for later optimizations at higher resolution. The distance between the 

β-strands is normalized by            ( )   since the chance to find a second object 

around an axis grows linearly with the distance of the object, similar to the girth of a 

circle. The resulting energy distribution depends on twist angle (0-360° with bin size 15°) 

and distance (0-12 Å with bin size 0.25 Å). It is interesting to see that although the 

resolution of the distance is only 0.25 Å, it is still possible to identify an optimal β-strand 

distance between 4.25 and 5 Å. Also the twist angle is represented with the deepest points 

around -15° and 165°, where 165° is more pronounced in its minimum showing that anti-

parallel β-sheets are slightly more often represented in the database than parallel β-sheets. 
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Figure 9: Strand pairing and SSE packing potential: Shown are all secondary 

structure element packing potentials with their schematic shortest connections, twist 

angle and their derived potentials. (A) β-Strand|β-Strand pairing potential with prominent 

distance of 4.75Å and angles of -15° and 165°. (B) α-Helix|α-Helix packing with 

preferred packing distance of 10Å and the preferred parallel angle of -45° and the anti-

parallel packing of 135°. (C) β-Sheet|β-Sheet packing potential with a preferred distance 

10Å and angles of -30° and 150 °. (D) α-Helix|β-Sheet packing with its packing distance 

around 10Å and an anti-parallel angle of 150°-180°. 

 

Secondary structure element packing potential 

Similar to the β-strand pairing potential, additional secondary structure element packing 

potentials have been derived. For α-helix-α-helix packing, the distance and the twist 

angle between the main axes have been analyzed (Figure 10A, C). For α-helix-β-sheet 

packing, the distance and the twist angle was only considered if the α-helix was 

contacting the side chains of the β-sheet, i.e. packs on top of the β-sheet (Figure 10D 
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left). For β-sheet-β-sheet packing – which differs from β-strand-β-strand pairing by 

relying on side chain interactions rather than backbone hydrogen bonds – contacts were 

considered only if the side chains of the β-sheets were facing each other (Figure 10D 

right). The resulting potentials are based on the distance and twist angle and reflect what 

is known about super secondary structure organization. Two α-helices pack in a preferred 

angle of -45°. The anti-parallel packing is slightly less common at around 135°. Further, 

weak minima around 15° and -165° are observed. Both cases of packing have a preferred 

distance of 10 Å (Figure 9B). For α-helix-β-sheet packing, the anti-parallel case with 

angles between 150° and 180° is most common as observed in the TIM-barrel fold or 

other “Rossman-Folds” [119] (Figure 9D). As in the α-helix-α-helix packing, the optimal 

distance is around 10 Å. The last case to consider is the β-sheet-β-sheet packing as seen 

in β-sandwiches, which is represented by two β-sheets with their side chains pointing 

towards each other. Two β-sheets pack in a distance around 10 Å with an equally 

preferred twist angle around -30° or 150° (Figure 9C). Twist angles lead in general to 

improved packing as the interacting side chains can reach into gaps left by the side chains 

of the opposite SSE [120].  
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Figure 10: SSE fragments are shown with their geometric packing descriptors: (A) 
α1 and α2 are orthogonal, if the shortest connection between the main axes is orthogonal. 

(B) Connection is not orthogonal, since the minimal interface length m cannot be 

achieved. (C) θ is the twist angle around the shortest connection – which is equivalent to 

the dihedral angle between main axis 1 – shortest connection – main axis 2. (D) ω is the 

offset from the optimal expected position for a helix-strand interaction, if it is 0°, the 

helix is on top of the strand, if it is 90°, the helix would interact with the backbone of the 

strand. ω1 and ω2 are the offsets for a strand-strand packing – for omegas close to 90°, it 

is a strand backbone pairing interaction dominated by hydrogen bond interaction within a 

sheet, if they are close to 0°, it is dominated by side chain interactions like seen in sheet-

sandwiches. (E) every SSE is represented as multiple fragments and the SSE interaction 

is described by the list of all fragment interactions, leaving out additional fragments of 

the longer SSE with suboptimal packing (bottom grey helix fragment). 

 

Contact order score 

Using the assembly of secondary structure elements to describe the topology of a protein 

enables the optimization protocol to explore a wide conformational space. However, 

especially if loop distances are not too constraining, global topologies due to 

overabundance of non-local contacts can be sampled. One measure for the complexity of 

the topology is the contact order. Contact order is defined as the average sequence 
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separation of all amino acids in contact, conventionally identified by a Cβ -Cβ distance <= 

8Å. A larger contact order constitutes a more complex topology. For native proteins, the 

range of contact orders observed are found to be limited, meaning that not every possible 

complexity is explored for native proteins. This represents a natural border that generated 

protein models should not cross. It was found that there is a linear correlation between the 

contact order and the sequence length (Figure 11). A potential to evaluate the protein 

models contact order – number amino acid ratio was derived (Figure 12A). 

 

 

Figure 11: Contact order vs sequence length plot:  
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Figure 12: Contact order and Square radius of gyration potential: (A) Potential for 

the fold complexity is shown that is implemented by the contact order potential as the 

likelihood to observe a contact order to number of residues ratio in the model. (B) 

Statistics for the square radius of gyration over the number of residues was directly 

collected in a histogram and converted into a potential. 

 

Radius of gyration potential 

The square of the radius of gyration is proportional to en energy term that describes the 

compactness of the fold [30]. It is computed as the mean square distance of all Cβ atom 

coordinates (HA2 for Glycine) to their mean position: 

    
  

 

 
∑(        )

 

   

 

When assembling protein structures from SSEs, this computation is not optimal since the 

protein model grows in size throughout one trajectory, leading to an increase in energy 

and thus a penalty when an SSE is added to the model. The new potential was derived 

with the assumption the square radius of gyration grow with the number of residues in the 
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protein model (    
    ). A potential was derived based on this correlation (Figure 

12B). 

             
  was determined by fitting a function to data acquired from the databank of 

high resolution protein structures (Figure 13). Unlike the previous term, this energy term 

would not penalize when assembling proteins by adding SSEs successively while still 

being applicable to evaluation of full sequence protein models.  

 

 

Figure 13: Square radius of gyration vs sequence length plot: 
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Phi Psi backbone potential 

The backbone conformation of each amino acid in proteins can access certain phi and psi 

backbone angles. This dependency is commonly described in the Ramachandran plot. 

The phi and psi angles are calculated as the dihedral angle of the backbone atoms: 

          (                 ) 

          (                  ) 

This dependency is normally amino acid and secondary structure dependent. However, 

since the actual secondary structure assignment is not always known, the statistics 

dependent only on the amino acid were derived leading to 20 individual potentials. The 

background distribution used is the sum over all normalized amino acid phi psi 

distributions. A representative phi psi backbone potential is depicted for Asparagine in 

Figure 8C. The most prominent accessible phi psi angle combinations can be found at 

60°,60° and -150°,60°. 

 

Amino acid clash, SSE clash and Loop closure potentials 

A difficulty with Boltzman relation derived potentials is that the actual probability and 

background probability for events that are never observed need to be treated separately. 

This can be overcome by introducing a pseudo count for every event, which becomes 

more and more unlikely as the sample size becomes larger. This turns out to be not 

feasible for deriving knowledge based potentials from protein structures (data not 

shown). Additionally, the border conditions for “forbidden states” might require a higher 
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resolution than the actual potentials. Therefore, three additional terms were introduced to 

define constraints but do not possess discriminative abilities. 

 

Amino acid pair clash 

For the amino acid pair distance potentials, all occurring amino acid pair distances within 

protein structures have been calculated. They were binned with a resolution of 0.05Å for 

each amino acid type pair. The first bin with any counts, when iterating from shorter 

distances to larger distances, was determined to be the minimum permitted distance. 

Using this threshold, a “penalty” function is defined: 

 (    )  

{
 
 

 
 

 (       )         

 (       ) (         ) 
 

 
(   (

   (       )     

 
  )   ) 

 (       )       

 

With:      Shortest observed distance for amino acid type pair 

    Width of transition region 

  (       )- Distance between amino acid pair 

 

SSE clash potential 

SSE clash potential was introduced to overcome the shortcomings observed for amino 

acid clash term. Since only Cβ atom distances are used, certain conformations could lead 

to clashes but go undetected by amino acid pair clash term. An example for these kinds of 

conformations is when one β-strand is overlaid directly over another β-strand rotated by 

180° around the main axis. To detect such clashes, a clash term that is based on the 
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packing of SSE fragments was derived. For this purpose, minimal distances between two 

SSE fragments have been defined as: helix-helix 4Å, helix-strand 4Å, strand-strand 3Å. 

The penalty function is similar to the amino acid pair clash function: 
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With:      Minimal distance for that pair of SSE types 

    Width of transition region 

  (     ) Distance between the two SSE fragments 

 

Loop closure potential 

A restrictive loop closure potential is necessary to guarantee the possibility of closing 

loops using the residues bridging the gap between two SSEs. In order to complete the 

model by closing the loops, the Euclidean distance between the ends of two SSEs 

adjacent in sequence needs to be bridged by amino acids in the connecting loop. If the 

Euclidean length of the elongated loop sequence is shorter than the distance it needs to 

bridge, it is penalized: 
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The width of transition region is defined by   and enables a smooth transition between 

no and full penalty. The Euclidean distance between the backbone carboxyl-carbon of 

last AA of SSEi and backbone nitrogen of first AA of SSEi+1 is defined the formula 

 (                          ) . The linear function                          

estimates the Euclidean distance that can be bridge by the            number of loop 

residues between SSEi and SSEi+1 and was derived using the 95
th
 percentile of the longest 

Euclidean distance observed for all loops of length between one and twenty amino acids 

in the databank  (Figure 14). 

 

 

Figure 14: 95% longest Eucledian distance vs number residues in loop plot 
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53 protein model sets have been generated using Rosetta, BCL::Fold and perturbation 

In order to benchmark the performance of the knowledge-based energy potentials, 53 

diverse proteins have been selected and structural models were generated 

computationally using three methods: (1) Using Rosetta de novo protein structure 

prediction. (2) Removing loops from native structures and applying systematic 

perturbations to the structures. The sets of perturbations were chosen to generate models 

with preserved native-like topologies. (3) Using BCL::Fold de novo protein structure 

prediction algorithm by assembling the native secondary structure elements leading to 

protein models of various arrangements and topologies.  

The reasoning behind using three separate methods was to obtain a diverse set of models 

which is more likely when a variety of sampling and scoring methods are used instead of 

a single one (with the exception of the perturbation method which did not have a scoring 

function). The identification of native-like structures was based on two measures: (1) 

GDT_TS < 25% and (2) RMSD100 < 8Å [6]. The percentage of such “good” models 

varied between 0 and 99.5% for benchmark proteins. Only model sets with percentage of 

good models between 1% and 99% were used for the analysis in a ten-fold cross 

validation calculation of enrichments. The cross validation subsets were generated by 

randomly removing models so that each subset contained 10% correctly folded models 

and 90% incorrect models. 
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Enrichment can evaluate the performance of an energy potential 

A representative energy landscape of a set of protein models that was prepared to contain 

10% of good models below an 8Å RMSD100 cutoff is depicted in Figure 15. The 

horizontal line denotes the best 10% of the models by the energy used. The resulting 

quadrants can be identified as in normal prediction experiments. Models that are below 

the RMSD100 cutoff are positives, and if they are also below the energy of the best 10%, 

they are considered as true positives (TP). If the model has a high energy despite being 

correct by the RMSD100, it is considered a false positive (FP). FN – false negative and 

TN – true negative are defined similarly. The optimal result would be to have empty FN 

and FP quadrants, because this would indicate that energy function would be completely 

accurate in identifying good models by RMSD100. The enrichment is now defined by the 

ratio of true positives within the 10% good models (TP+FN) divided by the initial ratio of 

good models by RMSD100 cutoff to the total number of models (TP+FN+FP+TN). 

           
  

     
 
           

     
 

The maximal enrichment for a 10% cutoff will be 10, no enrichment will have the value 

1, and everything that performs worse will have a value between 1 and 0. 
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Figure 15: RMSD100 vs. energy plotted as representative energy landscape: 
Quadrant denoted by FN stand for false negative, TP for true positives, FP for false 

positives and TN for true negatives. The horizontal line divides the plot at best 10% 

models by energy, the vertical line at 10% of good models with RMSD100 cutoff around 

8Å. 

 

Benchmark enrichment of native like structures through potentials  

Table 7 contains enrichments for various scores when evaluated on the models generated 

by three different methods for the 53 protein sets. The percent of model sets that could be 

enriched by a statistical significant factor (mean –sd > 1.0) are reported. Cells with 

enrichments above statistical significance (mean-1*sd ~ 85%) adding up to more than 

50% of the model sets are highlighted. The loop closure and clash scores (data not 

shown) have a significant ability to discriminate against random models (for the BCL 

folded and perturbed structures) but do not perform well for Rosetta folded models. The 
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amino acid pair distance, amino acid neighbor count and the SSE packing potentials 

achieve enrichments for nearly all the protein sets. 

 

Table 7: Percentage of models enrichment for benchmark proteins 

RMSD100 < 8Å total 

amino 
acid 
distanc
e 

amino 
acid 
neighbor 
count 

contact 
order 

loop 
length phi psi 

radius of 
gyration 

SSE 
packing 

strand 
pairing sum 

all 

rosetta 18 72% 61% 22% 22% 67% 61% 100% 33% 56% 

perturb 53 98% 100% 77% 94% 57% 55% 91% 57% 89% 

fold 14 50% 43% 43% 57% 36% 21% 29% 0% 50% 

alpha 

rosetta 12 83% 75% 17% 25% 67% 58% 100% 17% 50% 

perturb 24 96% 100% 71% 92% 50% 63% 79% 4% 75% 

fold 10 60% 40% 30% 50% 40% 20% 40% 0% 60% 

beta 

rosetta 3 67% 0% 33% 0% 33% 33% 100% 67% 33% 

perturb 8 100% 100% 63% 100% 38% 63% 100% 100% 100% 

fold 3 33% 67% 67% 67% 33% 33% 0% 0% 33% 

ab 

rosetta 3 33% 67% 33% 33% 100% 100% 100% 67% 100% 

perturb 21 100% 100% 90% 95% 71% 43% 100% 100% 100% 

fold 1 0% 0% 100% 100% 0% 0% 0% 0% 0% 

0-150 

rosetta 12 92% 58% 25% 17% 67% 58% 100% 25% 50% 

perturb 17 94% 100% 76% 100% 41% 82% 88% 47% 88% 

fold 9 33% 56% 56% 78% 33% 22% 11% 0% 44% 

151-
300 

rosetta 6 33% 67% 17% 33% 67% 67% 100% 50% 67% 

perturb 36 100% 100% 78% 92% 64% 42% 92% 61% 89% 

fold 5 80% 20% 20% 20% 40% 20% 60% 0% 60% 

GDT_TS > 25% 

          

all 

rosetta 30 50% 67% 30% 33% 73% 67% 83% 47% 67% 

perturb 52 73% 87% 0% 87% 88% 40% 98% 60% 98% 

fold 18 56% 56% 39% 61% 33% 33% 56% 11% 72% 

alpha 

rosetta 12 83% 75% 17% 25% 67% 58% 100% 17% 50% 

perturb 24 96% 100% 71% 92% 50% 63% 79% 4% 75% 

fold 12 100% 100% 75% 100% 50% 83% 100% 0% 100% 

beta 

rosetta 3 67% 0% 33% 0% 33% 33% 100% 67% 33% 

perturb 8 100% 100% 63% 100% 38% 63% 100% 100% 100% 

fold 5 100% 100% 60% 100% 20% 100% 100% 100% 100% 

ab rosetta 3 33% 67% 33% 33% 100% 100% 100% 67% 100% 
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perturb 20 100% 100% 90% 100% 75% 45% 100% 100% 100% 

fold 1 100% 100% 100% 100% 100% 100% 100% 100% 100% 

0-150 

rosetta 12 92% 58% 25% 17% 67% 58% 100% 25% 50% 

perturb 17 94% 100% 76% 100% 41% 82% 88% 47% 88% 

fold 11 100% 100% 73% 100% 27% 91% 100% 45% 100% 

151-
300 

rosetta 6 33% 67% 17% 33% 67% 67% 100% 50% 67% 

perturb 35 100% 100% 77% 94% 66% 43% 91% 60% 89% 

fold 7 100% 100% 71% 100% 71% 86% 100% 14% 100% 

For each score and benchmark set, the percentage of protein model sets that had an (enrichment – 1 * 

standard deviation) > 1.0 are displayed. Two classifications for “good” models were used (RMSD and 

GDT_TS), and protein model sets have been classified as α with #helices >= 2, as β with #strands >= 2, and 

αβ if both conditions are fulfilled. Also a sequence length classification with <=150 and all above was 

performed. Cells with bold percentages and grey background highlight the cases where for more than 50% 

of the protein sets a significant good enrichment could have been achieved. 

 

Discussion 

Knowledge based potentials resemble first principles of physics and chemistry 

Knowledge based potentials are not derived from first principles of physics and 

chemistry, but still resemble their consequences. The amino acid pair distance potential 

indicates a preference for particular side chain interactions that can be explained by 

Coulomb forces, van der Waals interactions or other polar or nonpolar interactions like π-

stacking. The neighbor count correlates with the expectation that amino acids with polar 

side chain like to be exposed to the solvent as indicated by fewer neighbors in low energy 

neighbor counts. But it also shows that nonpolar amino acids prefer to be buried in the 

core, where they can escape unfavorable interaction with the solvent in addition to 

forming nonpolar interactions with other side chains within the core of the protein. 
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Secondary structure packing resembles possible geometric arrangements 

The secondary structure pairing potentials cannot directly be explained by physical 

interactions, but they resemble the mechanical possibilities of arrangements of simplified 

SSE representations. The α-helix, as a cylinder with screw ridges has optimal packing for 

slightly tilted angles. Sheets have an internal bend of -15° and sandwiches obey to an 

orthogonal packing rule. 

 

Size dependent radius of gyration measure discriminates for compact structures 

A square radius of gyration measure linearly depends of the number of amino acids in the 

protein and can be used to evaluate the compactness of proteins and is comparable 

between proteins of different sizes. 

 

Idealization does not eliminate details of interactions 

The energy potentials presented are specifically designed for the problem of assembling 

SSEs in their ideal geometry and without explicit representation for loop residues. 

Although they are optimized for low resolution ideal SSEs, they can also enrich and help 

distinguish models that have been generated with a flexible back bone in the Rosetta 

program and are far away from being ideal in their SSE geometries. 
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Enrichments are never close to the maximum 

There are two major explanations as to why maximum enrichment for any of the score 

for any set is never above five. Firstly, enrichment is not a linear measurement. Secondly, 

Rosetta energy function is already sophisticated and BCL::Fold uses the potentials for 

assembling the secondary structure elements, so that resulting models are optimized 

towards those energy functions. Every improvement would have to add to the already 

very successful discriminative ability to distinguish native-like protein structures from 

random models. 

 

Cβ atom is sufficient to approximate side chain position 

The amino acid pair potential and the amino acid environment potential are both 

successful in discriminating for native-like protein structures which implies that a Cβ 

atom side chain representation (HA2 for Glycine) is sufficient not only for describing 

possible interactions with other amino acids as a pair potential but also as an environment 

potential. 

 

Enrichment can be achieved regardless of the sampling algorithm 

Although Rosetta generates low resolution models, they have complete chain and defined 

backbone conformations. All scores except for the loop length and contact order score 

can enrich for native like models. Since Rosetta models are of uninterrupted sequence, 

the loops are already almost optimal, and the potential cannot differentiate any more. The 

loop length potential can enrich perturbed and BCL folded structures. Due to the 
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unrestrained sampling of the secondary structure elements, loops are violated and the 

potential is capturing this. The contact order score prevents low and highly complex folds 

if several SSEs are swapped or not in close proximity. This is the case for BCL folded 

and perturbed structures, where the potential helps regardless of size and SSE 

composition but when RMSD100 is used for classification. With the GDT_TS, it is 

possible to reach the 25% criteria by having only a partially optimal arrangement of 

SSEs. This yields not only to a good GDT_TS measure, but also to a better contact order 

score. 

As expected, the strand pairing score performs well only for β-strand containing proteins. 

The loop length and the contact order score do not help for Rosetta folded benchmark 

sets, while they are important for BCL folded and perturbed structures. The best 

discrimination for native like models is observed for perturbed protein structures. The 

radius of gyration score performs well for proteins < 150 residues, but seems to degrade 

for larger proteins. It can be observed that the percentages of GDT_TS and RMSD100 

classification drop under 50% for the perturbed structures. The perturbation protocol is 

designed to preserve the topology and hence, the radius of gyration of the model. This 

effect relative to the change in the quality measure is more relevant for larger proteins. 

The weighted sum of individual terms performs consistently over the benchmark set, 

showing that an optimal linear combination can overcome the weaknesses of the 

individual terms. 
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Methods and Materials 

Divergent databank of high resolution crustal structures 

Statistics have been derived from a divergent high resolution protein database which was 

generated using the Protein Sequence Culling Server [115]. X-ray structures with 

sequence identity < 25%, resolution < 2.0 Å, R-value < 0.3, sequence length > 40 

residues were culled from the PDB. This guarantees that similar sequences are not over 

represented introducing a bias to proteins that are easier to experiment on or are of higher 

interest in the scientific fields. 

 

Neighbor count 

The neighbors were counted in a novel way by defining two thresholds. A neighbor with 

the lower radius was counted as a full neighbor, a neighbor above the higher threshold 

was ignored, and for neighbors within the both boundaries, the position was converted 

using a sine function to calculate a weight 0 and 1 which is added to the total neighbor 

count.  

 

Secondary structure element packing 

SSEs as defined by the secondary structure assignments in PDB files were first filtered by 

their lengths and α-helices with a length <7 residues and β-strands <5 residues were 

ignored. The remaining α-helices and/or β-strands were described as overlapping sets of 

fragments with lengths of 5 residues for helices and 3 residues for strands (Figure 10E). 

An ideal SSE fragment was superimposed with the coordinates of the backbone 
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coordinates of the SSE fragment from the PDB to determine the orientation (translation 

and rotation in Euclidean space) of this fragment. The main axes were considered to be 

line segments; a minimal interface length between the two SSE fragments of 4 Å was 

achieved by subtracting 2 Å from each end of each SSE’s main axis (Figure 10B). The 

packing between two fragments was described by the analytical shortest connection 

between those two line segments. If this connection was orthogonal, it was considered to 

be a full contact. If the connection was not orthogonal, a contact weight was defined as a 

function of the angle between the main axes and the shortest connection. This angle 

between 90° and 0° was then used to determine a weight between 0 and 1 using half of a 

cosine function and for both angles those weights are multiplied. 

   
        

 

        

 
 

The twist between the SSE fragments is defined by the dihedral angle θ between the SSE 

main axes (Figure 10C). The relative offset, which is important when strand backbone 

hydrogen interactions could play a role, are defined by the offset angle ω between 0° and 

90° (Figure 10D). For a strand-helix packing, only one offset angle can be defined, where 

an ω close to 90° is not favorable, a packing on to with an offset of 0° is desired, since it 

is dominated by amino acids side chain interactions. A weight is defined: 

   
       

 
 

If two strands are involved in the interaction, it is necessary to distinguish a strand-strand 

backbone hydrogen bond mediated packing and a sheet-sheet (sandwich-like) amino acid 

side chain mediated interaction. For omega’s around 90° it has a strand-strand interaction 
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character, if the omegas are close to 0°, it is considered to be a sheet-sandwich 

interaction. Two weights can be defined: 
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The actual packing between two SSEs is a list of fragment interactions (Figure 10E). This 

list is determined by identifying the packing of each fragment of the shorter SSE with the 

fragments of the longer SSE (for identical sizes, the SSE that comes first in sequence is 

the “shorter” one) and adding the packing with the highest interaction weight    to the 

list. These packing objects were used in the statistics for counts with the product of the 

weights, and later in the scoring the overall energy of the interaction by scoring each 

packing object scaled with their weights. 

 

Generation of benchmark sets 

The benchmark sets of protein models were generated using three different methods. 53 

sequences of length between ~70 up to ~300 residues have been selected to represent 

diversity in respect to: helical and strand content as well as sequence length : 1AAJA, 

1BGCA, 1BJ7A, 1BZ4A, 1CHDA, 1DUSA, 1EYHA, 1G8AA, 1GAKA, 1GCUA, 

1GS9A, 1HYPA, 1IAPA, 1ICXA, 1IFBA, 1J27A, 1JL1A, 1K6KA, 1LKFA, 1LKIA, 

1LWBA, 1M5IA, 1NFNA, 1OA9A, 1OZ9A, 1PRZA, 1ROAA, 1TZVA, 1UBIA, 

1UEKA, 1VGJA, 1VK4A, 1WBAA, 1WNHA, 1WR2A, 1WVHA, 1X91A, 1XGWA, 

1XKRA, 1XQOA, 2CWYA, 2E3SA, 2EJXA, 2FM9A, 2ILRA, 2IU1A, 2OF3A, 
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2OPWA, 2OSAA, 2YV8A, 2YVTA, 2ZCOA, 3B5OA. 10,000 models were folded de 

novo for each sequence using Rosetta [28]. Since Rosetta does not assign secondary 

structure, DSSP [121] was used to add definitions to the models. 10,000 models each 

were folded using the BCL::Fold program. Additionally, 12,000 perturbed structures 

were generated using the BCL::Fold program by starting with the native and applying 

randomly the following perturbations to the starting structure: SSE rotation and 

translation; SSE flip; swapping two SSEs and SSE removal. Using an RMSD100 cutoff 

of 8Å to the native structure was applied to identify “good” native like models as well as 

a GDT_TS>25% cutoff. The remaining models in each set were considered “bad” or non-

native like. If there were less that 1% or more than 99% good models, that set was 

ignored for further analysis, since it indicates that the sampling algorithm is not suitable 

for that protein structure, either creating too many good models or not being able to 

generate enough models that could be classified as native like. The ratio good/bad are 

dependent on the performance of each protocol. To compensate for different ratios, 10 

sets with 10% good models each were generated for each protocol and protein. Models 

were randomly selected from the set that is underrepresented in the good/bad ratio. These 

models were added to overrepresented classified models. Enrichments were calculated 

over all 10 sets and a mean and standard deviation is reported (data not shown). The sum 

was calculated as a linear combination of the potentials with  a weight set (Table 8) 
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Table 8: Score weight set for the sum function 

Aa dist Aa neigh loop  rgyr sseclash ssepack_fr strand_fr co_score 

0.3 60 14.5 12.5 500 10 36 2.5 
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CHAPTER IV 

 

 

BCL::FOLD – DE NOVO PREDICTION OF COMPLEX AND LARGE PROTEIN 

TOPOLOGIES BY ASSEMBLY OF SECONDARY STRUCTURE ELEMENTS 

 

Introduction 

Understanding of protein function and mechanics is facilitated by and often depends on 

the availability of structural information. The Protein Data Bank (PDB), as of April 2011, 

holds 66,726 protein structure entries, 87% determined by X-Ray crystallography and 

12% determined by Nuclear Magnetic Resonance (NMR) spectroscopy, and the 

remaining 1% determined by Electron microscopy and hybrid methods [1,2]. The 

millions of protein sequences revealed by genome projects necessitate utilization of 

computational methods for construction of protein structural models. Comparative 

modeling utilizes structural information from one or more template proteins with high 

sequence similarity to the protein of interest to construct a model. As the PDB grows and 

the number of proteins with an existing suitable template of known structure increases, 

this method is unarguably most important [3]. 

However, despite impressive advancements in the combination of experimental protein 

structure determination techniques [4,5] with comparative modeling [6], entire classes of 

proteins remain underrepresented in the PDB as they evade crystallization or are 

unsuitable for NMR studies; e.g. membrane proteins [7] and proteins that only fold as 

part of a large macromolecular assembly [8,9]. Such proteins adopt more frequently 
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topologies not yet represented in the PDB so that the current structural knowledge fails to 

encapsulate necessary information to represent all protein families and folds expected to 

be found in the nature [10]. In such situations de novo methods for prediction of protein 

structure from the primary sequence alone can be applied.  

De novo protein fold determination is possible for smaller proteins of simple topology 

De novo protein structure prediction typically starts with predicting secondary structure 

[11,12,13,14] and other properties of a given sequence such as β-hairpins [15], disorder 

[16,17], non-local contacts [18], domain boundaries [19,20,21], and domain interactions 

[22,23]. System-learning approaches such as artificial neural networks (ANN), hidden 

Markov models (HMM), and support vector machines (SVM) are most commonly used 

in this field [24,25].  

This preparatory step is followed by the actual folding simulation. Rosetta, one of the 

best performing de novo methods, follows a fragment assembly approach [26,27,28]. For 

all overlapping nine- and three- amino acid peptides of the sequence of interest, 

conformations are selected from the PDB by agreement in sequence and predicted 

secondary structure. Rosetta is capable of correctly folding about 50% of all sequences 

with less than 150 amino acids [29]. 

Chunk-Tasser is another fragment assembly method for de novo structure prediction that 

was one of the best performing methods in the CASP8 experiment [30]. This method 

generates chunks, three consecutive SSEs connected by two loops, using nine- and three- 

residue fragments. The final models are built by using these chunks as the starting point 
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coupled with a minimization process that also utilizes threading and distance restraint 

predictions [31].  

For small proteins with less than 80 amino acids models can sometimes be refined to 

atomic-detail accuracy 

During the folding simulation, most de novo methods use a reduced protein 

representation that excludes side chain degrees of freedom to simplify the conformational 

search space and potential. The fastest and most accurate algorithms to add side chains in 

order to build atomic detail models rely on sampling likely conformations of amino acid 

side chains, so-called rotamers [32,33,34]. At this stage, the backbone of flexible loop 

regions can be further refined, in Rosetta by a combination of fragment insertions, side 

chain repacking, and gradient minimization. In the CASP6 experiment, Rosetta was able 

predict de novo the structure of a small α-helical protein to a resolution of 1.59Å [26]. 

Following this success, Bradley and co-workers showed comprehensively that high 

resolution backbone structure prediction facilitates the correct placement of side chains 

and thus de novo high resolution structure elucidation for small proteins[35]. Note that 

the refinement of backbone conformations and construction of side chain coordinates 

aligns with most comparative modeling protocols [36,37] (Figure 1). These algorithms 

model gaps and insertions using loop closure algorithms that use analytical geometry 

[38], molecular mechanics [39], or loop libraries from the PDB [40] before entering the 

refinement process. Thereby both approaches – de novo structure prediction and 

comparative modeling – share the decoupling of the construction of backbone and side 

chain coordinates. This procedure relies on the hypothesis that accurately placed 

backbone coordinates define the side chain conformations [33]. 
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Progress is stalled by inefficient sampling of large and complex topologies  

De novo methods perform well only for small proteins, because the conformational 

search space increases rapidly as the protein gets larger. Despite simplified representation 

of proteins that omit side chain degrees of freedom, sampling the correct topology 

remains the major bottleneck for folding large proteins. Sampling is complicated for large 

proteins not only by size, but also by a larger number of non-local contacts, i.e. 

interactions between amino acids that are far apart in sequence. More of these 

interactions contribute to protein stability and are therefore important to sample in order 

to find the correct topology. At the same time, when folding a continuous protein chain 

each of these contacts complicates the search as conformational changes between the two 

amino require coordinated adjustment of multiple phi, psi angles to not disrupt the 

contact. To quantify the number of such non-local contacts the relative contact order 

(RCO) of a protein was defined which is the average sequence separation of residues “in 

contact”, i.e. having their Cβ atoms (H2A for Glycine) within 8Å [41,42]. As the RCO 

increases above 0.25, the success rate of de novo prediction drops drastically [43]. Also, 

the geometry of non-local interactions and β-strand pairings in particular is often 

inaccurate as relative placement of the SSEs cannot be optimized independently form the 

connecting amino acid chain. This limitation must be overcome for de novo methods to 

be successfully applied to larger proteins. Interestingly, contact order correlates also with 

protein folding rates [44] suggesting that the sampling of non-local contacts is the rate-

limiting step in protein folding.  
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De novo protein structure prediction optimally leverages limited experimental datasets 

for proteins of unknown topology 

Interestingly, experimental structural data that become available for proteins of unknown 

topology are often limited, i.e. sparse or low in resolution. Typically, these limited data 

sets focus on and are more readily available for backbone atoms in ordered secondary 

structure elements. For example, cryo-Electron Microscopy and X-Ray crystallography 

yield medium resolution density maps of 5-10 Å where secondary structure can be 

identified but loop regions and amino acid side chains remain invisible [45,46,47,48,49]. 

NMR and EPR spectroscopy yield sparse datasets due to technological or resource 

limitations [49,50]. Chemical cross linking coupled with mass spectrometry has also been 

shown to be applicable for protein structure determination at these low resolutions 

[51,52,53].  

While de novo protein structure prediction is typically insufficient in accuracy and 

confidence to be applied to determine the structure of a protein without the help of 

experimental data, a series of manuscripts was published that demonstrated the power of 

such technologies to predict protein structures accurately at atomic-detail when combined 

with limited experimental data sets of different origin. Qian et al. previously 

demonstrated use of de novo structure prediction to overcome crystallographic phase 

problem [54]. De novo methods have also been applied for rapid fold determination from 

unassigned NMR data[55] and structure determination for larger proteins from NMR 

restraints [56]. In addition, de novo structure prediction has also been coupled with EPR 

restraints [57,58,59] as well as cryo-EM [49]. Kahlkof et. al study of de novo structure 

prediction of laminin using distance restraints from natural cross-links revealed a 
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structural similarity to galactose binding proteins [52], which was later confirmed when 

the structure was experimentally determined by X-Ray [60]. Numerous other studies have 

also harnessed the power of de novo structure prediction with experimental restraints 

[61,62,63].   

Objective of the present work is to introduce an algorithm for protein folding with a 

novel approach of assembly of secondary structure elements (SSEs) in three-dimensional 

space. This approach seeks to overcome size and complexity limits of previous 

approaches by discontinuing the amino acid chain in the folding simulation thereby 

facilitating the sampling of non-local contacts. Exclusion of loop regions focuses the 

sampling to the relative arrangement of rather rigid SSEs limiting the overall search 

space. The approach can be readily combined with limited datasets which tend to restrain 

the location of backbone atoms in SSEs. It leverages established protocols for 

construction of loop regions and side chains to yield complete protein models (Figure 1). 

The decoupling of the placement of SSEs from the construction of loop regions relies on 

the hypothesis that accurate placement of SSEs will allow for construction of loop 

regions and subsequent placement of side chain coordinates, a hypothesis tested 

excessively in comparative modeling. This approach assumes further that the majority of 

the thermodynamic stabilization achieved through formation of the core of the protein is 

defined by interactions between SSEs and can therefore be approximated with an energy 

function that relies exclusively on scoring SSEs. This hypothesis has been tested in the 

previous chapter. 
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Results and Discussion: 

In fragment assembly based approaches to de novo protein structure prediction, local 

contacts are sampled more efficiently than the non-local ones due to inherent restrictions 

imposed by the connectivity of the amino acid sequence. This restriction leads to one of 

the major challenge in de novo protein structure prediction – the sampling of complex 

topologies as defined by the abundance of non-local contacts and thus higher relative 

contact order (RCO) values [43]. Further, fragment based approaches spend a large 

fraction of time sampling the conformational space of flexible loop regions that 

contribute little to the stability of the fold. Therefore the accuracies of the methods 

deteriorate as the conformational search space gets larger, typically for proteins with 

more than 150 residues. In particular β-strand interactions are often sampled 

insufficiently dense to arrive at the correct pairings with good geometries. In result, 

regular secondary structure cannot be detected in the models giving them the well-known 

“spaghetti”-look. The score deteriorates hampering detection of the correct topology in a 

large ensemble of models.  
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Figure 16: BCL::Fold protocol flowchart: (A) Generation of secondary structure 

element (SSE) pool. Three secondary structure prediction methods, PSIPRED, SAM and 

JUFO, have been equally weighted to achieve a consensus three state secondary structure 

prediction. For a given amino acid sequence, stretches of sequence with consecutive α-

helix or β-strand predictions above a given threshold are identified as α-helical and β-

strand SSEs and added to the pool of SSEs to be used in the assembly protocol. (B) 

Assembly of SSEs. The initial model only has a randomly picked SSE from the SSE 

pool. At each iteration, a move is picked randomly and applied to produce a new model. 

The details regarding utilized moves are given in the next panel. (C) Energy Evaluation 

using knowledge based potentials.  After each change, the model is evaluated using 

knowledge based potentials. These include loop closure, amino acid environment, amino 

acid pair distance, amino acid clash, SSE packing,strand pairing, SSE clash and radius of 

gyration. (D) Monte Carlo Metropolis minimization. Based on the energy evaluation, 

models with lower energies than the previous model are accepted, while models with 

higher energy can be either accepted or rejected based on Metropolis criteria. The 

accepted models are further optimized, in case of rejected models, the minimization 

continues with the last accepted model. The minimization is terminated after either a 

specified total number of steps or a specified number of rejected steps in a row. The 

protocol consists of two such minimizations, one for assembly and one for refinement.  
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BCL::Fold is designed to overcome size and complexity limitations in de novo protein 

structure prediction. 

BCL::Fold assembles secondary structure elements (SSEs), namely α-helices and β-

strands while not explicitly modeling loop conformations (Figure 16). Individual residues 

are represented by their backbone and Cβ atoms only, (Hα2 for Glycine). A pool of 

predicted SSEs is collected using a consensus of secondary structure prediction methods. 

A Monte Carlo Metropolis (MCM) minimization with simulated annealing is used where 

models are altered by SSE-based moves (Table 12) and evaluated by knowledge-based 

energy potentials (Table 14). The reduced representation of proteins in BCL::Fold 

decreases the conformational search space that has to be sampled. Moving discontinued 

SSEs independently of each other accelerates sampling of non-local contacts. The 

knowledge-based scoring function employed by BCL::Fold is described in a companion 

manuscript in the same issue of this journal. 

 

Figure 17: Contact order distribution for proteins: The heat map shows the 

distribution of contact order with respect to sequence lengths for ~4000 culled native 

proteins. 
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BCL::Fold was evaluated using a benchmark set of proteins collected using PISCES 

culling server. The set includes 66 proteins of lengths ranging from 83 to 293 residues 

with <30% sequence similarity. The set contains different topologies including 31 all α-

helical, 16 all β-strand, and 19 mixed αβ folds (Table 9). The selected proteins have 

RCOs in the range of 0.12 to 0.47 with an average of 0.30 ± 0.07. It should be noted that 

as proteins get larger, RCO values start decreasing (Figure 17). Therefore we introduced 

a normalized contact order measure NCO which is defined as the square of the contact 

order divided by sequence length and largely independent of protein size.  

 

Table 9: Benchmark set of proteins: 

FULL SEQUENCE FILTERED SEQUENCE 

PDB id Naa Nsse Nα Nβ CO RCO Naa Nsse Nα Nβ CO RCO 

1BGCA 174 7 7 0 67.75 0.39 108 5 5 0 81.94 0.47 

1EYHA 144 8 8 0 33.59 0.23 107 8 8 0 36.48 0.25 

1FQIA 147 9 9 0 44.35 0.30 90 9 9 0 46.87 0.32 

1GAKA 141 7 7 0 57.17 0.41 96 6 6 0 51.38 0.36 

1GYUA 140 10 2 8 34.86 0.25 63 8 0 8 32.51 0.23 

1IAPA 211 11 11 0 60.11 0.28 123 9 9 0 77.40 0.37 

1ICXA 155 13 6 7 47.25 0.30 103 10 3 7 46.52 0.30 

1J27A 102 6 2 4 44.41 0.44 76 6 2 4 46.89 0.46 

1JL1A 155 10 5 5 52.69 0.34 97 10 5 5 50.41 0.33 

1LKIA 180 8 6 2 73.33 0.41 113 5 5 0 76.37 0.42 

1LMIA 131 10 1 9 40.95 0.31 63 9 0 9 41.77 0.32 

1OXJA 173 11 11 0 35.54 0.21 108 8 8 0 30.49 0.18 

1OZ9A 150 10 5 5 34.00 0.23 101 9 5 4 37.53 0.25 

1PBVA 195 10 10 0 30.84 0.16 128 10 10 0 30.06 0.15 

1PKOA 139 13 3 10 44.12 0.32 58 9 0 9 43.50 0.31 

1Q5ZA 177 11 11 0 40.42 0.23 77 6 6 0 46.33 0.26 

1RJ1A 151 8 8 0 45.07 0.30 113 7 7 0 41.83 0.28 

1T3YA 141 12 6 6 30.33 0.22 83 9 4 5 25.99 0.18 

1TP6A 128 9 3 6 32.97 0.26 94 9 3 6 31.72 0.25 

1TQGA 105 4 4 0 36.73 0.35 88 4 4 0 38.04 0.36 

1TZVA 142 9 9 0 32.42 0.23 97 7 7 0 35.14 0.25 

1UAIA 224 18 2 16 57.10 0.25 114 15 0 15 55.64 0.25 

1ULRA 88 7 2 5 40.11 0.46 55 7 2 5 36.68 0.42 

1VINA 268 16 16 0 51.29 0.19 156 12 12 0 51.04 0.19 

1X91A 153 6 6 0 48.33 0.32 113 5 5 0 46.98 0.31 

1XAKA 83 7 0 7 30.22 0.36 38 6 0 6 33.08 0.40 

1XKRA 206 14 6 8 65.80 0.32 147 14 6 8 66.11 0.32 

1XQOA 256 14 14 0 60.32 0.24 162 14 14 0 67.52 0.26 

1Z3XA 238 14 14 0 36.63 0.15 129 13 13 0 32.88 0.14 

2AP3A 199 7 7 0 53.65 0.27 156 5 5 0 55.95 0.28 

2BK8A 97 10 1 9 35.03 0.36 47 7 0 7 30.67 0.32 

2CWRA 103 9 0 9 35.71 0.35 60 8 0 8 33.53 0.33 
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2EJXA 139 10 3 7 41.78 0.30 107 10 3 7 38.38 0.28 

2F1SA 186 12 12 0 30.75 0.17 115 12 12 0 35.40 0.19 

2FC3A 124 10 6 4 47.78 0.39 80 9 5 4 51.27 0.41 

2FM9A 215 10 10 0 58.23 0.27 153 9 9 0 59.69 0.28 

2FRGP 106 11 2 9 36.63 0.35 64 9 0 9 33.94 0.32 

2GKGA 127 11 6 5 32.56 0.26 80 10 5 5 32.51 0.26 

2HUJA 140 4 4 0 50.34 0.36 99 4 4 0 53.84 0.38 

2IU1A 208 11 11 0 42.10 0.20 126 10 10 0 43.75 0.21 

2JLIA 123 8 4 4 30.25 0.25 69 8 4 4 29.23 0.24 

2LISA 136 6 6 0 55.90 0.41 91 5 5 0 53.23 0.39 

2OF3A 266 16 16 0 34.76 0.13 202 16 16 0 31.79 0.12 

2OSAA 202 11 11 0 49.60 0.25 124 9 9 0 50.70 0.25 

2QZQA 152 13 3 10 46.24 0.30 63 7 0 7 52.92 0.35 

2R0SA 285 16 16 0 58.40 0.20 165 13 13 0 57.84 0.20 

2RB8A 104 8 0 8 33.84 0.33 46 7 0 7 29.12 0.28 

2RCIA 204 13 7 6 63.82 0.31 126 10 4 6 63.77 0.31 

2V75A 104 5 5 0 32.84 0.32 65 5 5 0 34.26 0.33 

2VQ4A 106 10 1 9 33.71 0.32 54 8 0 8 32.07 0.30 

2WJ5A 101 7 1 6 31.44 0.31 42 6 0 6 28.26 0.28 

2WWEA 127 8 5 3 34.86 0.27 69 7 4 3 35.10 0.28 

2YV8A 164 14 1 13 59.67 0.36 79 12 0 12 56.88 0.35 

2YXFA 100 9 1 8 32.85 0.33 46 7 0 7 31.37 0.31 

2YYOA 171 14 1 13 50.72 0.30 66 12 0 12 58.41 0.34 

2ZCOA 293 16 16 0 51.60 0.18 205 15 15 0 56.53 0.19 

3B5OA 244 11 11 0 83.49 0.34 169 9 9 0 85.09 0.35 

3CTGA 129 11 7 4 33.78 0.26 68 9 5 4 32.00 0.25 

3CX2A 108 10 2 8 39.67 0.37 53 7 0 7 37.05 0.34 

3FH2A 146 9 9 0 43.06 0.29 100 9 9 0 42.92 0.29 

3FHFA 214 13 13 0 51.79 0.24 147 12 12 0 58.19 0.27 

3FRRA 191 9 9 0 54.64 0.29 141 9 9 0 55.61 0.29 

3HVWA 176 14 7 7 48.29 0.27 109 11 5 6 51.62 0.29 

3IV4A 112 11 6 5 35.13 0.31 77 9 4 5 32.98 0.29 

3NE3B 130 11 6 5 42.02 0.32 81 9 4 5 48.43 0.37 

3OIZA 99 7 3 4 26.73 0.27 63 7 3 4 25.52 0.26 

 

For each of the 66 proteins in the benchmark set, following are displayed : 4 letter code PDB id and 1 letter 

code chain id, number of amino acids (Naa), number of secondary structure elements(Nsse), number of α-

helices (Nα), number of β-strands (Nβ), contact order (CO), relative contact order (RCO). The left section of 

the table identified as “original sequence” displays statistics for the full sequence protein, while the 
“filtered sequence” statistics are calculated only on amino acids that are found in secondary structure 

elements that satistfy the length criteria; at least 5 residues for α-helices and 3 residues for β-strands. 

 

Consensus prediction of SSEs from sequence to create comprehensive pool for assembly 

The secondary structure prediction programs JUFO [64,65] and PSIPRED [66] were used 

to create a comprehensive pool of predicted SSEs. Two methods are used to avoid 

deterioration of BCL::Fold performance if one of the methods fails. To further avoid 

dependence on potentially incorrect predicted secondary structure we implement two 

strategies: a) the initial pool of SSEs contains multiple copies of one SSE having different 

length. In extreme cases of ambiguity this could be an α-helix predicted by one method 
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and a β-strand predicted by the other or one long α-helix that overlaps with two short α-

helices that span the same region. b) The length of SSEs is dynamically adjusted during 

the folding simulation in order to allow simultaneous optimization of protein secondary 

and tertiary structure [13]. Both strategies require a scoring metric that analyzes the 

agreement of a given set of SSEs with the predicted secondary structure. Before the 

actual folding simulation is started, a pool of likely SSEs is created using a MCM 

simulation. The soring scheme and the pool generation are described in more detail in the 

methods section. SSEs predicted by this method are only added to the secondary structure 

pool if they satisfy the minimum length restrictions; five residues for α-helices and three 

residues for β-strands. Rationale for removal of very short SSEs is two-fold: a) the 

reduced accuracy of secondary structure prediction techniques for such short SSEs [67] 

and b) the limited contribution to fold stability expected from short SSEs (Chapter III). 

Table 10 depicts Q3 [68] accuracies, as well as the percentage of native secondary 

structures correctly predicted and the average shifts for the SSE pools of the 66 

benchmark proteins using PSIPRED and JUFO secondary structure prediction. For this 

set of benchmark proteins BCL::SSE generated SSE pools using PSIPRED compared to 

JUFO exhibit higher Q3 values (79.6% ± 10.6  vs 70.2% ± 11.9), higher native SSE 

recovery (96.1% ± 6.4 vs %90.3 ± 10.7). This trend is also observed for shift values (3.1 

± 2.2 vs ±4.3 ±2.8) which measure the sum of the deviations in first and last residues of 

the predicted SSEs when compared with native SSEs. Although PSIPRED has a better 

overall performance, a combined pool of PSIPRED and JUFO has the highest native SSE 

recovery (%96.6) and the lowest shift (2.7). Because the SSE pool is constructed in a pre-
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processing step, secondary structure prediction methods can be changed or SSEs can be 

manually adjust if desired.  

 

Table 10: Secondary structure pool statistics for the benchmark proteins: 

pdb id 
PSIPRED JUFO PSIPRED + JUFO 

Q3 %found shift Q3 %found shift %found shift 

1BGCA 88.7 100.0 4.2 81.6 100.0 6.0 100.0 4.2 

1EYHA 87.7 100.0 3.5 69.0 87.5 5.3 100.0 3.5 

1FQIA 82.2 88.9 1.6 74.8 88.9 4.6 88.9 1.5 

1GAKA 87.4 100.0 7.8 68.0 83.3 6.6 100.0 4.5 

1GYUA 86.8 100.0 1.1 75.4 100.0 2.1 100.0 0.9 

1IAPA 82.1 100.0 6.1 78.8 100.0 5.7 100.0 5.4 

1ICXA 84.8 100.0 1.7 76.1 90.0 2.1 100.0 1.6 

1J27A 96.2 100.0 0.5 71.3 83.3 2.4 100.0 0.5 

1JL1A 75.5 100.0 4.1 66.7 100.0 5.4 100.0 4.0 

1LKIA 75.9 80.0 10.3 44.1 80.0 16.8 80.0 10.3 
1LMIA 53.7 66.7 2.8 42.5 66.7 3.8 66.7 2.5 

1OXJA 83.5 100.0 6.3 76.2 100.0 4.6 100.0 2.3 

1OZ9A 91.1 100.0 1.0 79.3 88.9 2.0 100.0 0.8 

1PBVA 93.9 100.0 0.8 89.3 100.0 1.4 100.0 0.6 

1PKOA 77.1 100.0 1.8 62.8 88.9 2.6 100.0 1.6 

1Q5ZA 76.3 100.0 3.2 64.0 100.0 3.8 100.0 1.3 

1RJ1A 90.2 100.0 6.0 86.6 100.0 7.4 100.0 5.3 

1T3YA 73.0 100.0 2.7 77.8 100.0 2.2 100.0 2.0 

1TP6A 75.5 88.9 2.6 58.8 88.9 5.0 88.9 2.6 

1TQGA 96.6 100.0 0.8 82.2 100.0 4.0 100.0 0.5 

1TZVA 84.8 100.0 6.4 80.0 100.0 7.0 100.0 6.1 
1UAIA 68.3 93.3 1.9 64.8 86.7 2.0 100.0 1.5 

1ULRA 90.2 100.0 0.9 76.5 100.0 2.3 100.0 0.7 

1VINA 83.5 100.0 2.1 71.8 83.3 4.2 100.0 1.8 

1X91A 88.6 100.0 2.6 79.2 80.0 4.3 100.0 2.6 

1XAKA 51.2 83.3 2.8 27.3 50.0 2.3 83.3 2.8 

1XKRA 85.0 92.9 1.5 80.4 85.7 1.2 92.9 1.2 

1XQOA 71.8 92.9 4.5 62.5 85.7 4.3 92.9 3.3 

1Z3XA 82.6 92.3 1.3 70.6 84.6 7.9 100.0 3.8 

2AP3A 81.6 100.0 6.4 76.3 100.0 12.0 100.0 6.0 

2BK8A 94.0 100.0 0.4 72.9 100.0 1.9 100.0 0.4 

2CWRA 77.4 100.0 2.3 75.8 87.5 1.3 100.0 1.6 
2EJXA 71.4 90.0 2.7 47.3 70.0 6.6 90.0 2.7 

2F1SA 83.3 91.7 1.5 76.0 83.3 2.1 91.7 1.3 

2FC3A 84.4 100.0 1.6 68.7 88.9 3.8 100.0 1.4 

2FM9A 85.5 100.0 5.7 85.2 100.0 2.8 100.0 2.6 

2FRGP 69.1 88.9 2.1 68.8 88.9 2.5 88.9 2.0 

2GKGA 90.0 100.0 0.8 73.6 80.0 1.3 100.0 0.7 

2HUJA 94.0 100.0 1.5 83.8 100.0 5.3 100.0 1.5 

2IU1A 82.0 90.0 2.7 77.7 90.0 11.4 90.0 2.6 

2JLIA 65.2 100.0 3.0 64.4 100.0 4.3 100.0 3.0 

2LISA 88.2 100.0 4.6 73.1 100.0 7.4 100.0 4.6 

2OF3A 85.4 100.0 7.9 78.2 87.5 5.3 100.0 5.5 
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2OSAA 79.4 88.9 2.4 70.3 88.9 4.0 88.9 2.1 

2QZQA 48.2 85.7 3.8 43.3 85.7 4.5 85.7 3.5 

2R0SA 68.6 84.6 2.2 61.3 69.2 3.1 84.6 2.2 

2RB8A 80.8 100.0 1.4 82.4 100.0 1.3 100.0 1.0 

2RCIA 60.7 90.0 5.3 52.8 90.0 6.3 90.0 4.4 

2V75A 76.9 100.0 3.6 72.6 100.0 4.0 100.0 3.2 
2VQ4A 74.2 100.0 2.1 71.0 75.0 1.3 100.0 2.0 

2WJ5A 83.7 100.0 0.7 73.5 100.0 1.7 100.0 0.8 

2WWEA 79.8 100.0 4.3 66.7 71.4 3.2 100.0 4.1 

2YV8A 81.2 91.7 1.0 75.3 83.3 1.3 91.7 0.5 

2YXFA 69.2 100.0 2.3 55.7 100.0 3.4 100.0 2.1 

2YYOA 69.1 100.0 2.2 62.0 100.0 3.0 100.0 2.1 

2ZCOA 83.8 93.3 5.7 81.0 100.0 8.3 100.0 5.1 

3B5OA 72.3 100.0 9.1 58.6 88.9 8.1 100.0 7.4 

3CTGA 83.1 100.0 1.4 67.5 77.8 2.4 100.0 1.4 

3CX2A 75.4 100.0 1.3 67.2 100.0 2.4 100.0 1.4 

3FH2A 96.0 100.0 0.4 89.4 100.0 3.4 100.0 0.3 

3FHFA 68.9 91.7 5.4 63.3 91.7 8.4 100.0 6.7 
3FRRA 93.0 88.9 5.4 86.2 88.9 6.5 88.9 5.3 

3HVWA 60.0 90.9 3.9 54.6 72.7 4.0 90.9 2.5 

3IV4A 83.1 100.0 1.7 81.0 100.0 2.0 100.0 1.3 

3NE3B 80.9 100.0 1.3 76.7 100.0 2.3 100.0 1.1 

3OIZA 68.0 100.0 3.6 64.5 100.0 3.9 100.0 3.3 

avg 79.6 96.1 3.1 70.2 90.3 4.3 96.6 2.7 

stdev 10.6 6.4 2.2 11.9 10.7 2.8 6.4 1.9 

 

The table depicts Q3 score, percentage of native SSEs identified as well average shifts for the pools 

generated using secondary structure prediction methods PSIPRED, JUFO and combined PSIPRED+JUFO 

for all of the 66 proteins in the benchmark set. The last two rows contains the average and the standard 

deviations. 

 

Two-stage assembly and refinement protocol separates moves by type and amplitude  

BCL::Fold samples the conformational search space by a variety of SSE-based moves. 

These moves coupled with exclusion of loop residues, provide a significant advantage in 

fast sampling of different topologies. The minimization process is divided into two 

stages. The “assembly” stage consists of large amplitude translation or rotations and 

moves that add or remove SSEs. Other moves central to this phase shuffle β-strands 

within β-sheets or break large β-sheets to create β-sandwiches. The “refinement” stage 

focuses on small amplitude moves that maintain the current topology but optimize 
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interactions between SSEs and introduce bends into SSEs. Currently both stages utilize 

the same energy function (Chapter III). 

 

Figure 18: Metropolis Criteria: At each step, the result is evaluated and step is assigned 

one of four possible outcomes; skipped, improved, accepted, and rejected. The first check 

determines whether the move was applicable or not. In cases where the SSEs required for 

the move are not yet added to the model, the step is determined to be as skipped. If the 

move was successfully applied, then the energy difference to the last improved model is 

calculated, if the energy has improved (became lower), then the step is assigned as 

improved. If the energy increased, then a random number is used to determine whether 

the move should still be accepted. The acceptance ratio for this purpose is biased by the 

amount of the increase in the energy. 

 

Once the SSE pool is input, the algorithm initializes the energy functions and move sets 

with corresponding weight sets for assembly and refinement stages. A starting model for 

the minimization is created by inserting a randomly selected SSE from the pool into an 
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empty model. The starting model is passed to the minimizer which executes assembly 

and refinement minimization. The assembly stage terminates after 5000 steps in total or 

after 1000 consecutive steps that did not improve the score. The refinement stage 

terminates after 2000 steps in total or 400 consecutive steps that did not improve the 

score. In general a move can result in one of four outcomes (Figure 18): “improved” in 

score, “accepted” through Metropolis criterion, “rejected” as score worsened, or 

“skipped” as SSE elements required for the move are not present in the model.  The 

temperature is adjusted dynamically based on the ratio of accepted steps (see Methods). 

A comprehensive list of all moves used in BCL::Fold is given in Table 12 along with 

brief descriptions. The moves are categorized into six main categories; (1) adding SSEs, 

(2) removing SSEs, (3) swapping SSEs, (4) single SSE moves, (5) SSE-pair moves, and 

(6) moving domains, i.e. larger sets of SSEs. Representations for a selection of moves 

used in BCL::Fold are illustrated in Figure 19. SSE, SSE-pair and domain moves are 

further categorized into specific versions for α-helices and β-strands or α-helix domains 

and β-sheets resulting in a total of nine individual categories. The relative probability or 

weight for each move category is initialized at the beginning of the minimization and 

depends on the SSE content of the pool. For example, β-sheet moves are excluded if the 

given pool contains only α-helices. This procedure limits the number of move trials that 

are unsuccessful or “skipped” because the needed SSEs are not in the model. As 

mentioned in the previous section, depending on the amplitude, moves are categorized to 

be used in either the assembly stage or the refinement stage. Out of 106 moves, 72 are 

used exclusively in assembly and 33 are used exclusively in refinement. Resizing SSEs 

(“sse_resize”) is the only move used in both stages. Table 13 provides statistics of how 
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frequently each move leads to an improved, accepted, rejected, or skipped status as well 

as the average improvement in the score observed for all the improved steps based on 

statistics collected on the 64 benchmark proteins. Assembly moves have an average score 

improvement of -170 ± 101 BCLEU while the refinement moves have an average score 

change of -29 ± 21 BCLEU (Table 13). 

The five individual moves with largest score improvements either add SSEs or 

manipulate β-strand, including “add_strand_next_to_sheet”, “sheet_pair_strands”, 

“add_sse_short_loop” and “add_sse_next_to_sse”. At the same time, these moves also 

lead to improved models with a relatively high percentage, ranging from 10% to 30% of 

the cases where the move is not skipped. On the other hand, these moves, especially ones 

including adding SSEs, also lead to a high percentage of skipped steps. This is due to the 

fact that the weight for these moves is currently not dynamically adjusted depending on 

how many SSEs are already added to the model. On the contrary, moves with small 

average score improvements are less frequently skipped but also less frequently accepted. 

It is somewhat misleading to analyze the moves in isolation as rearranging or refining the 

topology often requires a series of different moves and success of one move relies on 

availability on suitable companion moves. 
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Figure 19: SSE-based moves allow rapid sampling in conformational search space: 

The type of moves used in BCL::Fold protocol are explained with a representative set. 

(A) Single SSE moves: These moves can including adding a new SSE to the model from 

the pool as well as translation/rotations/transformations. (B) SSE pair moves: One of the 

SSEs in the pair can be removed, the locations can be swapped and one can be rotated 

around the other SSE which is used as a hinge to define rotation axis. (C) Domain based 

moves:  These moves act on a collection of SSEs such as helical domain or β-sheets. The 

examples show how the locations of strands can be shuffled within in a β-sheet or how a 

β-sheet can be flipped externally or translated together. 

 

 

BCL::Fold samples native-like topologies for 92% of benchmark proteins 

10,000 structural models were generated for each protein in the benchmark set using 

BCL::Fold. As described, two separate runs were performed with BCL::Fold, one with 

using a SSE pool composed of native SSE definitions as computed from the experimental 

structures using DSSP [69]. A second run was performed using a BCL::SSE predicted 
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pool. To facilitate analysis of models loops were constructed using a rapid CCD based 

method [38](see Methods). However, in the present analysis we focus on placement of 

SSEs to form the topology and evaluate models using two qualities measures; RMSD100 

and Contact Recovery (CR). CR measures percentage of native contacts recovered, where 

a contact is defined as between two amino acids of at least 12 residues sequence 

separation and <8Å Cβ distance. The average and standard deviations of RMSD100 and 

CR values of the best models generated by these runs can be found in Table 11. Figure 22 

and Figure 23 illustrate the best RMSD100 SSE-only and complete structural models 

generated by BCL using predicted SSE pools for a selection of benchmark proteins. 

BCL::Fold using the correct secondary structure RMSD100-values of 5.5 ± 1.6Å (SSE 

only models) and 6.8 ± 1.7Å (complete models) were achieved. For simulations with 

predicted SSEs RMSD100 values of 6.0 ± 1.6Å (SSE only models) and 7.2 ± 1.7Å 

(complete models) were obtained. For comparison, ROSETTA [28] generated models 

with RMSD100-values of 6.4 ± 2.1Å. BCL::Fold improved the RMSD100 when 

compared with Rosetta in 24 cases (36%) with correct SSE definitions and in 19 cases 

(29%) using a predicted SSE pool. When CR values are considered, BCL::Fold using the 

correct secondary structure achieved 44.6 ± 15.1 (SSE only models) and 45.0 ± 15.0 

(complete models). For simulation with predicted SSEs CR-values of 39.6 ± 15.3 (SSE 

only models) and 41.9 ± 15.0 (completed models) were obtained. For comparison, 

ROSETTA generated models with CR-values of 39.4 ± 17.5. BCL::Fold improved the 

recovery of native contacts when compared with Rosetta in 47 cases (71%) with correct 

SSE definitions and in 40 cases (60%) using a predicted SSE pool. 
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When best models by RMSD100 are considered, BCL::Fold was able to predict the 

correct topology in 61 cases (92%) independent of usage of correct or predicted SSE 

pools. After loop construction native-like models are obtained for 50 cases (75%) using 

correct SSE predictions and 41 cases (62%) using a predicted SSE pool. In comparison 

Rosetta constructed native-like models for 45 cases (68%). When a CR value of >20% is 

taken as cutoff success rates change to 64 cases (97%) and 62 cases (94%), respectively, 

for BCL::Fold and to 60 cases (91%) for Rosetta. We attribute the deterioration of 

BCL::Fold models after loop construction mostly to limited sampling performed at this 

stage of the protocol as the present work focuses on topology assembly. 

For further analysis, the best-scoring 100 models (1%) for each protein and each method 

were kept. For these subsets the percentage of targets where the best model by RMSD100 

was below 8.0Å were calculated. BCL::Fold using correct SSEs was able to generate a 

<8.0Å RMSD100 model in top 1% by score for 56% of targets (SSE only models) and 

39% (complete models). These values for BCL::Fold simulations with predicted pools 

were 44% (SSE only models) and 22% (complete models). This was followed by a 

similar analysis where CR measure was used instead of RMSD100. BCL::Fold using 

correct SSEs was able to generate >20% CR models for 74% of targets (SSE only 

models) and 79% (complete models). For simulations with predicted pools CR values 

were 73% (SSE only models) and 76% (complete models). 
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Figure 20: Comparison of best RMSD100 and CR values for BCL and Rosetta: 

Scatter plot comparing (A) best RMSD100 or (B) best CR SSE-only (left) and complete 

(right) BCL models vs Rosetta models. The BCL models considered are from BCL::Fold 

runs using predicted SSE pools. (B) Scatter plot comparing best CR SSE-only (left) and 

complete (right) BCL models vs Rosetta models. The BCL models considered are from 

BCL::Fold runs using predicted SSE pools. 

 

Comparison of best RMSD100 and CR values achieved for all benchmark proteins 

between Rosetta and BCL are provided in Figure 20. When RMSD100 values are 

considered, SSE-only models for BCL runs with predicted SSE pools (Figure 20A left 

panel) provide a better performance than Rosetta. As explained earlier, SSE-only models 

are given an advantage due to the smaller number of atoms over which RMSD100 values 

 



98 

 

are calculated for these models in the lack of flexible loop regions. When complete 

models are compared with Rosetta (Figure 20A right panel); it is observed that Rosetta 

produces lower RMSD100 models for more targets although performance correlates very 

well. Figure 20B displays CR values giving a light advantage to the BCL in recovering 

native-like SSE contacts. These results are promising for BCL::Fold especially given the 

fact that BCL::Fold was designed with a focus on getting the SSE topology correct. 

 

Figure 21: Determinants of high CR values in BCL and Rosetta models: (A) Plot of 

sequence length in number amino acids vs relative contact order (RCO) for all 

benchmark proteins. (B) Plot of percentage of amino acids found in SSEs vs maximum 
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Q3 value achieved from JUFO or PSIPRED pools for all benchmark proteins. Individual 

plots are presented for BCL models from BCL::Fold runs using predicted SSE pools (left 

panels) and Rosetta models (right panels). Points in both (A) and (B) are colored 

according to the best CR value achieved for that benchmark protein in BCL runs using 

predicted SSE pools and complete models; <20% (red), 20% to 40% (orange), 40% to 

60% (green) and >60% (dark green). 

 

BCL::Fold performance varies between different targets, as observed in the plots 

mentioned above. We wanted to investigate whether there is a correlation of performance 

with sequence length, fold complexity, secondary structure content, or accuracy of the 

secondary structure prediction. For this purpose, for each benchmark protein, the 

sequence length is plotted against NCO values (Figure 21A left panel) and each point is 

colored according to the highest CR value achieved for the complete models generated by 

BCL::Fold runs using predicted SSE pools for that protein. As seen in the plots the best 

performing proteins (>60%), are limited to <150 residue proteins. On the other hand, 

40% to 60% CR values were achieved for proteins up to 200 residues, and 20% - 40% 

CR values were attainable for proteins up to 275 residues. Similar plots are also provided 

for Rosetta models in Figure 21A right panel for comparison. 

 

Table 11: Best RMSD100 and CR values for models generated by BCL and Rosetta 

  RMSD100 cr12 

pdbid BCLN-SSE BCLN BCLP-SSE BCLP Rosetta BCLN-SSE BCLN BCLP-SSE BCLP Rosetta 

1BGCA 2.94 4.25 5.41 6.29 7.06 61.11 59.26 45.37 49.07 42.59 

1EYHA 6.06 6.92 5.87 7.20 4.30 28.69 31.15 41.80 37.70 40.77 

1FQIA 7.17 7.60 6.20 8.06 5.37 38.46 36.92 40.00 44.62 32.58 

1GAKA 4.90 7.06 6.38 7.69 4.60 42.59 42.59 29.63 32.41 66.67 

1GYUA 4.41 6.39 4.11 6.39 5.96 58.68 58.68 61.16 61.16 51.24 

1IAPA 6.46 7.55 7.38 8.23 5.65 27.12 27.12 22.03 22.03 19.11 

1ICXA 6.51 6.80 6.07 6.46 5.59 45.74 46.28 51.06 48.40 37.44 

1J27A 3.20 3.62 3.15 3.72 4.49 71.20 70.40 68.80 70.40 54.07 

1JL1A 6.04 8.01 6.75 8.19 8.26 39.05 43.33 31.43 34.76 26.52 

1LKIA 2.90 5.40 7.07 9.10 7.18 59.29 59.29 23.01 29.20 36.70 

1LMIA 5.82 8.60 6.72 9.97 9.49 49.65 48.94 29.08 31.21 26.95 

1OXJA 6.42 7.67 7.21 7.79 6.75 44.68 45.74 30.85 30.85 45.45 

1OZ9A 5.78 6.88 5.22 5.93 5.39 38.36 43.40 40.25 40.88 37.50 

1PBVA 8.02 9.02 8.75 9.14 6.47 28.30 28.30 30.19 31.13 40.00 
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1PKOA 6.03 7.81 7.58 8.15 8.43 43.07 40.88 38.69 39.42 27.74 

1Q5ZA 5.64 8.03 7.28 8.56 8.93 40.00 40.00 41.54 43.08 21.28 

1RJ1A 4.66 5.52 4.86 5.33 3.33 48.43 48.43 55.97 57.23 45.56 

1T3YA 5.71 5.92 5.86 6.56 6.27 49.61 51.94 42.64 44.96 34.06 

1TP6A 4.91 5.65 5.74 6.83 5.25 49.65 53.15 46.15 47.55 44.59 

1TQGA 1.91 2.19 1.92 2.44 1.41 76.40 76.40 76.40 76.40 93.55 

1TZVA 4.55 6.01 4.89 5.58 3.20 46.28 46.28 39.67 39.67 45.45 

1UAIA 6.13 7.95 7.24 9.05 9.62 38.58 37.01 29.53 31.50 16.54 

1ULRA 3.17 4.82 3.61 4.73 4.18 62.14 63.11 66.02 70.87 53.98 

1VINA 7.42 8.53 7.62 8.68 8.48 25.46 25.46 20.83 21.76 21.98 

1X91A 2.40 3.30 4.08 4.49 2.49 77.64 77.64 48.45 49.07 68.02 

1XAKA 8.17 9.53 5.28 7.77 8.67 53.03 53.03 31.82 48.48 34.85 

1XKRA 6.14 7.29 8.04 8.47 8.79 28.47 30.29 27.37 32.48 24.51 

1XQOA 8.05 8.71 7.50 8.20 9.16 18.82 18.28 18.82 19.35 14.73 

1Z3XA 7.74 9.19 7.58 9.59 8.44 24.27 24.27 22.33 22.33 30.37 

2AP3A 2.78 3.16 3.67 6.06 4.17 52.52 51.08 43.17 42.45 52.26 

2BK8A 5.09 6.89 4.81 7.13 4.27 56.41 57.69 55.13 55.13 80.77 

2CWRA 5.99 6.05 5.66 7.63 7.46 45.80 45.04 44.27 48.85 26.72 

2EJXA 6.28 6.64 7.48 7.89 5.17 41.43 42.14 29.29 35.00 38.82 

2F1SA 6.68 7.93 7.61 8.26 7.34 27.27 28.28 25.25 26.26 27.27 

2FC3A 4.90 7.39 5.63 6.78 5.75 34.62 40.00 36.92 46.92 25.36 

2FM9A 6.22 7.05 6.26 6.95 6.37 24.05 24.05 21.52 22.78 25.14 

2FRGP 4.67 5.69 5.38 6.41 6.53 57.02 56.14 53.51 53.51 35.96 

2GKGA 3.43 4.31 3.89 4.40 3.45 52.10 52.94 47.06 48.74 58.20 

2HUJA 2.12 2.98 2.57 3.37 3.65 71.31 71.31 66.39 67.21 47.29 

2IU1A 6.70 7.99 6.84 8.04 7.16 25.16 25.79 20.13 23.27 27.06 

2JLIA 6.18 7.11 6.93 8.14 6.46 46.59 46.59 37.50 42.05 36.89 

2LISA 4.77 6.03 5.47 7.22 5.71 43.33 43.33 41.11 45.56 59.79 

2OF3A 8.92 9.26 8.25 9.30 8.30 20.24 20.65 19.43 20.65 26.58 

2OSAA 6.55 7.78 7.21 8.82 8.05 27.14 27.14 28.57 32.86 24.86 

2QZQA 5.48 8.73 6.10 8.40 9.89 63.24 61.03 47.06 52.94 34.81 

2R0SA 6.95 9.53 7.80 10.29 10.27 24.49 24.49 23.13 23.13 21.30 

2RB8A 3.27 5.07 2.91 5.09 4.91 62.11 61.05 68.42 70.53 60.00 

2RCIA 5.32 6.99 9.17 10.20 10.29 47.50 48.75 22.08 24.58 16.06 

2V75A 3.26 3.66 3.11 3.55 2.29 67.12 65.75 60.27 60.27 85.71 

2VQ4A 4.18 6.65 5.28 7.20 9.18 57.94 57.01 59.81 59.81 36.45 

2WJ5A 5.80 8.48 6.41 8.63 7.86 67.80 66.10 71.19 71.19 77.97 

2WWEA 4.92 6.43 5.30 6.22 5.97 45.95 48.65 48.65 48.65 41.38 

2YV8A 5.71 7.85 5.54 7.48 8.53 47.62 47.02 43.45 41.07 26.19 

2YXFA 5.84 7.28 6.13 6.65 4.38 51.46 51.46 48.54 51.46 53.40 

2YYOA 6.68 8.55 6.72 7.94 9.13 37.91 39.22 40.52 41.18 23.53 

2ZCOA 7.75 8.42 7.63 8.33 8.20 18.28 19.03 18.28 19.03 17.18 

3B5OA 6.46 7.28 8.62 8.96 9.10 23.11 23.11 9.78 15.11 11.43 

3CTGA 5.52 6.89 5.61 6.93 4.07 52.11 53.52 45.07 50.70 48.72 

3CX2A 4.96 7.88 7.27 7.04 8.20 54.37 54.37 49.51 54.37 47.57 

3FH2A 6.37 7.34 6.35 7.55 4.73 33.33 33.97 27.56 28.21 41.85 

3FHFA 8.60 9.17 7.81 8.88 7.54 19.42 21.36 16.50 18.45 27.07 

3FRRA 6.50 7.50 4.53 5.87 5.46 30.82 30.82 33.33 34.59 45.25 

3HVWA 6.10 8.02 6.48 6.49 6.69 39.61 40.26 30.52 37.66 25.95 

3IV4A 3.34 4.68 4.54 5.80 3.98 60.61 61.62 52.53 49.49 40.95 

3NE3B 5.01 5.65 6.41 7.01 5.60 45.45 48.25 48.25 51.05 34.10 

3OIZA 4.48 5.00 5.76 6.21 4.20 50.00 50.96 30.77 41.35 56.76 

avg 5.50 6.81 6.04 7.21 6.42 44.55 44.96 39.63 41.88 39.42 

stdev 1.61 1.73 1.58 1.68 2.16 15.13 14.81 15.31 14.96 17.52 

 

The table lists for all proteins, best RMSD100 and best CR observed for models generated by BCL and 

Rosetta. BCL results are presented in 4 columns: SSE only models using native SSE definitions (BCLN-SSE), 

complete models using native SSE definitions (BCLN), SSE only models using predicted SSE definitions 

(BCLP-SSE), complete models using predicted SSE definitions (BCLP). The 5th columns under RMSD100 and 

GDT_TS are for Rosetta models. The average values and standard deviations could be found in the last two 

columns 
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Figure 22: Structures for a selection of best RMSD100 SSE-only models generated 

by BCL::Fold: BCL::Fold generated best RMSD100 complete models using predicted 

SSE pool for a selection of proteins. The generated models are rainbow colored and 

superimposed with the native structure (gray) for following proteins along with the 

RMSD100 of the models: (A) 1GYUA – 6.39Å (B) 1ICXA – 6.46Å (C) 1ULRA – 4.73Å 

(D) 1X91A – 4.49Å (E) 1J27A – 3.72Å (F) 1TP6A – 6.83Å (G) 2CWRA - 7.61Å (H) 

2RB8A – 5.09Å (I) 1RJ1A – 5.33Å (J) 1TQGA 2.44Å (K) 2HUJA – 3.37Å (L) 3OIZA – 

6.21Å (M) 2V75A – 3.55Å 
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Figure 23: Structures for a selection of best RMSD100 complete models generated 

by BCL::Fold: BCL::Fold generated best RMSD100 SSE-only models using predicted 

SSE pool for a selection of proteins. The generated models are rainbow colored and 

superimposed with the native structure (gray) for following proteins along with the 

RMSD100 of the models: (A) 1GYUA – 4.11Å (B) 1ICXA – 6.07Å (C) 1ULRA – 3.61Å 

(D) 1X91A –4.08Å (E) 1J27A – 3.15Å (F) 1TP6A –5.74Å (G) 2CWRA -5.66 Å (H) 

2RB8A –2.91Å (I) 1RJ1A –4.86Å (J) 1TQGA – 1.92Å (K) 2HUJA –2.57Å (L) 3OIZA –

5.76Å (M) 2V75A –3.11Å 

 

 

Accurate secondary structure improves quality of BCL::Fold models only slightly 

Comparison of BCL::Fold runs with predicted with correct SSEs (Table 11) reveals that 

using native SSE definitions provides an average improvement of 0.64Å in RMSD100 

for SSE only models and 0.40 Å RMSD100 for complete models after loop construction. 

Although the effect of secondary structure prediction accuracy on average of best 
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RMSD100 models is modest, this effect is not directly related to Q3 values due to the 

nature of BCL::Fold assembly protocol. One interesting example is 1LKIA, a 180 residue 

protein with Q3 values of 75.9 (PSIPRED) and 44.1 (JUFO). Although this protein has a 

mid-range PSIPRED Q3 value, it exhibits the largest deterioration in both RMSD100 and 

CR, which is more likely to be explained by the high average shift values; 10.3 residues 

(PSIPRED) and 16.8 residues (JUFO). Another such example is 1LMIA, which has low 

Q3 value of 53.7 and 42.5 for PSIPRED and JUFO respectively, accompanied by a low 

rate correct SSE identification of 67%. On the other hand, if the secondary structure 

prediction is extremely accurate as in the case of 1TQGA, 1J27A, 3FH2A, 2BK8A (all 

with PSIPRED Q3 > 94.0), RMSD100 values deteriorate less than <0.3Å when moving 

from perfect to predicted secondary structure. Although accurate secondary structure 

prediction improves the overall accuracy of BCL::Fold, the results indicate that it is not a 

requirement. As described in Table 12, BCL::Fold utilizes a set of moves to dynamically 

resize and split SSEs during the minimization to compensate for the inaccuracies in 

secondary structure prediction. 

The SSE content (percentage of residues in a sequence that reside in an SSE opposed to 

coil) versus maximum Q3 value of the pool generated (higher of Q3 values calculated for 

PSIPRED and JUFO predictions) for each benchmark protein is plotted in Figure 21B. 

Each point is colored according to the best CR value achieved for that target in complete 

models generated in BCL::Fold runs using predicted SSE pools (Figure 21B left panel). 

As observed nearly all targets with highest CR values (>60% colored purple) have ~80% 

or higher Q3 values, although the SSE content for these targets can range from as little as 
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40% to as high as 85%. Similar plots are also provided for Rosetta models for 

comparison (Figure 21B right panel). 

BCL::Fold BETA was evaluated in CASP9 experiment 

All techniques for protein structure prediction are evaluated every two years via the 

Critical Assessment of Techniques for Protein Structure Prediction (CASP) experiment 

[70,71,72]. An early version of BCL::Fold (BCL::Fold BETA) participated in CASP9 

and predictions were submitted for 58 of 63 targets given in human predictor category. 

For each target 50,000 models were generated, the top 10,000 by BCL score were 

selected for clustering analysis. The five best scoring models as well as the best scoring 

models in each of the large clusters (~20) underwent loop construction and side chain 

packing using ROSETTA. The five models for submission were selected from these full 

atom models as the largest cluster centers. In cases were a template was readily available, 

the fifth model for submission was the BCL::Fold model with the smallest RMSD to the 

comparative model built by MODELLER [73]. This approach was chosen to test the 

BCL::Fold sampling independent from BCL::Score (Chapter III).  

Targets in CASP9 were biased towards proteins of known fold. In fact, only 14 out of the 

60 human targets had no sequence detectable templates [74]. However, BCL::Fold 

treated all targets “free modeling (FM)” to maximally leverage the blind CASP 

experiment to test the algorithm. In cases where a template was available we would not 

expect to perform better than template-based methods. The remaining few cases represent 

a too small sample size to comprehensively compare BCL::Fold with other de novo 

protein structure prediction methods, also because of the BETA stage of that version. 

Therefore we present anecdotal examples where the potential of this early version of the 
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algorithm became apparent. A more detailed evaluation will be performed during 

CASP10 in summer 2012.  

For FM target T0608_1, the first submission by BCL::Fold had an RMSD of 4.3Å and 

ranked 9
th
 out of 132 groups (Figure 24). BCL::Fold was also able to produce native-like 

models and pick them for submission for the following targets; T0580 (105 residues 4.4Å 

RMSD), T0619 (111 residues 5.9Å RMSD), T0602 (123 residues 7.7Å RMSD), T0630 

(132 residues 8.4Å RMSD), T0627 (261 residues 8.9Å RMSD). 

 

 

Figure 24: BCL::Fold results from CASP9: The best submitted model out of 5 top 

submissions by RMSD (rainbow colored) superimposed with the native structure for (A) 

T0608_1 - 89 residues, 4.3Å RMSD (B) T0580 - 105 residues 4.44Å RMSD, (C) T0619 - 

111 residues, 5.86Å RMSD (D) T0602 - 123 residues, 7.75Å RMSD (E) T0630 - 132 

residues, 8.42Å RMSD (F) T0627 - 261 residues, 8.90Å RMSD 

 

 

 



106 

 

Conclusion 

In conclusion we demonstrate that assembly of SSEs is a viable approach to predict the 

topology of a protein of unknown fold. BCL::Fold assembles the correct topology for 

about 3 out of 5 proteins with sequence lengths ranging from 88 residues to 293 residues 

and 4 to 15 SSEs. BCL::Fold assembly runs range from 1 minute for the smallest protein 

to 10 minutes for the largest protein with a linear scaling. The impact of predicted versus 

correct secondary structure is small demonstrating that BCL::Fold can efficiently 

compensate for inaccuracies in secondary structure prediction. As mentioned above, 

BCL::Fold currently focuses on topological sampling of SSEs neglecting backbone 

flexibility within individual SSEs. This leads to increased RMSD100 values especially in 

β-sheet proteins where despite correct topology, the curvature of β-sheet is not correctly 

reproduced. With development of more efficient SSE backbone bending strategies 

BCL::Fold can overcome this limitation. 

As expected, BCL::Fold overall performance, in terms of both RMSD100 and CR, is 

more robust for smaller proteins. There is a linear dependency, more clearly seen with 

decrease in CR values larger the protein, thus larger the conformational space to be 

sampled. Out of 31 α-helical proteins tested, BCL::Fold was able generate <8.0Å 

RMSD100 models for 28 cases (SSE only models) and 15 cases (complete models).  Out 

of 16 β-proteins, this was true for all 16 cases (SSE only models) and 11 cases (complete 

models). For the remaining 18 αβ proteins, native-like models were generated 16 (SSE 

only models) and 15 cases (complete models). One of the major reasons of the difficulty 

experienced with a subset of these targets, as in the case of α-helical proteins 1LKIA, 

1Z3XA and 2R0SA, and β-sheet proteins 1LMIA, 2QZQA and 1XAKA, can be 
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attributed to inaccurate secondary structure predictions in terms of Q3 as well as being 

unable to identify one or more native SSEs.  

As discussed in the introduction, BCL::Fold was designed for combination with limited 

experimental datasets. A version of BCL::Fold which integrates low resolution restraints 

from cryo-EM was previously shown to predict the correct topology for α-helical proteins 

[49]. Incorporation of limited experimental data from NMR and EPR experiments, 

folding of membrane proteins, and better reproduction of strongly bent SSEs are future 

directions of our research. 

 

Methods and Materials 

BCL::Fold protocol and benchmark analysis 

The flowchart of the BCL::Fold protocol is shown in Figure 16. The amino acid sequence 

and associated secondary structure predictions are utilized to generate a pool of SSEs 

(Figure 16A). The SSE pool is likely to have multiple copies for the one SSE with 

varying start and end points. The algorithm then selects one SSE at random from the pool 

and places it in the origin to start the simulation. The minimization protocol is composed 

of a Monte Carlo sampling algorithm (Figure 16B) coupled with knowledge-based 

energy potentials (Figure 16C). Once a specified number of maximum iterations are 

reached the minimization is ended and the model with the best energy is returned as the 

final model (Figure 16D). For each of the benchmark proteins, two BCL::Fold runs with 

10,000 models each were completed, one using secondary structure definitions provided 

in the PDB files and one using the secondary structure predictions. 
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Preparation of benchmark set 

The benchmark protein set was collected using PISCES culling server and includes 66 

proteins of lengths ranging from 83 to 293 residues with <30% sequence similarity and 

X-ray determined structures <2.0 Å. The set contains 66 different topologies including 31 

all α-helical, 16 all β-strand, and 19 mixed αβ folds (Table 9). The primary sequence and 

experimental structure of the selected proteins were downloaded from the PDB [75]. The 

secondary structures were determined using DSSP [69], since the PDB definitions were 

inconsistent in some places. 

Secondary structure prediction and preparation of SSE pool 

JUFO [64,65] and PSIPRED [66] were obtained from the authors of the methods and 

installed locally. In addition the sequence alignment tool BLAST [76,77] was installed 

locally to create the position specific scoring matrices for input to JUFO and PSIPRED. 

These are provided as input to the BCL::SSE application which generates a pool of likely 

SSEs given secondary structure prediction and BLAST profile. BCL::SSE first generates 

an initial pool by assigning taking the highest probability for each residue and assigning it 

the corresponding secondary structure type. A threshold of 0.5 is applied for α-helices 

and β-strands, if the probability is below the threshold; the residue is assigned as a coil 

even if the highest probability corresponds to α-helix and β-strand. This initial pool is 

then refined using a Monte-Carlo based minimization composed of 1000 steps. The 

minimization employs moves that alter the secondary structure assignment of a single 

residue or divide a SSE, while the energy function used evaluates the correspondence of 

the secondary structure predictions to the secondary structure assignments generated (see 

Chapter III for more details). For both the initial pool as well as the final pools generated 
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by BCL::SSEs, α-helices shorter than 5 residues and β-strands shorter than 3 residues are 

excluded. 

SSE pool evaluation 

Q3 is the most commonly used method for evaluating secondary structure assignments 

[68]. Q3 evaluates the percentage of residues with correct secondary structure 

assignments. However, since the actual identification of an SSE is more important than 

individual secondary structure assignments for BCL::Fold, additional measures the 

percentage of native SSEs that were correctly identified as well as the shift which is sum 

of deviations in the begin and ends of predicted SSEs compared to native SSEs.  

Monte Carlo-based sampling algorithm and temperature control 

BCL::Fold starts the minimizations with a structural model that contains a single SSE 

picked randomly from the pool. At each iteration, a move is selected randomly from the 

move set and applied to the model to produce a new structural model. The resultant 

model is evaluated by energy functions, and whether to accept or reject this model is 

determined by Metropolis criterion[78], 

           {   
 (     )

  }  

where Ec is the energy of the current model, Eb is the energy of the best model observed 

so far, k is a constant and T is the temperature of the system at that point. Temperature is 

set to 500 initially and adjusted every 10
th
 step to approach an overall cumulative move 

acceptance ratio for the trajectory. The target ratio for move acceptance is 0.5 in the 

beginning decreases linearly to 0.2 at the end. 
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The evaluation of the Metropolis criterion can lead to four different results (Figure 18); 

(1) skipped, if the mutate was not able to produce a new model, such as when trying to 

add a new SSE to a model that is already complete, thus the energy evaluation is skipped, 

(2) improved, if the energy of current model is better than best energy, (3) accepted and 

(4) rejected if energy of current model is worse than best energy and Metropolis criterion 

is used for evaluation. If this step is an “improved” state, the current model replaces the 

best model and minimization is continued with this model. If this step is a “rejected” or 

“skipped”, the minimization is continued with the best model. If this step is an “accepted” 

state, the minimization is continued on this model however the best model is not updated. 

Sampling of conformational search space 

The conformation search space is achieved in BCL::Fold by a variety of moves. Each 

move is assigned a probability and one of them is randomly picked for each step based on 

these probabilities. The list of all moves utilized, their associated probabilities and 

descriptions can be found in Table 12 and Table 13. The moves can divided into 

following six categories; (1) adds, (2) removes, (3) swaps, (4) single SSE moves, (5) 

SSE-pair moves, (6) domain moves. For SSE, SSE-pair and domain moves, these are 

further categorized into specific α-helix, β-strands or α-helix domain, β-sheet moves. 

 

Table 12: Moves used in BCL::Fold protocol: 

Move Type Stage description 

add_sse_next_to_sse add A add an SSE from the pool to the model using preferred orientations 

add_sse_short_loop add A 
add an SSE from the pool next to an SSE which is a neighbor in 

sequence 

add_strand_next_to_sheet add A add a strand to sheet as the edge strand 

remove_random remove A remove a randomly determined SSE from the model 

remove_unpaired_strand remove A locate and remove an unpaired strand from the model 

swap_sse_with_pool swap A swap an SSE in the model with an SSE from the pool 

swap_sse_with_pool_overlap swap A swap an SSE in the model with an SSE from the pool which overlaps 

swap_sses swap A swap locations of two SSEs in the model 



111 

 

sse_bend_ramachandran SSE R 
Change phi/psi angles for a random residue using Ramachandran 

statistics 

sse_bend_random_large SSE R Change phi/psi angles for a random residue by  0 to 20 degrees 

sse_bend_random_small SSE R Change phi/psi angles for a random residue by 0 to 5 degrees 

sse_furthest_move_next SSE A 
Locate the SSE in the model furthest from the center and re-place it 

next to another SSE 

sse_move_next SSE A Locate a random SSE in the model and re-place it next to another SSE 

sse_move_short_loop SSE A 
Locate a random SSE in the model and re-place it next to an SSE which 

has a short loop to it 

sse_resize SSE A + R Extend/shrink a random SSE by 1 to 3 residues from one end 

sse_rotate_large SSE A Rotate an SSE by 15 to 45 degrees in any direction 

sse_rotate_x_large SSE A Rotate an SSE by 0  to 45 degrees around X axis 

sse_rotate_y_large SSE A Rotate an SSE by up to 45 degrees around Y axis 

sse_rotate_z_large SSE A Rotate an SSE by up to 45 degrees around Z axis 

sse_rotate_small SSE R Rotate an SSE by up to 15 degrees in any direction 

sse_rotate_x_small SSE R Rotate an SSE by up to 15 degrees around X axis 

sse_rotate_y_small SSE R Rotate an SSE by up to 15 degrees around Y axis 

sse_rotate_z_small SSE R Rotate an SSE by up to 15 degrees around Z axis 

sse_split_JUFO SSE A 

Split a long SSE ( >14 residues for helices, > 8 residues for strands) 

into two shorter SSE by removing the residue in the SSE  with the 

lowest JUFO prediction for the associated SS type 

sse_split_PSIPRED SSE A Same as sse_split_JUFO, but uses PSIPRED predictions instead 

sse_translate_large SSE A Translate an SSE 2 to 6Å along any direction 

sse_translate_x_large SSE A Translate an SSE up to 6Å along X axis 

sse_translate_y_large SSE A Translate an SSE up to 6Å along Y axis 

sse_translate_z_large SSE A Translate an SSE up to 6Å along Z axis 

sse_transform_large SSE A 
Transform an SSE in any direction by 2 to 6Å translation and 15 to 45 

degree rotation 

sse_translate_small SSE R Translate an SSE up to 2Å along any direction 

sse_translate_x_small SSE R Translate an SSE up to 2Å along X axis 

sse_translate_y_small SSE R Translate an SSE up to 2Å along Y axis 

sse_translate_z_small SSE R Translate an SSE up to 2Å along Z axis 

sse_transform_small SSE R 
Transform an SSE in any direction by up to 2Å translation and 15 

degree rotation 

helix_flip_xy α-helix A Rotate a randomly picked helix by 180 degrees around X or Y axis 

helix_flip_z α-helix A Rotate a randomly picked helix by 180 degrees around Z axis 

helix_furthest_move_next α-helix A 
Locate the helix in the model furthest from the center and re-place it 

next to another SSE 

helix_move_next α-helix A Locate a random SSE in the model and re-place it next to another SSE 

helix_move_short_loop α-helix A 
Locate a random SSE in the model and re-place it next to an SSE which 

has a short loop to it 

helix_translate_xy_large α-helix A Translate an helix 2 to 4Å along x axis and y axis 

helix_translate_z_large α-helix A Translate an helix up to 4Å along z axis 

helix_rotate_xy_large α-helix A Rotate an helix 15 to 45 degrees around x axis and y axis 

helix_rotate_z_large α-helix A Rotate an helix 15 to 45 degrees around z axis 

helix_transform_xy_large α-helix A 
Transform a helix  by 2 to 4A translation and 15 to 45 degrees rotation 

in x axis and y axis 

helix_transform_z_large α-helix A 
Transform a helix  by 2 to 4A translation and 15 to 45 degrees rotation 

in z axis 

helix_translate_xy_small α-helix R Translate an helix up to 2Å along x axis and up to 2Å along y axis 

helix_translate_z_small α-helix R Translate an helix up to 2Å along z axis 

helix_rotate_xy_small α-helix R 
Rotate an helix up to 15 degrees around x axis and up to 15 degrees 

around y axis 

helix_rotate_z_small α-helix R Rotate an helix up to 15 degrees around z axis 

helix_transform_xy_small α-helix R 
Transform a helix  by up to 2A translation and up to 15  degrees 

rotation in z axis 

helix_transform_z_small α-helix R 
Transform a helix  by up to 2A translation and up to 15 degrees rotation 

in z axis 

strand_flip_x β-strand A Rotate a randomly picked strand by 180 degrees around X axis 

strand_flip_y β-strand A Rotate a randomly picked strand by 180 degrees around Y axis 

strand_flip_z β-strand A Rotate a randomly picked strand by 180 degrees around Z axis 

strand_furthest_move_next β-strand A 
Locate the strand in the model furthest from the center and re-place it 

next to another SSE 

strand_furthest_move_sheet β-strand A 
Locate the strand in the model furthest from the center and re-place it 

next to a sheet 

strand_move_next β-strand A Locate a random strand in the model and re-place it next to another SSE 

strand_move_sheet β-strand A Locate a random strand in the model and re-place it next to a sheet 

strand_translate_z_large β-strand A Translate a strand up to 2Å along z axis 

strand_translate_z_small β-strand R Translate a strand 2 to 4Å along z axis 
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ssepair_translate_large SSE pair A 
Locate two packed SSEs,  translate one of them 1 to 3Å along the 

packing axis 

ssepair_translate_no_hinge_large SSE pair A 
Locate two packed SSEs, translate one of them 2 to 4Å in any axis of 

the other one 

ssepair_rotate_large SSE pair A 
Locate two packed SSEs,  rotate one of them 10 to 45 degrees around 

the packing axis 

ssepair_transform_large SSE pair A 
Locate two packed SSEs,  transform one of them using the packing axis 

by 1 to 3Å translation and 10 to 45 degrees rotation 

ssepair_translate_small SSE pair R 
Locate two packed SSEs,  translate one of them up to 3Å along the 

packing axis 

ssepair_translate_no_hinge_small SSE pair R 
Locate two packed SSEs, translate one them up to 2Å in any axis of the 

other one 

ssepair_rotate_small SSE pair R 
Locate two packed SSEs,  rotate one of them up to 15 degrees around 

the packing axis 

ssepair_transform_small SSE pair R 
Locate two packed SSEs,  transform one of them using the packing axis 

up to 1Å translation and up to 15 degrees rotation 

helixpair_rotate_z_large_hinge α-pair A 
Locate two packed helices,  rotate both 15 to 45 degrees around z axis 

of one of them 

helixpair_rotate_z_large_no_hinge α-pair A 
Locate two packed helices,  rotate one 15 to 45 degrees around z axis of 

the other one 

helixpair_rotate_z_small_hinge α-pair R 
Locate two packed helices,  rotate both up to 15 degrees around z axis 

of one of them 

helixpair_rotate_z_small_no_hinge α-pair R 
Locate two packed helices,  rotate one up to 15 degrees around z axis of 

the other one 

helixdomain_flip_ext α-domain A 
Locate a domain of helices, rotate them 180 degrees externally along a 

common x,y or z axis 

helixdomain_flip_int α-domain A 
Locate a domain of helices, rotate them 180 degrees internally along 

x,y or z axis 

helixdomain_shuffle α-domain A Locate a domain of helices, swap locations of 1 or 2 pairs of helices 

helixdomain_translate_large α-domain A Translate a domain of helices 2 to 6Å along any direction 

helixdomain_rotate_large α-domain A Rotate a domain of helices 15 to 45 degrees along any axis 

helixdomain_transform_large α-domain A 
Transform a domain of helices by 2 to 6Å translation and 15 to 45 

degrees rotation along any axis 

helixdomain_translate_small α-domain R Translate a domain of helices up to 2Å along any direction 

helixdomain_rotate_small α-domain R Rotate a domain of helices up to 15 degrees along any axis 

helixdomain_transform_small α-domain R 
Transform a domain of helices by up to 2Å translation and up to 30 

degrees rotation 

sheet_shuffle β-sheet A Locate a sheet, swap locations of 1 or 2 pairs of strands 

sheet_switch_strand β-sheet A Remove a edge strand from a sheet and add it to another sheet 

sheet_cycle β-sheet A 
Locate a sheet, cycle the locations of 2 to 4 strands in the sheet by 1 to 

3 positions 

sheet_cycle_intact β-sheet A 
Locate a sheet, cycle the locations of all strands in the sheet by 1 to 3 

positions , while keeping relative parallel/antiparallel orientations intact 

sheet_cycle_subset β-sheet A 
Same as sheet_cycle, but instead of all strands, only moves 2 to 4 

strands 

sheet_cycle_subset_intact β-sheet A 
Same as sheet_cyle_subset, but keeps the relative parallel/antiparallel 

orientations intact 

sheet_divide β-sheet A 

Locate a sheet of at least 4 strands and divide it to two sheets of at least 

2 strands each and then translate one sheet away from up to 4Å in each 

direction 

sheet_divide_sandwich β-sheet A 

Locate a sheet of at least 4 strands and divide it to two sheets of at least 

2 strands each and then pack one of the new sheets against the other one 

in beta-sandwich form 

sheet_flip_ext β-sheet A Rotate all strands in a sheet externally along a common x, y or z axis 

sheet_flip_int β-sheet A Rotate all strands in a sheet internally along  x, y or z axis 

sheet_flip_int_sub β-sheet A Rotate a subset of strands in a sheet internally along x,y or z axis 

sheet_flip_int_sub_diff β-sheet A Rotate a subset of strands in a sheet along different axes 

sheet_pair_strands β-sheet A 
Locate unpaired strands and pair them with each other, if there is only 

one unpaired strand, then  add it to a sheet 

sheet_register_fix β-sheet R 
Fix the hydrogen bonding pattern of a located sheet by applying small 

translations 

sheet_register_shift β-sheet A 
Shift the hydrogen bonding register of two strands in a sheet by a 

translation in the amoun of two residue lengths 

sheet_register_shift_flip β-sheet A 

Shift the hydrogen bonding register of two strands in a sheet by a 

translation in the amount of one residue length coupled with a 180 

degrees rotation around x or y axis 

sheet_translate_large β-sheet A Translate a sheet by 2 to 4Å along any axis 

sheet_rotate_large β-sheet A Rotate a sheet by 15 to 45 degrees around any axis 

sheet_transform_large β-sheet A Transform a sheet by 2 to 4Å translation and 15 to 45 degreess rotation 
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sheet_twist_large β-sheet A 
Adjust the twist angle of all strands in a sheet by up to 10 degrees 

rotations 

sheet_translate_small β-sheet R Translate a sheet by up to 2 Å along any axis 

sheet_rotate_small β-sheet R Rotate a sheet by up to 15 degrees around any axis 

sheet_transform_small β-sheet R 
Transform a sheet by up to 2 Å translation and up to 15  degrees 

rotation 

sheet_twist_small β-sheet R 
Adjust the twist angle of all strands in a sheet by up to 2 degrees 

rotations 

total TOTAL 
  

All moves used in BCL::Fold are listed along with the subcategory they belong to and whether they are 

utilized in assembly (A) or refinement (R) stage. The last column gives a short description of what each 

move does. 

 

Table 13: Statistics for the moves used in BCL::Fold protocol: 

Move Type Stage %improved %accepted %rejected %skipped Δmean 

add_sse_next_to_sse                   add A 1.7 4.3 8.8 85.2 -392.88 

add_sse_short_loop                    add A 2.4 4.5 7.1 85.9 -401.83 

add_strand_next_to_sheet              add A 2.0 2.0 2.0 94.0 -458.46 

remove_random                         remove A 0.2 16.5 82.8 0.5 -236.96 

remove_unpaired_strand                remove A 0.1 6.9 11.4 81.6 -220.60 

swap_sse_with_pool                    swap A 1.0 4.3 5.1 89.6 -241.83 

swap_sse_with_pool_overlap            swap A 4.0 37.1 58.0 0.9 -126.58 

swap_sses                             swap A 0.8 18.3 78.6 2.3 -208.59 

sse_bend_ramachandran                 SSE R 7.8 19.4 72.8 0.0 -21.85 

sse_bend_random_large                 SSE R 7.8 23.0 69.2 0.0 -27.76 

sse_bend_random_small                 SSE R 20.3 36.9 42.8 0.0 -20.18 

sse_furthest_move_next                SSE A 1.1 15.0 84.0 0.0 -289.20 

sse_move_next                         SSE A 0.5 11.0 88.5 0.0 -264.67 

sse_move_short_loop                   SSE A 0.8 11.5 76.1 11.7 -276.90 

sse_resize                            SSE A + R 14.7 28.2 45.2 11.9 -106.50 

sse_rotate_large                      SSE A 1.4 20.2 78.5 0.0 -98.23 

sse_rotate_x_large                    SSE A 2.4 23.1 74.4 0.0 -79.79 

sse_rotate_y_large                    SSE A 4.0 28.5 67.5 0.0 -126.57 

sse_rotate_z_large                    SSE A 9.1 47.3 43.6 0.0 -40.11 

sse_rotate_small                      SSE R 3.3 17.0 79.7 0.0 -33.28 

sse_rotate_x_small                    SSE R 7.5 23.5 69.0 0.0 -20.90 

sse_rotate_y_small                    SSE R 10.2 26.6 63.1 0.0 -27.47 

sse_rotate_z_small                    SSE R 17.9 42.3 39.8 0.0 -11.22 

sse_split_JUFO                        SSE A 1.8 24.2 69.3 4.7 -88.80 

sse_split_PSIPRED                     SSE A 2.1 24.6 68.5 4.8 -84.75 

sse_translate_large                   SSE A 0.6 16.6 82.7 0.0 -148.39 

sse_translate_x_large                 SSE A 2.1 27.1 70.9 0.0 -106.53 

sse_translate_y_large                 SSE A 1.7 21.5 76.8 0.0 -110.62 

sse_translate_z_large                 SSE A 7.4 45.6 47.0 0.0 -59.38 

sse_transform_large                   SSE A 0.4 14.1 85.5 0.0 -136.66 

sse_translate_small                   SSE R 3.0 18.1 78.9 0.0 -50.03 

sse_translate_x_small                 SSE R 12.7 31.9 55.4 0.0 -18.13 

sse_translate_y_small                 SSE R 9.2 27.0 63.8 0.0 -30.08 

sse_translate_z_small                 SSE R 15.0 41.8 43.2 0.0 -7.62 

sse_transform_small                   SSE R 1.1 11.8 87.1 0.0 -45.24 

helix_flip_xy                         α-helix A 2.8 32.9 64.0 0.3 -132.11 

helix_flip_z                          α-helix A 3.7 40.8 55.2 0.3 -109.61 

helix_furthest_move_next              α-helix A 1.1 15.5 83.2 0.3 -295.12 

helix_move_next                       α-helix A 0.6 12.6 86.6 0.3 -274.89 

helix_move_short_loop                 α-helix A 0.9 13.4 73.4 12.3 -278.55 

helix_translate_xy_large              α-helix A 1.6 26.7 71.4 0.3 -128.36 

helix_translate_z_large               α-helix A 8.4 46.9 44.5 0.3 -59.78 

helix_rotate_xy_large                 α-helix A 2.0 26.4 71.3 0.3 -91.11 

helix_rotate_z_large                  α-helix A 13.7 53.1 33.0 0.3 -40.98 

helix_transform_xy_large              α-helix A 0.9 21.0 77.8 0.3 -123.62 

helix_transform_z_large               α-helix A 4.5 38.4 56.9 0.3 -88.31 
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helix_translate_xy_small              α-helix R 4.8 30.3 64.8 0.1 -17.50 

helix_translate_z_small               α-helix R 16.1 46.6 37.2 0.1 -8.01 

helix_rotate_xy_small                 α-helix R 5.0 26.2 68.8 0.1 -23.11 

helix_rotate_z_small                  α-helix R 18.4 51.0 30.5 0.1 -7.01 

helix_transform_xy_small              α-helix R 2.3 20.3 77.3 0.1 -31.73 

helix_transform_z_small               α-helix R 9.4 40.4 50.1 0.1 -12.49 

strand_flip_x                         β-strand A 1.6 26.6 69.8 1.9 -180.72 

strand_flip_y                         β-strand A 1.5 26.1 70.5 2.0 -188.09 

strand_flip_z                         β-strand A 8.8 53.7 35.5 2.0 -34.21 

strand_furthest_move_next             β-strand A 0.7 11.7 85.7 1.9 -237.35 

strand_furthest_move_sheet            β-strand A 1.5 17.6 66.6 14.3 -310.50 

strand_move_next                      β-strand A 0.4 8.7 89.0 1.9 -232.05 

strand_move_sheet                     β-strand A 0.7 12.7 72.3 14.3 -257.51 

strand_translate_z_large              β-strand A 9.7 47.4 41.0 2.0 -48.79 

strand_translate_z_small              β-strand R 13.1 35.1 50.7 1.1 -7.86 

ssepair_translate_large               SSE pair A 1.1 12.3 25.7 60.9 -101.64 

ssepair_translate_no_hinge_large      SSE pair A 0.3 7.2 31.7 60.8 -155.56 

ssepair_rotate_large                  SSE pair A 1.3 10.3 27.4 61.0 -91.34 

ssepair_transform_large               SSE pair A 0.4 7.8 30.8 61.0 -132.55 

ssepair_translate_small               SSE pair R 4.3 14.6 22.9 58.2 -19.08 

ssepair_translate_no_hinge_small      SSE pair R 0.9 7.7 33.3 58.1 -33.95 

ssepair_rotate_small                  SSE pair R 2.9 10.7 28.2 58.1 -17.29 

ssepair_transform_small               SSE pair R 1.8 10.2 29.9 58.2 -24.52 

helixpair_rotate_z_large_hinge        α-pair A 1.1 19.6 66.4 12.9 -146.72 

helixpair_rotate_z_large_no_hinge     α-pair A 1.2 19.9 66.0 12.9 -143.44 

helixpair_rotate_z_small_hinge        α-pair R 4.2 26.0 60.4 9.4 -11.85 

helixpair_rotate_z_small_no_hinge     α-pair R 4.5 26.3 59.7 9.4 -11.54 

helixdomain_flip_ext                  α-domain A 0.1 3.8 18.9 77.2 -192.21 

helixdomain_flip_int                  α-domain A 0.2 5.6 16.7 77.5 -137.44 

helixdomain_shuffle                   α-domain A 0.4 16.4 82.0 1.2 -259.28 

helixdomain_translate_large           α-domain A 0.3 13.5 85.1 1.2 -186.58 

helixdomain_rotate_large              α-domain A 0.2 9.9 88.8 1.1 -140.06 

helixdomain_transform_large           α-domain A 0.1 8.6 90.1 1.2 -156.38 

helixdomain_translate_small           α-domain R 1.0 17.6 81.4 0.1 -30.96 

helixdomain_rotate_small              α-domain R 0.5 9.2 90.3 0.1 -37.29 

helixdomain_transform_small           α-domain R 0.0 3.2 96.7 0.1 -59.14 

sheet_shuffle                         β-sheet A 1.0 17.1 75.8 6.1 -192.62 

sheet_switch_strand                   β-sheet A 0.9 7.5 27.4 64.1 -380.80 

sheet_cycle                           β-sheet A 0.5 12.3 68.5 18.7 -256.54 

sheet_cycle_intact                    β-sheet A 0.5 11.8 69.2 18.5 -225.13 

sheet_cycle_subset                    β-sheet A 0.7 28.3 52.6 18.4 -182.83 

sheet_cycle_subset_intact             β-sheet A 0.7 27.8 52.7 18.7 -175.25 

sheet_divide                          β-sheet A 0.7 8.6 54.5 36.2 -154.32 

sheet_divide_sandwich                 β-sheet A 0.2 3.3 60.1 36.5 -371.36 

sheet_flip_ext                        β-sheet A 0.7 41.6 51.7 6.1 -147.15 

sheet_flip_int                        β-sheet A 1.4 24.5 67.9 6.2 -102.42 

sheet_flip_int_sub                    β-sheet A 2.1 25.4 66.4 6.2 -90.10 

sheet_flip_int_sub_diff               β-sheet A 1.4 20.0 72.6 6.1 -128.56 

sheet_pair_strands                    β-sheet A 0.8 2.7 4.6 91.9 -457.81 

sheet_register_fix                    β-sheet R 1.0 13.0 66.6 19.4 -23.22 

sheet_register_shift                  β-sheet A 1.7 25.7 53.9 18.7 -83.74 

sheet_register_shift_flip             β-sheet A 3.4 33.6 44.4 18.5 -71.42 

sheet_translate_large                 β-sheet A 1.0 42.7 55.9 0.5 -139.46 

sheet_rotate_large                    β-sheet A 0.6 38.5 60.4 0.5 -99.94 

sheet_transform_large                 β-sheet A 0.4 37.7 61.4 0.6 -109.11 

sheet_twist_large                     β-sheet A 7.5 26.9 47.0 18.6 -128.74 

sheet_translate_small                 β-sheet R 1.6 43.9 54.4 0.1 -33.51 

sheet_rotate_small                    β-sheet R 0.9 38.3 60.7 0.1 -53.27 

sheet_transform_small                 β-sheet R 0.4 36.2 63.4 0.1 -71.91 

sheet_twist_small                     β-sheet R 10.4 21.9 48.3 19.4 -27.86 

total                                 TOTAL   2.7 19.6 59.1 18.6 -73.74 

All moves used in BCL::Fold are listed along with the subcategory they belong to and whether they are 

utilized in assembly (A) or refinement (R) stage. This is followed by percentages on minimization steps 

where each move was used along with what kind of Metropolis result these steps have led to; percentage of 

improved steps(PI), accepted steps (PA), rejected steps (PR), skipped steps(PS). This is followed by ΔMEAN, 
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which represents the average energy decrease in the energy from the last improved model for cases where 

the move has led to an improved step.  

 

Loop building 

Missing loop residues were built on to the model predicted by BCL::Fold using an in-

house CCD based loop building protocol [38]. The protocol first removes a single residue 

from each side of all the SSEs in the model to increase the chance of being able to close 

the loop. Then, missing loop residues are added to the model with phi/psi angles biased 

by Ramachandran distribution for given amino acid type. The initial conformations of the 

residues are optimized using BCL scoring functions including amino acid clash and 

amino acid environment and a bias to close the chain breaks. This step ensures that initial 

positions can be found for all residues without causing any clashes. In the next stage, a 

CCD-based minimization is applied to ensure all loops are closed.  

Composite knowledge-based energy function 

The composite energy function is described in detail in Chapter III. In brief, the energy 

functions consists of eleven individual terms for (1) amino acid pair distance clash, (2) 

amino acid pair distance, (3) amino acid solvation, (4) SSE pair clash, (5) SSE pair 

packing, (6) β-strand pairing, (7) loop length, (8) strictly enforcing loop closure, (9) 

radius of gyration, (10) SSE prediction for JUFO (11) SSE prediction for PSIPRED and 

lastly (12) contact order. The scores for amino acid solvation and SSE predictions also 

come with entropic counterparts which evaluate all the residues not represented in the 

model, using the corresponding potentials. All scoring functions are implemented within 

the BCL.  
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All knowledge based potentials have been derived from a databank that contained 3,409 

high resolution x-ray crystallography protein structures compiled using the PISCES 

server [79]. The collected statistical representations are converted into a free energy using 

the inverse Boltzmann relation and applying the appropriate normalizations. The weights 

for individual energy functions were optimized using a benchmark of models composed 

of de novo folded models by Rosetta [28], BCL::Fold as well as perturbed models of 

native structures generated by perturbation protocol within BCL. The finalized weights 

for energy functions used can be found in Table 14. 

 

Table 14: Weight set for the energy function in BCL::Fold: 

energy function weight 

aa_clash 500.0 

aa_dist 0.4 

aa_neigh 50.0 

aa_neigh_ent 50.0 

sse_clash 500.0 

sse_pack 8.0 

strand_pair 20.0 

loop 10.0 
loop_closure 500.0 

rgyr 5.0 

co 0.5 

ss_JUFO* 5.0 

ss_JUFO_ent* 5.0 

ss_PSIPRED* 20.0 

ss_SIPRED_ent* 20.0 

entropy 1.0 

 

Following scores were used in the energy function in BCL::Fold; amino acid clash score (aa_clash), amino 

acid distance score (aa_dist), amino acid environment potential and entropic counterpart (aa_neigh & 

aaneigh_ent), SSE clash score (sse_clash), SSE packing score (sse_pack), β-strand pairing score 

(strand_pair), loop score (loop), loop closure score (loop_closure), radius of gyration score (rgyr), contact 

order score (co) contact order score, SSE prediction scores and their entropic counterparts using methods 

JUFO (sse_JUFO && ss_JUFO_ent) and PSIPRED (ss_PSIPRED && ss_PSIPRED_ent). 
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Benchmark analysis 

For each BCL::Fold run of 10,000 models for each of the 66 proteins in the benchmark 

set, an initial filtering is done to remove any incomplete models. The models produced by 

BCL::Fold benchmarks are evaluated by looking at following quality measures root-

mean-square-deviation (RMSD), RMSD100 [80] and CR. These measures are calculated 

over Cα atoms of all the residues in α-helices and β-strands in the models. In addition, 

contact order [43] values were calculated by computing average sequence separation of 

contacts defined as having Cβ (Hα2 for Glycine) atoms within 8Å distance. Relative 

contact order (RCO) values were calculated by normalizing contact order values by the 

length of the sequence. Normalized contact orders were calculated by dividing the square 

of the contact order by the length of the sequence. An additional quality measure was 

developed named contact recovery (CR) which evaluates the percentage of native 

contacts with a minimal sequence separation of 12 residues that are recovered in the 

models. 

Protein structure prediction using Rosetta  

Rosetta[28] protein structure prediction program was used to predict 10,000 models for 

each of the benchmark proteins in order to provide a comparison for analysis of 

BCL::Fold. The models were produced using de novo mode of Rosetta, and fragment 

files provided as input to Rosetta were pre-filtered to remove any fragments for 

homologous proteins. The resultant models underwent the same analysis as the models 

produced by BCL::Fold. Secondary structures in Rosetta models was determined using 

DSSP[69] and the quality calculations were completed considering Cα atoms from 

identified α-helices and β-strands where applicable. 
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BCL::Fold availability 

All components of BCL::Fold, including scoring, sampling, and clustering methods are 

implemented as part of the BioChemical Library (BCL) that is currently being developed 

in the Meiler laboratory (www.meilerlab.org). BCL BCL::Fold will be freely available 

for academic use along with several other components of BCL library via BCLCommons 

(http://bclcommons.vueinnovations.com/bclcommons). In the meantime, an executable 

can be obtained by contacting the authors. 

  

http://www.meilerlab.org/
http://bclcommons.vueinnovations.com/bclcommons
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CHAPTER V 

 

DISCUSSION 

 

This thesis work focused on two projects; development of a residue-residue contact 

prediction method using artificial neural networks and development of a de novo protein 

structure prediction method that relies on assembly of secondary structure elements. The 

following sections will provide insights into what was achieved, how projects evolved 

through their courses and how both of these methods can be improved by future work. 

 

BCL::Contact 

A structure-based contact prediction method was previously developed by Dr. Jens 

Meiler before the start of this project and was one of the top ranking methods at the 

CASP6 competition. The aim was to develop a sequence-based method, which did not 

rely on any structure-information, in order to predict contacts in a more rapid fashion 

without any external dependence. BCL::Contact achieved this with a novel approach to 

contact prediction by using a combination of five neural networks, each specialized for a 

specific contact type in their training.  

The first aim for BCL::Contact was participation at the 7
th
 round of CASP competition. 

When competing with structure-based methods, the expectation was not to perform better 

than other methods for all targets, but instead focus on a few targets where there are no 

available template sequences with determined structures which most structure-based 

methods rely on. Nonetheless, BCL::Contact was able to predict long distance residue 
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contact in CASP7 with up to 40% accuracy. The highlight of CASP7 for BCL::Contact 

was target T0356_3 where it was able to rank 4
th
 with an accuracy of 20.8% and coverage 

of 14.8%.  

The main motivation for development of BCL::Contact was, as mentioned, to be able to 

very rapidly get contact predictions for a given amino acid sequence so that the prediction 

can be provided as restraints to de novo protein structure prediction. In order to assess 

this, Rosetta was used to predict structural models, and then the runs were repeated twice 

once with predictions from the BCL::Contact sequence-based method and once with 

predictions from BCL::Contact structure-based method used as additional restraints. The 

comparison of the RMSD and MAXN% distributions of the generated models revealed 

that with both methods significant improvements were observed when compared to 

Rosetta runs with no additional input. 

The next question for BCL::Contact is whether the accuracy can be improved via 

integration of correlated mutations. As mentioned, correlated mutations can be crucial for 

contact prediction, since when multiple sequence alignments are examined, it is very 

likely to find pairs of amino acids that are in contact to be mutated at the same time from 

one sequence to another sequence. The reasoning behind this is that if a certain residue is 

mutated through evolution, the other residue/s that are in contact in three dimensional 

space with it are also very likely to mutate in order to compensate and preserve structural 

integrity. Multiple sequence alignment is already possible in the BCL library via 

BCL::Align. The next stage would be implementation of algorithms that extract 

correlated mutation information from these alignments and convert them to be additional 

descriptors to be used in neural network training. 
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In addition to correlated mutations, BCL::Contact can also gain from addition of pairwise 

descriptors. Currently all descriptors used for describing each amino acid in sequence 

windows rely solely on the type of that amino acid. Pairwise descriptors on the other 

hand rely on both amino acid identities for which the contact probability is to be 

predicted. The statistics for amino acid pair contact potential are already available in BCL 

as histograms used for amino acid distance pair score as part of BCL::Fold. 

Currently BCL::Contact does not differentiate between the orientations of the sequence 

given to neural networks, meaning both in training and prediction, all sequence windows 

have residues ordered in the N to C terminal direction. However when sequence stretches 

for two α-helices that pack against each other are considered, whether they pack parallel 

or anti-parallel would make a difference when using a window representation for 

description generation for neural networks. In certain cases, only one of the orientations 

might be possible due to large side chain clashes between residues. If this information is 

reflected in the order of the descriptors, it can lead to a decreased noise in training and 

increase the accuracy of prediction. 

 

BCL::Score 

The main motivation of the BCL::Score project was to develop robust energy potentials 

that could be used with BCL::Fold and any other de novo protein structure prediction 

method that relies on assembly of SSEs. The current set of knowledge-based energy 

potentials were able to achieve the goal of discriminating native-like topologies, as 

indicated by the enrichment values and also the impressive results from BCL::Fold 
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benchmarks. Each individual term as well as the sum function was assessed for their 

enrichment values on a large set of decoys composed of Rosetta de novo folded, 

BCL::Fold de novo folded and BCL::Fold perturbed structures for 53 benchmark 

proteins. The enrichments were calculated in order to discriminate good models by 

RMSD100 (<8Å) and GDT_TS (>25%) measures. Although all scores were able to 

achieve enrichments for large subsets of the benchmark proteins, depending on the nature 

of the potential, some were not applicable to models generated by one or more of the 

three methods used. For example, the loop closure score was not able to enrich for 

Rosetta models since the loop residues are already explicitly modeled and therefore 

rendering loop closure score inapplicable. 

Another great aspect of energy terms that are part of BCL::Score is their efficiency. 

Special attention was given to develop frameworks that would allow caching of scores to 

ensure they are only recalculated when needed and only for the entities in the model that 

have been changed. My personal opinion is that BCL::Score as it is now, encapsulates 

nearly all the functionality needed for coupling with de novo protein structure prediction. 

In accordance, the improvements to BCL::Score in the future should be focused on 

further weight optimization for the score sum function. The main concern regarding the 

weight optimization is based on the following question. Can one scoring weight set be 

optimal for driving de novo structure prediction and at the same time for filtering 

generated models? As observed over last six years, especially in the case of BCL::Fold 

where special measures have to be taken to push models to completion, the answer to this 

question is, in my opinion, no.  
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Optimizing scoring weight sets specifically for driving protein structure prediction is 

possible through iterative folding runs where at each run the weights are adjusted and at 

the end of each stage, the quality of the models generated are used to determine the 

changes that would need to be applied in the next round of folding runs. Currently there 

is no such framework in BCL specifically for this purpose, although similar processes are 

used in descriptor selection when training support vector machines and artificial neural 

networks.  

 

BCL::Fold 

BCL::Fold was benchmarked using 66 proteins with diverse topologies, SSE contents, 

varying sequence lengths in the range of 88 to 293 amino acids and a RCO range of 0.12 

to 0.47 with an average of 0.30 ± 0.07. 10,000 SSE-only models were generated for each 

of the 64 proteins using the native SSE pool and then runs were repeated using predicted 

SSE pools. For all models, loops were completed using an in-house loop building 

protocol. The results have shown that BCL::Fold, despite being at an early stage, was 

able to sample models below 8Å RMSD100 for 50 proteins (75%) when using native 

SSE definitions and impressively for 41 proteins (62%) when using predicted SSE pools. 

When SSE only models are considered, the correct topology was found for 61 proteins 

(92%) using native SSE definitions and for 61 proteins (92%) using predicted SSE pools. 

Further detailed analysis of results can be found in Chapter IV. 

These results are very promising for BCL::Fold and its novel approach to de novo protein 

structure prediction. Further investigations into the types of proteins BCL::Fold was 
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unable to capture the correct topology, or not frequently enough, would likely reveal new 

ways for improvement. There are already a few approaches that are currently in progress 

to improve the sampling capability and the accuracy of BCL::Fold. One major project, as 

headed by Dr. Brian Weiner, is introduction of templates. However, unlike other 

template-based approaches, this approach uses sequence-independent templates for 

describing a “fold”; the full set of geometries of SSEs as well as their locations with 

respect to each other. Just like the novel sampling approach used in BCL::Fold, the 

exclusion of loop residues provides additional opportunities for template-based modeling 

such as easy and rapid mixing of templates to produce novel templates. There has been 

significant progress in this project and this method is currently being benchmarked to be 

published before the end of 2011.  

I have implemented a set moves and classes in BCL::Fold for using a similar template 

approach for sampling backbone conformations for β-sheets. As mentioned in Chapter IV 

in the results section, BCL::Fold does a great job in sampling different topologies defined 

by the different ordering and orientations of β-strands within a β-sheet. However, at 

certain models generated by BCL::Fold, the RMSD values can be higher than expected 

even when the topology is correct due to the curvature of the β-sheet, which can be 

extreme in certain cases. BCL::Fold currently has few moves for sampling backbone 

conformations; however these moves change phi/psi angles of only a single residue for a 

single SSE at a time. In order to go from a β-sheet conformation formed of relatively 

idealized β-strands to a conformation where the β-sheet is curved, a significant number of 

such moves would have to be applied in a row. Moreover, it is likely that certain phi/psi 

changes would lead to clashes, causing the moves to be rejected. Instead, these changes 
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can be done in a coordinated way through use of β-sheet templates which contain relative 

and internal geometries including curvature for each strand in a β-sheet. Such templates 

are currently collected from the previously described non-redundantly culled ~4000 

protein set and are categorized by the total number of strands. A corresponding move is 

already implemented in BCL::Fold. This move first locates a β-sheet within the model, 

and then picks a sheet template randomly out of all the templates which have the same 

number of strands as the β-sheet in the model. Following this, strands from β-sheet in the 

model are fitted geometrically one by one to the strands in the picked sheet-template.  

Since the sheet templates do not store the actual sequence nor the sequence order for the 

strands; the correspondence between strands in the β-sheet and the sheet template are 

determined by the order of the strands in the sheet geometry, meaning starting from one 

edge strand and iterating until the other edge strand of both sheets. Although they are 

sequence-independent, these templates and the corresponding moves allow a rapid 

sampling of different sheet curvatures and in return increase the accuracy of the predicted 

models. The effect of sheet-templates in BCL::Fold will also be assessed as part of the 

fold templates project.  

For sampling backbone conformations of α-helices, a similar approach could be utilized. 

Again, instead of just relying on single residue phi/psi change moves, the geometry of an 

α-helix randomly picked from the fold templates library could be applied. The fragment 

assembly methods such as Rosetta have shown this to be an efficient way for sampling 

backbone flexibility of α-helices with the difference that Rosetta and similar methods rely 

on sequence-dependent templates whereas this can be completely sequence-independent 

in BCL::Fold. 
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One other area that could be improved in BCL::Fold concerns the selection of moves to 

apply during minimization. All moves have individual weights that determine how likely 

they are to be picked. These weights are normalized depending on the composition of the 

SSE pool before the minimization and they are kept constant throughout the 

minimization. As a direct result of this, a certain fraction of moves that are picked lead to 

skipped steps because they are not applicable (e.g. “add” moves being picked even when 

the model is complete).  This can be resolved either through a dynamic adjustment of 

weights for the moves based on their acceptance ratios or turning certain moves on or off 

based on the composition of the model. 

In summary, BCL::Fold was successfully developed and benchmarked as a method for de 

novo protein structure prediction. More importantly, due to the extreme attention paid to 

design, modularity, efficiency as well as expandability, it is currently serving as a 

framework for a large number of new methods currently being developed in the Meiler 

Laboratory for integrating a variety of experimental constraints/restraints for protein 

structure prediction.  BCL::Fold being a product of only six years of work, it can be 

considered a young method especially when compared to other methods which have been 

around for nearly one to two decades. However, I am very hopeful that BCL::Fold will be 

an essential tool for protein structure prediction and will become widely adopted in the 

upcoming years. 

  



127 

 

APPENDIX 

 

General Comments 

Work presented in all three chapters of this dissertation corresponds to applications 

developed in BCL. The latest release of BCL library can be accessed by executing 

bcl.exe on the command line. If a specific SVN repository revision number is 

provided, as in the case of BCL::Fold, then the user would need to check out the 

corresponding revision from BCL SVN repository and compile it. 

This appendix is accompanied with a DVD where files are categorized into two 

subfolders; contact/ and fold/. In each folder and subfolders, you can find a text file 

named “readme.txt” which contains information regarding files in that directory.  

The information given in the appendix and in the readme.txt files on DVD consists of 

BCL applications and a combination of Perl and awk scripts. For any BCL application, 

the help of the application should have all necessary information. For Perl scripts, calling 

the script without any arguments or with “–h” flag provides the list of required arguments 

and a detailed description of all arguments where available. This appendix is provided as 

a guide to the applications and scripts used for the research described in previous 

chapters. It is expected that, especially regarding BCL::Fold, the arguments and the 

performance of the application will change over time. 
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BCL::Contact 

Artificial neural networks trained, as explained in Chapter II, were converted to C++ 

classes and are part of BCL library. Contact prediction application is a released 

application of BCL library and is also accessible through servers on Meiler lab website 

(www.meilerlab.org).  

BCL::Contact can be accessed by calling “bcl.exe ContactPrediction” on the command 

line. The application supports a single fasta file with flag “input_filename” or a batch of 

filenames with flag “pdb_list”. The application requires the existence of Blast profile 

files with extension “.ascii” and the same prefix as the given fasta file. The program 

produces a “.contact” file which includes for each residue pair, 6 values composed of 

predictions from helix-helix, helix-strand, strand-helix, strand-strand and sheet-sheet 

ANNs as well as a last value which provides the merged prediction. Flag “threshold” can 

be used to remove low probability predictions, while “real_contacts” flag provides the list 

of native contact if a PDB file was provided. The output files are written to the working 

directory unless a specific directory is specified with “output_path” flag. Following is 

sample command line that could be run in contact/ folder. “bcl.exe ContactPrediction 

1UBIA.fasta –threshold 0.5”. 

 

BCL::Fold 

BCL::Fold application can be accessed by calling “bcl.exe Fold”. Due to the extensive 

nature of flags and modes of this application, detailed information is provided in fold/ 

folder at “readme.txt” file. In addition to the BCL application, a collection of Perl/awk 

http://www.meilerlab.org/
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scripts are used to generate directories for benchmarking, corresponding PBS jobs and 

submission scripts as well as detailed analysis of the results. Some of this functionality is 

currently being ported to BCL. All the related scripts can be found under fold/scripts 

subdirectory as well at the SVN repository. Following sections outline the steps required 

for preparing, running and analyzing a BCL::Fold benchmark. More detailed descriptions 

are provided under fold/ directory. 

Determining and preparing benchmark set 

First step includes determination of a benchmark set. In this study, PISCES culling server 

and PDB website was used for determining the set of proteins to benchmark BCL::Fold 

on. Once the 5 letter PDB tags are determined, download all pdb files if not already 

available at /blue/meilerlab/PISCES/ folder. Generate fasta, blast and secondary structure 

prediction files as well as BCL generated pdbs.  

Setting up benchmark directory 

It is advised to set up an individual folder for each large-scale benchmark. The scripts 

used assume a certain subdirectory structure. In order to comply with this use 

“make_paths.pl” script to generate sub-folders for each protein. Ideally the BCL 

executable to be used should be placed in the benchmark directory with name “bcl.exe” 

although this can be changed through flags to the scripts. 

In addition to native PDB file, the list of necessary input files depends upon the Fold 

protocol that will be used. A stage file is commonly used to set up the different stages to 

be used in folding runs with corresponding energy weight sets and move probabilities if 

needed. 
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Generating PBS job submission files 

An extensive script named “generate_fold_pbs.pl” was developed to ease the generation 

of PBS job submission scripts for BCL::Fold runs. This script allows various settings 

including but not limited to; benchmark directory, list of PDB tags to generate jobs for, 

whether predicted pools or native SSE definitions will be used in the folding runs, 

whether loops will be built after assembly protocol, the number of models requested, the 

number of CPUs requested, and specialization for Piranha or ACCRE cluster. 

Analysis 

Analysis of a BCL::Fold run consists of collecting scores from generated PDB files, 

calculating statistics, generating Pymol sessions for best models by specified measures, 

as well PNGs for these models again using Pymol, generation of snapshot PNGS that 

provide histograms, plots and other requested information. All of these tasks can be 

easily done by using “run_fold_analysis.pl” script. Please refer to the help of the script 

for more details. 
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