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CHAPTER I 

 

OVERVIEW 

  

The size of a genome and the number of genes in it are not indicators of 

organism complexity.  Mechanisms of gene regulation likely play an important 

role in both the relative complexity of organisms and in generating genetic 

diversity.  Coordinate regulation of genes is one mechanism by which this could 

occur.  Bidirectional promoters provide a unique mechanism of coordinate gene 

regulation.  Until recently they were thought to be rare in mammals; however in 

silico evidence suggests that a class of bidirectional promoters exists within the 

human genome.  

Bidirectional promoters offer a mechanism to coordinate gene expression 

for genes whose products function cooperatively in the same complex or within a 

common pathway. However, a significant number of bidirectional gene pairs do 

not display obvious functional homology. In humans, the non-homologous gene 

pair N-acetylglutamate synthase (NAGS) and peptide tyrosine tyrosine (PYY) are 

divergently transcribed and separated by less than 200 base pairs (bp) 

consistent with regulation by a bidirectional promoter.   

NAGS plays a critical role in nitrogen metabolism supplying the essential 

co-factor for the first enzyme of the urea cycle which is the primary means of 

ammonia detoxification in ureotelic organisms.  The loss of NAGS function 
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results in an inability to convert ammonia to urea, leading to a build-up of this 

toxic molecule.  If left untreated, hyperammonemia quickly leads to death. 

PYY is secreted by the endocrine L cells of the distal small intestine and 

colon.  It inhibits gastric acid secretion, delays gastric emptying and slows gut 

motility.  It also functions in appetite regulation, inducing feelings of satiety 

postprandially.  Consequently, research on PYY has focused on its potential as 

an anti-obesity target.   

The regulation of this gene pair has not been examined previously.  The 

aim of this work is to investigate both the molecular and physiologic relationship 

of NAGS and PYY.  Specifically, I hypothesize that NAGS and PYY are 

coordinately regulated via common regulatory elements in their shared 5’ flanking 

region.  Further, I propose that the coordinate regulation of this gene pair is no 

coincidence, and there exists an important functional connection between NAGS, 

PYY, and nitrogen balance.   

The following chapters detail my investigation into relationship between 

NAGS and PYY.  Chapter II provides background on NAGS and its role in the 

urea cycle, the multiple functions of the neuropeptide PYY, and the potential for 

coordinate regulation of this gene pair.   Finally, the hypothesis and specific aims 

are outlined at the end of this chapter. 

Chapter III describes the 5’ structure of NAGS and PYY which was 

determined using multiple experimental approaches including:  5’RACE, non-

quantitative RT-PCR and quantitative real time RT-PCR (qRT-PCR).  The 5’ 

untranslated region (UTR) of NAGS which was previously undefined is revealed 
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in this chapter.  Four potential TSSs exhibiting tissue-specific expression were 

identified for NAGS.  Two major TSSs were identified for PYY.  The data reveal 

tissue-specific expression patterns for these NAGS and PYY transcripts 

suggestive of regulation by alternative promoters.  

If NAGS and PYY are coordinately regulated then the expectation is that 

they will be concordantly expressed in at least some tissues.  To establish if 

NAGS and PYY are expressed similarly in human tissues, we measured their 

expression in a panel of normal human tissues using quantitative real time RT-

PCR.  Results from these experiments, presented in Chapter IV, demonstrate 

that if NAGS and PYY are coordinately regulated it occurs in a tissue-specific 

manner in the ileum and pancreas.  Also summarized in Chapter IV are my 

efforts to identify an appropriate cell line to further investigate the regulation of 

this gene pair.  

To examine the regulation of Nags and Pyy in vivo we measured 

expression of these genes in tissues of mice under different feeding conditions to 

determine if expression of both genes is increased or decreased under each 

condition.  These experiments and their results are discussed in Chapter V.   

Next, I examined the physiologic relationship between PYY and NAGS.  

To this end, plasma PYY levels were measured in urea cycle disorder patients 

and another group with an inborn error of amino acid metabolism, 

phenylketonuria patients.  The data demonstrate that PYY levels are increased in 

both patient populations. A proposed functional relationship that links co-

regulation of PYY and NAGS to the maintenance of nitrogen balance is 
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discussed.  Lastly, Chapter VII summarizes the work presented in this 

dissertation and highlights future directions to further elucidate the relationship 

between PYY and NAGS and its potential link to nitrogen balance. 
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CHAPTER II 

 

INTRODUCTION 

 

NAGS and the urea cycle 

Proteins are essential components of all living things, and therefore it is 

quite fitting the word protein was derived from the Greek proteios meaning ‘of the 

first rank’.  Proteins have a remarkable number of physiological roles, serving as 

structural components, transporters, antibodies, enzymes, hormones, receptors, 

and more.  Proteins are comprised of polypeptides which consist of linear 

sequences of amino acids.  Thus, amino acids are the building blocks of proteins.   

Amino acids are critical not only for synthesis of new proteins, but are also 

important for the production of a variety of other nitrogen-containing compounds 

including nucleotides, glutathione, and several neurotransmitters.  Additionally, 

while not a primary source they are used for energy production, with 

approximately 10% of total energy coming from amino acids.  In cases where not 

enough energy is supplied by diet, endogenous protein stores are broken down 

and the constituent amino acids can be used in energy production.  

The primary sources of amino acids in the body are from consumption of 

dietary protein and the breakdown of endogenous proteins.  When dietary protein 

is consumed it is broken down in the digestive tract to its constituent parts, and is 

absorbed primarily as dipeptides, tripeptides, and single amino acids.  When 

amino acids are in excess they are catabolized. The first step in oxidation of 
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amino acids is deamination, or the removal of the nitrogen-containing amino 

group.  The carbon skeletons are degraded into a number of molecules that are 

subsequently used in the synthesis of fatty acids and glucose or in the production 

of energy.  The waste nitrogen from the amino group is in the form of ammonia 

which is toxic, and therefore must be eliminated.  The way in which ammonia is 

detoxified varies in different organisms.  Teleost fish primarily excrete ammonia 

through their gills, while birds and reptiles convert ammonia to uric acid.  

Mammals and amphibians detoxify ammonia via the urea cycle.   

First described by Sir Hans Krebs in 1932, the urea cycle is a biochemical 

process of ammonia detoxification.  Waste nitrogen generated in the metabolism 

of protein is converted into urea which is water-soluble and can be easily 

excreted as waste (Figure 2.1) (Krebs and Henseleit 1932; Rezvani 2007).  Five 

primary enzymes and two transporters make up the cycle.  The first steps of the 

cycle occur in the mitochondria and the remaining steps take place in the 

cytoplasm.  First, carbamoyl phosphate synthetase 1 (CPS1) synthesizes 

carbamoyl phosphate from ammonia (NH4
+) and bicarbonate (HCO3

-).  Next, 

carbamoyl phosphate combines with ornithine to form citrulline, a reaction 

catalyzed by ornithine transcarbamylase (OTC).  Citrulline is then exported out of 

the mitochondria via the ornithine transporter (ORNT1), where it reacts with 

aspartate to form argininosuccinate, a reaction catalyzed by argininosuccinate 

synthetase (ASS1).  The mitochondrial aspartate/glutamate transporter, citrin, is 

responsible for transporting aspartate out of the mitochondria for this reaction. 

Next, argininosuccinate lyase (ASL) cleaves argininosuccinate to form arginine 
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and fumarate.  Finally, arginase (ARG1) cleaves arginine, producing ornithine 

and urea.  Ornithine is transported back into the mitochondria via the ORNT1 

transporter to be used in subsequent rounds of ureagenesis.   

  

 

 

Figure 2.1:  The urea cycle.  Ammonia is converted to urea in a series of 
biochemical steps known as the urea cycle.  The initial steps take place in the 
mitochondria and the latter steps occur in the cytosol.  NAGS = N-
acetylglutamate synthase, CPS1 = carbamoyl phosphate synthetase 1, OTC = 
ornithine transcarbamylase, ASS1 = argininosuccinate synthetase, ASL = 
argininosuccinate lyase, ARG1 = arginase 1, ORNT1 = ornithine/citrulline 
transporter, citrin = aspartate/glutamate transporter  
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The urea produced from this series of biochemical reactions is either 

excreted or taken up by the colon to be recycled.  Urea travels in the blood from 

the liver to the kidneys where it can be excreted as waste in urine.  However, 

nearly 25% of the urea passes into the intestinal lumen of the colon where it is 

hydrolyzed by bacterial ureases to ammonia and carbon dioxide.  Studies 

demonstrate that approximately 80% of this ammonia is recycled and the 

remaining 20% is again converted to urea.  This process is referred to as urea 

nitrogen salvage.  Both the urea cycle and the salvage pathway contribute to the 

maintenance of nitrogen balance. 

As described above, CPS1 catalyzes the first and rate-limiting step of the 

urea cycle.  Activity of CPS1 requires the allosteric activator N-acetylglutamate 

(NAG).  NAG binds CPS1, inducing a conformational change in the enzyme 

revealing the active site (Colombo, Pfister, and Cervantes 1990).  NAG is 

synthesized from glutamate and acetyl-CoA in a reaction catalyzed by the 

enzyme NAGS (Figure 2.2), making NAGS necessary for urea synthesis. 

 

 

Figure 2.2:  The synthesis of N-acetylglutamate (NAG).  NAG is synthesized 
from glutamate and acetylCoA in a reaction catalyzed by NAGS 
 

 

Deficiencies in any of the primary urea cycle enzymes (CPS1, OTC, 

ASS1, ASL, and ARG1) or NAGS result in impaired nitrogen metabolism and 
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together, are known as urea cycle disorders (UCDs).  The incidence of each 

specific disorder is rare, but collectively UCDs have an estimated prevalence of 1 

in 30,000 live births (Rezvani 2007).  This may be an underestimate as late onset 

cases caused by partial enzyme deficiencies may go undiagnosed.  Ornithine 

transcarbamylase deficiency (OTCD), which is X-linked, is the most common 

UCD (Nassogne et al 2005; Rezvani 2007).  The remaining UCDs are autosomal 

recessive.     

Patients with a complete urea cycle enzyme deficiency typically present in 

the newborn period.  At first the infant appears healthy, but after the first 24-48 

hours the initial symptoms of somnolence and poor feeding appear, followed by 

vomiting, lethargy, and in some cases seizures (Mian and Lee 2002).  Newborns 

are in state of catabolism; so while they are not ingesting large amounts of 

protein, they are breaking down endogenous protein, and without a functioning 

urea cycle cannot process waste nitrogen for excretion.  The result is a build-up 

of ammonia which quickly leads to central nervous system dysfunction, coma, 

and, if left untreated, death (Rezvani 2007). 

UCD patients with partial enzyme deficiencies present outside of the 

newborn period.  These individuals retain varying degrees of residual enzyme 

activity, and thus still have some capacity to convert ammonia into urea.  

However, due to the diminished capacity for processing waste nitrogen the urea 

cycle can be overwhelmed leading to hyperammonemia.  Hyperammonemic 

episodes are generally precipitated by environmental stressors such as fasting, 
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illness, or trauma, all of which are associated with a catabolic state and thus an 

increased protein load.   

Presentation of symptoms varies in these patients.  Symptoms may be 

chronic or may manifest with an increased intake of protein or during periods of 

catabolism.  Most often they present with gastrointestinal and neurological 

symptoms such as chronic vomiting, developmental delay, psychiatric illness and 

in some cases seizures (Mian and Lee 2002).  Because patients with partial 

deficiencies may have periods in which they are asymptomatic the disorder may 

go undetected for quite some time and multiple hyperammonemic episodes can 

result in cumulative neurologic damage in these patients. 

Partial enzyme deficiency can occur with any urea cycle enzyme, but is 

most common with OTC (Mian and Lee 2002).  The X-linked inheritance pattern 

of OTCD results in a partially dominant disorder with highly variable clinical 

phenotypes (McCullough et al 2000; Nassogne et al 2005; Tuchman et al 1998).  

Male OTCD patients are more severely affected since they have only a single 

copy of the gene.  In females, the OTCD phenotype is extremely variable ranging 

from asymptomatic to severe depending on the pattern of X-inactivation (Mian 

and Lee 2002).  Interestingly, asymptomatic heterozygous females often have a 

history of protein avoidance (Maestri et al 1998).  This sheds light on potential 

phenotypes not previously appreciated and implies there may be a mechanism to 

prevent overconsumption of dietary protein.     

Nutritional management is fundamental to the care of patients with UCDs 

(Fong 1995; Singh 2007).  Intake of dietary protein, which is a major contributor 
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to the waste nitrogen pool, is strictly controlled in these patients.  However, 

protein is critical for normal growth and development; therefore, a sufficient 

amount must be supplied to meet the minimal growth requirement while limiting 

intake of toxic substrates (Lee et al 2005; Mofidi and Kronn 2009).  Natural 

sources of protein are severely constrained in these patients and protein 

requirements are filled via medical foods comprised of single amino acids rather 

than polypeptides (MacDonald et al 1994; Singh 2007).  Furthermore, patients 

are often supplemented with additional calories from non-protein sources in an 

effort to promote anabolism and prevent catabolism, which is critical for 

maintaining metabolic control (Lee et al 2005; Singh et al 2005).  Lack of appetite 

is common in these patients and can lead to under consumption of calories and 

subsequently catabolism.  Preventing catabolism is critical; thus, understanding 

the etiology of anorexia in these patients is an important component of their 

nutritional management.   

 As previously mentioned, NAGS is critical for urea cycle function, 

supplying CPS1 with its essential co-factor NAG.  As a result, NAGS is 

considered a potential regulator of ureagenesis by varying the amount of NAG 

available for activation of CPS1.  The role of NAGS as a regulator of urea 

synthesis is controversial, with some groups maintaining it has no role in 

regulating ureagenesis.  The rate of urea synthesis is regulated, in part, by 

substrate availability, and Cohen et al suggest that ammonia and ornithine exert 

direct effects on CPS1 activity in any given nutritional context (Cohen, Cheung, 

and Raijman 1987; Waterlow 1999).  However, changes in protein intake lead to 
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alterations in the activity of NAGS in the liver, as well as to an increase in the 

concentration of NAG which subsequently, would lead to an increase in CPS1 

activity and ureagenesis (Caldovic et al 2002a).  Therefore, NAGS may well play 

an important role in controlling nitrogen flux through the cycle.   

The complete coding sequence of NAGS was first cloned in 2002 by 

Caldovic et al (Caldovic et al 2002a).  The initial description of this gene 

suggested it contains seven exons and spans 4.4 kb which is similar to the 

structure of mouse Nags (Caldovic et al 2002a; Caldovic et al 2002b).  The 

human NAGS gene is located on the plus strand of 17q21 in a head-to-head 

orientation with the gene for peptide tyrosine tyrosine (PYY).  

 

Peptide YY 

PYY is a 36-amino acid peptide so named for the tyrosine residues 

located at both its N- and C-termini.  PYY, along with neuropeptide Y (NPY) and 

pancreatic polypeptide (PPY) make up the NPY family of peptides.  These 

peptides share high structural homology and are all synthesized as polypeptide 

precursors containing a signal peptide, an active peptide and a carboxy terminal 

peptide (Minth, Andrews, and Dixon 1986). The signal and carboxy terminal 

peptides are cleaved leaving a 36-amino acid active peptide.  Although these 

genes are closely related they maintain distinct functions.  Their effects are 

mediated through Y receptors (Y1, Y2, Y4, and Y5), a family of G-protein coupled 

receptors. The peptides bind these receptors with varying affinities and this may 

be one mechanism by which they exert their distinct functions. 
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In addition to the structural homology and the similarity of their precursors, 

PYY, NPY, and PPY also display high sequence homology (Ekblad and Sundler 

2002) suggesting these genes evolved from a common origin.  Indeed, NPY and 

PYY share high homology at both the protein (70%) and nucleotide levels, and 

are thought to have arisen as duplications of a common ancestral gene (Hort et 

al 1995).  NPY, which is the most highly conserved, is considered to be 

phylogenetically older than PYY (Ekblad and Sundler 2002).  PPY is the newest 

family member and is thought to have arisen from a tandem gene duplication of 

PYY.   

The importance of NPY has been demonstrated in several physiologic 

situations.  It is primarily involved in the regulation of energy homeostasis, 

stimulating food intake (Pedrazzini, Pralong, and Grouzmann 2003).  It is also a 

vasoconstrictor and plays a role in cardiovascular regulation (Pedrazzini, 

Pralong, and Grouzmann 2003).  PPY is expressed primarily in the pancreatic 

islets of Langerhans and is thought to regulate pancreatic and gastrointestinal 

function.  It also may be important in regulating food intake.  Administration of 

exogenous PPY decreases food intake in both mice (Asakawa et al 1999; 

Asakawa et al 2003) and human (Batterham et al 2003b). 

PYY is unique among its family members in that it functions as both a 

hormone and a neuropeptide (Soderberg et al 1994).  Its expression pattern 

reflects this dual function. PYY is expressed in both enteroendocrine and 

neuronal cell populations.  It is highly expressed in the ileum, colon, and rectum, 

with lower expression observed in the proximal small intestine and the pancreas 
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(Leiter et al 1987).  Expression of PYY has also been reported in a small 

population of neurons in the brainstem (Ekblad and Sundler 2002).   

PYY functions in appetite regulation inducing feelings of satiety 

postprandially.  It also inhibits gastric acid and pancreatic digestive enzyme 

secretion, delays gastric emptying and slows gut motility (Leiter et al 1987).  The 

ability of PYY to slow intestinal transit makes it a potential mediator of the ileal 

brake (Korner and Leibel 2003), which is a feedback mechanism to control 

gastrointestinal transit of a meal to optimize nutrient digestion and absorption 

(Maljaars et al 2008). 

PYY is secreted by the endocrine L cells of the distal small intestine and 

colon in response to ingested nutrients.  Secretion begins approximately 15 

minutes after initiation of feeding, long before nutrients reach the PYY-expressing 

cells of the small intestine.  This early secretion of PYY is most likely mediated by 

the vagus nerve (Sheikh et al 1989; Ueno et al 2008; Zhang et al 1993).  

There are two circulating forms of PYY:  PYY1-36 and PYY3-36.  The two N-

terminal amino acid residues are cleaved from PYY by dipeptidyl peptidase IV 

(DPPIV) yielding PYY3-36 .  Approximately 40% of circulating PYY is PYY3-36, 

which preferentially binds the Y2 receptor and is thought to mediate the satiety 

function.  Administration of exogenous PYY3-36, and PYY1-36 to a lesser extent 

decreases food intake in both mice and humans (Batterham et al 2002; 

Batterham et al 2003a). 

A number of studies show a greater and more sustained release of PYY in 

response to protein, compared to fats and carbohydrates suggesting it may play 
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an important role in protein-mediated satiation (Batterham et al 2006; Lomenick 

et al 2009).  Additionally, there is considerable evidence that protein is more 

satiating than carbohydrates or fats (Batterham et al 2006; Halton and Hu 2004; 

Latner and Schwartz 1999; Lejeune et al 2006; Lomenick et al 2009; Paddon-

Jones et al 2008; Rolls, Hetherington, and Burley 1988; Westerterp-Plantenga et 

al 1999).  The secretion pattern of PYY in response to different macronutrients 

may explain, in part, why protein is the most satiating macronutrient.   

Since its role in appetite regulation was discovered, PYY has garnered 

much attention as a potential therapeutic target for obesity.  Candidate gene 

association studies reveal that single nucleotide polymorphisms in the PYY gene 

are associated with obesity (Ma et al 2005; Shih et al 2009).  However, the 

relationship between PYY and body mass is inconsistent.  Some studies show an 

attenuated response of PYY in obese individuals compared with normal weight 

controls (Le Roux et al 2006).  On the other end of the spectrum, PYY levels are 

reported to be increased in patients with anorexia nervosa (Misra et al 2006; 

Pfluger et al 2007).  Some studies demonstrate a negative correlation of fasting 

PYY levels with BMI (Guo et al 2006; Pfluger et al 2007) other studies 

demonstrate a positive correlation (Lomenick, Clasey, and Anderson 2008), or no 

correlation at all (Kim et al 2005).  The dysregulation of PYY in both overweight 

and underweight populations suggests an important role for this peptide in 

energy homeostasis.   

Additionally, abnormal regulation of PYY may play a role in a number of 

gastrointestinal disorders.  It may be a primary effector, and cause disease as in 
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chronic idiopathic slow transit constipation.  Or it may be a secondary effect, 

resulting from changes brought on by a disease (El-Salhy, Suhr, and Danielsson 

2002).  Abnormal PYY levels may contribute to symptoms observed in 

inflammatory bowel diseases such as Crohn’s colitis (El-Salhy, Suhr, and 

Danielsson 2002). Understanding the normal regulation of PYY is important in 

determining what role it plays in obesity, anorexia, and gastrointestinal disorders. 

PYY cDNA was first cloned from human colon mucosa in the early 1990s 

(Kohri et al 1993).  The initial description of PYY suggested that the gene 

contained 4 exons.  The sequence has since been revised based upon a clone 

isolated from a cDNA library derived from a brain astrocytoma, and it is now 

suggested that some isoforms of PYY contain 7 exons and span more than 50 

kilobases (UCSC genome browser, Feb. 2009 GRCh37/hg19 assembly).  The 4 

exons originally described by Kohri et al map to exons 4-7 of the current PYY 

gene structure.  The human PYY gene is located on the minus strand of 

chromosome 17q21 and, as described above is arranged head-to-head with 

NAGS.  The arrangement and location of these genes is consistent with 

coordinate regulation. 

 

Potential coordinate regulation of PYY and NAGS 

Background on coordinate regulation 

Neither genome size nor gene number is indicative of organism 

complexity.  Upon completion of the human genome sequence there was a 

surprising revelation that there are approximately 20,000 to 25,000 genes spread 
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across our nearly 3.2 billion base pairs of DNA (International Human Genome 

Sequencing Consortium 2004; Stein 2004).  This seems quite low given the 

genome sizes of other relatively less complex organisms.  For example, the rice 

genome is comprised of approximately 470 million base pairs, yet it contains an 

estimated 51,000 protein coding genes, twice the estimate for the human 

genome (Pray 2008).  A number of mechanisms are thought to contribute to 

organism complexity, including:  alternative RNA splicing, RNA editing, and 

complex regulation of genes within a genome. 

The regulation of gene expression occurs in a spatial-temporal fashion.  

Genes are turned on and off in a tissue-specific and time-dependent manner. 

Gene expression may be regulated at several levels including transcription, 

mRNA processing, mRNA stability, and translation.  Thus, complex regulatory 

mechanisms exist to ensure that genes are expressed appropriately.  These 

mechanisms likely play an important part in organism complexity.   

Koyanagi et al propose that one way to generate organism diversity is 

through the evolution of the co-regulation of gene pairs (Koyanagi et al 2005).  

Mechanisms for coordinate gene regulation have been described in many 

species and are especially advantageous in organisms with compact genomes.  

Traditionally, coordinate regulation was defined as more than one gene 

responding to a physiologic signal (Grossman, Seelan, and Jaradat 1998).  This 

definition of coordinate regulation is too narrow; it is now known that genes can 

be coordinately regulated through diverse mechanisms such as locus control 

regions or via shared cis regulatory elements.   
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Sharing of cis regulatory elements has been observed for genes located at 

the same genomic address particularly those located in clusters like the well-

known Hox and β-globin gene loci.  The sharing of cis regulatory elements is not 

restricted to gene clusters.  Divergently transcribed genes pairs are located on 

opposite strands of the genome and are transcribed in opposite directions 

(Figure 2.2).  Consequently, they share a 5’ flanking region; thus the possibility 

exists for shared cis regulatory elements (Ikeda et al 2002; Lee and Song 2000; 

Trinklein et al 2004).  This was demonstrated for the divergently transcribed gene 

pair CYP1A1 and CYP1A2 located on human chromosome 15 and separated by 

approximately 24 kilobases.  Regulatory elements located in the shared 5’ 

flanking region, function bidirectionally to positively and negatively regulate 

expression of both genes (Ueda et al 2006).  This suggests that gene location 

and arrangement are important for coordinate regulation through shared cis 

elements.     

A distinct class of divergently transcribed gene pairs, those separated by 

1000 base pairs or less, has been identified.  Multiple studies demonstrate that 

such bidirectional gene pairs are common in the human genome (Adachi and 

Lieber 2002; Trinklein et al 2004; Yang and Elnitski 2007).  Trinklein et al 

designated the region between the transcription start sites for these gene pairs, 

putative bidirectional promoters.  Thus, bidirectional promoters are sequences 

located between divergently transcribed genes pairs separated by 1000 base 

pairs or less which may be involved in regulating expression of both genes 

(Adachi and Lieber 2002; Trinklein et al 2004). Bidirectional promoters have also 
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been observed in other organisms including: the Vaccinia and SV40 viruses, the 

prokaryotic bacteria Escherichia coli, and other eukaryotes such as 

Saccharomyces cerevisiae and Caenorhabditis elegans (Adachi and Lieber 

2002; Beck and Warren 1988; Knutson et al 2009).  Trinklein et al determined 

that greater than 10% of genes in the human genome have a putative 

bidirectional promoter, suggesting this is a common regulatory mechanism in 

human (Trinklein et al 2004).    

 

 

 

Figure 2.3:  Neighboring Gene Arrangements.  Neighboring genes on 
chromosomes may be divergent (head-to-head), in tandem (tail-to-head) 
or convergent (tail-to tail) 
 

Divergently transcribed gene pairs have more correlated gene expression 

compared with other gene neighbors including tandem and convergent gene 

pairs (Figure 2.3) in flies (Herr and Harris 2004), yeast (Kensche et al 2008), and 



20 
 

humans (Lin et al 2007; Trinklein et al 2004).  Studies indicate that most 

bidirectional gene pairs are coordinately regulated (Trinklein et al 2004; Zanotto, 

Shah, and Jacobs 2007).  A reasonable explanation for coordinate regulation is 

the need for simultaneous gene expression for gene products that function 

cooperatively in the same complex, or within a common pathway.  For example, 

the α1(IV) and α2(IV) genes are regulated bidirectional promoter (Burbelo, 

Martin, and Yamada 1988; Heikkila, Soininen, and Tryggvason 1993).  Together, 

the gene products comprise the major form of type IV collagen which is a 

heterotrimer consisting of two α1(IV) chains and one α2(IV) chain (Burbelo, 

Martin, and Yamada 1988).  Thus, it is beneficial to coordinately regulate this 

gene pair to ensure that each gene is expressed in amounts needed to 

successfully form type IV collagen.    

It is important to note that a significant number of bidirectional gene pairs 

do not have an obvious functional connection (Adachi and Lieber 2002).  Even if 

gene products are functionally unrelated, it may still be advantageous to arrange 

genes in this way simply because it is efficient to do so.  CpG islands, which are 

overrepresented in bidirectional promoters (Adachi and Lieber 2002; Trinklein et 

al 2004), are associated with open or active chromatin suggesting bidirectional 

gene pairs are actively transcribed.  When the chromatin is in an open 

conformation both genes are likely to be accessible to the transcription 

machinery.  Also, it is possible that genes in a bidirectional pair need to be 

expressed at the same time (i.e. during development) or in the same place (cell 
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type) even if they are functioning in different capacities and this arrangement 

allows for efficient transcription of these genes.  

 

Rationale for coordinate regulation of PYY and NAGS 

The location and orientation of NAGS and PYY is consistent with 

coordinate regulation.  In humans, NAGS and PYY are divergently transcribed 

and separated by less than 200 base pairs (UCSC genome browser, Feb 2009 

GRCh37/hg19 assembly), suggesting they  may be regulated by a bidirectional 

promoter (Figure 2.3).  The NAGS/PYY gene pair was identified as having a 

putative bidirectional promoter in computational studies by both Trinklein et al 

and Yang et al (Trinklein et al and Yang et al). 

 

 

Figure 2.4:  The location and arrangement of PYY and NAGS.  PYY and 
NAGS are divergently transcribed on Chr 17q21 and are separated by less than 
200 base pairs (UCSC genome browser, Feb 2009 GRCh37/hg19 assembly).  
Data suggest there are two transcriptional start sites for PYY, located in exons 1 
and 4. 
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NAGS and PYY are both expressed in the small intestine so it is possible 

they are coordinately regulated in this tissue.  Through northern blot analysis of 

human tissues Caldovic et al identified differential transcript sizes for NAGS in 

the liver and small intestine, 2.3 kb and 1.7kb, respectively (Caldovic et al 

2002a).  The differences in these transcripts have not been characterized.  Co-

expression of PYY and NAGS in the small intestine could result in a smaller 

transcript for NAGS, which would be one way to explain the tissue-specific 

transcripts observed by Caldovic et al.  This might be due to the use of an 

alternative promoter and consequently an alternate TSS when both genes are 

being transcribed simultaneously.  On the other hand, it could be due to 

differential splicing mechanisms or alternative polyadenylation site usage. 

Characterizing the differential transcripts will be important in determining the 

mechanism by which they are generated and what influence, if any, co-regulation 

of PYY and NAGS has on the alternate transcript usage.        

In the context of normal physiology, why might PYY and NAGS be 

coordinately regulated?  At first glance they do not appear to be functionally 

related.  However, upon further examination a functional connection is revealed.  

It is known that expression of both PYY and NAGS is upregulated in response to 

dietary protein intake.  NAGS is essential for successful processing of waste 

nitrogen, and PYY is a gut peptide that inhibits digestive enzyme secretion, 

gastric emptying, and gut motility (Leiter et al 1987).  PYY also functions in 

appetite regulation, inducing feelings of satiety postprandially.  Studies 

demonstrate greater and more sustained elevations in PYY concentration in 



23 
 

response to protein compared with other macronutrients.  The coordinate 

regulation of this gene pair may be a mechanism to prevent overconsumption of 

dietary protein.  Ingestion of dietary protein in extreme excess would result in 

large amounts of waste nitrogen which could potentially overwhelm the capacity 

of the urea cycle leading to hyperammonemia.  PYY induces feelings of satiety 

and these feelings are sustained longer with higher protein meals allowing time 

for the urea cycle to clear the waste nitrogen thus preventing the accumulation of 

ammonia.  It’s possible the coordinate regulation of PYY and NAGS is one of the 

mechanisms regulating nitrogen balance in the body.   

The coordinate regulation of these genes could also explain some of the 

clinical observations in patients with UCDs.  As described above, anorexia is 

common in patients with UCDs (Batshaw and Berry 1991; Brusilow 1985; 

Summar and Tuchman 2001).  The decreased appetite in these patients is 

normally attributed to cerebral edema resulting from hyperammonemia. However, 

if PYY and NAGS are coordinately regulated, then it is possible that increased 

levels of PYY may be an underlying cause of anorexia.  An increase in ammonia 

levels results in upregulation of the urea cycle enzymes and NAGS.  Coordinate 

regulation of PYY and NAGS would consequently lead to an increase in PYY 

levels, perhaps as a means to suppress further nitrogen intake.  Thus, elevated 

PYY levels in UCD patients may result in prolonged satiation that manifests as a 

lack of appetite. 

Increased levels of PYY would also contribute to constipation, a common 

symptom in UCD patients (Summar and Tuchman 2001).  While the cause of 
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constipation in these patients is unknown it has been attributed to hypotonia.  

However, a rise in PYY expression may be the underlying cause of this 

symptom, as PYY inhibits colonic mobility.  Constipation can have deleterious 

effects in UCD patients because decreased gut mobility increases the urease 

activity of bacteria in the gut.  In this process urea is hydrolyzed to ammonia and 

carbon dioxide and the ammonia is re-circulated to the liver (Gropper, Smith, and 

Groff 2009), potentially creating a negative feedback loop in which NAGS and 

PYY are upregulated. 

To summarize, the location and arrangement of PYY and NAGS is 

consistent with regulation via a bidirectional promoter.  Understanding the 

regulation of NAGS may be the key to unlocking its role in regulating urea 

synthesis.  PYY functions in multiple capacities and may play an important role in 

the pathogenesis of gastrointestinal disorders as well as in obesity and diabetes 

(Ahituv et al 2006; Boey et al 2006a; Boey et al 2006b; El-Salhy, Suhr, and 

Danielsson 2002; Karra and Batterham 2010).  Importantly, upregulation of PYY 

may also contribute to phenotypes associated with urea cycle deficiencies.  

Determining the mechanisms which govern the regulation of PYY and NAGS will 

help to clarify the molecular and physiologic relationship of these two genes.   

Furthermore, it may contribute to our overall understanding of protein-mediated 

satiation, the mechanisms involved in the maintenance of nitrogen balance, and 

the etiology of anorexia in UCD patients and others populations with a diminished 

capacity for processing waste nitrogen. 
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Hypotheses and Specific Aims 

 

Hypotheses:  

a. The 5’ flanking region shared by PYY and NAGS is a bidirectional 

promoter that coordinately regulates this divergently transcribed gene pair.  

b. Coordinate regulation of PYY and NAGS results in elevated plasma PYY 

levels in patients with urea cycle deficiencies, contributing to the anorexia 

observed in this population. 

 

Specific Aim I:  Characterize the 5’ structure of human PYY and NAGS 

transcripts. 

a. Identify the transcription start sites for NAGS 

b. Identify and confirm the transcription start sites for PYY 

Determining the transcription start sites (TSSs) for PYY and NAGS is an 

essential first step in determining if these genes are regulated by a bidirectional 

promoter.  The complete coding sequence for NAGS has been cloned, but the 5’ 

untranslated region, and consequently the TSSs have not yet been defined. The 

TSSs for NAGS will be identified using 5’ RACE.  Evidence suggests at least two 

transcript isoforms exist for PYY, indicating this gene may be regulated by 

alternative promoters.  5’ RACE will be used to identify and confirm the TSSs for 

PYY and quantitative real time RT-PCR (qRT-PCR) will be used to determine the 

abundance of each transcript isoform.  
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Specific Aim 2:  Determine if PYY and NAGS are coordinately expressed in 

a panel of human tissues.   

a. Perform qRT-PCR to identify tissues in which PYY and NAGS are 

coordinately expressed 

b. Identify a cell line that expresses both PYY and NAGS 

If PYY and NAGS are coordinately regulated, then the expectation is they 

will be expressed concordantly in at least some tissues.  Quantitative real-time 

RT-PCR will be performed to determine if these genes are coordinately 

expressed in a panel of normal human tissues.  Additionally, human cell lines will 

be screened to identify a line that expresses both PYY and NAGS at similar 

levels. 

 

Specific Aim 3:  Determine if plasma PYY levels are elevated in patients 

with urea cycle disorders.    

a. Measure plasma PYY levels in urea cycle disorder patients using an 

ELISA 

b. Measure plasma PYY levels in phenylketonuria patients and a control 

group using an ELISA 

In individuals with diminished capacity for nitrogen processing urea cycle 

enzymes are presumably upregulated in an effort to clear the waste nitrogen.  If 

PYY and NAGS are coordinately regulated then the expectation is PYY would 

also be upregulated in these individuals.  PYY is secreted and can be measured 
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in plasma.  Therefore, to extend the investigation of the relationship between 

PYY and NAGS to human clinical applications plasma PYY levels will be 

measured in patients with urea cycle disorders.  These levels will be compared 

with plasma PYY levels in a control group and a group of individuals with another 

inborn error of amino acid metabolism, phenylketonuria patients.       
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CHAPTER III 

 

DEFINING THE 5’ STRUCTURE OF PYY AND NAGS 

 

Introduction 

Human NAGS and PYY are located in a head-to-head orientation on 

chromosome 17 and are separated by less than 200 base pairs (UCSC genome 

browser, Feb 2009 GRCh37/hg19 assembly).  Their location and arrangement is 

consistent with coordinate regulation via a bidirectional promoter.  An important 

first step in analyzing the transcriptional regulation of a gene or gene pair is to 

identify the promoter region; which, by definition, includes DNA sequences in the 

vicinity of the transcription initiation site (Carey and Smale 2000).  Thus by 

defining the transcriptional start sites (TSSs), the location of the promoter can be 

identified.     

The human NAGS locus is on the plus strand of chromosome 17q21. This 

gene contains 7 exons and spans approximately 4.4 kilobases (Figure 3.1) 

(chr17:42082032 – 42086435; UCSC genome browser, Feb 2009 GRCh37/hg19 

assembly).  It has been less than ten years since Caldovic et al cloned NAGS 

from a human liver cDNA library (Caldovic et al 2002a).  This clone included the 

complete coding sequence and the 3’UTR, but lacked the 5’UTR, which prior to 

the work presented here was still undefined.         
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Figure 3.1:  NAGS gene structure.  This figure was generated using the 
UCSC genome browser.  The structure of NAGS as currently defined 
(UCSC genome browser, Feb 2009 GRCh37/hg19 assembly) contains 7 
exons (indicated by the solid blocks) and spans approximately 4.4 
kilobases.    
 

 

Human PYY is located on the minus strand of chromosome 17q21.  Kohri 

et al first cloned PYY cDNA from human colon mucosa, and their initial 

description suggested this gene contains 4 exons and spans 1.2 kilobases (Kohri 

et al 1993).  The sequence has since been revised, and suggests that at least 

some isoforms of PYY contain 7 exons and span more than 50 kilobases 

(chr17:42081837 – 42081837; UCSC genome browser, Feb 2009 GRCh37/hg19 

assembly).  I will refer to this as the long isoform of PYY.  The PYY transcript 

isoform originally described by Kohri et al aligns to exons 4-7 of the long isoform 

of PYY (UCSC genome browser, Feb 2009 GRCh37/hg19 assembly).  It is 

important to note, the long isoform also differs from that of mouse, rat, and 

porcine Pyy, all of which contain only 4 exons aligning to exons 4-7 of the long 

PYY isoform.  The translational start site, located at the beginning of exon 5, 

does not differ among the transcripts in these species, and the protein coding 

exons are highly conserved.  Taken together, these data suggest there are at 

least two PYY isoforms in human with TSSs located in exon 1 and exon 4.  

Moreover, these TSSs are separated by approximately 51 kb suggestive of 
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regulation by alternative promoters.  Furthermore, the long isoform of PYY has 

not been identified in other species suggesting it may be unique to the human 

lineage. 

 

 

 

Figure 3.2:  PYY gene structure.  This figure was generated using the 
UCSC genome browser.  The structure of PYY as currently defined 
(UCSC genome browser, Feb 2009 GRCh37/hg19 assembly) contains 7 
exons (indicated by the solid blocks) and spans approximately 51 
kilobases.  Data suggest there is a second transcriptional start site for 
PYY located in exon 4.    
 

 

The transcripts for NAGS and PYY have not been fully characterized.  

Given that the 5’UTR of NAGS has not been defined, the transcript sequence is 

incomplete.  Therefore, the TSS(s) and consequently the promoter have not yet 

been identified.  Two PYY isoforms have been described in human; the long 

isoform was isolated from a cDNA library derived from a brain astrocytoma and 

has not been studied further (NCBI reference sequence NM_004160.4; MGC 

cDNA clone 52233) (Strausberg et al 2002).  Given that genes can have multiple 

TSSs where TSS selection varies across tissues, it is important to establish the 

TSSs for the gene in each tissue of interest. I describe here the identification and 

verification of TSSs for both PYY and NAGS in various human tissues, the initial 
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steps necessary to fully elucidate the mechanisms of regulation and expression 

for this head-to-head gene pair. 

 

Materials and Methods 

Human total RNA 

Commercially available human total RNA samples were obtained from 

Clontech, Chemicon, Stratagene and Ambion (based on availability of RNA from 

desired tissues).  All RNA samples were isolated from normal human tissues.  

Most samples were derived from a single individual, while a few were pooled 

from multiple individuals.  The concentration and quality of RNA was assessed 

by the manufacturer.  Human total RNA samples included:  brainstem, colon, 

ileum, kidney, liver, pancreas, skeletal muscle, small intestine, spleen and testes.   

5’RACE  

Rapid amplification of cDNA ends (RACE) was performed to map the 5' 

ends of PYY and NAGS transcripts in human tissues.  The Roche Applied 

Science 5'/3' RACE Kit, 2nd Generation (catalog # 03353621001) was used.  In 

general, first strand cDNA synthesis was performed with a gene specific primer 

(GSP1).  The cDNA was then purified using the High Pure PCR Product 

Purification Kit (Roche Applied Science catalog # 11 732 668 001).  Next, a poly 

(A) tail was added to the 5’ end of the cDNA with terminal transferase.  This was 

followed by PCR with a nested primer, GSP2, and the oligo(dT)-anchor primer 

supplied by the manufacturer.  Using this PCR product as template, a second 
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round of PCR was performed using another nested primer, GSP3 and the anchor 

primer supplied by the manufacturer.  Primer sequences are given in Table 3.1.  

Next, 5’RACE products were analyzed by agarose gel electrophoresis.  

Bands were excised from the gel and products were gel purified using the Wizard 

SV Gel and PCR Clean-up System (Promega catalog # A9281).  5’RACE 

products were cloned into the TOPO PCR 2.1 vector using the TA-cloning 

system (Invitrogen catalog # K4500-40), following the manufacturer’s 

instructions.  Both the gel-purified products and the PCR reaction were used in 

the cloning reactions.  A minimum of 14 colonies were screened via PCR and 

ethidium bromide stained agarose gel electrophoresis.  5 mL cultures of bacteria 

containing clones for each 5’RACE product were grown and plasmid isolations 

were performed using the QIAprep Spin Miniprep Kit (Qiagen catalog # 27104).  

Clones were sequenced by the Vanderbilt DNA Sequencing Core.  Sequences 

were analyzed with Sequencher 4.8 (Gene Codes Corporation) alignment 

software and the University of California, Santa Cruz (UCSC) genome browser 

BLAST-Like Alignment Tool (BLAT). 
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Table 3.1: 5’ RACE primer sequences for PYY and NAGS 

Primer name Primer sequence Primer location 

PYYRACE1  GTC TGA AGA AGG AGC ATG CAG exon 2 

PYYRACE2  GTC CAG GAA TTG GAA TGT GAC C exon 2 

PYYRACE3 TTT CCT CTT GGC AGC AG spans exon 1-2 junction 

PYYRACE4 GAC CGA TAG TGG GTT CAG TTC C exon 1 

PYYrace1b CAG AAG CAC TGT GGT CAA GG exon 5 

PYYrace2b CTG CGC ACG AAC ACC ATA G spans exon 4-5 junction 

PYYrace3b CTT GTG AAG CAG ACG AGC AG exon 4 

NAGSRACE1 CCA TGA CGA CAA CCA ACT CTT G begins at base +4 from ATG 

NAGSRACE2 CAA GAG TGG CAG TCT GTC TGG begins at base -24 from ATG 

NAGSRACE3 GGG CTC TTA ACT TGC CGT TG begins at base -60 from ATG 

 
 
 

Non-quantitative RT-PCR  
 
Reverse Transcription  
 

Reverse transcription was performed using the SuperScript™ III First- 

Strand Synthesis System for RT-PCR (Invitrogen catalog # 18080-051).  

Following the manufacturer’s instructions, 20 μL reactions were prepared using 

oligo(dT) primer and 2 μg of total RNA.  RNA/primer mixtures were prepared and 

incubated at 65°C for 5 minutes and then placed on ice.  Next, cDNA synthesis 

master mix was added to each tube and reactions were incubated at 50°C for 50 

minutes and then 85°C for 5 minutes.  To remove RNA template, RNAse H was 

added to each tube and reactions were incubated at 37°C for 20 minutes.  RT-

PCR primers for PYY and NAGS are given in Table 3.2.  
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PYY 

Using 1 μL of RT product from brainstem, ileum, and kidney as template, 

PCR was performed with four primer sets to amplify discrete regions of PYY 

cDNA: exons 1-6, exons 2-6, exons 4-6 and exons 1-2 (Figure 3.4).    Full-length 

PYY cDNA (500pg) containing exons 1-7 (Open Biosystems clone ID 40005903) 

was used as a positive control, while a water blank served as a negative PCR 

control.  Amplified products were analyzed via agarose gel electrophoresis.     

 

NAGS 

Primers were designed to further characterize the 5’ exon/intron structure 

of NAGS transcripts identified in NAGS 5’RACE liver experiments.  Forward 

primers were designed to the beginning of each of the 5’RACE products 

identified in the liver. Each forward primer was paired with the third gene specific 

primer, GSP3, from the 5’RACE experiments.  

Using 1 μL of RT product from liver as template, PCR was performed with 

each primer set.  The expected product sizes for these primers pairs were:  

liver1/GPS3 – 322 bp, liver 2/GSP2 – 302 bp, liver 3/GSP3 – 222 bp.  

Additionally, another PCR was performed pairing liver 1 forward primer with a 

reverse primer in exon 1 of NAGS, expected product size 780 bp.  The amplified 

products were analyzed via agarose gel electrophoresis and then cloned into the 

TOPO PCR2.1 vector.  Clones were screened and sequenced as described 

earlier in this chapter (see 5’RACE methods). 
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Table 3.2: Non-quantitative RT-PCR primer sequences for PYY and                   
NAGS 
 

PYY primers Primer Sequence 

    PYYRACE 
forward 

GGAGGAACTGAACCCACTATCG 

    PYY ex2 
forward 

GGA GGT CCC TGG AGA TTT G 

    PYY ex3 
forward 

GTC CTA GAG CGA AGC CTG AG 

    PYY ex4 
forward 

GGG ATA TAA GCC CCA CAA GG 

    PYY ex6 
reverse 

GGC CGT CTC TTT TCC CAT AC 

NAGS primers  

   NAGS smint 
forward 

CCC AAC GGC AAG TTA AGA GC 

   NAGS ex 1 
reverse 

GAG TGA TGG CAG GTC TGG AAC 

   NAGS ex 2 
reverse 

GCC TCC CAG AAG GAA AGA CAG 

   NAGS liver 1 CGA GAG GGA GGA CCT GGA G 

   NAGS liver 2 
12222forward 

CCT GTG CTC AAA GCC ACC TAC 

   NAGS liver 3 
2forward 

GGA ACC TAC CTT GGC AGC AG 

 

Quantitative real time RT-PCR  

Primers and probes 

Quantitative real time RT-PCR (qRT-PCR) was used to determine the 

presence and amount of PYY transcript isoforms in a panel of human tissues.  

Three Applied Biosystems TaqMan® gene expression assays for PYY were used.  

The first assay (ID # Hs01062281_m1) probe spans exons 1-2 and will 

specifically detect the PYY isoform containing exon 1.  The second assay (ID # 

Hs01062282_m1) probe spans exons 2-3 and will thus detect PYY transcripts 

that begin in exon 1 or in exon 2.  It will not differentiate between those which 

contain exon 1 and those that do not.  The final assay (ID # Hs00373890_g1) 

probe spans 6-7 and will detect all PYY transcripts.   
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First strand cDNA synthesis 

First strand cDNA synthesis was performed using the SuperScript™ III 

First Strand Synthesis System (Invitrogen, catalog #18080-051).  Following the 

manufacturer’s instructions, 20 μL reactions were set up using oligo(dT) primer 

and 4 μg of total RNA.  First, RNA/primer/dNTP mixtures were prepared, 

incubated at 65°C for 5 minutes and then placed on ice.  Next, 10 μL of cDNA 

synthesis master mix was added to each tube and reactions were incubated at 

50°C for 50 minutes followed by an incubation at 85°C for 5 minutes.  1 μL of 

RNAse H was added to each tube and reactions were incubated at 37°C for 20 

minutes.   

Standard curve preparation 

Standard curves were prepared using full-length PYY cDNA (Open 

Biosystems clone ID 40005903) for absolute quantitation of mRNA transcripts. 

Standard curve templates consisted of ten-fold dilutions of full-length plasmid 

cDNA ranging from 5 fg to 500 pg.  To prepare plasmid cDNA for standard 

curves, 5 mL cultures of bacteria containing plasmid with full-length PYY cDNA 

were grown overnight in a 37°C shaking incubator. Plasmid isolations were then 

performed using the QIAprep Spin Miniprep kit (Qiagen catalog #27104).  

Plasmid DNA was eluted in nuclease-free water.  DNA quality and concentration 

were assessed via spectrophotometric readings at 260, 280 and 230 nm.  A 5 

ng/μl dilution was prepared, and then serially diluted in 1:10 steps to a final 

concentration of 5 fg.   
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qRT-PCR set-up 

All samples and standards were assayed in triplicate.  Reactions were 

performed in a total volume of 10 μL and included:  5 μL TaqMan Gene 

Expression  Master Mix, 2X (Applied Biosystems cat #4369016), 0.5 μL TaqMan 

gene expression assay for the gene of interest, 0.5 μL of TaqMan gene 

expression assay for an endogenous control gene, and 4 μL of cDNA/nuclease 

free water mixtures.  Standard curve cDNA/nuclease-free water mixes consisted 

of 1 μL of standard cDNA and 3 μL of nuclease-free water.  The cDNA/nuclease-

free water mixtures for the RNA samples consisted of 0.5 μL cDNA and 3.5 μL 

nuclease free water which corresponds to 100 μg of RNA per reaction. The 

endogenous control gene assay was not included in the standard curve 

reactions, therefore, 0.5 μL of nuclease-free water was added to make up the 

volume.   

qRT-PCR analyses were performed using Applied Biosystems Prism® 

7900 HT Sequence Detection System and the accompanying software SDS 2.3 

(Applied Biosystems, Inc., Foster City, CA).  The following standard thermal 

cycler protocol was used: 50°C for 2 minutes, 95°C for 10 minutes, followed by 

40 cycles of 95°C for 15 seconds and 60°C for 1 minute.  The ramp rate for 

temperature change was 100%.  

The SDS 2.3 analysis software generated an equation of the line for each 

set of standards.  The highest concentration standard was dropped for each 

assay because it crossed the threshold before the set baseline.  The square of 

the correlation coefficient (r2) was ≥ 0.99 for each standard curve.  These curves 
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were used to calculate the quantity of each PYY mRNA transcript in the panel of 

human tissues.  The calculated quantities are equivalent to picograms (pg) of 

plasmid.  Therefore, the expression (quantity) of transcript in the samples 

assayed is given the unit designation pg equivalents, or pge. 

Results   

5’RACE PYY 

The aim of these experiments was to confirm the TSSs for PYY in 

selected human tissues.  5’ RACE was performed using normal human ileum, 

brainstem, and liver total RNA samples.  The ileum was a primary tissue of 

interest because PYY is highly expressed there and NAGS is also reported to be 

expressed in the small intestine.  Thus, it is possible these genes are 

coordinately regulated in this tissue.  The brainstem was selected because PYY 

is reportedly expressed in a small population of neurons in the brainstem (Ekblad 

and Sundler 2002; Glavas et al 2008).  Moreover, the long isoform of PYY was 

identified from a brain astrocytoma cDNA library.  Therefore, this is a reasonable 

tissue in which to confirm the long isoform TSS.  Liver total RNA was chosen 

because NAGS is highly expressed in this tissue.  I wanted to determine if PYY 

transcripts were also expressed in the liver, and to identify the TSSs of any such 

transcripts.   

I was unable to amplify PYY in any of these tissues using the 5’RACE 

GSPs (PYYRACE 1, 2, and 3) located in exons 1 and 2.  Recall that Kohri et al 

identified a PYY transcript similar to Pyy in other species that has a TSS in exon 

4.  Thus, it is possible the major transcript isoform of PYY begins in exon 4.  The 
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translational start site for PYY is at the beginning of exon 5; therefore, this region 

is always expected to be included in the transcript.  Bearing all this in mind I 

designed a new series of 5’ RACE GSPs (PYYRACE1b, 2b, and 3b) located in 

exons 4 and 5.  These primers are expected to amplify a product if the TSS is 

located in either exon 4 or exon 1.  

5’RACE of PYY in the ileum using these primers produced a single 

robustly amplified product between 100 and 200 bp (Figure 3.3).  Sequence 

analysis revealed the TSS location to be approximately 36 bases into exon 4.  

This is approximately 10 base pairs upstream of the TSS identified by Kohri et al 

from human colon (Kohri et al 1993).  I was unable to amplify PYY using the re-

designed RACE primers in brainstem or liver, suggesting PYY is either not 

expressed, or is expressed at extremely low levels in these tissues.   

 

                                           

              

Figure 3.3:  PYY 5’ RACE 
products in human ileum.  
5’ RACE was performed on 
human ileum total RNA.  
Final amplified products were 
run on a 1.5% agarose gel 
containing ethidium bromide.  
Lane 1: H2O blank, Lanes 2 
and 3: PYY 5’ RACE ileum, 
Lane 4: empty and Lane 5: 
100 bp ladder (Promega).  
Note:  The 500 bp fragment 
in the ladder is at increased 
intensity.  
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RT-PCR PYY 

Given that I was unable to amplify exons 1-3 in 5’RACE experiments, 

primers were designed to amplify discrete regions of the PYY cDNA.  The goal of 

these experiments was to determine if exons 1-3 of the PYY long isoform are 

genuine by amplifying these regions from human total RNA samples using non-

quantitative RT-PCR.  PCR was performed on first strand cDNA from human 

brainstem, ileum, and kidney using four primer sets.  Products were analyzed via 

agarose gel electrophoresis (Figure 3.4).  The expected product sizes for the 

primer pairs are as follows: 743 bp (exon 1forward/exon 6 reverse), 472 bp (exon 

2 forward/exon 6 reverse), 331 bp (exon 4 forward/ exon 6 reverse) and 183 bp 

(exon 1 forward/exon 2 reverse). 

All primer pairs successfully amplified products of expected sizes when 

using the positive control template (PYY cDNA exons 1-7).  Primers spanning 

exons 2-6 and 4-6 amplified products of appropriate size in all three tissues 

tested.  The relative abundance as indicated by the intensity of bands on the 

ethidium stained agarose gel (Figure 3.4) suggest the PYY isoform containing 

exon 2 is most abundant in the kidney compared to brainstem or ileum. 

Primers spanning exons 1-6 and exons 1-2 did not amplify a product in 

ileum or kidney, indicating the PYY transcripts in these tissues do not contain 

exon 1.  A possible product was amplified when brainstem cDNA was used as 

template for primers spanning exons 1-6 as indicated by an extremely faint band 

on the agarose gel.  Such a faint band after 40 cycles of amplification is 

indicative of extremely low abundance of PYY transcript(s) containing exon 1 and 
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thus, this product may be of doubtful relevance. It is possible the product was 

amplified from a single or a few molecules of a transcript containing exon 1 which 

could have been the result of an antisense transcription event.  Additionally, no 

product was amplified from brainstem cDNA with primers spanning exons 1-2.  

As demonstrated by the results with primers spanning exons 2-6, exon 2 is 

included in a PYY transcript in the brainstem.  Therefore, if PYY exon 1 is 

genuine, I would expect to amplify a product from this tissue using primers 

spanning exons 1-2.  Taken together, these data suggest there are TSSs for 

PYY in exons 2 and 4, and if exon 1 is genuine the PYY long isoform is 

expressed at extremely low levels in these tissues. 
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a)  

               

                                  

b)  

    

Figure 3.4:  RT-PCR analysis of PYY in human tissues 
Reverse transcription was performed on human ileum, brainstem and kidney total 
RNA using oligo(dT) primers.  This was followed by PCR with 4 primer sets 
spanning different regions of the PYY transcript (exon 1-6, exon 2-6, exon 4-6 
and exon 1-2).     
 
a) Location of RT/PCR primers.  PYY cDNA is diagrammed; boxes represent 
exons and arrows indicate location of primers. 
 
b)  RT-PCR products visualized on a 1.5% agarose gel.  PYY plasmid cDNA 
clone containing exons 1-7 was used as a positive control.  Samples were loaded 
as follows for each primer pair: PCR blank, ileum (I), brainstem (B), kidney (K) 
and PYY plasmid (+).  A 100 bp ladder was loaded in lanes 1 & 24. 
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qRT-PCR 

Since it is possible that a PYY transcript containing exon 1 is expressed in 

the brainstem and potentially other tissues not included in this RT-PCR 

experiment quantitative real time RT-PCR was performed on a panel of normal 

human tissues to further explore the expression of PYY transcripts containing 

exon 1.  In both 5’ RACE and non-quantitative RT-PCR experiments I was 

ultimately unable to amplify exon 1 of PYY.  RT-PCR data suggests there is a 

transcript which contains exon 2.  To determine the presence and amount of PYY 

transcripts qRT-PCR was performed on a panel of normal human tissues (Figure 

3.5).  The PYY transcript including exon 1 was not expressed at appreciable 

levels in any of the tissues assayed.  Indeed, the Ct values for this assay were 

greater than 32 in all tissues examined (Table 3.1), representative of extremely 

low expression.  The transcript containing exon 2 was expressed primarily in the 

kidney and pancreas-at a level of 0.005 pge in both tissues.  qRT-PCR data 

reveal this transcript was the major isoform expressed in the kidney, consistent 

with results from non-quantitative RT-PCR. 

The PYY TaqMan gene expression assay with the probe spanning exons 

6-7 will detect all transcripts.  qRT-PCR data indicate that PYY isoforms in 

tissues of the gut (ileum, small intestine and colon) do not contain exons 1 or 2.  

Taken together with the 5’ RACE data, as well as reports in the literature ((Kohri 

et al 1993), these data indicate that the PYY transcript containing exons 4-7 is 

the major isoform expressed in the gut.  It was expressed most highly in the 

ileum (0.216 pge) and colon (0.398 pge).  In the pancreas, it was expressed at 
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approximately the same level as that of the transcript containing exon 2.  This 

was estimated by subtracting the quantity of PYY transcript as determined by the 

TaqMan assay spanning exon 2-3 (0.005 pge) from the quantity of PYY transcript 

determined from the TaqMan assay spanning exon 6-7 (0.009 pge).   

Overall, the data indicate the PYY long isoform containing exon 1 is not 

expressed in the panel of tissues examined here.  Furthermore, there is a PYY 

transcript containing exons 2-3 suggesting there is a TSS located somewhere in 

exon 2.  Finally, the short isoform of PYY containing exons 4-7 appears to be the 

main isoform in most tissues.   
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Figure 3.5:  Comparison of PYY transcripts in a panel of human tissues. 
qRT-PCR was performed in triplicate on a panel of human total RNA samples.  Plasmid PYY cDNA was used to 
generate a standard curve for each assay, and the quantity of mRNA was calculated based on the standard curve.  
The expression (quantity) of transcript is given the unit designation pg equivalents, or pge. This graph shows the 
mean quantity of each transcript.  Error bars represent the standard deviation of the triplicate measures. 
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PYY assay ex 1-2 PYY assay ex 2-3 PYY assay ex 6-7 

Tissue Ave Ct ± St dev Ave Qty ± St dev Ave Ct ± St dev Ave Qty ± St dev Ave Ct ± St dev Ave Qty ± St dev 

Ileum 32.87 ± 0.28 <0.001  ± <0.001 31.43 ± 0.41 <0.001  ± <0.001 21.56 ± 0.01 0.216 ± 0.001 

Small 
intestine 

35.61 ± 0.48 <0.001  ± <0.001 32.91 ± 0.48 <0.001  ± <0.001 24.36 ± 0.04 0.030 ± 0.001 

Colon  35.03 ± 0.73 <0.001  ± <0.001 30.54 ± 0.46 <0.001  ± <0.001 20.71 ± 0.14 0.398 ± 0.040 

Liver 32.85 ± 0.21 <0.001  ± <0.001 30.67 ± 0.47 <0.001  ± <0.001 31.62 ± 0.17 <0.001  ± <0.001 

Kidney 32.35 ± 0.22 <0.001  ± <0.001 26.56 ± 0.23 0.005 ± 0.001 27.49 ± 0.06 0.003 ± <0.001 

Pancreas 32.62 ± 0.15 <0.001  ± <0.001 26.60 ± 0.10 0.005 ± <0.001 26.01 ± 0.04 0.009 ± <0.001 

Brainstem 32.77 ± 0.59 <0.001  ± <0.001 29.71 ± 0.23 0.001 ± <0.001 30.59 ± 0.10 <0.001  ± <0.001 

Spleen 34.95 ± 1.78 <0.001  ± <0.001 33.37 ± 0.95 <0.001  ± <0.001 33.56 ± 0.56 <0.001  ± <0.001 

Testis 34.44 ± 1.35 <0.001  ± <0.001 33.20 ± 0.72 <0.001  ± <0.001 32.36 ± 0.66 <0.001  ± <0.001 

Skeletal 
Muscle 

34.67 ± 0.60 <0.001  ± <0.001 34.12 ± 1.34 <0.001  ± <0.001 34.52 ± 0.90 <0.001  ± <0.001 

 
Table 3.3:  Quantitative real-time RT-PCR average Ct and quantity values of PYY transcripts in normal human 
tissues.  All values reflect the mean of triplicate measurements ± the standard deviation 
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5’RACE NAGS 

The aim of these experiments was to identify the TSSs for NAGS in 

selected human tissues.  5’ RACE was performed using normal human liver and 

ileum total RNA samples.  Liver was selected because it is a primary site of 

NAGS expression.  NAGS is also expressed in the small intestine, and while 

expression has not been localized to a specific region, PYY is highly expressed 

in the ileum.  If the hypothesis of coordinate regulation is correct then NAGS may 

also be highly expressed there. 

A total of four products were amplified in 5’RACE experiments of NAGS in 

human liver and ileum suggesting three different TSSs in the liver and one in the 

ileum (Figure 3.6).  Transcripts are diagrammed in Figure 3.7.    Respectively, 

the TSSs for liver 1, 2 and 3 transcripts are located 5,353 base pairs, 430 base 

pairs, and 320 base pairs from the translational start site.  All of these transcripts 

overlap with exon 1 of the PYY gene.  Liver transcript 1 contains a novel 

upstream exon that is 60 base pairs long.  This is followed by an intron spanning 

4968 base pairs.  Thus, the 5’ untranslated region (UTR) for liver transcript 1 is 

385 bases.  In liver transcripts 2 and 3 the length of the 5’UTR is 430 and 320 

bases, respectively.   A distinct TSS, 153 base pairs from the translational start 

site was identified in the ileum.  These data suggest NAGS is regulated by 

alternative promoters in these tissues.  
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a)  

 

b)  

        

Figure 3.6: NAGS 5’ RACE 
products in liver and ileum.  
5’ RACE was performed on 
human liver (gel a) and ileum 
(gel b) total RNA.  Final 
amplified products were run 
on a 1.5% agarose gel 
containing ethidium bromide.  
  
Gel a:  Lane 1: H2O blank, 
Lanes 2 and 3: NAGS 5’ 
RACE liver, Lane 4: empty, 
Lane 5: 100 bp ladder  
 
Gel b:  Lane 1: H2O blank, 
Lanes 2: NAGS 5’ RACE 
ileum, Lane 4: empty, Lane 
5: 100 bp ladder  
 
Promega 100 bp DNA ladder 
was used.  It ranges from 
100 bp to 1500 bp and the 
500 bp fragment in the 
ladder is at increased 
intensity.  
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Figure 3.7:  NAGS TSSs identified in human liver and ileum  
Diagram of TSSs identified for NAGS using 5’RACE.  Three TSSs were 
identified in the liver and one TSS was identified in the ileum.  The solid 
bars represent the 5’UTR and the shaded bars represent the beginning of 
the coding sequence.  Introns are indicated by solid black line.  

 

 

RT-PCR NAGS 

RT-PCR was performed to further characterize the 5’ structure of NAGS 

transcripts in the liver. Primers were designed at the beginning of each TSS 

identified in 5’RACE experiments.  Each of these primers was paired with the 

NAGSRACE3 primer used in the 5’RACE experiments.  Using human liver first 

strand cDNA as template in the PCR, single products of the expected sizes were 

amplified with the liver 2/NAGSRACE3 and the liver 3/NAGSRACE3 primer pairs 

(Figure 3.8).  As expected both products aligned to the region 5’ of NAGS.  

Unexpectedly, multiple products were amplified using the liver 1/NAGSRACE3 
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primer pair.  Several attempts were made to optimize this primer pair by raising 

the annealing temperature during PCR amplification to increase primer 

specificity.  Each time, multiple products were still amplified.  These products 

were cloned and sequenced to determine if they represent NAGS transcripts.   

 

 

Figure 3.8:  RT-PCR of NAGS liver transcripts 1, 2, 3. 
RT-PCR was performed with forward primers located at the beginning of the 
transcriptional start sites identified in 5’ RACE of NAGS in human liver. Lane 1: 
100 bp ladder (Promega), Lane 2: empty, Lane 3: H2O blank, Lane 4: liver 
transcript 1 RT-PCR, Lane 5: liver transcript 3 RT-PCR, Lane 6: liver transcript 2 
RT-PCR, Lane 7: empty, and Lane 8: 100 bp ladder (Promega). Note:  The 500 
bp fragment in the ladder is at increased intensity.  

 

 

Two additional alternatively spliced transcripts were identified (Figure 3.9).  

These alternatively spliced isoforms originate from the previously unidentified 

upstream exon of liver 1 transcript.  The first alternatively spliced isoform (liver 1 

isoform 2) contains a longer intronic region, 5159 bp compared to 4968 bp, and 
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thus has a shorter 5’UTR of only 194 bases.  The second alternatively spliced 

isoform (liver 1 isoform 3) contains a second previously unidentified exon 

upstream of the translational start site.  This isoform consists of a 60 base pair 

exon followed by a 1367 base pair intron, then another 121 base pair exon and 

an intron spanning 3671 base pairs.  The 5’UTR for this isoform is 315 base pairs 

long.  It is important to note that the band on the gel corresponding to the liver 1 

isoform 1 is the most intense suggesting it is more highly expressed than 

alternatively spliced liver isoforms 2 and 3. 

A third potential splice variant was identified in a separate RT-PCR 

experiment.  Using liver first strand cDNA as template, a single product of 300 bp 

was amplified by PCR using the liver 1 forward primer and a reverse primer in 

exon 1 of NAGS.  This was not the expected size.  Sequence analysis revealed 

that this product aligned to NAGS, but represented another potential transcript 

isoform. This isoform (liver 1 isoform 4) includes the 60 base pair novel upstream 

exon and then an intron spanning 5459 base pairs (Figure 3.9).   
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Figure 3.9:  NAGS liver 1 transcript is alternatively spliced. 
Diagram of alternatively spliced isoforms of NAGS liver 1 transcript.  
These splice variants were identified through RT-PCR and sequence 
analysis. 
 

 

Discussion 

My experimental results reveal that the PYY transcript containing exons 4-

7 is the major isoform in most tissues, particularly in the ileum and colon where 

PYY is most abundantly expressed.  A novel PYY transcript initiating in exon 2 

was identified.  This isoform is expressed at highest levels in the pancreas and 

kidney.  In fact, it appears to be the primary transcript in the kidney, while in the 

pancreas its expression is approximately equal to that of the PYY exon 4-7 

isoform.  PYY transcripts containing exon 1 were not expressed at appreciable 

levels in any of the tissues we tested.  This transcript was originally identified 
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from a cDNA library (NIH_MGC_98; Mammalian Genome Collection clone 

BC041057.1) derived from a grade IV brain astrocytoma. More than likely, it 

represents a very minor transcript that is perhaps expressed more strongly in a 

specific neuronal cell type, or under certain conditions.  

Three TSSs for NAGS were identified that suggest three types of liver 

transcripts.  The liver 1 transcript contains a previously unidentified upstream 

exon, and multiple alternatively spliced isoforms were observed originating from 

the TSS at this novel exon.  These splice variants likely represent minor 

transcript isoforms as they were not amplified in the 5’ RACE experiments and 

they were not robustly amplified in the RT-PCR. 

Liver transcripts 1 and 2 completely overlap the liver 3; and while not 

strictly quantitative, the results from agarose gel electrophoresis suggest this is 

the least abundant transcript.  Thus, it is possible that liver 3 product does not 

represent a true TSS.  During the initial reverse transcription step, the reverse 

transcriptase can pause or terminate at low frequency before reaching the 5’end 

of the transcript (Carey and Smale 2000).  Such early termination events may 

occur more often in GC-rich regions where RNA secondary structures form.  

These truncated reverse transcription products can be preferentially amplified 

during subsequent rounds of PCR, and thus appear to be a major TSS.    

Therefore, it is possible the liver 3 transcript identified in 5’ RACE experiments 

does not represent a genuine TSS.  Overall, the results of my experiments reveal 

a complex 5’ structure for NAGS liver transcripts.   
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A single TSS for NAGS was identified in the ileum that was distinct from 

the TSSs identified in the liver.  This suggests that NAGS is differentially 

regulated in these tissues.  This is reminiscent of the tissue specific regulation of 

the urea cycle enzyme ornithine transcarbamylase (OTC).  In the small intestine, 

the OTC promoter is activated through binding of HNF-4 (Takiguchi and Mori 

1995).  In the liver, activation of the promoter requires binding by both HNF-4 and 

C/EBPβ (Takiguchi and Mori 1995).  We identified tissue-specific transcripts in 

the liver and small intestine suggesting that NAGS is regulated by alternative 

promoters in these tissues.  The transcription factor HNF-4 is enriched in liver 

and small intestine and therefore, as with OTC, it may be important for the 

regulation of NAGS in both of these tissues.  It is likely that other tissue-selective 

transcription factors may play a role in regulating NAGS via these alternative 

promoters.  

Taken together my results indicate that both PYY and NAGS are regulated 

by alternative promoters in a tissue-specific manner.  These experiments further 

reveal that the ileum TSSs for NAGS and PYY are separated by approximately 

50 kb, which indicates they are not under the control of a bidirectional promoter.  

Recall, that by definition, a bidirectional promoter is the DNA sequence between 

divergently transcribed genes that are separated by 1000 base pairs or less.  

Although PYY and NAGS are not regulated by a bidirectional promoter, they may 

still be coordinately regulated via shared cis regulatory elements.  The CYP1A1 

and CYPIA2 genes are divergently transcribed and separated by an 

approximately 23 kb intergenic region (Ueda et al 2006).  Located in this 
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intergenic space are regulatory elements that function bidirectionally to positively 

and negatively regulate expression of both CYP1A1 and CYP1A2 (Ueda et al 

2006).  Thus, it is possible that the intergenic region between PYY and NAGS 

contains regulatory elements that are specific to each gene, as well as elements 

that are common to both genes.      

In conclusion, the TSSs for PYY and NAGS were characterized in multiple 

tissues.  Multiple TSSs were identified suggesting these genes are regulated by 

alternative promoters.  Furthermore, these data demonstrate that the TSSs for 

PYY and NAGS are separated by greater than 30 kb and 50 kb in the kidney and 

ileum, respectively, which indicates they are not under control of a bidirectional 

promoter in these tissues.  Importantly, while the regulatory landscape has been 

redefined, this does not rule out the possibility of coordinate regulation in cis as 

these genes still share a 5’ flanking region. 
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CHAPTER IV 

 

HUMAN EXPRESSION OF PYY AND NAGS 

 

Introduction 

PYY and NAGS are divergently transcribed and, as revealed in Chapter 

III, their TSSs are separated by an intergenic region of approximately 51 kb in the 

ileum (Figure 4.1).  Since these two genes share a 5’ flanking region it is possible 

they have cis regulatory elements in common, as do the divergently transcribed 

gene pair CYP1A1 and CYP1A2 (Ueda et al 2006).  If PYY and NAGS are 

coordinately regulated, then the expectation is they will be coordinately 

expressed in at least some tissues. 

 

 

Figure 4.1:  PYY and NAGS TSSs are separated by more than 50kb in the ileum. 
PYY and NAGS are divergently transcribed and thus share a 5’ flanking region.  In the 
ileum their TSSs are separated by 50.9 kb.  The TSS and direction of transcription for 
each gene are indicated by the arrows; solid blocks represent 5’ UTR and shaded boxes 
represent coding sequence. 

 
 

PYY is unique among its family members in that it functions as both a 

hormone and a neuropeptide (Soderberg et al 1994); its expression pattern 

reflects this dual function.  PYY is expressed in both enteroendocrine and 

neuronal cell populations (Ekblad and Sundler 2002; Leiter et al 1987). It is 
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secreted by endocrine cells of the colon, ileum, and pancreas (Leiter et al 1987). 

Adrian et al determined that PYY is expressed at very low concentrations in the 

proximal small intestine, including the duodenum and jejunum (Adrian et al 

1985).  It is expressed at higher concentrations in the ileum with increasing 

expression throughout the colon, and is most highly expressed in the rectum 

(Adrian et al 1985).  It is also expressed in peripheral neurons, specifically those 

of the enteric nervous system, as well as in a small population of neurons in the 

brainstem (Ekblad and Sundler 2002). Expression has also been observed in the 

ovary and testis (Ekblad and Sundler 2002; Leiter et al 1987). 

NAGS is critical for function of the urea cycle and therefore, it is highly 

expressed in the liver.  It is also expressed in the small intestine, along with the 

urea cycle enzymes CPS1 and OTC (Caldovic et al 2002a; Takiguchi et al 1989).  

Expression of NAGS has been observed in the adult kidney (Haberle et al 2003), 

and at low levels in fetal lung, pancreas, placenta, heart, and brain (Caldovic et al 

2002a).  Studies of mouse Nags reveal similar expression patterns with the 

addition of expression in the spleen and testis (Caldovic et al 2002b). 

Based on previous reports both PYY and NAGS are expressed in the 

small intestine.  However, no studies have examined the expression of these two 

genes concurrently in this or any tissue.  It is important to emphasize that 

divergently transcribed gene pairs may be coordinately regulated in a tissue 

specific manner.  Trinklein et al demonstrated that putative bidirectional 

promoters located between divergently transcribed genes pairs display 

bidirectional activity differentially in various cell types (Trinklein et al 2004).  
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Across the four cell lines tested, 22% of bidirectional promoter sequences 

showed bidirectional activity in half of the cell lines and unidirectional activity in 

the other half (Trinklein et al 2004).  Given that coordinate regulation may be 

tissue specific it is important to establish in what tissues, if any, PYY and NAGS 

are coordinately expressed.      

   

Materials and Methods 

Quantitative real time PCR (qRT-PCR)  

Primers and probes 

Quantitative real time RT-PCR was used to determine the presence and 

amount of PYY and NAGS transcripts in a panel of human tissues.  The following 

TaqMan gene expression assays were used: PYY (Hs00373890_g1) probe 

spans 6-7 and NAGS (Hs00400246_m1) probe spans exons 4-5.   

Human total RNA 

Commercially available human total RNA samples were obtained from 

Clontech, Chemicon, Stratagene, and Ambion (based on availability of RNA from 

desired tissues).  All RNA samples were isolated from normal human tissues.  

Most samples were derived from a single individual, while a few were pooled 

from multiple individuals.  RNA purity and concentrations were assessed by the 

individual manufacturer.  Human total RNA samples included:  brainstem, colon, 

ileum, kidney, liver, pancreas, skeletal muscle, small intestine, spleen, and 

testes.  With the exception of skeletal muscle which serves as a negative control, 
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these tissues are all known or reported sites of expression for PYY, NAGS, or 

both. 

First strand cDNA synthesis 

First strand cDNA synthesis was performed using the SuperScript™ III 

First Strand Synthesis System (Invitrogen, catalog #18080-051). Following the 

manufacturer’s instructions, 20 μL reactions were set up using oligo(dT) primer 

and 4 μg of total RNA.  RNA/primer mixtures were prepared and incubated at 

65°C for 5 minutes and then placed on ice.  Next, 10 µL of cDNA synthesis 

master mix was added to each tube and reactions were incubated at 50°C for 50 

minutes and 85°C for 5 minutes.  Finally, 1 µL of RNAse H was added to each 

tube, and reactions were incubated at 37°C for 20 minutes.   

Standard curve preparation 

Standard curves were prepared using full-length PYY and NAGS cDNAs 

(Open Biosystems clone IDs 40005903 and 5441270, respectively) for absolute 

quantitation of mRNA transcripts.  Standard curves consisted of ten-fold dilutions 

of full-length plasmid cDNA ranging from 500pg to 5 x 10-6 pg.   

To prepare plasmid cDNA for standard curves, 5 mL cultures of bacteria 

containing plasmid with full-length PYY or NAGS cDNA were grown overnight in 

a 37°C shaking incubator.  Plasmid isolations were performed using the Qiagen 

plasmid miniprep kit.  Plasmid DNA was eluted in nuclease-free water.  DNA 

quality and concentration were assessed via spectrophotometric readings at 260, 

280 and 230 nm.  A 5 ng/μl dilution was prepared.  This was then serially diluted 

1:10 to a final concentration of 5 x 10-6 pg.  
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qRT-PCR set-up 

All samples and standards were assayed in triplicate.  Reactions were 

performed in a total volume of 10 μL and included:  5 μL TaqMan gene 

expression 2X master mix (Applied Biosystems cat #4369016), 0.5 μL TaqMan 

gene expression assay for the gene of interest, 0.5 μL TaqMan gene expression 

assay for an endogenous control gene, and 4 μL of cDNA/nuclease free water 

mixtures.  Standard curve cDNA/nuclease-free water mixes consisted of 1 μL of 

standard cDNA and 3 μL of nuclease-free water.  The cDNA/nuclease-free water 

mixtures for the unknown samples consisted of 0.5 μL cDNA and 3.5 μL 

nuclease-free water, which corresponds to 100 μg RNA per reaction. The 

endogenous control gene assay was not included in the standard curve 

reactions; therefore, 0.5 μL of nuclease-free water was added to make up the 

volume.   

qRT-PCR analyses were performed using Applied Biosystems Prism® 

7900 HT Sequence Detection System and the accompanying software SDS 2.3 

(Applied Biosystems, Inc., Foster City, CA).  The following standard thermal 

cycler protocol was used: 50°C 2 minutes, 95°C 10 minutes, followed by 40 

cycles of 95°C for 15 seconds and 60°C for 1 minute.  The ramp rate for 

temperature change was 100%.  

The SDS 2.3 analysis software generated an equation of the line for each 

set of standards.  The highest concentration standard was dropped for each 

assay because it crossed the threshold before the set baseline.  The r2 was ≥ 

0.99 for each standard curve.  These curves were used to calculate the quantity 
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of PYY and NAGS mRNA transcripts in the panel of human tissues.  The 

calculated quantities are equivalent to picograms (pg) of plasmid.  Therefore, the 

expression (quantity) of transcript in the unknown samples is given the unit 

designation pg equivalents, or pge. 

Cell line screens 

The following cell lines were obtained and cultured per vendor 

recommendations:  CaCo2, HT29, HuTu 80, and Fhs 74 Int.  With the exception 

of CaCo2 and HT29 lines, cells were treated with a variety of compounds 

reported to induce expression of either PYY or NAGS including insulin-like 

growth factor 1 (IGF-1) which was shown to increase promoter activity of rat Pyy 

(Wang et al 2004).  Cells were also treated with dexamethasone, a potent 

glucocorticoid.  There is considerable evidence, primarily from cultured 

hepatocytes, demonstrating increases in expression of urea cycle enzymes in 

response to glucocorticoids including dexamethasone (Morris, Jr. et al 1987; 

Morris, Jr. 2002; Morris, Jr. and Kepka-Lenhart 2002; Takiguchi and Mori 1995).  

Amino acids were also used to treat cells because protein increases expression 

of both NAGS and PYY in vivo (Batterham et al 2006; Morris, Jr. 2002).     

RNA was isolated from cells using a phenol-chloroform based extraction 

procedure.  Growth media was removed from the cells which were then lysed 

with the phenol-based TRIzol® reagent (Invitrogen cat #15596-018) and RNA 

was isolated per the manufacturer’s protocol.  The concentration and purity of 

RNA was assessed via spectrophotometric readings at 260, 280 and 230 

nanometers.  Non-quantitative RT-PCR was used to screen CaCo2 and HT29 
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cells for expression of PYY and NAGS.  Quantitative real-time PCR was 

performed (as described above) to determine the expression of PYY and NAGS 

in treated and untreated cells. 

 

Results 

Quantitative real-time RT-PCR on human tissues 

qRT-PCR analyses revealed distinct expression patterns for PYY and 

NAGS (Figure 4.2).  PYY was expressed most highly in the colon and ileum with 

a mean quantity of 0.398 ± 0.040 pge and 0.216 ± 0.001 pge, respectively (Table 

4.1). It was expressed at lower levels in the small intestinal sample (0.030 ± 

0.001 pge), kidney (0.003 ± <0.001 pge), and pancreas (0.009 ± <0.001 pge).  

Very low expression was observed in the brainstem (3.5 x 10-4 ± 2.5 x 10-5pge).   

Expression of PYY was not detectable in liver, spleen, testes, or skeletal muscle.  

The observed expression pattern of PYY is consistent with previous reports 

(Adrian et al 1985; Krasinski et al 1990; Leiter et al 1987). 

NAGS was most highly expressed in the liver and ileum with a mean 

quantity of 0.232 ± 0.054 pge and 0.243 ±0.021 pge, respectively.  It was also 

expressed in the small intestinal sample (0.070 ± 0.003 pge) and the kidney 

(0.093 ± 0.012 pge).  Low levels of expression were observed in the colon (0.016 

± 0.010 pge), pancreas (0.006 ± 0.000 pge), and brainstem (0.014 ± 0.002 pge), 

with lowest expression in the testes (0.001 ± 0.001 pge).  NAGS expression was 

not detectable in spleen or skeletal muscle. 
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Figure 4.2:  Expression of NAGS and PYY in a panel of normal human tissues. 
Quantitative real-time RT-PCR was performed on each sample in triplicate.  Plasmid cDNA was used to generate 
standard curves for each gene and the quantity of mRNA was calculated based on the standard curve.  The 
expression (quantity) of transcript is given the unit designation pg of plasmid equivalents, or pge.  The average 
quantity is graphed and error bars represent the standard deviation of triplicate measures. 
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PYY NAGS 

Tissue Ave Ct ± St dev Ave Qty ± St dev Ave Ct ± St dev Ave Qty ± St dev 

Ileum 21.56 ± 0.01 0.216 ± 0.001 21.53 ± 0.12 0.243 ± 0.021 
Small 
intestine 24.36 ± 0.04 0.030 ± 0.001 23.23 ± 0.06 0.070 ± 0.003 

Colon  20.71 ± 0.14 0.398 ± 0.040 25.40 ± 0.80 0.016 ± 0.010 

Liver 31.62 ± 0.17 <0.001 ± <0.001 21.62 ± 0.35 0.232 ± 0.054 

Kidney 27.49 ± 0.06 0.003 ± <0.001 22.84 ± 0.17 0.093 ± 0.012 

Pancreas 26.01 ± 0.04 0.009 ± <0.001 26.54 ± 0.09 0.006 ± <0.001 

Brainstem 30.59 ± 0.10 <0.001 ± <0.001 25.46 ± 0.21 0.014 ± 0.002 

Spleen 33.56 ± 0.56 <0.001 ± <0.001 28.55 ± 0.17 0.001 ± <0.001 

Testis 32.36 ± 0.66 <0.001 ± <0.001 30.88 ± 2.67 0.001 ± 0.001 
Skeletal 
Muscle 34.52 ± 0.90 <0.001 ± <0.001 32.02 ± 0.51 <0.001 ± <0.001 

 
Table 4.1:  Quantitative real-time RT-PCR (qRT-PCR) average Ct and quantity values for PYY and NAGS.  
Expression of PYY and NAGS was determined in a panel of normal human tissues using qRT-PCR.     
All values reflect the mean of triplicate measures ± the standard deviation. 
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Cell culture experiments 

Next, I wanted to examine promoter function using an in vitro cell culture 

system with two goals in mind.  The first goal was to determine if expression of 

PYY and NAGS responds in the same way under different treatment conditions.  

For example, IGF-1 is reported to increase expression of PYY (Wang et al 2004); 

if cells are treated with IGF-1 to increase PYY expression, would there also be a 

similar increase in NAGS expression?  If expression of both genes increases or 

decreases in response to the same treatment then this would provide some 

evidence the two genes are coordinately regulated.  The second goal was to 

identify cis regulatory elements in the shared 5’ flanking region that are 

necessary for regulation of these genes using transient transfection reporter 

gene assays. 

An absolute requirement for these experiments is a cultured cell line that 

endogenously expresses the gene or genes from which the promoter is derived.  

Thus, the first step was to identify a cell line that endogenously expresses PYY 

and NAGS.  Cell lines were selected based on human tissue expression of PYY 

and NAGS.  The gene expression studies presented above reveal that PYY and 

NAGS are similarly expressed in the ileum and pancreas which makes cell lines 

derived from these tissues attractive candidates for examining regulation of this 

gene pair.  Moreover, the ileum is physiologically relevant to the idea that PYY 

and NAGS are coordinately regulated in response to dietary protein intake.  The 

number of available small intestinal cell lines is small and none are specifically 

derived from the ileum.  Therefore, we examined cell lines derived from other 
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tissues as well, screening the following cell lines:  CaCo2 (ATCC #HTB-37), 

HT29 (ATCC #HTB-38), HuTu 80 (ATCC #HTB-40), and Fhs 74 Int (ATCC 

#CCL-241). 

PYY is highly expressed in the colon and while NAGS expression is 

significantly lower in this tissue, I chose to screen two cell lines derived from 

human colon – CaCo2 and HT29. These immortal cell lines are derived from 

colon adenocarcinomas and display morphology of epithelial cells.  Non-

quantitative RT-PCR results reveal that neither CaCo2 nor HT29 express PYY or 

NAGS.   

The remaining two cell lines, HuTu 80 and Fhs 74 Int, are both small 

intestinal lines.  HuTu 80 is an immortal cell line taken from the duodenum of a 

small intestinal adenocarcinoma, and Fhs 74 Int is a primary cell line derived 

from normal fetal small intestine at 3-4 months gestation.  The HuTu 80 line was 

shown to express PYY through non-quantitative RT-PCR analysis (Rozengurt et 

al 2006).  Results of my experiments demonstrate that PYY and NAGS are 

expressed at similar, albeit low levels in both the HuTu 80 and Fhs 74 Int cells.  

As shown in Figure 4.3 the expression of NAGS and PYY in the HuTu80 (0.0004 

pge) and Fhs 74 Int (0.0001 pge) cells was negligible compared to expression in 

normal human small intestine (0.070 pge NAGS and 0.030 pge PYY) and ileum 

(0.243 pge NAGS and 0.216 pge PYY).  Expression of these genes could not be 

consistently induced above basal levels under any treatment condition 

suggesting these are not appropriate cell lines for investigating regulation of PYY 

and NAGS. 
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Figure 4.3:  Expression of NAGS and PYY in HuTu 80 and Fhs 74 Int cell lines compared with human ileum and 
small intestine.  Quantitative real-time RT-PCR was performed on each sample in triplicate.  Plasmid cDNA was used to 
generate standard curves for each gene and the quantity of mRNA was calculated based on the standard curve.  The 
expression (quantity) of transcript is given the unit designation pg of plasmid equivalents, or pge.  The average quantity is 
graphed and error bars represent the standard deviation of triplicate measures. 
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Discussion 

PYY and NAGS display distinct patterns of expression among the human 

tissues assayed.  These genes are expressed concordantly in some tissues and 

discordantly in others. PYY and NAGS are expressed at similar levels to one 

another in the ileum and pancreas, with expression in the pancreas much lower 

than in the ileum.  PYY was expressed highly in the colon where the expression 

of NAGS was low.  Conversely, in the liver where NAGS was highly expressed, 

PYY was undetectable.  Taken together, the expression data suggest that if PYY 

and NAGS are coordinately regulated it occurs in a tissue-specific manner in the 

ileum and pancreas. 

The question then arises, why might PYY and NAGS be coordinately 

regulated in some tissues, but not in others?  If PYY and NAGS were 

coordinately expressed in all tissues then it would be possible their correlated 

gene expression is simply a function of their location and arrangement.  

However, the possibility of tissue-specific coordinate regulation of PYY and 

NAGS implies there may be a functional link in tissues where they are 

coordinately expressed.     

At first glance these genes have no apparent functional connection, but 

upon further examination a profound connection emerges.  NAGS is necessary 

for the successful processing of waste nitrogen into urea.  It is thought to regulate 

ureagenesis by varying the amount of NAG available for CPS1 which catalyzes 

the first and rate-determining step of the urea cycle.  The primary source of 

waste nitrogen in humans is from our diet; the largest proportion coming from 
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digestion of dietary protein.  One function of PYY is in appetite regulation 

inducing satiety in response to ingested nutrients.   A greater and more sustained 

response has been observed upon ingestion of protein compared to fats and 

carbohydrates (Batterham et al 2006; Lomenick et al 2009).  Both NAGS and 

PYY are upregulated in response to protein.  The sustained increases of PYY in 

response to protein may suppress further nitrogen intake while excess nitrogen is 

processed through the urea cycle, of which NAGS is a potential regulator.  

Therefore, co-regulation of PYY and NAGS would provide a link between 

suppression of nitrogen intake and processing of waste nitrogen.   

The differential regulation of this gene pair in tissues is likely governed by 

both the function of the gene products and the environmental context of the 

respective tissues.  The small intestine is the principal site for protein absorption.  

The absorptive capacity for di- and tri- peptides is greater in the proximal small 

intestine, while in the distal small intestine (ileum) the absorptive capacity is 

greater for single amino acids (Johnson et al 2006).  Thus, in the ileum, PYY and 

NAGS may be upregulated by amino acids which is consistent with the idea that 

co-regulation of this gene pair would contribute to the maintenance of nitrogen 

balance.   

Upregulation of PYY and NAGS by amino acids may also explain why 

expression of this gene pair differs in the ileum and colon.  By the time luminal 

contents enter the ileocecal junction absorption of protein is nearly complete 

(Johnson et al 2006).  Thus, the concentration of amino acids is much lower in 

the colon.  This change in the extracellular milieu from the ileum to the colon may 
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explain why there is decreased expression of NAGS in the colon. However, this 

does not explain the increased expression of PYY in the colon.  Recall, that PYY 

serves multiple functions in addition to its role in appetite regulation.  It functions 

to inhibit digestive enzyme secretion, gastric acid secretion, and gut motility.  

Furthermore, studies demonstrate a role for PYY in the maintenance of the 

mucosal epithelium of the gut.  It is likely that the primary function(s) of PYY in 

the colon differs from that of the ileum and consequently the gene is alternatively 

regulated in these tissues.  For example, PYY in the colon may function primarily 

in gastric motility and maintenance of gut epithelium.  IGF-1 which has been 

shown to increase PYY promoter activity might be important in the regulation of 

PYY with regards to proliferation of the gut epithelium and may play a larger role 

in regulation of this gene in the colon.   

The low expression of NAGS in the colon may simply be due to leaky 

transcription.  PYY is highly expressed in the colon and because that region is 

actively transcribed, it is possible that some transcription of NAGS may also 

occur.  While it is possible that expression of NAGS in the colon is the result of 

leaky transcription, I think the more plausible explanation is that colonic 

expression of NAGS serves as a sensor for ammonia load.  The colon is the site 

of urea nitrogen salvage in which ammonia is produced from hydrolysis of urea 

by bacterial ureases.  Additionally, there are multiple binding sites for the 

ubiquitous transcriptional regulator CCCTC-binding factor (CTCF) in the 5’ 

flanking region shared by PYY and NAGS.  CTCF can function as either a 

transcriptional repressor or activator, and importantly has been identified as the 
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vertebrate insulator protein (Bell, West, and Felsenfeld 1999; Kim et al 2007).  

Thus, CTCF may play an important role in the tissue-specific regulation of NAGS 

and PYY  

Although, the expression pattern observed in the ileum is not inconsistent 

with the hypothesis of coordinate regulation of PYY and NAGS, the data are not 

definitive.  To further investigate promoter function, cell lines were screened to 

identify one that endogenously expresses PYY and NAGS.  While two small 

intestinal cell lines were identified that expressed PYY and NAGS at extremely 

low levels, I was unable to consistently induce expression above basal levels in 

either of these lines.  One of these is derived from the duodenum where 

endogenous expression of PYY is low; therefore, it is possible these cell lines do 

not contain the full complement of regulatory factors necessary for enhanced 

expression of these genes.  Furthermore, Dr. Andrew Leiter, who has been 

involved in research of PYY for greater than fifteen years also searched for a 

PYY-expressing line and was unable to identify one (personal communication).  

This suggests that current cell lines may not be a useful tool for investigating 

expression and regulation of PYY and NAGS.  To address this issue, the 

experimental design was shifted to investigations using the mouse model 

organism and human populations.  These investigations are detailed in Chapters 

V and VI of this dissertation. 

  While the close location of these genes to one another implies that 

chromatin structure might be favorable for transcription of both genes 

simultaneously, it is possible these genes are not coordinately regulated via 
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shared cis-regulatory elements.  These genes may be co-regulated indirectly, 

that is, changes in expression in response to the same physiologic signal, but not 

through the same cis-regulatory element.  NAGS and PYY could be upregulated 

concurrently through a common signaling pathway in response to protein.  The 

mTOR pathway is an attractive candidate because it is upregulated in response 

to increases in amino acids.  Consequently, even if PYY and NAGS are not 

coordinately regulated in cis, but indirectly through mTOR signaling via amino 

acids the proposed functional link in the maintenance of nitrogen balance would 

still hold.  Therefore, further studies in whole animals are needed to firmly 

establish whether PYY and NAGS are indeed coordinately regulated in cis in a 

tissue-specific manner, and if co-regulation of this gene pair plays a role in 

nitrogen balance. 
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CHAPTER V 

 

INVESTIGATING IN VIVO EXPRESSION OF PYY AND NAGS USING MOUSE 
AS A MODEL ORGANISM 

 

Introduction 

The experimental results described in Chapters III and IV established the 

following:  PYY and NAGS are expressed concordantly in the ileum, but are not 

regulated by a bidirectional promoter in this tissue because the TSSs are 

separated by greater than 1000 bp.  However, it is possible that PYY and NAGS 

are coordinately regulated via common regulatory elements located in their 

shared 5’ flanking region. 

A logical next step in testing the hypothesis that PYY and NAGS are 

coordinately regulated in cis would be to identify DNA sequence elements within 

the promoter region that are important for expression of both genes.  Employing 

transient transfection assays with promoter deletion constructs is a commonly 

used method to pinpoint regions of the promoter that are critical for gene 

expression (Carey and Smale 2000).  However, as discussed in Chapter IV, 

there are currently no cell lines which recapitulate endogenous expression of 

PYY and NAGS.  Consequently, I was unable to examine promoter function 

using an in vitro cell culture system.  This necessitated a move to an in vivo 

system for investigating regulation of PYY and NAGS. 

There are limitations to studying regulation of NAGS and PYY in humans.  

The biggest obstacle is that expression of these two genes cannot be directly 
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measured under different treatment conditions.  The focus of this study is on 

expression of NAGS and PYY in the ileum which cannot be measured without 

directly assaying tissue samples from human subjects which is not feasible.  

Evaluating the amount of NAGS and PYY protein could provide some clues; and 

while PYY is secreted and can be measured in plasma, NAGS is not secreted 

and cannot be assessed without directly assaying tissues.  As a result, a model 

organism was employed to investigate regulation of NAGS and PYY. 

The mouse model organism provides a good system for studying 

regulation of NAGS and PYY in vivo.  First, like humans, mice process waste 

nitrogen through the urea cycle.  Furthermore, while sequence conservation 

between NAGS of human and mouse varies across the gene, overall they share 

approximately 86% sequence homology.  The conserved region, comprised of 

the 440 C-terminal amino acids that make up the catalytic domain of the protein, 

is 92% identical between human and mouse (Caldovic et al 2002a).  The N-

terminal region containing the putative mitochondrial targeting sequence shares 

63% identity, while the variable domain shares only 35% identity (Caldovic et al 

2002a).   

Additionally, the genomes of mouse and human are similar with many 

regions of synteny.  Indeed, in mouse the divergent arrangement of Pyy and 

Nags is conserved.  These genes are located on mouse chromosome 11, and 

are separated by approximately 39 kb.  Moreover, mice can be subjected to 

different feeding conditions, and tissues can be collected to examine expression 

of Pyy and Nags.  For instance, Pyy and Nags are both upregulated in response 
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to dietary protein intake in mice and humans (Batterham et al 2006; Morris, Jr. 

2002).  I proposed in Chapter IV that increased concentration of amino acids in 

the ileum from digestion of dietary protein results in upregulation of PYY and 

NAGS.  If expression of these genes is increased or decreased in response to 

alterations in dietary protein intake, then this would provide some evidence in 

support of my hypothesis of coordinate regulation.  Thus, to determine if there is 

a coordinate response of Pyy and Nags to changes in dietary protein intake 

expression of these genes was measured in tissues of mice under a variety of 

feeding conditions. 

 

Materials and Methods 

Immunohistochemistry 

A sample of ileum from a wild type male mouse at 8 weeks of age was 

obtained from Dr. Robert Coffey’s lab (Vanderbilt University).  This sample which 

was fixed and paraffin embedded in March 2009 was submitted to the Vanderbilt 

Immunohistochemistry (IHC) Core for sectioning and staining with PYY and 

NAGS antibodies.  A rabbit polyclonal antibody to PYY was obtained from Abcam 

(ab22663).  This antibody was previously used for IHC/IF applications (Ali-

Rachedi et al 1984).  Very few NAGS antibodies are commercially available, 

none of which have been tested for IHC applications.  Three antibodies were 

selected and tested in these studies:  1) rabbit polyclonal to NAGS from Abcam 

(ab65536), 2) a goat polyclonal to a peptide mapping near the N-terminus of 

human NAGS from Santa Cruz Biotechnology (NAGS (Q12); sc-132384), and 3) 
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a rabbit polyclonal to NAGS from Aviva Systems Biology (ARP51183-T100).  The 

immunogen sequence of NAGS (Q12) antibody from Santa Cruz Biotechnology 

is 100% homologous to mouse Nags and is thus predicted to react with the 

mouse homolog.  The NAGS antibody from Aviva Systems Biology was raised 

against a synthetic peptide matching amino acids 433-482 in the C-terminal 

region of human NAGS.  The 50 amino acid immunogen sequence is:  

PVLGGTPYLDKFVVSSSRQGQGSGQMLWECLRRD LQTLFWRSRVTNPINP.  

There is 100% sequence homology between the human-derived immunogen and 

mouse Nags, so this antibody is expected to cross react with mouse. 

 

Animal Care  

Animals were group-housed in the pathogen free barrier facility at 

Vanderbilt University and maintained on a 12:12 hour light-dark cycle (light 

0600h-1800h, dark 1800h-0600h) under controlled temperature (21 ± 2°C).  

Unless otherwise stated, all animals had ad libitum access to standard laboratory 

chow (Purina rodent diet 5001; Purina Mills, St Louis, MO) and water.  

Experiments were conducted in accordance with the NIH Guide for the Care and 

Use of Laboratory Animals and approved by the Animal Care and Use 

Committee of Vanderbilt University. 

 

Fast/re-feed study 

The aim of this experiment was to compare expression of Nags and Pyy in 

tissues of mice that were fasted and then re-fed a low or high protein diet. Male 



77 
 

C57BL/6J mice were removed from group-housing and placed one mouse per 

cage.  Mice were individually housed so that food intake could be monitored.  

After allowing the mice some time to acclimate to the new housing arrangement, 

they were fasted for 15 hours (1700h-0800h; n=10) and then given access to 

either a low protein (LP; n=5) or high protein diet (HP; n=5).  The following Harlan 

Laboratories Teklad custom diets were used: 20% protein (TD.91352) and 40% 

protein (TD.90018).  Macronutrient compositions of these isocaloric diets are 

given in Table 6.1.  Body weight and food intake data were collected (Table 6.2).  

Initial food weight was recorded upon re-feeding and food weights were collected 

at 9 am, 10 am, 12 pm, and 2 pm.  Intake was calculated for each time period by 

subtracting the new food weight from the previous food weight.  The amount of 

protein consumed during each interval was calculated by multiplying percent 

protein in the diet by the amount of food consumed.   

After six hours of ad libitum access to either the LP or HP diet, animals 

were euthanized using a terminal dose of isoflurane, and blood, liver, kidney, 

proximal intestine (duodenum), intermediate intestine (ileum), and distal intestine 

(colon) were collected.  The intestine and colon samples were rinsed with 

phosphate-buffered saline (PBS) to remove any contents.  All tissues were 

placed in RNALater (Ambion catalog # AM7020) and stored for a minimum of 24 

hours before proceeding with RNA isolation.   
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Chronic LP or HP diets study 

The aim of this study was to determine if there were differences in 

expression of Pyy and Nags in the ileum of mice chronically fed either a LP or HP 

diet.  Male C57BL/6J mice between 13 and 16 weeks of age were switched from 

standard laboratory chow to either a low (20%; n=5) or high protein diet (40%; 

n=7).  Diets were as described above (Table 6.1).  Mice were kept on their 

respective diets for 3.5 weeks.  Animals were euthanized using a terminal dose 

of isoflurane, and blood, liver, kidney, ileum (4 cm of the small intestine proximal 

to the cecum), and colon (2 cm just distal to the cecum) were collected.  The 

ileum and colon were rinsed with PBS to remove any contents.  All tissues were 

placed in RNALater (Ambion) and stored for a minimum of 24 hours before 

proceeding with RNA isolation.    

   

Fasted/Fed study 

The goal of this experiment was to determine if expression of Pyy and 

Nags changes in response to fasting.  Male C57BL/6J mice, 8 weeks of age, 

were obtained from the Jackson Laboratory (Bar Harbor, ME).  Animals were 

group-housed (4 mice to a cage).  At 9 weeks of age experimental animals were 

fasted for 16 hours (1700h-0900h; n=8) while a control group was given free 

access to food (n=8).  Animals were euthanized using a terminal dose of 

isoflurane, and blood, liver, kidney, ileum (4 cm small intestine proximal to 

cecum), and colon (2 cm just distal to the cecum) were collected.  The ileum and 

colon were rinsed with PBS to remove fecal matter.  All tissues were placed in 
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RNALater (Ambion) and stored for a minimum of 24 hours before proceeding 

with RNA isolation.  Fasted mice were dissected first to minimize fasting time 

differences between these mice.  All dissections (fasted and fed mice) were 

completed in approximately 1.5 hours.    

 

Serum collection 

Blood was allowed to coagulate on ice for approximately 2 hours after final 

dissection.  It was then centrifuged at 2000 x g for 15 minutes; serum was 

collected and stored at -20°C.  

 

Table 5.1:  Composition of protein diets.  
Nutrient composition of low and high protein diets used in mouse 
experiments.  Diets are isocaloric; in low protein diet calories from 
carbohydrates are increased. 
 

 Low 
protein 

High 
protein 

Protein  21.5% 42.6% 

Carbohydrate  65.3% 44.3% 

Fat  13.1% 13.2% 

Kcal/g 3.8 3.8 

 

 

RNA isolation 

RNA was isolated from mouse tissues using TRIzol® reagent (Invitrogen 

cat #15596-018).  The manufacturer’s protocol was followed.  Briefly, tissues 

were removed from RNALater and blotted with Kimwipes to remove excess 

RNALater.  Tissues were weighed and placed in 1 mL of TRIzol® per 50-100 mg 

of tissue.  An IKA Ultra Turrax T8 homogenizer was used to homogenize tissue 
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samples in the TRIzol®.  The tissue homogenate was clarified by centrifugation at 

12,000 x g for 10 minutes, and then clarified homogenates were transferred to 

fresh tubes.  Chloroform was added and phases were separated by 

centrifugation.  The aqueous phase (~400-600 μL) was transferred to a fresh 

tube.  RNA was precipitated with 500 μL isopropyl alcohol and pellets were 

washed with 1000 μL of 75% ethanol.  The RNA pellets were resuspended in 

nuclease-free water.  After addition of nuclease-free water tubes were placed in a 

55°C water bath for 10 minutes to aid in solubilization.  Concentration and purity 

of RNA was assessed via spectrophotometric readings at 260, 280, and 230 

nanometers. 

 

Quantitative real-time RT-PCR 

Primers and probes 

Quantitative real time RT-PCR was used to determine the presence and 

amount of Pyy and Nags transcripts in mouse tissues.  The following Applied 

Biosystems TaqMan gene expression assays were used:  Pyy 

(Mm00520715_m1) and Nags (Mm00467530_m1).  The mouse Gapdh 

endogenous control (VIC®/MGB probe, primer limited) TaqMan gene expression 

assay (ABI # 4352339E) was multiplexed with the Pyy and Nags reactions.  

Expression of Hprt1 (Mm01318743_m1) was also determined. 
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First strand cDNA synthesis  

First strand cDNA synthesis was performed using the SuperScript™ III 

First Strand Synthesis System (Invitrogen, catalog #18080-051).  Following the 

manufacturer’s instructions, 20 μL reactions were set up using oligo(dT) primer 

and 2 μg of total RNA.  RNA/primer mixtures were prepared and incubated at 

65°C and then placed on ice.  Next, cDNA synthesis master mix was added to 

each tube and reactions were incubated at 50°C for 50 minutes and 85°C for 5 

minutes.  RNAse H was added to each tube and reactions were incubated at 

37°C for 20 minutes.   

Standard curve prep 

For absolute quantitation of mRNA transcripts, standard curves were 

prepared using full-length cDNAs: Pyy (Open Biosystems clone ID 4218355), 

Nags (Open Biosystems clone ID 5100021), Gapdh (Open Biosystems clone ID 

4159824) and Hprt1 (Open Biosystems clone ID 3500885).  Standard curves 

consisted of ten-fold dilutions of full-length plasmid cDNA ranging from 5 fg to 

500 pg. 

To prepare plasmid cDNA for standard curves, 5 mL cultures of bacteria 

containing plasmid with full-length cDNA were grown overnight in a 37°C shaking 

incubator. Plasmid isolations were performed using the Qiagen plasmid miniprep 

kit.  Plasmid DNA was eluted in nuclease-free water.  DNA quality and 

concentration were assessed via spectrophotometric readings at 260, 280 and 

230 nanometers.  A 5 ng/μl dilution was prepared.  This was then serially diluted 

1:10 to a final concentration of 5 x 10-6 pg.  
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qRT-PCR set-up 

All samples and standards were assayed in triplicate.  Reactions were 

performed in a total volume of 10 μL and included:  5 μL TaqMan gene 

expression 2X master mix (Applied Biosystems cat #4369016), 0.5 μL TaqMan 

gene expression assay for the gene of interest, 0.5 μL TaqMan gene expression 

assay for endogenous control gene, and 4 μL of cDNA/nuclease free water 

mixtures.  Standard curve cDNA/nuclease-free water mixes consisted of 1 μL of 

standard cDNA and 3 μL of nuclease-free water.  The cDNA/nuclease-free water 

mixtures for the unknown samples consisted of 1.0 μL cDNA and 3.0 μL 

nuclease free water which corresponds to 100 μg RNA per reaction. The 

endogenous control gene assay was not included in the standard curve 

reactions, therefore, 0.5 μL of nuclease-free water was added to make up the 

volume.   

qRT-PCR analyses were performed using Applied Biosystems Prism® 

7900 HT Sequence Detection System and the accompanying software SDS 2.3 

(Applied Biosystems, Inc., Foster City, CA).  The following standard thermal 

cycler protocol was used: 50°C for 2 minutes, 95°C for 10 minutes, followed by 

40 cycles of 95°C for 15 seconds and 60°C for 1 minute.  The ramp rate for 

temperature change was 100%.  

The SDS 2.3 analysis software generated an equation of the line for each 

set of standards.  The highest concentration standard was dropped for each 

assay because it crossed the threshold before the set baseline.  The r2 was ≥ 

0.99 for each standard curve.  These curves were used to calculate the quantity 
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of Pyy and Nags in mouse tissues.  The calculated quantities are equivalent to 

picograms (pg) of plasmid.  Therefore, the expression (quantity) of transcript in 

the unknown samples is given the unit designation pg equivalents, or pge. 

Results 

Immunohistochemistry 

IHC experiments were performed to determine if Pyy and Nags are 

expressed in the same cell type in the small intestine.  Multiple cell types make 

up the small intestinal epithelium including: enterocytes, enteroendocrine cells 

and goblet cells.  Pyy is expressed in the enteroendocrine L cells while 

expression of Nags has not been localized to a specific cell type.  If the genes 

are expressed in the same cell type then coordinate regulation through shared 

cis elements would be possible.  Alternatively, if they are not expressed in the 

same cell type then they might be coordinately regulated through the same 

signaling pathway such as the mTOR as was proposed in Chapter IV. 

 Results of IHC experiments were inconclusive due to the lack of a working 

Nags antibody.  The mouse ileum sample used in these experiments was 

paraffin-embedded.  Typically, better immunoreactivity is achieved with frozen 

specimens.  Thus, it is possible one or more of the Nags antibodies would work 

better on frozen specimens since antigenicity is usually better with frozen versus 

paraffin-embedded tissue. 

qRT-PCR 

For accurate gene expression measurements, it is important to normalize 

expression of target genes with a reference gene that is not affected by the 



84 
 

factors or conditions being studied.  Ideally, expression of the endogenous 

control should not vary across the samples being analyzed. 

Gapdh is commonly used as an endogenous control gene.  Expression of 

Gapdh was determined in the mouse tissues to be used as the endogenous 

control in these experiments.  However, the expression of Gapdh was 

significantly lower in the fasted group compared with the fed group, 6.864 and 

16.011 pge, respectively, suggesting this gene is differentially regulated under 

these conditions.  A search in the literature revealed these data are consistent 

with a study by Yamada et al in which Gapdh mRNA was reduced in the small 

intestine of food-deprived rats compared with fed rats (Yamada et al 1997). 

As previously mentioned, expression of an endogenous control gene 

should be invariant across the samples being analyzed.  Since expression of 

Gapdh is reduced upon fasting it is not an appropriate endogenous control gene 

for studies in which mice are subjected to fasting. 

I also determined expression of Hprt1 in the fasted versus fed study for 

use as an endogenous control.   Hprt1 has been used as an endogenous control 

gene in a previous study comparing gene expression in tissues of fasted and fed 

mice (Batterham et al 2006).  However, in the present study the expression of 

Hprt1 was significantly lower in the fasted group compared with the fed group 

suggesting it may not be an ideal control for normalizing gene expression in 

these studies.  Another search of the literature reveals that Tcea1 gene does not 

vary under fasting or caloric-restriction, thus this gene may serve as a better 

endogenous control for these studies (Dhahbi et al 2004; Selman et al 2006).  As 
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a result, the non-normalized expression data for Pyy and Nags are presented 

and the results should be interpreted with caution until they can be normalized.   

 

Fast/Re-feed study  

Protein has been shown to illicit a greater and more sustained response in 

PYY secretion compared to fats and carbohydrates (Batterham et al 2006; 

Lomenick et al 2009).  NAGS is also upregulated with increased dietary protein 

intake.  In this experiment mice were fasted, and then allowed to re-feed.  Upon 

re-feeding one group of mice (n=5) was given a low protein (LP) diet (20%) and 

the other group (n=5) was given a high protein (HP) diet (40%).  The aim of this 

experiment was to determine if ileal expression of Pyy and Nags increases 

coordinately in mice given the HP diet compared with mice given the LP diet. 

Body weight and food intake measures are presented in Table 6.2a.  The 

mean weights were 22.7 and 22.1 grams in the LP and HP groups, respectively.   

The mice consumed variable amounts of food over the 6-hour re-feeding period.  

Thus, the amount of protein consumed by each mouse was highly variable 

within, and across the groups (Table 6.2b).  Protein consumption for each mouse 

was calculated from food intake and the percent protein in the diet.  One mouse 

(F/R 5) did not re-feed, and therefore, was not included in the analysis of LP 

versus HP diet.  Pyy and Nags expression data for this mouse are included in 

Table 6.3. 

The expression of Pyy and Nags across the tissues collected was similar 

to that observed in our screen of human tissues (Figure 6.1).  Nags was highly 
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expressed in the liver, while Pyy expression was undetectable.  Pyy was 

expressed at highest levels in the colon, while Nags was expressed at low levels 

in this tissue.  Both Nag and Pyy were expressed at extremely low levels in the 

kidney.  As expected both Pyy and Nags were expressed in the small intestinal 

samples.  

 

Table 5.2: Characteristics and food intake of mice in the fast/re-feed study 

Animal ID 
Weight 
(grams) 

Diet 

Food Consumption (grams) 

8-9am 9-10am 
10am-
12pm 

12-2pm Total 

F/R 1 22.7 LP 0.30 0.25 0.50 0.50 1.50 

F/R 3 22.4 LP 0 0 0 0.40 0.40 

F/R 5 24.8 LP 0 0 0 0 0 

F/R 7 22.4 LP 0 0.4 0.20 0.60 1.20 

F/R 9 21.4 LP 0.25 0.25 0.30 0.70 1.50 

F/R 2 23.0 HP 0 0 0 0.70 0.70 

F/R 4 19.7 HP 0.30 0.60 0 0.40 1.30 

F/R 6 23.0 HP 0 0 0 0.90 0.90 

F/R 8 22.0 HP 0.20 0.70 0.20 0.70 1..80 

F/R 10 22.7 HP 0.35 0.55 0.40 0.90 2.20 

a) Body weight, diet and food consumption; LP = low protein, 20%, HP = high 
protein, 40% 

 
 

Animal ID 
Protein Consumption (grams) 

8-9 9-10 10-12 12-2 Total 

F/R 1 0.06 0.05 0.10 0.09 0.30 

F/R 3 0.00 0.00 0.00 0.08 0.08 

F/R 5 0.00 0.00 0.00 0.00 0.00 

F/R 7 0.00 0.08 0.04 0.12 0.24 

F/R 9 0.05 0.05 0.06 0.14 0.30 

F/R 2 0.00 0.00 0.00 0.28 0.28 

F/R 4 0.12 0.24 0.00 0.16 0.52 

F/R 6 0.00 0.00 0.00 0.36 0.36 

F/R 8 0.08 0.28 0.08 0.28 0.72 

F/R 10 0.14 0.22 0.16 0.36 0.88 

b) Protein consumed by each study animal at intervals over the re-feeding 
period 
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a) Nags 
 
 

 

b) Pyy 

 

Figure 5.1:  Expression of Nags (a) and Pyy (b) in tissues of mice in 
the fast/re-feed study.  The average expression is graphed and error 
bars represent the standard deviation.  The expression (quantity) of 
transcript is given the unit designation pg of plasmid equivalents, or pge.  
LP = low protein (n =4), HP = high protein (n=5) 
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After establishing that expression patterns of Pyy and Nags in mice are 

consistent with that observed in human tissues (Chapter IV), I focused on the 

expression in the ileum, my primary tissue of interest (Figure 6.1).  Overall, a 

comparison of ileal Pyy and Nags expression reveals a trend of higher 

expression of Pyy compared with Nags.  The average Nags expression was 0.28 

and 0.20 pge in the LP and HP groups, respectively, while Pyy expression was 

0.51 and 0.52 pge in the LP and HP groups, respectively.  This expression 

pattern was not observed in human ileum where Pyy and Nags were similarly 

expressed.  It is possible the mice were fasted too long and had become 

catabolic, which upon re-feeding might result in an anabolic state in an effort to 

maintain lean body mass.  Thus, more of the amino acids may be used for 

protein synthesis lessening the waste nitrogen load and consequently the need 

for urea synthesis.  This may explain why Nags was expressed at lower levels 

than Pyy in the ileum of these mice. 
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Table 5.3:  qRT-PCR average Ct and quantity values for fast/re-feed study arranged by tissue 

a) Liver 

Animal ID 
Pyy Nags Gapdh (Pyy) Gapdh (Nags) 

Ave Ct ± St dev Ave Qty ± St dev Ave Ct ± St dev Ave Qty ± St dev Ave Ct ± St dev Ave Ct ± St dev 

F/R 1 33.42 ± 0.18 <0.001 ± <0.001 18.38 ±0.12 0.703 ± 0.058 16.08 ± 0.12 16.09 ± 0.12 

F/R 2 29.28 ±0.08 <0.001 ± <0.001 20.49 ±0.17 0.170 ± 0.019 17.76 ± 0.10 17.89 ± 0.23 

F/R 3 34.78 ±0.48 <0.001 ± <0.001 25.56 ±0.29 0.006 ± 0.001 18.00 ± 0.25 17.80 ± 0.17 

F/R 4 35.93 ±0.44 <0.001 ± <0.001 18.81 ±0.21 0.530 ± 0.072 17.60 ± 0.37 17.87 ± 0.07 

F/R 5 32.18 ±0.41 <0.001 ± <0.001 26.02 ±0.14 0.004 ± <0.001 22.42 ± 0.10 22.35 ± 0.03 

F/R 6 25.84 ±0.36 0.004 ± 0.001 19.17 ±0.13 0.413 ± 0.037 16.58 ± 0.03 16.75 ± 0.24 

F/R 7 36.76 ±2.45 <0.001 ± <0.001 20.46 ±0.17 0.174 ± 0.021 18.86 ± 0.06 19.10 ± 0.23 

F/R 8 29.35 ±0.13 <0.001 ± <0.001 20.34 ±0.09 0.188 ± 0.012 18.81 ± 0.13 18.80 ± 0.09 

F/R 9 33.19 ±0.28 <0.001 ± <0.001 18.90 ±0.20 0.499 ± 0.068 17.54 ± 0.14 17.47 ± 0.12 

F/R 10 26.69 ±0.38 0.002 ± <0.001 19.54 ±0.04 0.321 ± 0.009 17.94 ± 0.04 17.83 ± 0.07 
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Table 5.3:  qRT-PCR average Ct and quantity values for fast/re-feed study arranged by tissue  

b) Kidney 

Animal ID 
Pyy Nags Gapdh (Pyy) Gapdh (Nags) 

Ave Ct ± St dev Ave Qty ± St dev  Ave Ct ± St dev Ave Qty ± St dev Ave Ct ± St dev Ave Ct ± St dev 

F/R 1 36.20 ± 1.16 <0.001 ± <0.001 27.24 ± 0.61 0.002 ± 0.001 17.98 ± 0.08 17.84 ± 0.20 

F/R 2 29.09 ± 0.41 <0.001 ± <0.001 23.60 ± 0.20 0.021 ± 0.003 16.72 ± 0.11 16.79 ± 0.06 

F/R 3 31.80 ± 0.36 <0.001 ± <0.001 24.06 ± 0.09 0.015 ± 0.001 18.35 ± 0.31 18.23 ± 0.16 

F/R 4 33.41 ± 0.24 <0.001 ± <0.001 24.50 ± 0.11 0.011 ± 0.001 18.18 ± 0.11 18.43 ± 0.16 

F/R 5 29.98 ± 0.34 <0.001 ± <0.001 24.91 ± 0.06 0.009 ± <0.001 19.61 ± 0.04 19.42 ± 0.03 

F/R 6 32.26 ± 0.32 <0.001 ± <0.001 27.69 ± 0.25 0.001± <0.001 19.17 ± 0.05 19.45 ± 0.06 

F/R 7 33.26 ± 0.67 <0.001 ± <0.001 23.73 ± 0.13 0.019 ± 0.002 18.20 ± 0.10 18.10 ± 0.05 

F/R 8 32.48 ± 0.60 <0.001 ± <0.001 24.67 ± 0.11 0.010 ± 0.001 18.65 ± 0.09 18.72 ± 0.09 

F/R 9 34.28 ± 0.99 <0.001 ± <0.001 24.24 ± 0.12 0.014 ± 0.001 16.91 ± 0.11 17.03 ± 0.07 

F/R 10 35.23 ± 1.64 <0.001 ± <0.001 undet undet 26.57 ± 0.24 26.55 ± 0.03 

 
undet = undetermined; indicates that the qRT-PCR reaction did not amplify 
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Table 5.3:  qRT-PCR average Ct and quantity values for fast/re-feed study arranged by tissue  

c) Duodenum 

Animal ID 
Pyy Nags Gapdh (Pyy) Gapdh (Nags) 

Ave Ct ± St dev Ave Qty ± St dev Ave Ct ± St dev Ave Qty ± St dev Ave Ct ± St dev Ave Ct ± St dev 

F/R 1 36.58 ± 0.24 <0.001 ± <0.001 34.73 ± 0.64 <0.001 ± <0.001 18.48 ± 0.12 18.41 ± 0.07 

F/R 2 21.88 ± 0.16 0.063 ± 0.007 20.23 ± 0.14 0.202 ± 0.020 17.68 ± 0.06 17.58 ± 0.12 

F/R 3 21.266 ± 0.25 0.095 ± 0.015 19.77 ± 0.15 0.277 ± 0.028 18.05 ± 0.21 17.75 ± 0.14 

F/R 4 33.97 ± 1.98 <0.001 ± <0.001 33.04 ± 0.32 <0.001 ± <0.001 23.96 ± 0.03 24.03 ± 0.07 

F/R 5 undet undet 35.02 ± 0.79 <0.001 ± <0.001 22.62 ± 0.10 22.48 ± 0.13 

F/R 6 22.24 ± 0.19 0.049 ± 0.006 19.94 ± 0.08 0.246 ± 0.013 17.06 ± 0.15 16.99 ± 0.06 

F/R 7 23.03 ± 0.20 0.029 ± 0.004 21.63 ± 0.11 0.079 ± 0.006 21.38 ± 0.02 21.27 ± 0.11 

F/R 8 27.11 ± 0.32 0.002 ± <0.001 24.35 ± 0.10 0.013 ± 0.001 22.50  ± 0.11 22.55 ± 0.10 

F/R 9 22.02 ± 0.15 0.057 ± 0.006 19.69 ± 0.17 0.293 ± 0.032 17.38 ± 0.05 17.33 ± 0.04 

F/R 10 22.77 ± 0.07 0.034 ± 0.002 20.95 ± 0.01 0.124 ± 0.001 20.03 ± 0.10 19.98 ± 0.05 

 
undet = undetermined; indicates that the qRT-PCR reaction did not amplify 
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Table 5.3:  qRT-PCR average Ct and quantity values for fast/re-feed study arranged by tissue  

d) Ileum 

Animal ID 
Pyy Nags Gapdh (Pyy) Gapdh (Nags) 

Ave Ct ± St dev Ave Qty ± St dev  Ave Ct ± St dev Ave Qty ± St dev Ave Ct ± St dev Ave Ct ± St dev 

F/R 1 19.08 ± 0.31 0.419 ± 0.092 20.06 ± 0.12 0.227 ± 0.019 17.05 ± 0.20 17.04 ± 0.18 

F/R 2 18.40 ± 0.26 0.658 ± 0.112 19.93 ± 0.05 0.247 ± 0.008 17.07  ± 0.10 17.33 ± 0.03 

F/R 3 18.13 ± 0.17 0.789 ± 0.095 19.04 ± 0.18 0.453 ± 0.055 17.29 ± 0.21 17.05 ± 0.12 

F/R 4 18.97 ± 0.09 0.446 ± 0.026 20.74 ± 0.01 0.143 ± 0.001 18.95 ± 0.04 19.02 ± 0.06 

F/R 5 - - - - - - 

F/R 6 18.44 ± 0.06 0.635 ± 0.027 19.79 ± 0.07 0.272 ± 0.012 16.76 ± 0.04 16.71 ± 0.15 

F/R 7 19.68 ± 0.20 0.278 ± 0.038 21.12 ± 0.08 0.111 ± 0.006 18.88 ± 0.22 18.63 ± 0.05 

F/R 8 18.49 ± 0.11 0.616 ± 0.048 19.84 ± 0.08 0.263 ± 0.015 17.16 ± 0.11 17.78 ± 0.02 

F/R 9 18.69 ± 0.11 0.537 ± 0.039 19.54 ± 0.24 0.323 ± 0.050 17.59 ± 0.03 17.71 ± 0.14 

F/R 10 19.92 ± 0.07 0.234 ± 0.010 21.48 ± 0.19 0.087 ± 0.011 20.78 ± 0.08 20.92 ± 0.15 

 
(-) indicates no data due to missing tissue sample 
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Table 5.3:  qRT-PCR average Ct and quantity values for fast/re-feed study arranged by tissue  

e) Colon 

Animal ID 
Pyy Nags Gapdh (Pyy) Gapdh (Nags) 

Ave Ct ± St dev Ave Qty ± St dev Ave Ct ± St dev Ave Qty ± St dev Ave Ct ± St dev Ave Ct ± St dev 

F/R 1 17.79 ± 0.10 0.983 ± 0.063 24.50 ± 0.03 0.011 ± <0.001 17.13 ± 0.09 16.91 ± 0.06 

F/R 2 20.66 ± 0.36 0.145 ± 0.032 28.34 ± 0.71 0.001 ± <0.001 18.46 ± 0.39 18.43 ± 0.43 

F/R 3 17.39 ± 0.03 1.29 ± 0.029 24.27 ± 0.11 0.013 ± 0.001 17.38 ± 0.24 17.29 ± 0.03 

F/R 4 17.98 ± 0.09 0.869 ± 0.052 23.85 ± 0.12 0.018 ± 0.001 17.79 ± 0.03 17.89 ± 0.11 

F/R 5 undet undet undet undet undet 21.72 ± 0.30 

F/R 6 19.20 ± 0.06 0.380 ± 0.016 25.25 ± 0.07 0.007 ± <0.001 18.38 ± 0.05 18.28 ± 0.12 

F/R 7 19.28 ± 0.10 0.361 ± 0.025 24.69 ± 0.10 0.010 ± 0.001 19.99 ± 0.15 19.82 ± 0.08 

F/R 8 20.64 ± 0.18 0.145 ± 0.018 25.69 ± 0.06 0.005 ± <0.001 22.94 ± 0.07 23.09 ± 0.18 

F/R 9 17.95 ± 0.05 0.884 ± 0.029 23.94 ± 0.07 0.017 ± 0.001 17.24 ± 0.10 17.36 ± 0.07 

F/R 10 19.77 ± 0.22 0.261 ± 0.037 25.36 ± 0.11 0.006 ± <0.001 19.82 ± 0.05 19.92 ± 0.07 

 
undet = undetermined; indicates that the qRT-PCR reaction did not amplify 
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Chronic LP or HP diets study 

The mice in the fast/re-feed study were never exposed to the LP and HP 

diets prior to the study, and as a result did not re-feed well.  Thus, the amount of 

protein consumed by each mouse was highly variable within and across the 

groups making it difficult to draw conclusions on how the higher protein diet 

affected expression of Pyy and Nags.  Colonic and ileal Pyy mRNA levels had 

been previously shown to be increased in mice that were fed a HP diet for 16 

weeks compared to mice fed a LP diet during the same period (Batterham et al 

2006).  Consequently, I modified the experimental design to determine if Nags 

mRNA levels would increase along with Pyy in the ileum of mice chronically fed 

the HP diet compared with mice fed the LP diet.  Characteristics of study animals 

including body weight and age are presented in Table 6.4.  Body weight was not 

significantly different between the two groups as determined by Wilcoxon rank-

sum test (p = 0.11). 
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Table 5.4:  Characteristics of mice on chronic diets study  

 

Animal ID 
Weight  
(grams) 

Age 
(weeks) 

Diet 

CD 1 26.2 13  LP 

CD 2 27.3 13  LP 

CD 3 - 13 LP 

CD 4 24.7 13 LP 

CD 5 24.8 13  LP 

CD 6 26.9 13 HP 

CD 7 27.1 13 HP 

CD 8 27.4 13 HP 

CD 9 27.2 13  HP 

CD 10 32.4 16 HP 

CD 11 27.3 16 HP 

CD 12 25.9 16 HP 

LP = low protein, 20%, HP = high protein, 40%  

(-) indicates missing data
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Figure 5.2:  Ileal expression of Nags and Pyy in mice from chronic LP and 
HP diets study.  Mice were chronically fed either a low protein (LP, 20%) or a 
high protein (HP, 40%) diet and ileal expression of Nags and Pyy was 
determined using qRT-PCR.  The average expression is graphed and error bars 
represent the standard deviation.  The expression (quantity) of transcript is given 
the unit designation pg of plasmid equivalents, or pge.  LP = low protein (n = 5), 
HP = high protein (n = 7) 
 

 

The average ileal expression of the non-normalized expression of Nags 

(0.715 pge) and Pyy (0.595 pge) in the LP group was not significantly different, 

as determined by a Wilcoxon rank-sum test.  However, in the HP group the ileal 

expression of Pyy (1.129 pge) was significantly higher (p = 0.04) than Nags 

(0.973 pge).  This result was driven by the greater increase in expression of Pyy 

compared to Nags in response to the HP diet.    
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Since these mice were not fasted, but were given ad libitum access to 

either the LP or HP diet, Gapdh may be an appropriate endogenous control gene 

for this experiment.  Indeed, Gapdh levels in the ileum are not significantly 

different in the LP and HP fed mice.  I normalized expression of Pyy and Nags to 

Gapdh; these data are graphed in figure 6.3.  The normalized data show the 

same trend as that observed in the non-normalized data.  Pyy expression 

increases significantly (p = 0.004) in mice fed HP diet compared to those fed LP 

diet.  Nags expression was not significantly different between these groups.  

These data suggest that Pyy and Nags may not be coordinately regulated in 

response to chronic feeding of a high protein diet.   
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Figure 5.3:  Normalized ileal expression Nags and Pyy in mice from chronic 
diets study. Mice were chronically fed either a low protein (LP, 20%) or a high 
protein (HP, 40%) diet and ileal expression of Nags and Pyy was determined 
using qRT-PCR.  The average expression relative to Gapdh is graphed and error 
bars represent the standard deviation.  The expression (quantity) of transcript is 
given the unit designation pg of plasmid equivalents, or pge.  LP = low protein (n 
= 5), HP = high protein (n = 7) 
 
 

 
Fasted/fed study 

The aim of the fasted versus fed study was to examine expression of Pyy 

and Nags in mice that were fasted compared with mice given ad libitum access 

to their normal chow.  This study design allows for examination of expression of 

these genes under acute conditions.  Pyy is a satiety factor; therefore, the 

expectation is it would be decreased in the fasted mice.  If Pyy and Nags are 

coordinately regulated then it would follow that Nags expression would also be 

decreased in the fasted mice.  Characteristics of the mice are given in Table 6.5. 
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Pyy and Nags are expressed is at similar levels within each group (Figure 

6.8).  In the fasted group, the average expression of Pyy and Nags was the 

same:  1.106 pge.  In the fed group the average non-normalized expression for 

Nags was 1.630 pge while Pyy expression was 1.547 pge.  The expression of 

Nags is not statistically different from that of Pyy in either the fasted or the fed 

group.  Expression of both genes is decreased in the fasted group compared with 

the fed group.  As determined by a Wilcoxon rank-sum test, Nags expression is 

significantly decreased (p = 0.02) and while not significant the decrease in Pyy 

expression in the fasted group is nearing significance (p = 0.08).  These data are 

consistent with the hypothesis that Pyy and Nags are coordinately regulated.       

 

 

Table 5.5:  Characteristics of mice in the fasted/fed study 

 

 

 

 

 

 

 

Animal ID 
Weight 
(grams) 

Group 

FF 1 21.3 Fasted 

FF 2 21.6 Fasted 

FF 3 20.5 Fasted 

FF 4 21.3 Fasted 

FF 5 22.4 Fasted 

FF 6 23.0 Fasted 

FF 7 22.8 Fasted 

FF 8 21.7 Fasted 

FF 9 23.7 Fed 

FF 10 25.6 Fed 

FF 11 23.8 Fed 

FF 12 25.2 Fed 

FF 13 25.5 Fed 

FF 14 27.0 Fed 

FF 15 26.1 Fed 

FF 16 22.8 Fed 
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Table 5.6:  qRT-PCR average Ct and quantity values for ileal Pyy and 
Nags expression in fasted (1-8) and fed (9-16) mice 

 
 

 
Pyy Nags 

Animal 
ID 

Ave Ct ± St dev Ave Qty ± St dev Ave Ct ± St dev Ave Qty ± St dev 

FF 1 
19.12 ± 0.07 1.664 ± 0.074 20.61 ± 0.10 1.533 ± 0.096 

FF 2 
20.62 ± 0.15 0.625 ± 0.060 22.56 ± 0.11 0.435 ± 0.031 

FF 3 
19.84 ± 0.09 1.039 ± 0.063 21.08 ± 0.07 1.132 ± 0.048 

FF 4 
20.09 ± 0.07 0.883 ± 0.039 21.41 ± 0.07 0.912 ± 0.040 

FF 5 
19.45 ± 0.04 1.338 ± 0.037 20.65 ± 0.07 1.494 ± 0.067 

FF 6 
19.90 ± 0.03 0.994 ± 0.020 21.04 ± 0.15 1.161 ± 0.112 

FF 7 
22.70 ± 4.08 0.499 ± 0.426 21.64 ± 0.16 0.788 ± 0.084 

FF 8 
19.05 ± 0.49 1.804 ± 0.618 20.75 ± 0.09 1.395 ± 0.078 

FF 9 
19.19 ± 0.13 1.593  ± 0.137 20.25 ± 0.09 1.933 ± 0.108 

FF 10 
18.61 ± 0.04 2.328 ± 0.058 19.99 ± 0.09 2.288 ± 0.128 

FF 11 
19.65 ± 0.25 1.185 ± 0.203 20.88 ± 0.10 1.286 ± 0.083 

FF 12 
19.06 ± 0.04 1.729 ± 0.045 20.58 ± 0.03 1.563 ± 0.035 

FF 13 
19.40 ± 0.03 1.386 ± 0.026 20.80 ± 0.02 1.357 ± 0.019 

FF 14 
18.86 ± 0.12 1.974 ± 0.152 20.21 ± 0.12 1.979 ± 0.150 

FF 15 
19.61 ± 0.12 1.210 ± 0.093 20.68 ± 0.08 1.466 ± 0.078 

FF 16 
19.94 ± 0.04 0.972 ± 0.026 21.09 ± 0.53 1.168 ± 0.424 
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Figure 5.4:  Ileal expression of Nags and Pyy in fasted and fed mice.  
Quantitative real time RT-PCR was used to determine expression of Nags and 
Pyy in mice that were fasted (n=8) or fed (n=8).  The average expression is 
graphed and error bars represent the standard deviation.  The expression 
(quantity) of transcript is given the unit designation pg of plasmid equivalents, or 
pge.   
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Discussion 

The experiments described in this chapter examined expression of Pyy 

and Nags in tissues of mice under different dietary conditions to determine if 

there was coordinate change in gene expression in response to these dietary 

conditions.  In the fast/re-feed study, multiple tissues were examined and results 

reveal a tissue-specific expression pattern of Nags and Pyy similar to that 

observed in human tissue expression studies (Chapter IV).  This implies that 

these genes may be regulated similarly in human and mouse, confirming that 

mouse is an appropriate model organism for investigating regulation of Nags and 

Pyy.   

Data from the fast/re-feed experiment is difficult to interpret, primarily due 

to the variable amounts of food and consequently protein consumed by the mice.  

Although on average the protein consumption for mice on the HP diet was higher 

than for those on the LP diet, some mice in the LP and HP groups actually 

consumed similar amounts of protein.  This makes it difficult to determine what 

impact the percent of protein in the diet might have on expression of Pyy and 

Nags.   

Furthermore, the eating style of the mice upon re-feeding varied with 

some eating fairly consistently throughout while others waited until the last 2 

hours to eat.  Switching the mice from normal chow to the new diets without 

previous acclimation to the diet likely contributed to their reticence to eat after the 

prolonged fast. The Pyy response to ingested nutrients is an acute one (shown, 

in human, to peak at approximately 1 hour after eating).  The variability observed 
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in the frequency and timing of re-feeding may have impacted the expression 

profiles of Pyy and Nags, independent of the amount of protein consumed.  Thus, 

it is not possible to draw meaningful conclusions from this study about the effect 

of these diets on expression of Nags and Pyy. 

In the chronic diets study, Nags expression in the ileum was not 

significantly different between mice on the LP and HP diets.  However, mice fed 

the HP diet had significantly higher ileal Pyy expression than those on the LP 

diet.  This is consistent with a previous report demonstrating higher fasting and 

fed ileal Pyy levels in mice fed a high protein diet for 16 weeks as compared to 

control mice fed a normal protein diet for the same period (Batterham et al 2006).  

Taken together, the significant increase in expression of Pyy, but not Nags, 

suggests that under these conditions, Pyy and Nags may not be coordinately 

regulated.   

In the final in vivo experiment, expression of Pyy and Nags was examined 

in a group of fasted mice compared with a control group of mice fed ad libitum.  

In the fasted/fed experiment Pyy and Nags are expressed at similar levels within 

each group.  The average ratio of expression Pyy/Nags was 1.0 and 0.95 in the 

fasted and fed groups, respectively, indicating these genes are expressed at 

approximately equal levels in both the fasted and fed mice.  Nags expression is 

significantly lower in the fasted group and Pyy expression is trending in that 

direction.  This is consistent with the hypothesis that Pyy and Nags are 

coordinately regulated.   
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Overall, results from the in vivo experiments are inconclusive.  From these 

data it cannot be determined if Pyy and Nags are coordinately regulated.  The 

fasted/fed study results are consistent with my hypothesis of coordinate 

regulation, but the data are not normalized and results must be interpreted with 

caution.  The data from the chronic diets study suggest Pyy and Nags may not 

be coordinately regulated.  It is possible that under the chronic feeding conditions 

Pyy is functioning in the capacity of a long-term regulator of energy homeostasis.  

It may well be that co-regulation of Pyy and Nags would function in the short-term 

regulation of energy homeostasis in determining the size and timing of single 

meals, thereby providing a mechanism to prevent overconsumption of dietary 

protein.  Although not conclusive, these studies lay the ground work for future in 

vivo experiments investigating the regulation of Pyy and Nags.  Ultimately further 

studies are needed to understand the relationship between Pyy, Nags, and 

dietary protein intake. 
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CHAPTER VI 

 

PEPTIDE YY LEVELS ARE INCREASED IN PATIENTS WITH INBORN 
ERRORS OF AMINO ACID METABOLISM 

 

 

Introduction 

Inborn errors of metabolism (IEM) are genetic disorders in which defects 

in enzymes or transport proteins cause a block in a metabolic pathway and a 

subsequent accumulation of toxic substrates (Gupta 2007; Weiner 2009).  IEM 

encompass disorders of mitochondrial and peroxisomal function, lysosomal 

storage, and carbohydrate, organic acid, fatty acid, and amino acid metabolism.  

Phenylkenoturia (PKU) (MIM# 261600) is the most prevalent inborn error of 

amino acid metabolism, occurring in approximately 1 in 14,000 to 1 in 20,000 live 

births (Rezvani 2007).  The majority of PKU cases are caused by a deficiency of 

phenylalanine hydroxylase (PAH) (EC 1.14.16.1), the enzyme that converts 

phenylalanine to tyrosine.  This enzyme deficiency results in an increased 

concentration of phenylalanine which, if left untreated, leads to significant 

cognitive impairment (Rezvani 2007).       

Urea cycle disorders (UCDs) are another, and potentially more serious, 

inborn error of amino acid metabolism.  Collectively, these disorders have an 

estimated prevalence of 1 in 30,000 live births (Rezvani 2007).  The urea cycle is 

a biochemical process of ammonia detoxification in which excess nitrogen, in the 

form of ammonia, is converted to urea and excreted as waste (Krebs and 
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Henseleit 1932; Rezvani 2007).  Five enzymes make up the urea cycle:  

carbamoyl-phosphate synthase 1 (CPS1) (EC 6.3.5.5), ornithine 

carbamoyltransferase (OTC) (EC 2.1.33), argininosuccinate synthase 1 (ASS1) 

(EC 6.3.4.5), argininosuccinate lyase (ASL) (EC 4.3.2.1), and arginase 1 (ARG1) 

(EC 3.5.3.1).  An additional enzyme, N-acetylglutamate synthase (NAGS) (EC 

2.3.1.1), is critical for urea cycle function, providing CPS1 with its obligatory co-

factor, N-acetylglutamate (NAG).  Deficiencies in these enzymes result in 

hyperammonemia leading to central nervous system dysfunction and, if left 

untreated, death (Rezvani 2007).   

Nutrition is the foundation of both the acute and chronic management of 

patients with inborn errors of amino acid metabolism (Mofidi and Kronn 2009).  

There are a number of challenges associated with nutritional management of 

PKU and UCD patients including strict dietary restrictions and patient 

compliance.  Dietary protein is a major source of phenylalanine and nitrogen; 

therefore its intake is strictly controlled in these patients.  However, protein is 

critical for normal growth and development; a sufficient amount must be supplied 

to meet the minimal growth requirement while limiting intake of toxic substrates 

(Lee et al 2005; Mofidi and Kronn 2009).  Natural sources of protein are severely 

constrained for these patients and protein requirements are filled via medical 

foods comprised of single amino acids rather than polypeptides (MacDonald et al 

1994; Mofidi and Kronn 2009; Singh 2007).  Patients are often supplemented 

with additional calories from non-protein sources in an effort to promote 
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anabolism and prevent catabolism which is critical for maintaining metabolic 

control (Lee et al 2005; Mofidi and Kronn 2009; Singh et al 2005). 

Feeding problems, including lack of appetite, are common in both PKU 

and UCD patients (MacDonald et al 1994; Rezvani 2007; Summar and Tuchman 

2001; Weiner 2009).  Poor appetite can result in reduced caloric intake leading to 

catabolism and a subsequent buildup of toxic substrates.  The anorexia observed 

in UCD patients has traditionally been attributed to elevated ammonia levels, 

while in PKU patients, a lack of variety and palatability of foods offered are 

suggested causes (MacDonald et al 1994).   Alternatively, altered secretion 

patterns of appetite regulating hormones may play a role in the lack of appetite in 

these patients.  Indeed, one study found a significant reduction of the orexigenic 

hormone ghrelin in poorly controlled PKU patients compared to both diet-

controlled PKU patients and normal controls (Schulpis et al 2004).  A similar 

study found a significant increase of leptin in poorly controlled PKU patients 

compared to both diet-controlled PKU patients and normal controls (Schulpis, 

Papakonstantinou, and Tzamouranis 2000).     

Given previous reports that appetite regulating hormones, such as ghrelin, 

may affect appetite in patients with IEM, we hypothesized that the 

neuroendocrine hormone peptide tyrosine tyrosine (PYY) may also be altered in 

these patients compared to other groups.  Secreted by the endocrine L cells of 

the distal small intestine and colon, PYY induces satiety, inhibits gastric acid 

secretion, delays gastric emptying and slows gut motility (Korner and Leibel 

2003; Leiter et al 1987).  Therefore, elevated PYY levels may contribute to the 
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lack of appetite and other gastrointestinal problems common in PKU and UCD 

patients.  To explore this possible relationship further, we measured and describe 

here PYY levels in both PKU and UCD patients and compare both patient groups 

with healthy controls. 

 

Materials and Methods 

Study Populations 

De-identified surplus plasma samples from urea cycle disorder (UCD; 

n=66) and phenylketonuria (PKU; n=61) patients undergoing clinical testing were 

collected from the Vanderbilt Pathology Lab.  UCD diagnoses included:  CPS1 

(MIM# 237300), OTC (MIM# 311250), ASS1 (MIM# 215700), and ASL (MIM# 

207900) deficiencies.  Both study groups included samples from infants, children, 

and adults.  A subset of the patients had multiple plasma samples available for 

study; the most recent sample was used in the analysis.  Samples from patients 

less than one year of age were excluded from the analysis because plasma PYY 

levels are increased in infants compared with children and adults (Adrian et al 

1986; Siahanidou et al 2005).  The control group consisted of fasted, normal 

weight and obese children ages 7-11 years.  The control subjects were from a 

previously published prospective study examining PYY levels in prepubertal 

children (Lomenick et al 2009).  Surplus fasting plasma samples from these 

subjects were retrieved for analysis in the present study. 

Relevant demographic and clinical patient data was gathered for this 

study, including age, sex, race/ethnicity, body mass index (BMI), and glutamine 
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and arginine levels.  Blood ammonia concentration was also collected for the 

UCD patients. This study was approved by the Institutional Review Board (IRB) 

at Vanderbilt University Medical Center (IRB# 081080). 

 

Plasma PYY determination 

Total PYY was measured for all samples by ELISA (Millipore, 

EZHPYYT66K).  This assay measures human PYY1-36 and PYY3-36; it does not 

cross-react with neuropeptide Y or pancreatic polypeptide. Samples were 

measured in duplicate. If the difference between duplicate results of a sample 

was greater than 15% coefficient of variation (CV), the sample was assayed 

again in duplicate.  If the % CV of the measurements was within acceptable limits 

the data was included for analysis. Because surplus plasma samples were 

collected for this study, a proportion of the samples did not have an adequate 

volume available to perform the assay multiple times.  Therefore, if the % CV 

was greater than 15 for duplicate results of a sample and the sample could not 

be assayed again, it was excluded from the analysis. 

 

Statistical Analysis 

Statistical analyses were performed using STATA 10.1.  Data are 

summarized as median and interquartile range (IQR).  Sex differences between 

groups were determined by Fisher’s exact test.  Age, BMI and plasma PYY 

concentrations were not normally distributed; therefore a Kruskal-Wallis test was 
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used to test for differences among groups.  Pair-wise comparisons of BMI and 

PYY levels between groups were performed using a Wilcoxon rank-sum test.  

To test for differences in PYY levels by UCD diagnosis, the patients were 

stratified by type of UCD diagnosis:  ornithine transcarbamylase deficient (OTCD) 

patients (n=28) and all other UCD patients - CPS1 (n=2), ASS1 (n=8) and ASL 

(n=4).  A Kruskal-Wallis test was used to test for differences in PYY levels among 

controls, OTCD patients, and patients with all other types of UCDs.  A Wilcoxon 

rank-sum test was used to perform pair-wise comparisons between groups.  

Results were considered significant at p ≤ 0.05.   

To identify variables significantly associated with PYY levels, we 

performed linear regressions where log-transformed PYY was the dependent 

variable and age, sex, and BMI were independent variables.  Linear regressions 

were performed for each group (controls, PKU patients and UCD patients).   

 

Results 

Study population characteristics are given in Table 5.1.  Overall, sex 

differed across study groups (p = 5x10-4) as the control group was mostly male 

(82%) compared with the UCD and PKU groups (38% and 43% male, 

respectively).  The median age among the three study groups was not 

significantly different.  As expected based on ascertainment (see Methods and 

Materials), median BMI was significantly different across the study groups 

(p=0.04), a result driven by the higher median BMI observed among controls 

compared with the other study groups. 
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Table 6.1: Study Population Characteristics 

 

 Controls 
(n=28) 

UCD patients 
(n=42) 

PKU patients 
(n=36) 

p-value 

% Male 82 38 43 5x10-4* 

Median Age 
years (IQR) 

9.7 
(2.1) 

9.5 
(13) 

7 
(9) 0.08** 

Median BMI 
kg/m2(IQR) 

22.9 
(10.1) 

18.8 
(6.7) 

17.9 
(5.6) 0.04** 

Abbreviations:  Body mass index (BMI), Interquartile range (IQR). 
*Fisher’s exact test 
**Kruskal-Wallis test 

 

 

Median plasma PYY levels were 82 pg/mL, 146 pg/mL, and 202 pg/mL for 

the controls, UCD patients, and PKU patients, respectively.  Across the study 

groups, median plasma PYY levels were significantly different (Figure 5.1; p = 

1x10-4). Pair-wise comparisons revealed that median plasma PYY levels were 

significantly higher in both UCD patients (p = 3.5x10-5) and PKU patients (p = 

5x10-9) compared to controls.  There was no significant difference between 

median PYY levels in UCD and PKU patients (p>0.05). 
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Figure 6.1:  Median plasma PYY concentration in UCD and PKU patients and 
controls  Median plasma PYY concentration (pg/mL) are reported; the red bars 
represent the interquartile range (IQR) for each study group (control IQR = 70.6, UCD 
IQR = 122.0, PKU IQR = 139.8). A Kruskal-Wallis test was performed to determine if 
median PYY levels differ across the three groups (p=1x10-4), and a Wilcoxon rank-sum 
test was performed for pair-wise comparisons.  PYY = peptide tyrosine tyrosine, UCD = 
urea cycle disorder, PKU=phenylketonuria, IQR = interquartile range  

 

Linear regression identified variables significantly associated with PYY 

levels in each group (Table 5.2).  In the control group BMI was significantly 

associated with increased PYY levels (β = 0.47; p = 0.02).  Age was significantly 

associated with decreased PYY levels in the PKU group (β = -0.03; p = 2x10-3), 

while diagnosis (β = 0.319; p = 5x10-4) was significantly associated with PYY 

levels in the UCD group.    
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Table 6.2:   Demographic and epidemiologic factors associated with PYY levels in 
 

a) Controls 

Independent 
variable 

β-coefficient 95% CI p-value 

Sex (n=28) -0.50 -1.170     0.166 0.14 

Race (n=28) -0.29 -0.761     0.181 0.22 

Age (n=28) -0.04 -0.236     0.164 0.71 

BMI (n=28)  0.05  0.010     0.833 0.02 

 

b) PKU patients 

Independent 
variable 

β-coefficient 95% CI p-value 

Sex (n=35)  0.16 -0.137     0.458 0.28 

Race (n=31) -0.18 -0.833     0.465 0.57 

Age (n=35) -0.03 -0.053    -0.013 2x10-3 

BMI (n=28) -0.01  0.058     0.038 0.68 

 

c) UCD patients 

Independent 
variable 

β-coefficient 95% CI p-value 

Sex(n=42)  0.05 -0.393     0.484 0.84 

Race (n=39) -0.14 -0.409     0.130 0.30 

Age (n=42) -0.01 -0.032     0.004 0.13 

BMI (n=36) -0.01 -0.043     0.025 0.59 

Diagnosis (n=42) 0.32 0.149     0.489 1x10-3 

 
Linear regression of log-transformed PYY levels for Controls (a), PKU patients 
(b), and UCD patients (c) 
UCD diagnosis includes:  CPS1, OTC, ASS1, and ASL deficiencies 
BMI = Body mass index 

  

 

Ornithine transcarbamylase deficiency (OCTD) is the most common UCD 

(Nassogne et al 2005; Rezvani 2007), and differs from other UCDs in that it is an 
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X-linked, partially dominant disorder with highly variable clinical phenotypes 

(McCullough et al 2000; Nassogne et al 2005; Tuchman et al 1998).  Given that 

the type of UCD diagnosis was significantly associated with PYY levels (Table 

5.2), we stratified by type of UCD to test for differences in PYY levels in OTCD 

patients compared with all other UCD patients.  The median PYY level (128 

pg/mL) in the OTCD group was significantly higher compared to controls (Figure 

5.2; p = 1.6x10-3), and it was significantly lower compared to all other UCD 

diagnoses (Figure 5.2; p = 9x10-3).  As expected, the median PYY level in the all 

other UCDs patient group (235 pg/mL) was significantly increased compared to 

controls (Figure 5.2; p = 1x10-4). 
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Figure 6.2:  Median plasma PYY concentration in OTCD, all other UCD diagnoses 
and controls  Median plasma PYY concentration (pg/mL) are reported, and the red bars 
show the IQR for each study group (control IQR = 70.6, OTCD IQR =68.1, other UCDs 
IQR =292.0).  A Kruskal-Wallis test was performed to determine if median PYY levels 
differ across the three groups (p=1x10-4), and a Wilcoxon rank-sum test was performed 
for pair-wise comparisons.  PYY = peptide tyrosine tyrosine, OTCD = ornithine 
transcarbamylase deficiency, other UCDs = other urea cycle disorders (including CPS1, 
ASS1 & ASL deficiencies), IQR = interquartile range 

 

 

Discussion 

Nutritional management is a mainstay of treatment in PKU and UCD 

patients (Mofidi and Kronn 2009).  Lack of appetite in these patients contributes 

to poor metabolic control, leading to episodes of metabolic decompensation (Lee 

et al 2005; Singh et al 2005).  The etiology of anorexia in PKU and UCD patients 

is unknown although there is evidence that altered secretion patterns of appetite 
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regulating hormones may play a role (Schulpis et al 2004; Schulpis, 

Papakonstantinou, and Tzamouranis 2000).  To extend these preliminary 

findings, we determined the concentration of the neuroendocrine hormone PYY 

in the plasma of PKU and UCD patients and a control group from a previously 

published study (Lomenick et al 2009).  PYY levels were significantly increased 

in both patient groups compared to controls, which supports our hypothesis that 

the anorexigenic hormone PYY may contribute to loss of appetite among PKU 

and UCD patients. 

It is unclear why PYY levels are increased in PKU and UCD patients, but 

one possible explanation relates to control of nitrogen intake and co-regulation of 

PYY and NAGS.  The genes for PYY and NAGS are divergently transcribed, an 

arrangement consistent with coordinate regulation (Adachi and Lieber 2002; 

Beck and Warren 1988; Trinklein et al 2004; Yang and Elnitski 2007).  PYY and 

NAGS are both upregulated in response to protein; PYY induces satiety, while 

NAGS provides the co-factor for the first enzyme of the urea cycle (Batterham et 

al 2006; Colombo, Pfister, and Cervantes 1990; Lomenick et al 2009; Morris, Jr. 

2002).  Co-regulation of PYY and NAGS is a potential mechanism linking 

suppression of nitrogen intake to processing of waste nitrogen.  In UCD and PKU 

patients this may result in prolonged satiation manifesting as a lack of appetite.   

Additional studies are needed to confirm the proposed mechanism of coordinate 

regulation of PYY and NAGS and the potential role it plays in maintenance of 

nitrogen balance. 
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Among UCD patients, diagnosis is associated with PYY levels.  Patients 

with OTCD have significantly lower PYY levels compared with patients of all 

other UCD diagnoses; however OTCD patient PYY levels are still significantly 

higher compared with controls.  One possible explanation for these findings may 

relate to the clinical variability of OTCD and the predominance of carrier females 

in the study population.  Urea cycle function is less compromised in OTCD carrier 

females than in patients with other UCD diagnoses (Maestri et al 1998). OTCD 

carrier females will be able to clear waste nitrogen faster than patients with other 

UCDs, but not as quickly as normal controls.  Therefore, if PYY and NAGS are 

coordinately regulated as a means to suppress nitrogen intake while waste 

nitrogen is processed through the urea cycle, one would expect PYY levels to be 

lower in the OTCD group compared to the all other UCDs group and higher 

compared to controls. 

Increased body mass index (BMI) was significantly associated with 

increased PYY levels in the control group but not in the PKU or UCD groups.  

The reasons for this are unclear, however, the relationship between BMI and 

PYY is inconsistent in the literature with some studies showing a negative 

correlation (Batterham et al 2003a; Le Roux et al 2006), some a positive 

correlation (Lomenick, Clasey, and Anderson 2008), and still others no 

correlation at all (Kim et al 2005).  The control group, which was ascertained for a 

previously published study, includes both normal weight and obese children 

(Lomenick et al 2009).  In comparison, there were few patients within the PKU 

(n=1) and UCD (n=8) groups that were overweight.  Small sample size and a 
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relative lack of overweight patients in the PKU and UCD groups may contribute 

to our inability to detect an association of BMI with PYY levels in these groups.    

Increased age was significantly associated with decreased PYY levels in 

the PKU group but not in the UCD or control groups.  The age range of the study 

groups was variable with the control group ranging from 7-11 years, PKU 

patients from 1-26 years and UCD patients from 1-51 years.  The more 

homogenous age of the controls is the most likely explanation for our inability to 

detect an association among this group.  The lack of a significant association 

with PYY and age in the UCD group may be due to heterogeneity of this group or 

simply a lack of power.  Although not significant, the age effect among UCD 

patients in this study (β = -0.014) trended in the same direction as the significant 

effect among PKU patients (β = -0.03).  It is possible an age effect would be 

detected in a larger study of UCD patients.  

Interestingly, two of the infants excluded from analysis at the onset of this 

study had extraordinarily high PYY concentrations (4629 pg/mL and 6133 

pg/mL).  Both of these samples were newborns with an UCD.  The PYY 

concentrations in these patients are two to three times higher than values 

reported for healthy pre-term and term neonates (Adrian et al 1986).  To our 

knowledge there are no previous reports of PYY levels of this magnitude.  The 

effect of such extreme PYY levels is not yet known and requires further study. 

  There are several limitations of this study.  First, due to the retrospective 

nature of this study, we were unable to directly test loss of appetite with PYY 

levels.  We are assuming that all PKU and UCD patients have a loss of appetite, 
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and in turn expect higher PYY levels compared with controls.  It is possible not all 

patients tested had a loss of appetite and this could explain the large variability in 

PYY levels observed in the PKU and UCD patient groups.  Another limitation of 

our study is that fasting times for PKU and UCD patients were unknown.  

Minimally, these patients were fasted for two hours prior to sample collection 

whereas control subjects were fasted overnight.   

In conclusion, we demonstrate that PYY levels are elevated among PKU 

and UCD patients compared with controls.  Factors associated with PYY levels, 

depending on the study group, include BMI, age, and UCD diagnosis, which is 

consistent with previous literature and observations.  These data support the 

hypothesis that increased PYY levels may be associated with loss of appetite 

and other gastrointestinal symptoms in PKU and UCD patients.  However, larger, 

prospective studies are needed to gain a better understanding of how appetite 

regulating hormones such as PYY impact the nutritional management of PKU 

and UCD patients. 
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CHAPTER VII 

 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

Conclusions 

Human PYY and NAGS are divergently transcribed and consequently 

share a 5’ flanking region.  Therefore, the possibility exists for coordinate 

regulation via shared regulatory elements in the intergenic space.  Despite the 

interest in PYY as a potential therapeutic target for obesity, the regulation of this 

gene has not been investigated.  Studies on the regulation of NAGS are also 

limited.   

Multiple experimental approaches were employed to investigate the 

relationship between PYY and NAGS.  Based solely on the data presented here, 

it is possible my hypothesis is incorrect and PYY and NAGS are not coordinately 

regulated via shared cis elements.  It is, in fact, possible that PYY and NAGS are 

completely independently regulated.  Despite my best efforts, I have no definitive 

data demonstrating these genes are coordinately regulated.  However, when all 

of the results from my investigation are taken together with data published in the 

literature, coordinate regulation of these two genes is still an attractive model.  

The location and arrangement of these genes, their concordant expression in the 

ileum, the increased plasma PYY levels in UCD patients, the trend toward 

upregulation of both genes in fed mice compared with fasted mice, and the fact 
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that both are upregulated in response to ingested protein offer support to the 

proposed model.   

Multiple TSSs were identified for PYY and NAGS in different tissues 

indicating these genes are regulated by alternative promoters in a tissue specific 

manner.  The results discussed in Chapter IV demonstrate that PYY and NAGS 

display distinct expression patterns across human tissues.  These genes are 

discordantly expressed in the majority of human tissues with the exception of the 

ileum and pancreas where they are coordinately expressed.  Taken together, 

these data suggest if PYY and NAGS are coordinately regulated it is most likely 

in a tissue-specific fashion. 

Next, if PYY and NAGS are co-regulated, then, in patients with disrupted 

nitrogen metabolism, the expectation is that PYY, like NAGS, would be 

upregulated. Results of our studies reveal that plasma PYY levels are increased 

in patients with urea cycle disorders.  Interestingly, PYY levels are also increased 

in other populations which have a diminished capacity for urea synthesis, for 

example patients with liver cirrhosis and the elderly (Bianchi et al 1991; Fabbri et 

al 1993; Fabbri et al 1994; Marchesini et al 1990).  This may explain, in part, the 

lack of appetite in these populations.  Taken together this supports the global 

hypothesis of a functional relationship between PYY, NAGS, and nitrogen 

balance.  

The findings from studies using mouse as a model organism provide 

additional clues to understanding the relationship between PYY and NAGS.  We 

demonstrate that ileal Pyy and Nags expression is similar within individual mice 
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chronically fed a low protein or high protein diet and in those on normal chow that 

were fasted or fed.  Although not conclusive, experimental results point to higher 

expression of both Pyy and Nags in fed mice compared to fasted mice.  This 

suggests that under these conditions Pyy and Nags are coordinately regulated.    

Overall, our results are consistent with the hypothesis of coordinate 

regulation of PYY and NAGS.  The mechanism of coordinate regulation could 

occur through shared cis regulatory elements or in a more classic sense, that is, 

changes in gene expression occurring in response to the same hormone or 

stimulant.  Upon initial examination this divergently transcribed gene pair appears 

to have non-homologous functions.  The work presented here points to a 

potential functional link in the maintenance of nitrogen balance.  Co-regulation of 

PYY and NAGS may be a protective mechanism against overconsumption of 

dietary protein, which is a major contributor to the waste nitrogen pool. 

Overconsumption of protein could lead to ammonia toxicity if the capacity of the 

urea cycle is exceeded.  Thus, coordinate regulation of these genes may play a 

part in nitrogen balance by linking the control of nitrogen intake to the processing 

of waste nitrogen.  Furthermore, coordinate regulation of this gene pair may 

provide some explanation for why protein is the most satiating macronutrient.  

 

Future Directions 

The work presented here establishes a foundation for future investigations 

into the relationship between PYY and NAGS.  To extend the findings presented 

here, it will be important to identify cis elements that are essential for regulation 
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of PYY and NAGS, and determine if any of these elements are necessary for 

regulation of both genes.  The lack of an available cell line appropriate for 

assaying promoter function points toward continued in vivo examination of 

regulatory function using model organisms. 

The mechanisms of nitrogen balance are largely unresolved. Additional 

studies examining PYY levels in human populations would be useful in 

confirming the functional relationship between PYY and NAGS and its effects on 

nitrogen balance.  The data presented in Chapter VI demonstrating significantly 

higher plasma PYY concentrations in patients with inborn errors of metabolism 

are compelling, however, a prospective study using appropriate controls and 

including hunger/satiety ratings is necessary to determine what role, if any, PYY 

plays in the lack of appetite common in UCD patients.  It would be informative to 

examine plasma PYY levels in conjunction with blood urea nitrogen and urine 

urea in UCD patients and other populations with diminished capacity for urea 

synthesis such as the elderly and patients with liver cirrhosis to determine if there 

is a relationship between nitrogen clearance and PYY levels.  

Finally, it would be interesting to examine the relationship of PYY and 

NAGS in an evolutionary context.  Koyanagi et al suggest that the evolution of 

the bidirectional arrangement of genes may be linked with the evolution of their 

coordinated function (Koyanagi et al 2005).  For  example, the SERPINI1 and 

PDCD10 genes are found in both vertebrates and invertebrates, but the 

bidirectional arrangement of this gene pair was found only in mammals and in 

none of other animal species studied (Koyanagi et al 2005).  A preliminary 
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examination of gene arrangement indicates that the location and arrangement of 

PYY and NAGS is not conserved in fish, birds, or reptiles.  Fish excrete ammonia 

directly through their gills, while in birds and reptiles it is excreted as uric acid.  

This preliminary data suggests that co-regulation of PYY and NAGS may be 

unique to ureotelic organisms.  Ultimately, further studies are needed to elucidate 

the mechanisms by which this gene pair is regulated and to clarify the functional 

and evolutionary relationship of PYY and NAGS. 
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