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CHAPTER I

INTRODUCTION

Streptococcus pyogenes is a highly prevalent bacterial pathogen throughout the world. It

often causes infection of the throat in hosts that leads to pharyngitis (“strep” throat) [5, 30].

School-aged children are the most affected. Signs and symptoms usually occur within several

days of exposure. They include fever, sore throat, a swollen tender neck and swollen tonsils.

Some people with strep throat may develop a rash called scarlet fever. If some patients

with strep throat are untreated, these infections may result in serious kidney complications

and heart disease [35, 23, 36]. The tissues in the throat constitute the primary habitat for

S. pyogenes, where it is successful in reproductive growth and transmission of progeny to

new hosts [1, 13].

Bacteria have the reputation of being primitive, unsophisticated types. But “this micro-

scopic menagerie of organisms has the uncanny ability to rapidly adapt to vastly different

environments and evade host immune systems” [33]. While random mutation has been

thought to explain this ability, Richard Moxon, of Oxford University, believes that bac-

teria have a more resourceful and quicker system. He has identified a set of contingency

genes, which contain a region with a higher rate of mutation than other areas of the genome

with much lower mutation rates (so-called “housekeeping” genes) [24, 20]. Each gene can

be turned on or off, and the switching mechanism is random mutation within the switch

region. Each time a bacterium divides, one mutation within a switched-on genes’ switch

region might turn the gene sequence to inactivity, effectively turning the gene off. On the

other hand, a mutation in a switched-off genes’ switch region might switch back on and

restore that gene’s activity [2, 3].

Contingency genes provide an intriguing potential explanation of why a population

of bacteria can rapidly adapt to the hosts. According to Moxon’s hypothesis, random

flipping genes on and off creates unique genotypic combinations in the rapidly reproducing

population [1, 37, 32, 22]. Biologists have explored the idea that contingency genes play

an important role in adaptation to the hosts by emergence of populations of genotypic
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variations. Therefore, we wish to set up a mathematical model that can describe populations

of genotypic combinations with binary switches in contingency genes. This model can be

directly applied to strep throat infection.

Based on the hypothesis of contingency genes, we construct a model for strep throat

infection to compute the bacterial populations of genotype combinations in an infected host.

The model consists of a system of 2n nonlinear ordinary differential equations, one for each

genotype class, where n is the number of contingency genes. After the ODE model has been

introduced in Chapter II, we perform some theoretical analysis for the steady state and the

solutions of the model in Chapter III. We will prove that the solution to the model is unique

and there is an exponentially asymptotically stable equilibrium solution. In Chapter IV,

we also perform numerical analysis for the model. The graphs for the bacterial population

are obtained for up to 10 contingency genes and involve the large-scale computation of

the differential equations system. All these graphs show how the bacterial population

evolves from the initial state with all turned-off genes to a state with all turned-on genes.

Simulations are performed to investigate how the domination of the class with all turned-on

genes is affected by the mutation frequency, the selection rates, the number of contingency

genes and the carrying capacity of the population. In order to do numerical simulations

for higher than 10 contingency genes, a modified model is constructed in Chapter V. The

modified model only consists of n + 1 nonlinear ordinary differential equations, which is

greatly reduced compared to the model in Chapter II. By using the modified model, we can

compute the bacterial population of combinations with more than one hundred contingency

genes. We prove the consistency of the solutions of the first model and the modified one.

Also, the asymptotic behavior of the first model and the modified one is the same under the

conditions for the mutation frequency and selection rates. We perform some simulations

to investigate consistency of the time to domination by the switched-on genotypes with

observed mutation frequencies and selection rates. Assuming that different genotypes have

different carrying capacities, we introduce carrying capacity coefficients to the first model

and the modified one. The results from analysis of the models demonstrate the ability of

the bacterial population to adapt to the host within a realistically observed time frame of

3-6 days [11].
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CHAPTER II

CONSTRUCTION OF THE MODEL

II.1 Background of Contingency Genes

“All organisms are faced with the perpetual challenge of maintaining their fitness in di-

verse and changing environments. To meet this challenge, populations of organisms must

possess mechanisms and strategies for responding to changes in their environments. These

include phenotypic acclimation, by which an individual organism modifies some aspect of

its behavior, morphology or metabolism in response to environmental change, and genetic

adaptation, whereby the genetic composition of a population may change as a result of

natural selection” [24].

Natural selection has produced genetic mechanisms that facilitate acclimation to a wide

variety of environments [31]. Provided that environmental factors (such as nutrients, tem-

perature, acidity) remain within certain limits, then changes in external environment may

be accomodated by regulation of gene expression. However, given the diversity and unpre-

dictability of environmental changes, these stereotypic responses are unlikely to contribute

more than one limited subset of the phenotypic state necessary for long-term evolutionary

success [15]. Confronted with a persisting unfavorable environment in which classical reg-

ulation of gene expression cannot provide an adequate response, a population of bacteria

may face extinction unless it can adapt genetically by natural selection [8, 13].

“Pathogenic bacteria face especially stringent tests of their adaptive potential, due to the

characteristic diversity nature and polymorphic nature of their hosts’ immune responses”

[24]. Given their relatively large population sizes and short generation times, pathogenic

bacteria would seem to have considerable advantages over their hosts in adaptability and

evolutionary flexibility [15, 39].

In 1994, the article [24] reviewed evidence indicating that “pathogenic bacteria have

evolved mechanisms for increasing the frequency of random variations in those genes that

are involved in critical interactions with their hosts”. Having elevated mutation rates in a

specific subset of genes may be highly advantageous, allowing certain phenotypic traits to
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respond rapidly, by natural selection, to unpredictable changes in the environment. Such

genes have been termed contingency genes by Moxon [17].

Contingency genes provide an explanation of why a population of bacteria can rapidly

adapt to the host. They contain a region with a higher rate of mutation than other areas

of the genome [21]. Each gene can switch on or off. Contingency genes enable at least

a few bacteria in a given population to adapt to new environments. The variety of traits

encoded by contingency genes includes “those governing recognition by the immune system,

general mobility, movement toward chemical cues, attachment to and invasion of host cells,

acquisition of nutrients and sensitivity to antibiotics” [2]. Contingency genes make up a very

small fraction of a bacterium’s DNA, but they can provide a vast amount of flexibility in

functioning [24]. Moxon says that contingency genes function like a library of thousands to

millions of genotype variants [9]. With one of these genes, the bacterium has two variations.

Two genes provide four alternations. If only 10 of the 2000 genes in typical bacterium

were contingency genes, for instance, the bacterium would be able to display 210 different

combinations of turned on and off genes. Such diversity ensures that at least one bacterium

in a population can survive its host’s immune defenses and then can replicate to produce a

new, thriving colony [33, 5, 39].

We want to explore contingency gene selection in pathogen adaptation to human hosts.

A model is developed that allows stochastic on/off switches of contingency genes and con-

sequent selection of advantaged phenotypes.

II.2 Introduction of the Model

The objective of the model is to investigate contingency genes’ adaptation to infected hosts.

We want the model to be directly applicable to strep throat infection. Strep throat is very

contagious. An effort should be made to avoid contact with infected people, since there is no

single way to avoid the infection otherwise [11, 30]. The model explains clustering of strep

throat cases in families, since genetic similarities of siblings allow more rapid adaptation to

hosts.

Contingency genes can be switched on or off. We denote a turned-off contingency gene to

be ‘0’, and a turned-on contingency gene to be ‘1’. Random mutation provides a background
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source of the contingency gene combinations. If we consider two contingency genes, there

are four genotypic combinations (0,0), (1,0), (0,1) and (1,1). In order to get all genotypes

with three contingency genes, we only need to consider that one more contingency gene is

added to four genotypic variations with two contingency genes. The added contingency gene

has on or off possibilities. These two possibilities are considered in those four variations,

then we can get eight variations. The following diagram interprets how to get eight genotype

classes with three contingency genes from four genotype classes with two contingency genes.




0 0
1 0
0 1
1 1


+




0
0
0
0


⇒




0 0 0
1 0 0
0 1 0
1 1 0







0 0
1 0
0 1
1 1


+




1
1
1
1


⇒




0 0 1
1 0 1
0 1 1
1 1 1




Figure 1: 23 = 8 combinations with three contingency genes.

More generally, we can get 2n genotype classes with n contingency genes from all 2n−1

combinations with n − 1 contingency genes.

To explore dynamics of genotype selection in infected hosts, we consider mutation and

selection processes of streptococcal bacteria.

In the mutation process, we introduce the mutation frequency denoted by f , which is

the probability for one contingency gene to be switched from on to off or from off to on.

During each division of an individual cell, any contingency gene can be switched from on

to off or from off to on. Suppose that a bacterium in class (0,1,1) mutates to (0,0,1), the

probability of this mutation process is (1 − f)f(1 − f), where the first and third genes do

not change and the second gene is switched from on to off.

In the selection process, each genotype class has its selection coefficient. We assume

that the selection coefficient of the class with all host-specific genes turned on is bigger than

the other selection coefficients because this class is necessary for the bacterial population

to cause the inflammation that propagates the infection and gives it a selective advantage.
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The bacterial population cannot increase forever since the population has a limited

carrying capacity shared by all the strains in a host. We incorporate this constraint on the

bacterial population growth as a nonlinearity in the equation for each genotype [28].

II.3 Ordinary Differential Equations

Before we state the model, Table 1 shows all terms in use.

Table 1: Variables, Parameters and Functions

Term Description

C carrying capacity parameter
t time in hours

~P (t) the bacterial population densities of genotypes as a 2n-dimensional vector

|~P (t)| the summation of the bacterial population densities of genotypes
~P0 the initial condition at time 0
f the mutation frequency
A a 2n × 2n Markov matrix of the mutation frequencies
S a 2n × 2n diagonal matrix with selection coefficients on its diagonal entries

An ordinary differential equations model is constructed to compute the bacterial popu-

lation in an infected host. The model is shown as follows:

d~P (t)

dt
= A · ~P (t) + S · ~P (t) − |~P (t)|

C
~P (t), t ≥ 0, ~P (0) = ~P0.

To explain this ODE model more clearly, we consider the case of three contingency

genes. Any contingency gene has the ability to be turned from off to on or from on to off by

a mutation process. For convenience, a turned-off contingency gene is denoted by ‘0’ and a

turned-on contingency gene is denoted by ‘1’. Suppose that initially, the contingency genes

in all cells are all turned off. The population density of cells with three contingency genes

at time t is denoted by P (t, 0, 0, 0). In general, the population density of the genotype class

(i, j, k) at time t is denoted by P (t, i, j, k), where i, j, k is either 0 or 1. For three contingency
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genes, the bacterial population densities of 23 genotypic combinations are shown as follows:

~P (t) =




P (t, 0, 0, 0)

P (t, 1, 0, 0)

P (t, 0, 1, 0)

P (t, 1, 1, 0)

P (t, 0, 0, 1)

P (t, 1, 0, 1)

P (t, 0, 1, 1)

P (t, 1, 1, 1)




.

From the above, every entry in ~P (t) represents the bacterial population density of one

genotype class. Let | ~P (t)| be the summation of the population densities of every combination

at time t, i.e. | ~P (t)| =
∑1

i,j,k=0 P (t, i, j, k). For the general case of n contingency genes,

~P (t) is defined analogously.

In this model, mutation and selection processes are both included with the constraint

on population growth due to a limited carrying capacity. Firstly, the mutation process is

considered. The mutation process is described by a Markov matrix A (at this moment

ignoring the selection process and the constraint on population growth):

d~P (t)

dt
= A · ~P (t),

where the Markov matrix A for three contingency genes is




(1 − f)3 (1 − f)2f (1 − f)2f (1 − f)f2 (1 − f)2f (1 − f)f2 (1 − f)f2 f3

(1 − f)2f (1 − f)3 (1 − f)f2 (1 − f)2f (1 − f)f2 (1 − f)2f f3 (1 − f)f2

(1 − f)2f (1 − f)f2 (1 − f)3 (1 − f)2f (1 − f)f2 f3 (1 − f)2f (1 − f)f2

(1 − f)f2 (1 − f)2f (1 − f)2f (1 − f)3 f3 (1 − f)f2 (1 − f)f2 (1 − f)2f

(1 − f)2f (1 − f)f2 (1 − f)f2 f3 (1 − f)3 (1 − f)2f (1 − f)2f (1 − f)f2

(1 − f)f2 (1 − f)2f f3 (1 − f)f2 (1 − f)2f (1 − f)3 (1 − f)f2 (1 − f)2f

(1 − f)f2 f3 (1 − f)2f (1 − f)f2 (1 − f)2f (1 − f)f2 (1 − f)3 (1 − f)2f

f3 (1 − f)f2 (1 − f)f2 (1 − f)2f (1 − f)f2 (1 − f)2f (1 − f)2f (1 − f)3




.
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The 2n × 2n markov matrix A for n contingency genes is defined analogously.

Consider the first component P (t, 0, 0, 0) at time t :

dP (t, 0, 0, 0)

dt
= (1−f)3·P (t, 0, 0, 0)+(1−f)2f ·P (t, 1, 0, 0)+(1−f)2f ·P (t, 0, 1, 0)+(1−f)f2·P (t, 1, 1, 0)

+(1−f)2f ·P (t, 0, 0, 1)+(1−f)f2·P (t, 1, 0, 1)+(1−f)f2·P (t, 0, 1, 1)+f3·P (t, 1, 1, 1).

It can be seen that the growth rate of the population density of every combination at

time t is the summation of the product of the population density of every combination at

time t and the probability of the corresponding mutation process.

Secondly, the selection process is considered without the mutation process and the con-

straint on population growth. In the selection process, the form of the selection matrix S

for the populations of genotypic combinations at time t is assumed to be diagonal. For the

selection process without the mutation process and the constraint on population growth,

the growth rate of the population at time t can be expressed as follows:

d~P (t)

dt
= S · ~P (t),

where S is a matrix with the selection coefficients. For three contingency genes, S has the

following form:

S =




s1 0 . . . 0

0 s2 . . . 0

...
...

. . .
...

0 0 . . . s8




.

The 2n × 2n diagonal matrix S for n contingency genes is defined analogously.

A combination of all turned-on contingency genes is necessary for the bacterial popula-

tion to adapt to the host and it has a selective advantage. Thus, the selection coefficient for

the combination of all turned-on genes is bigger than the other selection coefficients. In the

matrix S for three contingency genes, we can, for example, choose s1 = s2 = . . . = s7 < s8.

From the diagonal matrix S and the differential equation for the selection process, the
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growth rate of the population of the first combination at time t is shown as follows:

dP (t, 0, 0, 0)

dt
= s1 · P (t, 0, 0, 0).

The growth rate of the population of every combination at time t is linearly dependent on

the population of the corresponding combination at time t. Thus the selection in the ith

combination depends on a selection coefficient si particular to that combination.

The bacterial population cannot grow exponentially forever in an infected host, because

the host has a limited carrying capacity for the population of bacteria. Thus, the constraint

on population growth also needs to be considered in this model. The form of the constraint

on population growth is the nonlinear term − |~P (t)|
C

· ~P (t), which means that mortality

increases as the total population | ~P (t)| increases. The effect of the logistic nonlinearity is

to cause the population to stabilize to a unique globally attracting equilibrium, which is

dependent on the carrying capacity parameter C.

From the special case of three contingency genes, we can draw similar interpretations

for n contingency genes. ~P (t) has 2n entries which correspond to the population densities

of the 2n genotypes at time t. A is a 2n × 2n Markov matrix whose entries correspond to

the mutation frequencies of on/off switching. S is a 2n × 2n diagonal matrix whose entries

correspond to genotype selection. The growth rate of ~P (t) involves the combined effects of

the three separate processes: mutation, selection and logistic constraint. If the mutation

frequency f is very small, then A ~P (t) ≈ ~P (t), and if the total population | ~P (t)| is near

the carrying capacity C, then the logistic nonlinearity −|~P (t)|
C

~P (t) ≈ − ~P (t). These two

processes thus balance each other in the differential equation for ~P (t), and ~P (t) ≈ etS ~P0.

Thus, the doubling time of the ith contingency gene class is approximately
ln 2

si

.

9



CHAPTER III

STEADY STATE AND SOLUTION

III.1 Steady State

The ODE model has been constructed to compute the bacterial population densities with

n contingency genes in an infected host and it is shown as follows:

d~P (t)

dt
= A · ~P (t) + S · ~P (t) − |~P (t)|

C
· ~P (t), t ≥ 0, ~P (0) = ~P0 ∈ R2n

+ \{0}, (1)

where A is a 2n × 2n Markov matrix, C is a carrying capacity parameter specific to the

host, ~P0 is the initial population vector, ~P (t) ∈ R2n

+ , and S is a 2n × 2n diagonal matrix as

follows:

S =




s1 0 . . . 0

0 s2 . . . 0

...
...

. . .
...

0 0 . . . s2n




.

Definition 1. The notation | · | means |~x| =
∑n

i=1 xi for any ~x ∈ Rn.

Definition 2. A square matrix is defined as a Markov matrix if every entry is a positive

number, the sum of the entries in any row is equal to 1 and the sum of the entries in any

column is also equal to 1 [18].

Definition 3. A steady state (equilibrium) of (1) is a vector ~x0 ∈ R2n

such that A~x0+S~x0 =

|~x0|
C

~x0.

Theorem 1. Let A be a Markov matrix, let S be a diagonal matrix with all positive entries

on the diagonal, and let C > 0. If λ > 0 is an eigenvalue of M = C(A + S), then ~x is a

steady state of (1), where M~x = λ~x and |~x| = λ.

Proof. If λ is an eigenvalue of M, there exists an eigenvector ~x0 such that M~x0 = λ~x0.

10



Assume that |~x0| = 1, take t = λ, and let ~u = t~x0, it follows that

M~u = M · t~x0 = λ · λ~x0 = λ · ~u

Obviously, ~u is an eigenvector of M and |~u| = λ and we obtain

M~u = λ~u

C(A + S) · ~u = λ~u

(A + S) · ~u =
λ

C
~u

A · ~u + S · ~u =
|~u|
C

~u

Hence, it follows that ~u is a steady state of (1) and M~u = λ~u with λ = |~u|.

III.2 An Abstract Logistic Equation

First, we investigate the stability of equilibrium solutions to an abstract logistic equation in

a Banach space. The formulation of the abstract problem allows an application to the ODE

model we construct. Let X be a Banach space lattice with norm ‖·‖ and let X+ denote the

cone of nonnegative elements of X [40]. We require the following hypotheses:

(H.1) T (t), t ≥ 0 is a strongly continuous semigroup of bounded linear operators on X

with infinitesimal generator A and T (t)x ∈ X+ for x ∈ X+.

(H.2) There exist a real number λ0 and a direct sum decomposition X = X0 ⊕ X1

with associated projections Pi, PiX = Xi, i = 0, 1, such that PiT (t) = T (t)Pi, i = 0, 1,

T (t)P0 = eλ0t ·P0, t ≥ 0, and for some constants M ≥ 1, ω < λ0, |T (t)P1| ≤ Meωt|P1|, t ≥ 0.

(H.3) F is a bounded linear functional on X such that Fx > 0 for x ∈ X+\{0}.

(H.4) η is a continuous increasing function from [0,∞) onto [0,∞).

Consider the abstract logistic equation

w′(t) = Aw(t) − η(Fw(t))w(t), t ≥ 0, w(0) = x. (2)

11



The proof of the following theorem is given in [38], but for the sake of completeness we

provide a proof.

Theorem 2. Let (H.1)-(H.4) hold and let x ∈ X+ ∩ D(A) such that P0x ∈ X+\{0}.

There exists a unique continuously differentiable function w : [0,∞) → X+\{0} such

that w satisfies the equation (2). If λ0 < 0, then limt→∞ w(t) = 0, and if λ0 ≥ 0, then

limt→∞ w(t) =
η−1(λ0)P0x

FP0x
.

Proof. We first claim:

(i) T (t)x ∈ X+\{0} and F(T (t)x) > 0 for t ≥ 0.

If T (t1)x = 0 for some t1, then 0 = P0T (t1)x = eλ0t1P0x, which contradicts P0x ∈

X+ − {0}.

We also claim:

(ii) limt→∞
F(T (t)Ax)

F(T (t)x)
= λ0.

Since

F(T (t)Ax)

F(T (t)x)

=
F(λ0e

λ0tP0x + T (t)P1Ax)

F(eλ0tP0x + T (t)P1x)

=
F(λ0P0x + e−λ0tT (t)P1Ax)

F(P0x + e−λ0tT (t)P1x)
,

then limt→∞
F(T (t)Ax)

F(T (t)x)
= lim

t→∞

F(λ0P0x)

FP0x
= λ0.

We next show that for each t1 > 0 there exists a continuous function F : [0,∞) → [0,∞)

such that for 0 ≤ t ≤ t1,

F (t) = exp[−
∫ t

0
η(F (s))ds]F(T (t)x). (3)

Let W be the closed convex subset of the Banach Space C([0, t1], R) consisting of func-

tions F such that ‖F‖C[0,t1 ] ≤ |F|(|P0| + M max{1, eλ0t1}|P1|).

12



Define K : W → W by

(KF )(t) = exp

[
−
∫ t

0
η(F (s))ds

]
F(T (t)x), F ∈ W, 0 ≤ t ≤ t1.

By the hypothesis K is a continuous mapping of W into itself. Also, the image of K is

compact by the Arzela-Ascoli Theorem [10]. By the Schauder-Leray Theorem [29], K has

a fixed point F in W .

We want to claim that this fixed point of K is unique. It is known that F satisfies

F ′(t) = [G(t) − η(F (t))]F (t),

where G(t) =
F(T (t)Ax)

F(T (t)x)
. Suppose that F and F̂ are both fixed points of K. Since η is

increasing,

1

2

d

dt
[F (t) − F̂ (t)]2 = G(t)[F (t) − F̂ (t)]2

− [η(F (t))F (t) − η(F̂ (t))F̂ (t)][F (t) − F̂ (t)]

≤
(

sup
0≤τ≤t1

G(τ)

)
[F (t) − F̂ (t)]2.

Since F (0) = F̂ (0), this last differential inequality implies that F ≡ F̂ on [0, t1]. Since t1

is arbitrary, we conclude that there exists a unique function F : [0,∞) → [0,∞) satisfying

(3). Define w : [0,∞) → X+\{0} by

w(t) = exp[−
∫ t

0 η(F (s))ds]T (t)x, t ≥ 0.

It is obtained that w(t) ∈ D(A), since x ∈ D(A). Also, Fw(t) = F (t). Then we can

conclude that w is the unique continuously differentiable function satisfying (2).

If λ0 < 0, then T (t)x → 0 as t → ∞, so that w(t) → 0 as t → ∞. If λ0 ≥ 0, then let

ε > 0 and set δ = η(η−1(λ0) + ε) − λ0. Since (ii), there exists t1 > 0 such that t > t1 , then

|G(t) − λ0| <
δ

2
, where G(t) =

F(T (t)Ax)

F(T (t)x)
. Suppose that t ≥ t1 and F (t) ≥ η−1(λ0) + ε

and since η is an increasing function, then η(F (t)) ≥ η(η−1(λ0) + ε) = λ0 + δ > G(t) +
δ

2
.

13



Therefore, G(t) − η(F (t)) < − δ

2
.

We want to claim that for some t > t1, F (t) ≤ η−1(λ0) + ε.

If for all t > t1, F (t) > η−1(λ0) + ε, then F ′(t) = [G(t) − η(F (t))]F (t) < − δ

2
F (t). By

differential inequality theorem [6], F (t) ≤ e
−

δ

2
t
F (t1), then as t → ∞, F (t) → 0. This yields

a contradiction.

So there exists t2 > t1 such that F (t2) < η−1(λ0) + ε and let t3 be infimum of all such

t2.

Then, we have t3 > t2 and F (t3) ≥ η−1(λ0) + ε > F (t), where t ∈ (t2, t3). By the above,

F ′(t3) ≥ 0. However, F ′(t3) < 0 since F ′(t3) < −δ

2
F (t3) ≤ 0. This yields a contradiction.

Hence, F (t) < η−1(λ0) + ε for all t > t2.

A similar argument shows that F (t) > η−1(λ0) − ε for all t > some t′2.

Therefore, limt→∞ F (t) = η−1(λ0).

From (3), we have that

lim
t→∞

exp[λ0t −
∫ t

0
η(F (s))ds]

= lim
t→∞

F (t)

F(e−λ0tT (t)x)

=
η−1(λ0)

FP0x
,

which implies that limt→∞ w(t) =
η−1(λ0)P0x

FP0x
.

III.3 Uniqueness and Equilibrium of Solution

Definition 4. A square matrix A is irreducible if for every m,n, (Ak)mn > 0 for some

positive integer k [18].

Definition 5. Rn
+ is defined by nonnegative elements in Rn.

Definition 6. F is a positive bounded linear functional on Rn if F (~x) ≥ 0 for every ~x ∈ Rn
+

and there exists a positive real number t such that |F (~x)| ≤ t · |~x| for every ~x ∈ Rn [7].

14



Definition 7. {W (t)}t≥0 is a strongly continuous semigroup of (nonlinear) operators on

Rn iff ∀t ≥ 0, W (t) is a continuous (nonlinear) operator from Rn to Rn, W (0) = I,

W (t + s) = W (t)W (s), and W (t)~x is continuous in t ∈ [0,∞) for each fixed ~x ∈ Rn [27].

{W (t)}t≥0 is called positive iff W (t)~x ∈ Rn
+ for ~x ∈ Rn

+.

Definition 8. Let A be an n×n matrix and define T (t) =
∑∞

i=0

(tA)i

i!
for t ≥ 0, {T (t)}t≥0

is a strongly continuous semigroup of n × n matrices, and A is called the infinitesimal

generator of {T (t)}t≥0.

Definition 9. A direct sum decomposition of a linear space X is a representation X =

X1⊕X2, if ∀x ∈ X, there exist x1 ∈ X1 and x2 ∈ X2 such that x = x1+x2 and X1∩X2 = {0},

where X1 and X2 are linear subspaces of X. A linear operator P from X to X is a projection

if P 2 = P .

Definition 10. λ0 is a dominant eigenvalue of an n × n matrix A if λ0 > Reλi, i =

1, 2, . . . , n, and λi is any other eigenvalue of A.

Lemma 1. Suppose that A is an n×n irreducible matrix, ~u0 ∈ Rn
+\{0}, and F is a positive

bounded linear functional on Rn. There exists a unique continuously differentiable solution

to the differential equation

d~u(t)

dt
= A~u(t) − F (~u(t))~u(t), t ≥ 0, ~u(0) = ~u0. (4)

Further, limt→∞ ~u(t) =
λ0~x0

F (~x0)
, where ~x0 is the unique eigenvector of A such that |~x0| = 1

corresponding to the real positive dominant eigenvalue of A.

Proof. Since A is an irreducible matrix, there exists a real positive dominant eigenvalue

λ0 with 1-dimensional eigenspace by the theorem of Perron and Frobenius [28]. Since the

eigenspace of λ0 is 1-dimensional, there is a unique eigenvector ~x0 of λ0 such that |~x0| = 1.

Let X1 be the eigenspace of λ0 and X2 be the direct sum complement of X1 in Rn, i.e.

X1 ⊕ X2 = Rn.

Let Pi be the projection from Rn onto Xi, i = 1, 2. Then

PiR
n = Xi, PiA = APi.
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We define T (t), t ≥ 0 to be the strongly continuous semigroup of bounded linear operators

on X = Rn with infinitesimal generator A. Then T (t) satisfies hypotheses (H.1) and (H.2).

We consider η as the identity function η(x) = x. By Theorem 2, there exists a unique

continuously differentiable solution ~u to the equation (4), and the conclusions of lemma 1

hold.

Theorem 3. Let A be a Markov matrix, let S be a diagonal matrix with all positive entries

on the diagonal, C > 0, ~P0 ∈ Rn
+\{0}, and ~P (t) = [P1(t), P2(t), . . . , Pn(t)]t satisfy (1).

Then

lim
t→∞

Pi(t)

Pn(t)
=

xi

xn
, lim

t→∞

n∑

i=1

Pi(t) = λ0C, (i = 1, 2, . . . , n − 1)

where ~x = (x1, x2, . . . , xn)t is an eigenvector of M = C(A+S) with the dominant eigenvalue

λ0.

Proof. Since every entry of A + S is positive, then every entry of M is also positive for

C > 0, as is Mk for every positive integer k. By the definition of irreducible matrix, M is

an irreducible matrix. By the theorem of Perron and Frobenius [28], there exists a dominant

eigenvalue λ0 > 0 and ~x0 6= ~0 such that M~x0 = λ0~x0.

By lemma 1 and since ~P (t) satisfies (1),

lim
t→∞

~P (t) =
λ0C~x

|~x| .

Also, it follows that

limt→∞
Pi(t)

Pn(t)
=

λ0Cxi

|~x|
λ0Cxn

|~x|

=
xi

xn
, i = 1, 2, . . . , n − 1

lim
t→∞

n∑

i=1

Pi(t) =
λ0C|~x|
|~x| = λ0C.

Definition 11. Let {W (t)}t≥0 be a strongly continuous semigroup of (nonlinear) operators

on Rn and let u∗ be an equilibrium of (4). u∗ is an exponentially asymptotically stable

equilibrium solution of (4) if there exists M > 0, δ > 0, such that ∀t > 0, |~u(t)−u∗| < Me−δt.
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Consider (4), let X be the linear space Rn and let X+ denote Rn
+.

Theorem 4. Let hypotheses (H.1) and (H.2) hold, λ0 > 0, ~x ∈ X+\{0}, and {W (t)}t≥0 be

a strongly continuous semigroup of positive (nonlinear) operators on X. Let W (t)~x = ~u(t),

where ~u(t) is the solution of equation (4). Then

W (t)~x = ~u(t) → ~p∗ :=
λ0P0~x

F (P0~x)
, as t → ∞.

Moreover, ~p∗ is an exponentially asymptotically stable equilibrium solution.

Proof. Let ~x ∈ X+\{0}. By [6, 19], the solution of equation (4) is given by

~u(t) = W0(t)~x =
T (t)~x

1 +
∫ t

0 F (T (s)~x)ds
,

where T (t)~x = eλ0tP0~x + T (t)P1~x by the hypotheses. And by using L’Hospital’s rule [16],

we obtain

~u(t) → ~p∗ =
λ0P0~x

F (P0~x)
, as t → ∞

It remains to prove that ~p∗ is exponentially asymptotically stable. In order to do this, we

now show that

T (t)~x

1 +
∫ t

0 F (T (s)~x)ds
− λ0P0~x

F (P0~x)
→ 0, as t → ∞

exponentially on bounded sets of X+ \{0}. Consider the following expression:

∥∥∥∥∥
T (t)~x

1 +
∫ t

0 F (T (s)~x)ds
− λ0P0~x

F (P0~x)

∥∥∥∥∥

≤
∥∥∥∥∥

T (t)~x

1 +
∫ t

0 F (T (s)~x)ds
− λ0T (t)~x

eλ0tF (P0~x)

∥∥∥∥∥+

∥∥∥∥
λ0T (t)~x

eλ0tF (P0~x)
− λ0P0~x

F (P0~x)

∥∥∥∥

≤
∥∥∥∥
T (t)~x

eλ0t

∥∥∥∥ ·
∣∣∣∣∣

eλ0t

1 +
∫ t

0 F (T (s)~x)ds
− λ0

F (P0~x)

∣∣∣∣∣+
∣∣∣∣

λ0

F (P0~x)

∣∣∣∣ ·
∥∥∥∥
T (t)~x

eλ0t
− P1~x

∥∥∥∥

It remains to prove that

∣∣∣∣∣
eλ0t

1 +
∫ t

0 F (T (s)~x)ds
− λ0

F (P0~x)

∣∣∣∣∣→ 0, as t → ∞
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exponentially on bounded sets of X+\{0}. But

∣∣∣∣∣
eλ0t

1 +
∫ t

0 F (T (s)~x)ds
− λ0

F (P0~x)

∣∣∣∣∣ =
∣∣∣∣∣

1

e−λ0t +
∫ t

0 e−λ0tF (T (s)~x)ds
− 1

F (P0~x)
λ0

∣∣∣∣∣ ,

so it remains to show that

∣∣∣∣
∫ t

0
e−λ0tF (T (s)~x)ds − F (P0~x)

λ0

∣∣∣∣→ 0, as t → ∞

exponentially on bounded sets of X+\{0}. Since

∣∣∣∣
∫ t

0
e−λ0tF (T (s)~x)ds − F (P0~x)

λ0

∣∣∣∣

=

∣∣∣∣
∫ t

0
e−λ0tF (T (s)~x)ds − F (P0~x)

λ0
+

F (e−λ0tP0~x)

λ0
− F (e−λ0tP0~x)

λ0

∣∣∣∣

=

∣∣∣∣
∫ t

0
e−λ0tF (T (s)~x)ds − F (

∫ t

0
e−λ0sP0~xds) − F (e−λ0tP0~x)

λ0

∣∣∣∣

≤
∣∣∣∣
∫ t

0
e−λ0tF (T (s)~x)ds − F (

∫ t

0
e−λ0sP0~xds)

∣∣∣∣+
∣∣∣∣
F (e−λ0tP0~x)

λ0

∣∣∣∣ ,

so it only remains to consider the term

∣∣∣∣
∫ t

0
e−λ0tF (T (s)~x)ds − F (

∫ t

0
e−λ0sP0~xds)

∣∣∣∣

Since
∫ t

0 e−λ0sds =
∫ t

0 e−λ0(t−l)dl, we have

∣∣∣∣
∫ t

0
e−λ0tF (T (s)~x)ds − F (

∫ t

0
e−λ0sP0~xds)

∣∣∣∣

=

∣∣∣∣
∫ t

0
e−λ0tF (T (s)~x)ds − F (

∫ t

0
e−λ0(t−s)P0~xds)

∣∣∣∣

=

∣∣∣∣
∫ t

0
e−λ0(t−s)F (e−λ0sT (s)~x − P0~x)ds

∣∣∣∣

≤
∣∣∣∣∣

∫ t
2

0
e−λ0(t−s)F (e−λ0sT (s)P1~x)ds

∣∣∣∣∣+
∣∣∣∣∣

∫ t

t
2

e−λ0(t−s)F (e−λ0sT (s)P1~x)ds

∣∣∣∣∣

≤ e−
λ0t

2

λ0
sup

s∈[0, t
2
]

∣∣∣F (e−λ0sT (s)P1~x)
∣∣∣+ 1

λ0
sup

s∈[ t
2
,t]

∣∣∣F (e−λ0sT (s)P1~x)
∣∣∣

18



≤ ||F ||e
−

λ0t

2

λ0
M |P1~x| + ||F ||e

(ω−λ0)t
2

λ0
M |P1~x|

and the result follows.

Theorem 5. Let A be a Markov matrix, let S be a diagonal matrix with all positive entries

on the diagonal, let C > 0, and let ~P0 ∈ Rn
+\{0}. Then there exists a unique exponentially

asymptotically stable equilibrium solution to the ODE model (1).

Proof. In the ODE model (1), A + S is an irreducible matrix since every entry of A + S

is positive. It is obvious that F ( ~P (t)) =
|~P (t)|

C
is a linear bounded positive functional on

Rn. There exists a unique exponentially asymptotically stable equilibrium solution for (1)

by Lemma 1 and Theorem 4.
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CHAPTER IV

NUMERICAL ANALYSIS

In this chapter, we investigate how the bacterial population evolves from the initial state

with all contingency genes turned off to a state with all genes turned on. Simulations for

the model demonstrate how the domination for the class with all genes turned on depends

on the mutation frequency, selection coefficients, the number of contingency genes, and the

carrying capacity.

IV.1 Values for Parameters

From the combinations with n − 1 and n contingency genes, we can obtain the Markov

matrix Ai with i contingency genes from the Markov matrix with i − 1 contingency genes.

It is shown as follows (i=2,. . .,n):

A1 =

[
1 − f f

f 1 − f

]
,

Ai =

[
Ai−1 · (1 − f) Ai−1 · f

Ai−1 · f Ai−1 · (1 − f)

]
.

We can easily get any Markov matrix with any number of contingency genes. Therefore,

we can use Mathematica to convert the ODE system (1) to a program for the numerical

simulations (see http://people.vanderbilt.edu/∼ yan.zhao).

In Chapter II, it is mentioned that contingency genes have a higher rate of mutation

than other areas of genome. Contingency genes have a spontaneous mutation rate generally

yielding a phenotype switch several orders of magnitude faster than the 10−6 mutations per

doubling that is the common background [2].

In the system of equations, S is a 2n × 2n diagonal matrix with the selection coefficients

and we suppose that s1 = s2 = . . . = s2n−1 < s2n since the combination with all turned-on

contingency genes has a selective advantage. In the selection process without the mutation

process or constraint on population growth, the differential equation for y(t), the population

for a particular combination at time t (which is meaured in hours), with the initial condition

20



y(0) = y0, is shown as follows:

dy(t)

dt
= s · y(t), y(0) = y0 (5)

where s is a selection coefficient particular to the combination. The solution of (5) is

y(t) = y0 · est. Based on the fact that it takes approximately 20 minutes for every cell

division [26], it follows that

2y0 = es· 1
3 · y0, s =

ln 2

0.33
.

Now, we just take the values of si (i = 1, 2, . . . , 2n − 1) to be
ln 2

0.33
and s2n = 1.1 · s1.

We suppose that initially contingency genes in mother cells are all turned off. Then, the

values for parameters which are used are shown in Table 2.

Table 2: Values for Parameters Used in Numerical Simulations

carrying capacity mutation selection coefficients initial condition

parameter frequency si (i=1,2,. . . ,2n) ~P0

s1 = . . . = s2n−1 = ln 2
0.33 , P (0, 0, . . . , 0) = 1000,

C=1010 f = 1
1000 s2n = ln 2

0.3 P (0, i1, i2, . . . , in) = 0,
(i1, i2, . . . , in = 1, 0)

IV.2 Graphical Results from Numerical Simulations

According to the given values of the parameters and the ODE model (1), we can compute

the bacterial population of all the combinations by the numerical solutions to the ordinary

differential equations using Mathematica.

First, the number of contingency genes is considered to be three, the bacterial population

for each class and the total population of all eight classes are easily obtained and the graphs

for the population of each genotype combination and the total population are shown in

Figure 2 and Figure 3.

From the graphs, the following statements can be made:

(1) Even if the initial population of the class (1,1,1) is 0, it eventually dominates and
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the class (0,0,0) decreases to a very low level.

(2) It takes about 5 days for the class (1,1,1) to dominate the bacterial population.

(3) The graphs for the classes (1,0,0), (0,1,0), (0,0,1) are the same, so are the graphs

for the classes (1,1,0), (0,1,1), (1,0,1). In fact, there are only four distinct graphs for the

bacterial population of eight genotypic classes.

(4) The total population of all the classes cannot increase forever, i.e. there is a limita-

tion for it is determined by the carrying capacity.

For three contingency genes, more model simulations are done and indicate that the

observed time of approximately 4-6 days for the dominant genotype class to take over is

consistent with mutation frequencies in the range of 10−5 to 10−3 and the ratio of dominant

to non-dominant selection coefficients in the range of 1.08 to 1.15.

By applying the same numerical method, the bacterial population graphs with different

numbers of contingency genes can also be obtained. The following conclusions can be drawn

for any number of genes based on all the known population graphs with different numbers

of contingency genes from two to ten.

(1) A combination of all turned-on genes eventually dominates the bacterial population

and a combination of all turned-off genes falls to a very low level. The combination of all

turned-on genes is called a dominant class.

(2) The time it takes for the dominant genotype class to take over is longer if the number

of contingency genes is bigger.

(3) There will be some overlapped population graphs for all the combinations with

a certain number of contingency genes. The graphs for the combinations with the same

number of turned-on genes or equivalently the same number of turned-off genes are the

same. Thus, there are only n + 1 distinct population graphs out of 2n combinations with n

contingency genes.

More simulations are done for the case that the number of contingency genes is ten.

The time to domination by the genotype combination with all turned-on genes is 5-6 days,

provided that the mutation frequency for a single switch is 10−4 to 10−3 and the dominant to

non-dominant selection coefficient ratios are in the range 1.08-1.15. The number of equations

in the system increases on the order 2n as the number of contingency genes n increases,
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which necessitates large-scale computing for higher values of n. In the next chapter, we

investigate a modified system of equations for more efficient numerical simulations.

IV.3 Convergence Rate for the Dominant Class

An exponentially asymptotically stable solution of (1) has been discussed in chapter III.

Hence, ~p∗ =
λ1C~x

|~x| is the exponentially asymptotically solution for the system (1), where

λ1 is the dominant eigenvalue of A + S, ~x is the eigenvector of A + S with the dominant

eigenvalue λ1 and |~x| =
∑2n

i=1 xi for ~x ∈ R2n\{0}.

According to Theorem 4, it is known that

∥∥∥~P (t) − ~p∗
∥∥∥ ≤ M̂e−δt, t ≥ 0 (6)

where ~P (t) is the solution of (1), M̂ and δ are constants independent of ~P0, and ~p∗ is the

steady state of (1). Suppose that the number of contingency genes is n, let ~P (0) ∈ R2n

+ ,

let ε > 0, and let t∗ε be defined as inft≥0

∥∥∥~P (t) − ~p∗
∥∥∥ ≤ ε. In the application, the model

simulations show |~p∗| ≈ 3.3 × 1010, so ε is chosen to be approximately 0.03|~p∗|, i.e. ε =

109. Let t∗109 be the time for the total population of all the genotype classes to be within

approximately 97% of the limiting steady state.

The bacterial population increases with time and the dominant class eventually dom-

inates the bacterial population, so it is necessary to know how fast the population of the

dominant class converges to the steady state. It is seen that the number of contingency

genes, selection coefficients and mutation frequency change the time for the dominant com-

bination to take over, separately.

Firstly, we discuss how the number of contingency genes affects the convergence rate

of the dominant class. We apply the same numerical method with different numbers of

contingency genes to determine the relationship between the time needed for the dominant

class to converge to the steady state and the number of contingency genes, and also obtain

the dominant eigenvalue λ1 as shown in Table 3:
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Table 3: Convergence Time for the Dominant Class

the number of contingency genes t∗ s.t. |P (t∗) − p∗| ≤ 109 dominant eigenvalue λ1

2 86 hr 3.31029

3 117 hr 3.31019

4 147 hr 3.31009

5 175 hr 3.30999

6 203 hr 3.30989

7 230 hr 3.30979

8 255 hr 3.30969

9 281 hr 3.30959

10 305 hr 3.30949

A graph is shown in Figure 4, and it indicates that the convergence rate for the dominant

class is linearly dependent on the number of contingency genes under the conditions in Table

2.

Secondly, how the selection coefficients affect the convergence rate is investigated. As it

is mentioned before, the selection coefficient particular to the dominant class is bigger than

the other selection coefficients which are equal. Under the conditions that the number of

genes is 3, f=0.0001, and C = 1010, two cases are discussed as follows:

1. s[23] = ln 2
0.3 , s[i] = s[23]

j
, i = 1, 2, . . . , 7, j = 1.1, 1.125, . . . , 1.475, 1.5, i.e. the ratio of

dominant to non-dominant changes in the range 1.1 to 1.5 for the fixed dominant selection

coefficient.

2. s[23] = ln 2
j

, j = 0.3, 0.35, . . . , 0.95, 1.0, s[i] = s[23]
1.1 ,i = 1, 2, . . . , 7, i.e. the dominant

selection coefficient changes in the same ratio of non-dominant to dominant.

For the above two different cases, t∗ε can be found as before for ε = 109. Figure 5 shows

the first case, and Figure 6 shows the second case.

Finally, the relationship between the mutation frequency and convergence rate is dis-

cussed. Under the conditions that the number of contingency genes is 3 and with the

parameters in Table 2, the mutation frequency is varied with values from 10−5 to 10−3.

With the same numerical methods as before, t∗ε can be found as before ε = 109 and Fig-

ure 7 is shown. In this figure, it is indicated that the convergence rate has a log-linear

relationship with the mutation frequency.
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Figure 2: Populations of 8 genotype combinations (n=3, t:hour).
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Figure 3: Total population of 8 genotype combinations (n=3, t:hour).
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Figure 4: The linear relationship between the number of contingency genes and the time in
hours for the dominant genotype class to attain 97% of its asymptotic limit.
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Figure 5: The inverse relationship between j (the ratio of dominant to nondominant selec-
tion coefficient) and the time in hours for the dominant genotype class to attain 97% of its
asymptotic limit.
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fixed ratio of dominant to nondominat selection coefficients and the time in hours for the
dominant genotype class to attain 97% of its asymptotic limit.
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Figure 7: The log-linear relationship between the mutation frequency and the time in hours
for the dominant genotype class to attain 97% of its asymptotic limit.
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CHAPTER V

A MODIFIED SYSTEM OF EQUATIONS

V.1 Construction of a Modified System

In Chapter II and IV, we have constructed the ODE system for the bacterial population

and also given some model simulations. However, this ODE system does not allow an

efficient way for computing the case of higher than 10 contingency genes, since the system

increases in the order 2n as the number of contingency genes n increases. We wish to modify

the system for improving the efficiency of the computations. From the graphical results in

Chapter IV, the populations for the combinations with the same number of turned-on genes

have the same graphs. According to this fact, we introduce a new notation for the average

value of populations for the combinations with the same number of turned-on genes. Then

we can reduce the number of ordinary differential equations in the first model by applying

the new notations to the first model.

We consider a simple case of two contingency genes in the ODE system. The system for

two contingency genes is shown as follows, where s1 = s2 = s3 < s4:




d

dt
P (t, 0, 0)

d

dt
P (t, 1, 0)

d

dt
P (t, 0, 1)

d

dt
P (t, 1, 1)




=




(1 − f)2 (1 − f)f (1 − f)f f2

(1 − f)f (1 − f)2 f2 (1 − f)f

(1 − f)f f2 (1 − f)2 (1 − f)f

f2 (1 − f)f (1 − f)f (1 − f)2




·




P (t, 0, 0)

P (t, 1, 0)

P (t, 0, 1)

P (t, 1, 1)




+




s1 0 0 0

0 s2 0 0

0 0 s3 0

0 0 0 s4



·




P (t, 0, 0)

P (t, 1, 0)

P (t, 0, 1)

P (t, 1, 1)



− |P (t, 0, 0) + P (t, 1, 0) + P (t, 0, 1) + P (t, 1, 1)|

C
·




P (t, 0, 0)

P (t, 1, 0)

P (t, 0, 1)

P (t, 1, 1)




.

From the above, we can get the following four ordinary differential equations:

d

dt
P (t, 0, 0) = (1 − f)2P (t, 0, 0) + (1 − f)fP (t, 1, 0) + (1 − f)fP (t, 0, 1) + f 2P (t, 1, 1) +

s1P (t, 0, 0) − P (t, 0, 0) + P (t, 1, 0) + P (t, 0, 1) + P (t, 1, 1)

C
P (t, 0, 0), (7)
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d

dt
P (t, 1, 0) = (1 − f)fP (t, 0, 0) + (1 − f)2P (t, 1, 0) + f2P (t, 0, 1) + (1 − f)fP (t, 1, 1) +

s2P (t, 1, 0) − P (t, 0, 0) + P (t, 1, 0) + P (t, 0, 1) + P (t, 1, 1)

C
P (t, 1, 0), (8)

d

dt
P (t, 0, 1) = f2P (t, 0, 0) + (1 − f)fP (t, 1, 0) + (1 − f)fP (t, 0, 1) + (1 − f)2P (t, 1, 1) +

s3P (t, 0, 1) − P (t, 0, 0) + P (t, 1, 0) + P (t, 0, 1) + P (t, 1, 1)

C
P (t, 0, 1), (9)

d

dt
P (t, 1, 1) = f2P (t, 0, 0) + (1 − f)fP (t, 1, 0) + (1 − f)fP (t, 0, 1) + (1 − f)2P (t, 1, 1) +

s4P (t, 1, 1) − P (t, 0, 0) + P (t, 1, 0) + P (t, 0, 1) + P (t, 1, 1)

C
P (t, 1, 1). (10)

To reduce the number of equations, we introduce new notations for the bacterial popu-

lation at time t as follows:

G0(t) = P (t, 0, 0), G1(t) =
P (t, 1, 0) + P (t, 0, 1)

2
, G2(t) = P (t, 1, 1).

Add the equation (8) and (9) together and divide it by two, then the new ordinary

differential equations with new notations can be obtained as follows when s1 = s2 = s3 <

s4:

dG0(t)

dt
= (1 − f)2G0(t) + 2(1 − f)fG1(t) + f2G2(t) + s1G0(t) −

G0(t) + 2G1(t) + G2(t)

C
G0(t),

dG1(t)

dt
= (1 − f)fG0(t) + ((1 − f)2 + f2)G1(t) + f2G2(t) + s2G1(t) −

G0(t) + 2G1(t) + G2(t)

C
G1(t),

dG2(t)

dt
= f2G0(t) + 2(1 − f)fG1(t) + (1 − f)2G2(t) + s4G2(t) −

G0(t) + 2G1(t) + G2(t)

C
G2(t).

Suppose that

~G(t) =




G0(t)

G1(t)

G2(t)


 , Ã2 =




(1 − f)2 2(1− f)f f2

(1 − f)f (1 − f)2 + f2 (1 − f)f

f2 2(1− f)f (1 − f)2


 , S̃2 =




s̃1 0 0

0 s̃2 0

0 0 s̃3


 , where
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s̃1 = s̃2 = s1, s̃3 = s4. We define | ~G(t)|0 = G0(t)+2G1(t)+G2(t). Then we can get a modified

ODE model for the bacterial population with two contingency genes at time t as follows:

d ~G(t)

dt
= Ã2 · ~G(t) + S̃2 · ~G(t) − | ~G(t)|0

C
· ~G(t), t ≥ 0, ~G(0) = ~G0.

By following the same approach for bacteria with three contingency genes, we can also

reduce the number of ordinary differential equations. The equations for three contingency

genes are shown, where | ~P (t)| =
∑1

i,j,k=0 P (t, i, j, k) and s1 = s2 = . . . = s7 < s8:

d

dt
P (t, 0, 0, 0) = (1 − f)3P (t, 0, 0, 0) + (1 − f)2fP (t, 1, 0, 0) + (1 − f)2fP (t, 0, 1, 0) + (1 − f)

f2P (t, 1, 1, 0) + (1 − f)2fP (t, 0, 0, 1) + (1 − f)f2P (t, 1, 0, 1) + (1 − f)f2

P (t, 0, 1, 1) + f3P (t, 1, 1, 1) + s1P (t, 0, 0, 0) − |~P (t)|
C

P (t, 0, 0, 0), (11)

d

dt
P (t, 1, 0, 0) = (1 − f)2fP (t, 0, 0, 0) + (1 − f)3P (t, 1, 0, 0) + (1 − f)f2P (t, 0, 1, 0) + (1 − f)2

fP (t, 1, 1, 0) + (1 − f)f2P (t, 0, 0, 1) + (1 − f)2fP (t, 1, 0, 1) + f3P (t, 0, 1, 1)

+ (1 − f)f2P (t, 1, 1, 1) + s2P (t, 1, 0, 0)− |~P (t)|
C

P (t, 1, 0, 0), (12)

d

dt
P (t, 0, 1, 0) = (1 − f)2fP (t, 0, 0, 0) + (1 − f)f2P (t, 1, 0, 0) + (1 − f)3P (t, 0, 1, 0) +

(1 − f)2fP (t, 1, 1, 0) + (1 − f)f2P (t, 0, 0, 1) + f3P (t, 1, 0, 1) + (1 − f)2f

P (t, 0, 1, 1) + (1 − f)f2P (t, 1, 1, 1) + s3P (t, 0, 1, 0)− |~P (t)|
C

P (t, 0, 1, 0), (13)

d

dt
P (t, 1, 1, 0) = (1 − f)f2P (t, 0, 0, 0) + (1 − f)2fP (t, 1, 0, 0) + (1 − f)2fP (t, 0, 1, 0) +

(1 − f)3P (t, 1, 1, 0) + f3P (t, 0, 0, 1) + (1 − f)f2P (t, 1, 0, 1) + (1 − f)f2P (t, 0, 1, 1)

+ (1 − f)2fP (t, 1, 1, 1) + s4P (t, 1, 1, 0)− |~P (t)|
C

P (t, 1, 1, 0), (14)
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d

dt
P (t, 0, 0, 1) = (1 − f)2fP (t, 0, 0, 0) + (1 − f)f2P (t, 1, 0, 0) + (1 − f)f2fP (t, 0, 1, 0) +

f3P (t, 1, 1, 0) + (1 − f)3P (t, 0, 0, 1) + (1 − f)2fP (t, 1, 0, 1) + (1 − f)2fP (t, 0, 1, 1)

+ (1 − f)f2P (t, 1, 1, 1) + s5P (t, 0, 0, 1)− |~P (t)|
C

P (t, 0, 0, 1), (15)

d

dt
P (t, 1, 0, 1) = (1 − f)f2P (t, 0, 0, 0) + (1 − f)2fP (t, 1, 0, 0) + f3P (t, 0, 1, 0) + (1 − f)f2

P (t, 1, 1, 0) + (1 − f)2fP (t, 0, 0, 1) + (1 − f)3P (t, 1, 0, 1) + (1 − f)f2P (t, 0, 1, 1)

+ (1 − f)2fP (t, 1, 1, 1) + s6P (t, 1, 0, 1)− |~P (t)|
C

P (t, 1, 0, 1), (16)

d

dt
P (t, 0, 1, 1) = (1 − f)f2P (t, 0, 0, 0) + f3P (t, 1, 0, 0) + (1 − f)2fP (t, 0, 1, 0) + (1 − f)f2

P (t, 1, 1, 0) + (1 − f)2fP (t, 0, 0, 1) + (1 − f)f2P (t, 1, 0, 1) + (1 − f)3P (t, 0, 1, 1)

+ (1 − f)2fP (t, 1, 1, 1) + s7P (t, 0, 1, 1)− |~P (t)|
C

P (t, 0, 1, 1), (17)

d

dt
P (t, 1, 1, 1) = f3P (t, 0, 0, 0) + (1 − f)f2fP (t, 1, 0, 0) + (1 − f)f2fP (t, 0, 1, 0) + (1 − f)2f

P (t, 1, 1, 0) + (1 − f)f2P (t, 0, 0, 1) + (1 − f)2fP (t, 1, 0, 1) + (1 − f)2fP (t, 0, 1, 1)

+ (1 − f)3P (t, 1, 1, 1) + s8P (t, 1, 1, 1) − |~P (t)|
C

P (t, 1, 1, 1). (18)

We define the new notations for the bacterial population at time t as follows:

G0(t) = P (t, 0, 0, 0), G1(t) =
P (t, 1, 0, 0) + P (t, 0, 1, 0) + P (t, 0, 0, 1)

3
,

G2(t) =
P (t, 1, 1, 0) + P (t, 1, 0, 1) + P (t, 0, 1, 1)

3
, G3(t) = P (t, 1, 1, 1).

We add (12), (13) and (15) and divide it by three and do the same for (14), (16) and
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(17). A modified model for the bacterial poplation with three contingency genes at time t

is then obtained.




d

dt
G0(t)

d

dt
G1(t)

d

dt
G2(t)

d

dt
G3(t)




=




(1 − f)3 3(1 − f)2f 3(1− f)f2 f3

(1 − f)2f (1 − f)3 + 2(1 − f)f2 2(1 − f)f2 + f3 (1 − f)f2

(1 − f)f2 2(1 − f)2f + f3 (1 − f)3 + 2(1− f)f2 (1 − f)2f

f3 3(1 − f)f2 3(1− f)2f (1 − f)3



·




G0(t)

G1(t)

G2(t)

G3(t)




+




s̃1 0 0 0

0 s̃2 0 0

0 0 s̃3 0

0 0 0 s̃4




·




G0(t)

G1(t)

G2(t)

G3(t)




− |~G(t)|0
C

·




G0(t)

G1(t)

G2(t)

G3(t)




,

where | ~G(t)|0 = G0(t) + 3G1(t) + 3G2(t) + G3(t), s̃1 = s̃2 = s̃3 = s1, s̃4 = s8.

For the more general case when the number of contingency genes is considered to be n,

we define

~G(t) =




G0(t)

G1(t)

G2(t)
...

Gn(t)




, Gi(t) =

∑
Pi(t)(n
i

) , 0 ≤ i ≤ n, where Pi(t) is the bacterial population

of any combination with i turned-on genes at time t, and | ~G(t)|0 =
∑n

i=0

(
n

i

)
Gi(t).

We apply the same method as the above for two and three contingency genes to reduce

the number of the ordinary differential equations, which is 2n if n contingency genes are

considered. Supposed that C is a carrying capacity parameter specific to the host and

~G(t) is the bacterial population, a modified system of ordinary differential equations is

constructed as follows:

d ~G(t)

dt
= Ã · ~G(t) + S̃ · ~G(t) − | ~G(t)|0

C
· ~G(t), t ≥ 0, ~G(0) = ~G0, (19)

where Ã is a matrix in terms of mutation frequencies, S̃ is a diagonal matrix with selection

coefficients. Ã and S̃ will be defined in the case of n contingency genes. If the number

of contingency genes is n, Ã is an n + 1 by n + 1 matrix, S̃ is a diagonal matrix with
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n + 1 entries on the diagonal such that s̃1 = s̃2 = . . . = s̃i = . . . = s̃n < s̃n+1 and

| ~G(t)|0 =
∑n

i=0

(
n

i

)
Gi(t). In the modified model, mutation and selection processes are

both included with the constraint on population growth due to a limited carrying capacity.

However, the mutation process in the modified model is different from the first one. Each

entry of Ã represents more mutation processes than each entry of A in the first model. By

the definition of Gi(t), i.e. the average value of bacterial populations of all the combinations

with i turned-on genes, we can assume Gi(t) = P (t,

n︷ ︸︸ ︷
1, . . . , 1︸ ︷︷ ︸

i

, 0, . . . , 0). Each entry in A is

the probability of the mutation process from one combination to the other combination

of bacteria. However, Ã(i, j), where 1 ≤ i ≤ n + 1 and 1 ≤ j ≤ n + 1, is the sum

of all the probabilities of the mutation processes from (1, 1, . . . , 1︸ ︷︷ ︸
j−1

, 0, . . . , 0) to all

(
n

i − 1

)

combinations with i − 1 turned-on genes. For the purpose of illustration, four contingency

genes are considered in the modified model. Suppose we want to compute Ã(3, 2) by using

the diagram, which is shown as follows:

(1,1,0,0)

(1,0,1,0)

(1,0,0,0) → (0,1,1,0)

(1,0,0,1)

(0,1,0,1)

(0,0,1,1)

the probability of the mutation from (1,0,0,0) to (1,1,0,0)=(1 − f)3f

the probability of the mutation from (1,0,0,0) to (1,0,1,0)=(1 − f)3f

the probability of the mutation from (1,0,0,0) to (0,1,1,0)=(1 − f)f 3

the probability of the mutation from (1,0,0,0) to (1,0,0,1)=(1 − f)3f

the probability of the mutation from (1,0,0,0) to (0,1,0,1)=(1 − f)f 3

the probability of the mutation from (1,0,0,0) to (0,0,1,1)=(1 − f)f 3

Ã(3, 2) is the sum of the above probabilities, i.e. Ã(3, 2) = 3(1 − f)3f + 3(1 − f)f 3.

Ã for four contingency genes can be obtained in the following:
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���������
�

(1− f)4 4(1− f)3f 6(1 − f)2f2 4(1− f)f3 f4

(1 − f)3f (1 − f)4 + 3(1 − f)2f2 2(1 − f)3f + 2(1 − f)f3 3(1 − f)2f2 + f4 (1 − f)f3

(1− f)2f2 3(1− f)3f + 3(1 − f)f3 (1− f)4 + 4(1 − f)2f2 + f4 3(1 − f)3f + 3(1 − f)f3 (1− f)2f2

(1 − f)f3 3(1 − f)2f2 + f4 2(1 − f)3f + 2(1 − f)f3 (1 − f)4 + 3(1 − f)2f2 (1 − f)3f

f4 4(1− f)f3 6(1 − f)2f2 4(1− f)3f (1− f)4

����������
�

.

Therefore, we can calculate every entry of Ã for any number of contingency genes. For

n contingency genes, Ã(i, j) is the sum of all the probabilities of the mutation processes

from (1, 1, . . . , 1︸ ︷︷ ︸
j−1

, 0, . . . , 0) to all the genotypic combinations with i−1 turned-on contingency

genes.

Theorem 6. Let Ã be an (n + 1) × (n + 1) matrix with all positive entries, let S̃ be an

(n + 1) × (n + 1) diagonal matrix with all positive entries on the diagonal, let C > 0, let

~G0 ∈ Rn+1
+ /{0}. There exists a unique continuously differentiable function w: [0,∞) →

Rn+1
+ /{0} such that w satisfies (19). Also, the unique solution of (1) can be obtained by

the solution to (19) under the assumption that Gi(t) is the bacterial population of any

combination with i turned-on genes, i = 0, 1, . . . , n.

Proof. Since every entry of Ã + S̃ is positive, then every entry of (Ã + S̃)k is positive for

every positive integer k. By the definition of irreducible matrix, Ã + S̃ is an irreducible

matrix. According to the definition of | ~G(t)| and positivity of C, it is obvious that
| ~G(t)|0

C
is

a positive bounded linear functional on Rn+1. Therefore, there exists a unique continuously

differentiable function w to satisfy (19) by Lemma 1.

The solution of (1) gives a solution to (19) by the formula Gi(t) =

∑
Pi(t)(n
i

) , where Pi(t)

is the population of any combination of bacteria with i turned-on genes at time t. By the

uniqueness of the solution to (19), Gi(t) must have this formula. If we assume that Gi(t)

is the bacterial population of any combination with i turned-on genes, we can also get the

solution to (1) from the solution of (19).
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V.2 Asymptotic Behavior

Let wn(i) be a set of natural numbers, where n is the number of contingency genes and i is

the number of turned-on genes in the genotypic combinations, 0 ≤ i ≤ n.

Define wn(i) as follows: w2(0) = {1}, w2(1) = {2, 3}, w2(2) = {4},

wn(0) = {1},∀n = 2, 3, 4, . . . , wn(n) = {2n},∀n = 2, 3, 4, . . . ,

wn(i) = {wn−1(i), wn(i − 1) + 2n−1},∀n = 2, 3, 4, . . . , 1 ≤ i ≤ n − 1.

If n = 2, we can express the population of bacteria as a function of time as follows:

~P (t) =




P (t, 0, 0)

P (t, 1, 0)

P (t, 0, 1)

P (t, 1, 1)




=




P1(t)

P2(t)

P3(t)

P4(t)




.

w2(0) is the set of the subscript of the combination with all tuned-off genes, w2(1) is the set

of the subscripts of the combinations with one turned-on genes and w2(2) is the set of the

subscript of the combination with two turned-on genes if the number of contingency genes

is two.

If n = 3, w3(0) = {1}, w3(1) = {2, 3, 5}, w3(2) = {4, 6, 7} and w3(3) = {8}.

In the general case, wn(i) is the set of the subscripts of the combinations with i (i =

0, 1, . . . , n) turned-on genes if the number of contingency genes is n.

Definition 12. A real matrix A is called nonnegative if all its entries are nonnegative [4].

Definition 13. A nonnegative square matrix is called row stochastic, or simply stochastic,

if all its row sums are 1 [4].

Lemma 2. If A = (aij) is a row stochastic matrix, and ω = mini(aii), then |λ−ω| ≤ 1−ω,

for any eigenvalue λ of A.

Proof. Let λ be any eigenvalue of an n×n stochastic matrix A, and let x = (x1, x2, . . . , xn)t

be a corresponding eigenvector. Let 0 < |xm| = maxi(|xi|). Then λx = Ax, and, in

particular,

λxm =
∑n

j=1 amjxj
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and therefore,

λ − amm =
∑

j 6=m amj(
xj

xm
).

Now, by the triangle inequality,

|λ − amm| ≤
∑

j 6=m

amj |
xj

xm
|

≤
∑

j 6=m

amj

= 1 − amm.

Since A is stochastic, thus

|λ − ω| = |λ − amm + amm − ω|

≤ |λ − amm| + |amm − ω|

≤ (1 − amm) + (amm − ω)

= 1 − ω.

Suppose that C is a carrying capacity parameter specific to an infected host, and recall

the earlier ordinary differential equations model to compute the bacterial population:

d~P (t)

dt
= A · ~P (t) + S · ~P (t) − |~P (t)|

C
· ~P (t), t ≥ 0, ~P (0) = ~P0, (20)

where A is a 2n×2n Markov matrix , S is a 2n×2n diagonal matrix with selection coefficients

and |~P (t)| =
∑2n

i=1 Pi(t) is the total population of bacteria if n contingency genes are

considered. Also, we get a modified ODE model in the following:

d ~G(t)

dt
= Ã · ~G(t) + S̃ · ~G(t) − | ~G(t)|0

C
· ~G(t), t ≥ 0, ~G(0) = ~G0, (21)

where Ã is an (n+1)×(n+1) matrix in terms of mutation frequencies, S̃ is an (n+1)×(n+1)

diagonal matrix with selection coefficients and | ~G(t)|0 =
∑n

i=0

(
n

i

)
Gi(t).
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Lemma 3. Let ~P0 ∈ R2n

+ \{0}, ~G0 ∈ Rn+1
+ \{0}, and let ~P (t) = [P1(t), P2(t), . . . , P2n(t)]t

satisfy (1), ~G(t) = [G0(t), G1(t), . . . , Gn(t)]t satisfy (19). If λ0 is a dominant eigenvalue of

A + S and λ̃0 is a dominant eigenvalue of Ã + S̃, then λ0 = λ̃0.

Proof. According to the relationship between ~P (t) and ~G(t), i.e. Gi(t) =

∑
Pi(t)(n
i

) , 0 ≤ i ≤

n, we have | ~G(t)|0 = |~P (t)|, where t > 0. Therefore limt→∞ | ~G(t)|0 = limt→∞ |~P (t)|.

It is obvious that A + S and Ã + S̃ are both irreducible matrices. Assume that C = 1

in (1) and (19), by Lemma 1, we can get

limt→∞
~P (t) =

λ0x

|x| , where x is an eigenvector of A + S with λ0,

limt→∞
~G(t) =

λ̃0x̃

|x̃|0
, where x̃ is an eigenvector of Ã + S̃ with λ̃0.

From the above,

lim
t→∞

|~P (t)| =
λ0
∑2n

i=1(x)i
|x| =

λ0|x|
|x| = λ0,

lim
t→∞

| ~G(t)|0 =
λ̃0
∑n

i=0

(
n
i

)
(x̃)i

|x̃|0
=

λ̃0|x̃|0
|x|0

= λ̃0,

Since limt→∞ | ~G(t)|0 = limt→∞ |~P (t)|, it is obtained that λ0 = λ̃0.

Theorem 7. Let ~P0 ∈ R2n

+ \{0}, ~G0 ∈ Rn+1
+ \{0}, and let ~P (t) = [P1(t), P2(t), . . . , P2n(t)]t

satisfy (1), ~G(t) = [G0(t), G1(t), . . . , Gn(t)]t satisfy (19). If 0 < f < 1 − 1
n−1
√

2
, then

limt→∞ Gi(t) = limt→∞ Pj(t), where j ∈ wn(i), Gi(t) =

∑
j∈wn(i) Pj(t)(

n
i

) , where n is the

number of contingency genes and n ≥ 2.

Proof. Assume that C = 1 and x = (x1, x2, . . . , xi, . . . , x2n)t is a normalized eigenvector of

A + S with the dominant eigenvalue λ0, by Lemma 1

lim
t→∞

~P (t) = λ0x.

We want to show xj1 = xj2 , ∀j1, j2 ∈ wn(i), where i = 0, 1, . . . , n. When the number of

contingency genes is n, we denote A(n) to be A in (1) and let S(n) be S in (1).
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If n = 2, A(2) and S(2) are 22×22 matrices and λ
(2)
0 is a dominant eigenvalue of A(2)+S(2),

x(2) is the corresponding eigenvector with |x(2)| = 1,

(A(2) + S(2))x(2) = λ
(2)
0 x(2),




(1 − f)2 + s1 (1 − f)f (1 − f)f f2

(1 − f)f (1 − f)2 + s1 f2 (1 − f)f

(1 − f)f f2 (1 − f)2 + s1 (1 − f)f

f2 (1 − f)f (1 − f)f (1 − f)2 + s4




·




x
(2)
1

x
(2)
2

x
(2)
3

x
(2)
4




=




λ
(2)
0 x

(2)
1

λ
(2)
0 x

(2)
2

λ
(2)
0 x

(2)
3

λ
(2)
0 x

(2)
4




.

From the above, we can get four equations and subtract the third equation from the

second one. The result is shown as follows:

[(1 − f)2 + s1 − f2](x
(2)
2 − x

(2)
3 ) = λ

(2)
0 (x

(2)
2 − x

(2)
3 ).

Suppose that λ
(2)
0 = (1 − f)2 + s1 − f2, in the first equation, we can have

[(1 − f)2 + s1 − f2]x
(2)
1 = [(1 − f)2 + s1]x

(2)
1 + f(1 − f)x

(2)
1 + f(1 − f)x

(2)
3 + f2x

(2)
4

−f2x
(2)
1 = f(1 − f)x

(2)
1 + f(1 − f)x

(2)
3 + f2x

(2)
4 .

Since 0 < f < 1 and x
(2)
1 , x

(2)
2 , x

(2)
3 , x

(2)
4 > 0, λ

(2)
0 6= (1− f)2 + s1− f2. Then, x

(2)
2 = x

(2)
3 .

In the other word, x
(2)
j1

= x
(2)
j2

, ∀j1, j2 ∈ w2(1) = {2, 3}.

If n = 3, w3(1) = {2, 3, 5}, w3(2) = {4, 6, 7}, so we need to show that x
(3)
2 = x

(3)
3 = x

(3)
5

and x
(3)
4 = x

(3)
6 = x

(3)
7 . A(3) and S(3) are 23 × 23 matrices and λ

(3)
0 is a dominant eigenvalue

of A(3) + S(3), x(3) is the corresponding eigenvector with |x(3)| = 1,

(A(3) + S(3))x(3) = λ
(3)
0 x(3) (22)

Observe that

A(3) =

(
A(2)(1 − f) A(2)f

A(2)f A(2)(1 − f)

)
.

In (22), we can get eight equations, subtract the third equation from the second one, and

subtract the seventh equation from the sixth one, then we can get the following:

(
(1 − f)3 + s1 − f2(1 − f) (1 − f)2f − f3

(1 − f)2f − f3 (1 − f)3 + s1 − f2(1 − f)

)(
x

(3)
2 − x

(3)
3

x
(3)
6 − x

(3)
7

)
=

(
λ

(3)
0 (x

(3)
2 − x

(3)
3 )

λ
(3)
0 (x

(3)
6 − x

(3)
7 )

)
,

((
λ

(3)
0 − s1 0

0 λ
(3)
0 − s1

)
+

(
(1 − f)3 − f2(1 − f) (1 − f)2f − f3

(1 − f)2f − f3 (1 − f)3 − f2(1 − f)

))(
x

(3)
2 − x

(3)
3

x
(3)
6 − x

(3)
7

)
= 0,
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((
λ

(3)
0 − s1 0

0 λ
(3)
0 − s1

)
+ (1 − 2f)

(
(1 − f) f

f (1 − f)

))(
x

(3)
2 − x

(3)
3

x
(3)
6 − x

(3)
7

)
= 0.

We can transform the matrices on the left side to the Jordan canonical form [14]:

Q(3)((λ
(3)
0 − s1)I2 + (1 − 2f)

(
1 0

0 1− 2f

)
)Q−1

(3)

(
x

(3)
2 − x

(3)
3

x
(3)
6 − x

(3)
7

)
= 0.

Denote B to be

(λ
(3)
0 − s1)I2 + (1 − 2f)

(
1 0

0 1− 2f

)
.

From the first equation in (22), it is obvious that λ
(3)
0 > s1. Since f 6= 1

2
and λ

(3)
0 > s1,

det(B) 6= 0,

det(Q(3)BQ−1
(3)) 6= 0.

Therefore, x
(3)
2 = x

(3)
3 and x

(3)
6 = x

(3)
7 .

We subtract the fifth equation from the third one in (22) and subtract the sixth equation

from the fourth one in (22):

(
(1 − f)3 + s1 − f2(1 − f) (1 − f)2f − f3

(1 − f)2f − f3 (1 − f)3 + s1 − f2(1 − f)

)(
x

(3)
3 − x

(3)
5

x
(3)
4 − x

(3)
6

)
=

(
λ0(x

(3)
3 − x

(3)
5 )

λ0(x
(3)
4 − x

(3)
6 )

)
.

In the same way, we can get x
(3)
3 = x

(3)
5 and x

(3)
4 = x

(3)
6 .

Thus, we have proved that xj1 = xj2 , ∀j1, j2 ∈ w3(i), i = 1, 2.

If n = 4, A(4) + S(4) has a normalized eigenvector x(4) with a dominant eigenvalue λ
(4)
0 .

(A(4) + S(4))x = λ0x (23)

Let H(3) =

(
1 − f f

f 1 − f

)
and H(n) =

(
H(n−1)(1 − f) H(n−1)f

H(n−1)f H(n−1)(1 − f)

)
, n =

4, 5, 6, . . . .

We can apply the same method to n = 4, subtract one equation from the other one in
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(23) for four times and get the following:







λ
(4)
0 − s1 0 0 0

0 λ
(4)
0 − s1 0 0

0 0 λ
(4)
0 − s1 0

0 0 0 λ
(4)
0 − s1




+ (1 − 2f) ·
(

H(3)(1 − f) H(3)f

H(3)f H(3)(1 − f)

)



·




x
(4)
2 − x

(4)
3

x
(4)
6 − x

(4)
7

x
(4)
10 − x

(4)
11

x
(4)
14 − x

(4)
15




= 0,

((λ
(4)
0 − s1)I4 + (1 − 2f)H(4)) ·




x
(4)
2 − x

(4)
3

x
(4)
6 − x

(4)
7

x
(4)
10 − x

(4)
11

x
(4)
14 − x

(4)
15




= 0.

We can transform the above matrix to the Jordan canonical form and get the following:

(λ
(4)
0 − s1)I4 + (1 − 2f)H(4) = Q(4)((λ

(4)
0 − s1)I4 + (1 − 2f)H̃(4))Q−1

(4).

Since H(3) is a row stochastic matrix, H (4) is also a row stochastic matrix by its defini-

tion. Every entry of H (4) is real and it is symmetric , so H (4) has real eigenvalues [14]. Then

entries on the diagonal of H̃(4) are real eigenvalues of H (4). By Lemma 2, for any eigenvalue

λ of H(4), |λ − ω| ≤ 1 − ω, where ω = mini(H
(4)
ii ). Since λ is real and ω = (1 − f)2, thus,

2(1 − f)2 − 1 ≤ λ ≤ 1.

It is known that if 0 < f < 1 − 1√
2
, then 0 < (1 − f)2 < 1, and 0 < (1 − f)2 − 1 < 1.

Therefore, 0 < λ ≤ 1.

From the first equation in (23), it is obvious that λ
(4)
0 > s1. The entries on the diagonal

of (λ
(4)
0 − s1)I4 + (1 − 2f)H̃(4) are all positive, so,

det((λ
(4)
0 − s1)I4 + (1 − 2f)H̃(4)) 6= 0,
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then,

det(Q(4)((λ
(4)
0 − s1)I4 + (1 − 2f)H̃(4))Q−1

(4)) 6= 0.

Therefore, x
(4)
2 = x

(4)
3 , x

(4)
6 = x

(4)
7 , x

(4)
10 = x

(4)
11 and x

(4)
14 = x

(4)
15 .

We can use the same way to obtain the following results:

x
(4)
3 = x

(4)
5 , x

(4)
4 = x

(4)
6 , x

(4)
11 = x

(4)
13 , x

(4)
12 = x

(4)
14 ,

x
(4)
2 = x

(4)
9 , x

(4)
4 = x

(4)
11 , x

(4)
6 = x

(4)
13 , x

(4)
8 = x

(4)
15 .

Therefore, we have proved the followings:

(i) For w4(1) = {2, 3, 5, 9}, x
(4)
2 = x

(4)
3 = x

(4)
5 = x

(4)
9 .

(ii) For w4(2) = {4, 6, 7, 10, 11, 13}, x
(4)
4 = x

(4)
6 = x

(4)
7 = x

(4)
10 = x

(4)
11 = x

(4)
13 .

(iii) For w4(3) = {8, 12, 14, 15}, x
(4)
8 = x

(4)
12 = x

(4)
14 = x

(4)
15 .

If the number of contingency genes is n, we use induction and assume that x
(n)
j1

= x
(n)
j2

,

∀j1, j2 ∈ wn(i), 1 ≤ i ≤ n − 1. Suppose that λ
(n)
0 is a dominant eigenvalue of the matrix

A(n) + S(n) and x(n) is the corresponding eigenvector with |x(n)| = 1. Then we have

(A(n) + S(n))x(n) = λ
(n)
0 x(n). (24)

From the above equations (24), we have n−1 systems of linear equations like the following:

((λ
(n)
0 − s1)I2(n−2) + (1 − 2f)H(n))




x
(n)

j
(1)
1

− x
(n)

j
(1)
2

x
(n)

j
(2)
1

− x
(n)

j
(2)
2

...

x
(n)

j
(2n−2)
1

− x
(n)

j
(2n−2)
2




= 0. (25)

Now, we consider the number of contingency genes is n + 1. We suppose that λ
(n+1)
0

is a dominant eigenvalue of the matrix A(n+1) + S(n+1) and x(n+1) is the corresponding

eigenvector with |x(n+1)| = 1. Then,

(A(n+1) + S(n+1))x(n+1) = λ
(n+1)
0 x(n+1). (26)

From the above equations (26), we can get n − 1 systems of linear equations by the rela-
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tionship between wn(i) and wn+1(i). The following is one of these n − 1 systems:

(
(λ

(n+1)
0 − s1)I2(n−1) + (1 − 2f)

(
H(n)(1 − f) H(n)f

H(n)f H(n)(1 − f)

))




x
(n+1)

j
(1)
1

− x
(n+1)

j
(1)
2

x
(n+1)

j
(2)
1

− x
(n+1)

j
(2)
2

...

x
(n+1)

j
(2n−2)
1

− x
(n+1)

j
(2n−2)
2

x
(n+1)

j
(1)
1 +2n−1

− x
(n+1)

j
(1)
2 +2n−1

x
(n+1)

j
(2)
1 +2n−1

− x
(n+1)

j
(2)
2 +2n−1

...

x
(n+1)

j
(2n−2)
1 +2n−1

− x
(n+1)

j
(2n−2)
2 +2n−1




= 0.

By the first equation in (26), we can have λ
(n+1)
0 > s1.

Since H(n+1) =

(
H(n)(1 − f) H(n)f

H(n)f H(n)(1 − f)

)
is a row stochastic matrix, by lemma 2,

any eigenvlaue λ of H (n+1) satisfies

2ω − 1 ≤ λ ≤ 1, ω = min
i

(H
(n+1)
ii ) = (1 − f)n−1.

Also, we know that 0 < f < 1 − 1
n−1
√

2
, thus, 0 < λ ≤ 1.

We transform (λ
(n+1)
0 − s1)I2(n−1) +(1−2f) ·H(n+1) by using the Jordan canonical form

H̃(n+1) of H(n+1) as follows:

(λ
(n+1)
0 − s1)I2(n−1) + (1 − 2f) · H(n+1) = Q(n+1)((λ0 − s1)I2(n−1) + (1 − 2f)H̃(n+1))Q−1

(n+1).

All entries on the diagonal of H̃(n+1) are eigenvalues of H (n+1) and λ
(n+1)
0 > s1, so

det(Q(n+1)((λ
(n+1)
0 − s1)I2(n−1) + (1 − 2f)H̃(n+1))Q−1

(n+1)) 6= 0.

We obtain that

x
(n+1)

j
(i)
1

= x
(n+1)

j
(i)
2

, i = 1, 2, . . . , 2n−2,

x
(n+1)

j
(i)
1 +2n−1

= x
(n+1)

j
(i)
2 +2n−1

, i = 1, 2, . . . , 2n−2.

Since we have n − 1 systems of linear equations, we can get n − 1 kinds of results like
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the above. Also, we can obtain the nth system of linear equations from (26):

((λ
(n+1)
0 − s1)I2(n−1) + (1 − 2f)H(n+1))




x
(n+1)

j
(1)
1

− x
(n+1)
2n−1+1

...

x
(n+1)
2n−1 − x

(n+1)

j
(2n−1)
2


 = 0.

By applying Lemma 2, we can get that

x
(n+1)

j
(1)
1

= x
(n+1)
2n−1+1

, . . . , x
(n+1)
2n−1 = x

(n+1)

j
(2n−1)
2

.

By the definition of wn+1(i), we have proved that

xj1 = xj2 , ∀j1, j2 ∈ wn+1(i), i = 1, 2, . . . , n.

From all the above, for any number of contingency genes n, A(n) +S(n) has a normalized

eigenvector x = (x1, x2, . . . , x2n)t with a dominant eigenvalue λ0. Also, the components in

x have the following relationship:

xj1 = xj2 , ∀j1, j2 ∈ wn(i), i = 1, 2, . . . , n − 1.

By lemma 1 and the above results,

lim
t→∞

∑

j∈wn(i)

Pj(t) = λ0

∑

j∈wn(i)

xj = λ0

(
n

i

)
xj .

Since Gi(t) =

∑
j∈wn(i) Pj(t)(

n
i

) by its definition, we have

limt→∞ Gi(t) = λ0xj.

Also, suppose that Ã+S̃ has a normalized eigenvector x̃ = (x̃0, x̃1, . . . , x̃n)t with a dominant

eigenvalue λ̃0. By lemma 1,

lim
t→∞

Gi(t) = λ̃0x̃i.

Since λ̃0 = λ0 by lemma 3, it is obtained that x̃i = xj.
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We have

lim
t→∞

Pj(t) = λ0xj = λ̃0x̃i = lim
t→∞

Gi(t), ∀j ∈ wn(i), i = 1, 2, . . . , n − 1.

If j ∈ wn(0) or wn(n), it is obvious that limt→∞ Pj(t) = limt→∞ Gi(t), where i =

0, n.

V.3 Numerical Simulations for the Modified Model

We can also perform numerical simulations for the modified system by using Mathematica.

The number of equations in the modified system increases in the same order as the number of

contingency genes. The modified system improves the computation efficiency significantly.

Thus, we can obtain the graphs for the populations of genotype combinations with more

than 10 contingency genes.

It is known that the incubation period of GAS pharyngitis is 3-6 days [24, 25]. We

therefore perform simulations for more than 10 contingency genes to observe the values for

the mutation frequency, selection coefficients, in order to be consistent with the domination

time about 3-6 days. In all the following simulations, we assume the carrying capacity

parameter C to be 1010.

Table 4 and Table 5 show estimations for the values of mutation frequencies, and se-

lection coefficients for the dominant class to converge within 4-6 days when 20 contingency

genes and 30 contingency genes are considered, respectively.

Table 4: Estimations for 20 Contingency Genes

mutation frequency si,i=1,2,. . .,20 s21 convergence time for the dominant class

0.0013-0.033 3 ln 2/0.33 3 ln 2/0.3 100hr-144hr
0.0015-0.01 3.5 ln 2/0.33 3.5 ln 2/0.3 96hr-144hr
0.03-0.048 3.5 ln 2/0.33 3.5 ln 2/0.3 90hr-144hr

0.0018-0.003 4 ln 2/0.33 4 ln 2/0.3 96hr
0.048-0.066 4 ln 2/0.33 4 ln 2/0.3 96hr-144hr
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Table 5: Estimations for 30 Contingency Genes

mutation frequency si,i=1,2,. . .,30 s31 convergence time for the dominant class

0.0048-0.025 3.5 ln 2/0.33 3.5 ln 2/0.3 100hr-144hr
0.0048-0.03 4 ln 2/0.33 4 ln 2/0.3 100hr-130hr
0.0056-0.02 5 ln 2/0.33 5 ln 2/0.3 96hr-120hr
0.003-0.046 5 ln 2/0.33 5 ln 2/0.3 96hr-120hr
0.0057-0.007 5.5 ln 2/0.33 5.5 ln 2/0.3 90hr

0.065-0.6 5.5 ln 2/0.33 5.5 ln 2/0.3 96hr

From the tables, contingency genes switch on or off much faster and each cell divides

much more quickly. In Chapter II, it is known that the doubling time of the ith genotype

class is appoximately
ln 2

si

. Therefore, the doubling time of the dominant class is about 5

minutes if a higher number of contingency genes is considered.

We have discussed how the mutation frequencies and selection coefficients affect the

bacterial population in an infected host. Since the computation has been significantly

improved, we can deal with more than one hundred contingency genes. However, when

we performed simulations for 34 contingency genes if the carrying capacity parameter C is

1010, there are fractional values that are less than 1 for the populations of some genotype

combinations in Figure 8. These are unrealistic results. If we change the value for the

carrying capacity parameter from 1010 to 1014, the new results are shown in Figure 9. From

the above, we can tell the carrying capacity parameter affects the existence of genotype

combinations. We will further the discussion about the effect of the carrying capacity

parameter on the bacterial populations.
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Figure 8: Populations for 34 contingency genes when C = 1010.
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Figure 9: Populations for 34 contingency genes when C = 1014.

V.4 Carrying Capacity Coefficients

From previous numerical simulations, we observe from the graphs that the value for the

carrying capacity parameter has an effect on the existence of genotype combinations if a

larger number of contingency genes is considered. All the simulations have been performed

under the condition that all the genotypic combinations share the same carrying capacity

parameter specific to the host. Due to the adaptation for the bacteria to the host’s immune

system [24, 25], different genotypic classes have different resource utilizations in the host. In

Chapter IV, the graphical results show that the classes with the same number of turned-on

contingency genes have the same graph for the bacterial population, which indicates that

these classes have the same ability to adapt to the infected host. Based on this fact, we

suppose that the combinations with the same number of turned-on contingency genes have

the same carrying capacity parameter. Then we introduce carrying capacity coefficients for

genotypic classes. From numerical simulations in Chapter IV, the combinations with more

turned-on congtingency genes have higher resource utilizations in the host. We also suppose

that the carrying capacity coefficient has a lower value for the combinations with a larger

number of turned-on contingency genes.

For simplicity, we introduce three carrying capacity coefficients c0, c1, c2 to the first

model with two contingency genes, where c0 is the carrying capacity coefficient for the class

(0,0), c1 is the coefficient for the classes (0,1) and (1,0), c2 is the coefficient for the class

(1,1). A new model is shown as follows:




d
dt

P (t, 0, 0)

d
dt

P (t, 1, 0)

d
dt

P (t, 0, 1)

d
dt

P (t, 1, 1)




=




(1 − f)2 + s1 f(1 − f) (1 − f)f f2

f(1 − f) (1 − f)2 + s2 f2 (1 − f)f

(1 − f)f f2 (1 − f)2 + s3 f(1 − f)

f2 (1 − f)f f(1 − f) (1 − f)2 + s4







P (t, 0, 0)

P (t, 1, 0)

P (t, 0, 1)

P (t, 1, 1)



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−|c0P (t, 0, 0) + c1P (t, 1, 0) + c1P (t, 0, 1) + c2P (t, 1, 1)|
C




P (t, 0, 0)

P (t, 1, 0)

P (t, 0, 1)

P (t, 1, 1)




,

where c0, c1, c2 are carrying capacity coefficients, and c0 > c1 > c2.

If n contingency genes are considered, the new model to compute the bacterial popula-

tion is the following:

d~P (t)

dt
= A · ~P (t) + S · ~P (t) − |∑ ciPi(t)|

C
· ~P (t), t ≥ 0, ~P (0) = ~P0, (27)

where A is a 2n×2n Markov matrix , S is a 2n×2n diagonal matrix with selection coefficients,

Pi(t) is the population of combinations with i turned-on contingency genes and ci is the

corresponding carrying capacity coefficient, c0 > c1 > . . . > cn.

Theorem 8. Let A be a 2n × 2n Markov matrix, let S be a 2n × 2n diagonal matrix with

all positive entries on the diagonal, let C > 0, ci > 0, i = 0, 1, . . . , n, let ~P0 ∈ R2n

+ /{0}.

There exists a unique continuously differentiable function u: [0,∞) → R2n

+ /{0} such that u

satisfies (27).

Proof. Since every entry of A + S is positive, every entry of (A + S)k is positive for any

positive integer k. By the definition of irreducible matrix, A + S is an irreducible matrix.

According to the definition of | ~P (t)| and the positivity of C, it is obvious that
|∑ ciPi(t)|

C
is

a positive bounded linear functional on R2n

. Therefore, there exists a unique continuously

differentiable function u that satisfies (27) by Lemma 1.

We can compute the bacterial population of every genotype combination by using Math-

ematica as before. Here, four contingency genes are considered. We assume that the selec-

tion coefficients and carrying capacity coefficients are the same for all combinations with

the same number of turned-on contingency genes. The values for the parameters used in

numerical solutions are shown in Table 6.

47



Table 6: Parameters Used in Figure 10

carrying capacity parameter C = 108

mutation frequency f = 0.0001

selection coefficients s1 = 1.5 ln 2/0.4, s2 = s3 = s5 = s9 = 1.5 ln 2/0.39
s4 = s5 = s7 = s10 = s11 = s13 = 1.5 ln 2/0.36

s8 = s12 = s14 = s15 = 1.5 ln 2/0.32, s16 = 1.5 ln 2/0.31

carrying capacity coefficients c0 = 10, c1 = 8, c2 = 6, c3 = 4, c4 = 2

initial conditions P (0, 0, 0, 0) = 100, P (0, i1 , i2, i3, i4) = 0, (i1, . . . , i4 = 1, 0)

It is found that we get the same graph for the population of combinations with the same

number of turned-on genes. Thus there are five distinct graphs for the population of 16

genotypic combinations.

The graph for the total population is shown below (see Figure 10). From the graph, the

total population obtains three increasing levels. The first level happens at about 5 hours,

the second one happens at about 32 hours and goes up smoothly, and the last one happens

at about 80 hours.
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Figure 10: The total population of 16 genotypic combinations with 4 contingency genes.

If we want to get the population graph of bacteria with more than 10 contingency genes

when the carrying capacity coefficients are considered, a modified model is needed. Thus,

we add carrying capacity coefficients to the modified model we discussed before. The model

is shown as follows:

d ~G(t)

dt
= Ã · ~G(t) + S̃ · ~G(t) − |∑ ciGi(t)|0

C
· ~G(t), t ≥ 0, ~G(0) = ~G0, (28)
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where ci is a carrying capacity coefficient for Gi(t), which is the average population of all

the combinations with i turned-on contingency genes, and c0 > c1 > . . . > cn.

The dominant variant is much more important than other variants since it is necessary

to adapt to the host immune environment. We want to determine how fast the population

of the dominant variant converges. The convergence time for the dominant variant has

been defined before. Upon the condition that the combinations with the same number of

contingency genes share the same carrying capacity, we wish to find out how the convergence

time changes if the selection coefficients and mutation frequency are both changed. The

case of 20 contingency genes is used as an example. The parameters used for simulations

are shown in Table 7 in which {dj} is an arithmatic progression with the first term 0.1 and

common difference 0.01, and {hj} is an arithmatic progression with the first term 3 and

common difference 0.1. We take C to be 1010.

Table 7: Parameters Used in Figure 11

mutation frequency f = 3 × 10(−2−hj )

hj = 3 + 0.1(j − 1), j = 1, 2, . . . , 11

selection coefficients si = 3.64 + dj , i = 1, 2, . . . , 20
s21 = 3.64 + 20dj

dj = 0.1 + 0.01(j − 1), j = 1, 2, . . . , 11

carrying capacity coefficients ci = 11 − 0.5i, i = 1, 2, . . . , 21

In Figure 11, x-axis represents selection coefficients, y-axis represents the mutation

frequency and z-axis is the convergence time for the dominant variant with 20 contingency

genes.

We change the number of contingency genes from 6 to 20 and the values for mutation

frequency respectively. The values for parameters are shown in Table 8 and we assume C

to be 1010.

Figure 12 shows how the convergence time changes under the condition that the number

of contingency genes increases from 6 to 20 and the mutation frequency is log-linearly

decreasing.
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Table 8: Parameters Used in Figure 12

mutation frequency f = 3 × 10(−2−hj )

hj = 3 + 0.1(j − 1), j = 1, 2, . . . , 11

selection coefficients si = 3.64, i = 1, 2, . . . , g
sg+1 = 3.64 + 0.1g

carrying capacity coefficients ci = 11 − 0.5i, i = 1, 2, . . . , g + 1

Also, we want to know what the convergence time will be as the number of contingency

genes increases while the selection coefficients are changing. The number of genes is varied

from 3 to 30. Table 9 tells us the values for the parameters we need to use and C = 1010.

Thus, we can obtain the graph (see Figure 13).

Table 9: Parameters Used in Figure 13

mutation frequency f = 3 × 10(−3)

selection coefficients si = 1.82 + dj , i = 1, 2, . . . , g
sg+1 = 1.82 + g × dj

dj = 0.1 + 0.01(j − 1), j = 1, 2, . . . , 11

carrying capacity coefficients ci = 22 − 0.5i, i = 1, 2, . . . , g + 1
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Figure 11: The behavior of the convergence time for the dominant genotype class of 20
contingency genes with the changed selection coefficients in x-axis and mutation frequency
in y-axis.
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Figure 12: The behavior of the convergence time for the dominant genotype class with the
log-linearly decreased mutation frequency in x-axis and the increased number of contingency
genes in y-axis.
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Figure 13: The behavior of the convergence time for the dominant genotype class with the
changed selection coefficients in x-axis and the increased number of contingency genes in
y-axis.
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CHAPTER VI

CONCLUSION

A mathematical model is developed to explore contingency genes’ adaptation to the bacterial

pathogen Streptococcus pyogenes in infected hosts. We perform theoretical and numerical

analyses for the model. From the theoretical analysis, a unique nontrivial exponentially

asymptotically stable equilibrium solution is obtained for the model. We do numerical

simulations to illustrate the solutions of the model by using Mathematica. The graphical

solutions demonstrate that the bacterial population can evolve from the initial state with all

turned-off genes to a state with all turned-on genes very quickly because of highly mutable

contingency genes. The class with all turned-on genes causes inflammation in the infected

host and the coughing that then propagates the disease. More simulations are performed

to demonstrate how the population of the class with all turned-on genes is dependent on

selection rates, the number of contingency genes and mutation frequency. To increase the

efficiency of the computation and allow a greater number of contingency genes, a modified

model is constructed by reducing the number of equations in the ODE model. We provide

more simulations for a larger number of contingency genes. The results show how the

bacterial population can adapt to the infected hosts in a realistic time frame, dependent

on mutation frequencies, selection rates, the number of contingency genes, and the carrying

capacity parameter.

Strep thoat is an infection caused by streptococcal bacteria. It can spread within close

contacts, so that it is important to isolate the patients with strep throat [34]. Our model

explains the clustering of cases in a family, in which the genetic similarity of siblings al-

lows more rapid adaptation to hosts. Patients with strep throat usually need antibiotics

treatment, which lasts for about ten days. It is very important that the antibiotics medica-

tion is followed to completion even though recovery may seem complete after three to four

days, since contingency genes have the ability of surviving the host defense. The studies

of the ODE model increase our understanding of the important role of contingency genes

in quick adaptation to the bacterial pathogen. The simulations of this model demonstrate
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the process of contingency gene evolution in bacteria. Specifically, a large number of con-

tingency genes (as in Table 4 and 5) can be switched on and attain domination within 4-6

days with realistic mutation frequencies and doubling times.
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