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CHAPTER 1

INTRODUCTION

The purpose of this dissertation is to develop damage mechanics approaches for the

numerical modeling of fracture evolution along sharp (e.g., zero-thickness) and diffuse

interfaces resulting from creep or fatigue degradation. Throughout this work, three com-

putational damage mechanics frameworks, namely the cohesive zone model (CZM), con-

tinuum damage mechanics (CDM), and the phase field model (PFM) for brittle fracture,

are implemented within the finite element analysis and extended to incorporate time- and

rate- dependent damage mechanisms. The CZM is a robust methodology for simulating

sharp crack growth and friction sliding under non-monotonic mixed-mode loading condi-

tions, whereas gradient and nonlocal CDM and PFM approaches are suited for modeling

the evolution of diffuse crack interfaces. The selection of the CZM is motivated by the

need to simulate interface degradation in laminate composites subjected to high-cycle fa-

tigue loading, whereas CDM is employed to model time-dependent crevasse propagation in

polar ice sheets undergoing creep deformations. The CZM and PFM are also deployed to

model the time-independent, brittle fracture of polar ice sheets by simulating the evolution

of water-filled crevasses.

Damage mechanics is the study of fracture initiation and propagation in materials un-

dergoing mechanical loading. The fundamental concept is to characterize the presence of

microscopic defects, such as micro-cracks or micro-voids, within the macroscopic material

behavior. Consider, for example, a distribution of micro-voids within a material volume;

during loading the voids can gradually grow in size, thus weakening the material until they

coalesce into a macro-crack. From this perspective, damage is physically interpreted as

the ratio of the area of micro-defects SD
i to the total area ST

i of material along its princi-

pal planes, that is, cross-sectional cuts of the material normal to each principal direction
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i = {1,2,3} [Lemaitre, 1992]. Depending on the size scale of damage with respect to the

system, the damage front can be represented as either a sharp interface with zero thickness

or a diffuse interface with finite (nonzero) thickness. Traditional CDM methods charac-

terize damage as a volume representing the void space throughout the diffuse interface;

for example, an idealized (isotropic) damaged medium is assumed to comprise uniformly

distributed, spherical micro-voids. The CZM, on the other hand, projects damage onto a

sharp interface, and so damage is characterized as an area representing micro-cracks across

the interface. In either of these frameworks, the state of damaged or degraded material

is generally characterized using a damage tensor D, however in the simplified case of

isotropic damage, a scalar variable D = SD/ST sufficiently describes the damaged material

state. Thus, for undamaged (virgin) material D = 0, whereas for a fully damaged material

D = 1. Partially damaged material (i.e., where 0 < D < 1) becomes more stressed and

compliant, which is accounted by the principle of effective stress [Kachanov, 1958, Rabot-

nov, 1963] and the hypothesis of strain equivalence [Lemaitre, 1971] or energy equivalence

[Sidoroff, 1981]. In practice, damage-induced compliance is incorporated into a material’s

constitutive behavior by reducing the stiffness or viscosity with the factor (1−D). This

implementation of damage is appropriate for modeling fracture evolution in both sharp and

diffuse interfaces, which is demonstrated through the work presented in this dissertation.

Moreover, damage mechanics offers a convenient framework wherein multiple damage

mechanisms (e.g., quasi-static loading, cyclic loading, hydraulic fracture, or even corro-

sion) can simultaneously degrade material.

The first objective of this dissertation is to apply the CZM framework to model the

high-cycle fatigue delamination of composites. In the past two decades, the CZM has been

extensively used within the finite element analysis to simulate the progressive growth of

delamination and debonding in composite structures, whose design is increasingly dictated

by lighter weight and better performance requirements. In this approach, special interface

elements known as cohesive elements are placed along potential crack paths (e.g., the lami-
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nate interface) between bulk (continuum) elements. Then, cohesive (or traction-separation)

laws derived from damage mechanics formulations are defined to prescribe the constitutive

behavior of the cohesive elements placed along the finite element edges. A variety of

cohesive laws have been developed in the literature for monotonic loading scenarios fea-

turing bilinear, trapezoidal, polynomial, or exponential shapes [van den Bosch et al., 2006];

generally, these cohesive laws feature an initial linear-elastic response to loading followed

by damage-softening behavior. More recently, CZMs have been developed to investigate

high-cycle fatigue debonding and delamination growth, which are the dominant modes of

failure for subcritical cyclic loading in laminated composite structures [Mi et al., 1998b].

The CZM is a damage mechanics approach for simulating fracture [Alfano and Crisfield,

2001], and thus it is phenomenological in nature. Although many of the CZM parameters

have a physical interpretation, they are actually calibrated by fitting the model results to ex-

perimental data. Consequently, the viability of CZMs as reliable and accurate progressive

damage accumulation models rests on the use and development of cohesive laws that are

minimally sensitive to phenomenological parameters.

The significance of static cohesive parameters (e.g., the initial stiffness and cohesive

strength) has already been investigated for monotonic (static) loading cases, and several

studies reported that the shape of the cohesive law has little effect on global load-displacement

behavior so long as the critical fracture energy is held constant [Valoroso and Champaney,

2006, Gustafson and Waas, 2009]. However, there are some static loading studies where

numerical results are sensitive to the CZM parameters, particularly the cohesive strength

(i.e., maximum traction) and the shape of the damage-softening regime [Chandra et al.,

2002, de Borst, 2003]. Recent studies have also demonstrated a dependency of global nu-

merical results on the loading rate. For high-cycle fatigue loading, the approach has gener-

ally been to decompose damage into static and fatigue components and employ power-law

functions to describe fatigue damage accumulation over large numbers of cycles [Robinson

et al., 2005, Harper and Hallett, 2010, Khoramishad et al., 2010, de Moura and Gonçalves,
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2014, Jimenez et al., 2014]. Typically, the power law function is defined based on either

the interface separation or the strain energy release rate (SERR) by introducing two new

parameters, namely, the damage coefficient and exponent. These two model parameters are

then calibrated by matching numerical results to the experimental data in the Paris regime,

wherein the crack growth rate with respect to loading cycles da/dN varies linearly with

the strain energy release rate ∆G or the stress intensity factor ∆K when plotted on a log-

log scale [Paris et al., 1961, Paris and Erdogan, 1963]. A key point is that the interaction

between static and fatigue damage under cyclic loading introduces a non-physical depen-

dence of fatigue crack growth rate on static model parameters of cohesive stiffness and

cohesive strength, which are usually taken as penalty parameters under monotonic loading

cases [Pascoe et al., 2013]. Additionally, the crack growth rate predictions may be affected

by the lack of smoothness of cohesive law (e.g. bilinear shape with C0 continuity) due

to an abrupt change from linear elastic behavior to damage-induced softening behavior.

To this end, we establish a reliable CZM approach for modeling fatigue delamination of

composites which alleviates spurious sensitivity to the constituent cohesive parameters.

The second objective of this dissertation is to apply the CDM framework to model

crevasse (fracture) evolution as a diffused damage interface within polar ice sheets/shelves

undergoing large creep deformations. Over the long time scales of glacier and ice sheet

evolution (decades to centuries or longer), it is well established that the rheology of ice is

best represented as a non-Newtonian (nonlinearly viscous) fluid, using the power law creep

equation known as the Glen’s law [Glen, 1955, Nye, 1957, Cuffey and Paterson, 2010,

van der Veen, 2013] in glaciology. By incorporating this nonlinearly viscous rheology,

several studies have established that the three-dimensional (3D) nonlinear incompressible

Stokes equations (hereafter referred to as the Stokes equations for brevity) provide the

most accurate description of momentum balance for modeling the flow of glaciers in com-

parison to other approaches [Leng et al., 2012, 2013]. Furthermore, recent advances in

higher-order finite element discretization and scalable solvers for the solution of Stokes
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equations [Worthen et al., 2014, Isaac et al., 2015] enable us to simulate the dynamics of

large glaciers, or even the entire Antarctic land ice sheet by utilizing the coverage and spa-

tial resolution of ice sheet geometry data available from high-resolution satellite imagery.

In order to use the Stokes formulation to predict glacier and ice sheet evolution, however, it

is necessary to account for iceberg calving, which requires that we also simulate the damage

induced crevasse formation and propagation occurring on much shorter time scales (days

to months). Crevasse initiation and propagation affect the stability of ice sheets by acceler-

ating their flow, promoting iceberg calving, and triggering catastrophic collapse of glaciers

and ice shelves [Vieli and Nick, 2011, Schulson and Duval, 2009]. Modeling and simula-

tion of creep fracture (damage) mechanisms and its relation to the flow behavior (rheology)

of ice sheets/shelves can be useful in providing reliable estimates for mass loss from ice

sheets, a key component of sea level. Current numerical ice sheet/shelf models used to

study their stability employ empirical calving laws and do not account for the physics of

fracture, severely limiting their predictive capability and reliability. Furthermore, due to

the vast separation of time scales associated with flow and fracture processes, the time be-

tween fracture inception and iceberg calving events associated with complete failure can

exceed decades and sometimes centuries. This is particularly challenging because it be-

comes necessary to couple the solid mechanics of creep fracture with the fluid mechanics

of viscous flow in a consistent yet computationally feasible manner. To this end, we apply

the CDM framework to develop a novel formulation that combines the nonlinear Stokes

formulation with a nonlocal creep damage model. An updated-Lagrangian description of

motion is selected to account for the large creep deformations of polar ice sheets and to

facilitate the transport of diffuse damage, thus enabling the physically accurate modeling

of crevasse evolution in glaciers and land ice sheets.

The third objective of this dissertation is to apply the CZM, CDM, and PFM to model

the propagation of water-filled surface and basal crevasses through polar ice sheets. Em-

pirical calving models [Meier and Post, 1987, van der Veen, 1996, 2002, Nick et al., 2007,
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2009] describe the calving behavior of tidewater glaciers to a reasonable extent but lack a

mechanistic basis despite significant efforts [Benn et al., 2007b]. As an alternative, theo-

retical calving laws rooted in linear elastic fracture mechanics (LEFM) and dislocation me-

chanics have been utilized to predict the penetration depth of water-filled crevasses through

ice [Weertman, 1973, van der Veen, 1998a, Nick et al., 2010a, Krug et al., 2014]. The the-

oretical fracture mechanics models assume brittle fracture of ice under the action of tensile

stresses induced by both the longitudinal creeping flow of glaciers and hydrostatic pressure

resulting from meltwater or seawater filling the crevasse. While iceberg calving is linked

to brittle fracture of linear elastic ice over shorter time scales [Rist et al., 1999, van der

Veen, 1998a,b], over longer times scales glacier and ice sheet flow is better described by

the Glen’s law [Glen, 1955, Cuffey and Paterson, 2010]. This presents computational chal-

lenges when trying to incorporate the fracture mechanics models into numerical ice sheet

models, which generally incorporate the nonlinearly viscous rheology. The alternative ap-

proach to modeling calving within numerical ice flow models is damage mechanics; and

thus, to this end, we apply the CDM framework to model the initiation and propagation of

water-filled surface and basal crevasses and compare the CDM approach against the theo-

retical fracture mechanics models. We also consider the application of the CZM and PFM

for modeling crevasse evolution, which are both time-independent approaches for simulat-

ing brittle failure. The CZM also assumes the crack is a zero-thickness interface instead of

a diffuse damage zone and is thus more inherently consistent with the fracture mechanics

models.
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CHAPTER 2

A DISCRETE DAMAGE ZONE MODEL FOR MIXED-MODE DELAMINATION OF

COMPOSITES UNDER HIGH-CYCLE FATIGUE

2.1 Introduction

Laminated composite materials are widely used in aerospace structural applications

requiring low weight and high mechanical performance. In these laminated composites,

delamination (i.e. separation of layers or plies) and debonding (i.e. failure of adhesive

bond-lines) are the two most dominant failure modes [Mi et al., 1998a, Blackman et al.,

1991]. Since delamination occurs at relatively low loads under cyclic loading, mechanical

fatigue is the most common cause of delamination failure in composite structures. Typi-

cally, delamination in structural components during service develops or grows under vary-

ing mixed mode and temperature conditions due to the multi-axial cyclic loading, curved

structural geometry, different lamina ply orientation, and dynamic environmental changes

[Sjogren and Asp, 2002, Blanco et al., 2004]. Therefore, it is important that the compu-

tational techniques used for predicting fatigue delamination are able to efficiently capture

the dependence of crack growth rates on the mode-mix ratio and temperature. To this end,

we present a discrete damage zone model, which belongs to the class of discrete cohesive

zone models, and its finite element implementation.

When material nonlinearities are negligible and the size of the fracture process zone at

the crack tip is small, linear elastic fracture mechanics (LEFM) presents a convenient way

for modeling delamination [Blackman et al., 1991, 2003c,a, Nilsson et al., 2001, Skallerud

and Zhang, 1997]. Analysis of fatigue-driven delamination using LEFM involves relating

the fatigue crack growth rate with the amplitude of the fracture energy release rate and

mode mix ratio using the Paris law [Paris et al., 1961, Paris and Erdogan, 1963]. How-

ever, LEFM is more suitable for brittle materials wherein the size of the fracture process
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zone at the crack tip is negligible, rather than for quasi-brittle, ductile or some compos-

ite materials wherein the size of the fracture is significant [Bazant, 1999]. An alternative

approach is based on the cohesive zone model (CZM) [Hillerborg et al., 1976, Xu and

Needleman, 1994] that assumes a bounded stress within the cohesive zone, as originally

proposed by Barenblatt [Barenblatt, 1962] and Dugdale [Dugdale, 1960]. In this approach,

special elements known as cohesive interface elements are placed along potential crack

paths (e.g. laminate interfaces), usually, within a finite element model. Then, cohesive

laws or traction-separation laws are defined to prescribe the constitutive behavior of the

continuum interface element placed along the finite element edges. There exists a great

variety in traction-separation laws (e.g. bilinear, exponential, polynomial etc.), but broadly

they all describe the same global load-displacement behavior [Chandra et al., 2002]. The

discrete implementation of the CZM involves placing spring elements at the interface finite

elements nodes, rather than at finite element edges like in the continuum implementation.

[Cui and Wisnom, 1993, Xie et al., 2006, Xie and Waas, 2006, Liu et al., 2012]. The dis-

crete approach has been found to avoid computational issues that lead to convergence and

mesh sensitivity [Cui and Wisnom, 1993, Xie et al., 2006, Xie and Waas, 2006]. How-

ever, the approach of placing discrete elements between the interface nodes could give a

similar discretized system of equations compared to that given by the Newton-Cotes inte-

gration scheme in continuum elements, but the stress distribution along the interface would

be different [Do et al., 2013]. In addition employing spring-type elements also avoids con-

vergence issues related with large deformations and associated element distortion, which

continuum elements may exhibit. Due to the simplicity of the approach and its compat-

ibility with finite element analysis, the CZM is a popular method for investigating frac-

ture and delamination. However, most CZMs (both continuum and discrete) considered

reversible elastic behavior of the interface and investigated delamination, debonding and

crack growth under monotonic quasi-static loading [Schellenkens and de Borst, 1993, Al-

fano and Crisfield, 2001, Camanho et al., 2003, Mi et al., 1998a, Park et al., 2009, Xu and
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Needleman, 1994, van den Bosch et al., 2006, Robinson et al., 2000, Li and Ghosh, 2006,

Alfano et al., 2009, Blackman et al., 2003b, Li et al., 2006, Goyal et al., 2008, Liljedahl

et al., 2006, Yang and Ravi-Chandar, 1998].

Alfano and Crisfield [2001] have shown that CZMs can be recast within the more gen-

eral damage mechanics framework. Consequently, cohesive laws can be augmented with

damage models and this allows one to model delamination or subcritical crack growth

under non-monotonic and cyclic fatigue loading, within the irreversible damage mechan-

ics framework. There exist several models that extend the CZMs for monotonic loading

into forms suitable for cyclic loading by introducing a damage variable to incorporate ir-

reversibility. In an early model de Andres et al. [1999] attempted to apply a cohesive

law wherein a damage parameter for the cohesive zone material was explicitly adjusted

with increasing number of loading cycles. Yang et al. [2001] developed a cohesive law

that describes separately the unloading and reloading processes and creates a hysteresis

loop between unloading and reloading paths. Later, Roe and Siegmund [2003], Siegmund

[2004] developed fatigue crack growth by incorporating a damage evolution equation for

cyclic loading using the effective stress concept. Other approaches detailed in [Nguyen

et al., 2001, Goyal et al., 2004] also incorporated irreversible behavior into their cohesive

formulations for cyclic loading; however, in all these formulations damage accumulation

was calculated using cycle-by-cycle analysis, and so they are only suitable for low cycle

fatigue analysis.

For high-cycle fatigue, tracking the damage variable in time during each individual cy-

cle would be computationally expensive. Instead, it would be more efficient to formulate

fatigue damage growth relations in cycle-based format by assuming the damage increment

per cycle to be very small [Paas et al., 1993, Peerlings et al., 2000]. With this idea in

mind, Robinson and co-workers [Robinson et al., 2005, Munoz et al., 2006] extended the

bilinear cohesive law for the continuum interface element by incorporating the Peerlings

law for fatigue damage [Peerlings et al., 2000]. Later, Turon et al. [2007a] proposed a
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new damage model for the delamination in composites under high-cycle fatigue by relating

the damage evolution rate dD/dN to the crack propagation rate da/dN given by the Paris

law. Recently, Harper and Hallett [2010] presented a new fatigue damage formulation that

preserves the direct link with linear elastic fracture mechanics and detailed the extraction

of strain energy release rate from the cohesive zone. More recently, Landry and LaPlante

[2012] developed a new model for progressive delamination in composite structures sub-

jected to mode I fatigue loading of varying amplitudes. In all these models for high-cycle

fatigue, a separate damage variable is introduced into a continuum cohesive zone model

given by a bilinear traction separation law. However, one can derive the traction-separation

law using a suitable damage growth law and, thus, model interlaminar degradation due to

static and fatigue damage components in a more unified and efficient way. This is the idea

behind the discrete damage zone model [Liu et al., 2012], wherein the interface constitu-

tive (force-separation) law was derived assuming that the interface degraded according to

Mazar’s exponential damage law [Mazars, 1986]. Since the fracture process zone behind

the delaminated material is interpreted as a damage zone, rather than a cohesive zone, it is

appropriate to call it the discrete damage zone model (DDZM). Recently, DDZM has also

been implemented within the extended finite element method [Wang and Waisman, 2014].

This avoids the need for meshes conforming to the discontinuities and adaptive remeshing

during the growth of discontinuities.

In this chapter, we extend the DDZM for the mixed mode fatigue delamination analysis

of laminated composites within the framework of the finite element method. The proposed

cohesive element is a discrete nonlinear spring placed at the finite element nodes of the

laminate interface [Liu et al., 2012]. Since the constitutive law governing the discrete inter-

face element’s behavior is derived entirely from the perspective of damage mechanics it can

naturally account for the permanent reduction in material strength and stiffness when the

material is loaded beyond the elastic limit (irreversibility of damage). The model has been

implemented in the commercial finite element analysis software Abaqus via the user de-

10



fined subroutine UEL. The unique features of the proposed DDZM for fatigue delamination

are: (1) the application of discrete elements as opposed to continuum interface elements;

(2) the description of interface damage growth as a function of interface separation directly

from the continuum damage models of Mazars [1986] and Peerlings et al. [2000]; (3) the

incorporation of mode-mix ratio- and temperature- dependence of fatigue damage param-

eters; and (4) the lack of pathological mesh dependence of the approach with refinement.

The remainder of this chapter is organized as follows: In Section 2.2 the formulation of the

DDZM for high-cycle fatigue is discussed; in Section 2.3 the numerical implementation

and the time integration scheme are described; in Section 2.4 the numerical results of mode

I, mode II and mixed mode delamination analysis are presented and the respective mesh

convergence behavior is investigated. Additionally, model calibration and validation is dis-

cussed for varying mode-mix conditions at room temperature of 20 ◦C and at an elevated

temperature of 100 ◦C. Finally, some concluding remarks are given in Section 2.5.
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2.2 Discrete Damage Zone Model (DDZM) formulation

In the DDZM, the interface element is a two dimensional spring-like element that con-

nects the interface finite element nodes (not the finite element edges) and resists both dis-

placement along and perpendicular to its axis. Because of its discrete form, the DDZM

spring element behavior involves the force in the spring and the extension of the spring,

the latter being equal to interface separation as the initial length of the spring is taken to be

zero. The cohesive stress can now be obtained by dividing the force in the spring element

by its corresponding area of support; thus, the cohesive stress is approximated to be con-

stant over the nodal area of support. For example, for a structured 2D finite element mesh,

the relationship between spring force F and interfacial cohesive stress σ can be simply

written as F = σh, where h is the characteristic element size, assuming the out-of-plane

dimension to be unity. In this section, we will first review the interface element’s constitu-

tive law for monotonic loading [Liu et al., 2012] and then extend it for high-cycle fatigue

loading.

2.2.1 Discrete element constitutive law for monotonic loading

The force-separation relationship for the discrete spring element is derived from the

continuum damage evolution law governing the material behavior under monotonic loading

(see Figure 2.1). Let δ denote the interface separation and F denote the force in the spring

for any general mixed-mode loading scenario. Superscripts “cr” and “max” denote critical

and maximum values, respectively. The elastic regime is defined by the region δ ∈ [0,δ cr)

and the softening (damage) regime is given by δ ∈ [δ cr,δ max]. The irreversibility of damage

implies that beyond the elastic regime (i.e. at any point δ ∗ > δ cr when the damage in the

spring is Ds = D∗s ), if the spring is unloaded and then reloaded it will behave as a linear

spring with reduced stiffness, K∗ = (1−D∗s )K
0, until it begins to damage further. This

irreversible constitutive behavior is depicted in Figure 2.1a, wherein the blue arrows show
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Figure 2.1: Discrete element constitutive law for monotonic loading (exponential)
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the initial loading and unloading paths and the red arrows show the reloading path. During

unloading and reloading when δ ≤ δ ∗ the damage remains constant (Ds = D∗s ) as indicated

by the horizontal arrows in Figure 2.1b. The relationship between the force in the spring,

F∗, and the interface separation δ ∗ is given by,

F∗ = K∗δ ∗ = (1−D∗s )K0
δ

cr δ ∗

δ cr = (1−D∗s )Fcr δ ∗

δ cr , (2.1)

where K0 is initial or undamaged stiffness of the spring and the critical or maximum force

sustained by the spring without any damage Fcr = K0δ cr.

To obtain the F − δ relationship one needs to introduce a suitable damage evolution

law into the above equation (2.1). By choosing a different damage law one can define a

unique, material-specific interface constitutive or cohesive law. Herein, we consider an

interface damage law, which is functionally similar to the continuum damage law proposed

by Mazars [1986] for brittle materials, given by,

Ds =


0, if δ < δ cr,

1− 1
exp(B(δ −δ cr))

, if δ ≥ δ cr,
(2.2)

where Ds denotes static damage occurring at the interface under monotonic loading. In-

troducing the above equation (2.2) for damage into the force-separation relation (2.1), we

get,

F =


Fcr δ

δ cr , if δ < δ cr,

Fcr δ

δ cr exp(B(δ −δ cr))
, if δ ≥ δ cr.

(2.3)

It turns out that the exponentially softening portion (δ ≥ δ cr) of the above force-separation

law is functionally similar to the normal traction-separation law (mode I) proposed by Xu

and Needleman [1994]. There are three static damage model parameters that need to be

identified under monotonic loading: (1) the critical separation for damage initiation, δ cr;
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(2) the initial or undamaged stiffness of the spring element, K0; and (3) the static damage

coefficient, B. It can be shown that the constitutive relations for these parameters for mode

I and mode II depend on the critical fracture energies, GIC,GIIC, normal and tangential

cohesive strengths, σmax,τmax and a mesh size parameter, h. The procedure to identify

these parameters from linear elastic fracture mechanics (LEFM) principles is detailed in

Section 2.3.

2.2.2 Discrete element constitutive law for cyclic loading

Under cyclic loading, fatigue-driven delamination or fracture is experimentally ob-

served to consist of three stages: initiation, stable growth and failure. In the stable crack

growth regime, the crack or delamination front propagates by a small amount per loading

cycle and the log-log plot of the crack growth rate per cycle versus the amplitude of the

fracture energy release rate is typically linear, known as the Paris law [Paris et al., 1961,

Paris and Erdogan, 1963]. It is important to note that as the fatigue damage component

grows and once the interfacial separation reaches the critical value, δ cr, static damage also

inevitably increases and interacts with the fatigue damage. Therefore, interface damage is

a combination of both static damage and fatigue damage. In fact, scanning electron mi-

crographs of fracture surfaces showed no significant difference between static and fatigue

delamination, from which Asp et al. [2001] deduced the failure mechanisms to be the same

in static and fatigue loading. Hence, it is reasonable to assume an additive split of the

damage rate as [Payan and Hochard, 2002, Robinson et al., 2005],

∂D
∂ t

= Ḋ = Ḋs + Ḋf, (2.4)
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where Ḋ represents the total damage rate in the discrete spring element. By differentiating

equation (2.2) with respect to time, the static damage rate Ḋs is obtained as,

Ḋs =
Bδ̇

exp(B(δ −δ cr))
, if δ ≥ δ

cr. (2.5)

Based on the continuum damage model proposed by Peerlings et al. [2000] for high-cycle

fatigue, we write a fatigue damage rate in terms of the interface separation rate δ̇ as,

Ḋf =C exp(λD)

(
δ

δ f

)β
δ̇

δ f , if G−Gthreshold ≥ 0, (2.6)

where C, β and λ are fatigue damage model parameters; δ f is an interface separation

(normalizing) constant introduced solely for dimensional reasons [Robinson et al., 2005];

and Gthreshold is a strain energy release rate threshold for fatigue damage initiation. Notice

that there are four fatigue damage model parameters that need to be identified under cyclic

loading: (1) fatigue damage coefficient, C; (2) fatigue damage exponent, β ; (3) damage

magnification coefficient, λ ; (4) and strain energy release rate threshold, Gthreshold. The

parameters C and β are purely phenomenological and are determined from the Paris plots

of experimental data which is detailed in Section 2.4. The parameter λ is a chosen constant,

which accounts for dependence of damage rate on the current state of damage. Experiments

conducted by Asp et al. [2001] report different values of Gthreshold for mode I, mode II, and

50% mode II failure. However, in all the numerical examples considered G is greather than

Gthreshold, so the fatigue crack grows with loading cycles.

Following the approach described in the previous section, the constitutive (F−δ ) rela-

tion between the force in the discrete spring element, F , and the interfacial separation, δ ,

under cyclic loading at time t is given by,

F(t) = K(t) δ (t) =
(
1−D(t)

)
K0

δ (t), (2.7)
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In order to obtain the total damage at a given time t = t(N +∆N) we can incrementally

integrate equation (2.4) in time as,

D
(
t(N +∆N)

)
= D

(
t(N)

)
+
∫ t(N+∆N)

t(N)

∂D
∂ t

dt. (2.8)

However, in the case of high-cycle fatigue loading composed of well-defined discrete cy-

cles, it is computationally efficient to express the damage growth rate as a number of cycles

N as,

D
(
t(N +∆N)

)
= D(N +∆N) = D(N)+

∫ N+∆N

N

∂D
∂N

dN. (2.9)

Thus, for high-cycle fatigue, the number of cycles, N, is usually considered to be a continu-

ous, time-like variable and a damage rate per cycle
∂D
∂N

is defined, as suggested in Peerlings

et al. [2000].

Next, let us plot the constitutive (F−δ ) behavior of a single discrete element by assum-

ing an actual loading history, wherein the load fluctuations are idealized as sinusoidal as

shown in Figure 2.2. For the sake of computational efficiency, the applied numerical load is

increased linearly to the maximum value Fa < Fcr (load amplitude) and then kept constant,

as given by the blue solid line in Figure 2.2. The F − δ law follows the path indicated by

the solid red line in Figure 2.3(a) under cyclic loading. Since Fa = F for equilibrium, F

linearly increases and then remains a constant as fatigue damage evolves with the number

of loading cycles. Once the separation δ = δ cr static damage initiates and grows rapidly

leading to the failure of the spring element. Because this is a force-controlled experiment

the failure is abrupt and one cannot capture softening behavior. Thus, the spring fails even

when the load amplitude Fa is less than the critical force Fcr due to fatigue (subcritical

failure). The total damage versus the separation (D−δ ) under fatigue loading is given by

the solid red line in Figure 2.3(b) and the curves corresponding to the static and fatigue

damage components are indicated by the green and blue dashed lines. As expected, in the

initial stages when δ < δ cr we see that D = Df and Ds = 0, and for δ > δ cr we see that Ds
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grows rapidly until element failure.
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Figure 2.2: Test simulation using one discrete spring element, wherein one end of the
element is fixed and a force or load F is applied at the other end. The cycles describe the
load fluctuations and the blue solid lines show the applied loading.

Remark 1 The current DDZM describes damage evolution using Mazars [1986] law, as-

suming linear secant behavior during unloading and reloading, as shown in Figure 2.1(a).

For high cycle fatigue, since individual loading cycles are not analyzed and damage ac-

cumulates over several cycles, this assumption of a linear secant behavior is not an issue.

For low cycle fatigue, however, Pettersson et al. [2006] report that friction-like processes

(sliding, viscosity) contribute to irreversible strains during cycle-by-cycle shear loading

experiments, leading to non-secant behavior. The damage mechanics framework employed

in the DDZM provides the flexibility to incorporate such non-secant (plastic) unloading

behavior.
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Remark 2 In a general case scenario, one needs to specify the stress ratio associated

with the fatigue loading history [Walker, 1970]. The stress ratio, RF , may be defined in

the current model as the ratio of the minimum to maximum forces in the spring, that is,

RF =
(
Fmin/Fmax). In this study, we only consider a particular case when RF = 0, that

is, Fmin = 0, as shown in Figure 2.2(a); however, positive RF effects can be incorporated

by defining a corrected strain energy release rate G∗ = (1−R2
F)GC instead of GC in the

mixed mode equations [Kawashita and Hallett, 2012].

2.2.3 Temperature dependence of the damage rate

Experiments of Asp [1998] indicate that the rate of deterioration of the laminate inter-

face depends on the environmental conditions such as temperature and humidity. In this

section, we only restrict our attention to the temperature dependence of damage rate under

mechanical fatigue. Sjogren and Asp [2002] reported that at an elevated temperature of

100 ◦C fracture behavior changed during static and fatigue delamination tests, implying

that both static and fatigue damage model parameters are temperature dependent. Herein,

we assume only the static damage coefficient B and fatigue damage coefficient C to be tem-

perature dependent. The parameter B(T ) at temperature, T , is directly determined using a

temperature dependent fracture energy criterion, as detailed in Section 2.3.2. The param-

eter C(T ) is calculated by assuming that temperature dependence of fatigue damage rate

follows the Arrhenius relation,

Ḋf(T ) = Ḋf (Trm)exp
(
−Q

R

(
1
T
− 1

Trm

))
, (2.10)

where Q is the damage activation energy, R is the universal gas constant (which is equal

to the Botlzmann’s constant) and Ḋf(Trm) is the fatigue damage rate component at room

temperature Trm = 20 ◦C. Substituting the expression for Ḋf from equation (2.6) on both

sides of equation (2.10) and assuming that only C is temperature dependent, we arrive at
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the following relation,

C(T ) =C (Trm)exp
(
−Q

R

(
1
T
− 1

Trm

))
. (2.11)

The calibration of the damage activation energy Q from experimental data is detailed in

Section 2.4.4.

Remark 3 For metals and alloys, under mechanical fatigue at elevated temperatures there

exist several degradation mechanisms, namely, oxidation, creep and microstructure evo-

lution of grain size, which are observed to be temperature dependent. Neu and Sehitoglu

[1989] proposed the Arrhenius relation for incorporating the temperature dependence of

oxidation and creep damage mechanisms for low cycle thermomechanical fatigue of steel

alloys. For carbon fiber epoxy composites, under high cycle fatigue, the temperature de-

pendent damage mechanisms have not been well reported in the literature. Therefore, we

can only hypothesize that the increase in damage (crack growth) rate at elevated tempera-

tures, due to enhanced degradation of the epoxy resin at the carbon fiber interface, follows

the Arrhenius relation.
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2.3 Numerical Implementation

2.3.1 Kinematics

The discrete damage zone model is implemented in the commercial finite element anal-

ysis software Abaqus. The continuum bulk elements are defined as bilinear (4 noded)

quadrilateral elements and the discrete spring elements are defined via the user defined el-

ement subroutine UEL. The element definition and node numbering for a typical spring

element is shown in Figure 2.4. Since the spring elements are initially inactive, their initial
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Figure 2.4: Sketch of the discrete element and the definition of the degrees of freedom in
global and local coordinates. The inclination of the spring is denoted by θ .

lengths are set to zero. The displacement degrees of freedom (DOFs) at nodes A and B are

given by,

uA =
(

uA
x ,u

A
y

)T
= (u1,u2)

T , (2.12a)

uB =
(
uB

x ,u
B
y
)T

= (u3,u4)
T , (2.12b)
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where (x,y) denotes the global Cartesian coordinate directions. Thus, the vector of dis-

placement of the discrete spring element is,

u= (u1,u2,u3,u4)
T . (2.13)

The vector displacement in local coordinates (x′,y′) can be given in terms of the global

displacement vector as,

u′ =
(
u′1,u

′
2,u
′
3,u
′
4
)T

=Ru, (2.14)

where R is the anticlockwise rotation matrix that is a function of the inclination θ of the

spring element given by,

R=



cosθ sinθ 0 0

−sinθ cosθ 0 0

0 0 cosθ sinθ

0 0 −sinθ cosθ


. (2.15)

The normal and tangential (or shear) separations in the discrete interface elements are given

by,

δn = 〈u′1−u′3〉, (2.16)

δt = u′2−u′4. (2.17)

where the Macaulay brackets have been employed in (2.16) and are defined as 〈X〉 = X

when X ≥ 0 and 〈X〉= 0 when X < 0.

Remark 4 The initial lengths of the discrete interface elements are set to zero because

the delamination interface is still intact. Negative normal separations of the spring means

overlap or interpenetration of laminate layers, which is not physical; however, numerical

errors in the calculations can sometimes lead to small negative values of δn. Therefore, it is
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important to define δn as the normal crack opening displacement in equation (2.16) using

Macaulay brackets, so that it is always positive.

2.3.2 Mixed mode criteria

In real composite components, fatigue delamination rarely develops under a constant

propagation mode such as pure mode I or pure mode II. Instead, delamination develops

under a changing mode-mix ratio, generally, involving both mode I and mode II displace-

ments. In order to simulate the intricate mixed mode failure under fatigue loading, an

equivalent displacement parameter is usually defined [Robinson et al., 2005, Qiu et al.,

2001, Alfano and Crisfield, 2001, Jiang et al., 2007]. Herein, for the general mixed mode

loading we define the equivalent separation as,

δe =
√

δ 2
n +δ 2

t . (2.18)

Clearly, δe is equal to δn and δt under pure mode I and mode II, respectively. Next, we

prescribe the damage initiation criterion under mixed mode by computing an equivalent

critical separation δ cr
e using the critical separations under pure mode I and mode II de-

noted δ cr
n and δ cr

t , respectively. Jiang et al. [2007] proposed a quadratic damage initiation

criterion for calculating δ cr
e as,

1
δ cr

e
=

√(
cosI
δ cr

n

)2

+

(
cosII
δ cr

t

)2

, (2.19)

where cosI = δn/δe and cosII = δt/δe.

The potential energy stored in a spring element for mixed mode loading is given by,

Φ =
1
2

Knδ
2
n +

1
2

Ktδ
2
t , (2.20)

where Kn and Kt are the damaged axial (normal) stiffness and transverse (tangential) stiff-
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ness, respectively, given by,

Kn = (1−D)K0
n , Kt = (1−D)K0

t , (2.21)

and a “0” in the superscript denotes the initial or undamaged stiffness. Herein, we take

K0
n = K0

t = 20,000 ∗ h N/mm, where h is the characteristic size of the structured mesh,

so that artificial stiffness redution is less than 15%, and convergence is not affected. Us-

ing the linear elastic fracture mechanics (LEFM) principle that the maximum force in the

spring corresponds to the critical separation and cohesive strength, we calculate the critical

separations under mode I and mode II as,

δ
cr
n =

Fcr
n

K0
n
=

σmaxh
K0

n
; δ

cr
t =

Fcr
t

K0
t
=

τmaxh
K0

t
. (2.22)

Thus, δ cr
n and δ cr

t are not independent model parameters and depend on the cohesive

strengths and initial stiffnesses.

Remark 5 In equation (2.21) we assume isotropic damage, so a single scalar internal

variable D is used to describe the degraded interface element stiffness in both normal and

tangential directions. It is possible to consider anisotropic damage by defining two separate

damage variables, Dn and Dt in each direction; however, one has to define a mixed mode

interaction relationship to ensure that when Dn = 1 then Dt = 1 since the interface has

completely decohered [Liu et al., 2012]. The reader may also refer to the recent paper by

[Wang and Waisman, 2014] for such a modified mixed-mode failure criterion.

Next, considering the LEFM principle that the area under the force-separation curve of

the discrete element corresponds to the fracture energy, we get,

GC =
1
h

∫
δ cr

e

0
K0

e δe dδ +
1
h

∫
δ max

e

δ cr
e

K0
e δe

exp(B(T )(δe−δ cr
e ))

dδ (2.23)
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where the critical fracture energy GC under mixed mode is defined as [Blanco et al., 2004],

GC(Ψ,T ) = g2(T )Ψ2 +g1(T )Ψ+g0(T ), (2.24)

the equivalent undamaged spring stiffness under mixed mode is (see Appendix Appendix

B for the derivation),

K0
e =

K0
n K0

t

ΨK0
n +(1−Ψ)K0

t
, (2.25)

the mode mix ratio is defined as,

Ψ =
GII

GI +GII
, (2.26)

so that for pure mode I fracture Ψ = 0, and for pure mode II fracture Ψ = 1. By solving

equation (2.23) we can obtain the static damage coefficient B(T ) as a function of the mode

mix ratio Ψ at temperature, T . Note that the temperature dependent coefficients of the

quadratic fit in equation (2.24), namely, g0,g1,g2 are calculated by using the values of

GIC = GC(Ψ = 0),GIIC = GC(Ψ = 1),GC(Ψ = 0.5), provided in Table 2.2. Just like GC,

the phenomenological fatigue parameters C and β are also dependent on the mode mix

ratio, so we propose a quadratic relation for any real number Ψ ∈ [0, 1] as,

logC = c2Ψ
2 + c1Ψ+ c0 (2.27)

β = b2Ψ
2 +b1Ψ+b0 (2.28)

The calibration of the coefficients for the quadratic fit for C and β is discussed in Section

2.4.

Table 2.1: Static damage model parameters (For a structured mesh h is the distance between
adjacent nodes, and the critical separations are calculated using Eq. 2.22).

Parameter K0
n K0

t σmax τmax
Units N/mm N/mm MPa MPa
Value 20,000*h 20,000*h 90 140
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Table 2.2: Variation of strain energy release rate with temperature [Sjogren and Asp, 2002]

Strain Energy GIC GIIC GC(Ψ = 0.5)
Units N/mm N/mm N/mm
20◦C 0.26 1.002 0.447

100◦C 0.249 0.701 0.535

2.3.3 Damage evolution over loading cycles

When dealing with high-cycle fatigue loading, it is computationally efficient to describe

the damage evolution law in terms of number of loading cycles N, as given by equation

(2.9). Let us now define the increment in damage ∆D between loading cycles,

D(N +∆N)−D(N) = ∆D = ∆Ds +∆Df. (2.29)

In the above equation, the increment of static damage component is given by,

∆Ds = Ds(N +∆N)−Ds(N)

=−exp(−B(δe(N +∆N)−δ
cr
e ))+ exp(−B(δe(N)−δ

cr
e )), (2.30)

where δe(N +∆N) and δe(N) represent the interface separations (or extensions in the dis-

crete spring element) at time t(N + ∆N) and t(N), respectively. Evaluating the fatigue

damage increment ∆Df is a bit more involved since Ḋf is a function of the total damage D.

Starting with equation (2.6) in the time-rate form and following the procedure detailed in

Robinson et al. [2005] we can obtain cycle-rate form,

∂Df

∂N
≈ C

1+β
exp(λD)

(
δe

δ f

)1+β

. (2.31)

where δ f is a normalizing constant that is independent of the mode-mix ratio Ψ. Assuming

that
∂Df

∂N
does not change rapidly with the number of loading cycles N, we can extrapolate
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the increment of fatigue damage component for a fixed increment of loading cycles ∆N as,

∆Df = Df(N +∆N)−Df(N)

=
∫ N+∆N

N

∂Df

∂N
dN

=
∫ N+∆N

N

C
1+β

exp(λD)

(
δe

δ max
e

)1+β

dN. (2.32)

Now, assuming D is a continuous function in the open interval between N and N +∆N,

there exists a µ ∈ [0,1] (according to the first mean value theorem for integrals) such that,

∆Df = ∆N
C

1+β
exp(λDµ)

(
δµ

δ max
e

)1+β

, (2.33)

where Dµ and δµ are given as,

Dµ = (1−µ) D(N)+µ D(N +∆N) (2.34)

δµ = (1−µ) δe(N)+µ δe(N +∆N) (2.35)

If µ = 0, then we get an explicit scheme and for nonzero values of µ the scheme becomes

implicitly, so we perform nonlinear iterations using the Newton-Raphson method, as de-

tailed in Algorithm 1. We found that choosing a value of µ = 0.5 (trapezoidal rule) was

optimal based on a ‘one element’ convergence test (not shown here).

2.3.4 Abaqus UEL algorithm

In order to define the discrete element via the UEL subroutine in Abaqus, we need to

define the element stiffness matrix, K (AMATRX), and the residual force vector, r (RHS),
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Algorithm 1 : Newton-Raphson method for implicit damage evaluation

Let us assume all the variables are known at step t(N) and we proceed to compute the
variables at step t(N +∆N),

(1) Initialize the damage variable kD and the residual kr̂ at iteration k = 1
1r̂ = 1.0

1D = D(N)

(2) Evaluate the increment in static damage increment

∆Ds = −exp(−B(δe(N +∆N)−δ
cr
e ))+ exp(−B(δe(N)−δ

cr
e ))

(3) While kr̂ ≥ TOL, at iteration k ∈ {1,2,3, ...}

(i) Evaluate the increment in fatigue damage increment
kDµ = (1−µ) D(N)+µ

kD
δµ = (1−µ) δe(N)+µ δe(N +∆N)

∆Df = ∆N
C

1+β
exp(λ kDµ)

(
δµ

δ max
e

)1+β

(ii) Compute the residual and the corresponding Jacobian

kr̂ = kD−D(N)−∆Ds(N)−∆Df(N)[
∂ kr̂
∂ kD

]
= 1−λ µ∆N

C
1+β

exp(λ kDµ)

(
δµ

δ max
e

)1+β

(iii) Update the damage and iteration counter

k+1D = kD−
[

∂ kr̂
∂ kD

]−1
kr̂

k = k+1

(4) Finally, after convergence, update the damage variable at t(N +∆N)

D(N +∆N) = kD
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in global coordinates. The element residual force vector is given by,

r =



r1

r2

r3

r4


=RT

(
− dΦ

du′

)
=RT



−Kn〈u′1−u′3〉

−Kt(u′2−u′4)

Kn〈u′1−u′3〉

Kt(u′2−u′4)


. (2.36)

The equilibrium of the discrete interfacial element requires that, r1 = −r3 and r2 = −r4.

The corresponding element stiffness matrix in the global coordinates is given by,

K =− dr
du
≈RT



Kn 0 −Kn 0

0 Kt 0 −Kt

−Kn 0 Kn 0

0 −Kt 0 Kt


R. (2.37)

Note that we approximate the element stiffness matrix with the secant stiffness since it is

always non-negative unlike the tangent stiffness which is negative for the softening regime.

The detailed Abaqus user element (UEL) algorithm for the mixed mode implementation is

given in Algorithm 2.
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Algorithm 2 : Abaqus UEL algorithm for the discrete spring element

Let us assume all the variables are known at time t(N) and we proceed to compute the
variables at time t(N +∆N). For brevity of notation we skip the cycle number (N +∆N),
for example, δe denotes δe(N +∆N), by default.

(1) Compute both the normal, shear separations and equivalent separation in mixed mode

δn = 〈u′1(N)−u′3(N)〉; δt = u′2(N)−u′4(N); δe =
√

δ 2
n +δ 2

t .

(2) Compute static damage as

if (δe < δ
cr
e ) then

Ds = 0,
else

Ds = 1− exp(−B(δe−δ
cr
e )).

end if

(3) Compute the total damage, D, according to Algorithm 1 and then calculate fatigue
damage component for post processing as

Df = D−Ds.

(4) Compute the degraded stiffness and update the stiffness matrix

Kn = (1−D)K0
n .

Kt = (1−D)K0
t ,

(5) Compute the internal force of the spring element and update the right hand side
vector,

r =−Ku.
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2.4 Numerical Examples

In this section, we first calibrate the fatigue damage model parameters by comparing

our numerical results with the Paris law fit of published experimental data from the double

cantilever beam (DCB) test, the end notch fracture (ENF) test and the mixed mode bending

(MMB) test [Asp et al., 2001]. We also examine the mesh convergence behavior for high-

cycle fatigue loading under different mode-mix conditions. Next, we use the calibrated

model to simulate delamination under two different mode-mix ratios and verify our model

predictions with those given in [Blanco et al., 2004]. For the sake of fatigue delamination

analysis we consider a carbon fiber/epoxy composite HTA/6376C and the bulk and inter-

face material properties are given in Table 2.3 [Juntti et al., 1999]. In this section, only

proportional loading is considered wherein the mode ratio is held constant during the entire

loading time.

Table 2.3: Material properties for carbon fibre/epoxy composite [Blanco et al., 2004, Asp
et al., 2001, Harper and Hallett, 2010]

Material Parameter Exx Eyy = Ezz Gxy = Gxz νxy = νxz

Units N/mm2 N/mm2 N/mm2 -
HTA/6376C 1.20e5 1.05e4 5.25e3 0.3

2.4.1 Mode I fatigue: double cantilever beam (DCB) test

The setup of the double cantilever beam fatigue test is shown in Figure 2.5. A fixed

boundary condition is applied at the right end of the beam. The specimen arms at the left

end are loaded with opposing loads P in order to initiate pure Mode I delamination. The

corresponding fracture energy release rate GI is related to the applied load P as [Reeder

and Crews, 1990, Williams, 1988],

GI =
P2a2

0
WExxI

(2.38)
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P

H

a0

L

P

Figure 2.5: Boundary conditions of the mode I double cantilever beam (DCB) test under
fatigue loading. The dimensions are: L = 150 mm, H = 3.1 mm, and a0 = 35 mm.

where W is the width of the beam set perpendicular to its plane taken to be 1 mm, Exx is

the Young’s modulus in the global x−direction and I is the second moment inertia of each

specimen arm whose thickness is half that of the beam. The simulation is load controlled,

wherein the loading is increased linearly from zero to the maximum value (or amplitude)

and then held constant, as indicated by the solid blue line in Figure 2.2. As pointed out in

Section 2.3.3, for high-cycle fatigue we calculate damage accumulation over a fixed number

of cycles rather than calculating over each cycle. Therefore, the load is held constant at the

maximum value and the fatigue damage is updated as given in Algorithm 2.

Remark 6 Since we apply a constant load P to the specimen arms in the current DCB

test, the bending moment in the beam M increases linearly and the energy release rate

GI increases quadratically with crack length a0. Therefore, the crack growth rate is not

a constant and the crack length increases rapidly with number of cycles in Figure 2.6(b).

Alternatively, one may apply a constant moment M to the specimen arms, rather than a

load P, and with this type of loading the energy release rate at the delamination front is

independent of crack length and so the crack growth rate will be a constant [Robinson

et al., 2005].

We employ a uniform structured mesh with 4 noded plane stress quadrilateral elements

(CPS4 in Abaqus) with the discrete elements placed at the finite element nodes. For ac-

curate numerical analysis, the maximum length of a cohesive element lel,max for mode I is
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[Harper and Hallett, 2008],

lel,max =
1
6

(
E ′I

GIC

σ2
max

)1/4(H
2

)3/4

. (2.39)

In the above expression, the parameter E ′I is given by [Harper and Hallett, 2008],

1
E ′I

=

√
b11b33

2

√√
b33

b11
+

2b31 +b55

2b11
, (2.40)

where b11 = 1/Exx,b33 = 1/Ezz,b31 =−νxz/Ezz, and b55 = 1/Gxz. For the carbon fiber/e-

poxy composite HTA/6376C, the maximum cohesive element length lel,max for mode I

failure is 0.079 mm, as given by equation (2.39). To satisfy this condition, we choose the

mesh size h = 0.075 mm so that discrete interface elements (springs) are spaced apart by

0.075 mm. To demonstrate the convergence of DDZM results upon mesh refinement, we

also evaluate smaller mesh sizes h = 0.0625 mm and h = 0.03125 mm. Finally, we consider

a large mesh size h = 0.125 mm to show that DDZM results tend to diverge if the mesh is

too coarse.

To calibrate the fatigue parameters for the carbon/epoxy composite we perform simu-

lations for different values of P and plot the crack growth rate, da/dN, versus the energy

release rate ratio, GI/GIC, using a log-log scale in Figure 2.6(a). The parameters are cali-

brated by comparing with the least squares best fit line [Blanco et al., 2004] of the experi-

mental data of [Asp et al., 2001]. The fatigue parameters chosen for Mode I delamination

are given in Table 2.4. This Paris plot demonstrates the mesh independence of the DDZM

results so long as the mesh size is not too coarse (i.e. h ≤ 0.075 mm). Next, for a partic-

ular value of applied load P (GI/GIC = 0.4), we plot the crack length versus the number

of loading cycles in Figure 2.6(b). This plot demonstrates that all three meshes predict the

same initial crack growth rate (initial slope of the curves); however, as the crack length

a increases with the number of cycles the predictions deviate. This is a consequence of

applying the load P, wherein as crack length a increases the moment at the crack tip in-
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creases and small errors in crack length can be magnified over time. The differences in

crack length predictions when a moment M is applied, rather than a load P, will be much

less pronounced (see Remark 6).
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d
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Asp et al. (2001)
Blanco et al. (2004)
h = 0.125 mm
h = 0.075 mm
h = 0.0625 mm
h = 0.03125 mm
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a
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m
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h = 0.0625 mm
h = 0.03125 mm

Figure 2.6: Numerical results for mode I fatigue delamination and the corresponding pa-
rameter values are: C = 5.80e9, β = 8.81, and λ = 0.5
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2.4.2 Mode II fatigue: end notch fracture (ENF) test

The setup of the end notch fracture test is shown in Figure 2.7. The beam is simply

supported at both ends and two loads of magnitude P are applied symmetrically. The

L

c cP P

a0

H

Figure 2.7: Boundary conditions of the mode II end notch fracture (ENF) test under fatigue
loading. The dimensions are: L = 150 mm, H = 3.1 mm, a0 = 35 mm, and c = 25 mm.

corresponding fracture energy release rate GII is related to the applied load P as [Reeder

and Crews, 1990, Williams, 1988, Robinson et al., 2005],

GII =
3P2c2

16WEI
(2.41)

where c is the distance between the applied concentrated load to the end of the beam shown

in Figure 2.7. The simulation is load controlled and the load is increased linearly from zero

to the maximum value (amplitude) and then held constant. In order to avoid the continuum

finite elements from overlapping during the simulation of the ENF test a contact surface is

defined along the expected delamination path.

Remark 7 In the four point ENF test, the bending moment, M, in the beam between the

two loads is a constant for a given load P and so the energy release rate at the delamination

front is independent of the crack length. Therefore, the crack growth rate is a constant and

the crack length increases linearly with number of cycles in Figure 2.8(b).

For the carbon fiber/epoxy composite HTA/6376C, the maximum cohesive element

length for mode II failure is 0.42 mm, as given by a mode II equivalent of equation (2.39)

36



(the reader is referred to [Harper and Hallett, 2008] for greater detail). To satisfy this con-

dition, we choose the mesh size h = 0.3125 mm so that discrete interface elements (springs)

are spaced apart by 0.3125 mm. To demonstrate the convergence of DDZM results upon

mesh refinement, we also evaluate smaller mesh sizes h = 0.0625 mm and h = 0.03125

mm. Finally, we consider a large mesh size h = 0.5 mm to show that DDZM results tend to

diverge if the mesh is too coarse.

To calibrate the Mode II fatigue parameters, we perform simulations for different values

of P and plot the crack growth rate, da/dN, versus the energy release rate ratio, GII/GIIC,

using a log-log scale as shown in Figure 2.8(a). The parameters are calibrated by comparing

with the least squares best fit line [Blanco et al., 2004] of the experimental data of [Asp

et al., 2001]. The fatigue parameters chosen for Mode II delamination are given in Table

2.4. This Paris plot demonstrates the mesh independence of the DDZM results so long as

the mesh size is not too coarse (i.e. h ≤ 0.5 mm). Next, for a particular value of applied

load P (GII/GIIC = 0.3), we plot the crack length versus the number of loading cycles in

Figure 2.8(b). This plot demonstrates that all three meshes predict the same initial crack

growth rate (initial slope of the curves); however, the predicted crack length a is different,

which is on the order of the mesh size differences. Since the moment at the crack tip is a

constant during the ENF test (see Remark 7), the errors in crack length do not get magnified

over time and the crack growth is linear with time (or cycles).

2.4.3 Mixed mode fatigue: mixed mode bending (MMB) test

The standard mixed mode bending test was first suggested by Reeder and Crews [Reeder

and Crews, 1990]. The set up of the mixed mode bending test is shown in Figure 2.9. Fixed

boundary condition is applied at the right end of the beam. Loads are applied at the left end

and the ratio ρ defines a function that controls the mode mix ratio Ψ. Actually, the moment

M is a resultant of an applied load P at the left end of the beam and so M = Pa0. Follow-

ing the definition of mode mix ratio Ψ in Equation (2.26), the ratio between the lower and

37



10−1

G/GIIC

10−6

10−5

10−4

10−3

10−2

10−1

100

d
a/

d
N

Asp et al. (2001)
Blanco et al. (2004)
h = 0.5 mm
h = 0.3125 mm
h = 0.0625 mm
h = 0.03125 mm

0 1 2 3 4 5 6 7 8 9
N (cycles) ×103

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

a
(m

m
)

h = 0.3125 mm
h = 0.0625 mm
h = 0.03125 mm

Figure 2.8: Numerical results for mode II fatigue delamination and the corresponding pa-
rameter values are: C = 3.81e7, β = 8.0, and λ = 0.5
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Figure 2.9: Boundary conditions of the mixed mode bending (MMB) test under fatigue
loading. The dimensions are: L = 150 mm, H = 3.1 mm, and a0 = 35 mm.
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upper moments applied is given as (see Appendix Appendix A for a detailed derivation),

ρ =
1−
√

3
2

(Ψ−1−1)1/2

1+

√
3

2
(Ψ−1−1)1/2

(2.42)

The above relationship between the applied moment ratio ρ and Ψ is shown in Figure 2.10.

When ρ = −1 we get the exact configuration of the DCB test and when ρ = 1 we have a

cantilever beam under uniform bending moment yielding a similar stress state as the ENF

test. The total energy release rate G is the sum of the energy release rates in the normal and

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

Ψ

ρ

Mode I Mode II

Figure 2.10: The curve of applied load ratio ρ versus mixed mode ratio Ψ.

shear modes, that is [Reeder and Crews, 1990]

G = GI +GII, (2.43)
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where,

GI =

 2
√

3

(Ψ−1−1)−1/2 +

√
3

2


2

3M2

48WEI
, (2.44)

GII =

 4

1+

√
3

2
(Ψ−1−1)1/2


2

3M2

64WEI
. (2.45)

Remark 8 Note that in the MMB test, if we apply a constant load M to the specimen arms

instead of a load P, then the moment in the beam will be a constant and independent of

the crack length a0. Therefore, the energy release rate at the delamination front will be

independent of crack length and the crack growth rate will be a constant with number of

cycles. The Paris plots are the same for an applied moment or load since the initial crack

length a0 is much larger than the increase in crack length ∆a for a small number of cycles

∆N. So, the increase in crack length does not affect calculations of the crack growth rate

da/dN ≈ ∆a/∆N.

For the carbon fiber/epoxy composite HTA/6376C, the maximum cohesive element

length for mixed mode failure is 0.079 mm, as given by the methodology in [Harper and

Hallett, 2008]. To satisfy this condition, we choose the mesh size h = 0.075 mm so that

discrete interface elements (springs) are spaced apart by 0.075 mm. To demonstrate the

convergence of DDZM results upon mesh refinement, we also evaluate smaller mesh sizes

h = 0.0625 mm and h = 0.03125 mm. Finally, we consider a large mesh size h = 0.125 mm

to show that DDZM results tend to diverge if the mesh is too coarse.

To calibrate the model parameters, we perform the simulations for different values of P

for a mode-mix ratio of Ψ = 0.5 (i.e. 50% Mode II) and plot the crack growth rate, da/dN,

versus the energy release rate ratio, G/GC, using log-log axes as shown in Figure 2.11(a).

The parameters are calibrated by comparing with the least squares best fit line [Blanco

et al., 2004] of the experimental data of Asp et al. [2001]. The fatigue parameters chosen
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for 50% Mode II delamination are given in Table 2.4. This Paris plot demonstrates the mesh

independence of the DDZM results so long as the mesh size is not too coarse (i.e. h≤ 0.075

mm). Next, for a particular value of applied load P (G/GC = 0.25), we plot the crack length

versus the number of fatigue cycles in Figure 2.11(b). This plot demonstrates that all three

meshes predict the same initial crack growth rate (initial slope of the curves); however, as

the crack grows with number of cycles the predictions from h = 0.075, 0.0625, 0.03125

mm deviate. This is again a consequence of the application of a load P, instead of a moment

M at the left end of the beam, as discussed earlier in Section 2.4.1.

Until now, we have calibrated the parameters C,β for three cases with mode ratio Ψ =

{0,0.5,1.0} as given in Table 2.4. Note that the damage magnifier λ = 0.5 does not change

with mode-mix ratio Ψ. We now calculate values for C and β using equations (2.27) and

(2.28), respectively, for two mode mix ratios Ψ = {0.25,0.75} and then verify the model

results with those of Blanco et al. [2004] at room temperature. The constants c0, c1, c2,

b0, b1, and b2 are obtained by fitting the quadratic relations in equations (2.27) and (2.28)

to values of C and β for the three mode mix ratios in Table 2.4. Solving for the constants

gives: c2 =−43.14, c1 = 38.11, and c0 = 22.48, b2 =−13.38. b1 = 12.57, and b0 = 8.81.

The curves of C and β versus mode ratio Ψ are shown below in Figure 2.12(a). For mode

mix ratio Ψ = 0.25, the parameters are calculated as C = 5.38e12 and β = 11.12. For

Ψ= 0.75, the parameters are calculated as C = 4.36e11 and β = 10.71. The results given

by this method are presented on a Paris plot in Figure 2.12(b) and show good agreement

with Blanco et al. [2004]. This demonstrates the viability of using the quadratic relation to

evaluate C and β for arbitrary mixed mode ratios.

Table 2.4: Summary of fatigue damage model parameters

units Mode I Mode II Mixed Mode
C cycle−1 5.8e9 3.81e7 2.27e13
β - 8.81 8.0 11.75
λ - 0.5 0.5 0.5
δ f mm−1 0.03 0.03 0.03
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Figure 2.11: Numerical results for Mixed Mode fatigue delamination and the corresponding
parameter values are: C = 2.27e13, β = 11.75, and λ = 0.5
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b1 = 12.57, and b0 = 8.81.

2.4.4 Delamination at elevated temperatures

In this section, we calibrate the temperature dependence of fatigue delamination from

the experimental data of Sjogren and Asp [2002]. In Figure 2.13, we plot the experimental

data available at two different temperatures T = 20 ◦C (room temperature) and T = 100 ◦C

for each of the three mode cases: pure mode I, pure mode II and mixed mode with Ψ = 0.5

(50% mode II). The experimental data suggests that crack growth occurs at a faster rate

at elevated temperature T = 100 ◦C under both pure mode I and 50% mode II loading,

as shown in Figures 2.13(a) and 2.13(c). However, under pure mode II loading, the crack

growth rate is observed to decrease because the mechanisms of damage are different at the

two temperatures. It is plausible that an increase in the ductility of epoxy resin with tem-

perature could lead to such behavior [Khan et al., 2002]. Assuming the damage activation

energy, Q = 25 KJ/mol, a reasonable fit with the experimental data is obtained for pure

mode I and 50% mode II cases, but the fit is not good for pure mode II case. This leads us

to believe that the Arrhenius relation is suitable for incorporating temperature dependence
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so long as the main damage mechanism remains the same. Moreover, the model-predicted

increase in crack growth rate under pure mode II is much smaller than that under mode

I or 50% mixed mode. This is because GIIC reduces substantially at T = 100 ◦C, so the

applied load P of the ENF test also decreases according to equation (2.41). Furthermore,

we assume that the elastic parameters of the element’s force-separation law (e.g., K0
t and

δ cr
t ) remain unchanged; therefore, only the static damage coefficient B(T ) is altered to sat-

isfy the reduced energy criterion (see section 2.3.2). However, fatigue damage coefficient

C(T ) increases with temperature according to the Arrhenius relation (2.11). With a weaker

load P, unaltered elastic behavior, smaller B and larger C, crack growth rate does not in-

crease by much at T = 100 ◦C under mode II. This effect is not observed in mode I or 50%

mixed mode because the decrease in GIC is marginal, and GC(Ψ=0.5) actually increases at

elevated temperatures. Thus, from this study it is evident that the parameter C is tempera-

ture dependent; however, more detailed experiments are required to understand the damage

mechanisms in composites at various temperatures.
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2.5 Conclusions

A discrete damage zone model (DDZM) for temperature dependent mixed mode de-

lamination in composites under high cycle fatigue loading was developed from the original

model for quasi-static loading [Liu et al., 2012], by adding fatigue and static damage com-

ponents. The proposed model employs the interface element as a discrete spring placed

at the finite element nodes and its constitutive law is derived entirely from damage laws,

specifically, by combining Mazars law for static damage growth [Mazars, 1986] and Peer-

lings law for fatigue damage growth [Peerlings et al., 2000]. The model parameters were

calibrated under pure mode I, pure mode II, and 50% mode II loadings. A quadratic relation

was proposed to evaluate the parameters for other mode mix ratios (25% and 75% mode

II) and then model results were verified with the numerical results of [Blanco et al., 2004],

which demonstrates the validity of the model. The advantage of the DDZM approach is that

it offers a lot of flexibility for incorporating different damage models to describe interface

failure behavior under different loading and environmental conditions.

Overall, the contribution of this chapter is three-fold: (1) it formalizes mixed-mode

relations for fatigue delamination prediction for any arbitrary mode mix ratio; (2) it pro-

poses the Arrhenius relation for the temperature dependence of fatigue damage; and (3) it

presents the finite element implementation of DDZM that ensures convergence with mesh

refinement. The current model would be extremely useful in studying delamination in

structural components wherein curved geometries and different lamina ply orientation can

result in varying mode mix ratios.
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CHAPTER 3

ON THE PARAMETRIC SENSITIVITY OF COHESIVE ZONE MODELS FOR

HIGH-CYCLE FATIGUE DELAMINATION OF COMPOSITES

3.1 Introduction

3.1.1 Preamble

As the design of composite structures is increasingly dictated by lighter weight and

better performance requirements, the prediction of long term performance degradation of

laminated composite materials using accurate progressive damage accumulation models is

becoming ever more important. In the past two decades, the cohesive zone model (CZM)

has been extensively used to model and simulate the progressive growth of delamination

and debonding in composites within the framework of the finite element method (FEM)

because it does not require remeshing as the crack propagates. A variety of CZMs have

been developed in the literature for monotonic loading scenarios featuring bilinear, trape-

zoidal, polynomial, or exponential shapes [van den Bosch et al., 2006]. More recently,

CZMs have been developed to investigate high-cycle fatigue debonding and delamination

growth, which are the dominant modes of failure for subcritical cyclic loading in laminated

composite structures [Mi et al., 1998b]. A more detailed literature review of the CZMs for

monotonic (static) and cyclic (fatigue) loading is given in the following Section 3.1.2. It is

important to note that the CZM is essentially a damage mechanics approach for simulating

fracture [Alfano and Crisfield, 2001] and is phenomenological in nature. Although many of

the CZM parameters have a physical interpretation, they are actually calibrated by fitting

the model results to experimental data. Consequently, the viability of CZMs as reliable

and accurate progressive damage accumulation models rests on the use and development

of cohesive laws that are minimally sensitive to phenomenological parameters. To this end,
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this study investigates the effect of the shape, strength and stiffness parameters of static

cohesive laws on delamination crack growth rate under high-cycle fatigue loading.

The significance of static cohesive parameters (e.g., initial stiffness and cohesive strength)

has already been investigated for monotonic (static) loading cases, and several studies re-

ported that the shape of the cohesive law has little effect on global load-displacement be-

havior so long as the critical fracture energy is held constant [Valoroso and Champaney,

2006, Gustafson and Waas, 2009]. However, there are some static loading studies where

numerical results are sensitive to the CZM parameters, particularly the cohesive strength

(i.e., maximum traction) and the shape of the damage-softening regime [Chandra et al.,

2002, de Borst, 2003]. For high-cycle fatigue loading, the approach has generally been to

decompose damage into static and fatigue components and employ power-law functions

to describe fatigue damage accumulation over large numbers of cycles [Robinson et al.,

2005, Harper and Hallett, 2010, Khoramishad et al., 2010, de Moura and Gonçalves, 2014,

Jimenez et al., 2014]. Typically, the power law function is defined based on either the

interface separation or the strain energy release rate (SERR) by introducing two new pa-

rameters, namely, the damage coefficient and exponent. These two model parameters are

then calibrated by matching numerical results to the experimental data in the Paris regime,

wherein the crack growth rate with respect to loading cycles da/dN varies linearly with

the strain energy release rate ∆G or the stress intensity factor ∆K when plotted on a log-

log scale [Paris et al., 1961, Paris and Erdogan, 1963]. A key point is that the interaction

between static and fatigue damage under cyclic loading introduces a non-physical depen-

dence of fatigue crack growth rate on static model parameters of cohesive stiffness and

cohesive strength, which are usually taken as penalty parameters under monotonic loading

cases [Pascoe et al., 2013]. Additionally, the crack growth rate predictions are affected by

the lack of smoothness of cohesive law (e.g. bilinear shape with C0 continuity) due to the

abrupt change from linear elastic behavior to damage-induced softening behavior. More-

over, the power law fatigue damage functions based on interface separation and SERR
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exhibit different parametric sensitivities depending on the numerical implementation. To

the best of the authors’ knowledge, there exist no prior investigations that assess the sen-

sitivity of crack growth rate results to CZM parameters for high-cycle fatigue loading of

laminated composites.

The main contribution of this chapter is with respect to the assessment of the sensitivity

of interface separation and SERR based fatigue damage model predictions to static cohesive

stiffness and strength parameters and to the shape (smoothness) of the cohesive law. The

second contribution is the investigation of the additive and non-additive decompositions

for combining static and fatigue damage components during cyclic loading, along with a

sensitivity study between constrained and unconstrained damage update algorithms at the

crack tip. The main conclusion of this chapter is that the SERR based fatigue damage

function leads to a more reliable formulation for predicting delamination crack growth

under high-cycle fatigue loading.

3.1.2 Literature review

The various approaches for numerical simulation of delamination can be classified into

linear elastic fracture mechanics (LEFM) approaches and continuum damage mechanics

(CDM) approaches. The cohesive zone model (CZM), developed by Hillerborg et al. [1976]

using the concept of a bounded stress field within the vicinity of a crack tip [Dugdale, 1960,

Barenblatt, 1962] can be recast into the CDM approach [Alfano and Crisfield, 2001]. In the

CZM, cohesive elements are placed along potential crack interfaces and their constitutive

behavior is defined by a traction-separation (T − δ ) law. Typically, the cohesive element

is assumed to have zero thickness and the crack interface separation δ is calculated from

the relative displacement of its nodes once the interface begins to open. The T − δ func-

tion generally features an initial elastic regime followed by a softening regime that can

take a variety of shapes. Although the bilinear cohesive law is the simplest and also the

most commonly employed T −δ law, other prominent formulations incorporate the expo-
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nential functions [Xu and Needleman, 1994] and polynomial functions [Park et al., 2009]

which were derived from thermodynamically based energy potentials. In early studies,

CZMs were used to investigate crack growth under monotonic loading [Schellenkens and

de Borst, 1993, Yang and Ravi-Chandar, 1998, Mi et al., 1998b, Robinson et al., 2000]

and were not designed with an inelastic (irreversible) response to separation. Later, CZMs

were formulated for non-monotonic loading by incorporating loading history dependent

state variables to account for the irreversibility of damage accumulation in the material

behind the crack tip [Foulk et al., 2000, Alfano and Crisfield, 2001, Park et al., 2009].

For example, Foulk et al. [2000] developed cohesive laws with a response dependent on

the maximum separation during loading history; whereas, Alfano and Crisfield [2001] and

Yang et al. [2001] presented CZM formulations by incorporating an irreversible damage

variable, Ds, to represent interface degradation and permanently weaken the cohesive ele-

ment. In general, following the damage mechanics framework the T −δ law can be written

as Alfano and Crisfield [2001],

T = (1−Ds)K0
δ , (3.1)

where K0 is the initial (undamaged) cohesive stiffness, and the scalar internal state variable

Ds ∈ [0,1] controlling the shape of the softening regime. To ensure the irreversibility of

damage, the condition Ḋs ≥ 0 is imposed.

For monotonic (static) loading, at least two strength parameters are required to define

the T − δ law, namely, the critical fracture energy GC and cohesive strength Tmax, and

additional shape and stiffness parameters are specified depending on the assumed shape

of the cohesive law [Xu and Needleman, 1994]. Under pure mode I (normal separation)

and mode II (tangent separation) conditions, the corresponding critical fracture energies

are denoted by GIC and GIIC, and the corresponding cohesive strengths are denoted σmax

and τmax, respectively. Since, in reality, debonding and delamination failures take place

under variable mode-mix ratios with both normal and tangent separations, the mixed-mode

behavior is conveniently described in terms of mode I and mode II parameters through an
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interaction criterion [Jiang et al., 2007]. The mode I critical fracture energy GIC (or critical

SERR) is a material property that can be determined experimentally through a double-

cantilever beam (DCB) test, and there is relatively little uncertainty in its value [Gustafson

and Waas, 2009]. Oftentimes, GIC is the only known cohesive parameter of a material

[Diehl, 2008]. The standard procedure for retrieving GIIC is the end notched flexure (ENF)

test; however, the accuracy of this test is disputed [O’Brien, 1998, Pascoe et al., 2013].

Cohesive strength parameters σmax and τmax are the maximum tractions that the inter-

face can sustain in the normal and tangential directions, respectively. The value of σmax

may be calibrated through various experiments [Gustafson and Waas, 2009], however there

is no standard procedure for this measurement. Ferracin et al. [2003] suggested a combined

numerical and experimental approach for determining σmax by conducting a wedge-peel

test and comparing the deformation of adherent arms to simulation results where a CZM

is applied along the adhesive fracture process zone. Some authors regard σmax as an ad-

justable penalty parameter because in many cases it does not heavily influence global load-

displacement results, so long as a sufficiently large value is chosen [Xie et al., 2006, Turon

et al., 2007b]. The value of τmax can be determined from a single lap joint (SLJ) test, how-

ever, care must be taken to account for uncertainty of GIC and GIIC which can significantly

affect the calibrated result [Gustafson and Waas, 2009]. The other stiffness and strength

related parameters K0
n , δ c

n , and δ u
n are usually dependent on GIC and σmax; likewise, K0

t ,

δ c
t , and δ u

t are usually dependent on GIIC and τmax. Lee et al. [2010] proposed an iterative

nonlinear optimization scheme to calibrate σmax, τmax, K0
n , and K0

t from experimental data,

provided that GIC and GIIC are known. Additionally, some T −δ laws define independent

shape parameters to control the initial stiffness and the shape of the damage-softening zone

without affecting either Tmax or GC [Park et al., 2009]. As Needleman [2014] suggested,

the shape of the cohesive law can play a substantial role in numerical results when the size

of the cohesive zone is large compared to the entire fracture surface. Given the uncertainty

in the experimental determination of cohesive strength (σmax, τmax) and lack of certainty in
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the selection of stiffness parameters (K0
n , K0

t ) and cohesive shape, it is imperative that we

develop CZM formulations that they are minimally sensitive to these parameters.

For cyclic loading, fatigue degradation is typically incorporated into the cohesive el-

ement’s constitutive behavior by additively decomposing damage into static and fatigue

components [Robinson et al., 2005, Harper and Hallett, 2010, Khoramishad et al., 2010,

Kawashita and Hallett, 2012, de Moura and Gonçalves, 2014, Jimenez et al., 2014]. This

approach assumes that static and fatigue delamination are governed by the same microscale

failure mechanism (i.e., nucleation and growth of microvoids and microcracks), which is

justified by fractographic analysis that shows little difference between static and fatigue

fracture surfaces [Asp et al., 2001]. The interface stiffness is therefore weakened by a total

damage variable Dt as,

T = (1−Dt)K0
δ ; Dt ∈ [0,1]; Ḋt ≥ 0 (3.2)

where damage is additively decomposed as,

Dt = Ds +Df. (3.3)

However, for high-cycle fatigue analysis, Df is evolved over increments of loading cy-

cles ∆N by selecting an appropriate fatigue damage rate function. While this approach is

applicable for constant amplitude loading with stress ratio R = 0, it is still possible to in-

corporate overload effects associated with occasional spikes in loading amplitude within

this cycle-based analysis framework [Ural et al., 2009, Bouvard et al., 2009, Khoramishad

et al., 2011]. Since the focus of this chapter is to assess the parametric sensitivity of the

different CZMs for high-cycle fatigue delamination, we only consider constant amplitude

loading with stress ratio R = 0.

Typically, the fatigue damage growth rate dDf/dN is assumed to be a power law func-

tion of either the interface separation δ or the strain energy release rate ∆G or Gmax with at
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least two parameters, namely, the damage coefficient C and exponent parameter m. Robin-

son et al. [2005] proposed a separation based fatigue damage rate function using the contin-

uum damage law of Peerlings et al. [2000]. Munoz et al. [2006] and Jimenez et al. [2014]

followed the approach of Robinson et al. [2005] to investigate the time step size and mesh

size dependence of the finite element implementation. Khoramishad et al. [2010] proposed

a strain based fatigue damage rate function, wherein the strain is defined using the interface

separation of cohesive elements with non-zero initial thickness. Harper and Hallett [2010]

proposed a SERR based fatigue damage rate function by relating it to crack growth rate

given by the Paris law. Later, Kawashita and Hallett [2012] developed a nonlocal crack

tip tracking algorithm using a simplified SERR based function within the finite element

method to alleviate directional mesh bias and to preserve consistency with LEFM in the

Paris law regime. While Robinson et al. [2005] and Harper and Hallett [2010] followed

an additive approach for combining static and fatigue damage components wherein both

components affected cohesive strength and stiffness, Khoramishad et al. [2010] adopted

a different non-additive approach, wherein the static damage affected only the static stiff-

ness parameter and the fatigue damage affected only the static cohesive strength parameter.

However, there are no studies in the literature that investigated the sensitivity of crack

growth rate predictions to cohesive strength, stiffness or shape parameters for any of the

above separation based or SERR based fatigue damage functions following the additive

and non-additive approaches.

3.1.3 Outline

The rest of this chapter is organized as follows: in Section 3.2 the damage mechan-

ics formulation of static cohesive zone models is reviewed for bilinear, exponential and

polynomial shapes of traction-separation (T − δ ) laws along with the mixed-mode failure

criteria. Section 3.3 describes the cycle-based damage evolution under mixed-mode high-

cycle fatigue along with three damage rate functions based on interface separation, strain,
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and strain energy release rate laws. Section 3.4 presents parametric sensitivity studies

investigating the effect of static cohesive parameters and cohesive shape on fatigue delami-

nation growth, for all combinations of the static and fatigue damage functions, under mode

I and mixed mode configurations. The performance of the additive and non-additive dam-

age decomposition schemes and constrained and unconstrained damage update strategies

is also compared through numerical studies. Finally, Section 3.5 presents some concluding

remarks and possible directions of future work. The setup of the mode I and mixed-mode

simulations, the effect of static cohesive parameters on static (monotonic) delamination

growth, and the calibration of fatigue damage parameters are provided in Appendix D and

Appendix E.
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3.2 Static CZM formulation

In the finite element implementation of the CZM, cohesive elements are introduced

along laminate interfaces to simulate delamination crack growth. The constitutive behavior

of the cohesive element is generally prescribed by a T −δ law that features an initial elas-

tic response to resist crack opening followed by an irreversible damage-induced softening

response. In the damage mechanics framework, the 2-D mixed-mode T −δ law is defined

as, Tt

Tn

= (1−Ds(δn,δt))

K0
t 0

0 K0
n


δt

δn

 , (3.4)

where the subscripts “n” and “t” indicate normal (mode I) and tangent (mode II) directions

with respect to the local interface orientation. In the above equation, the variable Ds is a

scalar internal state variable if damage is assumed to be isotropic, however it is possible to

incorporate anisotropic damage by defining Ds as a second order tensor [Liu et al., 2012].

The parameters of the static damage function Ds(δn,δt) can be determined from the follow-

ing three linear elastic fracture mechanics (LEFM) principles [Park et al., 2009, Liu et al.,

2012]:

(I) The critical fracture energy is equal to the area under the T − δ curve, so for pure

mode I and mode II we have,

∫
δ u

n

0
Tn(δn,0)dδn = GIC ,

∫
δ u

t

0
Tt(0,δt)dδt = GIIC . (3.5)

(II) The maximum traction Tmax is equal to the interface cohesive strength,

Tn(δ
c
n ,0) = σmax , Tt(0,δ c

t ) = τmax ; (3.6)

(III) For T −δ laws with C1 continuity or greater, the maximum traction should occur at
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critical separation δ c,

∂Tn

∂δn

∣∣∣∣
δn=δ c

n , δt=0
= 0 ,

∂Tt

∂δt

∣∣∣∣
δn=0, δt=δ c

t

= 0 . (3.7)

3.2.1 Bilinear law

The bilinear traction-separation law, commonly used for its simplicity and flexibility,

has a linear damage-softening response following an initial linear-elastic response so that it

has a triangular shape (Figure 3.1). The function has C0 continuity and is not differentiable

at the point δ c, so it fails to satisfy the smoothness conditions in (3.7). The bilinear law has

three independent static parameters: critical fracture energy GC, cohesive strength Tmax,

and initial stiffness K0 for a given fracture mode (i.e., mode I and mode II in 2-D). The

normal and tangential critical and ultimate separations are not independent parameters and

can be calculated as,

δ
c
n =

σmax

K0
n

, δ
c
t =

τmax

K0
t

, (3.8)

δ
u
n = 2

GIC

σmax
, δ

u
t = 2

GIIC

τmax
. (3.9)

While there is less uncertainty in the values of GIC and GIIC from experimental studies,

the strength parameters σmax, and τmax are usually calibrated or selected by comparing nu-

merical simulations with experimental data, giving rise to larger uncertainty in their values.

Moreover, in the bilinear law the stiffness parameters K0
n and K0

t serve as a penalty param-

eters that are chosen without any physical basis, solely to avoid convergence issues and

minimize artificial compliance effects.

Remark 9 The normal cohesive stiffness K0
n of the bilinear law should be sufficiently large

to minimize artificial compliance in the finite element implementation. For a composite

material composed of two bulk layers bonded by a cohesive interface, the artificial com-

pliance can be characterized by the ratio RE of effective Young’s modulus Ẽ to original

56



0 δc δu

Separation (δ)

0

Tmax

T
ra

ct
io

n
(T

)

K = K0(1−Ds)

(a) Cycle 1
Cycle 2

0 δc δu

Separation (δ)

0

1

D
am

ag
e

(D
s)

(b)

Cycle 1
Cycle 2

Figure 3.1: Irreversible bilinear cohesive zone model: (a) the T − δ law and (b) static
damage versus separation. The traction and damage profiles follow the path indicated by
blue arrows during initial loading and unloading, and red arrows during reloading.

Young’s modulus E of the bulk material in the direction normal to the interface as [Blal

et al., 2011],

RE =
Ẽ
E

=
K0

n
E
H +K0

n
(3.10)

where H is the total thickness of the double cantilever beam normal to the interface. As

K0
n → ∞ the ratio RE → 1, which is desirable, but selecting a very large value for K0

n can

lead to numerical stability issues [de Borst, 2003]. The tangential stiffness parameter K0
t

is chosen such that K0
t ≥ K0

n so that both stiffnesses are on the same order of magnitude.

The traction response for general mixed-mode failure may be obtained by defining Ds

in the equivalent (or resultant) space. The equivalent interface separation, δe, is taken as

the magnitude of the separation vector,

δe =
√
〈δn〉2 +(δt)2 (3.11)

where 〈x〉 denotes Macaulay brackets, such that, 〈x〉 = max(0,x). Thus, a negative value

of δn indicates that the interfacial surfaces are in contact with each other, so it does not
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contribute to damage or decohesion. Adopting the quadratic damage initiation criterion of

Jiang et al. [2007], the equivalent critical separation δ c
e can defined as,

1
δ c

e
=

√(
cos I
δ c

n

)2

+

(
cos II

δ c
t

)2

, (3.12)

where the direction cosines cos I =
δn

δe
and cos II =

δt

δe
. Next, a generalized power criterion

is used for describing mixed-mode failure as,

(
GI

GIC

)α

+

(
GII

GIIC

)α

= 1. (3.13)

Choosing α = 1, an expression for the corresponding equivalent ultimate separation δ u
e

when Ds = 1 can be written as,

1
δ u

e
=

(
K0

n δ c
e (cos I)2

2GIC

)
+

(
K0

t δ c
e (cos II)2

2GIIC

)
(3.14)

Now that δe, δ c
e , and δ u

e have been defined, the static damage function corresponding to the

bilinear cohesive law can be defined as [Alfano and Crisfield, 2001, Robinson et al., 2005,

Jiang et al., 2007],

Ds =



0, if δe < δ c
e

δ u
e

δe

(δe−δ c
e )

(δ u
e −δ c

e )
, if δ c

e ≤ δe < δ u
e

1, if δ u
e ≤ δe

, Ḋs ≥ 0. (3.15)

When δe < δ c
e , damage does not accumulate, and the cohesive element retains its full

strength. Once δe > δ c
e damage rapidly grows until δe ≥ δ u

e where the cohesive element

fully fails. The condition Ḋs ≥ 0 ensures the irreversibility of damage so that unloading

and reloading is governed by the degraded (secant) stiffness, as shown in Figure 3.1. The

piecewise linear T − δ relation can be obtained by substituting equation (3.15) into equa-
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tion (3.4).

Remark 10 Following the work of Alfano and Crisfield [2001], we consider that static

damage Ds affects the secant cohesive stiffness K0, according to equation (3.1). Jiang et al.

[2007] suggested an alternative damage description for the bilinear traction-separation

law, wherein Ds affects the cohesive strength T̂max where, for δ > δ c,

T̂max = (1−Ds)Tmax ; Ds =
δ −δ c

δ u−δ c (3.16)

such that static damage varies linearly for all δ ∈ (δ c,δ u]. Both damage definitions can

be calibrated to predict similar evolution of the total damage variable Dt with respect to

loading cycles, so from this standpoint either approach may be appropriate for fatigue

delamination analysis.

3.2.2 Polynomial law

The polynomial cohesive law was originally developed by Needleman [1987] and was

later modified by Foulk et al. [2000] to account for irreversible mixed-mode fracture. Un-

like the bilinear law, the polynomial law (see Fig. 3.2) is a continuously differentiable

function for monotonic loading and satisfies the LEFM relation in equation (3.7). This law

has only two independent model parameters: cohesive strength Tmax and ultimate separa-

tion δ u for a given fracture mode. The traction response for normal and tangent directions

is given by [Foulk et al., 2000] ,

Tn =

(
27
4

)
σmax

(〈δn〉
δ u

n

)
(1−λmax)

2 , (3.17a)

Tt =

(
27
4

)
τmax

(
δt

δ u
t

)
(1−λmax)

2 , (3.17b)

where σmax and τmax are the maximum normal and tangent tractions, respectively, so as

to be consistent with LEFM principles defined in equations (3.6) and (3.7), and λmax is the
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Figure 3.2: Irreversible polynomial cohesive zone model: (a) the T − δ law and (b) static
damage versus separation. The traction and damage profiles follow the path indicated by
blue arrows during initial loading and unloading, and red arrows during reloading.

state variable characterizing the maximum effective separation throughout loading history,

defined by,

λmax =

√(〈δn〉
δ u

n

)2

+

(
δt

δ u
t

)2

; λmax ∈ [0,1]; λ̇max ≥ 0. (3.18)

Since λmax remains a constant during unloading and reloading, the traction unloads and

reloads along the secant direction until λmax is once again exceeded, as shown in Figure

3.2.

Let us now recast the polynomial cohesive law into the damage mechanics framework

using an isotropic damage variable Ds. Since the softening regime is controlled by the

(1−λmax)
2 term for both modes of failure, it is appropriate to define a mixed-mode static

damage function as,

(1−Ds) = (1−λmax)
2 ; Ds ∈ [0,1]; Ḋs > 0, (3.19)
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Substituting the relation for λmax in (3.18) into the above equation, we get,

Ds = 1−

1−
√(〈δn〉

δ u
n

)2

+

(
δt

δ u
t

)2
2

. (3.20)

The maximum separations δ u
n and δ u

t can now be determined according to (3.5) by equating

the area under the mode I and mode II T − δ curves to GIC and GIIC, respectively. For

example, for pure mode I loading δt = 0 and λmax = δn/δ u
n , so we can obtain,

∫
δ u

n

0
Tndδn =

∫
δ u

n

0

(
27
4

)
σmax

(
δn

δ u
n

)(
1− δn

δ u
n

)2

dδn =
9

16
σmaxδ

u
n = GIC. (3.21)

The pure mode II analogue of (3.21) is obtained by considering δn = 0 and λmax = δt/δ u
t .

Thus, we can define δ u
n and δ u

t in terms of critical fracture energies and the cohesive

strength parameters as,

δ
u
n =

16
9

(
GIC

σmax

)
, δ

u
t =

16
9

(
GIIC

τmax

)
. (3.22)

Thus, the recast polynomial cohesive law has two independent model parameters: critical

fracture energy GC and cohesive strength Tmax for a given fracture mode (i.e., mode I and

mode II in 2-D). The initial stiffnesses K0
n and K0

t are not independent parameters and can

be obtained as,

K0
n =

∂Tn

∂δn

∣∣∣∣
δn=δt=0

=
27
4

(
σmax

δ u
n

)
=

243
64

(
σ2

max
GIC

)
, (3.23a)

K0
t =

∂Tt

∂δt

∣∣∣∣
δn=δt=0

=
27
4

(
τmax

δ u
t

)
=

243
64

(
τ2

max
GIIC

)
. (3.23b)

Remark 11 The cohesive strength parameters σmax and τmax for the polynomial cohesive

law may be selected by comparing numerical simulations with analytical LEFM solutions
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[Park et al., 2009]. While selecting larger values for σmax and τmax yields a better fit

with analytical solutions, this decreases the length of the fracture process zone (FPZ);

consequently, one needs to reduce the size of cohesive elements in order to resolve the FPZ

with at least three cohesive elements for the sake of accuracy [Harper and Hallett, 2008].

Thus, the cohesive strengths are generally treated as adjustable (penalty) parameters with

the goal of improving convergence rates and limiting computational expense [Turon et al.,

2007b], which gives rise to uncertainty on their values in the literature.

3.2.3 Exponential law

Let us consider the exponential traction-separation law proposed by Liu et al. [2012]

based on the continuum damage model of Mazars [1986]. This T − δ law features an

initial linear-elastic regime followed by an exponential softening regime (see Fig. 3.3) that

satisfies the smoothness condition (3.7) at critical separation when approached from the

softening regime, but not when approached from the elastic regime. As noted by Liu et al.

[2012], the softening portion of this exponential T − δ law matches that of the potential-

based cohesive zone model proposed in Xu and Needleman [1994] for pure mode I loading.

The static damage function corresponding to this mixed-mode exponential law is given by,

Ds =

 0, if δe < δ c
e

1− exp
(

1− δe
δ c

e

)
, if δe ≥ δ c

e

, Ḋs ≥ 0, (3.24)

where equivalent separation δe is given by (3.11), and equivalent critical separation δ c
e

is given by (3.12). The exponential T − δ relation can now be obtained by substituting

equation (3.24) into equation (3.4). The mixed mode implementation of the exponential

law is similar to that of the bilinear law, except for the difference in damage functions

describing the softening regime. In order to determine δ c
e , we invoke the LEFM relation
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(3.5) that area under the T −δ curve is equal to the critical fracture energy GC, that is,

∫
∞

0
σmax

δn

δ c
n

exp
(

1− δn

δ c
n

)
dδ = exp(1)δ c

n σmax = GIC, (3.25a)∫
∞

0
τmax

δt

δ c
t

exp
(

1− δt

δ c
t

)
dδ = exp(1)δ c

t τmax = GIIC. (3.25b)

From the above relations we can determine the critical separations as,

δ
c
n =

GIC

σmaxexp(1)
, δ

c
t =

GIIC

τmaxexp(1)
. (3.26)

The initial stiffness can be calculated as,

K0
n =

∂Tn

∂δn

∣∣∣∣
δn=δt=0

=
σmax

δ c
n

=
σ2

maxexp(1)
GIC

, (3.27a)

K0
t =

∂Tt

∂δt

∣∣∣∣
δn=δt=0

=
τmax

δ c
t

=
τ2

maxexp(1)
GIIC

. (3.27b)

Note that the exponential T − δ law does not have an ultimate separation δ u; rather, the

traction will approach 0 with exponential decay as the separation approaches infinity. Thus,

the exponential law has only two independent model parameters: critical fracture energy

GC and cohesive strength Tmax for a given fracture mode (i.e., mode I and mode II in 2-

D). Also, any uncertainty in the values of σmax and τmax leads to a larger uncertainty in

the values of K0
n and K0

t because the initial stiffness is proportional to the square of the

cohesive strength.
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Figure 3.3: Irreversible exponential cohesive zone model: (a) the T − δ law and (b) static
damage versus separation. The traction and damage profiles follow the path indicated by
blue arrows during initial loading and unloading, and red arrows during reloading.
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3.3 Fatigue CZM formulation

The irreversible damage mechanics formulation of the CZM can be naturally extended

for modeling fatigue delamination by incorporating a fatigue damage state variable Df in

addition to its static counterpart Ds. For high-cycle fatigue loading, Df is computed at any

step k of the simulation as,

kDf =
k−1Df +∆Df =

k−1Df +

(
dDf

dN

)
∆N, (3.28)

where ∆Df is the fatigue damage increment over a certain number of loading cycles ∆N =

kN− k−1N. The fatigue damage rate dDf/dN is defined such that it can adequately describe

the experimental Paris law data, wherein the fatigue crack growth rate with respect to load-

ing cycles da/dN varies linearly with the normalized strain energy release rate ∆G/GC

when plotted on a log-log scale as,

da
dN

=C
(

∆G
GC

)m

(3.29)

Hence, high-cycle fatigue damage rate functions are usually formulated as power laws

with a damage coefficient parameter C and an exponent parameter m that are calibrated

from experimental data. The power law function may be formulated in terms of interface

separation δ , interface strain ε , or strain energy release rate Gmax.

For mixed-mode fatigue loading, the values for C, m, and the critical fracture energy

GC are functions of mode-mix ratio ψ defined by,

ψ =
GII

GI +GII
, (3.30)

where GI and GII are the mode I and mode II strain energies, respectively. Obviously, for

pure mode I failure, ψ = 0, and for pure mode II failure, ψ = 1. Among the most common

methods for evaluating GC at arbitrary mode-mix ratios is the B-K criterion [Kenane and
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Benzeggagh, 1997] given by,

GC = GIC +(GIIC−GIC)(ψ)η . (3.31)

The B-K criterion is included in the commercial software Abaqus for its standard cohesive

elements; however, it only allows monotonic variation between the mode I and mode II

extremes which may not be suited for fitting C and m for all materials. To avoid this,

Blanco et al. [2004] proposed an alternative quadratic criterion for evaluating C, m, and GC

at arbitrary mode-mix ratios as,

GC = g0 +g1ψ +g2ψ
2, (3.32)

where g0, g1, and g2 are the coefficients obtained by fitting a quadratic polynomial to known

instances of GC at three separate mode-mix ratios. Similarly, the parameters C and m are

also defined using the quadratic criterion and the corresponding coefficients are calibrated

to fit Paris data at three mode-mix ratios.

3.3.1 SERR-based fatigue damage rate function

Let us first consider the fatigue damage rate function derived by Kawashita and Hallett

[2012] by relating damage growth rate to crack growth rate in the Paris regime. While

Kawashita and Hallett [2012] additively combined fatigue damage with static damage cor-

responding to the bilinear T −δ law, in this section we investigate the performance of the

fatigue damage function when combined with static damage corresponding to exponential

and polynomial T − δ laws as well. The fatigue damage rate with respect to number of

loading cycles N at a given simulation step k as derived by Kawashita and Hallett [2012]

reads,
dDf

dN
=

(
1−Ds

h

)
C1

(
∆G
GC

)m1

, for all Gmax > Gth, (3.33)
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where h is the mesh size (i.e., length of the cohesive element), ∆G is the strain energy

release rate, GC is the critical fracture energy for a given mode-mix ratio ψ and C1 and

m1 are corresponding fatigue parameters. Thus, this function introduces two empirical

parameters C1 and m1 into the CZM formulation; however, they can be calibrated directly

from Paris data with greater confidence, unlike the static cohesive strength and stiffness

parameters. Since this function only represents the Paris regime, it is assumed that the

SERR amplitude Gmax exceeds the threshold SERR, Gth, so fatigue crack growth rate is

positive.

Following Kawashita and Hallett [2012], a trapezoidal rule is employed to numerically

calculate the strain energy release rate ∆G corresponding to the area under the T −δ curve

integrated from zero to the current separation δ k at step k as,

∆GI =
Ninc

∑
k=1

(kTn +
k−1Tn

2

)(
k
δn− k−1

δn

)
, (3.34a)

∆GII =
Ninc

∑
k=1

( kTt +
k−1Tt

2

)(
k
δt− k−1

δt

)
, (3.34b)

where Ninc is the number of simulation steps up to the current step. The total strain energy

release rate is given by the sum of the mode I and II contributions, that is,

∆G = ∆GI +∆GII. (3.35)

Remark 12 Kawashita and Hallett [2012] presented a nonlocal crack tip tracking algo-

rithm for the above SERR based fatigue damage rate function (Eq. 3.33) in order to allevi-

ate directional mesh bias when simulating delamination propagation in 3-D. However, for

simulating delamination in 2-D for mode I double cantilever beam or mixed-mode bending

tests, wherein the crack is a simple 1D interface known a-priori, the nonlocal crack tip

algorithm is not required; therefore, it is not implemented herein.
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3.3.2 Separation-based fatigue damage rate function

Let us next consider the fatigue damage rate function derived by Robinson et al. [2005]

based on the continuum damage law of Peerlings et al. [2000]. While Robinson et al.

[2005] additively combined this fatigue damage function with the static damage function

corresponding to the bilinear T −δ law, in this section we also investigate the performance

of the fatigue damage function when combined with the static damage functions corre-

sponding to the exponential and polynomial T − δ laws. The fatigue damage rate with

respect to loading cycles at a given simulation step k is,

dDf

dN
=

C2

m2 +1
exp(λD)

(
δ

δf

)m2+1

, for all Gmax > Gth, (3.36)

where D is the accumulated total damage, λ is a chosen damage magnification parameter

that accounts for the increase in damage rate near existing damage features, C2 and m2

are the damage coefficient and exponent parameters, respectively, and δf is an assumed

normalizing constant. Since the damage rate depends on the current state of damage an

implicit scheme is adopted to determine the damage increment as,

∆Df = ∆N
(

C2

m2 +1

)
exp
(
λDµ

)(δµ

δf

)m2+1

(3.37)

where Dµ and δµ are the linear combinations of damage and separation, respectively, at

some past cycle N and the current cycle N +∆N at step k. An iterative Newton-Raphson

method is used to determine ∆Df and is described in Appendix H.

3.3.3 Strain-based fatigue damage rate function

Let us next consider the fatigue damage rate function proposed by Khoramishad et al.

[2010], wherein interface strain was defined as ratio of the separation and an initial thick-

ness of the cohesive interface. While Khoramishad et al. [2010] non-additively combined
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fatigue damage with static damage corresponding to the bilinear T −δ laws, in this section

we investigate the performance of the fatigue damage function when additively combined

with static damage corresponding to the bilinear, exponential and polynomial T −δ laws.

The fatigue damage rate with respect to loading cycles at a given simulation step k is,

dDf

dN
=

 0, if εpr < εth

C3(εpr− εth)
m3, if εpr ≥ εth

, (3.38)

where C3 and m3 are fatigue parameters, εth is a strain threshold, and εpr is the maximum

principal strain in the interface element defined as,

εpr =
〈εn〉

2
+

√(〈εn〉
2

)2

+
(

εt

2

)2
. (3.39)

The above function proposed for non-zero initial thickness cohesive elements can also be

implemented using zero initial thickness elements by defining strain ε to be equal to the

interface separation divided by a normalizing constant lf representing a fictitious initial

thickness of the adhesive interface. The maximum principal strain of the cohesive element

can now be determined as,

εpr =
1
lf

〈δn〉
2

+

√(〈δn〉
2

)2

+

(
δt

2

)2
 (3.40)

In this study, we take the normalizing constant lf = 0.05 mm, and εth = 0. Thus, in the

current form, this function introduces only two parameters C3 and m3, similar to the other

two power law fatigue damage rate functions.

Remark 13 In continuum damage mechanics, the presence of existing damage is generally

assumed to increase fatigue damage growth rate [Peerlings et al., 2000]. While this dam-

age rate magnification is accounted for in the separation based function in equation (3.37),

it is not considered in the strain based function in equation (3.38). In contrast, in the SERR
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based function in equation (3.33), derived by Kawashita and Hallett [2012] based on the

Paris law, existing (static) damage slightly decreases fatigue damage growth rate, which is

quite intriguing. Detailed experimental and theoretical studies are necessary to ascertain

if this can be related to crack shielding of delamination due to damage.

3.3.4 Solution strategy

The different cohesive zone models for fatigue delamination obtained by combining the

three static damage functions with the three fatigue damage rate functions are implemented

within the commercial finite element software Abaqus using the user-element (UEL) sub-

routine. The user-defined interface element is a 4-noded element with two initially over-

lapping sets of nodes (i.e., initial thickness is zero) along the crack interface. A detailed

numerical implementation of this user element for simulating static delamination in Abaqus

is given in [Park and Paulino, 2012]. Herein, we briefly describe the algorithm for extend-

ing this user element for simulating fatigue delamination. First, the global displacement

vector u is transformed to the local coordinate system with the axes parallel (tangent) and

perpendicular (normal) to the crack interface. Next, the normal and tangential interface

separations (δn, δt) are determined from the relative displacement of opposite nodes be-

longing to the two crack surfaces. Using standard linear shape functions and a two-point

Gauss integration rule, Ds and Df are calculated at each integration point and the elemental

stiffness matrix and RHS vector are computed in the local coordinate system. Finally, the

elemental stiffness matrix and RHS vector are transformed back to the global coordinate

system and assembled into the global stiffness matrix and RHS vector. The values δn, δt, Tn,

Tt, Ds, Df, Dt, ∆GI, ∆GII, and Ntotal are stored as state variables at every integration point,

where Ntotal is the total number of elapsed cycles. Algorithm 3 summarizes the solution

strategy for any combination of the T − δ laws from Section 3.2 and the fatigue damage

rate functions from Section 3.3.
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Algorithm 3 : General solution scheme

At any simulation step k+1, the following is known from step k: nodal displacement vector
ku, and state variables kδn, kδt, kTn, kTt, kDs, kDf, kDt, k∆GI, k∆GII, and kNtotal. At the initial
step k = 0, all of the state variables are equivalent to zero.

(1) Compute separations k+1δn and k+1δt from nodal displacements using ku and linear
FE shape functions.

(2) Compute static damage k+1Ds from the prescribed T − δ law. Ensure that k+1Ds ≥
kDs.

(3) Compute fatigue damage increment ∆Df based on interface separations or SERR.

(i) Compute ∆G according to Eq. (3.35) if using SERR-based damage rate func-
tion.

(ii) k+1Ntotal = kNtotal + ∆N if fatigue cycling is being applied.

(iii) Compute ∆Df. Ensure ∆Df ≥ 0. Then, k+1Df =
kDf +∆Df

(4) Compute total damage k+1Dt =
k+1Ds +

k+1Df. Ensure that k+1Dt ≥ kDt.

(5) Compute the elemental stiffness matrix at integration point i as,

K = (1− k+1Dt)

[
K0

t 0
0 K0

n

]

(6) Compute the tractions at integration point i as,

T =

{k+1Tt
k+1Tn

}
= K

{k+1δt
k+1δn

}

(7) Assemble AMATRX and RHS arrays using K and T at each integration point.

(8) Store state variables k+1δn, k+1δt, k+1Tn, k+1Tt, k+1Ds, k+1Df, k+1Dt, k+1∆GI,
k+1∆GII, and k+1Ntotal at each integration point.
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3.4 Numerical studies of fatigue delamination models

In this section, we investigate the influence of static cohesive parameters, the shape of

the T − δ law, damage composition and damage update schemes on fatigue delamination

growth under high-cycle fatigue loading. Numerical simulations are conducted using two

loading configurations: the mode I double cantilever beam (DCB) test and the mixed-

mode bending (MMB) test for the carbon fiber-epoxy laminated composite HTA/6376C.

Material properties of HTA/6367C obtained from Asp et al. [2001] are provided below

in Table E1. We use a uniform, structured mesh to simulate the DCB and MMB tests

in Abaqus software with CPS4 (four-noded continuum plane stress) elements and zero-

thickness four-noded (cohesive) interface elements via the user element (UEL) subroutine.

To ensure numerical accuracy, it is essential that a sufficient number of interface elements

lie within the numerical cohesive (damage) zone. Therefore, the structured finite element

mesh size is taken as h = 0.25 mm so that it is less than the maximum allowable cohesive

element length defined in Harper and Hallett [2008].

Table 3.1: Material properties of carbon fiber/epoxy laminated composite HTA/6367C ob-
tained from Asp et al. [2001]

Property
(Units)

E11
(MPa)

E22 = E33
(MPa)

G12 = G13
(MPa)

ν12 = ν13

Value
1.2×
105 1.05×104 5.52×103 0.3

3.4.1 Influence of static CZM parameters on mode I fatigue crack growth

Pure mode I delamination is a simplified case that is ideal for observing the influence of

static cohesive parameters associated with normal traction-separation behavior on fatigue

crack growth rate. Herein, we investigate the influence of stiffness and strength parameters,

and the shape of the T −δ law on mode I fatigue delamination crack growth rate predicted

by the three fatigue damage functions presented in Section 3.3. As a part of this study,
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we also verified that under static (monotonic) loading, delamination growth is relatively

insensitive to these parameters so long as the critical fracture energy is assumed a constant.

The double cantilever beam (DCB) setup with applied moment M is chosen for mode I

experiments and the fatigue parameters Ci and mi are calibrated to the least squares fit

[Blanco et al., 2004] to experimental data given by Asp et al. [2001]. (The reader is referred

to Appendix D.) Fatigue parameters Ci and mi for i = {1, 2, 3}, reportedin Table E3, are

calibrated for the three different damage functions using the static cohesive parameters for

the bilinear law given in Table E2.

Table 3.2: Static cohesive parameters for the bilinear law (all values except K0
n and K0

t are
assumed from Harper and Hallett [2010])

Parameter K0
n K0

t GIC GIIC GC σmax τmax

(Units)
(

N
mm3

) (
N

mm3

) ( N
mm

) ( N
mm

) ( N
mm

) (
N

mm2

) (
N

mm2

)
1×104 2×104 0.26 1.002 0.447 30 60

Table 3.3: Fatigue damage parameters

Parameter (Units) Mode I Mixed Mode
C1 (mm/cycle) 1.62×10−3 1.125×10−1

m1 (−−) 4.2 5.5
C2 (1/cycle) 6.0 7×104

m2 (−−) 3.6 6.5
C3 (1/cycle) 6×10−1 8.75×104

m3 (−−) 4.2 8.0

Remark 14 In a DCB test with a constant moment applied to the cantilever arms, GI is

independent of crack length a and so the crack growth rate da/dN is a constant throughout

the test. Therefore, the crack length increment â = a−a0 increases linearly with number of

cycles N after crack propagation begins and da/dN can be easily measured by calculating

the slope of the â versus N curve. In a DCB test with constant load applied to the cantilever

arms, however, GI is dependent on crack length a and so da/dN is not constant.
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Figure 3.4: The sensitivity of fatigue crack growth rates to cohesive stiffness under pure
mode I loading. (a) Bilinear T −δ law for K0

n = 3.5×103,1×104,1×105 N/mm3. Mode
I crack growth rates predicted by: (b) the SERR based function; (c) the separation based
function; (d) the strain based function.

First, we investigate the influence of the normal cohesive stiffness on mode I fatigue

crack growth rates by taking K0
n = {3.5×103,104,105} N/mm3, while holding the strength

parameter σmax and critical fracture energy GIC constant for the bilinear cohesive law as

shown in Figure 3.4a. Crack growth rates predicted by the three fatigue damage functions

for each value of K0
n using the DCB test are shown in Figures 3.4b-d. These plots reveal that

the crack growth rates predicted by the SERR based function are relatively insensitive to the

value of K0
n , whereas those predicted by the strain and separation based functions display a

strong sensitivity to K0
n . This must be because the damage evolution predicted by the SERR
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Figure 3.5: Total damage Dt at the fourth integration point versus cycles passed since failure
of the first integration point N−Nfail

IP 1, predicted by the (a) SERR based function and (b)
separation based function for different values of cohesive stiffness K0

n under pure mode I
loading. Note that the blue dashed lines correspond to the K0

n value used during model
calibration.

based function is relatively insensitive to K0
n . To confirm this we observe the evolution of

total damage Dt at the fourth integration point (IP 4) along the crack interface against the

number of loading cycles N−Nfail
IP 1 since the failure of the first integration point (IP 1) for

the 40% ∆G/GIC load case. As evident from Figure 3.5, the SERR based function predicts

failure (i.e., Dt = 1) at approximately the same number cycles for all values of K0
n , unlike

the separation based function. This study suggests that it is advantageous to formulate

the fatigue damage rate as a function of the strain energy release rate (SERR) rather than

interface separation.

Another interesting observation from Figure 3.4b is that the Paris plots obtained from

the SERR based function are linear for the high and intermediate stiffness case (K0
n = 105

or 104 N/mm3), whereas for the low stiffness case (K0
n = 3.5×103 N/mm3) the Paris plots

seem to be slightly nonlinear. The nonlinearity of the low stiffness case is attributed to
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a discrepancy in the computed SERR (Eq. 3.34) in elements behind the crack tip at low

load ratios (e.g., 20% ∆G/GIC). We find that using a low value of stiffness in the CZM

formulation overpredicts the SERR in comparison to that predicted using intermediate and

high values of stiffness at low load ratios; however, this discrepancy does not arise at higher

load ratios (e.g., 60% ∆G/GIC). Hence, the rate of fatigue crack crack growth is only

overpredicted at low load ratios (e.g., 20% ∆G/GIC) when using low stiffness. Results from

the separation and strain based functions, shown in Figures 3.4c and 3.4d, also indicate that

the Paris plots are only linear in the high stiffness case, which is attributed to the interaction

between static and fatigue damage components in the low and moderate stiffness cases.

Remark 15 Generally, a high value of K0
n is chosen for the cohesive interface in order to

avoid inducing an artificial compliance in static delamination analysis. However, in the

case of fatigue delamination analysis using a high value of initial stiffness for the static

bilinear cohesive law is recommended to avoid discrepancies in crack growth rate pre-

dictions arising from the interaction between Df and Ds components. Since the maximum

allowable cohesive element length required for accurate numerical analysis is not a func-

tion of K0
n [Harper and Hallett, 2008], selecting a high value of K0

n does not increase the

computational cost so long as numerical convergence is not issue.

Next, we investigate the influence of the mode I cohesive strength on fatigue crack

growth results by taking σmax = {15,30,45} N/mm2, while holding stiffness parameter

K0
n and critical fracture energy GIC constant for the bilinear cohesive law as shown in

Figure 3.6a. Crack growth rates predicted by the three fatigue damage functions for each

value of σmax using the DCB test are shown in Figures 3.6b-d. These plots reveal that

all three damage functions show sensitivity to the value of σmax, although the strain and

separation based fatigue damage functions exhibit substantially higher sensitivity than the

SERR based function. As expected the crack growth rate is smaller when the cohesive
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strength is assumed to be large (i.e., σmax = 45 N/mm2) because at any given load ratio,

∆G/GIC, the static damage initiates much later owing to the bigger elastic regime. An

interesting point is that the Paris plot obtained using the low value of σmax is linear for all

three damage functions; however, the Paris plot obtained using the high value of σmax is

nonlinear, which is attributed to the increase in the size of the elastic zone with an increase

in σmax in the bilinear law. Indeed, altering σmax drastically changes the shape of the

bilinear cohesive law as opposed to altering K0
n (see Figs. 3.4a and 3.6a), thus, greatly

affecting damage initiation and damage evolution. This study suggests that it may not be

appropriate to treat the cohesive strength σmax as an adjustable parameter (see Remark

11) and it is important to reliably calibrate it from integrated experimental and numerical

approach, perhaps using the technique described in [Ferracin et al., 2003].

Remark 16 The fatigue crack growth rates predicted by the SERR based function are far

less sensitive to the cohesive stiffness parameter than the strength parameter because the

SERR calculated using the trapezoidal rule (Eq. 3.34) is far less sensitive to K0
n than to

σmax. This can be confirmed from Figure 3.7, wherein the evolution of the normalized SERR

at the fourth integration point (IP 4) is plotted for different values of K0
n and σmax for the

40% ∆G/GIC load.

Finally, we study the influence of the shape of the T − δ law on mode I fatigue crack

growth rates by considering bilinear, exponential and polynomial laws, while holding the

critical fracture energy GIC and cohesive strength σmax constant as shown in Figure 3.8a.

Since cohesive stiffness is not a free parameter in the polynomial and exponential laws, it is

not possible to simultaneously hold K0
n constant in this study; instead, K0

n is computed from

equations (3.23) and (3.27) as 1.31× 104 and 9.41× 103 N/mm3 for the polynomial and

exponential laws, respectively. For the bilinear law, we choose K0
n = 104 N/mm3 so that the

normal stiffness has the same order of magnitude for all three static CZMs. Crack growth
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Figure 3.6: The sensitivity of fatigue crack growth rates to cohesive strength under pure
mode I loading. (a) Bilinear T −δ law for σmax = 15,30,45 N/mm2. Mode I crack growth
rates predicted by: (b) the SERR based function; (c) the separation based function; (d) the
strain based function.
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Figure 3.7: Sensitivity of SERR computation using equation (3.34) at the fourth integration
point (IP 4) for different values of (a) cohesive stiffness K0

n and (b) cohesive strength σmax
under pure mode I loading, while all other static parameters are held constant at the values
given in Table E2.

rates predicted by the three fatigue damage functions for each cohesive law using the DCB

test are shown in Figures 3.8b-d. All three fatigue damage rate functions show minimal

sensitivity to the cohesive shape, with the separation and strain based models showing a

slight dependence. As evident from 3.8b-d, the polynomial law with C1 continuity yields

linear Paris plots, whereas the bilinear and exponential with only C0 continuity yield iden-

tical but slightly nonlinear Paris plots. This nonlinearly arises from the fact that in both

bilinear and exponential laws, there occurs an abrupt transition from an initial elastic state

(Ds = 0) to a damage-softening state (wherein Ds accumulates rapidly). In contrast, the

polynomial law has no elastic regime and thus no abrupt transition from an undamaged

to damaged state which can lead to nonlinearity of Paris plots. This study suggests that it

is appropriate to employ static cohesive laws with at least C1 smoothness, satisfying the

LEFM principle in equation (3.7), for modeling fatigue delamination growth.
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Figure 3.8: The sensitivity of fatigue crack growth rates to the shape of the T − δ law
under pure mode I loading. (a) Shape of bilinear, polynomial, and exponential traction-
separation laws. Mode I crack growth rates predicted by: (b) the SERR based function; (c)
the separation based function; (d) the strain based function.
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3.4.2 Influence of static CZM parameters on 50% mixed-mode fatigue crack growth

Mixed-mode delamination is a more realistic failure mode in composite structures and

is necessary for studying the combined effects of mode I and mode II static parameters on

fatigue crack growth rate. Herein, we investigate the influence of normal and tangential

stiffness and strength parameters and cohesive shape on fatigue delamination crack growth

rates at 50% mixed mode case (i.e., ψ = 0.5). The setup of the mixed mode bending

(MMB) test with applied moments chosen for this study is described in Appendix E, along

with the calibration of the fatigue parameters Ci and mi for i = {1, 2, 3} reported in Table

E3 for the three different damage functions.

First, we investigate the influence of the normal and tangent cohesive stiffnesses, K0
n

and K0
t , on fatigue crack growth rates, while holding the static parameters σmax, τmax, GIC,

and GIIC constant. The cohesive stiffness K0
n is varied from 104 to 105 N/mm3 and K0

t

from 2× 104 to 2× 105 N/mm3, so that there are four total combinations of K0
n and K0

t .

The results obtained from this study are shown in Figure 3.9. For different combinations

of K0
n and K0

t , the Paris plots obtained from the SERR based function match very well

with one another, whereas those obtained from the separation and strain based functions

show much discrepancy. From Figures 3.9b and 3.9c it is apparent that the Paris plots are

linear in all cases except when both K0
n and K0

t are chosen to be small. This suggests that

the requirements on the value of K0
n may be relaxed provided K0

t is chosen sufficiently

high. Another interesting observation is that for the high values of K0
t = 2×105 N/mm3,

the fatigue crack growth rate predictions are much more sensitive to the value of K0
n for

the separation and strain based functions. Thus, this study emphasizes the significance of

formulating the fatigue damage rate as a function of the strain energy release rate (SERR).

Next, we investigate the influence of normal and tangential cohesive strengths σmax and

τmax on mixed mode fatigue crack growth rates, while holding static parameters GIC, GIIC,

K0
n , and K0

t constant. The cohesive strength σmax is varied from 30 to 45 N/mm2 and τmax

from 30, 45, to 60 N/mm2. As expected, the SERR based function is less sensitive to the
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Figure 3.9: The sensitivity of fatigue crack growth rates to normal and tangent cohesive
stiffnesses, K0

n and K0
t respectively, under 50% mixed mode loading. Mixed mode crack

growth rates predicted by: (a) the SERR based function; (b) the separation based function;
(c) the strain based function.

variations in both σmax and τmax than the strain and separation based fatigue damage func-

tions. The same trend observed in mode I simulations is also observed in 50% mixed mode

simulations in that for small values of σmax and τmax the model predicts faster crack growth,

whereas for large values of σmax and τmax the model predicts slower crack growth. This

is because assuming small values for cohesive strengths increases the numerical cohesive

zone length, and the load redistribution among the interface elements in the large numer-

ical cohesive zone post damage initiation is responsible for the reduction in crack growth

rate. Thus, this study emphasizes the need for a more robust methodology for calibrating

cohesive strength parameters.

Finally, we study the influence of the shape of the traction-separation (T − δ ) law on

mixed mode fatigue crack growth rates. We consider the bilinear, exponential and poly-

nomial cohesive laws and select the static cohesive parameters GIC, GIIC, σmax, and τmax

given in Table E2. Since K0
n and K0

t are not independent parameters for the polynomial and

exponential T − δ laws, we calculate K0
n = 1.31× 104 and K0

t = 1.36× 104 for the poly-

nomial law and K0
n = 9.41×103 N/mm3 and K0

t = 9.77×103 N/mm3 for the exponential

law. We select K0
n = 104 and K0

t = 104 N/mm3 so that the stiffness of the bilinear cohesive
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Figure 3.10: The sensitivity of fatigue crack growth rates to normal and tangent cohesive
strengths, σmax and τmax respectively, under 50% mixed mode loading. Mixed mode crack
growth rates predicted by: (a) the SERR based function; (b) the separation based function;
(c) the strain based function.

law is of the same order magnitude as that of the other two cohesive laws. Crack growth

rates are measured for each T −δ law using the MMB test, and results are shown in Figure

3.11. The numerical results from the three fatigue damage rate functions show almost no

sensitivity to the cohesive shape; however, the polynomial law with C1 shape continuity

yields linear Paris plots, whereas some nonlinearity is observed with bilinear and exponen-

tial laws. This study illustrates that using static cohesive laws with higher-order smoothness

is more consistent in the Paris (stable crack growth) regime.

3.4.3 Non-additive damage decomposition

In all the sensitivity studies presented in the previous two sections, damage was addi-

tively decomposed into static and fatigue components, but both components are assumed to

affect the cohesive stiffness of the interface element. In this section, we compare this addi-

tive damage decomposition scheme with a non-additive scheme proposed by Khoramishad

et al. [2010], wherein the cohesive stiffness parameters K0
n and K0

t are affected by static

damage, Ds, and the cohesive strength parameters σmax and τmax are affected only by fa-
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Figure 3.11: The sensitivity of fatigue crack growth rates to the shape of the T − δ law
under 50% mixed mode loading. Mixed mode crack growth rates predicted by: (a) the
SERR based function; (b) the separation based function; (c) the strain based function.

tigue damage, Df. The numerical implementation of the non-additive scheme involves

reducing the critical separations based on fatigue damage and cohesive stiffnesses based on

static damage as,

δ̂
c = (1−Df)δ

c (3.41)

K = (1−Ds)K0 (3.42)

After fatigue damage initiates, the reduced critical separation δ̂ c replaces the critical sepa-

ration δ c in all the static damage calculations. The differences in the evolution of the static

cohesive law governed by the additive and non-additive formulations is illustrated in Figure

3.12. The dashed black line depicts the static bilinear T −δ law when Ds = Df = 0 during

the first loading cycle. The solid black and grey lines show the response at subsequent

loading cycles when one or both of the damage components Ds and Df are non-zero. The

traction-separation response obtained from the additive scheme when Ds = 0 and Df > 0
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Figure 3.12: Influence of (a) additive and (b) non-additive damage implementation on the
CZM shape.

(solid black line in Fig. 3.12a) is different from the response obtained from the non-additive

scheme (solid black line in Fig. 3.12b). The differences in the cohesive response are very

stark considering that the ultimate separation remains constant in the non-additive scheme,

whereas it evolves with loading cycles in the additive scheme. An important difference

is that the cohesive element’s failure occurs when Ds +Df = 1 in the additive scheme,

whereas failure occurs when either Ds = 1 or Df = 1 in the non-additive scheme. Thus, the

two decomposition schemes represent widely different traction-separation behaviors once

damage initiates.

We now investigate the sensitivity of the fatigue CZM formulation to normal cohesive

stiffness K0
n under pure mode I loading using the non-additive decomposition scheme. The

Paris plots obtained from the non-additive damage scheme (dashed lines) are shown in Fig-

ures 3.13a-c and compared with those obtained from the additive damage scheme (solid

lines). Evidently, the non-additive scheme predicts slower crack growth compared to the

additive scheme for a given K0
n using any fatigue damage function; this occurs because

more loading cycles are required to reach the non-additive failure criterion (i.e., Ds = 1
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Figure 3.13: Paris plot of mode I fatigue crack growth given by the additive damage scheme
and the non-additive damage schemes predicted by: (a) the SERR based function; (b) the
separation based function; and (c) strain based function. Solid lines denote the additive
damage scheme, and dashed lines denote the non-additive scheme.

or Df = 1) than the additive failure criterion (i.e., Ds +Df = 1). Note that in both addi-

tive and non-additive damage schemes, Df and Ds do not have to evolve simultaneously;

or in other words, fatigue damage can evolve in the absence of static damage. An impor-

tant observation is that the SERR based function works reasonably well with both damage

decomposition schemes, whereas the separation and strain based functions show larger

sensitivity to K0
n when using the non-additive scheme. Sensitivity studies with respect to

the cohesive strength parameter σmax revealed a similar trend in that separation and strain

based functions show slower crack growth rates when using the non-additive scheme (re-

sults not shown here). This study suggests that the additive scheme may be more consistent

when using separation based fatigue damage functions owing to the reduced sensitivity to

K0
n , however, both models work reasonably well when using the SERR based fatigue dam-

age rate function. We also believe it is appropriate to additively combine Ds and Df since

both static and fatigue damage involves the nucleation and growth of microcracks and mi-

crovoids within the laminate interface, as observed from fractographic analysis [Asp et al.,

2001].
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Remark 17 In the non-additive scheme one needs to uncouple static and fatigue damage.

By removing the (1−Ds) factor from equation (3.33), we obtain an uncoupled form of the

SERR based function which defines failure when Df = 1,

∆Df = ∆N
(

1
h

)
C1

(
∆G
GC

)m1

. (3.43)

The uncoupled form of the separation based function reads,

∆Df = ∆N
(

C2

m2 +1

)
exp
(
λDf,µ

)(δµ

δf

)m2+1

(3.44)

wherein only existing fatigue damage magnifies its growth rate.

3.4.4 Constrained damage update

In this section, we investigate the sensitivity of the fatigue CZM formulation using the

SERR based function to static parameters in relation to numerical damage update strate-

gies for mode I fatigue delamination. Kawashita and Hallett [2012] proposed a crack tip

tracking algorithm in 3-D, wherein fatigue damage Df is constrained to occur only in the

cohesive element closest to the crack tip. Additionally, a numerical fix was proposed to

correct for errors in the point-wise computation of SERR by extracting the maximum value

of ∆G from previously failed elements around the crack tip to substitute into equation

(3.33). Since Df is restricted to only one element at the crack tip, the strategy results in

element-by-element failure during delamination propagation. Herein, we implement this

constrained damage update algorithm by restricting Df to occur only in the integration point

closest to the crack tip; in other words, Df is allowed to accumulate at the next integration

point only after complete failure (Dt = 1) occurs at the prior integration point. We also
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store the location of the crack tip and the maximum value of ∆G throughout loading his-

tory as global (COMMON) variables in the Abaqus UEL subroutine for fatigue damage

rate calculation. For this current study, we set the mode I fatigue parameters equal to the

corresponding Paris law parameters for carbon fibre-epoxy composite HTA/6367C, that is,

C1 = C = 2.21× 10−3 and m1 = m = 5.09 [Blanco et al., 2004]. In analogy, the previous

numerical strategy wherein Df is allowed to accumulate at all integration points is referred

to as the unconstrained damage update.

Remark 18 An advantage of the crack tip tracking algorithm proposed by Kawashita and

Hallett [2012] is that it allows us to directly use the experimental Paris law parameters

C and m as the SERR based fatigue damage rate function parameters C1 and m1; thus,

calibration of the CZM is not necessary anymore. Since fatigue damage is constrained to

one crack tip element, the algorithm seems more consistent with the LEFM based Paris

law.

We simulate the mode I DCB test with the constrained algorithm for different values of

∆G/GIC in order to investigate the sensitivity of the SERR based fatigue damage function to

static parameters. First, we vary the normal cohesive stiffness by taking K0
n = {3.5×103,

104, and 105} N/mm3 while holding cohesive strength σmax and critical fracture energy

GIC constant at the values given in Table E2. Next, we take σmax = {15, 30, 45} N/mm2

while holding K0
n and GIC constant at the values given in Table E2. The predicted fatigue

crack growth rates are shown in Figures 3.14a-b as Paris plots. It is evident that the con-

strained algorithm makes the SERR based fatigue damage function much less sensitive to

static cohesive parameters, particularly the cohesive strength σmax. As remarked earlier,

changing the cohesive strength parameter alters the numerical cohesive zone length in the

finite element simulation, which affects the crack growth rate predictions. By restricting

fatigue damage growth to only one integration point at a time, the constrained damage up-
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Figure 3.14: Sensitivity of the SERR based fatigue damage function with constrained dam-
age update algorithm to (a) normal cohesive stiffness K0

n and (b) normal cohesive strength
σmax under pure mode I loading.

date algorithm removes the effects the numerical cohesive zone length on crack growth rate

predictions. While the constrained algorithm is consistent with LEFM analysis (i.e., Paris

law) and alleviates spurious parametric sensitivity, it is difficult to justify restricting fatigue

damage to only the crack tip element rather than all the elements in the cohesive zone from

a mechanistic standpoint, except for large element sizes when the entire damage zone is

contained in the crack tip element.
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3.5 Conclusions

We investigated the issue of parametric sensitivity of CZMs for high-cycle fatigue de-

lamination with respect to static cohesive parameter and fatigue damage functions based

on strain energy release rate (SERR), separation and strain. Lets us summarize the key

points from the sensitivity studies for mode I and mixed mode delamination. The sepa-

ration and strain based fatigue damage functions are highly sensitive to cohesive stiffness

and strength parameters but are relatively less sensitive to cohesive shape. The SERR based

fatigue damage function is almost insensitive to cohesive stiffness and shape but is slightly

sensitive to cohesive strength. Considering that the initial stiffness is usually treated as

an adjustable penalty parameter, it seems more appropriate to formulate fatigue damage

rate as a function of the SERR. Unlike bilinear and exponential static cohesive laws, the

polynomial cohesive law has a higher-order smoothness (C1 continuity) and yields linear

Paris plots in combination with all three fatigue damage functions; this is attributed to

the lack of sudden transition between a linear-elastic and damage-softening regime in the

polynomial law. Considering the high sensitivity of fatigue crack growth rate predictions

to the cohesive strength and that it is factor in determining the cohesive zone size, more

robust methodologies are necessary to establish the interface cohesive strength for a given

composite material.

Given that the CZM remains an efficient methodology for modeling cyclic crack growth,

it is important to devise numerical strategies that alleviate spurious sensitivity to static

cohesive parameters; therefore, we investigated the differences between the additive and

non-additive decomposition schemes and the constrained and unconstrained damage up-

date strategies. Our investigations revealed that the traction-separation behavior described

by the additive and non-additive schemes are widely different once damage initiates and

that using the additive schemes leads to slightly reduced sensitivity. The constrained dam-

age update algorithm reduces the sensitivity of the SERR based function to static cohesive

parameters by controlling the accumulation of fatigue damage along the interface, which
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may be appropriate when the interface element size is larger than the cohesive zone length.

The current form of the SERR based function, derived from the Paris law, is only suitable

for positive stress ratios (R≥ 0) and constant amplitude loading in the stable crack growth

regime. Future research work should entail describing all three regimes of fatigue crack

growth, that is, slow, stable and unstable regimes [Shivakumar et al., 2006] and moisture-

enhanced delamination [Katnam et al., 2011].
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CHAPTER 4

AN UPDATED-LAGRANGIAN DAMAGE MECHANICS FORMULATION FOR

MODELING THE CREEPING FLOW AND FRACTURE OF ICE SHEETS

4.1 Introduction

Fracture initiation and propagation affect the stability of ice sheets by accelerating their

flow, promoting iceberg calving, and triggering catastrophic collapse of glaciers and ice

shelves [Vieli and Nick, 2011, Schulson and Duval, 2009]. Modeling and simulation of

creep fracture (damage) mechanisms and its relation to the flow behavior (rheology) of ice

sheets/shelves can be useful in providing reliable estimates for mass loss from ice sheets,

a key component of sea level. Current numerical ice sheet/shelf models used to study

their stability employ empirical calving laws and do not account for the physics of frac-

ture, severely limiting their predictive capability and reliability. The purpose and scope of

this chapter is to present an updated-Lagrangian damage mechanics formulation to enable

physically accurate modeling of fracture evolution in glaciers and land ice sheets that are

slowly but continuously deforming under the force of gravity. In the proposed formulation,

we employ high-order mixed finite element discretizations for the solution of nonlinear in-

compressible Stokes flow equations and nonlocal damage approaches that ensure stability

and mesh-insensitivity of numerical simulations.

Over the long time scales of glacier and ice sheet evolution (decades to centuries or

longer) it is well established that the rheology of ice is well represented by a non-Newtonian

shear thinning (nonlinearly viscous) fluid, using the power law creep equation known as

the Glen’s law [Glen, 1955, Nye, 1957, Cuffey and Paterson, 2010, van der Veen, 2013]

in glaciology. By incorporating this viscous rheology, several studies have established that

the three-dimensional (3D) nonlinear incompressible Stokes equations (hereafter referred

92



to as the Stokes equations for brevity) provide the most accurate description of momen-

tum balance for modeling the flow of glaciers, compared to other approaches (see [Leng

et al., 2012, 2013] for more references and verification studies). The advantage of using the

Stokes equations is that we can accurately model glacier flow by accounting for the topog-

raphy (or geometry) and complex basal boundary conditions at the ice-bedrock interface

[Tezaur et al., 2015b]. Moreover, recent advances in higher-order finite element discretiza-

tion and scalable solvers for the solution of Stokes equations [Worthen et al., 2014, Isaac

et al., 2015] enable us to utilize the coverage and spatial resolution of ice sheet geometry

data available from high-resolution satellite imagery and simulate the dynamics of large

glaciers or even the entire Antarctic land ice sheet. However, to use the Stokes formula-

tion to predict glacier and ice sheet evolution we need to account for iceberg calving, and

this requires that we also simulate the damage induced crevasse formation and propaga-

tion, occurring on much shorter time scales (days to months). Furthermore, due to the vast

separation of time scales associated with flow and fracture processes, the time between

fracture inception and iceberg calving events associated with complete failure can exceed

decades and sometimes centuries. This is particularly challenging because it requires us

to couple the solid mechanics of creep fracture with the fluid mechanics of viscous flow

in a consistent yet computationally feasible manner. To address this, we propose a new

updated-Lagrangian formulation that can consistently describe short and long time scale

behavior.

To account for the physical mechanisms of creep fracture behind crevasse propagation

and iceberg calving, researchers have often relied upon theoretical models based on linear

elastic fracture mechanics (LEFM) (see e.g., [Weertman, 1980b, Van der Veen, 1998a,b,

Benn et al., 2007a]) or Nye-zero stress models (see e.g., [Nick et al., 2010b, Bassis, 2011,

Bassis and Walker, 2012]). These models (viz., LEFM and Nye-zero stress) assume that

ice behaves like a brittle elastic solid and represent fractures as sharp interfaces initiating

and propagating from preexisting defects (either starter cracks or notches); however, this
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is inconsistent with the creeping flow and fracture behavior of ice evident from laboratory

experiments, field investigations, and satellite observations. As an alternative to the LEFM

approach, Pralong et al. [Pralong and Funk, 2005] have proposed an Eulerian damage me-

chanics approach based on nonlinear Stokes flow and continuum creep damage mechanics.

While this approach describes the physics of flow (deformation) and fracture of ice bodies,

it suffers from numerical accuracy issues of pathological mesh dependence and directional

mesh bias associated with local damage models and artificial dissipation of damage associ-

ated with advection in an Eulerian description. To overcome such numerical issues, Duddu

et al., [Duddu and Waisman, 2012, 2013c, Duddu et al., 2013, Mobasher et al., 2016]

modeled ice as a Maxwell-type viscoelastic solid (see Appendix F) in conjunction with

a continuum damage mechanics approach using a Lagrangian finite element method. The

Maxwell viscoelastic model is well calibrated and validated against laboratory experiments

on polycrystalline ice in [Duddu and Waisman, 2012], and the nonlocal integral damage ap-

proach within a total Lagrangian formulation is shown to alleviate mesh sensitivity issues

in [Duddu and Waisman, 2013c]; however, this pure displacement (one-field) formulation

could suffer from numerical instabilities (e.g., oscillations in stress/pressure fields) when

describing large incompressible viscous deformation combined with small elastic defor-

mation. This issue may be resolved by introducing stabilization in the form of “hourglass”

control and reduced integration techniques (see, e.g., [Flanagan and Belytschko, 1981, Be-

lytschko et al., 1984]) or by using the B̄-type projection technique (see, e.g., [Elguedj et al.,

2008]). Instead, we pursue a velocity-pressure (two-field) formulation, assuming Stokes

flow, in conjunction with nonlocal damage mechanics for simulating creep fracture of ice

within a mixed Galerkin finite element framework.

It is well known that using equal-order interpolation of velocity and pressure fields in

the mixed Galerkin finite element formulation of incompressible Stokes, Navier-Stokes,

and Darcy flow problems is not stable and causes numerical “checkerboard” instability in

the pressure field (see e.g., [Masud and Hughes, 2002, Nakshatrala et al., 2006, Turner
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et al., 2009, 2010]). This numerical instability occurs because same-order interpolations

for unknown variables do not satisfy the inf-sup condition, most popularly known as the

Ladyzhenskaya–Babuška–Brezzi (LBB) stability condition [Brezzi and Fortin, 1991, Sz-

abo and Babuška, 1991, Brink and Stein, 1996]. To ensure numerical stability and optimal

convergence, several methodologies have been proposed in the literature for enabling stable

equal-order interpolation of velocity and pressure fields. An in-depth review of the various

stabilized or enriched finite element methods can be found in [Elguedj et al., 2008, Turner

et al., 2009]; herein, we wish to acknowledge a few important articles related to these meth-

ods: Streamline Upwind Petrov-Galerkin (SUPG, see, e.g., [Brooks and Hughes, 1982,

Hughes et al., 1986]), Galerkin Least Squares (GLS, see e.g., [Hughes et al., 1989]), varia-

tional multi-scale method (VMS, see e.g., [Franca et al., 1992, Hughes, 1995, Hughes and

Sangalli, 2007, Bazilevs, 2007, Turner et al., 2009]), bubble enriched finite element meth-

ods (see, e.g., [Arnold et al., 1984, Baiocchi et al., 1993]). An alternative, more straightfor-

ward strategy is to use use different order interpolation for velocity and pressure variables,

which is pursued in this chapter in conjunction with triangular elements by using cubic and

linear polynomials for interpolating velocity and pressure fields, respectively. Recently, we

also employed different order interpolation for velocity and Jacobian determinant variables

in conjunction with quadrilateral elements [Duddu et al., 2012, Foucard et al., 2015] to

simulate large deformations in hyperelastic solids within an Eulerian framework.

An important aspect in ice sheet modeling is that we need to track the changes in the

physical geometry (i.e., shape and the size) of the ice sheet domain due to large deforma-

tions accruing over decadal time scales. Typically, over such long times scales an Eulerian

framework (see e.g., [Pralong and Funk, 2005, Borstand et al., 2012, Albrecht and Lever-

mann, 2014] is employed, wherein domain boundaries are typically fixed and the material

is advected out. While the advantage of the Eulerian formulation over the Lagrangian

formulation is that it enables the efficient simulation of ice sheet flow without requiring

remeshing, it cannot track changes in geometry of the domain and material discontinuities
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such as fracture and damage zones; therefore, it is not ideal for simulating the fracture

of ice sheets. In this context, the primary goal of this work is twofold: first, to present

a novel mixed finite element implementation of the updated-Lagrangian formulation of

the incompressible Stokes flow [Onate and Carbonell, 2014] in conjunction with a mesh-

update procedure, which can be ideal for modeling flow and fracture in ice sheets on long

times scales; second, to demonstrate that the nonlinearly viscous Stokes flow constitutive

model reproduces the results of the previously established Maxwell-viscoelastic constitu-

tive model with to respect crevasse depths and glacial displacement over short time scales

(days to months); third, to conduct numerical verification and mesh convergence studies

along with a comparison of gradient and integral nonlocal models for time dependent creep

damage. The secondary goal of this work is to present computational algorithms and strate-

gies for simulating crevasse propagation. To the best of our knowledge, there exist no other

formulations in the literature that incorporate nonlocal creep damage into nonlinear Stokes

rheology to simulate fracture initiation and propagation. The rest of this chapter is orga-

nized as follows: in Section 4.2 we present the governing equations of the Stokes flow

rheological model for damaged ice; in Section 4.3 we discuss the solution strategy and fi-

nite element implementation of the new formulation in the open-source software FEniCS

along with detailed algorithms; in Section 4.4 we provide numerical examples to verify and

compare the new formulation with a manufactured Stokes solution and the previously es-

tablished Maxwell viscoelastic model, including constant velocity and gravity-driven creep

flow tests; and finally, in Section 4.5 we offer some concluding remarks.
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4.2 Model formulation

In this section, we present the details of the rheological model for damaged ice used

to describe the deformation flow and creep fracture of ice-sheets and ice-shelves. We first

explain our notation for variables, the domain configurations and kinematics of the con-

tinuum. We next review the key concepts of the nonlocal continuum damage model for

temperature-dependent creep fracture previously presented in [Duddu and Waisman, 2012,

2013c] and propose a modification to consider isotropic damage evolution only under a

tensile state of stress. Finally, we present the strong and weak forms of the governing

equations of the Stokes flow model, assuming that ice behaves as a non-Newtonian (or

nonlinearly viscous) fluid, including the effects of creep damage on its viscosity.

4.2.1 Notation

All model equations are presented in indicial notation; for example, vectors are denoted

as a= aiêi with components ai and orthogonal basis vectors êi of the Cartesian coordinate

system. Similarly, second-order tensors are denoted by the dyadic notation asA= Ai jêi⊗

ê j with components Ai j. The equations are presented in three-dimensional space with

the spatial indices i, j ∈ {1,2,3}, although the simulations are conducted assuming two-

dimensional plane strain approximation. We adopt Einstein’s convention where repeated

spatial indices imply summation. To denote the value of a vector or tensor at time step

n we use the left superscript; for iterative procedures we use m as the counter and set

it as a left subscript surrounded by parentheses; and we reserve the right superscript for

exponents (italicized) or descriptors (unitalicized). For example, n
(m)ε

e
i j denotes the elastic

(e) component of the second-order strain tensor εi j at time step n and iteration m. Any

symbol written without the left superscript is assumed to be at time step n.
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4.2.2 Domain description

We employ the updated-Lagrangian description, rather than a total Lagrangian or Eule-

rian description, to efficiently simulate the viscous flow and fracture of ice. In the updated-

Lagrangian description, the positions of the material points in the continuum and their

motion is described using a reference configuration that dynamically evolves as the domain

deforms. For this reason, we will distinguish the initial reference configuration from cur-

rent and updated reference configurations, as illustrated in Figure 4.1. The initial reference

configuration is denoted by 0Ω and contains all the material points with initial spatial coor-

dinates 0x. The current spatial coordinates of the material points in the domain nΩ are de-

noted by nx= nxiêi. At any given time step n, the current reference domain nΩ is bounded

by the union of the Dirichlet and Neumann boundaries nΓD and nΓN, respectively. The

updated reference configuration is defined by the domain n+1Ω after the material points

are translated using a displacement increment n∆u between time steps n and n+ 1. The

kinematics of the moving continuum and the procedure for calculating ∆u are described in

the following section.

4.2.3 Kinematics

The current velocity of material particles in the domain nΩ is denoted by v (x, t) = viêi

and the corresponding strain-rate is defined as

ε̇i j =
1
2

(
∂ vi

∂ x j
+

∂ v j

∂ xi

)
. (4.1)

In the literature, the above quantity is commonly referred to as the rate of deformation

tensor. Generally, in the total Lagrangian description the displacement u of each material

point in the current configuration nΩ is defined by the difference between its current and
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Figure 4.1: Illustration of reference domain configurations in the updated-Lagrangian de-
scription (redrawn from [Onate and Carbonell, 2014]). The initial, current, and updated
reference configurations are defined the by domains indicated by 0Ω, nΩ, and n+1Ω, respec-
tively. The symbols ΓD and ΓN respectively denote the Dirichlet and Neumann boundaries,
and T̄ is a vector of applied tractions.
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initial spatial coordinates

ui = xi− 0xi. (4.2)

In the updated-Lagrangian framework, the displacement of material particles between nΩ

to n+1Ω is defined using the displacement increment as

∆ui =
n+1ui−ui =

n+1xi− xi. (4.3)

The displacement increment n∆u can be obtained by integrating the flow velocity over time

[Onate and Carbonell, 2014]

∆ui =
∫ n+1t

nt
vi(x,τ)dτ. (4.4)

Note that between the times nt and n+1t the domain continuously moves with a variable

velocity field vi(x,τ) from nΩ with known coordinates x to the updated configuration

n+1Ω with unknown coordinates n+1x [Bathe et al., 1975]; therefore, an iterative scheme is

required to account for the change in reference configuration [Onate and Carbonell, 2014].

However, assuming small changes in particle velocities during the time increment ∆t =

n+1t− nt, we approximate the displacement increment and update the nodal coordinates as

∆ui = n+1vi(x, t) ∆t, (4.5)

n+1xi = nxi +∆ui. (4.6)

The procedure for computing velocity n+1vi(x, t) is detailed in the Section 4.2.6.
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4.2.4 Nonlocal creep continuum damage model

The continuum damage model for creep fracture is built on the principle of effec-

tive stress [Kachanov, 1958, Rabotnov, 1963] and the hypothesis of strain equivalence

[Lemaitre, 1971], which states that “the strain associated with a damaged state under the

applied stress is equivalent to the strain associated with its undamaged state under the

effective stress.” Here, we assume damage evolves isotropically under tension, so it is rep-

resented by a scalar variable D ∈ [0,1], where D = 0 and D = 1 represent an undamaged

(virgin) and a fully damaged state, respectively, at a material point in the continuum. The

effective Cauchy stress tensor σ̃i j can be defined in terms of the actual Cauchy stress tensor

σi j as

σ̃i j =
σi j

(1−D)
. (4.7)

The process of creep damage is generally associated with progressive degradation due to

the growth of microcracks and microvoids [Betten et al., 1998, 1999]. To account for the

time-dependent degradation mechanisms, the local rate of evolution of damage Ḋloc at a

material point is phenomenologically defined by a dynamic damage evolution function f

as

Ḋloc =
∂Dloc

∂ t
=


f (σi j,D), if σkk ≥ 0,

0, if σkk < 0.
(4.8)

Remark 19 Laboratory experimental studies indicate that ice exhibits tension-compression

asymmetry in its mechanical response to loading. While damage evolution in ice under

tension is clearly observed to be due to the growth and coalescence of microcracks and

microvoids, damage evolution under compression is also complicated by recrystallization

process, as noted in [Duddu and Waisman, 2013a]. Because ice is much stronger in com-

pression than in tension, crevasses (fractures) are always observed in regions under tensile
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stress states; so, we only consider damage evolution under tension.

Remark 20 The isotropic damage variable D can be physically interpreted as the ratio

of the area of spherical micro-voids to the total area along a cross-sectional cut of a rep-

resentative volume element at a material point [Lemaitre, 1992]; therefore, in Equation

(4.8), damage growth due to nucleation and growth of spherical micro-voids is permitted

only when the stress state at a material point is predominantly tensile, that is, when the

hydrostatic stress σkk > 0.

We next define the damage evolution function f for the generalized multi-axial stress

state as [Murakami et al., 1988]

f = B̂
〈χ〉r

(1−D)kσ
, (4.9)

where B̂ and r are material parameters controlling the damage growth rate; kσ is a stress-

dependent term; 〈·〉 represents the Macaulay brackets, such that 〈χ〉= max{χ,0}; and the

effective Hayhurst stress χ is defined as [Hayhurst, 1972]

χ = ασ̃
(I)+βσ̃

v +(1−α−β )σ̃kk. (4.10)

In the above equation, α and β are material parameters corresponding to brittle and ductile

crack growth mechanisms, respectively; σ̃ (I) is the maximum principal stress in the effec-

tive space; σ̃v is the effective von Mises stress; and σ̃kk is the trace of the effective Cauchy

stress tensor (i.e, the first invariant of the effective stress). Because χ is a weighted average

of stress invariants, it is invariant with coordinate transformation. The stress-dependent
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parameter kσ is an experimentally calibrated parameter defined as

kσ = k1 + k2σkk, if σkk ≥ 0. (4.11)

The parameter kσ accounts for the tertiary creep behavior, wherein the presence of pre-

existing damage in polycrystalline ice accelerates crack growth rate under tension leading

up to rupture.

4.2.4.1 Nonlocal integral damage

To ensure thermodynamic consistency and to alleviate mesh dependence issues with

the numerical implementation of local damage models [Bazant and Pijaudier-Cabot, 1988,

Pijaudier-Cabot and Bazant, 1987b, de Borst, 2001, Verhoosel et al., 2011, Jirásek and

Grassl, 2008], we define a nonlocal damage rate Ḋ at a specific material point at spatial

location x in the reference configuration Ω as

Ḋ(x) =

∫
Ω

Φ(x− x̂) Ḋloc (x̂) dx̂∫
Ω

Φ(x− x̂) dx̂
, (4.12)

where x̂ = x̂iêi denotes the spatial coordinates of any material point in Ω, and Φ can be

selected as either Gaussian or Green’s weighting function defined by

Φ(x− x̂) =


exp
(
−κ

||x−x̂||2
l2
c

)
(Gaussian),

exp
(
−2
√

κ
||x−x̂||

lc

)
(Green’s).

(4.13)

In the above equation, the shape parameter κ is a positive constant and lc is a chosen

nonlocal length scale for purely numerical reasons. In our simulation studies, we take

lc = 10 m and κ = 2, and all other damage model parameters and their values are listed
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in Table 5.2. The numerical implementation of the nonlocal integral is detailed in Section

4.3.2.

4.2.4.2 Implicit gradient damage

We next present an implicit gradient formulation for computing the nonlocal damage

rate [Peerlings et al., 2001, de Borst and Verhoosel, 2016]. The implicit gradient can be

simply derived by expanding the local damage rate Ḋloc as a Taylor series about x̂ as

Ḋloc(x̂) = Ḋloc(x)+
∂ Ḋloc

∂xi
(x̂i− xi)

+
1
2!

∂ Ḋloc

∂xi∂x j
(x̂i− xi)

(
x̂ j− x j

)
+ ... (4.14)

By substituting the above expression and the kernel function (Eq. 4.13) into Equation

(4.12), the nonlocal damage rate can be defined as

Ḋ(x) = Ḋloc(x)+
l2
c

4κ

∂ 2

∂x2
i

Ḋloc(x)+
l4
c

32κ2
∂ 4

∂x2
i ∂x2

j
Ḋloc(x)+ ... (4.15)

The partial differential equation corresponding to the implicit gradient formulation can be

obtained by taking the Laplacian of Equation (4.15), multiplying by l2
c

4κ
, subtracting that

expression from Equation (4.15) and then neglecting higher-order gradient terms to yield a

simple form as follows:

Ḋ− l2
c

4κ

∂ 2

∂x2
i

Ḋ = Ḋloc. (4.16)

The numerical implementation of the implicit gradient formulation is provided in Section

4.3.2.
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Table 4.1: Damage law parameters obtained from [Duddu and Waisman, 2013c].

Parameter Value Units
B̂ 5.23×10−7 MPa −r s−1

r 0.43 –
k1 -2.63 –
k2 7.24 MPa−1

α 0.21 –
β 0.63 –
lc 10 m
κ 2 –

4.2.5 Rheology of damaged ice

The rheological model describes the nonlinear viscous flow behavior of damaged ice

based on Glen’s flow law [Glen, 1955, Nye, 1953]. Assuming polycrstalline ice to be

isotropic and incompressible, the viscous strain rate of damaged ice is given by

ε̇i j = A(τ̃eq)N−1
τ̃i j. (4.17)

where τ̃i j is the effective deviatoric stress, coefficient A and exponent N are viscous flow

parameters, and the effective equivalent deviatoric stress τ̃eq is defined in terms of the

second invariant as

τ̃
eq =

√
1
2

τ̃i jτ̃i j. (4.18)

Note that the viscous flow of ice is faster at higher temperatures, and this is accounted for

by defining an Arrhenius-type relation for the temperature dependence of the viscous flow

coefficient A [van der Veen, 2013]. In this study, however, we conduct all the simulations

using the material properties of ice at a constant temperature T =−10◦C, as given in Table

E1.
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Table 4.2: Material properties of ice at−10◦C obtained from [Duddu and Waisman, 2013c]
and [van der Veen, 2013].

Property Value Units
B 111.8 MPa s1/3

N 3 –
ρice 917 kg/m3

The constitutive law in Equation (4.17) can be inverted and rewritten as

τ̃i j = B(ε̇eq)
1
N−1

ε̇i j, (4.19)

where B = A−1/N and the equivalent strain rate is

ε̇
eq =

√
1
2

ε̇i jε̇i j. (4.20)

Equation (4.19) represents a generalized constitutive flow law for a damaged non-Newtonian

fluid-like material as given by

τi j = 2(1−D)ηε̇i j, (4.21)

where the nonlinear viscosity η = 1
2B
(
[ε̇eq]2 + γ

) 1−N
2N and γ = 10−14s−2 is a small regular-

ization parameter introduced to avoid problems with the nonlinear solver when using a zero

or constant velocity initial guess (i.e., when ε̇eq = 0) [Tezaur et al., 2015a]. The Cauchy

stress tensor σi j can then be obtained as

σi j = τi j− pδi j. (4.22)

In the above equation, p = −1
3σkk is the pressure and δi j represents the Kronecker’s delta

where δi j = 1 if i = j, and δi j = 0 otherwise.
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4.2.6 Strong form

The strong form of the governing equations is specified by the incompressible Stokes

equations describing the creeping flow of the continuum based on momentum balance.

In this two-field formulation, the unknown fields are the vector velocity field n+1v =

v
(n+1x,n+1t

)
and the scalar pressure field n+1 p = p

(n+1x,n+1t
)

which are defined as

functions of the updated reference coordinates n+1x over the updated configuration n+1Ω.

For incompressible, isotropic fluids, the strong form of the Stokes flow equations are writ-

ten as
∂ n+1τi j

∂ n+1x j
− ∂ n+1 p

∂ n+1xi
+ψ(nD) n+1bi = 0

ψ(nD)
∂ n+1vi

∂ n+1xi
= 0


on n+1

Ω, (4.23)

where τi j is the deviatoric stress tensor, and bi is the external force vector. The function

ψ(nD) is incorporated to relax the incompressibility constraint and disregard the density of

fully damaged material points, and is taken as

ψ(nD) =


1, if nD < Dmax,

ξ , if nD = Dmax,

(4.24)

where Dmax ≈ 1 is the prescribed maximum value for damage and ξ ≈ 0 = 10−16 is chosen

as a very small number to avoid rank deficiency of the tangent matrix. We assume ψ(D)

as a discontinuous (step) function, as opposed to a continuous function, because we wish

to relax incompressibility and disregard density only after the macro-crack appears (i.e.,

nD = Dmax) and not during micro-crack nucleation and growth; however, the mechanics of

damaged (viscous) ice is a complicated issue, so the discontinuous form in Equation (4.24)

is considered for purely numerical reasons in this study.
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Remark 21 While it may be physically consistent to assume that fully damaged ice no

longer behaves like an incompressible medium, disregarding the density of damaged ice

may not be physically consistent because it can remain in the crevasse as rubble or ice

mélange [Amundson et al., 2010] and exert cryostatic stress due to self-weight. Further-

more, meltwater can now percolate into the fully damaged zone and exert hydrostatic pres-

sure along the edges of the crack (or crevasse) [Mobasher et al., 2016].

Remark 22 From a computational standpoint, applying the body force due to gravity while

the viscosity of damaged ice tends to zero is problematic because it leads to excessive dis-

placements and distortions in damaged regions of the finite element mesh; therefore, we

introduce ψ(D) into the body force term in Equation (4.24) to disregard body force at fully

damaged material points. Modeling fully damaged ice either as an anisotropic material

with tension-compression asymmetry [Duddu and Waisman, 2012] or as a granular mate-

rial using the Mohr-Coulomb failure theory [Moore, 2014] could overcome this problem;

however, the numerical implementation would become very cumbersome as we need to

switch between rheological models based on the damaged state.

Upon substituting the kinematic equation (Eq. 4.1) and constitutive relation (Eq. 4.21),

the strong form can be rewritten in terms of velocity, effective pressure, and prior damage

in the updated configuration as

∂

∂ n+1x j

{
[1− nD]η

(n+1v
)[ ∂ n+1vi

∂ n+1x j
+

∂ n+1v j

∂ n+1xi

]}
−[1− nD]

∂ n+1 p̃
∂ n+1xi

+ψ (nD) n+1bi = 0

ψ (nD)
∂ n+1vi

∂ n+1xi
= 0


on n+1

Ω, (4.25)
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together with the Dirichlet and Neumann boundary conditions

n+1vi =
n+1v̄i on n+1

Γ
D,

n+1
σi j

n+1n̂ j =
n+1T̄i on n+1

Γ
N,

(4.26)

where n+1v̄i are applied velocities, n+1T̄i are applied tractions, and n+1n̂ j is a outward

unit normal vector to the surface of the boundary. In Equation (4.25), the viscosity η is

a nonlinear function of the velocity defined as, η
(n+1v

)
= 1

2B
(
[n+1ε̇eq]2 + γ

) 1−N
2N , where

n+1ε̇eq is defined in Equation (4.20); and the effective pressure p̃ = (1−D)−1 p.

4.2.7 Weak form

The weak form of Equation (4.25) is obtained by incorporating test functions w and q,

integrating by parts, and then applying Gauss’s theorem. The weak or variational form can

be stated as follows:

Find n+1v ∈ V and n+1 p̃ ∈S such that ∀w ∈ V and q ∈S :

∫
n+1Ω

∂ wi

∂ n+1x j

{
[1− nD]η

(n+1v
)[ ∂ n+1vi

∂ n+1x j
+

∂ n+1v j

∂ n+1xi

]}
dΩ

−
∫

n+1Ω

[1− nD]
∂ wi

∂ n+1xi

n+1 p̃ dΩ−
∫

n+1Ω

ψ (nD)wi
n+1bi dΩ

−
∫

n+1ΓN
wi

n+1T̄i dΓ = 0

∫
n+1Ω

ψ (nD)q
∂ n+1vi

∂ n+1xi
dΩ = 0



on n+1
Ω, (4.27)

where V and S are vector and scalar function spaces, respectively. Because the updated

coordinates n+1x are unknown at time step n, solving the above weak formulation will

require an implicit scheme, which can be cumbersome.

Remark 23 An alternative weak form can be stated in the current reference configuration
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nΩ in terms of the Green-Lagrange strain-rate tensor Ėi j and the second Piola-Kirchhoff

stress tensor Si j. In this alternative form, all the gradient quantities are written in terms

of the (known) current reference coordinates nx; however, the computation of the unknown

displacement increment n∆u = n+1x− nx between configurations n+1Ω and nΩ necessi-

tates an iterative procedure, which can be cumbersome. Futhermore, the consistent tan-

gent corresponding to this alternative weak form is much more complicated, as described

in [Onate and Carbonell, 2014].

To simplify the numerical implementation, we express the above weak form over the the

current reference configuration nΩ (see [Onate and Carbonell, 2014] for a detailed deriva-

tion) and assume that the displacement increment gradient ∂ ∆ui
∂ nx j

<< 1 and deformation

gradient Fi j =
∂ n+1x j
∂ nx j

≈ 1. Consequently, for small time increments ∆t, we can now state

the approximate weak form over the current reference configuration nΩ as follows:

Find n+1v ∈ V and n+1 p̃ ∈S such that ∀w ∈ V and q ∈S :

∫
nΩ

∂ wi

∂ nx j

{
[1− nD]η

(n+1v
)[∂ n+1vi

∂ nx j
+

∂ n+1v j

∂ nxi

]}
dΩ

−
∫

nΩ

[1− nD]
∂ wi

∂ nxi

n+1 p̃ dΩ−
∫

nΩ

ψ (nD)wi
nbi dΩ

−
∫

nΓN
wi

nT̄i dΓ = 0

∫
nΩ

ψ (nD)q
∂ n+1vi

∂ nxi
dΩ = 0



on n
Ω. (4.28)

In essense, the above approximate weak form reads almost exactly like the one in Equation

(4.27), if we assume ∂ n∆uk
∂ nxi

<< 1, so that

∂

∂ n+1x j
≈ ∂

∂ nx j
, (4.29)
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and the relevant strain rate tensor n+1ε̇i j can now be approximated as

n+1
ε̇i j ≈

1
2

[
∂ n+1vi

∂ nx j
+

∂ n+1v j

∂ nxi

]
. (4.30)

The advantage in using the approximate weak form in Equation (4.28) is that it can be

directly solved over the current reference configuration to obtain velocity and pressure

fields, and then the mesh update procedure can be implemented separately in an de-coupled

manner by choosing an appropriate time step ∆t, which leads to a computationally accurate

yet tractable strategy.

Remark 24 The tensile strain rate corresponding to an expanding glacier is extremely

small, typically, on the order of 10−8 per second; this typically amounts to a flow velocity

of a few meters per day for a typical glacier that spans tens to hundreds of kilometers in

length and a few hundred meters or more in depth. Consequently, the longitudinal and

transverse gradients in the displacement increment are small (given the large size scales of

glaciers), so using the approximation in Equation (4.29) is reasonable for creeping flow of

glaciers.
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4.3 Solution strategy

We now present the numerical strategy that combines the updated-Lagrangian descrip-

tion for simulating the viscous (Stokes) flow and the nonlocal integral approach for sim-

ulating creep fracture (damage) evolution. We employ a de-coupled solution procedure

that is explicit in time and consists of two sequential steps: (1) solve the variational form

of the Stokes flow equations using a mixed finite element discretization, in conjunction

with Picard iteration and mesh update schemes; (2) compute the damage increment using

a nonlocal integral or gradient approach to establish the damage rate. During the Picard

iteration scheme the flow velocity n+1vi and effective pressure n+1 p̃ fields are computed

over the current reference configuration nΩ, while holding damage constant nD at its previ-

ously computed value. Using the converged solutions for velocity and pressure, the Cauchy

stress and the damage rate are subsequently computed to update damage. Thus, the damage

update (step 2) is fully decoupled from the solution of Stokes flow problem (step 1). These

two solution steps along with detailed algorithms are presented in the following sections.

Remark 25 Unlike the fully implicit damage models in the literature that are formulated

for strain-dependent and rate- or time-independent damage functions (e.g., see [Peerlings

et al., 2001]), creep damage in ice is a time-dependent process, and the damage rate is a

highly nonlinear function of the full stress tensor [Duddu and Waisman, 2012]. Because

the solution to the nonlinear Stokes equations is instantaneous (steady-state) and damage

evolution is time-dependent and highly nonlinear, it is simpler to use an explicit-time for-

ward Euler scheme to update the damage separately; whereas, the implicit backward Euler

scheme requiring a monolithic solve of the Stokes and damage evolution equations can be-

come very cumbersome. For numerical accuracy and stability of the present scheme, we

ensure that the damage increment is sufficiently small during each time step by choosing a
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suitable time increment according to Equation (4.34).

4.3.1 Solution of the variational form

We employ the finite element method to solve the variational form of the Stokes flow

boundary value problem using FEniCS software. The advantage of FEniCS is that the

Stokes flow problem can be directly specified in the variational form using the FEniCS

Python application program interface (API). Based on the user-provided input, FEniCS in-

terprets, assembles and solves the discretized linear system corresponding to the boundary

value problem. The details of the full solution procedure are summarized in Algorithm 4.

The procedure for setting up the problem in FEniCS 1 is detailed below:

i. The finite element mesh corresponding to the physical domain is provided as an XML

file, which specifies triangular cells and the spacial locations of their vertices. The

domain boundaries can then be defined by identifying the vertices belonging to the

bottom, left, and right edges using the SubDomain class in FEniCS.

ii. Next, the finite element function spaces corresponding to the pressure (scalar) and

velocity (vector) variables are defined over the mesh using the FunctionSpace

and VectorFunctionSpace Python objects, respectively. Because we adopt a

standard Galerkin formulation, we use the function spaces belonging to the Lagrange

element family.

iii. Dirichlet boundary conditions on the velocity field are then defined using the DirichletBC

Python object by providing the corresponding vector function space and the domain

boundary.

iv. Trial and test functions are introduced using the TrialFunction and TestFunction

Python objects, respectively, for both scalar and vector function spaces. The weak
1The reader is referred to the FEniCS website which provides extended documentation for the Python API

along with several demos for using the software.
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form is simply provided by multiplying and adding the trial and test functions and

their gradients to obtain the expression in Equation (4.28); the gradient operator ∇ is

provided by FEniCS as the built-in function nabla grad().

v. Due to the solution-dependent viscosity η
(n+1v

)
, Equation (4.28) is highly non-

linear, and so we linearize the nonlinear system using a Picard iteration scheme,

as detailed in Algorithm 5. The linearized system obtained at each Picard iteration

is numerically solved using an iterative method by calling the solve() function,

which takes the weak form and boundary conditions as input. An alternative to the

Picard iteration scheme is the Newton’s method [Worthen et al., 2014], which can be

implemented in FEniCS as detailed in Appendix H.

Remark 26 While the Newton’s method has a faster rate of convergence than Picard it-

erations, we encountered convergence issues in FEniCS upon introduction of notches or

damage zones into the nonlinear Stokes equations. We suspect that the automated assem-

bly of the system Jacobian (tangent) matrix by FEniCS could be introducing interpolation

errors that is affecting the overall convergence of the Newton’s method; however, it could

also be that the Newton’s method is sensitive to the regularization parameter γ when the

nonlinear Stokes equations are solved over non-convex domains. Perhaps, implementing

advanced algorithms with respect to the parameter γ could improve the convergence of the

Newton’s method, especially given the lack of a good initial guess [Tezaur et al., 2015b].

Because FEniCS software currently only supports triangular finite elements, we select

a computationally efficient and numerically (LBB) stable element for solving the incom-

pressible Stokes equations, namely, the P3-P1 element, wherein the velocity n+1v is re-

solved on a 10-noded triangle using third-order polynomial (cubic P3) interpolants and

the effective pressure n+1 p̃ is resolved on a 3-noded triangle using first-order polynomial
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3-noded P1 (linear) element
10-noded P3 (cubic) element

Figure 4.2: Illustration of the P3-P1 mixed finite element showing the 3-noded P1 sub-
element with linear shape functions and the 10-noded P3 sub-element with cubic shape
functions.

(linear P1) interpolants. An illustration of the P3–P1 mixed element and the mesh configu-

ration is given in Figure 4.2. A stable alternative to the P3-P1 mixed element is the P2-P1

(Taylor-Hood) element, wherein the velocity is resolved using quadratic (P2) interpolation

on a 6-noded triangle. Although the deviatoric stress can be calculated at the nodes of the

P3 (or P2) element using the computed velocity field, we only calculate it at the nodes of

the P1 element so that we can add it to the corresponding pressure to obtain the Cauchy

stress. The damage variable is also interpolated using the P1 element because its evolution

is dictated by the Cauchy stress. While equal low-order stabilized P1-P1 elements [Hughes

and Franca, 1987, Franca and Stenberg, 1991, Gunzburger and Nicolaides, 1993] (also see

Appendix G) are attractive due to their low computational cost [Zhang et al., 2011], es-

pecially in three dimensions, the pressure and stress fields predicted by low-order P1-P1

elements are not as accurate as the higher-order P2-P1 or P3-P1 elements [Leng et al., 2012,

2013]. Another viable yet computationally cheaper alternative to P2-P1 or P3-P1 elements

is the enriched MINI-element [Arnold et al., 1984, Turner et al., 2009]; however, the imple-

mentation of free-slip conditions tangential to the domain boundaries is not straightforward

in FEniCS and requires the use of weak form implementations.
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Algorithm 4 : Stokes flow solution scheme

At any time step n, the following is known: the nodal positions nxi (where i∈ {1,2,3}), the
damage variable nD at each node, and the total elapsed time nt. The solution scheme for a
prescribed total time ttotal is implemented as follows:

i. Initialize at step n = 0:

(a) Supply the finite element mesh with nodal positions 0xi. Define boundaries,
finite element function spaces, and Dirichlet boundary conditions.

(b) Set initial values for time and damage: 0t = 0 and 0D = 0.

(c) At each node, compute the nonlocal damage weights of neighboring nodes.

ii. While nt ≤ ttotal:

(a) Solve the Stokes flow equations (Eqs. 4.28) using Picard iterations (see Algo-
rithm 5) on the current reference configuration nΩ to obtain the velocity and
effective pressure solutions n+1vi and n+1 p̃.

(b) Compute n+1ε̇i j, n+1τ̃i j, and n+1σ̃i j at each node belonging to the P1 elements
in the mesh using Equations (4.30), (4.19), and (4.22) respectively.

(c) Compute the nonlocal damage increment n∆D at each node belonging to the P1
elements using Algorithm 6.

(d) Move the mesh by updating nodal positions: n+1xi =
n∆ui +

nxi, where the dis-
placement increment n∆ui =

n+1vi
n∆t.

(e) Update the elapsed time: n+1t = n∆t + nt and the iteration count: n = n+1.
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Algorithm 5 : Picard iteration scheme for Stokes flow in 2D

Let n+1
(m)

v1 and n+1
(m)

v2 denote the horizontal and vertical components of velocity, respectively,

and n+1
(m)

p̃ denote the effective pressure determined on the current reference configuration
nΩ at Picard iteration m. The Picard iteration scheme is implemented as follows:

i. Initialize the velocity and pressure variables at iteration m = 0:

(a) Set n+1
(0) v1 =

nv1 and n+1
(0) v2 =

nv2 everywhere in the domain.

(b) Set n+1
(0) p̃ = n p̃ everywhere in the domain.

ii. Initialize the maximum relative error ε to be greater than the chosen tolerance εtol.

iii. While ε > εtol:

(a) Compute the nonlinear viscosity η

(
n+1
(m)
v
)
= 1

2B
(
[n+1
(m)

ε̇eq]2 + γ

) 1−N
2N for itera-

tion m using n+1
(m)

v1,
n+1
(m)

v2.

(b) Solve the Stokes flow equations (Eqs. 4.28) with the viscosity η

(
n+1
(m)
v
)

to

obtain n+1
(m+1)v1,

n+1
(m+1)v2, and n+1

(m+1) p̃. This is done in FEniCS software by using
the solve() function.

(c) Calculate relative L2 error norms: ε1 =
||n+1
(m+1)v1−n+1

(m)
v1||

||n+1
(m+1)v1||

, ε2 =
||n+1
(m+1)v2−n+1

(m)
v2||

||n+1
(m+1)v2||

,

εp =
||n+1
(m+1) p̃−n+1

(m)
p̃||

||n+1
(m+1) p̃|| .

(d) Determine the maximum relative error: ε = max{ε1,ε2,εp}.

(e) Update the iteration count: m = m+1.

iv. Upon convergence: n+1v1 =
n+1
(m+1)v1, n+1v2 =

n+1
(m+1)v2, and n+1 p̃ = n+1

(m+1) p̃.
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4.3.2 Computation of damage increment

We employ an explicit forward Euler method in conjunction with the nonlocal integral

approach to compute the creep damage increment at each time step. First, the local damage

rate is computed using the Cauchy stress n+1σi j obtained from the solution of the Stokes

flow problem and the prior damage nD, as summarized in Algorithm 6. Next, the nonlocal

damage increment n∆D is calculated using the local damage increments n∆Dloc = nḊloc n∆t

as given by the weighted summation

n
∆D(nx) =

∑
Npts

j=1 Φ
(0x− 0x̂ j

)n∆Dloc (nx̂ j
)

∑
Npts

j=1 Φ
(

0x− 0x̂ j
) , (4.31)

where n∆t is a chosen time increment that ensures stability of the explicit update, and Npts

is the number of material points (i.e., finite element nodes) 0x̂ j that neighbor 0x, that is,

the number of points satisfying ||0x− 0x̂ j|| ≤ lc. The nonlocal weights Φ
(0x− 0x̂ j

)
are

calculated and stored in a Python dictionary at the beginning of the simulation, instead of

recalculating the weights at every time step. Finally, the damage variable in the updated

configuration is computed as

n+1D = nD+ n
∆D. (4.32)

Remark 27 To reduce the computational burden, we only compute the nonlocal damage

weights at the beginning of the simulation using materials points 0x over the initial ref-

erence configuration. Considering that the spatial locations of material points and their

relative distances change as the domain deforms, it may be necessary to periodically re-

calculate the nonlocal weights, especially over time scales associated with large displace-

ments.

As an alternative to the weighted summation in Equation (4.31), the nonlocal damage
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increment can be obtained using the implicit gradient formulation presented in Section

4.2.4.2. The nonlocal damage rate nḊ is computed by taking the finite element discretiza-

tion of Equation (4.16), whose variational form is obtained by introducing a test function

z, integrating by parts, and then applying Gauss’s theorem. The variational form over the

current reference configuration nΩ is stated as follows:

Find nḊ ∈Z , such that ∀ z ∈Z :

∫
nΩ

z nḊ dΩ +
l2
c

4κ

∫
nΩ

∂ z
∂ nxi

∂ nḊ
∂ nxi

dΩ

−
∫

nΩ

z nḊloc dΩ = 0

 on n
Ω, (4.33)

where Z is an appropriate scalar function space, and the local damage rate nḊloc is com-

puted from Equation (4.8) at a given material point. The above equation is discretized using

linear P1 interpolants and evaluated using the FEniCS solve() function with zero flux

conditions on all external boundaries. After solving for nḊ, the nonlocal damage incre-

ment is calculated as n∆D = nḊ n∆t for an appropriately chosen time increment n∆t. The

major advantage of the implicit gradient formulation is that nonlocal damage will always

be computed over the current reference configuration nΩ without needing to determine the

updated nonlocal weights at each time step.

The simulation of creep fracture using either the integral or gradient nonlocal ap-

proaches can be quite challenging, requiring us to employ several numerical controls in

order to continue computation over long times, as discussed below:

i. We restrict the value of the damage variable D ∈ [0,1) by a maximum value Dmax =

0.97 or 0.999 in order to avoid a rank deficient tangent (stiffness) matrix. The phys-

ical implication of setting Dmax < 1 is that the fully damaged regions still possess a

small residual strength, which can lead to unphysical stress redistribution. To correct

this discrepancy, an element removal scheme can be implemented to remove failed

elements from the finite element mesh; however, this is only valid if the damage
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zone represents void space due to crack opening. The element removal scheme can

be implemented as follows: before proceeding from time step n to n+ 1, we search

for elements where n+1D = Dmax at each node (i.e., at each node of the P1 triangular

element); if such a fully damaged element is found, then the mesh for the updated

reference configuration n+1Ω is rewritten without the element. The updated nodal

positions n+1x obtained from the mesh-update scheme are preserved whenever the

mesh is rewritten. Note that the finite element function spaces and boundary con-

ditions must be redefined over the new mesh, which can be automated in FEniCS

without adding any significant computational cost. The advantage of the element

removal scheme is that it allows us to enforce D = 1 and ηdam = 0 in fully dam-

aged elements, while the drawback is that it could introduce mesh size dependence

or directional mesh bias while simulating damage evolution.

ii. Experimental and modeling studies on creep damage in ice indicate an abrupt failure

(rupture) as accumulated damage D becomes greater than 0.6 [Duddu and Waisman,

2012]. To account for this behavior, a critical damage parameter Dcr = 0.6 is intro-

duced so that as soon as D ≥ Dcr we can immediately set damage to a maximum

value Dmax and damage rate Ḋloc = 0. Although introducing the Dcr parameter into

the damage model improves the numerical convergence in Abaqus software using

the Maxwell viscoelastic model, it does not affect either the convergence of the FEn-

iCS software using the viscous Stokes model or the crevasse growth results in any

significant way.

iii. Because we employ the explicit forward Euler method to update damage in time, it

is essential that we determine a stable time increment n∆t to compute n∆D according

to Equation (4.32) to obtain an accurate solution. To determine an appropriate time

increment, we impose the condition ∆Dloc ≤ 0.05 at every material point and then
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calculate n∆t as

n
∆t =

max(n∆Dloc)

max(nḊloc)
, (4.34)

where max(nḊloc) = 0.05 is the maximum of the local damage rates at all the mate-

rial points in the domain. A consequence of the above strategy is that it prevents ex-

cessively fast growth of damage before it reaches critical damage, which minimizes

changes in the damage state between n+1Ω and nΩ and thus alleviates numerical

difficulties related to time stepping. Initially, when damage is low, the damage rate

nḊloc is small and so the time step n∆t calculated from Equation (4.34) is large. Be-

cause we use an explicit scheme to update (or move) the mesh at every time step, we

impose a maximum time step of two hours; this ensures that the displacement of ma-

terial points between n+1Ω and nΩ is sufficiently small so that the approximation in

Equation (4.30) remains valid. As damage accumulates the local damage rate nḊloc

increases, thus causing the time step to gradually decline, with the smallest time step

size reaching as low as 5 seconds close to rupture.
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Algorithm 6 : Numerical implementation of nonlocal damage

The local damage increment n∆Dloc is computed during time step n based on the currently
existing damage nD and effective Cauchy stress n+1σ̃i j. The nonlocal damage increment
n∆D is then computed as a weighted summation through the following steps:

i. Compute the local damage rate nḊloc throughout the domain. At every finite element
node:

(a) Compute the effective max principal stress n+1σ̃ (I), von Mises stress n+1σ̃v,
and first stress invariant n+1σ̃kk.

(b) Compute the Hayhurst stress n+1χ .

(c) Compute the damage evolution: f = B̂
〈n+1χ〉r

(1− nD)kσ
,

where kσ = k1 + k2|n+1σkk|.

(d) To allow only tensile damage, we enforce the condition that nḊloc = f if
n+1σkk ≥ 0 and nḊloc = 0 otherwise.

(e) If nD = Dmax then nḊloc = 0.

ii. Compute the time step:

n
∆t = min

(
0.05

max(nḊloc)
,2 hrs

)
.

iii. Compute the local damage increment n∆Dloc = nḊloc n∆t at each node.

iv. Compute the nonlocal damage increment n∆D at each node using the integral ap-
proach (Eq. 4.31) or the implicit gradient approach (Eq. 4.33).

v. Update damage at each node: n+1D = nD+ n∆D.
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4.4 Numerical Examples

In this section, we first verify the Picard iteration based nonlinear solver for the Stokes

model by performing a verification study against a manufactured analytical solution [Dohrmann

and Bochev, 2004, Worthen et al., 2014]. This verification study is repeated using the

Newton’s method is given in Appendix H. Following that, we establish the viability of the

updated-Lagrangian formulation by simulating constant velocity and gravity-driven creep

flow in idealized rectangular ice slabs and comparing the results with those obtained us-

ing the total Lagrangian formulation based on the Maxwell viscoelastic rheological model,

previously established by Duddu et al. [Duddu and Waisman, 2012, 2013c, Duddu et al.,

2013, Mobasher et al., 2016]. As noted earlier, the Stokes flow formulation is evaluated

using the open-source finite element software FEniCS using triangular meshes, whereas

the viscoelastic formulation is solved using commercial finite element software Abaqus

using quadrilateral meshes. First, we benchmark the rheological models using idealized

rectangular domains under simple loading conditions. Second, we introduce a notch in the

rectangular domain at mid-length to determine the effects of stress concentrations (or sin-

gularities). Third, we incorporate the creep damage law detailed in Section 4.2.4 in order to

simulate damage (crevasse) propagation. All simulations are performed in two dimensions

assuming plane strain conditions on a rectangular slab of ice 500 m × 125 m (length L ×

height H) as shown in Figure 4.3. Boundary conditions (rollers) are specified in all simu-

lations to constrain vertical displacement on the bottom edge of the domain and horizontal

displacement on the left edge, thus allowing free slip. The isotropic material properties of

ice at the temperature−10◦ C are given in Table E1. Thus, in this section, we only consider

idealized rectangular geometries and boundary conditions and assume that the temperature

is constant throughout the ice slab to conduct proof-of-concept studies that are still relevant

for understanding crevasse propagation in glaciers and land ice sheets. Such domain ge-

ometries are commonly used to conduct fundamental studies to investigate the conditions

that enable fracture in ice bodies and provide insights into the mechanisms behind iceberg
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calving [Pralong and Funk, 2005, Bassis and Walker, 2012, Plate et al., 2012, Keller and

Hutter, 2014b]. More realistic and complex geometries, loading, and boundary conditions

shall be considered in a future paper focused on the simulation of ice sheet evolution.

Remark 28 In reality, the topology of the grounding line is generally not a flat surface,

but we assume a horizontal surface for the sake of simplicity. Further, the ice slab is often

frozen to the ground if it is sufficiently far from the ocean, and so a no-slip or Coulomb

friction type boundary condition may be more appropriate than free slip. The free slip

boundary condition is appropriate for marine-terminating glaciers where seawater may

flow beneath the ice sheet and provide lubrication between the ice slab and the ground.

4.4.1 Numerical verification study

In this section we verify our implementation of the Stokes rheological model by demon-

strating that numerical results converge to a known analytical solution with progressive

mesh refinement. A previous study in [Mitchell, 2012] used linear Stokes rheology (i.e.,

with constant viscosity) and verified the FEniCS software for Poiseuille flow and several

other gravity-driven flow benchmark examples that have exact solutions. On the verifica-

tion of Stokes ice-sheet models using manufactured solutions we refer the reader to [Leng

et al., 2013]. Herein, we conduct one such verification study to show that the nonlinear

Stokes formulation converges to the manufactured solution presented in [Dohrmann and

Bochev, 2004, Worthen et al., 2014] for incompressible flow, which is given by

v∗1 = x1 + x2
1−2x1x2 + x3

1−3x1x2
2 + x2

1x2,

v∗2 =−x2−2x1x2 + x2
2−3x2

1x2 + x3
2− x1x2

2, (4.35)

p∗ = x1x2 + x1 + x2 + x3
1x2

2−4/3,
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Table 4.3: Numerical verification study of the nonlinear Stokes model using Picard iteration
scheme. The L2 error norms εv and εp for velocity magnitude and pressure, respectively,
given in Equations (47) are presented for different mesh sizes.

Mesh #DoF εv Rate εp Rate
4 × 4 187 6.96e−4 −− 1.04e−1 −−
8 × 8 659 5.97e−5 3.54 1.54e−2 2.75

16 × 16 2467 5.11e−6 3.55 1.96e−3 2.98
32 × 32 9539 3.47e−7 3.88 2.68e−4 2.87

on the unit square domain Ω = [0,1]× [0,1]. In this example we ignore damage and take

η (v) =
(
[ε̇eq]2 + γ

) 1−N
2N , where ε̇eq is defined in Equation (4.20). The force terms bi are

chosen to satisfy the momentum balance equation after substituting in the solutions v∗1, v∗2,

and p∗, as given in [Worthen, 2012]. Dirichlet boundary conditions on velocity are obtained

by applying Equation (46) along domain edges. In order to compare with the numerical

study conducted in Section 3.3 of [Worthen et al., 2014], we employ P2-P1 (Taylor-Hood)

elements and take the viscosity parameter N = 3.5. Starting with a 4 × 4 structured mesh

over the unit domain Ω, we progressively refine the mesh by reducing the element size by

half. For each mesh size we compute the L2 error norms,

εv =

√√√√∑
NP2

k=1 (||v||k−||v∗||k)2

∑
NP2

k=1 (||v∗||k)2 , εp =

√√√√∑
NP1

k=1
(

pk− p∗k
)2

∑
NP1

k=1
(

p∗k
)2 , (4.36)

for velocity magnitude and pressure, respectively, which are reported in Table H5. In the

above equations, NP1 and NP2 are the number of nodes in the P2 and P1 spaces, respec-

tively; and ||v||k and pk are the velocity magnitude and pressure, respectively, at the k-th

node. The εv and εp error norms decrease with quadratic convergence, which is consistent

with the results reported in [Worthen et al., 2014]. A repeated study using P3-P1 elements

showed similar convergence rates with smaller error norms for coarse meshes (not shown

here), thus verifying the FEniCS implementation.
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Figure 4.3: Domain setup including applied velocity v and gravitational body force ρiceg
with (a) no notch and (b) a 10 m × 10 m notch centered along the top surface of the slab.
Domain height H = 125 m, length L = 500 m. The applied velocity v = 0.5 m/day and
body force ρiceg = (917 kg/m3×9.81 m/s2).

4.4.2 Constant velocity creep flow

In this set of benchmark studies comparing the Stokes flow and Maxwell viscoelastic

models, we simulate a standard creep test by disregarding gravity and prescribing a con-

stant, uniform velocity v= 0.5 m/day on the right edge of the rectangular domain, as shown

in Figure 4.3(a), so that the resulting strain rate of 1.157×10−8 s−1 is on the order of the

strain rates observed in real glaciers.

4.4.2.1 Glaciological stress predictions without damage

We first consider the case when damage is prescribed to be zero throughout the domain

at all times. Both rheological models are simulated on structured finite element meshes

with an element size h = 5 m. The results of this study are presented in Figure 4.4, wherein

we plot the horizontal Cauchy stress σ11 predicted by each rheological model as a func-

tion of time. The viscoelastic model describes the time-dependent behavior, as shown in

Figure 4.4(a), wherein stress σ11 gradually plateaus at 506 kPa over a short timespan (t ≈

8 hours); whereas, the Stokes flow model describes the steady-state behavior, wherein the

equilibrated stress σ11 = 506 kPa is established instantly. As shown in Figure 4.4(b), the

value of σ11 decays (very slightly) over time in the updated-Lagrangian formulation of

Stokes flow equations, because the mesh update scheme allows for the thinning of the ice
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Figure 4.4: Results of the uniaxial creep test with constant strain-rate (or velocity) v = 0.5
m/day showing (a) horizontal Cauchy stress σ11 vs. time. The y-axis is scaled for a closer
view of (b) σ11 vs. time when using the updated-Lagrangian mesh update scheme and (c)
σ11 vs. time without the mesh update scheme.

slab with time as large viscous deformations extend the slab length. If the mesh update

scheme was not implemented, then stress would not decay as displayed in Figure 4.4(c).

Thus, this study verifies that for simple loading cases and in the absence of any damage,

both the Stokes flow and Maxwell viscoelastic models describe the same constitutive be-

havior in the small deformation regime.

We now introduce a 10 m × 10 m notch at mid-length of the top surface of the rectan-

gular domain, as shown in Figure 4.3(b), so as to study the effects of stress concentrations.

The same velocity boundary conditions are specified as before, and gravity and damage are

disregarded. Both rheological models are simulated on unstructured meshes that are highly

refined around the notch with an element size h = 0.25 m. The field contour plot of the

Hayhurst stress χ in the notched domain at time t = 12 hours predicted by the Stokes model

is shown in Figures 4.5(a)–(b), which is in good qualitative agreement with that obtained

from the viscoelastic model. In order to measure the quantitative differences between the

stress fields predicted by the two rheological models, we consider the L2 and L∞ relative
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error norms defined as

εL2 =

√√√√√√∑
NIP

k=1

(
χ

Abaqus
k −χ

interp
k

)2

∑
Npts
k=1

(
χ

Abaqus
k

)2 , (4.37)

εL∞ =
max

k

∣∣∣χAbaqus
k −χ

interp
k

∣∣∣
max

k

∣∣∣χAbaqus
k

∣∣∣ , (4.38)

where NIP is the number of Abaqus integration points, χ
Abaqus
k is the Hayhurst stress at the

k-th Abaqus integration point, and χ
interp
k is the Hayhurst stress interpolated from FEniCS

nodes at the k-th Abaqus integration point.

The relative errors εL2 and εL∞ in Hayhurst stress χ versus time are plotted in Figure

4.5(c), wherein each measure of relative error shows a time-dependence because the stress

fields predicted by the Maxwell viscoelastic model gradually increase from zero to the

steady-state value, whereas in the Stokes model the steady-state stress is directly estab-

lished based on the quasi-static assumption. It is evident from Figure 4.5(c) that εL2 decays

quickly to about 3% after t = 4 hours, indicating that both rheological models predict ap-

proximately the same stresses in bulk regions of the domain; whereas, εL∞ decays to about

42%, suggesting that in the vicinity of the notch the two models predict substantially dif-

ferent stresses. However, this discrepancy is anticipated for at least two reasons: (1) in the

Maxwell model both elastic and viscous strains are included, whereas in the Stokes model

only viscous strains are considered; and (2) the Maxwell model considers compressible

elasticity (Poisson’s ratio ν = 0.35), whereas the Stokes model enforces incompressibility.

Based on this study, we suspect that the fracture behavior predicted by the two rheologi-

cal models for ice would be different because the crack growth rate depends on the local

differences in the Hayhurst stress, particularly in the vicinity of the notch.
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Figure 4.5: Hayhurst stress χ (in kPa) predicted by the Stokes flow rheological model for
an ice slab with an applied creep velocity v= 0.5 m/day after 12 hours. Subfigure (a) shows
χ over the whole domain; subfigure (b) shows a zoomed-in display of χ near the notch;
and subfigure (c) displays the normalized errors εL2 and εL∞ (given by Eqs. 4.37 and 4.38,
respectively) between viscoelastic and Stokes flow solutions for χ .

4.4.2.2 Mode I creep crack growth

In this section, we simulate and compare mode I creep fracture in ice predicted by the

Maxwell viscoelastic and Stokes flow models using the nonlocal creep damage law de-

tailed in Section 4.2.4. Additionally, we compare the Stokes model results obtained with

and without the element removal scheme discussed in Section 4.3.2. We consider three

metrics to compare creep fracture behavior across the different simulation studies: (1) the

time required for crack tip damage initiation (i.e., when the first material point reaches

D = Dmax); (2) the time for full crack penetration of the slab; and (3) the geometrical dif-

ferences in damage (fracture) morphologies. We use the notched domain shown in Figure

4.3(b) with the same applied velocity and boundary conditions as in the previous study,

and gravity is disregarded. To eliminate any discrepancies arising from the time-dependent

strain evolution in the Maxwell viscoelastic model, we first allow the stresses to equilibrate

by holding damage at zero for 12 hours and then let damage evolve. Crack growth using

both rheological models is simulated on meshes that are structured around the notch and

within the entire nonlocal damage zone with an element size h= 2 m; whereas, far from the

notch and damage zone the mesh is unstructured with a maximum element size h = 12.5
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m. The mode I crack (damage) growth results obtained from the simulations studies are

shown in Figures 4.6 and 4.7.

Both Stokes flow and viscoelastic rheological models predict identical damage mor-

phology, wherein the crack initiates beneath the notch and then propagates vertically to-

wards the bottom of the ice slab; so we only show the Stokes flow result (without element

removal) in Figure 4.6. The crevasse depth d (measured from the damage contour plots)

is normalized by the domain height H = 125 m and plotted as a function of time for each

simulation in Figure 4.7. The results in Figure 4.7(a) indicate that the crack tip damage

initiation begins at 103.4 hours and 110.789 hours in the Maxwell viscoelastic model and

Stokes flow model, respectively; thus, damage initiation occurs slightly earlier in the vis-

coelastic model. Full-depth crack penetration occurs at 108.97 and 122.6 hours for the

viscoelastic and Stokes flow model, respectively; thus, the elapsed time between damage

initiation and complete crack penetration is 5.57 and 11.811 hours. These discrepancies

in crack growth behavior are anticipated (based on the previous study in Section 4.4.2.1),

because the Hayhurst stress is larger at notch tip in comparison with that predicted by the

Stokes model. Interestingly, we find that implementing the element removal scheme shows

slight or no difference in the rate of damage growth compared with Dmax = 0.97 or 0.999.

In Figure 4.7(b), we compare the implicit gradient and explicit integral damage approaches.

The integral approach shows better agreement with the implicit gradient approach when us-

ing the Green’s function to determine the nonlocal weights, because the Green’s function

is a weak solution to Equation (4.16) [Peerlings et al., 2001]. In Figure 4.7(c), we compare

the results from P3-P1 and P2-P1 (Taylor-hood) mixed elements with that from the stabi-

lized P1-P1 element (see the Appendix G for details on the stabilized formulation). We

find that P3-P1 and P2-P1 elements predict identical crevasse growth rates; whereas, the

stabilized P1-P1 element predicts a different result because the incompressibility condition

is not well enforced, and consequently the Hayhurst stress under the crack tip is different.

Finally, we conduct a mesh convergence study by progressively reducing the mesh size h

130



(a)

0.0465

0.2774

0.5082

0.7391

0.9700
(b)

0.0480

0.2785

0.5090

0.7395

0.9700

(c)

0.0483

0.2787

0.5091

0.7396

0.9700
(d)

0.0534

0.2826

0.5117

0.7409

0.9700

Figure 4.6: Crevasse propagation predicted by the Stokes flow rheological model for an ice
slab with an applied creep velocity v = 0.5 m/day. The damage variable is shown at (a)
110.789 hours, (b) 119.114 hours, (c) 121.876 hours, and (d) 122.6 hours.

within the nonlocal damage zone. Figure 4.7(d) illustrates that we obtain reasonably con-

sistent crack growth rates when taking an element size h = 5,2.5,1.25 m, so long as it is

smaller than the characteristic length scale lc = 10 m. In conclusion, this study indicates

that Stokes flow and viscoelastic rheological models predict different damage initiation

times and crack growth rates; however, it is important to note that the constant velocity

creep flow is not representative of glacier deformation occurring due to gravity-induced

flow.

4.4.3 Gravity-driven creep flow

For this next set of benchmark studies comparing the Stokes flow and Maxwell vis-

coelastic models, we simulate the gravity-driven creep test, wherein the rectangular slab of

ice is deforming only due to its own self-weight, as shown in Figure 4.3(a), without any

applied velocity at the right edge. Gravity loading is applied as a body force b2 = −ρiceg

in the vertical dimension, where ρice is the density of ice given in Table E1 and g is gravi-

tational acceleration.
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Figure 4.7: Crevasse depth (d) normalized with the domain height (H = 125 m) through an
ice slab undergoing constant velocity creep flow, plotted as a function of time from 2.5 to
5.5 days. The abbreviations VE and SF refer to the viscoelastic and Stokes flow rheological
models, respectively. Subfigure (a) shows a parametric study of Dmax in order to compare
between continuum damage and the element removal scheme. (Note that in all simulations
we set Dmax = 0.97, except for the dashed magenta line Subfigure (a).) Subfigure (b)
shows crevasse growth rates for the nonlocal integral using separate weighting functions
(Gaussian and Green’s function) and the implicit gradient damage scheme. Subfigure (c)
shows the crevasse growth rate for different orders of interpolation for the velocity solution.
Subfigure (d) presents a mesh size study wherein the element size h is progressively reduced
in the nonlocal damage zone.
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Figure 4.8: Stresses predicted by the Stokes flow rheological model for an ice slab under
gravitational loading after 5 days. The stress components are: (a) horizontal Cauchy stress
σ11; (b) Hayhurst stress χ; (c) the von Mises stress σv; and (d) the max principal stress
σ (I). All units are in kPa.

4.4.3.1 Glaciological stress predictions without damage

We first consider the case when damage is prescribed to be zero throughout the domain

at all times. Both rheological models are simulated on unstructured meshes that are gener-

ated by specifying element sizes h = 10 m and h = 2 m on the left and right domain edges,

respectively. We use a finer mesh resolution near the right edge (representing the glacier

terminus) in order to accurately capture the stresses induced by warping (distortion). The

contour plots of the horizontal Cauchy stress σ11 and stress invariants predicted by Stokes

model are shown in Figure 4.8. Near the left edge of the domain the horizontal Cauchy

stress σ11 is uniform in the horizontal direction with tension on the top and compression at

the bottom and is qualitatively similar to the Hayhurst stress χ and the max principal stress

σ (I), as evident from Figure 4.8; however, near the right edge the normal stress σ11 is much

smaller and the shear stress σ12 much larger than elsewhere in the domain, as reflected in

the von Mises stress plots in Figure 4.8(c). These large shear stresses near the right edge

cause warping and even small compressive stresses at the upper-right corner. All the con-

tour plots of stress and its invariants predicted from the Maxwell viscoelastic model look

very similar those predicted by the Stokes model, so they are not shown here.
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To measure the quantitative differences between the Stokes flow and Maxwell vis-

coelastic models, we consider two metrics: (1) errors (differences to be precise) in stress

fields and their time evolution; and (2) time evolution of the displacement at the right edge

of the domain (signifying the glacier terminus). We plot the relative error norms εL2 and

εL∞ defined in Equations 4.37 and 4.38, respectively, for the Hayhurst stress χ versus time

in Figures 4.9(a) and 4.9(c) over the short and long timescales, respectively. The two error

measures show a time dependency due to the differences in the Maxwell viscoelastic and

the viscous Stokes models, as explained in Section 4.4.2.1. Over the short timescale (i.e.,

up till five days), the εL2 error is consistently low (< 3%), indicating good agreement be-

tween the two rheological models in the bulk domain; however, εL∞ is substantially high

(≈ 23%) and mainly arises from the discrepancies in stress distribution at locations near

the upper-right corner of the domain. Over the long timescale (i.e., after 6 months), εL2

and εL∞ gradually increase to 27% and 70%, respectively; this happens because the stress

predicted (under gravity loading) by the updated-Lagrangian Stokes flow formulation will

slowly decay over time as the geometry of the slab changes (i.e., the slabs becomes thin-

ner in the vertical direction, which reduces the over-burden pressure at the glacier bottom).

The maximum creep displacement of the ice slab predicted by the viscoelastic and Stokes

models, plotted in Figures 4.9(b) and 4.9(d), show excellent agreement during the first five

days; however, after several months the Stokes model predicts a slower rate of creep flow.

This study illustrates that in idealized rectangular glaciers without defects or notches both

rheological models describe the same constitutive behavior (similar stress fields and max-

imum creep displacement) only over the short timescale, even though εL∞ in stress fields

is considerably large near the right edge (terminus). In conclusion, the long time behavior

predicted by the updated-Lagrangian Stokes formulation is more physical than that pre-

dicted by the total Lagrangian viscoelastic model.

We now consider a 10 m × 10 m notch at mid-length of the top surface of the rect-

angular domain subjected to gravity-driven creep flow, as shown in Figure 4.3(b), so as to
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Figure 4.9: Viscoelastic and Stokes flow model predictions for gravity-driven creep flow.
Subfigures (a) and (c) show the normalized errors εL2 and εL∞ (given by Eqs. 4.37 and
4.38, respectively) between viscoelastic and Stokes flow results for the Hayhurst stress χ .
Subfigures (b) and (d) show the maximum horizontal displacement u1 of the ice slab from
both models.
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Figure 4.10: Hayhurst stress χ (in kPa) predicted by the Stokes flow rheological model for
an ice slab under gravitational loading after 12 hours. Subfigure (a) shows χ over the whole
domain; subfigure (b) a zoomed-in display of χ near the notch; and subfigure (c) displays
the normalized errors εL2 and εL∞ between viscoelastic and Stokes flow solutions for χ .

study the effects of stress concentrations. Both rheological models are simulated on un-

structured meshes that are highly refined around the notch with an element size h = 0.25

m. The field contour plot of the Hayhurst stress χ in the notched domain at time t = 12

hours predicted by the Stokes model is shown in Figures 4.10(a)–(b), which is in good

qualitative agreement with that obtained from the viscoelastic model. The notch corners

introduce stress concentrations (singularities, to be precise), as evident form Figure 4.10(b).

The relative errors εL2 and εL∞ for the Hayhurst stress χ as defined in Equations (4.37) and

(4.38), respectively, are shown in Figure 4.10(c). While the εL2 error is consistently low

(< 5% for t > 4 hours), εL∞ is substantially large (≈ 42%); this discrepancy arises not only

from differences in the magnitude, but also in the spatial distribution of stress around the

notch corners. An important detail to note is that we use an extremely fine mesh resolution

(h = 0.25 m) to compare the stresses near the notch tip, whereas during damage growth

simulations we take the mesh resolution to be reasonably coarse (h = 2 m). However, we

observed the same trends in εL2 and εL∞ even in the coarser meshes.
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4.4.3.2 Crevasse propagation under gravity-driven creep flow

We now simulate crevasse propagation in an idealized rectangular glacier under gravita-

tional loading by employing the nonlocal continuum damage law presented in Section 4.2.4

in conjunction with the viscoelastic and Stokes flow rheological models. In all the follow-

ing simulations, we disregarded the body force due to self-weight of ice in fully damaged

zones by incorporating Equation (4.24) into the Stokes equations, which allows us to per-

form the simulations for the entire duration of crevasse propagation without excessive mesh

distortion. Through numerical studies, we demonstrate that incorporating ψ(D) is equiva-

lent to implementing the element removal procedure discussed in Section 4.3.2. As before,

we consider three metrics for comparing fracture behavior across the different simulation

studies: (1) the time required for crack tip damage initiation (i.e., when the first material

point reaches D = Dmax); (2) the time for full crack penetration of the slab; and (3) the geo-

metrical differences in damage (fracture) morphologies. We use the notched domain shown

in Figure 4.3(b) with the same boundary conditions as specified previously for gravity-

driven creep flow. To eliminate any discrepancies arising from the time-dependent strain

evolution in the Maxwell viscoelastic model, we first allow the stresses to reach steady-

state by holding damage at zero for 12 hours and then letting damage evolve. Crack growth

in both rheological models is simulated on coarser meshes that are structured around the

notch and within the entire nonlocal damage zone with an element size h = 2 m; whereas,

far from the notch and the damage zone the mesh is unstructured with a maximum element

size h = 12.5 m. A mesh size study is also performed by varying the element size h within

the nonlocal damage zone to demonstrate that the formulation predicts the same crevasse

growth, so long as h is smaller than the nonlocal characteristic length scale lc.

The crevasse growth results obtained from the simulation studies are shown in Fig-

ures 4.11 and 4.12. Both Stokes flow (with and without element removal) and viscoelastic

rheological models predict identical damage morphology, wherein the crack initiates be-
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neath the notch and then propagates vertically towards the bottom of the ice slab; so we

only show the Stokes flow result (without element removal) as shown in Figure 4.11. The

crevasse depth d is normalized by the domain height H = 125 m and plotted as a func-

tion of time for each simulation in Figure 4.12. These results indicate that the crack tip

damage initiation begins at 107.5 hours and 112.528 hours in the Maxwell viscoelastic

model and Stokes flow model, respectively. The Stokes flow model using the updated-

Lagrangian Stokes formulation predicts that the crevasse penetrates 69% of the ice slab

depth without element removal; whereas, the total Lagrangian Maxwell viscoelastic for-

mulation predicts that the crevasse penetrates 72% of the slab depth. From Figure 4.12(a),

it is apparent that the damage control strategy with Dmax = 0.999 gives consistent results

compared to the element removal scheme, wherein the crevasse penetrates to 79% of the

slab depth. Figure 4.12(b) indicates that the implicit gradient damage approach predicts

faster crack tip damage initiation and crevasse growth rate; although, it predicts the same

final crevasse depth as the nonlocal integral approach. However, if we consider a Green’s

function based weighting function, the explicit integral approach shows excellent agree-

ment with the implicit gradient approach, because the Green’s function is a weak solution

to Equation (4.16) [Peerlings et al., 2001]. In Figure 4.12(c), we plot the crevasse depth

versus time predicted by different order finite element approximations, including the com-

monly used P2-P1 (Taylor-Hood) element and a stabilized P1-P1 element. The P3-P1 and

P2-P1 elements yield consistent results; whereas, the stabilized P1-P1 element predicts a

different crack growth rate and final crevasse depth. This occurs because the stabilized

P1-P1 does not well enforce the incompressibility constraint, which affects the Hayhurst

stress around the crack tip. Finally, in Figure 4.12(d) we perform a mesh size study by

progressively reducing the mesh size in the damage zone. Results indicate that the formu-

lation predicts consistent damage evolution when taking an element size h = 5,2.5,1.25

m smaller than the characteristic length scale lc = 10 m. Based on this study we arrive at

the conclusion that the Stokes flow formulation is more appropriate than the viscoelastic
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Figure 4.11: Crevasse propagation predicted by the Stokes flow rheological model for an
ice slab under gravitational loading. The damage variable is shown at (a) crack tip damage
initiation at 112.528 hours, (b) 10 days, (c) 15 days, and (d) 20 days.

formulation, because while both predict the same equilibrium crevasse depth over short

time scales (3.4% difference is insignificant from glaciological standpoint), the former ap-

proach is more accurate over long timescales as it accounts for large deformation induced

geometry changes.

4.4.4 Crevasse propagation in 3D

In this section, we extend the updated-Lagrangian formulation to simulate crevasse

propagation in ice sheets in three dimensions (3D). The 3D implementation is verified

using simple benchmark tests, wherein we compare the crevasse propagation induced by

constant creep velocity and gravity driven flow predicted in 2D and 3D. Due to the enormity

of 3D problems and the computational expense, we run the 3D simulations using parallel

processing. We utilize the implicit gradient to incorporate nonlocality in damage, since

the nonlocal integral technique would present problems when trying to access the nonlocal

weights of material points between neighboring mesh partitions.

For each 2D simulation, we consider a rectangular domain of ice with length L = 500

m in the x1 dimension and height H = 125 m in the x2 dimension, and the mesh is refined

around the anticipated damage zone with an element size of 5 m. A 10×10 m notch is cen-
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Figure 4.12: Crevasse depth (d) normalized with the domain height (H = 125 m) plotted
as a function of time over 20 days. The abbreviations VE and SF refer to the viscoelas-
tic and Stokes flow rheological models, respectively. Subfigure (a) shows a parametric
study of Dmax in order to compare between continuum damage and the element removal
scheme. (Note that in all simulations we set Dmax = 0.97, except for the dashed magenta
line Subfigure (a).) Subfigure (b) shows crevasse growth rates for the nonlocal integral us-
ing separate weighting functions (Gaussian and Green’s function) and the implicit gradient
damage scheme. Subfigure (c) shows the crevasse growth rate for different orders of in-
terpolation for the velocity solution. Subfigure (d) presents a mesh size study wherein the
element size h is progressively reduced in the nonlocal damage zone.
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Figure 4.13: Illustration of the undeformed (a) 3D mesh and (b) 2D mesh.

tered along the top edge of the domain. For each 3D simulation, we assume a rectangular

prism with length L = 500 m in the x1 dimension, height H = 125 m in the x2 dimension,

and depth W = 125 m in the x3 dimension. A 10×10×125 m notch is centered along the

top surface and cuts through the entire domain in the x3 dimension. Due to the symmetry in

both 2D and 3D domains, we only mesh half of the domain and apply symmetry boundary

conditions to the plane intersecting the midpoint (i.e., x1 = L/2) and whose normal vector

is ê1. An illustration of the undeformed 3D mesh is depicted in Figure 4.13.

4.4.4.1 Mode I creep crack growth in 3D

We first verify the 3D implementation by performing a constant creep velocity bench-

mark experiment. For this problem, we simulate a stand creep test by disregarding gravity

and prescribing a constant, uniform velocity v = 0.5 m/day in the x1 direction. In the 2D

problem, we apply the velocity to the right edge of the rectangular domain; whereas in the

3D problem, we apply the velocity to the right surface (i.e., the plane intersecting the point

x1 = L whose normal vector is ê1). Free slip boundary conditions are applied to the bottom

edge and bottom surface in the 2D and 3D domains, respectively, to restrain vertical move-

ment. We also apply a symmetry boundary condition along the plane of symmetry (i.e.,

the plane intersecting the midpoint x1 = L/2 and whose normal vector is ê1) by restricting

movement in the x1 dimension. Finally, to be consistent with the plane strain assumption
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Figure 4.14: Surface crevasse depth (ds) normalized with the domain height (H = 125 m)
plotted as a function of time over 120 hours using the by the 2D and 3D updated-Lagrangian
implementations.

made in 2D, we apply boundary conditions to prevent movement in the x3 dimension along

the “front” and “back” surfaces (i.e., the planes intersecting the points x3 = 0 and x3 =W

whose normal vectors are ê3). The results of this study are shown in Figure 4.14, wherein

we plot the normalized surface crevasse depth ds/H versus time for five days. Both the

2D and 3D implementations predict crack tip damage initiation at time t ≈ 103 hours, after

which the crevasse rapidly penetrates through the full depth of the slab. This consistency

verifies that the 3D model formulation is properly implemented and is applicable to more

general problems.

4.4.4.2 Crevasse propagation under gravity-driven creep flow in 3d

We next verify the 3D implementation by performing a gravity-driven flow benchmark

experiment. For this problem, we apply gravity as a body force ρig where ρi is the density

of ice and g is the acceleration due to gravity, whose only nonzero component acts in the
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x2 dimension. Free slip boundary conditions are applied to the bottom edge and bottom

surface in the 2D and 3D domains, respectively, to restrain vertical movement. We also

apply a symmetry boundary condition along the plane of symmetry (i.e., the plane inter-

secting the midpoint x1 = L/2 and whose normal vector is ê1) by restricting movement in

the x1 dimension. Finally, to be consistent with the plane strain assumption made in 2D,

we apply boundary conditions to prevent movement in the x3 dimension along the “front”

and “back” surfaces (i.e., the planes intersecting the points x3 = 0 and x3 =W whose nor-

mal vectors are ê3). The results of this study are shown in Figure 4.15, wherein we plot

the normalized surface crevasse depth ds/H versus time for one month. Both the 2D and

3D implementations predict crack tip damage initiation at approximately one week. After-

ward, the crevasses in the 2D and 3D domains penetrate to 72% and 70% of the slab depth,

respectively, with the 2D crevasse propagating slightly faster. An image of the final 3D

damage contour is provided in Figure 4.16. Overall, the 2D and 3D model formulations

predict consistent crevasse evolution, thus verifying the 3D implementation and demon-

strating its applicability to more general problems.

4.4.5 Discussion

The important observations and findings of this study are summarized below:

i. The gravity-driven flow is a varying body-force-controlled experiment, whereas the

constant velocity creep flow is a displacement-controlled experiment; consequently

we observe different crack growth behavior in both experiments, as evident from

Figures 4.7 and 4.12. The constant velocity creep flow is a good benchmark test to

study the differences between Stokes and viscoelastic models, although it has little

physical relevance to glacier and ice sheet flow.

ii. Under gravity-driven flow, as damage begins to accumulate under the notch, the

stress is redistributed within the damage zone; consequently, the crevasse growth rate
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Figure 4.15: Surface crevasse depth (ds) normalized with the domain height (H = 125 m)
plotted as a function of time over 30 days using the by the 2D and 3D updated-Lagrangian
implementations.

Figure 4.16: Damage contour after 30 days of gravity-driven flow in a 3D body. The red
regions indicate fully damaged material (i.e., D = Dmax), whereas the blue regions indicate
intact ice (i.e., D≈ 0).
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curves from both Stokes and viscoelastic model predictions are in reasonably close

agreement, with less than 3.4% error in final crevasse depths over shorter timescales.

Noting that the final crevasse depth is a critical factor indicative of the stability of ice

sheets, we can conclude that one may neglect the contribution of elastic (stress con-

centration) effects and only account for nonlinear viscous flow to simulate crevasse

propagation.

iii. Under gravity-driven flow, surface crevasses do not propagate the full depth of the

slab (i.e., normalized crevasse depth d/H < 1 after 20 days), unlike under constant

velocity creep flow (d/H = 1 after 5 days); this is because the Hayhurst stress near

the crack tip decreases as the crack grows longer. From our simulations, we observe

that as the crevasse penetrates deeper the velocity gradients across the depth becomes

smaller, leading to the progressive reduction in glaciological stress and crack growth

rate with time. Thus, surface crevasse propagation under dry conditions (i.e., no

hydraulic fracture) remains a quasi-static process, especially during the final stages,

wherein the crevasse depth reaches its final (steady-state) depth, as evident from

Figure 4.12. Therefore, inertial terms need not be included in the current quasi-static

fracture simulation study.

iv. The value of the damage parameter B̂ in Table 5.2 was calibrated from experiments

on laboratory grown virgin ice using the Maxwell viscoelastic model in [Duddu and

Waisman, 2012], which may be an order of magnitude larger than that corresponding

to glacier ice. In our recent work [Mobasher et al., 2016], we show that the value

B̂ only affects crevasse growth rate but not the final (steady-state) crevasse depth;

therefore, the conclusions related to surface crevasse depths and the stability of ice

sheets remain valid.

v. From Figure 4.9, it is evident that the Stokes and viscoelastic models predict differ-

ent physical behavior as large deformations accrue over longer time scales, and the
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updated-Lagrangian formulation accounting for domain geometry changes is more

appropriate than the total Lagrangian formulation. However, in order to conduct a

physically accurate ice sheet flow and fracture simulation over long decadal time

scales, one needs to account for mass inflow and outflow along with crack propaga-

tion and healing, which will be considered in our future research.

The overall conclusion of this study is that the updated-Lagrangian Stokes formulation is

appropriate for studying gravity-flow induced glacier deformation and fracture even over

short time scales, despite ignoring the elastic stress concentration effects. Furthermore,

over long decadal timescales the proposed formulation would be more appropriate as it

accounts for the geometry changes of the domain, when large deformations accrue over

time.
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4.5 Conclusion

We developed an updated-Lagrangian mixed finite element formulation based on the

nonlinear Stokes flow equations and a nonlocal creep damage law to simulate crevasse

propagation in glaciers. The main features of this new formulation are: (1) the updated-

Lagrangian approach that enables us to track the geometry changes in the domain dynam-

ically using an explicit mesh-update procedure and the evolution of continuum damage at

material points, without needing to include the damage advection; (2) the nonlocal gradient

and integral implementations of damage that alleviate the mesh sensitivity issues inherent

to local damage models; (3) the higher-order mixed finite element discretization of the

Stokes equations that eliminate “checkerboard” instabilities in pressure and allow accu-

rate and efficient computation of stress and damage fields; and (4) the automated damage

controls and element removal scheme that allow us to represent fully damaged material

without introducing rank deficiencies to the finite element stiffness matrix. The formula-

tion was verified against manufactured Stokes solutions and compared with the experimen-

tally validated small-deformation Maxwell viscoelastic model through benchmark studies.

Numerical simulations performed on idealized rectangular domains demonstrate that the

Stokes flow model is suitable for simulating flow and fracture in ice as it is consistent with

the Maxwell-type viscoelastic model over the shorter time scales of crevasse propagation

(i.e., t = 5 - 20 days) under gravity-induced flow. Over long decadal time scales, we expect

that the proposed update-Lagrangian approach is superior to the small-deformation total

Lagrangian approach due to its ability to account for large deformations. Other interesting

findings from the simulation studies are: (1) the P2-P1 (Taylor-Hood) element is about as

accurate as the P3-P1 element, and so it is preferable because it is computationally less

expensive; whereas, the classical stabilized P1-P1 element is not as accurate; (2) the gra-

dient damage approach predicts faster damage initiation times and crack growth rates and

narrower damage zone widths compared to the Gaussian function based integral damage

approach, but it is consistent with the Green’s function based integral damage approach;
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(3) the element removal scheme simulating crack opening is consistent with the damage

control strategy for Dmax = 0.999 upon the introduction of the ψ function that relaxes the

incompressibility constraint and voids the density in damage zones. Our future work will

involve using the proposed formulation together with parallel computing to simulate large

scale problems, such as crevasse propagation in land ice sheets with realistic geometries

and boundary conditions and iceberg calving from Antarctic ice shelves.
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CHAPTER 5

DAMAGE MECHANICS APPROACH TO WATER-FILLED SURFACE CREVASSE

PROPAGATION IN GLACIERS

5.1 Introduction

Crevasses are opening fractures in glaciers formed under the action of tensile stress.

The full depth propagation of crevasses close the terminus of a glacier leads to iceberg

calving, which is a dominant mode of mass loss from both the Greenland and Antarctic

ice sheets. A major hurdle to parametrizing iceberg calving in numerical ice sheet models

is that the underlying fracture mechanisms are extremely complex, involving mechanical,

thermal, and hydraulic processes across multiple length and time scales. To parametrize

calving appropriately it is important to describe both the position of the calving front in

relation to ice thickness and seawater depth at the terminus as well as the calving rate de-

termined by the speed of the glacier and the presence of meltwater in the crevasses [van der

Veen, 1996]. Empirical calving laws based on water depth or ice thickness at the glacier

terminus [Brown et al., 1982, Meier et al., 1994] do not explain the changes in calving rate

in summer and winter months; whereas, fracture mechanics based calving laws [Weert-

man, 1973, van der Veen, 1998a, Nick et al., 2010a, Krug et al., 2014] that account for

physical factors, such as mechanical stress and hydrofracture, can explain such seasonal

changes in calving rates. With the recent emergence of creep damage mechanics mod-

els for simulating crevasse propagation [Pralong and Funk, 2005, Duddu et al., 2013] and

the possibility of incorporating them in shallow shelf ice sheet models [Keller and Hutter,

2014a], an outstanding question is: How do the crevasse penetration depths predicted by

creep damage models (assuming the gradual growth of micro-cracks into diffused macro-

cracks) compare against existing fracture mechanics models (considering the abrupt growth
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of sharp macro-cracks)? To address this question, we perform a comprehensive investiga-

tion comparing four existing fracture mechanics models for the propagation of water-filled

surface crevasses in glaciers against the creep damage mechanics model for hydraulic frac-

ture [Mobasher et al., 2016] implemented within a nonlinear full Stokes finite element

formulation [Jiménez et al., 2017].

Typically, tidewater glaciers (where the terminus remains grounded) calve smaller ice-

bergs with a characteristic size comparable to or less than the ice thickness [Bassis, 2011].

This calving behavior of tidewater glaciers is much different from that observed in freely

floating ice shelves or ice tongues. Empirical calving models based on water depth and

height-above-buouyancy [Meier and Post, 1987, van der Veen, 1996, 2002, Nick et al.,

2007, 2009] describe the calving behavior of tidewater glaciers to a reasonable extent,

but lack a mechanistic basis despite significant efforts [Benn et al., 2007b]. The fracture

mechanics models hypothesize that crevasse propagation is dominated by the opening of

brittle cracks in ice due to tensile stress, which is well supported by experimental obser-

vations [Rist et al., 1996, 1999]. The fracture mechanics models account for the tensile

stress generated by both the extensional flow of glaciers and the hydrostatic pressure in

water-filled crevasses, and calving is assumed to occur when the combination of surface

and basal crevasses becomes equal to the ice thickness. In this chapter, we will investi-

gate four fracture mechanics models for crevasse propagation applied to grounded glaciers:

(1) the Nye (zero-stress) model [Nye, 1955, 1957]; (2) the Weertman (dislocation-based

fracture mechanics) model [Weertman, 1971, 1973]; (3) the van der Veen (linear elastic

fracture mechanics) model [van der Veen, 1998a,b]; and (4) the Krug (linear elastic frac-

ture mechanics) model [Krug et al., 2014]. The main assumption behind fracture mechanics

models is that the crevasse is a sharp interface (i.e., mathematical displacement disconti-

nuity) and stress near the crevasse tip is unbounded (i.e., mathematical stress singularity),

except for the Nye model. Furthermore, fracture mechanics models require the assumption

of a pre-crack to determine if a crack would propagate and inherently cannot describe crack
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initiation (except for the Nye model). A detailed review of these four models, including the

underlying assumptions, salient model equations, and crevasse depth predictions is given

in Section 5.2.

In contrast to the hypothesis of fracture mechanics models for iceberg calving, we argue

that calving is a complex multi-scale and multi-physics creep fracture process [Mobasher

et al., 2016]. For quasi-brittle materials such as concrete or ice that exhibit strain-softening,

these assumptions of fracture mechanics models may not be appropriate as there is sub-

stantial micro-cracking within the fracture process zone, which is described by nonlocal

damage theory [Pijaudier-Cabot and Bazant, 1987a, Bazant, 1994]. In fact, the multi-scale

nature of the ice fracture is attributed to a bewildering variety of deformation and damage

mechanisms at various length scales ranging from localized micro-scale (or milli-scale)

cracks [Weertman, 1983, Hammonds and Baker, 2017] to rifts that exceed hundreds of

kilometers [Larour et al., 2004, Bassis et al., 2008, Walker et al., 2013, Albrecht and Lever-

mann, 2014]. The multi-physics nature of the process is due to both mechanical and thermal

phenomena governed by gravity-induced viscous flow, hydraulic fracture, ocean forcing,

and phase transformation due to melting and refreezing of ice. Furthermore, the complex-

ity and diversity of calving patterns in glaciers is strongly linked to geometry [Bassis and

Jacobs, 2013]. A “universal” calving model must account for this complexity in a feasi-

ble yet physically-consistent manner; however, the theoretical fracture mechanics models

assuming linear elasticity, small strains and/or idealized geometries and far-field bound-

ary conditions may be oversimplified. While calving is linked to brittle fracture of linear

elastic ice over shorter time scales [Rist et al., 1999, van der Veen, 1998a,b], over longer

times scales glacier and ice sheet flow is well described by a viscous creep constitutive

law known as Glen’s law [Glen, 1955, Cuffey and Paterson, 2010]. Therefore, to model

calving in real-world glaciers and ice shelves, researchers have recently attempted to in-

corporate fracture mechanics into numerical ice sheet models based on the assumption that

ice flow is governed by its incompressible, nonlinear viscous rheology [Sun et al., 2017,
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Yu et al., 2017]. Although these numerical models overcome the limitations of purely the-

oretical models, they present other computational challenges; for example, the algorithms

for evolving fractures can be cumbersome or ad hoc [Sun et al., 2017] and cannot account

for subcritical damage growth [Yu et al., 2017].

An alternative approach to modeling calving within numerical ice flow models in-

volves the use of continuum damage mechanics (CDM) [Pralong and Funk, 2005, Pralong

et al., 2006, Duddu and Waisman, 2012, 2013c, Duddu et al., 2013, Mobasher et al., 2016,

Jiménez et al., 2017], which offers certain advantages. First, CDM is easily incorporated

into numerical models without requiring complicated algorithms for tracking the propa-

gation of fractures. Second, CDM can model fracture initiation and propagation without

requiring the presence of a pre-crack (i.e., subcritical damage), unlike theoretical fracture

mechanics models (except for the Nye model). Pralong and Funk [2005] were the first to

simulate creep damage in ice using an incompressible, nonlinearly viscous Stokes rheol-

ogy. Duddu and Waisman [2013c] developed a nonlocal creep damage model for modeling

crevasse propagation with thermodynamic consistency. Keller and Hutter [2014a] have

further explored the plausibility of incorporating creep damage models into shallow shelf

approximations. There are some concerns expressed about the formulation of damage me-

chanics models [Gagliardini et al., 2013], which we have addressed in a response article

[Duddu and Waisman, 2013b]. Recently, Krug et al. [2014] combined damage mechan-

ics with fracture mechanics, but damage mechanics is a stand-alone numerical technique

for both dynamic and quasi-static fracture propagation in both quasi-brittle elasto-plastic

[de Borst et al., 1995, Miehe et al., 2015] and viscoelastic materials [Murakami, 1983,

Schapery, 1999, Lyakhovsky et al., 2011]. The purpose of this chapter is to demonstrate

the viability of the damage mechanics approach to describe the propagation of water-filled

crevasses in glaciers by comparing its results with those from theoretical fracture mechan-

ics models.

The rest of the chapter is organized as follows: in Section 5.2, we review four the-
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oretical mechanics models and conduct a comparative numerical study, which has never

been done before in the literature; in Section 5.3, we present the governing equations of

the nonlocal poro-damage mechanics model that combines the updated Lagrangian Stokes

flow formulation detailed in Jiménez et al. [2017] and the poro-mechanics formulation de-

tailed in Mobasher et al. [2016] for hydraulic fracture; in Section 5.4, we compare damage

mechanics predictions for the penetration of dry and water-filled crevasses against the theo-

retical fracture mechanics models by considering an extensive set of parametric studies; in

Section 5.5, we offer some concluding remarks. The reader is also referred to the appendix

for supporting information and additional studies.
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5.2 Review of Fracture Mechanics Models

Iceberg calving is a natural process that occurs when a combination of surface and basal

crevasses propagates through the entire thickness of the ice shelf or glacier leading to the

formation of icebergs. The widely accepted hypothesis is that calving is dominated by the

opening of cracks due to tensile stress, so researchers have proposed fracture mechanics

models to estimate crevasse penetration depth. In this section, we will briefly review four

theoretical fracture mechanics models: (1) the Nye (zero-stress) model [Nye, 1955]; (2)

the Weertman (dislocation-based fracture mechanics) model [Weertman, 1973]; (3) the van

der Veen (linear elastic fracture mechanics) model [van der Veen, 1998a]; and (4) the Krug

et al. (linear elastic fracture mechanics) model [Krug et al., 2014]. Additionally, we nu-

merically solve the corresponding model equations and compare the predicted penetration

depths of water-filled surface crevasses as a function of the resistive stress, water pressure

in the crevasse and seawater pressure at the terminus. We restrict our study to idealized

rectangular glaciers under plane strain with far-field boundary conditions, as illustrated in

Figure 5.1.

ds hsH

L

hw

zsdb

z

x

Figure 5.1: Schematic of ice slab with height H, length L, seawater level hw, surface
crevasse height ds, water level hs within the surface crevasse, and basal crevasse height db.
The origin is set at the lower-left corner of the slab with x and z as the horizontal and ver-
tical coordinates, respectively, and y is the out-of-plane coordinate forming a right-handed
system orientation.
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5.2.1 Constant Resistive Stress Approximation

Theoretical models generally predict crevasse penetration as a function of the horizon-

tal Cauchy stress σxx, relying on the approximation that gravity-induced stress σxx varies

linearly along the depth of the ice slab. Weertman [1957] has shown that under certain

idealized conditions, σxx does vary linearly with depth and can be written in terms of a

constant tensile stress Rxx resulting from longitudinal creep flow and a linearly varying

lithostatic stress arising from the self-weight of ice

σxx(z) = Rxx−ρig〈H− z〉, (5.1)

where x,z are the in-plane horizontal and vertical coordinates, ρi = 917 kg/m3 is the density

of ice, g is gravitational acceleration, H is the height of the slab, and the Macaulay brackets

〈x〉= 1
2(x+ |x|). The tensile stress Rxx (also called the “resistive” stress) is given by

Rxx =
1
2

ρigH− 1
2

ρwg
h2

w
H

, (5.2)

where ρw = 1020 kg/m3 is the density of seawater and hw is the seawater depth at the slab

terminus. The above equation for Rxx can be derived using three idealized conditions: (1)

far from the terminus (i.e., in the so-called “far-field” region of the ice slab), the stresses

in ice only vary with z coordinate; (2) viscous flow of ice is incompressible; and (3) the

out-of-plane strain rate is negligible (i.e., ε̇yy = 0). Using the finite element method, we

have checked that the constant Rxx approximation is valid when the above three conditions

are satisfied (see Figure L13 in Appendix I). Interestingly, the far-field stress state in ice is

independent of its rheology, so long as ice is assumed to be an incompressible material.

Remark 29 In the literature, the resistive stress Rxx is often called the deviatoric stress,

which is a misnomer. The conventional definition of the deviatoric stress is, τ = σ+ pI ,
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where p =−1
3 trace[σ] is the hydrostatic pressure and I is the second-order identity tensor.

Thus, we obtain τxx = σxx + p and τxx 6= Rxx, because the pressure p is generally different

from the lithostatic stress ρig〈H− z〉. In fact, Rxx = 2τxx in the far-field region of the ice

slab, and the derivation is provided in Appendix I.

5.2.2 Nye Model

The Nye zero-stress model [Nye, 1957] is an early and simplistic theoretical model that

states that crevasses will penetrate through an ice slab to the depth where tensile stresses

vanish, that is, where the horizontal Cauchy stress σxx is zero. Two assumptions must be

made for this model to apply: (1) that ice has zero tensile (fracture) strength; and (2) that the

stress singularity at crevasse tips can be neglected, owing to stress smoothing in a uniform

field of closely-spaced crevasses. Although the Nye model is rheology independent, it is

standard to regard ice as an incompressible medium and solve Equation 48 for the position

of the crevasse tip zs measured from the bottom of the slab such that σxx(zs) = 0. The

maximum penetration depth of a surface crevasse ds = H− zs, is thus given by

ds =
Rxx

ρig
. (5.3)

For an ice slab in a purely dry environment (i.e., the seawater level hw = 0), the resistive

stress Rxx =
1
2ρigH, and so the predicted surface crevasse depth ds =

1
2H.

The original Nye model did not account for the presence of hydraulic pressure in water-

filled crevasses, however, later works [Jezek, 1984, Nick et al., 2010a, Bassis, 2011] have

included an additional term into the horizontal stress balance that incorporates hydraulic

pressure,

σxx(z) = Rxx−ρig〈H− z〉+σw(z), (5.4)
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where σw(z) is the depth-varying hydraulic pressure acting on the crevasse walls. Because

the hydraulic pressure acts to open the crevasse, it is assumed in the literature that this

pressure induces a positive (tensile) stress within the ice, and crevasses are expected to

penetrate to the depth where the net stress vanishes to zero [Weertman, 1980a, Jezek, 1984].

Thus, the pressure term σw can be expressed as,

σw(z) =


ρwg〈hs− (z− zs)〉 if z ∈ [zs, zs +hs],

0 otherwise,
(5.5)

where hs is the hydraulic head within the surface crevasse. Let us consider a surface

crevasse filled with water to some level hs = csds where the constant cs ∈ [0,1]. By solving

Equation 5.4 for σxx(zs) = 0, we obtain the depth of a surface crevasse as,

ds =


Rxx

ρig− csρwg
if cs <

ρi

ρw
,

H if cs ≥
ρi

ρw
.

(5.6)

For cs ≥ ρi
ρw

, the horizontal stress σxx(zs)> 0 for any zs, thus indicating full depth penetra-

tion of the surface crevasse.

Remark 30 Weertman [1977] derived an approximate analytical solution to show that

crevasse penetration depth is equal to the Nye depth when fracture strength of ice is es-

sentially zero and the crevasse spacing is much smaller than crevasse depths. Thus, the

Nye zero stress model can be categorized as a fracture mechanics model but its applicabil-

ity is limited to a perfectly uniform crevasse field, which is strictly an academic argument

[De Robin, 1974, Weertman, 1974]. However, due to its simplicity researchers have em-

ployed the Nye model [Nick et al., 2010a, Bassis and Walker, 2012, DeConto and Pollard,
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2016, Sun et al., 2017], although it would underestimate the penetration depth of isolated

or sufficiently far-apart surface crevasses.

5.2.3 Weertman Model

To address the limitation of the Nye model, Weertman [1973] applied dislocation-based

fracture mechanics theory for elastic solids to the penetration of isolated crevasses in ice.

The penetration depth ds of a dry isolated surface crevasse is given by,

ds =
π

2
Rxx

ρig
, (5.7)

for an empty (or dry) surface crevasse (i.e., hs = 0). Weertman [1973] also derived ana-

lytical expressions for calculating the penetration depth of water-filled surface crevasses.

The crevasse penetration depth is obtained by evaluating the crack opening displacement

function (see Equation 11 in Weertman [1973]),

D(z′,ds) =
2(1−ν)

µ

(
ρig
π

{√
d2

s − (z′)2
(

ds−
ρw

ρi

√
d2

s − (h′)2
)

−(z′)2 log

[
ds +

√
d2

s − (z′)2

(z′)2

]
+

ρw

2ρi
((z′)2 +(h′)2) log

∣∣∣∣∣
√

d2
s − (h′)2 +

√
d2

s − (z′)2√
d2

s − (h′)2−
√

d2
s − (z′)2

∣∣∣∣∣

−z′h′
ρw

ρi
log

∣∣∣∣∣(z′)
√

d2
s − (h′)2 +h′

√
d2

s − (z′)2

(z′)
√

d2
s − (h′)2−h′

√
d2

s − (z′)2

∣∣∣∣∣
}
+(Rxx−R′xx)

√
d2

s − (z′)2

)
, (5.8)

where z′ = H − z is the vertical coordinate measured from the top of the slab, the dry

distance h′ = 〈ds−hs〉, and the quantity R′xx is given by,

R′xx = 2
ρig
π

(
ds +h′

ρw

ρi

[
π

2
− sin−1 h′

ds

]
− ρw

ρi

√
d2

s − (h′)2
)
. (5.9)
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In the above equations, µ is the shear modulus and ν is Poisson’s ratio for linearly elastic

ice; however, in this model neither µ nor ν affects the surface crevasse penetration depth.

The crevasse depth ds is calculated by evaluating Equation 54 for the greatest value of ds

such that D(z′,ds) > 0 for all z′ ∈ [0,ds]. In other words, the crevasse depth ds is taken as

the greatest depth for which the crack opening displacement (i.e., the separation distance

between crevasse walls) is positive for all points along the crevasse. We have numerically

solved the above analytical expressions using the bisection algorithm, and the details are

given in Appendix J. To verify our implementation, we reproduce the Figure 7 results from

Weertman [1973] in Figure 5.2(a) below by plotting the quantity (2dsρig)/(πRxx) versus

(ds−hs)/ds on a log-log scale.

Remark 31 The asymptotic behavior near the point (ds−hs)/ds = 0.0265 in Figure 5.2(a)

indicates that a surface crevasse filled with water up to at least 97.35% of its depth will

penetrate through the entirety of the ice slab, regardless of the value of tensile stress Rxx.

On the other hand, as (ds−hs)/ds→ 1 (i.e., hs→ 0, indicating a dry crevasse), the value

of (2dsρig)/(πRxx)→ 1, thus providing us with the relation in Equation 5.7.

5.2.4 van der Veen Model

The Weertman model assumes that ice thickness is much larger than the crevasse pen-

etration depth, thus neglecting the finite geometry effects on crevasse growth. To address

this limitation, van der Veen [1998a] proposed a linear elastic fracture mechanics (LEFM)

model for estimating crevasse evolution in glaciers by treating ice as an elastic body subject

to the far-field stress state, as described by Equations 48 and 5.4. The penetration depth of

surface crevasses is determined by equating the net stress intensity factor (SIF) Knet
I to the
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experimentally measured critical SIF KIc as

Knet
I = K(1)

I (Rxx,ds)+K(2)
I (ds)+K(3)

I (hs,ds) = KIc (5.10)

where K(1)
I , K(2)

I , and K(3)
I are the SIFs resulting from the resistive stress, ice overbur-

den pressure, and hydraulic pressure exerted on crevasse walls for water-filled crevasses,

respectively. The terms for K(1)
I , K(2)

I , and K(3)
I are given as,

K(1)
I = F(λ )Rxx

√
πds, (5.11a)

K(2)
I =

∫ ds

0

[−2ρigz′√
πds

G(λ ,γ)

]
dz′, (5.11b)

K(3)
I =

∫ ds

0

[
2ρwg〈z′−h′〉√

πds
G(λ ,γ)

]
dz′, (5.11c)

where z′ = H− z is the vertical coordinate measured from the top of the ice slab, the dry

depth h′ = ds− hs, the terms λ = ds/H and γ = z′/ds, and the weighting functions F(λ )

and G(λ ,γ) are given by,

F(λ ) = 1.12−0.23λ +10.55λ
2−21.72λ

3 +30.39λ
4, (5.12)

and

G(λ ,γ) =

[
3.52(1− γ)

(1−λ )3/2

]
−
[

4.35−5.28γ

(1−λ )1/2

]
+

[
1.3−0.3γ3/2

(1− γ2)1/2 +0.83−1.76γ

]
[1− (1− γ)λ ] .

(5.13)

The SIF terms given in Equation 57 are nonlinear functions of ds, and so an iterative process

is required to solve for ds, as described in Appendix K. Each term takes into account the

height of the ice slab through the parameter λ ; however, the ice slab may be treated as a

semi-infinite plane by setting λ = 0. To verify our numerical implementation of the SIF

model using the bisection algorithm, we replicated the result in Figure 10 from van der
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Veen [1998a] in Figure 5.2(b), where we plot the net stress intensity factor Knet
I = K(1)

I +

K(2)
I +K(3)

I versus crevasse height ds for three separate water levels hs filling the surface

crevasse that penetrates an ice slab of height H = 500 m. To generate the result in Figure

5.2(b), the resistive stress Rxx is held constant at 100 kPa.

Remark 32 van der Veen [1998a] used different geometric factors F(λ ) and G(λ ,γ) for

evaluating the SIFs corresponding to the constant resistive stress and linearly varying pres-

sure terms, respectively; whereas van der Veen [1998b] used only one geometric parameter

G(λ ,γ) for evaluating the SIFs corresponding to the net longitudinal stress. While the two

approaches seem to be mathematically consistent, the numerical integration scheme for

computing the SIFs leads to different crevasse depth predictions. Interestingly, the ap-

proach of van der Veen [1998b] for evaluating the net SIF is consistent with the Krug et al.

[2014] model despite the difference in geometric factors.

5.2.5 Krug et al. Model

The van der Veen model assumes that the resistive stress Rxx is constant over the ice

depth while evaluating K(1)
I , which may not be true for real cases. To address this issue,

Krug et al. [2014] proposed a modified LEFM model wherein the net horizontal Cauchy

stress σxx is multiplied by a different weighting function and then integrated over the depth

of the crevasse. The Krug et al. [2014] model has been well established in fracture mechan-

ics literature [Glinka and Shen, 1991, Moftakhar and Glinka, 1992, Tada et al., 2000] and is

appropriate for an arbitrary stress profile applied to the crack. For the sake of completeness,

the model is summarized below:

KI =
∫ ds

0
M(z′,H)

[
Rxx−ρigz′+ρwg〈z′−h′〉

]
dz′ (5.14)

161



10 2 10 1 100
ds hs

ds

100

101

102

103

2d
s

ig
R x

x

(a)

0 100 200
ds (m)

0

5

10

Kne
t

I
 (M

Pa
 m

1/
2 )

(b)
ds hs = 10 m
ds hs = 20 m
ds hs = 30 m

Figure 5.2: Verification study of LEFM models. (a) Plot of ds−hs
ds

versus 2dsρig
πRxx

computed
using the Weertman model to predict surface crevasse penetration depth. This subfigure is
a reproduction of Figure 7 from Weertman [1973]. (b) Net mode I stress intensity factor
Knet

I = K(1)
I +K(2)

I +K(3)
I versus surface crevasse height ds for three separate water levels

hs filling the crevasse, computed using the van der Veen model. The slab height H = 500
m, and the resistive stress Rxx is held constant at 100 kPa. This subfigure is a reproduction
of the top-left portion of Figure 10 from van der Veen [1998a].

where z′ = H− z is the vertical coordinate measured from the top of the ice slab, the dry

depth h′ = ds−hs, and the weighting function M(z′,H) is given as [Glinka, 1996],

M(z′,H) =
2√

2π(ds− z′)

[
1+M1

(
1− z′

ds

)1/2

+M2

(
1− z′

ds

)
+M3

(
1− z′

ds

)3/2
]
.

(5.15)
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The constants M1, M2, and M3 are given by polynomial functions that account for the

geometry of the ice slab,

M1 = 0.0719768−1.513476λ −61.1001λ
2 +1554.95λ

3 (5.16a)

−14583.8λ
4 +71590.7λ

5−205384λ
6 +356469λ

7

−368270λ
8 +208233λ

9−49544λ
10,

M2 = 0.246984+6.47583λ +176.456λ
2−4058.76λ

3 (5.16b)

+37303.8λ
4−181755λ

5 +520551λ
6−904370λ

7

+936863λ
8−531940λ

9 +127291λ
10,

M3 = 0.529659−22.3235λ +532.074λ
2−5479.53λ

3 (5.16c)

+28592.2λ
4−81388.6λ

5 +128746λ
6−106246λ

7

+35780.7λ
8,

with λ = ds/H. We note that near the crack tip (i.e., z′ → ds), the function M(z′,H) ap-

proaches infinity due to the z′−ds term in the denominator. To avoid numerical integration

errors near this singularity, it is suitable to integrate Equation 5.14 from z′ = 0 to z′ = ds−ε

for some small value ε . In this work, we take ε = 10−8.

Remark 33 The integrands in Equations 57b, 57c, and 5.14 tend to infinity when the ver-

tical coordinate z′ → ds. This can result in an overestimation of the integral when using

standard numerical integration techniques (e.g., the trapezoidal rule or Simpson’s rule) in

regions where the integrand rapidly approaches infinity. Specifically, the value computed

for the integral becomes +∞ when σxx > 0 and−∞ when σxx < 0 at the crack tip. To avoid

the overestimation of the integral using the Simpson’s rule, we limit the upper bound on the

integral to z′ = ds− ε for some small value ε ≈ 0. In our studies, we find that the integral
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converges to a finite value when taking ε = 10−6,10−8, and 10−10; however, for ε = 10−12

the integral becomes large and approaches infinity as ε is decreased further.

5.2.6 Comparison of Crevasse Depth Predictions

We now compare the four fracture mechanics models discussed above with one an-

other by predicting the surface crevasse penetration depth ds as a function of the resistive

stress Rxx and the hydraulic head hs within the crevasse. In order to account for the tensile

strength of ice in the van der Veen [1998a] model, we take the critical stress intensity factor

KIc = 0.1 MPa
√

m. Let us first consider the penetration depth ds predicted by the vari-

ous calving models under dry conditions (i.e., hw = 0 and hs = 0) while varying Rxx in an

ice slab with height H = 500 m. The Weertman [1973] and van der Veen [1998a] models

predict similar penetration depths if we do not account for the finite geometry correction

functions in the van der Veen [1998a] model, as depicted by the orange and magenta lines in

Figure 5.3(a). However, when the correction functions are included to account for the finite

thickness of the ice slab, the van der Veen [1998a] model predicts greater surface crevasse

penetration depths under dry conditions. In general, the Nye zero-stress model predicts

smaller penetration depths because it does not account for the stress concentration (or sin-

gularity) at the crevasse tip. Next, let us consider the case where we vary the hydraulic head

hs within the surface crevasse at three different sea levels: hw/H = 0%, 50%, and 90% (i.e.,

floating condition). For each value of hw, the resistive stress Rxx is determined by Equation

49. The Weertman [1973] and van der Veen [1998a] models predict similar crevasse pene-

tration depths regardless of the value of hw or hs if the finite geometry correction factors are

ignored in the van der Veen [1998a] model, as indicated by the magenta lines in Figure 5.3.

However, with the correction factors included, the van der Veen [1998a] model predicts

substantially different penetration depths. The Nye zero-stress model only agrees with the

fracture mechanics models for the hw/H = 90% case; whereas, for hw/H = 0% and 50%,
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the Nye model under-predicts the crevasse penetration depth.

From the above comparative study, we find that:

i. The Weertman, van der Veen and Krug et al. models predict much deeper crack

growth than the Nye model because they account for the stress singularity at the

crevasse tip;

ii. Despite major differences between the Weertman and van der Veen models, both

seem to be equivalent when the finite geometry correction functions are excluded

from the latter model. The close agreement exists because the two models make the

same assumptions about ice: namely, that ice is a linear elastic incompressible solid

and that the ice slab is a semi-infinite plane with loading defined by far-field stress

and idealized boundary conditions; and

iii. Despite the similarity in van der Veen and Krug et al. models, both seem to predict

different crevasse depths when seawater height at the terminus is low, owing to the

differences in the evaluation of net SIF. However, this discrepancy can be removed

by using the same geometric correction factor G(λ ,γ) to all the SIFs in the van der

Veen model in the manner proposed by van der Veen [1998b], which is demonstrated

in Appendix L.

However, there are still several key questions to address in this study.

i. Is the Nye zero-stress model sufficient for predicting the penetration depth of crevasse

fields in a realistic scenario? In a real ice sheet or glacier one, would seldom find per-

fectly uniform closely-spaced crevasses, which is a necessary condition for the Nye

model to be applicable.

ii. Are fracture mechanics models consistent with damage mechanics models for esti-

mating crevasse penetration depths? The LEFM theory states that stress is infinite

(stress singularity) at the crevasse tip; however, micro-crack damage and nonlocal

interactions will make the stress bounded.
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iii. Are crevasses affected by the large deformations accruing over time due to creeping

ice flow? The theoretical fracture mechanics models assume that fractures no matter

how large do not influence the flow or stress state in the glacier, despite the fact that

large viscous deformations can substantially change its geometry.

iv. Can a water-filled crevasse fully penetrate a grounded glacier when accounting for

viscous creep and nonlocal damage interactions? The glaciological stress distribution

at the crevasse tip is dependent on ice rheology (i.e., elastic vs. viscous) and stress

relaxation in viscous materials can prevent the full penetration of crevasses, which is

not accounted for in the theoretical models.

To resolve these questions, we employ the damage mechanics approach described in the

next section to study crevasse evolution.
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Figure 5.3: Surface crevasse penetration depth ds predicted by the Nye zero-stress, Weert-
man [1973], van der Veen [1998a], and Krug et al. [2014] models as a function of (a) the
resistive stress Rxx and (b-d) the hydraulic head hs within the surface crevasse. In both
plots, the magenta dash-dot lines correspond to the van der Veen [1998a] model including
geometric correction factors that account for the height of the ice slab; whereas the dashed
line correspond to the van der Veen [1998a] without the geometric factors included. We
take the critical stress intensity factor KIc = 0.1 MPa

√
m, and the height of the ice slab

considered is H = 500 m.
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5.3 Nonlocal Poro-damage Mechanics Model

In this section, we briefly describe the extended damage mechanics approach for simu-

lating the propagation of water-filled surface crevasses. This approach uniquely combines

the creep damage model for ice presented in [Duddu and Waisman, 2012, 2013c] with the

nonlinear Stokes formulation employed in [Jiménez et al., 2017] and the poromechanics

based hydrofracture model proposed in [Mobasher et al., 2016] for simulating the propa-

gation of water-filled crevasses in quasi-static regime. The advantage of the damage me-

chanics approach is that it can simulate the time-dependent propagation of fracture in a

thermodynamically consistent and computationally efficient manner.

5.3.1 Viscous damage model

We represent damage using an isotropic scalar variable D∈ [0,1], where D= 0 and D=

1 represent the undamaged (virgin) and fully damaged state, respectively, at a material point

in the continuum. Following the principle of effective stress [Kachanov, 1958, Rabotnov,

1963] and the hypothesis of strain equivalence [Lemaitre, 1971], the effective Cauchy stress

tensor σ̄ in ice may be defined in terms of the “true” Cauchy stress tensor σ as,

σ̄ =
σ

(1−D)
=

1
(1−D)


σxx σxy σxz

σxy σyy σyz

σxz σyz σzz

 . (5.17)

The constitutive relations for damaged ice can thus be written in terms of the effective

stress,

σ̄ = τ̄ − p̄I, (5.18)

τ̄ = 2η(v)ε̇, (5.19)
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where τ̄ is the effective deviatoric stress tensor; p̄ = −1
3 trace[σ̄] is the effective pressure;

I is the identity tensor; η(v) is the nonlinear viscosity and a function of the flow velocity

v; and ε̇ is the viscous strain rate, defined as the symmetric gradient of velocity,

ε̇=
1
2

(
∇v+∇

>v
)
. (5.20)

Assuming polycrystalline ice to be an isotropic and incompressible viscous fluid, the rheo-

logical model for ice flow is defined by the Glen-Nye law,

ε̇= A(τ̄eq)N−1 τ̄ , (5.21)

where A is a temperature-dependent viscosity coefficient, N is a viscosity exponent con-

trolling the nonlinearity of the flow model, and τ̄eq is the equivalent deviatoric stress. The

above expression can be inverted and rewritten in the same form as Equation 5.19,

τ̄ = A−1/N (ε̇eq)
1
N−1 ε̇, (5.22)

where the equivalent strain rate is given by,

ε̇
eq =

√
1
2
ε̇ : ε̇, (5.23)

with the colon (:) indicating the inner product between two tensors. Comparing with Equa-

tion 5.19, the viscosity in Equation 5.22 is thus η(v) = 1
2A−1/N (ε̇eq)

1
N−1. For polycrys-

talline ice, the parameter N is generally calibrated as 3 which describes nonlinear viscous

behavior for a non-Newtonian fluid; however, by setting N = 1, a linearly viscous rheolog-

ical model is recovered. The values for all material parameters are given in Table 5.1.
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Table 5.1: Material properties of ice at -10◦C obtained from Jiménez et al. [2017].

Property Value Units
ρi 917 kg/m3

A 7.156×10−7 MPa−3 s−1

N 3 –

5.3.2 Creep Damage Evolution Law

We consider that the failure of ice is caused by the progressive accumulation of mi-

crocracks and microvoids due to creep damage evolution. Because we assume damage

evolution progresses only under a tensile stress state, we define the local damage rate at a

material point as,

Ḋloc =
∂Dloc

∂ t
=


B
〈χ̄〉r

(1−D)kσ
if p̄≤ 0,

0 if p̄ > 0,

(5.24)

where B is a damage rate coefficient; r is a damage rate exponent; and χ̄ is the effective

Hayhurst measure of stress, given by,

χ̄ = ασ̄
(I)+βσ̄

v +(1−α−β )trace[σ̄], (5.25)

where α and β are brittle and ductile weighting parameters, respectively; σ̄ (I) is the effec-

tive maximum principal stress; and σ̄v =
(3

2 τ̄ : τ̄
)1/2

is the effective von Mises stress. The

parameter kσ is experimentally calibrated and defined as,

kσ = k1 + k2trace[σ]. (5.26)
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Table 5.2: Damage law parameters obtained from Jiménez et al. [2017].

Parameter Value Units
B 5.23×10−7 MPa−r s−1

r 0.43 –
α 0.21 –
β 0.63 –
k1 -2.63 –
k2 7.24 MPa−1

lc 10 m

To maintain thermodynamic consistency and alleviate mesh sensitivity, we implement a

nonlocal implicit gradient formulation for the creep damage rate [Jiménez et al., 2017] ,

Ḋ− 1
2

l2
c ∇

2Ḋ = Ḋloc. (5.27)

where the nonlocal length scale lc = 10 m. In order to prevent rank deficiency in the tangent

stiffness matrix, we set a maximum limit on damage Dmax = 0.99. The values of all other

damage parameters are given in Table 5.2.

Remark 34 In the proposed implementation, creep damage growth is restricted to loca-

tions where the hydrostatic pressure is tensile (i.e., p=≤ 0 by definition). We found this cri-

terion to be more appropriate when modeling crevasse propagation using a scalar isotropic

damage variable, which cannot distinguish between damage in the form of micro-voids as

opposed to micro-cracks. Alternatively, it is possible to restrict damage growth to locations

where the maximum principal stress is tensile and account for damage-induced anisotropy

due to micro-cracks using a tensorial damage variable [Pralong and Funk, 2005, Duddu

and Waisman, 2012], but it increases the computational complexity and cost.
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5.3.3 Poro-Mechanics Formulation

In this section, we extend the continuum damage mechanics formulation to incorporate

hydraulic fracture in the quasi-static setting, wherein water can permeate the damage zone

and exert hydrostatic pressure. Our approach is based on Biot’s theory of poroelasticity

[Biot, 1955] that formalizes Terzaghi’s effective stress principle [Terzaghi, 2007]. Accord-

ingly, the Cauchy stress in a saturated porous media may be defined as

σ = (1−φ)σ̃−φ pwI, (5.28)

where φ is the porosity of ice, σ̃ is the solid effective stress, and pw is the hydraulic pres-

sure. Similar to the formulation in [Mobasher et al., 2016, 2017], we assume that isotropic

damage represents void space within the continuum and has the same effect as porosity.

Thus, we can rewrite the above equation by replacing porosity with the isotropic damage

variable as

σ = (1−D)σ̄−DpwI, (5.29)

where pw is the hydraulic pressure within the damage zone defined as,

pw = ρwg〈h− z〉, (5.30)

with h as the hydraulic head and z as the vertical coordinate. Combining the constitutive

relations for damaged ice from Equations 5.18 and 5.19 and substituting them into Equation

5.29, we obtain the poro-damage mechanics constitutive equation for viscous ice rheology

that incorporates hydraulic pressure within the damage zone,

σ = (1−D) [2η(v)ε̇− p̄I]−DpwI. (5.31)
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Note that we ignore the effects of phase change (i.e., the melting or freezing of ice) during

the hydraulic fracture process, although this is commonly observed in the field.
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5.4 Comparison of Damage Mechanics and Fracture Mechanics Models

In this section we compare the fracture mechanics models reviewed in Section 2 against

the damage mechanics model discussed in Section 3. The damage mechanics model is

implemented using the finite element method (FEM) in FEniCS software [Jiménez et al.,

2017]; the reader is referred to the URL https://my.vanderbilt.edu/cpml/research/nsf-plr-1341428/

where codes are available for download. For each simulation we consider an idealized, rect-

angular ice slab of length L and height H. The ice slab is grounded on a rigid, frictionless

(free-slip) surface and terminates at the ocean with a seawater depth hw, as depicted in Fig-

ure 5.1. Gravity loading is applied as a body force ρig where ρi is the density of ice and g

is the acceleration due to gravity. To disregard the free translation motion of the ice slab,

we apply a boundary condition to enforce zero horizontal flow velocity at the left edge of

the domain. On the right edge of the domain (i.e., the ice terminus), we apply a Neumann

boundary condition corresponding to the hydrostatic pressure induced by seawater.

5.4.1 Model Sensitivity Studies

In a previous work (see Section 4.1 in Jiménez et al. [2017]), we have verified the

nonlinear Stokes formulation describing ice sheet flow by showing that numerical results

converge to a known analytical solution with progressive mesh refinement. In this section,

we demonstrate the viability of the nonlocal creep damage mechanics formulation by con-

ducting parametric and mesh sensitivity studies. For each study, we consider a grounded

ice slab with height H = 125 m and length L = 500 m under dry conditions, that is, no

water in surface crevasses (hs = 0) and no seawater pressure at the ice terminus (hw = 0).

Mesh sensitivity: We first demonstrate that the nonlocal damage mechanics formulation is

not sensitive to the finite element mesh size by conducting a series of crack growth simu-

lations using a progressively refined mesh. For each simulation, we use a structured mesh

in the anticipated damage zone with element sizes lelem = 5, 2.5, and 1.25 m. An initial
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10×10 m damage zone is centered along the top of the ice slab, and we only permit dam-

age to nucleate beneath the initial damage zone. This is done by setting the local damage

rate Ḋloc = 0 at integration points beyond the distance lc from the vertical line centered at

the initial notch (i.e., at x = L/2). The results of this study are shown in Figure 5.4(a),

wherein we plot the surface crevasse penetration depth ratio ds/H. The crevasse depth ds is

obtained by measuring the lowest vertical coordinate of all fully-damaged material points

and then subtracting from the slab height, as follows:

ds = H−min{z | D(x,z) = Dmax}. (5.32)

The damage mechanics model predicts the same crevasse depth ds versus time for up to

six months, provided that the finite element size lelem is smaller than the nonlocal damage

characteristic length scale lc.

Parametric sensitivity: We next demonstrate that the damage mechanics formulation pre-

dicts the same final crevasse penetration depth for different values of the length scale pa-

rameter lc. For each simulation, we use a structured mesh in the anticipated damage zone

with element sizes lc = 20, 10, 5, and 2.5 m. An initial lc× lc m damage zone is centered

along the top of the ice slab, and we only permit damage to nucleate beneath the initial

damage zone. The results of this study are shown in Figure 5.4(b), wherein we plot the

surface crevasse depth ds normalized with slab height H. While the size of lc affects the

rate of crevasse propagation, it does not affect the final crevasse penetration depth. As the

length scales is reduced the damage process zone near the crack tip becomes smaller, thus

damage propagation occurs rapidly post-initiation similar to the unstable crack propagation

described by linear elastic fracture mechanics.
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Figure 5.4: Surface crevasse depth ds normalized with the domain height H versus time for
(a) varying nonlocal length scale size and (b) varying mesh size.

5.4.2 Growth of an Isolated Surface Crevasse in Dry Environment

We first simulate the propagation of isolated surface crevasses through ice slabs of

varying thickness H = 125, 250, and 500 m in a dry environment (i.e., hw = 0, hs = 0) under

gravity loading. Our aim is to compare the final crevasse penetration depth ratio obtained

using the nonlinear Stokes model with nonlocal damage against those from theoretical

fracture mechanics models. For each experiment the slab length L = 4H, and the domain

is discretized using triangular finite elements. To be consistent with the fracture mechanics

approach, an initial defect (10× 10 m notch) is prescribed along the top surface of the

slab, and the domain is discretized using a structured mesh with element size lelem = 2.5

m, underneath the initial notch. We set the initial defect at the center of the slab so that

it is sufficiently far from the terminus, so that the σxx profile throughout the depth of the

slab matches the “far-field” stress profile of Equation 48. To simulate the propagation of

an isolated crevasse, we only allow damage to nucleate or accumulate beneath the initial

defect, but we also repeat the experiment while allowing damage to accumulate everywhere

in order to investigate the influence of damage in the “far-field” region on the isolated

crevasse.

Figure 5.5 shows the surface crevasse penetration depth ratio ds/H versus time for the
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isolated surface crevass in relation to ice thickness, as predicted by our damage mechan-

ics model. We also show the final crevasse depth ratios predicted by fracture mechanics

models [Nye, 1957, Weertman, 1973, van der Veen, 1998a]. For the van der Veen solution

we assume KIc = 0, and we take into account the depth of the ice slab by setting the geo-

metric parameter λ = ds/H in Equations 58-59. The ratio ds/H for the isolated crevasses

predicted by our simulations ˜88% regardless of the slab height if damage is only permitted

to nucleate under the initial defect, as shown in Figure 5.5(a). The thickness of the ice slab

H seems to only influence the time required for the crevasse to reach its final penetration

depth, which is deeper than both Weertman’s and Nye’s model predictions. For larger val-

ues of H, the tensile stresses in the ice slab are greater and hence damage accumulates more

rapidly resulting in faster crevasse propagation. The final crevasse depth in this case seems

to agree almost exactly with the van der Veen’s model prediction. In Figure 5.5(b) we plot

ds/H versus time while permitting damage to accumulate everywhere in the domain. In

this case, the crevasse penetrates to ˜88% of the slab depth when H = 250 and 500 m; how-

ever, when 125 m, the crevasse only penetrates to 83.6% of the slab’s depth. This occurs

because new crevasses forming elsewhere in the domain inhibit the growth of the primary

crevasse (i.e., the crevasse propagating under the initial defect).

We now repeat the study while employing the updated-Lagrangian description in con-

junction with the mesh update scheme, developed in Jiménez et al. [2017], wherein the

positions of finite element nodes are updated to account for the changes in ice slab geom-

etry due to large creep deformations accruing over time. We plot ds/H versus time results

obtained from this study in Figure 5.6. Regardless of the value of H, the crevasse pene-

trates deeper into the ice slab when the mesh is updated than when the mesh is not updated

(compare Figure 5.5a and Figure 5.6a). This indicates that large-deformation-induced do-

main geometry changes can alter the stress state in the glacier and lead to deeper crevasse

propagation. The influence of large deformation is especially evident in the case where

H = 500 m and damage is allowed to accumulate everywhere in the domain (the blue line
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Figure 5.5: Surface crevasse depth ds normalized with the domain height H versus time for
varying slab heights. In subfigure (a), damage is only allowed to accumulate underneath the
initial defect; in subfigure (b), damage is allowed to accumulate everywhere in the domain.
The final damage profiles corresponding to subplots (a) and (b) are shown in subfigures (c)
and (d), respectively, for the H = 125 m case. The red regions display where the damage
variable D = Dmax, indicating the presence of a crevasse; whereas the blue regions display
where D is close to zero (i.e., intact ice).

in Figure 5.6b), wherein the crevasse fully penetrates the ice slab. The crevasse first pen-

etrates to 94.4% of the slab depth until tensile stress at the crack tip diminishes; however,

as ice creeps and domain geometry changes, bending stresses along the crevasse walls con-

tribute to damage nucleation beneath the crevasse tip, leading to the full penetration of the

crevasse. While it is a rational argument that large deformation of ice sheets can influence

crevasse propagation, in this study we do not consider snow accumulation in crevasse that

leads to healing, so crevasses eventually propagation the entire depth of the ice slab.
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Figure 5.6: Surface crevasse depth ds normalized with the domain height H versus time
for varying slab heights using the mesh update scheme. In subfigure (a), damage is only
allowed to accumulate underneath the initial defect; in subfigure (b), damage is allowed to
accumulate everywhere in the domain.

5.4.3 Growth of Closely-spaced Surface Crevasses in Dry Environment

We next simulate the evolution of a field of closely-spaced crevasses in an ice slab with

thickness H = 250 m and length L = 1,000 m in a dry environment (i.e., hw = 0, hs = 0)

under gravity loading. Our aim is to compare the final crevasse penetration depth ratio ob-

tained using the nonlinear Stokes model with nonlocal damage against that from the Nye

zero-stress model, which is 50% of the ice slab’s height in this case. In our computational

model, we specify the uniform multiple crevasse field by evenly distributing small pre-

damaged zones (i.e., fully damaged finite elements) along the top of the surface of the slab

of size 10× 40 m that are spaced 50 m apart from one another. The entire finite element
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mesh is structured with an element size lelem = 2.5 m, and damage is permitted to accu-

mulate everywhere throughout the domain. The results of this experiment are displayed in

Figure 5.7, wherein we show contour plots of the damage variable D at different simulation

times.

From Figure 5.7(b) it is evident that damage accumulates near most of the initial crevasse

tips; however, the damage evolves most rapidly near the crevasse at the left edge of the do-

main because the Hayhurst stress is the largest near that feature. As this first crevasse prop-

agates downwards the other crevasses do not evolve much at all. Once the first crevasse

penetrates about 61% of the slab’s depth, the location of the maximum Hayhurst stress

shifts to the initial defect at x = 650 m (which we refer to as the “secondary crevasse”).

At that point, the second crevasse begins to rapidly propagate while the other crevasses

throughout the slab do not evolve. Once the second crevasse propagates about 80% of the

slab depth, the third crevasse begins to propagate at x = 350 m. The simulation depicts

a different damage evolution process than the theoretical model, which assumes the exis-

tence of a uniform multiple crevasse field where each crevasse will propagate to the Nye

depth where the tensile stress vanishes (i.e., 50% of the slab). As De Robin [1974] argues

”in practice one will not have a perfectly uniform field of crevasses” and our simulation

describes the more realistic situation. To summarize, the Nye model predicts that all the

crevasses will propagate to the same depth, whereas the numerical study indicates that only

a few crevasses propagate that are approximately 300 m apart (i.e., close to one ice thick-

ness apart). Further, the simulation results show that only one crevasse propagates at a time

as if it were an isolated crevasse, although the maximum crevasse penetration depth of any

crevasse is less than the isolated crevasse penetration depth.

5.4.4 Surface Crevasse Growth in Wet Environment

In this section, we simulate the propagation of isolated, water-filled surface crevasses

in the ice slab under gravity loading as a function of the water level hs within the crevasses
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Figure 5.7: Crack propagation predicted by the nonlinearly viscous constitutive model in
an ice slab at (a) initial time, (b) 66.36 hours, (c) 71.56 hours, and (d) 81.42 hours of
gravity-driven creep flow. The red regions display where the damage variable D = Dmax,
indicating the presence of a crevasse; whereas the blue regions display where D is close to
zero (i.e., intact ice).

and the seawater depth hw at the ice slab’s terminus. Our aim is to compare final crevasse

penetration depths predicted by the damage mechanics model for different ice rheologies

(i.e., elastic, viscous, nonlinear viscous) against the three theoretical fracture mechanics

models. For each loading case, we consider an ice slab of depth H = 125 m and length

L = 500 m, and we prescribe a 10× 10 m initial defect as a pre-damaged zone centered

along the top surface of the slab. To be consistent with the fracture mechanics models,

damage is only permitted to nucleate beneath the initial damage zone where the mesh is

structured with an element size lelem = 2.5 m. The hydrostatic pressure from seawater is

applied as a traction (Neumann) boundary condition normal to the right edge of the ice slab

with magnitude −ρwg〈hw− z〉, and the hydraulic pressure pw within the crevasse (damage
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zone) is applied using the poro-mechanics formulation with magnitude pw = ρwg〈hs− z〉.

In order to keep the ratio of hs/ds constant, we dynamically compute the crevasse depth ds

at each time step in the simulation and then readjust the water level hs accordingly.

Figure 5.8 shows the normalized crevasse depth ds/H for isolated crevasses filled with

water to varying levels, hs/ds = 0%, 25%, 50%, 75%, and 100%, within ice slabs termi-

nating at the ocean with varying sea levels, hw/H = 0%, 50%, and 90% (floating level), as

predicted by the four theoretical models [Nye, 1957, Weertman, 1973, van der Veen, 1998a,

Krug et al., 2014] and our computational model. For the Krug et al. [2014] and van der Veen

[1998a] models, we set KIc = 0 MPa
√

m and include the geometry factors, thus accounting

for the finite thickness of the ice slab; whereas, the Weertman [1973] model assumes the ice

slab to be a semi-infinite plane. It is interesting that our numerical results for crevasse pen-

etration in a finite ice slab agree well with the van der Veen [1998a] and Krug et al. [2014]

model results for a semi-infinite ice slab, that is, when geometry factors are excluded in

the stress intensity factor (SIF) calculation (Figures 11d–11f in Appendix L). However, the

numerical results do not match well with the Krug et al. [2014] and van der Veen [1998a]

model results (see Figs. 5.8b and 5.8c) when the geometric factors are included in the

SIF calculation. The reason for this discrepancy is that the geometric factors in the LEFM

models were not derived assuming the same loading conditions considered in the gravity-

driven flow problem, that is, gravity-induced stresses in an ice slab grounded on a free-slip

surface, as shown in Figure 5.1. Rather, the geometric factors were derived assuming a

cantilever beam (i.e., with no grounding) with an applied moment at the end. Even through

the “far-field” horizontal Cauchy stress σxx is the same for these two loading scenarios, the

absence of the grounding line completely changes the value of the SIF. Thus, the crevasse

penetration depths predicted by the LEFM models with geometric factors included are not

physically relevant for glaciological problems. A more detailed explanation is provided in

Appendix M. In all cases, the Krug et al. [2014] model predicts deeper crevasse penetration

than the damage mechanics model, unless the crevasse penetrates the full-depth (see Fig.
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5.8b).

Figures 5.9a, 5.9c, and 5.9d show the simulation results for nonlinearly viscous, lin-

ear elastic, and linearly viscous rheological models, respectively when using the Hayhurst

stress (HHS) damage criterion (i.e., α = 0.21 and β = 0.63 in Equation 5.25). Each rhe-

ology model shows qualitative agreement with the theoretical solutions, wherein higher

water levels hs/ds within the crevasse result in deeper surface penetration, except when the

ice slab is at near floating condition (i.e., hw/H 6= 90%). For the near floating condition,

the simulation results predict little damage growth beyond the depth of the initial defect,

irrespective of the rheology model. This occurs because the numerically computed stress is

compressive beneath the crack tip, so damage does not develop. In Figure 5.9b, we plot the

simulation results when using a maximum principal stress (MPS) criterion for purely brittle

failure of ice (i.e., α = 1 and β = 0 in Equation 5.25) and relaxing the pressure criterion

for damage initiation in Equation 5.24. In the case of hw/H = 50%, the simulation results

using the MPS criterion match exactly with the Weertman [1973] model; however, we do

not necessarily conclude that the MPS criterion is better than the HHS criterion for damage

evolution. We also investigated the hw/H versus hs/ds in an ice slab with height H = 250

m while using the HHS damage criterion, and the simulations results exactly match with

the Weertman [1973] model for the hw/H = 50% case (see Fig. 12 in Appendix L).
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Figure 5.8: Surface crevasse depth ds normalized with the domain height H = 125 m for
varying water levels hs filling the surface crevasse. The solid, dashed, and dotted lines
depict the stress-based solutions for different seawater depths hw at the terminus. The
markers represent simulation (FEM) results using the nonlinearly viscous (Stokes flow)
rheological model for different depths.
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Figure 5.9: Surface crevasse depth ds normalized with the domain height H = 125 m for
varying water levels hs filling the surface crevasse. The solid, dashed, and dotted lines de-
pict the stress-based solutions for different seawater depths hw at the terminus. The markers
represent simulation (FEM) results using different rheological models: (a-b) nonlinear vis-
cosity; (c) incompressible linear elasticity; and (d) linear viscosity. The terms (HHS) and
(MPS) denote a Hayhurst stress and maximum principal stress-based damage criterion,
respectively.
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5.5 Conclusion

In this chapter, we reviewed and compared four theoretical fracture mechanics models

for estimating crevasse penetration depths against one another: (1) the Nye [1955] zero-

stress model; (2) the Weertman [1973] dislocation-based fracture mechanics model; (3) the

van der Veen [1998a] linear elastic fracture mechanics (LEFM) model; and (4) the Krug

et al. [2014] LEFM model. We also compared the nonlocal continuum damage mechan-

ics (CDM) approach [Jiménez et al., 2017] against these theoretical models by estimating

the penetration depths of dry and water-filled surface crevasses in grounded glaciers. The

damage mechanics approach illustrates that the presence of water pressure within crevasses

results in deeper penetration into the glacier, thus it is consistent with the fracture mechan-

ics approaches. Numerical results show good agreement with Weertman [1973] model,

except when the glacier is near floatation (i.e., hw/H = 0.9). Our results also indicate that

the mechanisms responsible for crevasse propagation are sensitive to ice rheology and large

deformation effects. Through extensive simulation studies, we have addressed the four key

questions raised in Section 5.2.6:

i. Numerical results suggest that the Nye zero-stress model would underestimate the

penetration depth of crevasses because the underlying assumption of a perfectly uni-

form field of closely-spaced crevasses is unrealistic. Rather than evolving uniformly,

the crevasses propagate independently one at a time and penetrate almost as deeply as

an isolated crevasse (see Fig. 5.7). Additionally, our results indicate that the deeper

crevasses are spaced at distance approximately equal to ice thickness (see Fig. 5.7d),

which is much larger than the minimum spacing predicted by the LEFM models

[Nemat-Nasser et al., 1979]. Therefore, we conclude that theoretical Nye model is

not appropriate for estimating penetration depths of surface crevasses; however, in a

numerical model it may still be appropriate if used recursively until the tensile stress

at the crevasse tip vanishes [Ultee and Bassis, 2016].
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ii. The theoretical fracture mechanics models are not consistent with one another, ex-

cept when the glacier is at near floatation (see Fig 5.3). If the geometric parameter λ

is disregarded in the van der Veen and Krug models by setting λ = 0, then the two

models are consistent with the Weertman model (see Figure 11 in Appendix L). The

creep damage mechanics approach also seems to be most consistent with the Weert-

man model, except when hw/H = 90%, in which case the damage model deviates

from all the fracture mechanics models (see Fig. 5.8). This occurs because the non-

local damage evolution law reduces the stress concentration at the crevasse tip, and

damage growth is consequently limited to a small region around the initial crack. In

the fracture mechanics models, the stress at the crevasse tip remains tensile enough

for the crevasse to penetrate because the crevasse is assumed to be a sharp discontinu-

ity rather than a diffused damage zone. The failure behavior of quasi-brittle materials

(e.g., ice and concrete) is better described by nonlocal damage theory [Bazant, 1994]

than LEFM theory. Therefore, we hypothesize that damage mechanics models are

more appropriate for estimating crevasse penetration depths, although this needs to

validated with observational or remote sensing data.

iii. We found that large creep deformations accruing over longer time scales influence

the penetration depth of surface crevasses. Typically, considering the effects large de-

formations within an updated-Lagrangian formulation leads to deeper crevasse pen-

etration (see Fig. 5.6), as opposed to ignoring them within a Lagrangian formulation

(see Fig. 5.5). This occurs because glacier geometry changes induced by large defor-

mations can cause additional bending stresses along the crevasse walls, thus prying

open the crevasses deeper into the glacier.

iv. Fully water-filled crevasses can penetrate the entire thickness of a grounded glacier

when accounting for viscous creep and nonlocal damage, except under near-floatation

conditions. We find that the predicted crevasse depths are larger when considering
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the nonlinearly viscous behavior of ice as opposed to linear elastic or linear viscous

behavior (see Fig. 5.9). We also find that the predicted crevasse depths are relatively

insensitive to the brittle-ductile damage model parameters α and β (compare Figs.

5.9a and 5.9b). Furthermore, the predicted crevasse depth is insensitive to the non-

local damage length scale lc and finite element mesh size lelem (see Fig. 5.4), which

reduces the parametric uncertainty when calibrating damage mechanics-based calv-

ing laws to observational or remote sensing data on crevasse locations, depths, and

spacing.

In conclusion, we believe that the damage mechanics approach is appropriate for sim-

ulating the propagation of water-filled surface crevasses and estimating their maximum

penetration depths. In our future work, we aim to establish this approach for simulating the

propagation of water-filled basal crevasse propagation in glaciers and ice shelves.
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CHAPTER 6

CAN A WATER-FILLED CREVASSE PENETRATE THE ENTIRE THICKNESS OF

GLACIER? A SIMULATION STUDY.

6.1 Introduction

It is the general consensus that crevasses (fractures) in glaciers and ice sheets are formed

under the action of tensile stress induced by longitudinal creeping flow. Additionally, the

hydraulic pressure imposed by water (e.g., seawater or meltwater) filling the crevasse is

theorized to increase the crevasse penetration depth through the ice sheet thickness. The

full penetration of crevasses near the ice sheet terminus ultimately leads to iceberg calving,

a mechanism responsible for significant mass loss from Greenland and Antarctic ice sheets

into the ocean. Consequently, a variety of stress-based calving models have been presented

in the literature to characterize calving mathematically by predicting the penetration depth

of surface and basal crevasses. The most basic of these is the Nye zero-stress model Nye

[1955] which assumes that ice has no tensile strength; thus, the crevasse will penetrate

to any depth where tensile stress exists. More rigorous calving models rooted in disloca-

tion mechanics [Weertman, 1973] and linear elastic fracture mechanics (LEFM) [van der

Veen, 1998a,b, Krug et al., 2014] have been developed to account for stress concentrations

at the crevasse tip, thus predicting deeper penetration than the Nye model. These latter

fracture mechanics models were derived assuming ideal conditions in ice, such as a rect-

angular (or semi-infinite) domain with far-field boundary conditions, however, and their

applicability to the general loading scenario is questionable. Furthermore, the theoretical

fracture mechanics models treat ice an incompressible, linear elastic material and fracture

as an instantaneous event. In reality, ice has the properties of a nonlinearly viscous, incom-

pressible fluid over long time scales, but it behaves as a compressible solid over the short
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(instantaneous) time scale.

The alternate approach to studying crevasse evolution in ice sheets is numerical anal-

ysis. Damage mechanics offers an attractive framework for modeling crevasse initiation

and propagation through ice slabs for multiple reasons: firstly, damage mechanics is easily

implemented within the finite element analysis, making it feasible to incorporate into large-

scale ice sheet models (e.g., CISM); secondly, the damage mechanics framework is flex-

ible in that it allows customizable damage criteria while being independent ice rheology;

and thirdly, damage mechanics is applicable for studying crevasse evolution in arbitrary

loading scenarios (not only ideal conditions). Previous works [Pralong and Funk, 2005,

Duddu and Waisman, 2013c, Jiménez et al., 2017] have employed creep damage mechan-

ics approaches to model the time-dependent crevasse evolution in nonlinearly viscous or

viscoelastic ice. Recently, Mobasher et al. [2016, 2017] presented a poro-mechanics for-

mulation for incorporating hydraulic fracture into a local creep damage mechanics model

to simulate the evolution of water-filled surface and basal crevasses in viscoelastic ice. The

same approach was adopted in Chapter 5 using a nonlocal creep damage mechanics model

paired with nonlinearly viscous rheology, wherein we compared numerically predicted sur-

face crevasse penetration depths against a variety of theoretical fracture mechanics models

[Nye, 1955, Weertman, 1973, van der Veen, 1998a, Krug et al., 2014]. In the previous study

we found that the creep damage model is at least qualitatively consistent with fracture me-

chanics when predicting water-filled surface crevasse evolution in grounded ice sheets with

seawater pressure at the terminus, except when the seawater level is near the floating depth.

The discrepancy in the floating depth case was attributed to softening-induced stress re-

laxation at the crack tip resulting from the nonlocal smearing of damage. In light of our

findings in the previous study we note two key differences between the nonlocal creep

damage mechanics implementation and the theoretical fracture mechanics models: (1) the

theoretical models consider brittle fracture to be an instantaneous event, whereas the creep

model introduces time and rate dependencies on the damage nucleation; and (2) the theo-
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retical models consider the fracture as a sharp (zero or near zero-thickness) discontinuity

in the material domain, whereas the nonlocal damage model resolves the fracture using a

smeared approach.

In this present study, we will investigate two additional damage mechanics approaches

for simulating brittle, time-independent (instantaneous) fracture in elastic ice, namely, the

cohesive zone model (CZM) and the phase field model (PFM), which are inherently more

consistent with the theoretical fracture mechanics models. The cohesive zone model re-

solves the potential crack path as a degradable, zero-thickness interface whose constitutive

behavior is governed by a traction-separation law. The fundamental cohesive parameter is

the Griffith critical fracture energy, Gc, which is a material property characterizing the rate

of energy released through the separation of material to create a fracture surface. Tradition-

ally, the CZM has been used to model debonding and delamination behavior in composite

materials [Jimenez and Duddu, 2016]; however, recent works have employed the CZM for

more general applications, including grain boundary separation in polycrystalline materials

and hydraulic fracture [Chen et al., 2009, Carrier and Granet, 2012]. In this work, we will

implement the CZM to model the initiation and propagation of surface and basal crevasses

through ice. Alongside the CZM we consider the phase field model, which has recently

been used to model brittle fracture by resolving the discontinuity as a smeared damage

interface with a characteristic length scale lc. Early phase field models were derived by

relating the softening of material to the energy release rate Gc, and thus have some ther-

modynamic consistency [Miehe et al., 2010]; however, the PFM has also been recast into

a more generalized, modular format allowing for arbitrary failure criteria [Miehe et al.,

2015]. In spite of its recent popularity, the PFM is not fully mature as a damage mechanics

technique. Most works in the literature only apply the PFM to evaluate benchmark prob-

lems, whereas the direct application of the PFM to practical problems (i.e., thermoelastic

fracture in brittle solids [Miehe et al., 2015] and hydraulic fracture [Wilson and Landis,

2016]) is sparse.
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The primary goal of this current study is to simulate the evolution of water-filled sur-

face and basal crevasses through ice sheets using time-independent approaches for brittle

fracture and to compare the numerically predicted crevasse penetration depths against the

theoretical fracture mechanics model predictions. The secondary goal is to identify the

conditions necessary for crevasse initiation and discuss these in light of the constitutive as-

sumptions often made for ice (i.e., incompressibility). To this end, we deploy the CZM and

PFM as sharp and diffuse damage mechanics approaches using the finite element method.

The rest of this chapter is organized as follows: in Section 6.2, we will present the CZM

and PFM formulations for modeling the evolution of water-filled crevasses through ice; in

Section 6.3, we will conduct a series of numerical studies to investigate the applicability of

the two damage mechanics approaches to fracture, along with a brief study on the influence

of the compressibility ratio on ice; and in Section 6.4, we will offer concluding remarks.
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6.2 Model formulation

In this section, we review two damage mechanics based approaches for modeling the

evolution of water-filled crevasses in linear elastic ice. First, we present an augmented co-

hesive zone model (CZM) that incorporates hydraulic pressure into the traction-separation

relation. Next, we review the phase field model (PFM) for brittle fracture governed by strain

energy density based and maximum principal stress based failure criteria. As we discuss

the preliminary concepts of the phase field formulation, we also describe the model in the

context of the continuum damage mechanics (CDM) framework. Afterward, we describe

the constitutive model for damaged, incompressible, linear elastic ice and incorporate a

poro-mechanics formulation [Mobasher et al., 2016, 2017] for hydraulic fracture.

6.2.1 Cohesive zone model

The cohesive zone model (CZM) is a numerical approach to progressive fracture evo-

lution which considers the crack as a sharp (zero-thickness) interface. Cohesive (interface)

elements are distributed along the potential crack surface between bulk (continuum) el-

ements, and the cohesive constitutive behavior is governed by a traction-separation law.

Typically, the traction-separation law comprises an initial linear-elastic response to load-

ing followed with irreversible damage-softening behavior. The most common (and ba-

sic) traction-separation laws include two fundamental parameters, namely, the cohesive

strength σmax, which is the maximum traction that the interface can support; and the criti-

cal strain energy release rate Gc. In practice, Gc is determined experimentally with relative

ease, whereas σmax is chosen for numerical purposes. Park and Paulino [2012] have shown

that as σmax approaches infinity, the cohesive zone model tends towards the linear elastic

fracture mechanics (LEFM) solution. This behavior is observed because as the value of

σmax increases, the size of the cohesive length scale decreases, which is consistent with

the LEFM assumption of an infinitesimally small fracture process zone. Decreasing the
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length scale requires an increasingly refined finite element mesh for a numerical accuracy

[Harper and Hallett, 2010], however, and so a low value for σmax is often chosen for conve-

nience. Some traction-separation laws include additional parameters that control the shape

of the damage-softening zone, however, global results are generally insensitive to the shape

of the traction-separation law [Jimenez and Duddu, 2016]. Irrespective of the shape, any

traction-separation law may be written in the general form [Alfano and Crisfield, 2001],

Tn

Tt

= (1−D(δn,δt))

K0
n 0

0 K0
t


δn

δt

 , (6.1)

where Tn, Tt denote tractions; δn, δt denote the interface separations; K0
n , K0

t denote the

undamaged interface stiffnesses; and the subscripts “n” and “t” denote the normal and

tangent directional components, respectively. The isotropic damage variable D ∈ [0,1] is

a function of the cohesive separations, and the function chosen for D ultimately controls

the traction-separation shape. A review of bilinear, polynomial, and exponential traction-

separation laws is provided in Section 3.2; for this study, we utilize the bilinear traction-

separation law described in Section 3.2.1.

Remark 35 In continuum damage mechanics, the damage is interpreted as the ratio of the

area of voids to total area along the principal planes of a representative domain of material.

Thus, the damage variable D ∈ [0,1], with D = 0 and D = 1 representing undamaged

(virgin) material and fully-damaged material states, respectively. In the CZM framework,

the damage may be interpreted as the ratio of micro-crack area to total surface area along

the zero-thickness cohesive interface.

Herein, we present an augmented traction-separation law that incorporates hydraulic

fracture. As we interpret damage to represent the ratio of isotropic void area to total area

along the cohesive interface, we assume that water can permeate the damaged material and
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exert hydrostatic pressure along the interface. Our implementation is based on the poro-

mechanics approach in Mobasher et al. [2016, 2017] for hydraulic fracture in ice sheets

using continuum damage mechanics, which extends Biot’s theory of poroelasticity [Biot,

1955] by considering damage to have the same effect on the material behavior as porosity.

Poroelasticity theory states that the Cauchy stress σ in a porous media is given by,

σ = (1−φ)σ̃−φ pwI, (6.2)

where σ̃ is the effective Cauchy stress tensor, φ is the material porosity, pw is the hydraulic

pressure, and I is the identity tensor. The above equation can be recast as a damage me-

chanics formulation simply by replacing the porosity φ with the damage variable D:

σ = (1−D)σ̃−DpwI. (6.3)

The poro-mechanics approach to hydraulic fracture may be similarly applied to the CZM

by introducing a new term to the traction-separation law in Equation 6.1 that accounts for

hydraulic pressure in the damaged zone. The augmented traction-separation law is thus

written as,

Tn

Tt

= (1−D(δn,δt))

K0
n 0

0 K0
t


δn

δt

−D(δn,δt)pw

1

0

 , (6.4)

with the hydraulic pressure defined by,

pw = ρwg〈h− z〉, (6.5)

where ρw, g, h, and z denote the density of water, gravity acceleration, water level, and

the vertical coordinate respectively. Because hydrostatic pressure only acts in the direction
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normal to the surface (i.e., the cohesive interface), we apply pw in Equation 6.4 to the

normal traction Tn.

6.2.2 Phase field model

Unlike the cohesive zone model, the main concept behind phase field modeling of frac-

ture is to represent a sharp material discontinuity (i.e., a fracture) Γ using a smeared inter-

face Γl(D) [Miehe et al., 2010, 2015, de Borst and Verhoosel, 2016],

Γl(D) =
∫

Ω

γl(D,∇D) dV, (6.6)

for some crack surface density function γl(D,∇D) defined on a material domain Ω. The

scalar phase field variable D ∈ [0,1] represents an isotropic damage field that describes the

ratio of void space (i.e., cracks) to solid (intact) material within a representative area of

the material’s microstructure; hence, D = 0 corresponds to an undamaged material state,

whereas D = 1 indicates complete failure. In the one-dimensional setting, the sharp inter-

face Γ is represented using a piecewise function for damage,

D(x) =


1 x = 0,

0 otherwise,
(6.7)

with the discontinuity (crack) centered at x = 0. We consider a continuous, but non-smooth

approximation to Eq. (6.7),

D(x) = exp
{−|x|

lc

}
, (6.8)

satisfying the conditions D(0) = 1 and D(±∞) = 0, and with a characteristic length scale

lc controlling the extent of the damage spread. A visual comparison between the above two

equations and the effect of the length scale parameter is provided in Figure 6.1. Obviously,
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as lc → 0 the damage spread decreases, and the shape of Eq. (6.8) tends towards the

piecewise function in Eq. (6.7). In the multi-dimensional case, we define the smeared

interface Γl(D) as the functional [Miehe et al., 2010],

Γl(D) :=
∫

Ω

1
2lc

(
D2 + l2

c |∇D|2
)

︸ ︷︷ ︸
γl(D,∇D)

dV, (6.9)

which gives a measure for the surface area of the crack. The integrand in the above equation

is none other than the crack surface density function γl(D,∇D), as presented in Eq. (6.6).

The Euler-Lagrange equation associated with Eq. (6.9) is,

D− l2
c ∆D = 0, (6.10)

with ∆ indicating the Laplace operator. We note that, in the one-dimensional setting, the

function in Eq. (6.8) describing the spread of damage throughout the smeared interface is

a solution to the above differential equation.

00

1

D(
x)

(a)

00

1

2lc

(b)

Figure 6.1: One-dimensional damage profile for (a) a sharp interface described by Eq. (6.7)
and (b) a smeared interface described by Eq. (6.8).
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6.2.2.1 Strain energy density-based phase field model

Let us consider the energy release associated with the growth of a sharp discontinuity

Γ ⊂ Ω through a brittle fracture mechanism. The work required to create a surface Γ

may be approximated as the work required for material softening (resulting from damage

nucleation) over the smeared interface,

Wc(D) :=
∫

Ω

Gcγl(D,∇D) dV ≈
∫

Γ

Gc dA, (6.11)

where Gc is the Griffith’s critical energy release rate. The potential energy of the volume

Ω including a smeared interface Γl(D) is given by,

Upot =
∫

Ω

Ψe +Gcγl(D,∇D) dV, (6.12)

where Ψe := Ψe(ε,D) is the elastic strain energy density given as a function of the damage

field D and applied strain tensor ε. The effect of damage on the strain energy density is

prescribed using a material degradation function θ(D):

Ψe(ε,D) = θ(D)Ψd
e (ε)+Ψ

i
e(ε), (6.13)

with Ψd
e indicating the component of Ψe affected by damage and Ψi

e indicating the “intact”

component of Ψe not affected by damage. It is commonly assumed that damage only in-

fluences the behavior of materials under tensile loading [Miehe et al., 2010, 2015, de Borst

and Verhoosel, 2016], whereas under compressive loading the material experiences crack

surface contact (or crack closure). Thus, Ψd
e and Ψi

e are typically determined by performing

a spectral decomposition of the strain tensor into positive (tensile) and negative (compres-
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sive) components,

ε+ =
3

∑
a=1

〈
ε
(a)
〉
+
n̂a⊗ n̂a, (6.14a)

ε− =
3

∑
a=1

〈
ε
(a)
〉
−
n̂a⊗ n̂a, (6.14b)

where ε(a) are the principal strains, n̂a are the principal strain directions, ⊗ indicates the

dyadic product, and 〈·〉+ and 〈·〉− are the positive and negative Macaulay brackets, respec-

tively, given by,

〈x〉+ =
1
2
(x+ |x|) , (6.15a)

〈x〉− =
1
2
(x−|x|) . (6.15b)

The positive and negative components of the strain tensor satisfy the condition, ε = ε++

ε−. Although it is common to apply fourth-order projection tensors to obtain the positive

and negative strain projections, as pointed out by Wu and Xu [2013], ε+ and ε− may

be more easily obtained by multiplying by positive and negative projection second-order

tensors,

ε+ = M+ ·ε, (6.16a)

ε− = M− ·ε. (6.16b)

The second-order tensors M+ and M− are given by,

M+ =
3

∑
a=1

H
{

ε
(a)
}
n̂a⊗ n̂a, (6.17a)

M− =
3

∑
a=1

H
{
−ε

(a)
}
n̂a⊗ n̂a, (6.17b)
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with H {·} denoting the heaviside function. The strain energy density functions Ψd
e and Ψi

e

obtained through spectral decomposition are thereby written as,

Ψ
d
e = µε+ : ε++

λ

2
〈tr(ε)〉2+ , (6.18a)

Ψ
i
e = µε− : ε−+

λ

2
〈tr(ε)〉2− , (6.18b)

where tr(·) is the trace operator, µ is the material bulk modulus, λ is Lamé’s first parameter,

and “:” indicates the inner product between two tensors. The phase field equation for

fracture is obtained by the minimization of Upot in Eq. (6.12) with respect to the damage

field D, which yields [Miehe et al., 2010, de Borst and Verhoosel, 2016],

θ
′(D)Ψd

e +
Gc

lc

(
D− l2

c ∆D
)
= 0. (6.19)

For numerical stabilization purposes [Miehe et al., 2010], a viscous regularization term ηḊ

may be introduced to the above equation,

ηḊ+
(
D− l2

c ∆D
)
+

lc
Gc

θ
′(D)Ψd

e = 0, (6.20)

where Ḋ is the damage rate and η is a damping parameter. To enforce the irreversibility of

damage (i.e., Ḋ > 0), we also substitute Ψd
e with the history function,

Ψ̂
d
e (x, t) = max

x∈Ω
s∈[0,t]

{
Ψ

d
e (x,s)

}
, (6.21)

which corresponds to the maximum strain energy density at a material point x throughout

the entire loading history. Finally, we choose the degradation function θ(D) = (1−D)2 to
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satisfy the conditions, 
θ(D) ∈ [0,1] ∀ D ∈ [0,1],

θ(0) = 1, θ(1) = 0,

θ
′(D)≤ 0, θ

′(1) = 0,

(6.22)

which permits damage evolution and enforces the upper bound on the phase field (damage)

variable as one [de Borst and Verhoosel, 2016]. The strain energy density-based phase field

equation is thus fully represented as,

ηḊ+
(
D− l2

c ∆D
)
= 2

lc
Gc

(1−D)Ψ̂d
e . (6.23)

Remark 36 The Cauchy stress tensor may be obtained by taking σi j = ∂Ψe/∂εi j, with the

strain energy density Ψe decomposed into damaged and intact components for tensile and

compressive loading, respectively (as in Eq. 6.13). Thus, the Cauchy stress may have an

asymmetric tension-compression response wherein the degradation due to damage is only

considered for tensile loads. Incorporating this damage-induced asymmetry into the con-

stitutive model results in a nonlinear system of equations which must be solved iteratively.

Nguyen et al. [2015] presented an alternate, linearized approach wherein the projection

tensors are computed using the strains from the previous time step.

6.2.2.2 Modular phase-field model

In the previous section, we described a phase field formulation using thermodynamic

arguments based on the strain energy density. Here, we present a more general and modular

framework for phase field modeling [Miehe et al., 2015]. The general form of the phase
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field equation is written as,

ηḊ︸︷︷︸
evolution

+
(
D− l2

c ∆D
)︸ ︷︷ ︸

geometric resistance

+
1
2

θ
′(D)H︸ ︷︷ ︸

driving force

= 0, (6.24)

which contains three fundamental terms that govern (1) the phase field rate of evolution,

(2) the geometric resistance imposed by surrounding material, and (3) the driving force for

damage growth. The evolution term comprises the damage rate Ḋ, which we approximate

using a forward Euler scheme,

Ḋ =
D(t)−D(t−∆t)

∆t
, (6.25)

and a damping parameter η . The geometric resistance term is essentially a damage gradi-

ent whose spread is dictated by the characteristic length scale lc. de Borst and Verhoosel

[2016] pointed out that phase field models are essentially gradient damage models, with

the fundamental difference being the driving force term: gradient damage models do not

generally require a degradation function θ(D) in the driving force, and so the driving force

in gradient damage models does not approach zero as D→ 1. The driving force term is

defined using the function H which represents the history of the crack driving function D ,

H (x, t) = max
x∈Ω

s∈[0,t]
{D(x,s)} , (6.26)

thus guaranteeing irreversibility of damage. The crack driving function D can take several

forms. In the previous section, we discussed a crack driving function based on the strain

energy density Ψe for linear elastic solids; however, as suggested by Miehe et al. [2015],

simpler damage criteria are applicable for advanced problems (e.g., nonlinear elasticity,
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anisotropy). In this work, we consider a Rankine-type crack driving function,

D = ζ
〈
σ̄

I−σth
〉2

(6.27)

where 〈·〉 are the Macaulay brackets, σ̄ I is the effective maximum principal stress, and σth

is a stress threshold. The parameter ζ is introduced for normalization so that the driving

force D is dimensionless, and its calibration is discussed in the results section.

6.2.3 Constitutive model for damaged ice

The constitutive stress-strain relation for the phase field model is obtained by taking the

derivative of the strain energy density with respect to strain,

σi j =
∂Ψe

∂εi j
= θ(D)

∂Ψd
e

∂εi j
+

∂Ψi
e

∂εi j
, (6.28)

where εi j are components of the strain tensor, given by the symmetric gradient of the dis-

placement field u,

εi j =
1
2

(
∂ui

∂x j
+

∂u j

∂xi

)
. (6.29)

In this work we take the degradation function as θ(D) = (1−D)2 in order to satisfy the

conditions listed in Eq (6.22). We also note that the “damaged” and “intact” components

of the strain energy density, Ψd
e and Ψi

e, respectively, be may obtained through spectral

decomposition of the strain tensor. For isotropic elasticity, the Cauchy stress may be repre-

sented in terms of the shear modulus µ = E
2(1+ν) and Lamé’s first parameter λ = Eν

(1+ν)(1−2ν)

as,

σi j =
[
(1−D)2 +α

](
2µε

+
i j +λ 〈εkk〉+δi j

)
+
(

2µε
−
i j +λ 〈εkk〉−δi j

)
, (6.30)
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where the numerical parameter α is chosen as,

α =


10−6 D = 1,

0 D < 1,
(6.31)

in order to prevent rank deficiency in the finite element stiffness matrix. Neglecting the

spectral decomposition of strain, the Cauchy stress may also be written more simply as,

σi j =
[
(1−D)2 +α

](
2µεi j +λεkkδi j

)
. (6.32)

To incorporate hydraulic fracture, we apply the poro-mechanics formulation for previously

discussed in Sections 5.3.3 and 6.2.1, in which we considered isotropic damage to have the

same effect on material behavior as porosity. For the sake of completion, we hereby write

the full constitutive relation for linear elastic ice that incorporates hydraulic pressure in the

damaged zone:

σi j =
[
(1−D)2 +α

](
2µεi j +λεkkδi j

)
−Dpwδi j. (6.33)

We note that the above formulation is not consistent with the mixture theory (see equation

6.2) if damage is assumed to be the same as porosity.
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6.3 Numerical results

In this section, we perform a series of numerical studies using the augmented cohe-

sive zone model (CZM) and the phase field model (PFM) with strain energy density (Ψe)

based and maximum principal stress (σ I) based crack driving forces to predict the evolu-

tion of water-filled surface and basal crevasses through glaciers. For brevity, we will refer

to the phase field models with strain energy density and maximum principal stress based

crack driving forces as the Ψe-PFM and σ I-PFM, respectively. For all simulations using

the Ψe-PFM, we consider the spectral decomposition of strain and implement the constitu-

tive model in Equation 6.30; whereas, for the σ I-PFM we neglect spectral decomposition

and implement the constitutive model in Equation 6.32. Both the CZM and PFM models

are implemented numerically using the finite element method. We employ the commercial

software Abaqus for the CZM and utilize the User Element (UEL) subroutine for the cohe-

sive elements; whereas, the bulk (i.e., non-interface) material is modeled using continuum

plane strain elements with linear elastic behavior. For the PFM, we employ the open-source

finite element software FEniCS (http://www.fenicsproject.org), wherein we manually sup-

ply the variational form of the linear elasticity and phase field equations. We first verify

the CZM and PFM implementations using a single edge notch benchmark test for mode

I fracture. Next, we apply the CZM and PFM to predict the penetration depths of dry

and water-filled surface crevasses in marine-terminating grounded ice sheets and compare

model results against the crevasse penetrations depths predicted by the dislocation mechan-

ics based model proposed by Weertman [1973]. Lastly, we study the conditions necessary

for the growth of basal crevasses in ice sheets.

6.3.1 Single edge notched tension test

The single edge notched tension test is a commonly used experiment for the purpose

of verifying numerical implementations of phase field models [Miehe et al., 2010, 2015,
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Nguyen et al., 2015]. The domain considered for this experiment is a unit square plate with

a horizontal notch spanning from the midpoint of the left edge to the center of the plate,

as shown in Figure 6.2. Dirichlet boundary conditions are applied to the bottom domain

edges to prevent horizontal and vertical displacement. Horizontal displacement is also con-

strained along the top edge of the domain, and vertical displacement uD is applied as a

boundary condition to induce tension in the domain resulting in mode I fracture. Although

we will later utilize the phase field model to simulate crevasse evolution in ice, for this ex-

periment we use the material properties of steel (i.e., E = 210 kN/mm2 and ν = 0.3) so that

we can compare our model results with the results from the literature [Miehe et al., 2010].

We employ both the Ψe-PFM and σ I-PFM, described in Equations 6.23, 6.24 and 6.27,

to illustrate the viability of both approaches. Following Miehe et al. [2010], we choose

lc = 0.015 mm as the phase field length scale parameter and Gc = 2.7× 10−3 kN/mm as

the critical strain energy release rate for steel. The normalization parameter ζ = 2×10−2

(kN/mm2)−2 is calibrated for the σ I-PFM to match the benchmark examples for this test,

and the stress threshold σth = 0. We obtain the cohesive strength σmax = 6.15 kN/mm2 for

the CZM using the widely known Hillerborg et al. [1976] equation,

σmax =

√
EGc

lc,coh
, (6.34)

where the size of the cohesive length scale lc,coh is assumed to be the same as the phase field

length scale lc. The domain is discretized using unstructured triangular finite elements for

the PFM simulations, and within the expected damage zone (i.e., around the initial notch)

we set the element size lelem = 0.005 mm, which is sufficiently smaller than the length

scale parameter. For the CZM simulation, we discretize the domain using unstructured

quadrilateral finite elements. The cohesive zone is inserted as a zero-thickness interface

continuing from the initial notch, as depicted in Figure 6.2 using an orange dashed line,

with an element size lelem = 0.00025 mm.
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Figure 6.2: Schematic of the single edge notched tension test with an applied vertical
displacement uD. The domain dimensions have units mm.

The results of this study are shown in Figure 6.4 wherein we plot the total load in the

vertical direction versus the displacement of the top edge of the domain for the Ψe-PFM,

σ I-PFM, and CZM. We also show the result obtained using the virtual crack closure tech-

nique (VCCT), which is generally consistent with the LEFM solution Banks-Sills [1991],

Krueger [2002]. An illustration of the final crack path is provided in Figure 6.3 for the

Ψe-PFM (we note that the Ψe-PFM and σ I-PFM have identical crack paths). Following

damage initiation at the crack tip (i.e., when the first element fails), the crack propagates

horizontally at a fast (near-instantaneous) rate. The load-displacement curves obtained us-

ing both the Ψe-PFM and σ I-PFM agree exactly with the result from literature [Miehe

et al., 2010, Nguyen et al., 2015], thus verifying the two approaches. The CZM test with

σmax = 6.15 kN/mm2 matches exactly with the VCCT solution. The CZM and VCCT both

predict linear elastic behavior prior to failure, and after peak load the domain fails almost

instantaneously. On the other hand, we observe that the PFM models exhibit softening be-

havior prior to peak load, owing to the damage accumulating throughout the domain and
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softening the material. We also note that the Ψe-PFM slightly overshoots the CZM and

VCCT on the load-displacement curve; this indicates that although the Ψe-PFM is based

on the critical fracture energy Gc, it is not necessarily consistent with the LEFM solution.

On the other hand, the σ I-PFM may be calibrated to match the load-displacement curve in

Miehe et al. [2010] by adjusting the normalization parameter ζ .

Figure 6.3: Final damage contour predicted by the Ψe-PFM for the single edge notched
tension test. The red regions (i.e., D = 1) indicate fully damaged material, whereas the
blue regions (i.e., D = 0) indicate intact material.

6.3.2 Mode I benchmark test

We next perform a pure mode I benchmark test to compare the Ψe-PFM, σ I-PFM,

CZM, and VCCT using the material parameters for incompressible ice, which are provided

in Table 6.1. The critical strain energy release rate Gc for ice is computed using the relation,

Gc = K2
IC

1−ν2

E
, (6.35)
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Figure 6.4: Load versus displacement measured during the single edge notched tension test
using the Ψe-PFM, σ I-PFM, CZM, and VCCT methods.

where KIC = 0.4 MPa
√

m, which is the upper bound obtained from a range of experi-

mentally calibrated critical stress intensity factors for ice [Rist et al., 1996, van der Veen,

1998a]. The experimental setup of the mode I test is identical to the single edge notched

tension test performed in the previous section; however, the domain is scaled to have the

dimensions 100 m × 100 m, and we modify the boundary conditions so as to induce a uni-

axial tension in the direction of loading. Rollers are applied to the bottom domain boundary

to prevent vertical displacement, and a controlled vertical displacement uD is applied to the

top edge of the domain. Horizontal displacement is not constrained anywhere in the domain

except for the lower-left corner, which we pin to prevent free translation in the horizontal

direction. The results of this study are shown in Figure 6.5, wherein we plot the load versus

displacement curve obtained using the different damage mechanics approaches. As before,

the CZM and VCCT curves match exactly; however, the Ψe-PFM result largely overshoots

the CZM and VCCT curves. This indicates that the Ψe-PFM is not necessarily consistent
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Table 6.1: Material parameters of linear elastic ice.

Parameter Value Units
E 9500 MPa
ν 0.4995 –

KIc 0.4 MPa
√

m
Gc 1.264×10−5 MPa · m
ρi 917 kg/m3

with the other damage frameworks that are based on Gc. The strain energy density may

also be an inappropriate crack driving force for incompressible materials. When we repeat

this experiment while setting Poisson’s ratio ν = 0.3 (thus, assuming compressible mate-

rial) the Ψe-PFM shows much better agreement with the CZM and VCCT, as demonstrated

in Figure 6.6. The load-displacement curve predicted by the σ I-PFM is plotted in Figure

6.5 with the normalization parameter ζ calibrated to 2× 10−10 MPa−2 and damping pa-

rameter η = 5× 103 s−1. Following the assumption that ice has no tensile strength, we

take σth = 0. Rather than immediate failure following the post-peak behavior, we observe a

softening process owing to the large value taken for the damping parameter η . Calibrating

a smaller η would result in sharper post-peak behavior more consistent with the CZM and

PFM; however, we take η = 5× 103 s−1 since a large value is required to prevent exces-

sive damage growth in the load-controlled experiments, which will be discussed in the next

section.

6.3.3 Evolution of water-filled surface crevasses

In this section, we simulate the evolution of water-filled surface crevasses through a

marine-terminating, grounded ice slab under gravity loading. Our aim is to compare the fi-

nal crevasse penetration depths predicted by the PFM and CZM against the depths predicted

by the Weertman [1973] fracture mechanics model. For each simulation, we consider an

idealized, rectangular ice slab as depicted in Figure 5.1 with domain height H = 125 m and

length L = 500 m. Rollers are applied to the bottom and left boundaries of the domain to
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Figure 6.5: Load versus displacement measured during the single edge notched tension test
using the Ψe-PFM, σ I-PFM, CZM, and VCCT methods for incompressible ice (Poisson’s
ratio ν = 0.4995).

prevent vertical and horizontal displacements, respectively. Gravity loading is applied as a

body force ρig where ρi is the density of ice, and g is the gravity acceleration. Seawater-

induced hydrostatic pressure with a water depth hw and water density ρw = 1020 kg/m3

is applied as a Neumann boundary condition to the right edge of the domain, whereas

the poro-mechanics formulations for the CZM and PFM are implemented for modeling

hydrostatic pressure within the crevasse with water depth hs. The ice is modeled as a near-

incompressible linear elastic solid with Young’s modulus E = 9500 MPa and Poisson’s

ratio ν = 0.4995.

6.3.3.1 Phase field model approach

Herein we apply the Ψe-PFM and σ I-PFM to model the propagation of water-filled sur-

face crevasses through glaciers. All simulations in this section are performed using FEniCS
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Figure 6.6: Load versus displacement measured during the single edge notched tension test
using the Ψe-PFM, σ I-PFM, CZM, and VCCT methods for compressible ice (Poisson’s
ratio ν = 0.3).

software on a triangular mesh with 2nd-order (quadratic) finite elements. In order to control

where fracture initiates, we prescribe an initial defect with size lc× lc centered along the

top surface of the domain with lc = 2.5 m. The defect is modeled as a pre-damaged zone

by setting the damage variable D = 1 at integration points within the corresponding mesh

region. The anticipated damage zone (i.e., underneath the initial defect) is meshed using

a structured triangular grid with element size lelem = 0.625 m, whereas far from the dam-

age zone we use a relatively coarse and unstructured mesh. All the numerical parameters

associated with Ψe-PFM based and σ I-PFM are provided in Table 6.2.

The results of this study are presented in Figures 6.7-6.9. Let us first discuss the

crevasse penetration predicted for the dry loading case (i.e., hw = 0 and hs = 0) by the

Ψe-PFM, as shown in Figures 6.7(a) and 6.7(b) wherein we plot the damage contours at in-

termediate and final damage states. From these figures we observe that the surface crevasse
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splits into two branches. Additionally, a significant amount of damage accumulates at the

lower-right portion of the domain due to horizontal large tensile strains near the terminus.

Eventually, damage develops to a large extent throughout the entire domain (D > 0.8 at

most of the material points), and failure occurs along the left domain boundary due to the

boundary constraints. From this result we conclude that the Ψe-PFM is not suitable for

modeling surface crevasse penetration without additional damage controls (e.g., a strain

energy density threshold); however, developing a robust Ψe based formulation is the topic

for another study. For the rest of this section, we proceed to model surface crevasse evolu-

tion using the σ I-PFM.

Figure 6.7: (a) Intermediate and (b) final damage contours predicted using the Ψe-PFM for
an ice slab undergoing gravity loading. The dark red regions depict fully-damaged material
(i.e., D = 1), whereas the dark blue regions depict intact material (i.e., D≈ 0).

The damage field predicted using the σ I-PFM is shown in Figures 6.8(a) and 6.8(b) for

the dry loading scenario (i.e., hw = 0 and hs = 0). In order to prevent damage from develop-

ing in regions where the stress is in a compressive state, we only permit damage nucleation

in regions where σkk > 0. Using the σ I-PFM, the crevasse initiates as a single crack that

penetrates vertically through the ice slab before other crevasses propagate through the ice

slab with spacing on the order of one ice thickness apart. Figure 6.9 shows the normalized

crevasse depth ds/H plotted versus varying water levels hs/ds = 0%,25%,50%,75%, and

100% for different seawater depths at the terminus hw/H = 0%,25%,50%,75%, and 90%

(i.e., the floating depth of ice), as predicted by the Weertman [1973] fracture mechanics

model and by the σ I-PFM with the parameter ζ calibrated to the value 1×10−9 Pa−2. The

σ I-PFM shows good agreement with the Weertman [1973] model except when the ratio

hw/H < 0.5; however, the parameter ζ can be re-calibrated to better fit these loading sce-
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narios at the expense of poorer agreement with the lower hw/H ratios. We also note the

importance of choosing a sufficiently large damping parameter η . Because the experiment

is load-controlled, the domain immediately reaches the peak loading state, and damage

grows very rapidly; without sufficient damping, most material points in the domain fail

very suddenly. On the other hand, when choosing a large damping parameter, damage only

develops in significant portions near stress concentration points, resulting in the initiation

and propagation of individual crevasses.

Figure 6.8: (a) Intermediate and (b) final damage contours predicted using the σ I-PFM for
an ice slab undergoing gravity loading. The dark red regions depict fully-damaged material
(i.e., D = 1), whereas the dark blue regions depict intact material (i.e., D≈ 0).

0.00 0.25 0.50 0.75 1.00
hs/ds

0.00

0.25

0.50

0.75

1.00

d s
/H

Phase Field vs. Weertman (1973)

hw/H = 0 (Weertman)
hw/H = 0.25 (Weertman)
hw/H = 0.5 (Weertman)
hw/H = 0.75 (Weertman)
hw/H = 0.9 (Weertman)
hw/H = 0 (Phase Field)
hw/H = 0.25 (Phase Field)
hw/H = 0.5 (Phase Field)
hw/H = 0.75 (Phase Field)
hw/H = 0.9 (Phase Field)

Figure 6.9: Surface crevasse depth ds normalized with the domain height H = 125 m for
varying water levels hs filling the surface crevasse. The solid lines and dotted lines with
markers depict the Weertman [1973] solution and σ I-PFM predictions, respectively, for
varying water levels hw at the terminus.
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Table 6.2: Phase field model parameters for ice.

Parameter Value Units
lc 2.5 m
ζ 1×10−9 Pa−2

η 5×103 s−1

σth 0 Pa

6.3.3.2 Cohesive zone model approach

In this section, we apply the CZM to model the propagation of water-filled surface

crevasses through an ice sheet. All simulations in this section are performed using Abaqus

software on an unstructured quadrilateral mesh with 1st-order (linear) finite elements. The

cohesive zone is modeled as a zero-thickness interface that cuts vertically through the entire

depth of the slab at the center of the domain (i.e., x= L/2). The cohesive interface elements

have zero-thickness and length lelem = 0.1 m, and their constitutive behavior is governed

by the augmented traction-separation law discussed in Section 6.2.1; whereas, the bulk

(continuum) elements have linear elastic behavior. Because damage can only occur along

the cohesive interface, there is no need to prescribe an initial defect. The cohesive normal

and tangent stiffness parameters, K0
n and K0

t , respectively, are both chosen as 1×106 kPa/m,

which is sufficiently large to avoid inducing an artificial compliance to the domain. The

cohesive strength parameters σmax and τmax are both chosen at the (considerably low) value

of 1 kPa in order to remain consistent with the fracture mechanics models which assume

that ice has no tensile strength Nye [1955], Weertman [1973]. Finally, we assume that

the critical strain energy release rate (SERR) is the same value Gc for all failure modes;

that is, GIC = GIIC = Gc where GIC and GIIC are the mode I and mode II critical SERRs,

respectively. All the cohesive parameters used for this study are given in Table 6.3.

The results of this study are shown in Figure 6.10, wherein we plot the normalized

crevasse depth ds/H versus varying water levels hs/ds = 0%,25%,50%,75%, and 100%

for different seawater depths at the terminus hw/H = 0%,25%,50%,75%, and 90% (i.e.,
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the floating depth of ice), as predicted by the theoretical fracture mechanics model of Weert-

man [1973] and by the CZM. The CZM shows excellent agreement with the Weertman

[1973] model when the ratio hw/H > 0.5; however, for lower hw/H ratios the CZM gen-

erally overestimates the crevasse penetration depth. For comparative purposes we also plot

the CZM-predicted crevasse penetration depths along the PFM-predicted depths in Figure

6.11. The CZM and σ I-PFM results show good agreement for all hw/H ratios, which sug-

gest the validity of both approaches for modeling crevasse penetration; however, the PFM

is easier to incorporate into large scale ice sheet models and is also capable of predicting

arbitrary crack paths, whereas for the CZM the potential crack path must be assumed a

priori.
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Figure 6.10: Surface crevasse depth ds normalized with the domain height H = 125 m
for varying water levels hs filling the surface crevasse. The solid lines and dotted lines
with markers depict the Weertman [1973] solution and CZM predictions, respectively, for
varying water levels hw at the terminus.
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Figure 6.11: Surface crevasse depth ds normalized with the domain height H = 125 m for
varying water levels hs filling the surface crevasse. The solid lines and dotted lines with
markers depict the CZM and σ I-PFM predictions, respectively, for varying water levels hw
at the terminus.

Table 6.3: Cohesive zone model parameters for ice.

Parameter(s) Value Units
GIC, GIIC 0.01264 kPa · m
σmax, τmax 1 kPa

K0
n , K0

t 1×106 kPa/m

6.3.4 Evolution of water-filled basal crevasses

In this section, we investigate the evolution of water-filled basal crevasses through

grounded, marine-terminating glaciers under gravity loading. We first discuss the con-

stitutive assumptions made for ice (i.e., the Poisson’s ratio) and comment on the conditions

necessary for a basal crevasse to initiate or propagate. Next, we apply several numeri-

cal models to simulate the propagation of water-filled basal crevasses. For all simulations

performed for this study, we consider an idealized rectangular domain as depicted in Fig-

ure 5.1 with height H = 125 m and length L = 500 m. We assume the seawater depth
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hw = ρi
ρw

H ≈ 90%, which is the floating depth of ice, and the hydrostatic pressure is applied

as a Neumann boundary condition on the right-hand domain edge. We also assume that

the hydraulic head within the basal crevasse is the same as the seawater level hw. The hy-

draulic pressure within the damage zone is implemented using the poro-mechanics formu-

lation presented in Sections 6.2.1 and 6.2.3. Gravity is applied as a body force ρig, where

g is the acceleration due to gravity, and rollers are applied as Dirichlet boundary condi-

tions to prevent vertical and horizontal movement on the bottom and left-hand boundaries,

respectively.

Let us first investigate the stresses induced by the presence of a water-filled basal

crevasse within a glacier for different compressibility ratios. In Figure 6.12, we plot the

horizontal Cauchy stress σxx versus depth above a 10 m basal crevasse obtained by finite

element analysis using a linear elastic constitutive relation for ice with varying Poisson’s

ratios. The ice slab has the properties and loading conditions described in the previous

paragraph (i.e., gravity loading and hydrostatic pressure at the terminus and within the

basal crevasse). In this case, the basal crevasse is modeled as a zero-thickness seam with hy-

draulic pressure applied as a Neumann boundary condition along the crevasse walls. For the

near-incompressible case, we observe that σxx is compressive at the crevasse tip, although

the crevasse still acts as a stress concentrator; whereas, when Poisson’s ratio ν = 0.35, the

Cauchy stress is both highly magnified and tensile near the crevasse tip. In general, de-

creasing Poisson’s ratio will result in less compression at the bottom of the glacier, which

is evident by considering the expression for horizontal Cauchy stress in the “far-field” of a

compressible ice slab,

σxx =
ν

1−ν

[
1
2

ρigH−ρig〈H− z〉
]
− 1

2
ρwg

h2
w

H
. (6.36)

Note that in the above equation, when considering the incompressible case (i.e., ν = 0.5)

we obtain the common expression σxx = Rxx − ρig〈H − z〉, where the “resistive” stress
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Rxx =
1
2ρigH− 1

2ρwgh2
w

H (see Equation 48).
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Figure 6.12: Horizontal Cauchy stress σxx versus depth above a 10 m basal crevasse in the
“far-field” region of a glacier. The light green and dark purple lines correspond to the stress
when using near-incompressible and compressible rheology for ice, respectively.

We now simulate the propagation of basal crevasses in both compressible and incom-

pressible ice using the σ I-PFM, the Ψe-PFM, the CZM, and the nonlocal creep damage

mechanics model proposed in Jiménez et al. [2017]. For this set of experiments, we choose

a smaller length scale lc = 1.25 m and prescribe an initial basal crevasse with height 10

m. For the PFM and creep damage models, the initial notch is modeled as a continuum

damage zone with width 1.25 m; whereas, in CZM, we simply set D = 1 within all the

interface elements below the height 10 m. The results of this study are presented in Ta-

ble 6.4, wherein we list the normalized basal crevasse penetration depths db/H for all the

various damage mechanics models with different compressibility ratios. In the case where

we model ice as a near-incompressible material (i.e., when ν = 0.4995), we observe that
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Table 6.4: Penetration depths of basal crevasses using different damage mechanics ap-
proaches.

Approach Poisson’s ratio
Normalized Basal

Crevasse Penetration
Depth

Nonlocal creep 0.4995 8 %
CZM 0.4995 8 %

Ψe-PFM 0.4995 8 %
σ I-PFM 0.4995 8 %

Nonlocal creep 0.35 96.84 %
CZM 0.35 100 %

Ψe-PFM 0.35 94.07 %
σ I-PFM 0.35 98.71 %

the basal crevasse does not extend past the initial depth of 8%. This occurs because the

damage mechanics models require a tensile stress state for damage to nucleate, and tensile

stresses do not occur at the crevasse tip when considering ice as an incompressible material.

Interestingly, the stress intensity factors computed at the crack tip using the displacement

correlation method are positive, which would imply crack growth. When modeling ice as a

compressible material, we observe basal crevasse growth using multiple damage mechan-

ics based models. An illustration of the final damage contour predicted by the Ψe-PFM is

shown in Figure 6.13. Interestingly, each damage mechanics model predicts either full or

nearly full penetration of the crevasse through the domain thickness. These results imply

that incompressible constitutive behavior for ice may not be sufficient for predicting basal

crevasse growth in grounded glaciers on free-slip surfaces. It has been suggested that the

evolution of basal crevasses is a complex multi-physics problem which is influenced by

melting along with tensile opening [Bassis and Ma, 2014]. A more comprehensive analysis

on the physical conditions required for basal crevasses to initiate and propagate is a topic

for future study.
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Figure 6.13: Final damage contour predicted by the Ψe-PFM when modeling the evolution
of a basal crevasse in compressible ice with Poisson’s ratio ν = 0.35. The red regions (i.e.,
where D = 1) indicate fully damaged ice; whereas the blue regions (i.e., where D ≈ 0)
indicate intact ice.
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6.4 Conclusions

In this chapter, we presented two damage mechanics approaches for time-independent,

brittle fracture, namely the cohesive zone model (CZM) and the phase field model (PFM),

to simulate the propagation of water-filled surface and basal crevasses through grounded,

marine-terminating glaciers. First, we established the validity of the CZM and PFM models

using both strain energy density based and maximum principal stress based crack driving

forces (denoted as the Ψe-PFM and σ I-PFM, respectively) by performing a single edge

notch tension test and mode I tension test. Next, we employed the CZM, Ψe-PFM, and

σ I-PFM to simulate the propagation of water-filled surface crevasses through a glacier

and compared numerical results against the Weertman [1973] dislocation mechanics based

model. We discovered that the Ψe-PFM is not an appropriate technique for simulating

surface crevasse growth due to the unrealistic damage morphology likely due to the in-

compressibility of ice; however, the σ I-PFM predicted more realistic crevasse growth. The

CZM and σ I-PFM both showed excellent agreement with the Weertman [1973] model

when the seawater depth at the terminus is large (i.e., hw/H ≥ 50%); however, for lesser

seawater depths the numerical models tended to overestimate the crevasse penetration

depth. This differs considerably from the behavior observed in creep damage models

(Chapter 5), which failed to predict any crevasse growth in the near floating condition

(i.e., hw/H = 90%).

We also studied the conditions necessary for basal crevasse evolution in glaciers. Al-

though theoretical fracture mechanics models generally assume ice to be incompressible,

we observed through finite element analysis that the Cauchy stress at the tip of a water-filled

basal crevasse is in a compressive state if considering incompressible ice. However, when

considering compressible ice with Poisson’s ratio ν = 0.35, the stresses at the crevasse

tip are both tensile and sufficiently large to enhance damage growth. We employed the

CZM, Ψe-PFM, σ I-PFM, and the nonlocal creep damage mechanics model to simulate

basal crevasse growth. All four approaches predicted zero basal crevasse propagation in
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the incompressible ice; and all four approaches predicted full or nearly-full crevasse pene-

tration when taking ν = 0.35.

From this study, we conclude that the time-independent, brittle damage mechanics for-

mulations are more consistent with the theoretical fracture mechanics models than the creep

damage mechanics. While the CZM shows excellent agreement with the Weertman [1973]

model, it is more difficult to implement than continuum damage models, and the crack path

must be assumed a priori. The PFM, on the other hand, is consistent with the CZM when

predicting crevasse penetration depths and may be more easily included in large-scale mod-

els for ice sheet dynamics. Finally, we conclude incompressible rheology is insufficient for

modeling basal crevasse growth in grounded glaciers, unless other (e.g., thermal) physical

mechanisms or different boundary conditions (i.e., grounded to floating) are accounted for

in the process of crevasse evolution.
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CHAPTER 7

CONCLUSIONS

This dissertation presented various applications of damage mechanics for modeling

sharp and diffuse fracture evolution using the cohesive zone model (CZM), nonlocal con-

tinuum damage mechanics (CDM), and phase field model (PFM) for brittle fracture. The

CZM was implemented to model fatigue delamination of composites, whereas the CDM

approach was chosen for modeling diffuse fracture in ice.

In Chapter 2, a discrete damage zone model (DDZM) for temperature dependent mixed

mode delamination in composites under high cycle fatigue loading was developed from

the original model for quasi-static loading [Liu et al., 2012], by adding fatigue and static

damage components. The proposed model employs the interface element as a discrete

spring placed at the finite element nodes and its constitutive law is derived entirely from

damage laws, specifically, by combining Mazars law for static damage growth [Mazars,

1986] and Peerlings law for fatigue damage growth [Peerlings et al., 2000]. The model

parameters were calibrated under pure mode I, pure mode II, and 50% mode II loadings.

A quadratic relation was proposed to evaluate the parameters for other mode mix ratios

(25% and 75% mode II) and then model results were verified with the numerical results

of [Blanco et al., 2004], which demonstrates the validity of the model. The advantage of

the DDZM approach is that it offers a lot of flexibility for incorporating different damage

models to describe interface failure behavior under different loading and environmental

conditions.

In Chapter 3, the issue of parametric sensitivity of CZMs was investigated for high-

cycle fatigue delamination with respect to static cohesive parameter and fatigue damage

functions based on strain energy release rate (SERR), separation and strain. The separation
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and strain based fatigue damage functions are highly sensitive to cohesive stiffness and

strength parameters but are relatively less sensitive to cohesive shape. The SERR based

fatigue damage function is almost insensitive to cohesive stiffness and shape but is slightly

sensitive to cohesive strength. Considering that the initial stiffness is usually treated as

an adjustable penalty parameter, it seems more appropriate to formulate fatigue damage

rate as a function of the SERR. Unlike bilinear and exponential static cohesive laws, the

polynomial cohesive law has a higher-order smoothness (C1 continuity) and yields linear

Paris plots in combination with all three fatigue damage functions; this is attributed to

the lack of sudden transition between a linear-elastic and damage-softening regime in the

polynomial law. Considering the high sensitivity of fatigue crack growth rate predictions

to the cohesive strength and that it is factor in determining the cohesive zone size, more

robust methodologies are necessary to establish the interface cohesive strength for a given

composite material.

In Chapter 4, an updated-Lagrangian mixed finite element formulation was developed

based on the nonlinear Stokes flow equations and a nonlocal creep damage law to simulate

crevasse propagation in glaciers. The main features of this new formulation are: (1) an

updated-Lagrangian approach enables tracking of geometry changes in the domain dynam-

ically using an explicit mesh-update procedure and the evolution of continuum damage at

material points, without the need to include the damage advection; (2) the nonlocal im-

plementation of damage and damage controls alleviates the mesh dependency issues inher-

ent to local damage models; (3) the P3-P1 mixed finite element implementation alleviates

”checkerboard” instabilities in pressure and allows the efficient simulation of incompress-

ible viscous deformation of ice; and (4) the automated element removal scheme allows for

the representation of fully damaged material without introducing rank deficiencies to the fi-

nite element stiffness matrix. The formulation was tested and validated using the previously

established small-deformation Maxwell viscoelastic model as the benchmark. Numerical

simulations performed on idealized rectangular domains demonstrate that the Stokes flow
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model is suitable for simulating flow and fracture in ice because it is consistent with the

Maxwell-type viscoelastic model over the shorter time scales of crevasse propagation (i.e.,

t = 5 - 20 days) under gravity-induced flow. Over long decadal time scales, it is expected

that the proposed update-Lagrangian approach is superior to the small-deformation total

Lagrangian approach due to its ability to account for large deformations.

In Chapter 5, we reviewed and compared four theoretical fracture mechanics models

for estimating crevasse penetration depths against one another: (1) the Nye [1955] zero-

stress model; (2) the Weertman [1973] dislocation-based fracture mechanics model; (3) the

van der Veen [1998a] linear elastic fracture mechanics (LEFM) model; and (4) the Krug

et al. [2014] LEFM model. We also compared the nonlocal continuum damage mechanics

(CDM) approach [Jiménez et al., 2017] against these theoretical models by estimating the

penetration depths of dry and water-filled surface crevasses in grounded glaciers. The

damage mechanics approach illustrates that the presence of water pressure within crevasses

results in deeper penetration into the glacier, and thus it is qualitatively consistent with the

fracture mechanics approaches. Numerical results show good agreement with Weertman

[1973] model, except when the glacier is near floatation (i.e., hw/H = 0.9). Our results

also indicate that the mechanisms responsible for crevasse propagation are sensitive to ice

rheology and large deformation effects. Overall, we believe that the damage mechanics

approach is appropriate for simulating the propagation of water-filled surface crevasses

and estimating their maximum penetration depths.

In Chapter 6, we presented two damage mechanics approaches for time-independent,

brittle fracture, namely the cohesive zone model (CZM) and the phase field model (PFM),

to simulate the propagation of water-filled surface and basal crevasses through grounded,

marine-terminating glaciers. We employed the CZM and PFM to simulate the propagation

of water-filled surface crevasses through a glacier and compared numerical results against

the Weertman [1973] dislocation mechanics based model. We discovered that the PFM with

a strain energy density based crack driving force is not an appropriate technique for sim-
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ulating surface crevasse growth due to the unrealistic damage morphology; however, im-

plementing a maximum principal stress based crack driving force predicted more realistic

crevasse growth. The CZM and PFM both showed excellent agreement with the Weertman

[1973] model when the seawater depth at the terminus is large (i.e., when the seawater depth

is greater than or equal to 50% of the slab thickness); however, for lesser seawater depths

the numerical models tended to overestimate the crevasse penetration depth. We also stud-

ied the conditions necessary for basal crevasse evolution in glaciers and observed through

finite element analysis that the Cauchy stress at the tip of a water-filled basal crevasse

is in a compressive state if considering incompressible ice. However, when considering

compressible ice, the stresses at the crevasse tip are both tensile and sufficiently large to

stimulate damage growth. We employed the CZM, PFM, and the nonlocal creep damage

mechanics model to simulate basal crevasse growth. Each approach predicted zero basal

crevasse propagation in the incompressible ice; and each approach predicted full or nearly-

full crevasse penetration when considering compressible ice. From this, we conclude that it

is necessary to consider the compressibility of ice when modeling basal crevasse growth in

grounded glaciers, unless other physical mechanisms (e.g., melting, grounded-to-floating

transition) are accounted for in the process of crevasse evolution.
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CHAPTER 8

Appendix

Appendix A Relation between ρ and Ψ

The mixed mode bending test was proposed by Reeder and Crews [Reeder and Crews,

1990], shown in Figure A1. A concentrated load P is applied through the rigid lever, and

rigid connector

a0

P21P

1P P2

H

2L

c

P

L

rigid loading lever

Figure A1: The geometry and boundary conditions for mixed mode bending (MMB) test.

the forces transferred to the beam obtained from equilibrium are,

P1 = P
c
L
, P2 = P

c+L
L

(1)

This mixed mode bending (MMB) system can be considered as the superposition of Mode I

and Mode II [Reeder and Crews, 1990], as shown in Figure A2. Due to the y-axis symmetry

of the mode II four point end notch fracture (ENF) test, it is sufficient to consider one-half of

the beam as a cantilever [Robinson et al., 2005, Williams, 1988]. Now, following equations
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Mode I

P P2

a 0

P21P
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c+L

L
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2L

c
L P

P
c−L
2L

3c−L
4L P

3c−L
4L P

P
c+L

L

P
c+L
2L

c+L
4L P

c+L
4L P

c

P

L

rigid loading lever

H

2L

rigid connector

Mixed Mode Mode II

1

Figure A2: Superposition analysis of the mixed mode bending (MMB) system (Redrawn
from Reeder and Crews [Reeder and Crews, 1990])

(2.38) and (2.41), we can write the strain energy release rate under Mode I and Mode II as,

GI =

(
3c−L

4L

)2 P2a2
0

WEI
(2)

GII =

(
c+L
4L

)2 3P2a2
0

4WEI
(3)

Substituting the above two expressions for GI and GII into Equation 2.26 we get the fol-

lowing relation for the mode ratio Ψ:

Ψ =
GII

GI +GII
=

3
( c

L
+1
)2

3
( c

L
+1
)2

+4
(

3
c
L
−1
)2 . (4)

An alternative mixed mode test is configured as shown in Figure A3, which is equivalent

to the MMB test shown in Figure A1. The forces applied on the upper and lower arm are

P

H

a0

L

Pu

d

Figure A3: Geometry and boundary conditions for an alternative mixed mode bending
(MMB) test
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obtained from the superposition of Mode I and Mode II, given as,

Pu = P
c+L
4L

+P
3c−L

4L
(5)

Pd = P
c+L
4L
−P

3c−L
4L

(6)

The ratio between these two applied forces is defined as ρ , written as,

ρ =
Pd

Pu
=

( c
L
+1
)
−
(

3
c
L
−1
)

( c
L
+1
)
+
(

3
c
L
−1
) =

1−

(
3

c
L
−1
)

( c
L
+1
)

1+

(
3

c
L
−1
)

( c
L
+1
)

. (7)

From equation 4 we get,

(
Ψ
−1−1

)
=

4
(

3
c
L
−1
)2

3
( c

L
+1
)2 . (8)

Substituting the above equation in equation 7 we obtain the following relationship for the

force ratio ρ in terms of the mode ratio Ψ:

ρ =
1−
√

3
2

(Ψ−1−1)1/2

1+

√
3

2
(Ψ−1−1)1/2

(9)
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Appendix B Relation between K0
e and Ψ

Herein, we derive the relation used in Section 2.3.2 for calculating the undamaged ef-

fective stiffness K0
e of a spring element under mixed mode conditions. Let us consider a

mixed-mode condition when the normal and tangential separations are δ ∗n and δ ∗t , respec-

tively. Under this deformation state, let the equivalent separation reach the critical value,

that is,

(δ cr
e )2 = (δ ∗t )

2 +(δ ∗n )
2 (10)

Let us consider the case when δ ∗n < δ cr
n and δ ∗t < δ cr

t , that is, the loading condition falls

within the elastic zones of the normal and tangential damage laws, respectively. Now, the

strain energy release rates under Mode I and Mode II are given by,

GI =
1
2

K0
n (δ

∗
n )

2 and GII =
1
2

K0
t (δ

∗
t )

2. (11)

where K0
n and K0

t are the undamaged normal and tangential stiffnesses of the spring ele-

ment. In terms of the equivalent stiffness and separations, the total strain energy release

under this mixed mode condition is given by,

G =
1
2

K0
e (δ

cr
e )2 (12)

Now, the mixed mode ratio is defined as,

Ψ =
GII

G
=

K0
t (δ

∗
t )

2

K0
e (δ

cr
e )2 , (13)

and

1−Ψ =
GI

G
=

K0
n (δ

∗
n )

2

K0
e (δ

cr
e )2 ; (14)
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Rearranging the above two expressions we get,

(δ ∗t )
2 =

(
Ψ

K0
t

)
K0

e (δ
cr
e )2; and (δ ∗n )

2 =

(
1−Ψ

K0
n

)
K0

e (δ
cr
e )2; (15)

Substituting the above relations into equation (10) and simplifying, we get the relation,

1
K0

e
=

Ψ

K0
t
+

1−Ψ

K0
n

(16)

The above relation can be rearranged to obtain equation (2.25). Clearly, under pure Mode I

conditions (Ψ = 0), we have K0
e = K0

n and under pure Mode II conditions (Ψ = 1), we have

K0
e = K0

t .
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Appendix C Influence of static CZM parameters for monotonic crack growth

Here, we use the common load-deflection (P−∆) curve to investigate the sensitivity

of monotonic delamination crack growth results to the CZM parameters GIC, σmax, and

K0
n and to the shape of the T − δ law. The P−∆ curve is obtained by conducting a DCB

test with controlled displacement of the cantilever arms. The reaction force P at the ends

of the cantilever arms is then measured and plotted as a function of deflection ∆ of the

arms. For this analysis, we use the experimental setup shown in Figure D5, except that we

apply controlled displacement instead of moments. First, we obtain a P−∆ curve using the

bilinear T −δ law with values for GIC, σmax, and K0
n given in Table E2. We then vary the

value of each parameter one by one while holding the others constant. The P−∆ curves

obtained from this are shown in Figures C4a-c. Next, we obtain P−∆ curves using the

polynomial and exponential T − δ laws with the same values of GIC and σmax given in

Table E2 to compare to the bilinear case; the result is shown in Figure C4d. From Figure

C4 it is clear that results for static loading are largely insensitive to the parameters σmax, K0
n

and to the T −δ shape, and only the critical fracture energy GIC has a substantial influence.

This is verified to be true even for mode II and mixed-mode loading cases (results are

not shown here). The conclusions of this study may not be valid for any arbitrary choice of

cohesive parameters and the geometric length scales of the problem domain. As Needleman

[2014] points out, when the cohesive length scale is large compared to the geometric length

scale, the predicted load-displacement behavior of the beam can be much more sensitive to

the shape of the T −δ law and cohesive strength.
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Figure C4: Load-deflection curves of a double cantilever beam test. Sensitivity of results to
static parameters is shown by: (a) variation of GIC; (b) variation K0

n ; (c) variation of σmax;
(d) variation of T −δ shape.
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Appendix D Calibration of mode I fatigue parameters

The setup of the mode I double cantilever beam (DCB) test with applied moment M

is shown in Figure D5, wherein one end of the beam is given a fixed boundary condition

and the other end has a pre-crack splitting the beam depth in half. A cohesive interface is

assigned behind the precrack so that once the DCB is loaded appropriately the crack will

grow. The geometry of the DCB model is depicted in Figure D5 where L is the length

of the beam, a0 is the initial crack length, H is the thickness of the beam, and M is an

applied moment. The moment M is linearly increased from zero to the maximum amplitude

and then held constant, at which point fatigue cycling is initiated. Numerical results are

displayed on Paris plots wherein the rate of crack growth with respect to loading cycles

da/dN and the normalized mode I strain energy release rate ∆GI/GIC are plotted on a log-

log scale. The mode I strain energy GI is related to the applied moment M as [Reeder and

Crews, 1990, Williams, 1988],

GI =
M2

WExxI
(17)

where W is the in-plane depth of the beam and I is the moment of inertia of the cantilever

arms. For an applied moment M and corresponding GI, the fatigue crack growth rate da/dN

is calculated as the ratio of the incremental crack length ∆a along the interface and the

number of loading cycles ∆N required to advance the crack length by ∆a. Herein, we

measure ∆N by recording the number cycles between the failure (i.e., Dt = 1) of the first

and fourth integration points along the interface, Nfail
IP 1 and Nfail

IP 4 respectively. Thus, ∆N =

Nfail
IP 4−Nfail

IP 1, and ∆a = 3h/2, where h is the structured finite element mesh size.

Fatigue parameters Ci and mi for i = {1, 2, 3} for the three different damage functions

are calibrated assuming a bilinear traction-separation law with static cohesive parameters

given in Table E2. The calibration is performed by comparing model results to the least

squares best fit line [Blanco et al., 2004] of the experimental data of Asp et al. [2001]

on a Paris plot, as shown in Figure D6. The SERR based fatigue damage function yields

235



a0

L

H

M

M

Cohesive Interface

Figure D5: Setup of the double cantilever beam (DCB) test. Dimensions: L = 150mm,
a0 = 35mm, H = 3.1mm.
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Figure D6: Calibration of SERR, separation, and strain based fatigue damage functions
under pure mode I loading.

a straight line that closely matches the linear Paris law; the strain and separation based

fatigue damage functions yield slightly curved lines, although they do not deviate beyond

the range of experimental data. The calibrated fatigue parameters are shown in Table E3.
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Appendix E Calibration of mixed-mode fatigue parameters

The mixed mode bending (MMB) test is employed for this analysis, wherein two mo-

ments M and ρM are applied to the ends of the cantilever arms to induce mixed mode

delamination. Beam dimensions are specified in Figure E7. The moments M and ρM are

linearly increased from zero to the maximum amplitude and then held constant, at which

point fatigue cycling initiates. The corresponding mixed mode SERR G is related to the

applied moment M as [Reeder and Crews, 1990],

G = GI +GII (18)

where,

GI =

 2
√

3

(ψ−1−1)−1/2
+

√
3

2


2

3M2

48WExxI
, (19)

GII =

 4

1+

√
3

2
(ψ−1−1)1/2


2

3M2

64WExxI
. (20)

The mode-mix ratio ψ is defined as GII/(GI +GII) and ρ is given by,

ρ =



−1 ψ = 0

1−
√

3
2
(
ψ−1−1

)1/2

1+

√
3

2
(ψ−1−1)1/2

0 < ψ ≤ 1

(21)

Parameters Ci and mi are calibrated for the three damage functions in the same way as

described in the previous section, assuming the bilinear T − δ law with static CZM pa-

rameters given in Table E2. The calibrated parameters for 50% mixed mode loading are
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Figure E7: Setup of the mixed mode bending (MMB) test. Dimensions: L = 150mm,
a0 = 35mm, H = 3.1mm.
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Figure E8: Calibration of SERR based, Separation based, and Strain based damage func-
tions under 50% mixed mode loading.

presented in Table E3 and a plot of the calibration is shown in Figure E8.
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Table E1: Material properties of carbon fiber/epoxy laminated composite HTA/6367C ob-
tained from Asp et al. [2001]

Property
(Units)

E11
(MPa)

E22 = E33
(MPa)

G12 = G13
(MPa)

ν12 = ν13

Value
1.2×
105 1.05×104 5.52×103 0.3

Table E2: Static cohesive parameters for the bilinear law (all values except K0
n and K0

t are
assumed from Harper and Hallett [2010])

Parameter K0
n K0

t GIC GIIC GC σmax τmax

(Units)
(

N
mm3

) (
N

mm3

) ( N
mm

) ( N
mm

) ( N
mm

) (
N

mm2

) (
N

mm2

)
1×104 2×104 0.26 1.002 0.447 30 60
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Table E3: Fatigue damage parameters

Parameter (Units) Mode I Mixed Mode
C1 (mm/cycle) 1.62×10−3 1.125×10−1

m1 (−−) 4.2 5.5
C2 (1/cycle) 6.0 7×104

m2 (−−) 3.6 6.5
C3 (1/cycle) 6×10−1 8.75×104

m3 (−−) 4.2 8.0
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Algorithm 7 : An iterative algorithm for computing damage for the separation-based fa-
tigue damage function

Assume the system state (i.e., damage and separation) is known after N cycles, and the
separations δn, δt are known at N +∆N cycles. Then, the goal is to compute the damage
state at N +∆N cycles. Let r represent residual error in the iterative scheme, and rtol is the
error tolerance.

(1) Compute Ds(N + ∆N) from the cohesive traction-separation law. Then, ∆Ds =
Ds(N +∆N)−Ds(N).

(2) Compute δµ = (1−µ)ε̇(N)+µε̇(N +∆N) where ε̇ =

√
(δn)

2 +(δt)
2. In this study

we take µ = 0.5.

(3) Initialize, j = 0:

(i) 0D = D(N)

(ii) Select 0r >> rtol

(4) While | jr|> rtol:

(i) Compute fatigue damage increment for j = {0,1,2, ...}:
jDµ = (1−µ)D(N)+µ

jD

∆Df = ∆N
(

C2

1+m2

)
exp
(
λ

jDµ

)(δµ

δf

)m2+1

(ii) Compute jr:
jr = jD− (D(N)+∆Ds +∆Df)

(iii) Compute the Jacobian:

∂ jr
∂ jD

= 1−λ µ∆N
(

C2

1+m2

)
exp
(
λ

jDµ

)(δµ

δf

)m2+1

(iv) Update damage:

j+1D = jD−
(

∂ jr
∂ jD

)−1
jr (22)

(v) Update iteration count: j = j+1

(5) Finally, D(N +∆N) = jD = Dt. For post-processing, Df = Dt−Ds.
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Appendix F Small-deformation Maxwell viscoelasticity

Appendix F.1 Constitutive law

Here we review the salients features of the small-deformation Maxwell viscoelastic

model based on a total Lagrangian approach for simulating creep damage evolution in ice

[Duddu and Waisman, 2013c]. Considering that polycrystalline ice behaves isotropically

and assuming small deformations, the total strain ε t and total strain rate ε̇ t
i j can be additively

decomposed into its elastic and viscous components as

ε
t
i j = ε

e
i j + ε

v
i j; ε̇

t
i j = ε̇

e
i j + ε̇

v
i j, (23)

where the subscript indices denote tensor components. The elastic stress-strain relationship

in the effective space and physical space are given by

σ̃i j =Ci jklε
e
kl; σi j =Cdam

i jkl ε
e
kl, (24)

where σi j is the Cauchy stress tensor, Ci jkl is the fourth-order stiffness tensor, and Cdam
i jkl =

(1−D)Ci jkl . For linear elasticity, the components of Ci jkl are

Ci jkl =
EY

3(1−2ν)
δi jδkl +

EY

2(1+ν)

(
δikδ jl +δilδ jk−

2
3

δi jδlk

)
, (25)

where EY = 9500 MPa and ν = 0.35 are the Young’s modulus and Poisson’s ratio of ice,

respectively, and δi j is Kronecker’s delta.

The viscous strain rate ε̇v is given by the power law [Betten, 1986, Karr and Choi, 1989]

ε̇
v
i j =

3
2

KN

(
3
2

τ̃kl τ̃kl

)(N−1)/2

τ̃i j, (26)
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where the coefficient KN = 1.588×10−7 MPa−3 s−1 at T =−10◦C and exponent N = 3 are

viscous parameters, and τ̃i j is the effective deviatoric stress. Note the similarity to Equation

4.17, which is based on the Glen’s flow law [Glen, 1955] and repeated below:

ε̇i j = A(τ̃eq)N−1
τ̃i j (27)

For the exponent N = 3, a relationship between KN and A can be established by equating

ε̇v
i j and ε̇i j

3
2

KN

(
3
2

τ̃kl τ̃kl

)
τ̃i j = A(τ̃eq)2

τ̃i j. (28)

By removing the τ̃i j term from each side of the equation and then substituting the rela-

tion (τ̃eq)2 = 1
2 τ̃kl τ̃kl , it follows that 9

2KN = A. In this study, we select an experimentally

calibrated value for A used in the Stokes model and then calculate KN for the Maxwell

viscoelastic model.

Appendix F.2 Maxwell viscoelastic model in deviatoric space

In this section, we show that the small-deformation viscoelastic model behaves like a

Maxwell model in deviatoric space. Let us additively decompose the strain into volumetric

(denoted with superscript vol) and deviatoric (superscript dev) components

ε
t vol
i j =

1
3

ε
t
kkδi j, ε

t dev
i j = ε

t
i j− ε

t vol
i j , (29)

with εe
i j and εv

i j similarly split into volumetric and deviatoric parts. The additive decom-

position of strain in Equation (23) still holds in the volumetric and deviatoric spaces such

that ε t vol
i j = εe vol

i j +εv vol
i j and ε t dev

i j = εe dev
i j +εv dev

i j . Then, the effective Cauchy stress and
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deviatoric stress can be represented in terms of εe vol
i j and εe dev

i j as

σ̃i j =
EY

(1−2ν)

(
ε

e vol
i j

)
+

EY

(1+ν)

(
ε

e dev
i j

)
, τ̃i j =

EY

(1+ν)

(
ε

e dev
i j

)
. (30)

Since the viscous strain rate ε̇v
i j of ice is driven purely by deviatoric stresses (Eq. 26), the

volumetric component ε̇v vol
i j = 0, thus leaving ε̇v

i j = ε̇v dev
i j . For the deviatoric component

of total strain rate ε̇ t dev
i j we now have

ε̇
t dev
i j = ε̇

e dev
i j + ε̇

v dev
i j (31)

=

[
(1+ν)

EY

]
˙̃τ i j +

[
3
2

KN

(
3
2

τ̃kl τ̃kl

)(N−1)/2
]

τ̃i j,

which matches the form of the 1D Maxwell viscoelastic model

ε̇ =
σ̇

ÊY
+

σ

η̂
, (32)

where η̂ is a viscosity parameter and ÊY is an elastic modulus parameter. The 1/2µ term

is analagous to the elastic coefficient 1/Ê, and
[

3
2KN

(3
2 τ̃kl τ̃kl

)(N−1)/2
]

is analagous to the

viscosity coefficient 1/η̂ .

Appendix F.3 Total Lagrangian implementation

We select a total Lagrangian frame of reference to describe motion in the viscoelastic

model. Motion is characterized by a displacement field u
(0x, t

)
= uiêi representing the

positions of points relative to the initial reference configuration 0Ω with coordinates 0x =

0xiêi. The kinematic strain-displacement relation is taken by assuming small deformations

ε
t
i j =

1
2

(
∂ ui

∂ 0x j
+

∂ u j

∂ 0xi

)
. (33)
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The strong form of the viscoelastic equation is written with respect to reference coordinates

The equilibrium equation of the viscoelasticity model is taken as a force balance describing

the time-dependent deformation of solids in response to applied loads. The solution of the

equilibrium equation is a displacement field u(X, t) representing the positions of points

relative to some reference configuration with coordinates X , and thus describes motion

through a Lagrangian frame of reference. In indicial form, the equilibrium equation is

written as,
∂ σi j

∂ 0x j
+bi = 0 on 0

Ω, (34)

with Dirichlet and Neumann boundary conditions

ui = ūi on 0
Γ

D, (35)

σi jn̂ j = T̄i on 0
Γ

N,

where σi j and bi are components of the Cauchy stress tensor and external body force vec-

tor, respectively; ū is a Dirichlet boundary condition (i.e., applied displacement); n̂ is an

outward normal unit vector along the boundary; and T̄ is a vector of applied tractions. The

full details of the finite element implementation of this total Lagrangian formulation can be

found in [Duddu and Waisman, 2013c].
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Appendix G Lower-order alternatives to mixed finite elements

It is well known that solving the Stokes equations with equal-order interpolation of ve-

locity and pressure does not satisfy the Ladyzhenskaya–Babuška–Brezzi (LBB) stability

condition, thus leading to “checkerboard” oscillations in the pressure solution. To avoid

this, a mixed-order finite element is typically employed which uses quadratic (P2) or cubic

(P3) interpolation for the velocity field, while using a linear (P1) interpolation for pres-

sure. Increasing the order of interpolation can significantly increase the computational

expense, however, especially for large-scale simulations and 3D problems. Thus, several

stabilized lower-order methods have been proposed, namely, the stabilized P1-P1 [Hughes

and Franca, 1987, Franca and Stenberg, 1991, Gunzburger and Nicolaides, 1993] and the

MINI-element [Arnold et al., 1984].

Appendix G.1 Stabilized P1-P1 element

The stabilized P1-P1 element assumes equal-order (linear) interpolation for velocity

and pressure and satisfies the LBB condition by introducing a stabilization term (high-

lighted with blue text) to the variational form. Following [Hughes and Franca, 1987, Franca

and Stenberg, 1991], we write the weak form as,
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Find n+1v ∈ V and n+1 p̃ ∈S such that ∀w ∈ V and q ∈S :

∫
nΩ

∂ wi

∂ nx j

{
[1− nD]η

(n+1v
)[∂ n+1vi

∂ nx j
+

∂ n+1v j

∂ nxi

]}
dΩ

−
∫

nΩ

[1− nD]
∂ wi

∂ nxi

n+1 p̃ dΩ+ζ h2
∫

nΩ

(
∂ q

∂ nx j

∂ p
∂ nx j

)
dΩ

−
∫

nΩ

ψ (nD)wi
nbi dΩ−ζ h2

∫
nΩ

(
∂ q

∂ nx j
ψ (nD)nb j

)
dΩ∫

nΓN
wi

nT̄i dΓ = 0

∫
nΩ

ψ (nD)q
∂ n+1vi

∂ nxi
dΩ = 0



on n
Ω, (36)

where h is the element size and ζ = 2× 10−10 is a chosen stabilization parameter. The

first stabilization term in Equation (36) essentially is the ε (∇q,∇p) term in [Brezzi and

Pitkaranta, 1984] circumvents the LBB condition, and the second stabilization term makes

the formulation mathematically consistent [Hughes and Stewart, 1996]. However, the

drawback of this particular stabilized formulation is that the choice of ζ is typically made

in an ad hoc manner [Turner et al., 2009]. While the stabilized P1-P1 element alleviates

the checkerboard oscillations in pressure, we found that the incompressibility condition is

still not well enforced. This can lead to deviatoric stresses inconsistent with those predicted

by P3-P1 or P2-P1 elements, thus changing the Hayhurst stress around the notch tip and

causing different rates of crevasse growth.

Appendix G.2 MINI-element

Another stable alternative to mixed-order elements is the enriched MINI-element [Arnold

et al., 1984]. The MINI-element assumes linear velocity interpolants enriched using a bub-

ble function, and thus has fewer degrees of freedom than a mixed-order finite element.

A caveat is that triangular (T3) and tetrahedral (T4) MINI-elements alleviate oscillations
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Figure G9: Domain setup with gravitational body force ρiceg and a 10 m × 10 m notch
placed along the top surface of the slab, where H = 125 m and L = 500 m. The notch is
centered at the “three-quarter” mark, that is, 375 m from the left edge of the slab.

in pressure, but quadrilateral (Q4) and hexahedral (Q8) MINI-elements can suffer from

instability, according to Turner et al. [Turner et al., 2009]. Herein, we compare the per-

formance of MINI-elements to P3-P1, P2-P1, and stabilized P1-P1 elements by simulating

crack growth under gravity-driven creep flow for 3 months. The performance of the MINI-

element is evaluated by plotting the predicted crevasse depth versus time, which is the most

important result from a ice sheet stability perspective. The direct enforcement of the free-

slip Dirichlet boundary condition is difficult in FEniCS software, and so we implement

no-slip boundary conditions along the the left and bottom boundaries instead; however, we

note that weak formulations using penalty or Nitsche’s method can be used to implement

free slip conditions, which will be considered in future studies. The purpose of this study

is to simply check the viability of the MINI-element for simulating crevasse propagation.

All simulations are performed on a rectangular slab of ice that is 500 m × 125 m (length L

× height H), as shown in Figure G9. A 10 m × 10 m notch is centered at the three-quarter

mark along the slab, that is, 375 m from the left edge.

The results of this study are shown in Figure G10 wherein we plot the normalized

crevasse depth d versus time t. In Table G4, we also list the crack tip damage initiation

times and final normalized crevasse depth for each element type considered. The differ-

ent elements predict very similar crack tip damage initiation times (i.e., around 9 days)
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Table G4: Crack tip damage initiation time (in days) and final normalized crevasse depth d
after 90 days for the gravity-driven flow problem with no-slip boundary conditions.

Element Damage Initiation Final Depth
MINI 8.26 days 46.6%

Stab. P1-P1 9.25 days 48.2%
P2-P1 9.21 days 51.3%
P3-P1 8.88 days 52.8%

and similar crack growth rates following damage initiation; however the P3-P1 and P2-P1

elements ultimately predict deeper crack penetration than the MINI- and stabilized P1-P1

elements. Although the MINI- and stabilized P1-P1 elements slightly under-predict the

final crevasse depth, the simulations ran more than four times faster than the simulation

using P3-P1 elements on the same mesh (i.e., the same number of triangular cells). We

conclude from this study that the MINI-element is a stable alternative to the P3-P1 ele-

ment; however, the stabilized P1-P1 element is easier to implement in FEniCS software

and runs slightly faster than the MINI-element due to fewer degrees of freedom. The stabi-

lized P1-P1 element also agrees slightly better with the P3-P1 and P2-P1 elements in terms

of crack tip damage initiation time and final crevasse depth. Further, developments in sta-

bilized methods is required to address the discrepancies in damage evolution in nonlinear

viscous media.
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Figure G10: Crevasse depth (d) normalized with the domain height (H = 125 m) plotted
as a function of time over 90 days for different finite element types.
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Appendix H Newton’s method

The Newton’s method is an alternative scheme to the Picard (fixed point) iterations

presented Algorithm 5 in Chapter 4 for solving the nonlinear Stokes equations [Isaac et al.,

2015]. Whereas the Picard iteration scheme linearizes the PDE by making the nonlinear

viscosity a function of velocity n+1
(m)
v from the previous iteration, the Newton’s method

linearizes the PDE by introducing velocity and pressure increments and linearizing the

viscosity using a Taylor expansion,

η

(
n+1
(m+1)v

)
= η

(
n+1
(m) v

)
+

∂η

∂
n+1
(m)
v
· n+1

δv, (37)

where n+1δv is the velocity increment and n+1δ p̃ is the pressure increment defined as

n+1
δv = n+1

(m+1)v−
n+1
(m) v,

n+1
δ p̃ = n+1

(m+1) p̃− n+1
(m) p̃,

(38)

between Newton iterations m and m + 1. The derivative term in Equation (37) can be

evaluated by applying the chain rule,

∂η

∂
n+1
(m)
v
· n+1

δv =
∂η

∂DII

(
n+1
(m)
v
) ∂DII

(
n+1
(m)
v
)

∂D
(

n+1
(m)
v
) :

∂D
(

n+1
(m)
v
)

∂
n+1
(m)
v
· n+1

δv

=
∂η

∂DII

(
n+1
(m)
v
)D

(
n+1
(m) v

)
: D
(n+1

δv
)
,

(39)

where the term D(·) is the symmetric gradient operator,

D (v) =
1
2

(
∇v+∇v>

)
, (40)
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which yields the strain rate tensor when operating on velocity. Because D(·) is a linear

operator, it follows that

D
(n+1

δv
)
= D

(
n+1
(m+1)v

)
−D

(
n+1
(m) v

)
. (41)

The term DII(·) is the second strain rate invariant given by

DII (v) =
1
2
D (v) : D (v) , (42)

such that ε̇eq =
√

DII (v). The nonlinear viscosity η (v) = 1
2B [DII (v)+ γ]−1/3 with reg-

ularization parameter γ = 10−14. Thus, the derivative of η with respect to DII is taken

as

∂η

∂DII

(
n+1
(m)
v
) =−1

3

 η

(
n+1
(m)
v
)

DII

(
n+1
(m)
v
)
+ γ

 . (43)

Let us now write the weak form of the nonlinear Stokes equations on the current reference

configuration nΩ in tensorial notation at particular iteration m+1:

Find n+1δv ∈ V and n+1δ p̃ ∈S such that ∀w ∈ V and q ∈S :

∫
nΩ

{
D (w) : 2 [1− nD]η

(
n+1
(m+1)v

)
D
(

n+1
(m+1)v

)
− [1− nD] [∇ ·w]

[
n+1
(m+1) p̃

]
−ψ (nD)w · nb

}
dΩ = 0,

∫
nΩ

ψ (nD)q
[
∇ · n+1

(m+1)v
]

dΩ = 0,


(44)

where w is a test function for an appropriate vector space V , and q is a test function for

an appropriate scalar space S . Using Equations (15-21), The Newton linearization of the

above equation can thus be defined as:
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Find n+1δv ∈ V and n+1δ p̃ ∈S such that ∀w ∈ V and q ∈S :

∫
nΩ

D (w) :
{

2 [1− nD]η
(

n+1
(m) v

)
D
(n+1

δv
)}

dΩ

+
∫

nΩ

D (w) :
{

2 [1− nD]η
(

n+1
(m) v

)
D
(

n+1
(m) v

)}
dΩ

+
∫

nΩ

D (w) : {2 [1− nD]
∂η

∂DII

(
n+1
(m)
v
) [D (n+1

(m) v
)

:

D
(n+1

δv
)
]D
(

n+1
(m) v

)
} dΩ

−
∫

nΩ

[1− nD]∇ ·w
[

n+1
δ p̃− n+1

(m) p̃
]

dΩ

−
∫

nΩ

ψ (nD)w · nb dΩ−
∫

nΓN
w · nT̄ dΓ = 0,

∫
nΩ

ψ (nD)q∇ ·
[

n+1
δv+ n+1

(m) v
]

dΩ = 0,



on n
Ω, (45)

The algorithmic implementation is provided below in Algorithm 8. To verify the New-

ton’s method, we repeat the study from Section 4.4.1 wherein show that the nonlinear

Stokes formulation converges to the manufactured solution presented in [Dohrmann and

Bochev, 2004, Worthen et al., 2014] for incompressible flow. This solution is given by

v∗1 = x1 + x2
1−2x1x2 + x3

1−3x1x2
2 + x2

1x2,

v∗2 =−x2−2x1x2 + x2
2−3x2

1x2 + x3
2− x1x2

2, (46)

p∗ = x1x2 + x1 + x2 + x3
1x2

2−4/3.

For this study we employ P2-P1 (Taylor-Hood) elements and take the viscosity parameter

N = 3.5, as was done in Section 4.1. Starting with a 4 × 4 structured mesh over the unit

domain Ω, we progressively refine the mesh by reducing the element size by half. For each
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mesh size we compute the L2 error norms,

εv =

√√√√∑
NP2

k=1 (||v||k−||v∗||k)2

∑
NP2

k=1 (||v∗||k)2 , εp =

√√√√∑
NP1

k=1
(

pk− p∗k
)2

∑
NP1

k=1
(

p∗k
)2 , (47)

for velocity magnitude and pressure, respectively, which are reported in Table H5. In the

above equations, NP1 and NP2 are the number of nodes in the P2 and P1 spaces, respec-

tively; and ||v||k and pk are the velocity magnitude and pressure, respectively, at the k-th

node. The εv and εp error norms and rates of convergence with respect to mesh size are

nearly identical to those reported in Section 4.4.1 (i.e., when using the Picard iteration

scheme), thus verifying the approach. The Newton’s method also required far fewer iter-

ations than the Picard iteration scheme to converge to the solution within the same error

tolerance, as detailed in Table H6. From this verification study we conclude that the New-

ton’s method is computationally more efficient than the Picard iteration scheme under ideal

conditions (e.g., a convex domain). However, upon the introduction of a notch or a damage

zone in the domain, we found that the Newton’s method when implemented in FEniCS is

not guaranteed to converge, whereas the Picard iteration scheme never fails to converge.

We suspect the issue with the Newton’s method arises due to either interpolation errors

during the automated assembly of the system tangent in FEniCS, or, due to the choice of

the regularization parameter γ incorporated to avoid zero-viscosity when assuming zero or

constant velocity initial guess for the Stokes equations. We expect to investigate this further

as we begin to simulate crevasse propagation in 3D using parallel computing and scalable

algorithms.
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Algorithm 8 : Newton iteration scheme for Stokes flow in 2D

Let n+1
(m)
v denote the velocity vector with horizontal components n+1

(m)
v1 and n+1

(m)
v2, respec-

tively, and n+1
(m)

p̃ denote the effective pressure determined on the updated reference config-

uration n+1Ω at Newton iteration m. Likewise let n+1δv and n+1δ p̃ denote the velocity
and effective pressure increments, respectively, between Newton iterations m and m+1 as
presented in Equation (38).

i. Initialize at m = 0 by setting n+1
(0) v = nv and n+1

(0) p̃ = n p̃ everywhere in the domain.

ii. Initialize the maximum relative error ε to be greater than the chosen tolerance εtol.

iii. While ε > εtol:

(a) Solve the Stokes equations (Eq. 45) to obtain the viscosity and pressure incre-
ments, n+1δv and n+1δ p̃, respectively. This is done in FEniCS software using
the solve() function.

(b) Obtain the updated solutions for velocity and pressure: n+1
(m+1)v=

n+1δv+n+1
(m)
v

and n+1
(m+1) p̃ = n+1δ p̃+ n+1

(m)
p̃.

(c) Calculate relative L2 error norms: ε1 =
||n+1δv1||
||n+1
(m+1)v1||

, ε2 =
||n+1δv2||
||n+1
(m+1)v2||

, εp =
||n+1δ p̃||
||n+1
(m+1) p̃|| .

(d) Determine the maximum relative error: ε = max{ε1,ε2,εp}.

(e) Update the iteration count: m = m+1.

iv. Upon convergence: n+1v1 =
n+1
(m+1)v1, n+1v2 =

n+1
(m+1)v2, and n+1 p̃ = n+1

(m+1) p̃.
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Table H5: Numerical verification study of the nonlinear Stokes model using Newton iter-
ation scheme. The L2 error norms εv and εp for velocity magnitude and pressure, respec-
tively, given in Equations (47) are presented for different mesh sizes.

Mesh #DoF εv Rate εp Rate
4 × 4 187 5.36e−4 −− 9.74e−2 −−
8 × 8 659 5.00e−5 3.42 1.54e−2 2.66

16 × 16 2467 3.64e−6 3.78 1.95e−3 2.98
32 × 32 9539 2.36e−7 3.95 2.67e−4 2.87

Table H6: Number of iterations required to converge within the error tolerance εtol = 10−8

for the Picard iteration scheme and the Newton’s method. The asymptotic convergence of
the Newton’s method is evident from the relatively few iterations required for convergence
as compared to the Picard iteration scheme.

Mesh Picard Iterations Newton Iterations
4 × 4 45 6
8 × 8 24 5

16 × 16 26 5
32 × 32 26 5
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Appendix I Proof of the Relation between Restrictive and Horizontal Deviatoric Stress

To show that Rxx = 2τxx, where Rxx is the restrictive stress and τxx is the horizontal de-

viatoric stress in the “far-field” region of an ice slab, we begin with the common expression

of the horizontal Cauchy stress σxx in terms of Rxx and the lithostatic pressure ρig〈H− z〉

as,

σxx = Rxx−ρig〈H− z〉, (48)

where Rxx is given as,

Rxx =
1
2

ρigH− 1
2

ρwg
h2

w
H

. (49)

Let us also recall the definition of the deviatoric stress as a function of the strain rate

(following the constitutive relations),

τ = 2η ε̇, (50)

where ε̇ is the strain rate tensor. Because of the plane strain assumption, the out-of-plane

component ε̇yy = 0. We also assume that ice is incompressible, and so ε̇xx + ε̇yy + ε̇zz = 0.

From these conditions it follows that ε̇xx + ε̇zz = 0, and hence τxx = −τzz. Let us now

consider the definition of the Cauchy stress,

σ = τ − pI, (51)

where p is the hydrostatic pressure and I is the identity tensor. Considering σxx = τxx− p

from the above expression and equating it with Equation 48, we obtain,

Rxx−ρig〈H− z〉= τxx− p. (52)
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Now, assuming that atmospheric pressure is negligible, we obtain σzz = 0 as a natural

boundary condition along the top surface of the ice slab where z = H; and from Equation

51, it follows that τzz− p= 0. Because of the incompressibility and plain strain assumptions

previously discussed, it also follows that −τxx− p = 0. Substituting this latter expression,

which is only valid at z = H, into the expression , we obtain,

Rxx−ρih〈H−H〉= τxx− (−τxx) , (53)

and so it follows that Rxx = 2τxx. Because Rxx and τxx are both constant through the depth

of the ice slab, this relation holds throughout the slab depth. Finite element method (FEM)

results show good agreement with this conclusion, as shown by the blue dashed lines in

Figure L13 in this document.
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Appendix J Procedure for solving the Weertman [1973] model

In this section, we describe the algorithmic procedure for evaluating the Weertman

[1973] dislocation mechanics-based model. The surface crevasse depth ds is calculated

by evaluating the crack opening displacement function D(z′,ds) for the greatest value of

ds such that D(z′,ds) > 0 for all z′ ∈ [0,ds], where z′ = H − z is the vertical coordinate

measured from the top of the ice slab. In other words, the crevasse depth ds is taken as

the greatest depth for which the crack opening displacement (i.e., the separation distance

between crevasse walls) is positive for all points along the crevasse. The the crack opening

displacement function D(z′,ds) is written as,

D(z′,ds) =
2(1−ν)

µ

(
ρig
π

{√
d2

s − (z′)2
(

ds−
ρw

ρi

√
d2

s − (h′)2
)

−(z′)2 log

[
ds +

√
d2

s − (z′)2

(z′)

]
+

ρw

2ρi
((z′)2 +(h′)2) log

∣∣∣∣∣
√

d2
s − (h′)2 +

√
d2

s − (z′)2√
d2

s − (h′)2−
√

d2
s − (z′)2

∣∣∣∣∣

−z′h′
ρw

ρi
log

∣∣∣∣∣(z′)
√

d2
s − (h′)2 +h′

√
d2

s − (z′)2

(z′)
√

d2
s − (h′)2−h′

√
d2

s − (z′)2

∣∣∣∣∣
}
+(Rxx−R′xx)

√
d2

s − (z′)2

)
, (54)

where the dry distance h′ = 〈ds−hs〉, and the quantity R′xx is given by,

R′xx = 2
ρig
π

(
ds +h′

ρw

ρi

[
π

2
− sin−1 h′

ds

]
− ρw

ρi

√
d2

s − (h′)2
)
. (55)

The parameters µ and ν represent the shear modulus and Poisson’s ratio, respectively;

however, the crevasse penetration depth is independent of these values. Because Equation

54 is a highly nonlinear function of the surface crevasse depth ds, we must use an iterative

procedure for computing ds such that D(z′,ds) > 0 for all z′ ∈ [0,ds]. To this end, we

implement the bisection method as described in Algorithm 9.
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Algorithm 9 : Bisection method for solving the Weertman [1973] model

i. Known values: height of the slab H, water level at terminus hw, water level in
crevasse hs.

ii. Compute restrictive stress Rxx =
1
2ρigH− 1

2ρwgh2
w

H .

iii. Initial bisection points: ads = H×10−3; bds = H/2; and cds = H× (1−10−3).

iv. Initialize error as ε = 1.

v. while |ε|> 10−6:

(a) aDmin = min{D(z′, ads)}> 0 ∀ z′ ∈ (0, ads)
bDmin = min

{
D(z′, bds)

}
> 0 ∀ z′ ∈ (0, bds)

cDmin = min{D(z′, cds)}> 0 ∀ z′ ∈ (0, cds)

(b) if aDmin > 0 and bDmin > 0 and cDmin > 0:
The crevasse fully penetrates. ds = H, end loop.

(c) else if aDmin > 0 and bDmin > 0 and cDmin < 0:
The crevasse depth ds is between the bounds bds and cds. Update the bounds
for bisection:
ads =

bds
cds =

cds
bds =

1
2 (

ads +
cds)

Error: ε = (ads− cds)
Continue loop if |ε|> 10−6.

(d) else if aDmin > 0 and bDmin < 0 and cDmin < 0:
The crevasse depth ds is between the bounds ads and bds. Update the bounds
for bisection:
ads =

ads
cds =

bds
bds =

1
2 (

ads +
cds)

Error: ε = (ads− cds)
Continue loop if |ε|> 10−6.

(e) else if aDmin < 0 and bDmin < 0 and cDmin < 0:
There is zero crevasse penetration. ds = 0, end loop.

vi. If the loop terminates with |ε| ≤ 10−6, then take ds =
bds for the last computed value

of bds.
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Appendix K Procedure for solving the van der Veen [1998a] model

In this section, we describe the algorithmic procedure for evaluating the van der Veen

[1998a] linear elastic fracture mechanics (LEFM) model. The penetration depth of sur-

face crevasses is determined by equating the net stress intensity factor (SIF) Knet
I to the

experimentally measured critical SIF KIc as,

Knet
I = K(1)

I (Rxx,ds)+K(2)
I (ds)+K(3)

I (hs,ds) = KIc (56)

where K(1)
I , K(2)

I , and K(3)
I are the SIFs resulting from the restrictive stress, ice overbur-

den pressure, and hydraulic pressure exerted on crevasse walls for water-filled crevasses,

respectively. The terms for K(1)
I , K(2)

I , and K(3)
I are given as,

K(1)
I = F(λ )Rxx

√
πds, (57a)

K(2)
I =

∫ ds

0

[−2ρigz′√
πds

G(λ ,γ)

]
dz′, (57b)

K(3)
I =

∫ ds

0

[
2ρwg〈z′−h′〉√

πds
G(λ ,γ)

]
dz′, (57c)

where z′ = H− z is the vertical coordinate measured from the top of the ice slab, the dry

depth h′ = ds− hs, the terms λ = ds/H and γ = z′/ds, and the weighting functions F(λ )

and G(λ ,γ) are given by,

F(λ ) = 1.12−0.23λ +10.55λ
2−21.72λ

3 +30.39λ
4, (58)

and

G(λ ,γ) =

[
3.52(1− γ)

(1−λ )3/2

]
−
[

4.35−5.28γ

(1−λ )1/2

]
+

[
1.3−0.3γ3/2

(1− γ2)1/2 +0.83−1.76γ

]
[1− (1− γ)λ ] .

(59)
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The SIF terms given in Equation 57 are nonlinear functions of ds, and so an iterative process

is required to solve for ds. To this end, we implement the bisection method as described in

Algorithm 10.
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Algorithm 10 : Bisection method for solving the van der Veen [1998a] model

i. Known values: height of the slab H, water level at terminus hw, water level in
crevasse hs.

ii. Compute restrictive stress Rxx =
1
2ρigH− 1

2ρwgh2
w

H .

iii. Initial bisection points: ads = H×10−3; bds = H/2; and cds = H× (1−10−3).

iv. Initialize error as ε = 1.

v. while |ε|> 10−6:

(a) aKnet
I = K(1)

I (Rxx,
ads)+K(2)

I (ads)+K(3)
I (hs,

ads)
bKnet

I = K(1)
I (Rxx,

bds)+K(2)
I (bds)+K(3)

I (hs,
bds)

cKnet
I = K(1)

I (Rxx,
cds)+K(2)

I (cds)+K(3)
I (hs,

cds)

(b) if aKnet
I > KIc and bKnet

I > KIc and cKnet
I > KIc:

The crevasse fully penetrates. ds = H, end loop.

(c) else if aKnet
I > KIc and bKnet

I > KIc and cKnet
I < KIc:

The crevasse depth ds is between the bounds bds and cds. Update the bounds
for bisection:
ads =

bds
cds =

cds
bds =

1
2 (

ads +
cds)

Error: ε = (ads− cds)
Continue loop if |ε|> 10−6.

(d) else if aKnet
I > KIc and bKnet

I < KIc and cKnet
I < KIc:

The crevasse depth ds is between the bounds ads and bds. Update the bounds
for bisection:
ads =

ads
cds =

bds
bds =

1
2 (

ads +
cds)

Error: ε = (ads− cds)
Continue loop if |ε|> 10−6.

(e) else if aKnet
I < KIc and bKnet

I < KIc and cKnet
I < KIc:

There is zero crevasse penetration. ds = 0, end loop.

vi. If the loop terminates with |ε| ≤ 10−6, then take ds =
bds for the last computed value

of bds.
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Appendix L Influence of geometric correction factors in LEFM models

In this section, we compare the predictions made by different LEFM-based calving

models for the penetration depth of surface crevasses when geometric correction factors are

included or neglected. We discussed two LEFM-based models, namely, the van der Veen

[1998a] and Krug et al. [2014] models, in Sections 5.2.4 and 5.2.5. Herein we also consider

the van der Veen [1998b] model, which (in a similar fashion to the Krug et al. [2014]

model) calculates the net stress intensity factor (SIF) at the crevasse tip by integrating the

net horizontal stress σxx multiplied by a single weighting function G(λ ,γ). The net SIF is

written as,

KI =
∫ ds

0
G(λ ,γ)

[
Rxx−ρigz′+ρwg〈z′−h′〉

]
dz′, (60)

where z′ = H − z and G(λ ,γ) is given in Equation 59. To compare the van der Veen

[1998a], van der Veen [1998b], and Krug et al. [2014] LEFM models, we plot the normal-

ized crevasse depth ds/H versus the water level hs/ds within the surface crevasse for various

seawater depths hw, while accounting for the geometry of the domain. Domain geometry is

factored into each respective model by setting λ = ds/H in the weighting functions G(λ ,γ)

and M(z′,H). The results of this study are shown in Figures L12(a-c). From these figures

it is evident that the van der Veen [1998b] and Krug et al. [2014] models predict the same

crevasse penetration depths: unless the seawater level hw is close to the floating depth (i.e.,

90%), both models predict full penetration for surface crevasses irrespective of the water

level hs within the crevasse. On the other hand, the van der Veen [1998a] does not predict

full penetration for any surface crevasse unless hs/ds ≈ 0.9.

Next, we eliminate the influence of domain geometry by setting λ = 0 in each LEFM

model. The results of this study are shown in Figures L12(d-f) wherein we plot ds/H

versus hs/ds for varying seawater depths. Interestingly, all three LEFM models predict the

same crevasse penetration depths and also show close agreement with the Weertman [1973]

model when the geometric factors are not included.
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Figure L11: Surface crevasse depth ds normalized with the domain height H = 125 m for
varying water levels hs filling the surface crevasse. The black dotted lines, black solid
lines, orange dashed lines, and blue dot-dash lines correspond to the Weertman [1973],
Krug et al. [2014], van der Veen [1998a], and van der Veen [1998b] models, respectively.
In subfigures (a-c), domain geometry is taken into account by setting λ = ds/H; whereas,
in subfigures (d-f) we disregard domain geometry by setting λ = 0.
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Figure L12: Surface crevasse depth ds normalized with the domain height H = 250 m for
varying water levels hs filling the surface crevasse. The blue dashed, orange solid, and
black dash-dotted lines depict the Weertman [1973] solutions for hw/H = 0%,50% and
90%, respectively. The markers represent simulation (FEM) results using the nonlinearly
viscous rheological model.
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Figure L13: (a) Horizontal Cauchy stress σxx and (b) restrictive stress Rxx plotted against
the normalized depth z/H through a glacier in the “far-field” region (i.e., far from the termi-
nus). The orange solid lines in subfigures (a) and (b) are given by the theory from Equations
48 and 49, respectively. The blue dashed lines and black dotted indicate the represent the
finite element method predicted stresses respectively using incompressible and compress-
ible linear elastic rheological models. Interestingly, when assuming incompressibility, the
far-field stress state is independent of the rheology.
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Appendix M On the appropriateness of geometric factors in LEFM models

In this section, we investigate the appropriateness of the geometric factors included in

the theoretical linear elastic fracture mechanics (LEFM) models [van der Veen, 1998a,b,

Krug et al., 2014] described in section 5.2, which account for the finite geometry of the ice

slab when computing crevasse penetration depths. We perform the investigation by com-

paring the mode I stress intensity factor KI predicted by the theoretical models against the

values predicted using numerical techniques, namely, the displacement correlation method

(DCM), which is implemented within the finite element analysis. Throughout this study

we consider two loading configurations on a rectangular ice slab with length L = 1000 m

and height H = 125 m. The first loading configuration is the “cantilever” case, wherein we

restrain one end of the domain and apply a horizontal stress that varies linearly with depth

on the other end, as depicted in Figure M14(a). The second loading configuration is the

“gravity” case, wherein we apply a free-slip (i.e., rollers) boundary condition to the bottom

of the domain and apply gravity loading as a body force, as depicted in Figure M14(b). Far

from the free edge, we note that the cantilever and gravity loading conditions induce the

same horizontal Cauchy stress profile in the far-field, as shown in Figures M14(c-d).

To compute the mode I stress intensity factor KI, we consider a zero-thickness crack

with depth ds penetrating into the ice slab in the “far-field” region of the ice slab (i.e.,

where σxx varies linearly with depth). The crack is modeled as a seam in the finite element

mesh with initially overlapping nodes along the crack path. As loading is applied to the

domain, the crack interface opens, and we employ the displacement correlation method

(DCM) described in Gupta et al. [2017] to compute the stress intensity factor KI at the

crack tip. The results of this study are shown in Figures M15 through M17, wherein we

plot the numerically computed KI versus crack depth ds and compare against the KI values

predicted by the theoretical LEFM models of van der Veen [1998a], van der Veen [1998b],

and Krug et al. [2014] with and without considering the finite thickness of the ice slab

(we neglect the finite thickness by setting H = +∞, which gives λ = 0, in the respective
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equations). In all figures, the thick black lines with circular markers represent finite ele-

ment (FEM) results; the dotted or dashed lines correspond to the LEFM models with finite

thickness considered; and the solid red lines correspond to the LEFM models without fi-

nite thickness considered. Let us first consider the case of dry crevasses. In Figure M15,

we plot the KI vs. ds curve for the different loading configurations and different seawater

depths at the terminus. The FEM results from the “cantilever” loading configuration show

excellent agreement with the theoretical LEFM models we account for the finite thickness

of the domain. However, the FEM results from the “gravity” loading configuration do not

agree with the theoretical LEFM models with finite thickness accounted for. In fact, in the

gravity case the FEM results agree better with the LEFM models without finite thickness

considered. We observe the same trend when we consider wet surface crevasses (i.e., with

hydraulic pressure applied along the crevasse walls) and wet basal crevasses, as shown in

Figures M16 and M17.

In conclusion, the results indicate that the geometric factors in the LEFM-based calving

models were calibrated and are valid for the cantilever loading configuration. However,

these geometric factors are not applicable to the gravity loading configuration, which is the

loading configuration typically assumed in the glaciology literature [van der Veen, 1998a,b]

when studying the penetration of surface and basal crevasses through grounded ice sheets.
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Figure M14: (a) Cantilever beam with applied loading on the right-hand edge, with a verti-
cal crack with depth ds extending from the top surface in the center of the domain. (b) Ice
slab resting on a free-slip surface under gravity loading, with a vertical crack with depth ds
extending from the top surface in the center of the domain. (c) Horizontal Cauchy stress
σxx in the domain predicted by loading case in subfigure (a) when ds = 0 (i.e., when there
is no crevasse) and hw/H = 0%. (d) Horizontal Cauchy stress σxx in the domain predicted
by loading case in subfigure (b) when ds = 0.
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Figure M15: Comparison of stress intensity factors computed using the finite element
method (FEM) and theoretical techniques [van der Veen, 1998a,b, Krug et al., 2014] for
dry surface crevasses under different conditions. The subfigures on the left-hand side cor-
respond to gravity-driven flow on a free slip surface (see Figure M14b), and the subfigures
on the right-hand side correspond to the loaded cantilever beam (see Figure M14a).
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Figure M16: Comparison of stress intensity factors computed using the finite element
method (FEM) and theoretical techniques [van der Veen, 1998a,b, Krug et al., 2014] for
water-filled surface crevasses under different conditions. The subfigure on the left-hand
side corresponds to gravity-driven flow on a free slip surface (see Figure M14b), and the
subfigure on the right-hand side corresponds to the loaded cantilever beam (see Figure
M14a).
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Figure M17: Comparison of stress intensity factors computed using the finite element
method (FEM) and theoretical techniques [van der Veen, 1998a,b, Krug et al., 2014] for
water-filled basal crevasses under different conditions. The subfigure on the left-hand side
corresponds to gravity-driven flow on a free slip surface, and the subfigure on the right-hand
side corresponds to the loaded cantilever beam.
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