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     CHAPTER I 

 

1 INTRODUCTION AND BACKGROUND 

 

1.1 Introduction 

Although the study of fluid phase behavior and the development of accurate theoretical 

approaches to predict physical properties and phase diagrams is a very traditional area of 

chemical engineering research, it is still a very important and active one. Reliable 

methods for the theoretical prediction of thermophysical properties (such as volumetric, 

thermal and transport properties) and phase equilibria are essential to the chemical 

industry. This is because physical property data is needed in all aspects of plant 

operation, and in particular for the design of separation processes. The need for efficient 

separations is self-evident: separation processes account for 43% of the energy consumed 

and up to 70% of capital investment in chemical plants [1].  Therefore central to 

continued improvements in process and product design, product safety and the 

development of new application areas such as biotechnology, is the need to develop 

accurate tools for physical property prediction.  

An equation of state (EOS) is a very useful and efficient tool with which to 

investigate the thermodynamic properties of fluids.  While numerous equations of state 

have been reported in the literature, traditional equations of state, such as cubic EOS, are 

typically only suitable for describing simple, nearly spherical molecules such as small 

alkanes, nitrogen, etc. When applied to the study of the phase behavior of complex fluids 

such as polymers, and associating fluids like water and alcohols, they generally fail to 
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accurately reproduce the phase behavior without extensive fitting to experimental data. 

Parameters for each system studied are determined by fitting to experimental data leading 

to effective parameters for the molecular size and interactions, which have little or no 

predictive value outside of the region of the phase diagram to which they are fitted. This 

also often leads to the use of unphysical mixing rules and/or temperature-dependent 

and/or concentration-dependent binary parameters.   

Molecular-based equations of state such as the statistical associating fluid theory 

(SAFT) [2]  and the perturbed hard-chain theory (PHCT) [3] have parameters that relate 

to physical interactions and therefore are generally more successful in predicting the 

phase behavior of fluids, rather than merely correlating experimental data. The SAFT 

EOS explicitly takes into account the non-sphericity and association interactions and 

hence can not only be applied to treat the simple spherical molecules, but also chain 

fluids and associating and non-associating fluids.  There have been many extensions and 

variations of the original SAFT expressions (more details are give in section 1.2). In this 

work we focus on SAFT-VR, which describes chain molecules formed from hard-core 

monomers with attractive potentials of variable range (SAFT-VR) [4, 5], typically a 

square well potential. SAFT-VR has been successfully used to describe the phase 

equilibria of a wide range of industrially important systems including polymers [6, 7]. 

However, all of the real fluids modeled to-date with SAFT-VR have been treated as 

homonuclear chains and hence it is not possible to explicitly capture the effects of 

molecular structure and composition on thermodynamic properties and phase behavior. 

Therefore, we have developed a hetero-SAFT-VR model which allows the modeling of 

molecules composed of segments of different size and/or energy parameters and hence 
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explicitly describes heteronuclear chains. In order to validate the hetero-SAFT-VR 

approach, we have performed molecular simulations for the same model as used in the 

theoretical approach. The hetero-SAFT-VR equation has been applied to the study of the 

thermodynamic properties of polyhedral olgiomeric silsesquioxanes and the phase 

behavior of small molecules using a group-contribution-based hetero-SAFT-VR 

equation. With the GC-SAFT-VR method we are able to determine the model parameters 

needed to describe molecules of low molecular weight through to polymers, and 

accurately capture the effects of molecule composition and structure. 

In the remainder of Chapter I, we give a brief description of the SAFT EOSs and 

in particular heteronuclear versions of SAFT. We will also provide some background on 

the molecular simulation techniques used in this work to validate the theory.  In Chapter 

II, we provide a detailed description of the hetero-SAFT-VR equation and also a 

description of the GC-SAFT-VR equation, which is based on the hetero-SAFT-VR 

equation.  In Chapter III, our work on validation of the hetero-SAFT-VR EOS through 

comparison with isothermal-isobaric (NPT) Monte Carlo (MC) and Gibbs ensemble 

Monte Carlo (GEMC) simulations are presented [8]. In Chapter IV, the hetero-SAFT-VR 

approach is applied to study the effect of tether groups on the thermodynamic properties 

and phase behavior of polyhedral oligomeric silsesquioxane (POSS) fluids [9]. In Chapter 

V, the development of a GC-SAFT-VR model to study the phase behavior of pure fluids 

and binary mixture systems is presented [10]. In Chapter VI, the GC-SAFT-VR is 

extended to study the phase properties (VLE and LLE) for polymer solutions using the 

parameters obtained in Chapter V [11]. Finally, conclusions and future work are 

discussed in Chapter VII. 
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1.2 Background 

 

1.2.1 SAFT Equation of State 

An important feature of the SAFT equation of state is that it explicitly takes into account 

the non-sphericity and association interactions of real molecules.  In the SAFT 

formalism, following the seminal work of Wertheim [12-15], the free energy is written as 

the sum of four separate contributions:  

 
A

NkT
=
A
ideal

NkT
+
A
mono

NkT
+
A
chain

NkT
+
A
assoc

NkT
 (1.1) 

where N is the number of molecules, k Boltzmann’s constant, and T the temperature.  

Aideal is the ideal free energy, Amono the contribution to the free energy due to the 

monomer segments, Achain the contribution due to the formation of bonds between 

monomer segments, and Aassoc is the contribution due to association.  Hence, a SAFT 

fluid is a collection of monomers that can form covalent bonds; the monomers interact 

via repulsive and attractive (dispersion) forces, and, in some cases, association 

interactions.  Since the SAFT EOS has a firm basis in statistical mechanical perturbation 

theory for well-defined molecular models, systematic improvement (e.g., by improved 

expressions for the monomer free energy and structure) and extension of the theory (e.g., 

by considering new monomer fluids, bonding schemes and association interactions) is 

possible by comparing the theoretical predictions with computer simulation results on the 

same molecular model. This also results in many versions and applications of SAFT-

based approaches in the literature since the introduction of the original SAFT expressions 

in the late 80’s. By far the most widely used version of the SAFT EOS is the engineering 

version of SAFT developed by Huang and Radosz (HR-SAFT) [16, 17]. HR-SAFT is 
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based on an argon equation of state (the so-called Back equation of state) for the 

dispersion term and a hard-sphere pair-correlation function for the chain term. Pure-

component parameters have been determined for over 100 real fluids, e.g., simple 

inorganics, alkanes, cyclic molecules, aromatics, ethers, ketones, esters, alkenes, 

chlorinated hydrocarbons, water, ammonia, hydrogen sulfide, alkanols, acids, and 

primary and secondary amines, and polymeric substances [18]. Perhaps the simplest 

version of SAFT is SAFT-HS [19], in which chains are modeled as hard-sphere (HS) 

segments with dispersion interactions approximated at the mean-field level of van der 

Waals. SAFT-HS has been successfully used to study the phase behavior and critical 

lines of strongly associating systems, such as the alkanes + water [20], refrigerants + 

hydrogen fluoride [21], and water + alkylpolyoxyeythylenes [22, 23]. SAFT-HS is seen 

to work best in systems with strong association, where the weak dispersion forces 

described by the mean-field approximation are masked by the strong association 

interactions [4]. However, it is not adequate to study systems where the dispersive 

interactions are dominant. Several other versions of SAFT have been proposed that 

provide a better description of the reference fluid and monomer free energy (e.g., 

dispersion interactions).  For example, instead of using hard spheres as the reference fluid 

as used in the original SAFT, HR-SAFT and SAFT-HS equations, Blas and Vega 

proposed the soft-SAFT approach [24] in which the reference fluid is modeled as a 

Lennard Jones fluid.  Soft-SAFT has been used to study pure fluids such as n-alkanes, 1-

alkenes, 1-alcohols and binary/ternary mixtures of n-alkanes [24, 25] and carbon dioxide 

and perfluoroalkanes [26]. However, the Lennard Jones reference term used fitted to 

simulation data for the pure Lennard Jones fluids and so an analytical expression is not 
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used.  Later, Gross and Sadowski developed the perturbed-chain SAFT (PC-SAFT) 

equation [27] which explicitly accounts for the nonsphericity of chain molecules by using 

a hard-chain reference fluid, rather than monomer segments as is used in all other of 

versions of SAFT.  Again, this results in a non-analytical expression for the monomer 

free energy as the model is fitted to the pure-component properties of n-alkanes. The 

chain term and association term in PC-SAFT are the same as those in the original SAFT 

approach. PC-SAFT has been applied to study many systems such as polar fluids [28], 

polymer [29], and copolymer systems [30, 31].   

In this work we focus on SAFT-VR, which describes chain molecules formed 

from hard-core monomers with attractive potentials of variable range (SAFT-VR) [4, 5], 

typically a square well.  In this version of the theory the dispersive interactions are treated 

via a second-order high-temperature perturbation expansion, providing a more rigorous 

description of the thermodynamics than found in simpler versions of the SAFT approach 

[32]. SAFT-VR EOS provides better description of the dispersion interactions than the 

SAFT-HS EOS and also has the advantage over other SAFT equations in that it uses 

analytical expressions to describe the monomer fluids. In this way the theory can be 

readily extended by using different approximations for the reference fluid.  SAFT-VR has 

been successfully used to describe the fluid phase equilibria of a wide range of 

industrially important systems; for example, short alkanes through to simple polymers of 

high molecular weight [6, 32-36], and their binary mixtures [33, 37-42], perfluoroalkanes 

[43, 44] and other fluorinated molecules of industrial importance [45-48], water [49], 

electrolyte solutions [50-52],  and carbon dioxide [42, 53-56], have all been studied. It 
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also has recently been extended to accurately model the critical region [36, 41, 42] and 

rigorously incorporate dipolar interactions into the model chain [57]. 

  

1.2.2 Heteronuclear Versions of the SAFT EOS 

In recent years, heteronuclear versions of SAFT which allow the model chain to be 

composed of segments of different size and/or energy have been proposed by several 

authors [30, 58-68]. The development of the heteronuclear versions of SAFT is mainly 

carried out by modifying the chain term in equation (1.1). One of the first applications of 

hetero-SAFT to chain fluids focused on hard systems and compared the theoretical 

predictions of PVT behavior with simulation data for block, alternate and random 

copolymers [61].  The SAFT predictions were shown to be more accurate than the 

available equations of state for heteronuclear chain fluids [3, 69-71], performing well 

over a range of densities.  Of particular interest is the work of Radosz and co-workers on 

copolymer SAFT [59], which allows for the description of linear and branched 

copolymers based on the original SAFT. In this approach molecules composed of two 

distinct types of segments are considered and the sequence of segments is described 

through a segment fraction, which is the fraction of segments of one type in the chain, 

and bonding fraction, which define all pairs of segment-segment bonds.  Copolymer 

SAFT was initially applied to the engineering version of SAFT proposed by Huang and 

Radosz [16] to model real copolymer systems [59, 72], and later to Lennard-Jones- [73] 

and square-well-based SAFT models [62, 74].  Heteronuclear Lennard Jones chains have 

also been studied by Tang [75] and Blas and Vega [60]; in both cases the 

thermodynamics of heteronuclear dimers were studied.  More recently PC-SAFT has 
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been shown to be successful in modeling polymer systems [29, 65] and has been 

extended to heterosegmented molecules [30, 65] similarly using the bond and segment 

fraction approach suggested by Banasak et al. [59]. However, this yields a statistical (but 

not exact) description of molecular structure.  In this work, we focus on developing a 

heteronuclear-based on SAFT-VR approach in order to explicitly describe the 

heterogeneity of molecular structure and composition and later a group-contribution-

based hetero-SAFT-VR, which will be described in details in Chapter II.  

 

1.2.3 Molecular Simulation 

One of the advantages of the SAFT EOS over conventional cubic equations is that the 

approximations made in developing the SAFT equation can be rigorously tested against 

computer simulation results because the simulations are performed on the same model as 

used in the theory and provide exact properties for the model fluid.  In addition, the 

simulations provide data at the molecular level-molecular on molecular distributions, 

orientations, coordination numbers, lifetimes of complexes, etc., that can be difficult or 

impossible to obtain in the laboratory [76]. 

Monte Carlo (MC) and molecular dynamics (MD) computer simulations allow the 

study of atomic or molecular systems and provide information on structural, 

conformational, and thermodynamic properties of a macroscopic sample. MD also 

provides information on the dynamics of the system. However, using the real time 

evolution for sampling the configuration space imposes a limitation on the sampling rate.  

If one is only interested in simulating the nondynamic properties (e.g., thermodynamic 

properties), MC can be the more efficient alternative.  
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1.2.3.1 Monte Carlo Simulation 

In order to test the hetero-SAFT-VR EOS, we carried out two NPT and GEMC MC 

simulations on the same model (i.e., molecules are modeled as flexible chains in which 

beads are tangentially bonded interacting through a square well potential) as used in the 

theory.   

In the NPT MC simulations, a fixed number of particles, N, which can be a pure 

fluid or a mixture, are placed in a simulation box. The microscopic state of the system is 

specified in terms of positions of the particles and interaction potentials. In order to 

simulate homogeneous bulk phases, periodic boundary condition (PBC), in which the 

simulation box is replicated throughout space to form an infinite lattice, are used to 

mimic the presence of an infinite bulk surrounding the N-particle system. The volume of 

the simulation box is allowed to fluctuate while conditions of temperature and pressure 

are kept constant.  Under these conditions, the MC sampling is carried out to generate an 

ensemble of states.  The random sampling of the configuration space is realized by 

performing a series of trial moves such as particle displacement and reorientation, and 

volume change.  After every trial move, a new trial configuration will be generated. The 

usual procedure to accept/reject the trial configuration is as follows. The probability P of 

acceptance of the displacement move or reorientation move satisfies [77]: 

 P = min 1,exp !"#U( ){ }  (1.2) 

where !U represents energy difference between the trial configuration.  The volume-

change move is accepted with the probability [77]: 

 P = min 1,exp !"#H( ){ }  (1.3) 
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where !H = !U + P!V "
1

#
N ln V + !V( ) /V( )  represents the enthalpy change.  The 

macroscopic properties such as system density are calculated by averaging over the 

configuration states during Monte Carlo sampling of configuration space. 

The Gibbs Ensemble Monte Carlo (GEMC) simulation technique [78] is used to 

study phase coexistence in moderately dense fluids in a single simulation. In GEMC, two 

simulation boxes that are in thermodynamic equilibrium but not in direct contact are used 

to simulate the two coexisting phases and so allow the simulation of phase equilibria 

without an interface.  Properties such as the density of each phase and the composition of 

the coexisting phases in mixture systems can be obtained from the GEMC simulation. .  

The total system of pure fluids is under constant N, V, and T conditions.  In order to 

sample phase space and achieve equilibrium conditions between the two boxes a 

combination of trial moves are preformed, i.e., particle displacement, rotation, volume 

change (i.e., one box changed by ΔV, the other box changed by -ΔV), and particle 

exchange between the two systems. The acceptance displacement, reorientation, and 

volume change moves follow the same rules as equations (1.2) and (1.3). Additionally, 

the acceptance of particle exchange satisfies the following rule [79]: 

 P = min 1,exp !"#G( ){ }  (1.4) 

where !G = !Ui + !Uj +
1

"
ln

Vi N j +1( )
NiVj

#

$
%

&

'
(  represents the Gibbs energy change, i the 

box where particle is removed, and j the box where particle is inserted.  In the particle 

exchange move a molecule is selected at random from each box to be deleted and created 

using the using the Widom particle insertion method [80]. The acceptance probability for 
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a random trial insertion decreases as the density of the liquid phase increases, and 

especially for chain molecules [81], as it becomes more difficult to successfully insert a 

molecule without creating overlaps with other molecules. This can be overcome by using 

the configurational bias Monte Carlo (CBMC) scheme [81-84].  In this approach, part of 

a chain molecule is rebuilt segment by segment. The trial direction of placing a new 

segment is decided based on the distribution of Boltzmann factors as function of angular 

position of the new segment. By biasing the selection of trial directions to a high value of 

Boltzmann factor, the success of inserting of chain molecules without overlapping is 

greatly increased. The bias introduced by the grow procedure can be removed exactly by 

using an adjusted acceptance rule suggested by Frenkel et al. [85].  Through generation 

of chain configurations by successive insertion of the bonded segments of the chain, the 

efficiency of insertion of the chain molecule is increased.  

1.2.3.2 Molecular Dynamics Simulation 

In contrast to MC simulation, the beauty of MD simulation lies in the fact that it is 

governed by Newton’s laws of motion. Hence, the path of the trajectory in the 

configuration space is continuous.  The algorithm for performing a MD simulation is as 

follows: a) the initial positions and velocities of every atom are specified; b) then, using 

potentials (i.e., a force field describing the molecular intra- and inter interactions), forces 

acting on each atom are calculated; c) the motion of every atom (trajectory) is calculated 

by numerically integrating Newton’s equations of motion over the time step (Δt). Steps b) 

and c) are repeated until the time of evolution of the system reaches the desired length of 

time and the averages of measured properties are computed after the system reaches 

equilibrium. 
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MD simulations can be performed under different types of ensembles such as the 

microcanonical (NVE), canonical (NVT), isothermal-isobaric (NPT), etc. Constant 

temperature and pressure can be achieved through the use of a different thermostats and 

barostats, such as those proposed by Berenderson [86, 87] and Nosé and Hoover [88]. 
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    CHAPTER II 

 

2 THE HETERO-SAFT-VR EQUATION 

 

2.1 Hetero-SAFT-VR EOS for Pure Fluids 

In the original SAFT-VR approach, applicable to homonuclear chains, chain molecules 

are formed from tangentially bonded monomer segments. For a pure fluid, all of the 

segments have the same ! ,  "  and !  and interact through an attractive potential of 

variable range.  Specifically, a segment of type i interacts with a segment of type j 

through a square well (SW) potential, 

 U
ij
(r) =

+! if r < "
ij

#$
ij
if "

ij
% r < &

ij
"
ij

0 if r ' &
ij
"
ij

(

)
*

+
*

 (2.1) 

where ! ij  is the diameter of the interaction, !ij  the range and !ij  the well depth of the 

SW potential. Hence, in the original SAFT-VR, ! ij
= ! , !ij = ! , and !ij = !  for all i, j. 

By contrast, in this work we have developed the hetero-SAFT-VR approach to treat 

chains composed of segments of different size and/or energy.  The inter- and intra-

molecular cross interactions between segments are obtained from the Lorentz-Berthelot 

combining rules [89], 

 !
ij
=
!
ii
+!

jj

2
 (2.2) 
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!
jj  (2.3) 

 



 14 

 !
ij
=
!
ii
"
ii
+ !

jj
"

jj

"
ii
+"

jj

 (2.4) 

The general form of the Helmholtz free energy A  within the SAFT framework is 

given by equation (1.1).  We will present each contribution in turn for the treatment of 

pure fluids composed of polyatomic heteronuclear molecules.  We do not give details of 

the association term since the chain fluids considered in this work are non-associating. 

The ideal contribution to the free energy is expressed as: 

 
A
ideal

NkT
= ln(!"3

) #1  (2.5) 

where N  is the total number of molecules, k  Boltzmann’s constant, !  the number 

density of chain molecules and !  the thermal de Broglie wavelength.   

The monomer free energy is given by, 

 A
mono

NkT
= m

A
M

N
s
kT

= ma
M  (2.6) 

where N
s
 is the total number of segments, determined from the product of the total 

number of molecules N  and the number of segments per molecule m .  aM  is free 

energy per monomer segment and in the SAFT-VR equation is approximated by a second 

order high temperature expansion using Barker and Henderson perturbation theory for 

mixtures [90], viz 

 a
M
= a

HS
+ !a

1
+ ! 2

a
2
 (2.7) 

where ! = 1 kT , aHS  is the free energy of the hard sphere reference fluid and a
1
 and a

2
 

are the first and second perturbation terms respectively.  
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The hard sphere reference term aHS  is determined from the expression of Boublik 

[91] and Mansoori and co-workers [92] for multicomponent hard sphere systems, viz 

 a
HS

=
6

!"
s

#2
3

#3
2
$#0

%

&'
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)*
ln(1$#3) +
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where !
s
 is the number density of segments, which is defined as N

s
V , the total number 

of segments divided by the total volume,  and !
l
 is the reduced density given by a sum 

over all segment types i , 
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where !
i
 is diameter of segments of type i  and x

s,i
 is the mole fraction of segments of 

type i .  Note that !
3
 is the volume fraction occupied by the molecules and is generally 

denoted ! . 

The first perturbation term a
1
 describing the mean-attractive energy is obtained 

from the sum of all pair interactions,  

 a
1
= x

s,i

j=1

n

!
i=1

n

! x
s, j

a
1( )

ij
 (2.10) 

where a
1( )

ij
 is obtained from the mean-value theorem as proposed by Gil-Villegas et al. 

[4], 

 
a

1( )
ij
= !2"#s$ij rij

2

% ij

&

' gij
HS

(rij )drij

        = ! #s( ij

VDW
gij
HS

(% ij ;)3

eff
)

 (2.11) 

where  
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 !
ij

VDW
=
2"

3
#
ij

3
$
ij
%
ij

3
&1( )  (2.12) 

Within the van der Waals one-fluid theory the radial distribution function gij
HS
(! ij ;"3

eff
)  is 

approximated by that for a hypothetical pure fluid, hence equation (2.11) becomes: 

 a
1( )

ij
= ! "s# ij

VDW
g
0

HS $ x;% x

eff &ij( )'( )*  (2.13) 

where g
0

HS
(! x;" x

eff
)  is obtained from the Carnahan and Starling equation of state [93], 

  g
0

HS ! x;" x

eff #ij( )$% &' =
1(" x

eff
/ 2

1(" x

eff( )
3

 (2.14) 

The effective packing fraction ! x

eff "ij( )  of the hypothetical pure fluid is obtained within 

the van der Waals one fluid theory from the corresponding packing fraction of the 

mixture !
x
given by, 

 ! x

eff ! x ,"ij( ) = c1 "ij( )! x + c2 "ij( )! x

2
+ c

3
"ij( )! x

3  (2.15) 

where 

 
c

1

c
2

c
3

!

"

#
#

$

%

&
&
=

2.25855  -1.50349  0.249434

-0.669270  1.40049  -0.827739

10.1576   -15.0427  5.30827

!

"

#
#

$

%

&
&

1

'
ij

'
ij

2

!

"

#
#
#

$

%

&
&
&

 (2.16) 

and 

 !
x
=
"

6
#
s
$

x

3  (2.17) 

with 

 !
x

3
= x

s,i

j=1

n

"
i=1

n

" x
s, j
!
ij

3  (2.18) 
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This corresponds to mixing rule MX1b in the original SAFT-VR approach for mixtures 

[5].  We have compared the results obtained from this formulation with the MX3b mixing 

rule [5], in which the actual packing fraction of the system is used to obtain !
3

eff , and 

found that the difference between the two was negligible in most cases.  Therefore 

despite the more rigorous nature of the MX3b approach, we chose MX1b in order to 

avoid convergence problems in the critical region of the phase diagram [5, 33]. 

The second order perturbation term for the monomer excess free energy a
2

is 

expressed as: 

 
a
2
= x

s,i

j=1

n

!
i=1

n

! x
s, j

a
2( )

ij

= x
s,1

2
a
2( )
11
+ 2x

s,1
x
s,2

a
2( )
12
+ x

s,2

2
a
2( )
22

 (2.19) 

where a
2( )

ij
 is obtained through the local compressibility approximation: 

 a
2( )

ij
=
1

2
K

HS!ij"s

# a
1( )

ij

#"s

 (2.20) 

and KHS is the Percus-Yevick expression for the hard-sphere isothermal compressibility, 

 K
HS

=
!
0
(1"!

3
)
4

!
0
(1"!

3
)
2
+ 6!

1
!
2
(1"!

3
) + 9!

2

3
 (2.21) 

Finally the contribution due to chain formation from the monomer segments is 

given in terms of the background correlation function yij
SW , 

 A
chain

NkT
= ! ln yij

SW

ij  bonds

" # ij( )  (2.22) 

where the sum is over all bonds in the chain molecule,  
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 yij
SW ! ij( ) = exp "#$ij( )gijSW ! ij( )  (2.23) 

The radial distribution function for the square well monomers gij
SW

! ij( )  in equation 

(2.23) is approximated by a first-order high-temperature perturbation expansion: 

 gij
SW ! ij ;"3( ) = gijHS ! ij ;"3( ) + #$ijg1

SW ! ij( )  (2.24) 

where the contact value of the radial distribution function gij
HS ! ij ;"3( )  at the actual 

packing fraction !
3
 is obtained from the expression  of Boublik [91], 

 gij
HS
(! ij ;"3) =

1

1#"
3

+ 3
Dij"3

1#"
3( )
2
+ 2

Dij"3( )
2

1#"
3( )
3

 (2.25) 

where  

 

D
ij
=

!
ii
!

jj
x
s,i
!
ii

2

i=1

n

"

!
ii
+!

jj( ) x
s,i
!
ii

3

i=1

n

"

    =
!
ii
!

jj
x
s,1
!

11

2
+ x

s,2
!

22

2( )
!
ii
+!

jj( ) xs,1!11

3
+ x

s,2
!

22

3( )

 (2.26) 

and g
1

SW
! ij( )  is determined using the Clausius virial theorem and the first derivative of 

the free energy with respect to the density [4] giving: 

 g
1

SW ! ij( ) =
1

2"#ij! ij

3
3

$ a
1( )

ij

$%s

&

'
(

)

*
+ ,

-ij
%s

$ a
1( )

ij

$-ij

.

/
0
0

1

2
3
3

 (2.27) 
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2.2 GC-SAFT-VR EOS for Mixtures 

The GC-SAFT-VR approach, which is developed based on the hetero-SAFT-VR 

approach, also models fluids as chains composed of segments of different size and/or 

energy.  Within the GC-SAFT-VR, n-alkanes are modeled as chains of CH2 groups 

capped by a CH3 group at each end.  Once parameters for the CH2 and CH3 groups have 

been determined several other key functional groups can be defined and parameterized, 

allowing us to model a wide range of organic molecules using the GC-SAFT-VR 

approach. For example to study branched alkanes and ketones only a single additional 

group is needed in each case; the CH group and the carbonyl (C=O) group respectively.  

As in the hetero-SAFT-VR approach, the segments representing different types of 

chemical groups, interact via a square well potential that is characterized by three 

parameters; the segment diameter ! , well depth ! , and potential range ! . The inter- and 

intra-molecular cross interactions between segment i in chain k and segment j in chain l 

are obtained from the Lorentz-Berthelot combining rules [89], 

 ! ki,lj =
! ki,ki +! lj ,lj

2
 (2.28) 

 !ki,lj = !ki,ki!lj ,lj  (2.29) 

 !ki,lj =
!ki,ki" ki,ki + !lj ,lj" lj ,lj

" ki,ki +" lj ,lj

 (2.30) 

Within the GC-SAFT-VR approach, the free energy is written as the sum of four 

separate contributions as in equation (1.1). The expressions for aassoc are not included in 

this work since the systems studied are not associating fluids.  The general expressions 

for each of the remaining terms (i.e., Aideal , Amono , and Achain ) for a mixture system 
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composed of heteronuclear chain molecules are presented below.  These expressions can 

also be simplified to the equations for pure heteronuclear fluids, similarly to those 

equations given in the previous section 2.1. 

The ideal helmholtz free energy is given by 

 
A
ideal

NkT
= x

k
ln!

k
"

k

3

k=1

n

# $1  (2.31) 

where n represents the number of pure components, !
k
=
N

k

V
 the number density of 

chains of component k, xk the mole fractions of chain k in the mixture, and !
k

the thermal 

de Broglie wavelength. 

The monomer free energy is given by a second order high temperature expansion 

using Barker and Henderson perturbation theory for mixtures [90], viz, 

 

A
mono

NkT
= x

k
m

ki

i=1

n 'k

!
k=1

n

!
A
M

N
s
kT

= x
k
m

ki

i=1

n 'k

!
k=1

n

! a
M
= x

k
m

ki

i=1

n 'k

!
k=1

n

! a
HS

+ "a
1
+ " 2

a
2( )

 (2.32) 

where n’k  is the number of types of segment i in a chain of component k and m
ki

 the 

number of segments of type i in chains of component k.  

The hard sphere reference term aHS  uses the same expression as equation (2.8), 

where !
s
 is the number density of segments, which is defined as N

s
V , the total number 

of segments divided by the total volume, and !
l
 is the reduced density given by a sum 

over all segments, 

 !
l
=
"
6
#
s

x
s,ki
($

ki
)
l

i=1

n 'k

%
k=1

n

%
&

'
(

)

*
+  (2.33) 
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where !
ki

 is diameter of segments of type ki  (i.e., segment i in chain k ) and x
s,ki

  the 

mole fraction of segments of type ki , is expressed as  

 x
s,ki

=
x
k
m

ki

x
k
m

ki

i=1

n 'k

!
k=1

n

!

 (2.34)  

The first perturbation term a
1
 describing the mean-attractive energy is obtained 

from the sum of all pair interactions,  

 a
1
= xs,ki xs,lj a1( )

ki,lj
i=1

n 'k

!
k=1

n

!
j=1

n 'l

!
l=1

n

!  (2.35) 

where a
1( )

ki,lj
 is obtained from the mean-value theorem as proposed by Gil-Villegas et al. 

[4] and expressed through the radial distribution function g
0

HS ! x;" x

eff #ki,lj( )$% &'  by using 

the van der Waals one fluid theory, 

 

a
1( )

ki,lj
= !2"#s$ki,lj rki,lj

2

% ki ,lj

&

' gki,lj
HS

(rki,lj )drki,lj

        = ! #s

2"
3
% ki,lj

3 $ki,lj (ki,lj

3 !1( )gki,ljHS
(% ki,lj ;)3

eff
)

= !#s

2"
3
% ki,lj

3 $ki,lj (ki,lj

3 !1( )g0

HS % x;) x

eff (ki,lj( )*+ ,-

 (2.36) 

where g
0

HS
(! x;" x

eff
)  has been obtained previously from equation (2.14). The expression 

for the effective packing fraction ! x

eff  is obtained from the Padé expression proposed  by  

Patel et al. [94].  

 ! x

eff
=
C
1
! x + C2

! x

2

1+ C
3
! x( )

3
 (2.37) 
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c

1

c
2

c
3

!

"

#
#

$

%

&
&
=

'3.16492  13.35007  -14.80567  5.70286

43.00422  -191.66232  273.89683  -128.93337

65.04194   -266.46273  361.04309  -162.69963

!

"

#
#

$

%

&
&

1 (ki,lj

1 (ki,lj

2

1 (ki,lj

3

1 (ki,lj

4

!

"

#
#
#
#
#

$

%

&
&
&
&
&

 (2.38) 

where 

 
! x =

"

6
#s$ x

3

=
"

6
#s xs,ki xs,lj$ ki,lj

3

i=1

n 'k

%
k=1

n

%
j=1

n 'l

%
l=1

n

%
 (2.39) 

The second order perturbation term for the monomer excess free energy a
2

is 

expressed as: 

 a
2
= xs,ki xs,lj a2( )

ki,lj
i=1

n 'k

!
k=1

n

!
j=1

n 'l

!
l=1

n

!  (2.40) 

where a
2( )

ki,lj
 is obtained through the local compressibility approximation: 

 a
2( )

ki,lj
=
1

2
K

HS!ki,lj"s

# a
1( )

ki,lj

#"s

 (2.41) 

and KHS is given in equation (2.21). 

Here we give the general expression for the chain term achain for a mixture of 

heteronuclear molecules, 

 A
chain

NkT
= ! xk ln yki,kj

SW
" ki,kj( )

ij  bonds

#
k=1

n

#  (2.42) 

where the sum is over all bonds in the chain molecule. The background correlation 

function is given by, 

 yki,kj
SW ! ki,kj( ) = exp "#$ki,kj( )gki,kjSW ! ki,kj( )  (2.43) 
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where gki,kj
SW

! ki,kj( )  
is the radial distribution function for the square well monomers and is 

approximated by a first-order high-temperature perturbation expansion.  The exact form 

of equation (2.22) depends on the number of different types of segments and bonds 

between segments in the molecules being studied.  For example, if we consider a binary 

mixture of n-alkanes: n-alkane molecules are composed of CH3 segments (type1) and 

CH2 segments (type2). In this case equation (2.22) becomes: 

 
A
chain

NkT
= !x

1
2 ln y

11,12

SW "
11,12( ) + m

11
! 2( ) ln y11,11

SW "
11,11( ) + m

12
!1( ) ln y12,12

SW "
12,12( )#$ %&

!x
2
2 ln y

21,22

SW "
21,22( ) + m

21
! 2( ) ln y21,21

SW "
21,21( ) + m

22
!1( ) ln y22,22

SW "
22,22( )#$ %&

 (2.44) 

In the case of a single-branched alkane such as 3-ethylpentane, an additional 

segment (type 3) to represent the CH group is introduced and equation (2.22) becomes: 

 
A
chain

NkT
= !

3ln y
1,3

SW "
1,3( ) + 3ln y2,3

SW "
2,3( ) + m

1
! 3( ) ln y1,1

SW "
1,1( )

+ m
2
! 3( ) ln y2,2

SW "
2,2( ) + m

3
!1( ) ln y3,3

SW "
3,3( )

#

$

%
%

&

'

(
(

 (2.45) 
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    Chapter III 

 

3 VALIDATION OF THE HETERO-SAFT-VR EQUATION 
 

3.1 Introduction 

A heteronuclear version of the SAFT-VR equation of state was applied in earlier work to 

dimer fluids and excellent agreement was obtained between simulation data and 

theoretical predictions for the PVT behavior of the systems studied [64].  Here we extend 

the hetero-SAFT-VR approach to chain fluids as a move towards more realistic models of 

polymers and small molecules composed of different functional groups and rigorously 

test the predictions against both PVT and phase equilibrium simulation data.  The 

theoretical predictions are compared to isothermal-isobaric (NPT) and Gibbs ensemble 

Monte Carlo (GEMC) simulations of symmetric and asymmetric diblock chain 

molecules.  The remainder of this chapter is organized as follows.  In section 3.2 the 

molecular model systems studied are presented.  In section 3.3 details of the simulations 

performed are given, the results of which are compared to the theoretical predictions in 

section 3.4. Finally conclusions are drawn in section 3.5. 

 

3.2 Theory and Model Systems Studied 

A total of 18 diblock fluids have been studied over a range of state conditions with chain 

lengths of m = 4, 6, and 8.  For each system the diblock chains are composed of segments 

with different size and/or different energy of interaction.  The details of each system 

studied are given in Table 1.   
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Table 1: Potential model parameters for the symmetric and asymmetric diblock chain 
fluids studied.  m1 and m2 are the number of segments of type 1 and type 2 respectively. 
 !

2
/!

1
 is the ratio of the hard core diameters of segments of type 2 to type 1, !

2
/ !

1
 the 

ratio of the depth of the attractive interaction between segments of type 2 and type 1 and 
!  the range of the potential.  
 

System m2 m1 σ2/σ1 ε2/ε1 λ  

1 2 2 1 1.5 1.5 
2 2 2 1 0.5 1.5 
3 2 2 2 1.5 1.5 
4 2 2 2 1.0 1.5 
5 2 2 2 0.5 1.5 
6 2 2 2 1.0 1.4 
7 2 2 2 1.0 1.6 
8 4 4 1 1.5 1.5 
9 4 4 1 0.5 1.5 

10 4 4 2 1.5 1.5 
11 4 4 2 1.0 1.5 
12 4 4 2 0.5 1.5 
13 2 4 2 1.5 1.5 
14 2 4 2 1.0 1.5 
15 2 4 2 0.5 1.5 
16 2 6 2 1.5 1.5 
17 2 6 2 1.0 1.5 
18 2 6 2 0.5 1.5 

 

We use the hetero-SAFT-VR for pure fluids given in section 2.1 to study the 

diblock systems in this work. For the specific case of diblock chains equation (2.22) 

becomes 

 
A
chain

NkT
= ! m

1
!1( ) ln y11

SW
"
11( ) ! ln y12

SW
"
12( ) ! m

2
!1( ) ln y22

SW
"
22( )  (3.1) 
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3.3 Simulation Details 

We have performed Monte Carlo (MC) simulations to determine the PVT and phase 

behavior of 18 model diblock chain fluids (listed in Table 1) to compare with the 

theoretical predictions and test the accuracy of the hetero-SAFT-VR approach for diblock 

chains. 

Isothermal-isobaric (NPT) MC simulations have been performed for each fluid 

studied at several state conditions to ensure a wide range of temperatures and pressures 

are examined.  Initial configurations were generated by placing molecules on a face 

centred cubic lattice; simulations at higher pressure, and hence density, were started from 

this equilibrated configuration and allowed to re-equilibrate to the corresponding density.  

The simulations were performed with N = 128 molecules for all fluids. The usual periodic 

boundary conditions and minimum image convention were applied.  In order to test the 

NPT MC code developed for heteronuclear chain fluids comparisons were made, and 

agreement achieved, between the results obtained in this work and the work of Gulati and 

Hall [95], who studied symmetric  square-well diblock 4-mer, 8-mer, and 16-mer chains 

at a single reduced temperature using continuous canonical molecular dynamics.  

GEMC simulations have also been performed for selected fluids to determine the 

fluid phase diagram.  The initial configurations for each simulation were taken from 

equilibrated NPT runs at either densities approximately mid way between those for the 

liquid and vapor phase at each state condition or close to the corresponding theoretical 

solutions. Simulations were performed with N = 256 molecules.  As for the NPT 

simulations the usual periodic boundary conditions and minimum image convention were 

applied. 
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In both the NPT and GEMC simulations one cycle consisted of N attempted MC 

moves (chosen randomly from displacement and reorientation), one volume change and a 

specified number of attempted re-growths (NPT) or insertions (GEMC) of randomly 

selected molecules using continuum configurational bias sampling [96]. The maximum 

displacement and volume changes were adjusted to give an acceptance ratio of between 

30 and 40 %.  The number of attempted re-growths/insertions were controlled so that 

between 1 and 3% of the molecules are re-grown or inserted each cycle. The 

thermodynamic properties of the system were obtained as ensemble averages and the 

errors estimated by determining the standard deviation.  An initial simulation of 50,000 - 

250,000 cycles was performed to equilibrate the system, depending upon pressure and 

chain length, before averaging for between 250,000 and 1,000,000 cycles. 

 

3.4 Results 

Twelve symmetric and 6 asymmetric diblock chain fluids have been studied; Systems 1 - 

7 are symmetric diblock 4-mer fluids, systems 8 - 12 symmetric diblock 8-mer fluids, 

systems 13 - 15 asymmetric diblock 6-mer fluids, and systems 16 - 18 asymmetric 

diblock 8-mer fluids.  For each chain length we consider molecules in which; the 

segments are of the same size but have different well depths (systems 1, 2, 8, and 9); the 

segments are of different sizes but have the same well depth (systems 4, 6, 7, 11, 14 and 

17); the segments have different sizes and different values of the well depth (systems 3, 5, 

10, 12, 13, 15, 16 and 18).  The details of each system are given in Table 1.  For each 

system we have studied isotherms at reduced temperatures of T*= 2, 3, 4, and 5, where 

T
*
= kT / !

1
.  The hetero-SAFT-VR EOS predictions are compared against NPT MC 
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simulation data (reported in Table 2 - Table 5) and GEMC simulation data (given in 

Table 6 - Table 7). 
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Table 2: NPT MC simulation results for the symmetric diblock 4-mer fluids studied 
(systems 1 - 7).  The reduced temperature is given by T* = kT / !

1
, the pressure as 

P* = P!
1

3
/ "

1
, and the energy is defined per segment as E* = E / N

s
!
1
. 

 

System T *  P
*  !  E

*  System T *  P
*  !  E

*  
1 2 2.2134 0.402 ± 0.005 -5.97 ± 0.09 4 4 0.5633 0.304 ± 0.007 -2.99 ± 0.09 
 3 0.2327 0.172 ± 0.012 -2.40 ± 0.16   1.8327 0.401 ± 0.005 -4.23 ± 0.08 
  1.0840 0.298 ± 0.007 -4.04 ± 0.13  5 0.2691 0.204 ± 0.008 -1.84 ± 0.09 
  5.8699 0.402 ± 0.005 -5.81 ± 0.10   0.8170 0.304 ± 0.006 -2.93 ± 0.09 
 4 0.6761 0.194 ± 0.008 -2.43 ± 0.12   2.5078 0.401 ± 0.005 -4.19 ± 0.08 
  2.4281 0.299 ± 0.006 -3.95 ± 0.12 5 2 0.0767 0.211 ± 0.010 -1.33 ± 0.07 
  9.5555 0.402 ± 0.005 -5.72 ± 0.09   0.2340 0.308 ± 0.007 -1.97 ± 0.06 
 5 1.1220 0.199 ± 0.008 -2.39 ± 0.12   0.8091 0.402 ± 0.005 -2.71 ± 0.05 
  3.7827 0.301 ± 0.006 -3.91 ± 0.11  3 0.1633 0.206 ± 0.008 -1.18 ± 0.06 
  13.2528 0.402 ± 0.005 -5.68 ± 0.09   0.4866 0.304 ± 0.007 -1.85 ± 0.06 

2 2 0.2417 0.188 ± 0.009 -1.47 ± 0.08   1.4836 0.402 ± 0.005 -2.64 ± 0.05 
  0.9536 0.298 ± 0.007 -2.36 ± 0.07  4 0.2499 0.205 ± 0.007 -1.13 ± 0.05 
  4.3166 0.402 ± 0.005 -3.40 ± 0.06   0.7408 0.304 ± 0.006 -1.80 ± 0.05 
 3 0.6868 0.200 ± 0.008 -1.42 ± 0.07   2.1597 0.402 ± 0.005 -2.59 ± 0.05 
  2.3051 0.300 ± 0.006 -2.29 ± 0.06  5 0.3367 0.205 ± 0.007 -1.10 ± 0.05 
  8.0106 0.401 ± 0.005 -3.34 ± 0.05   0.9957 0.303 ± 0.006 -1.77 ± 0.05 
 4 1.1342 0.201 ± 0.007 -1.37 ± 0.06   2.8364 0.401 ± 0.004 -2.57 ± 0.05 
  3.6660 0.302 ± 0.006 -2.27 ± 0.07 6 2 0.0472 0.211 ± 0.013 -1.77 ± 0.11 
  11.7152 0.401 ± 0.004 -3.30 ± 0.05   0.1466 0.312 ± 0.009 -2.59 ± 0.10 
 5 1.5824 0.202 ± 0.006 -1.34 ± 0.06   0.5894 0.406 ± 0.006 -3.60 ± 0.08 
  5.0308 0.302 ± 0.006 -2.25 ± 0.06  3 0.1346 0.207 ± 0.009 -1.51 ± 0.08 
  15.4240 0.401 ± 0.004 -3.29 ± 0.05   0.3971 0.307 ± 0.007 -2.37 ± 0.08 

3 2 0.2050 0.404 ± 0.006 -6.17 ± 0.11   1.2584 0.404 ± 0.005 -3.44 ± 0.07 
 3 0.0343 0.192 ± 0.017 -2.89 ± 0.21  4 0.2218 0.205 ± 0.008 -1.41 ± 0.07 
  0.1528 0.308 ± 0.009 -4.35 ± 0.16   0.6503 0.305 ± 0.007 -2.28 ± 0.08 
  0.8660 0.402 ± 0.005 -5.93 ± 0.10   1.9318 0.402 ± 0.005 -3.37 ± 0.07 
 4 0.1204 0.203 ± 0.010 -2.71 ± 0.14  5 0.3088 0.204 ± 0.007 -1.35 ± 0.07 
  0.4022 0.306 ± 0.008 -4.15 ± 0.14   0.9045 0.305 ± 0.006 -2.23 ± 0.07 
  1.5353 0.401 ± 0.005 -5.78 ± 0.10   2.6070 0.402 ± 0.005 -3.34 ± 0.07 
 5 0.2068 0.205 ± 0.009 -2.59 ± 0.13 7 2 0.3987 0.402 ± 0.005 -5.46 ± 0.08 
  0.6542 0.305 ± 0.007 -4.04 ± 0.13  3 0.0546 0.206 ± 0.013 -2.72 ± 0.16 
  2.2080 0.401 ± 0.005 -5.72 ± 0.10   0.2266 0.307 ± 0.008 -3.95 ± 0.12 
4 2 0.0099 0.119 ± 0.039 -1.75 ± 0.33   1.0668 0.401 ± 0.005 -5.28 ± 0.08 
  0.0625 0.307 ± 0.011 -3.31 ± 0.13  4 0.1404 0.206 ± 0.010 -2.53 ± 0.13 
  0.4905 0.403 ± 0.005 -4.46 ± 0.08   0.4783 0.305 ± 0.007 -3.80 ± 0.11 
 3 0.0960 0.206 ± 0.010 -2.05 ± 0.11   1.7398 0.401 ± 0.005 -5.20 ± 0.08 
  0.3111 0.306 ± 0.007 -3.09 ± 0.10  5 0.2266 0.205 ± 0.008 -2.42 ± 0.11 
  1.1594 0.402 ± 0.005 -4.31 ± 0.08   0.7316 0.304 ± 0.006 -3.74 ± 0.10 
 4 0.1825 0.206 ± 0.008 -1.92 ± 0.10   2.4147 0.401 ± 0.005 -5.16 ± 0.08 
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Table 3: NPT MC simulation results for the symmetric diblock 8-mer fluids studied 
(systems 8 - 12). The properties are defined as for Table 2. 
 

System T *  P
*  !  E

*  System T *  P
*  !  E

*  
8 2 1.6202 0.395 ± 0.004 -5.60 ± 0.10 11 2 0.0028 0.296 ± 0.012 -3.18 ± 0.11 
 3 0.0360 0.088 ± 0.031 -1.73 ± 0.29   0.3728 0.399 ± 0.004 -4.26 ± 0.06 
  0.6444 0.295 ± 0.005 -3.86 ± 0.09  3 0.0514 0.202 ± 0.009 -2.02 ± 0.09 
  5.0170 0.400 ± 0.005 -5.57 ± 0.11   0.2186 0.309 ± 0.006 -3.01 ± 0.08 
 4 0.4009 0.266 ± 0.009 -3.48 ± 0.12   0.9855 0.401 ± 0.004 -4.14 ± 0.06 
  1.8370 0.300 ± 0.005 -3.81 ± 0.08  4 0.1208 0.206 ± 0.007 -1.88 ± 0.07 
  8.4412 0.399 ± 0.004 -5.46 ± 0.10   0.4381 0.307 ± 0.005 -2.88 ± 0.07 
 5 0.7684 0.199 ± 0.006 -2.33 ± 0.09   1.6025 0.402 ± 0.003 -4.09 ± 0.05 
  3.0404 0.302 ± 0.004 -3.76 ± 0.08  5 0.1904 0.208 ± 0.007 -1.82 ± 0.07 
  11.8767 0.399 ± 0.004 -5.42 ± 0.07   0.6591 0.306 ± 0.005 -2.82 ± 0.07 

9 2 0.1089 0.176 ± 0.010 -1.42 ± 0.07   2.2213 0.401 ± 0.003 -4.05 ± 0.05 
  0.6600 0.297 ± 0.005 -2.28 ± 0.05 12 2 0.0480 0.215 ± 0.009 -1.42 ± 0.06 
  3.7508 0.397 ± 0.004 -3.24 ± 0.05   0.1739 0.309 ± 0.005 -1.98 ± 0.05 
 3 0.4755 0.200 ± 0.006 -1.39 ± 0.05   0.6924 0.401 ± 0.003 -2.65 ± 0.03 
  1.8601 0.302 ± 0.004 -2.22 ± 0.04  3 0.1176 0.211 ± 0.006 -1.23 ± 0.04 
  7.1833 0.399 ± 0.003 -3.20 ± 0.04   0.3937 0.308 ± 0.005 -1.85 ± 0.04 
 4 0.8446 0.203 ± 0.005 -1.34 ± 0.05   1.3106 0.401 ± 0.003 -2.58 ± 0.03 
  3.0698 0.303 ± 0.004 -2.19 ± 0.05  4 0.1872 0.210 ± 0.006 -1.16 ± 0.04 
  10.6258 0.398 ± 0.003 -3.17 ± 0.04   0.6152 0.307 ± 0.004 -1.79 ± 0.04 
 5 1.2145 0.204 ± 0.005 -1.31 ± 0.04   1.9304 0.401 ± 0.003 -2.54 ± 0.03 
  4.2834 0.303 ± 0.004 -2.17 ± 0.04  5 0.2570 0.208 ± 0.005 -1.11 ± 0.04 
  14.0724 0.398 ± 0.003 -3.15 ± 0.04   0.8373 0.305 ± 0.005 -1.74 ± 0.04 

10 2 0.0858 0.396 ± 0.003 -5.73 ± 0.07   2.5509 0.400 ± 0.003 -2.52 ± 0.03 
 3 0.0613 0.303 ± 0.008 -4.11 ± 0.12        
  0.6906 0.401 ± 0.003 -5.63 ± 0.07        
 4 0.0603 0.195 ± 0.010 -2.57 ± 0.12        
  0.2779 0.306 ± 0.006 -3.95 ± 0.10        
  1.3037 0.399 ± 0.003 -5.49 ± 0.06        
 5 0.1296 0.203 ± 0.007 -2.48 ± 0.10        
  0.4972 0.307 ± 0.005 -3.86 ± 0.09        
  1.9201 0.400 ± 0.003 -5.44 ± 0.06        
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Table 4: NPT MC simulation results for the asymmetric diblock 6-mer (systems 13-15) 
and 8-mer (systems 16-18) fluids studied. The properties are defined as for Table 2. 
 

System T *  P
*  !  E

*  System T *  P
*  !  E

*  

13 2 0.2135 0.405 ± 0.004 -5.65 ± 0.08 16 2 0.2443 0.398 ± 0.004 -5.24 ± 0.07 
 3 0.0249 0.181 ± 0.018 -2.62 ± 0.18  3 0.0183 0.196 ± 0.012 -2.63 ± 0.12 
  0.1611 0.311 ± 0.008 -4.00 ± 0.12   0.1745 0.307 ± 0.007 -3.73 ± 0.10 
  1.0170 0.405 ± 0.005 -5.44 ± 0.08   1.1804 0.401 ± 0.004 -5.11 ± 0.06 
 4 0.1231 0.205 ± 0.009 -2.52 ± 0.12  4 0.1275 0.206 ± 0.008 -2.41 ± 0.10 
  0.4569 0.307 ± 0.007 -3.79 ± 0.11   0.5132 0.310 ± 0.006 -3.62 ± 0.09 
  1.8309 0.404 ± 0.005 -5.31 ± 0.08   2.1280 0.400 ± 0.004 -5.00 ± 0.06 
 5 0.2215 0.206 ± 0.008 -2.40 ± 0.11  5 0.2370 0.208 ± 0.008 -2.30 ± 0.09 
  0.7557 0.307 ± 0.006 -3.69 ± 0.10   0.8554 0.307 ± 0.005 -3.49 ± 0.08 
  2.6488 0.404 ± 0.004 -5.24 ± 0.08   3.0803 0.401 ± 0.003 -4.97 ± 0.06 

14 2 0.0315 0.311 ± 0.009 -3.33 ± 0.10 17 2 0.0048 0.312 ± 0.009 -3.32 ± 0.08 
  0.5088 0.405 ± 0.005 -4.36 ± 0.07   0.5408 0.402 ± 0.004 -4.28 ± 0.06 
 3 0.0898 0.209 ± 0.009 -2.09 ± 0.09  3 0.0844 0.211 ± 0.009 -2.11 ± 0.09 
  0.3252 0.309 ± 0.007 -3.05 ± 0.09   0.3403 0.308 ± 0.006 -2.99 ± 0.08 
  1.3208 0.404 ± 0.004 -4.20 ± 0.07   1.4853 0.403 ± 0.004 -4.16 ± 0.05 
 4 0.1883 0.208 ± 0.007 -1.93 ± 0.08  4 0.1939 0.209 ± 0.008 -1.92 ± 0.08 
  0.6238 0.306 ± 0.006 -2.92 ± 0.08   0.6818 0.306 ± 0.005 -2.87 ± 0.07 
  2.1388 0.403 ± 0.004 -4.11 ± 0.06   2.4372 0.400 ± 0.005 -4.06 ± 0.05 
 5 0.2869 0.208 ± 0.007 -1.85 ± 0.07  5 0.3035 0.208 ± 0.005 -1.83 ± 0.06 
  0.9243 0.306 ± 0.005 -2.85 ± 0.07   1.0256 0.307 ± 0.005 -2.81 ± 0.07 
  2.9593 0.403 ± 0.004 -4.06 ± 0.06   3.3920 0.401 ± 0.003 -4.01 ± 0.05 

15 2 0.0653 0.219 ± 0.009 -1.64 ± 0.07 18 2 0.0523 0.220 ± 0.009 -1.83 ± 0.07 
  0.2171 0.311 ± 0.006 -2.24 ± 0.06   0.1973 0.312 ± 0.007 -2.41 ± 0.06 
  0.8519 0.404 ± 0.004 -2.98 ± 0.05   0.8940 0.403 ± 0.004 -3.17 ± 0.05 
 3 0.1639 0.212 ± 0.007 -1.40 ± 0.06  3 0.1620 0.211 ± 0.006 -1.51 ± 0.05 
  0.5151 0.307 ± 0.006 -2.06 ± 0.05   0.5372 0.309 ± 0.005 -2.20 ± 0.05 
  1.6703 0.404 ± 0.004 -2.87 ± 0.04   1.8454 0.403 ± 0.003 -3.04 ± 0.03 
 4 0.2626 0.209 ± 0.006 -1.30 ± 0.05  4 0.2717 0.211 ± 0.007 -1.41 ± 0.05 
  0.8158 0.306 ± 0.005 -1.99 ± 0.05   0.8809 0.307 ± 0.005 -2.10 ± 0.05 
  2.4916 0.404 ± 0.004 -2.83 ± 0.05   2.8006 0.402 ± 0.004 -2.98 ± 0.04 
 5 0.3613 0.208 ± 0.006 -1.26 ± 0.05  5 0.3815 0.209 ± 0.005 -1.34 ± 0.05 
  1.1176 0.306 ± 0.005 -1.95 ± 0.05   1.2260 0.306 ± 0.005 -2.05 ± 0.05 
  3.3140 0.403 ± 0.004 -2.79 ± 0.05   3.7575 0.403 ± 0.003 -2.96 ± 0.04 
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Table 5: NPT MC simulation results along the coexistence curve for selected symmetric 
diblock 4-mer and 8-mer fluids. The properties are defined as for Table 2. 
 

System T *  !  E
*  

3 1.2 0.452 ± 0.004 -7.31 ± 0.07 
 1.3 0.442 ± 0.005 -7.10 ± 0.08 
 1.4 0.433 ± 0.005 -6.90 ± 0.08 
 1.5 0.423 ± 0.006 -6.72 ± 0.10 
 1.6 0.413 ± 0.005 -6.50 ± 0.10 
 1.7 0.403 ± 0.006 -6.30 ± 0.11 

4 0.9 0.451 ± 0.004 -5.46 ± 0.05 
 1.0 0.438 ± 0.005 -5.23 ± 0.06 
 1.1 0.424 ± 0.005 -5.03 ± 0.07 
 1.2 0.410 ± 0.006 -4.81 ± 0.08 
 1.3 0.397 ± 0.007 -4.62 ± 0.09 

5 0.76 0.402 ± 0.008 -3.13 ± 0.06 
 0.80 0.394 ± 0.007 -3.04 ± 0.06 

10 1.8 0.401 ± 0.003 -5.86 ± 0.07 
 1.9 0.395 ± 0.004 -5.82 ± 0.08 
 2.0 0.388 ± 0.004 -5.70 ± 0.07 
 2.1 0.380 ± 0.006 -5.54 ± 0.09 
 2.2 0.373 ± 0.005 -5.40 ± 0.09 
 2.3 0.358 ± 0.006 -5.13 ± 0.10 

11 1.3 0.403± 0.004 -4.48± 0.07 
 1.4 0.393± 0.003 -4.35± 0.07 
 1.5 0.389± 0.004 -4.28± 0.07 
 1.6 0.374± 0.005 -4.11± 0.06 
 1.7 0.358± 0.006 -3.91± 0.07 

12 0.86 0.392 ± 0.003 -2.89 ± 0.03 
 0.90 0.382 ± 0.004 -2.85 ± 0.05 
 0.95 0.370 ± 0.005 -2.79 ± 0.04 
 1.00 0.356 ± 0.009 -2.73 ± 0.06 
 1.05 0.344 ± 0.010 -2.66 ± 0.05 
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Table 6: GEMC simulation results for selected symmetric diblock 4-mer and 8-mer fluids. The 
fixed variables during the simulation are defined as for Table 2. The densities ! , number of 
molecules N and reduced energies per segment   E *  in the coexisting vapor and liquid phases are 
labeled v and l, respectively. 
 

System T
*  !

L
 !

v
 N

L
 N

v
 E

L

*  E
v

*  
3 1.7 0.403 ± 0.006 0.0005 ± 0.0000 138 118 -6.28 ± 0.11 -0.49 ± 0.03 
 1.8 0.391 ± 0.004 0.0011 ± 0.0004 240 16 -6.05 ± 0.08 -0.54 ± 0.11 
 1.9 0.382 ± 0.005 0.0023 ± 0.0010 228 28 -5.86 ± 0.10 -0.60 ± 0.11 
 2.0 0.371 ± 0.007 0.0034 ± 0.0003 193 63 -5.64 ± 0.11 -0.62 ± 0.07 
 2.1 0.356 ± 0.008 0.0054 ± 0.0008 182 74 -5.36 ± 0.14 -0.66 ± 0.07 
 2.2 0.343 ± 0.009 0.0097 ± 0.0007 177 79 -5.14 ± 0.14 -0.78 ± 0.09 
 2.3 0.324 ± 0.013 0.0159 ± 0.0016 69 187 -4.82 ± 0.20 -0.92 ± 0.11 
 2.4 0.304 ± 0.012 0.0292 ± 0.0082 224 32 -4.49 ± 0.16 -1.16 ± 0.28 

4 1.3 0.396 ± 0.004 0.0006 ± 0.0002 251 5 -4.60 ± 0.05 -0.44 ± 0.14 
 1.4 0.379 ± 0.006 0.0015 ± 0.0004 245 11 -4.37 ± 0.07 -0.46 ± 0.10 
 1.5 0.362 ± 0.006 0.0034 ± 0.0005 228 28 -4.13 ± 0.08 -0.50 ± 0.08 
 1.6 0.343 ± 0.009 0.0080 ± 0.0011 166 90 -3.87 ± 0.10 -0.60 ± 0.08 
 1.7 0.319 ± 0.012 0.0159 ± 0.0028 190 66 -3.58 ± 0.12 -0.74 ± 0.10 
 1.8 0.277 ± 0.018 0.0284 ± 0.0076 223 33 -3.17 ± 0.14 -0.89 ± 0.20 

5 0.80 0.394 ± 0.005 0.0007 ± 0.0003 251 5 -3.04 ± 0.04 -0.37 ± 0.12 
 0.85 0.381 ± 0.006 0.0023 ± 0.0007 243 13 -2.94 ± 0.05 -0.46 ± 0.17 
 0.90 0.366 ± 0.006 0.0024 ± 0.0006 238 18 -2.79 ± 0.04 -0.40 ± 0.09 
 0.95 0.352 ± 0.008 0.0051 ± 0.0008 202 54 -2.66 ± 0.06 -0.45 ± 0.08 
 1.00 0.330 ± 0.010 0.0101 ± 0.0009 165 91 -2.49 ± 0.07 -0.56 ± 0.08 
 1.05 0.307 ± 0.015 0.0201 ± 0.0049 184 72 -2.33 ± 0.08 -0.71 ± 0.14 
 1.10 0.268 ± 0.019 0.0285 ± 0.0092 229 27 -2.11 ± 0.09 -0.72 ± 0.20 

10 2.3 0.361 ± 0.006 0.0069 ± 0.0002 141 115 -5.18 ± 0.09 -2.48 ± 0.34 
 2.4 0.352 ± 0.007 0.0030 ± 0.0001 98 158 -5.00 ± 0.11 -1.07 ± 0.05 
 2.5 0.327 ± 0.011 0.0031 ± 0.0002 93 163 -4.62 ± 0.15 -1.02 ± 0.08 
 2.68 0.294 ± 0.019 0.0101 ± 0.0008 64 192 -4.15 ± 0.22 -1.14 ± 0.07 

11 1.70 0.358 ± 0.005 0.0025 ± 0.0001 142 114 -3.90 ± 0.06 -0.86 ± 0.04 
 1.78 0.343 ± 0.008 0.0026 ± 0.0001 133 123 -3.72 ± 0.09 -0.82 ± 0.12 
 1.85 0.335 ± 0.008 0.0061 ± 0.0002 146 110 -3.61 ± 0.09 -0.93 ± 0.06 
 1.90 0.315 ± 0.010 0.0069 ± 0.0004 142 114 -3.38 ± 0.10 -0.91 ± 0.09 
 1.95 0.299 ± 0.014 0.0077 ± 0.0004 116 140 -3.24 ± 0.12 -0.92 ± 0.06 
 2.05 0.238 ± 0.074 0.0190 ± 0.0039 101 155 -2.71 ± 0.55 -1.07 ± 0.09 

12 0.95 0.374 ± 0.005 0.0026 ± 0.0000 130 126 -2.85 ± 0.04 -2.19 ± 0.08 
 1.00 0.358 ± 0.007 0.0027 ± 0.0001 123 133 -2.79 ± 0.05 -2.14 ± 0.07 
 1.05 0.341 ± 0.008 0.0070 ± 0.0002 136 120 -2.62 ± 0.04 -2.09 ± 0.06 
 1.10 0.337 ± 0.008 0.0057 ± 0.0004 172 84 -2.57 ± 0.05 -1.39 ± 0.12 
 1.15 0.315 ± 0.011 0.0067 ± 0.0004 147 109 -2.42 ± 0.08 -1.07 ± 0.08 
 1.20 0.288 ± 0.015 0.0084 ± 0.0004 97 159 -2.26 ± 0.09 -0.84 ± 0.06 
 1.25 0.269 ± 0.015 0.0378 ± 0.0041 156 100 -2.15 ± 0.07 -1.34 ± 0.09 
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Table 7: GEMC simulation results for asymmetric diblock 6-mer and 8-mer fluids. See 
Table 6 for details. 
 

System T
*  !

L
 !

v
 N

L
 N

v
 E

L

*  E
v

*  
13 2.10 0.363 ± 0.006 0.0021 ± 0.0001 131 125 -5.00 ± 0.10 -0.84 ± 0.08 

 2.20 0.351 ± 0.009 0.0039 ± 0.0001 131 125 -4.82 ± 0.13 -0.80 ± 0.11 
 2.30 0.335 ± 0.012 0.0070 ± 0.0006 92 164 -4.55 ± 0.17 -0.93 ± 0.07 
 2.40 0.315 ± 0.011 0.0106 ± 0.0007 141 115 -4.26 ± 0.13 -1.00 ± 0.07 
 2.45 0.307 ± 0.016 0.0151 ± 0.0016 83 173 -4.14 ± 0.19 -1.08 ± 0.07 

14 1.50 0.386 ± 0.007 0.0007 ± 0.0000 135 121 -4.31 ± 0.09 -0.72 ± 0.13 
 1.60 0.371 ± 0.006 0.0020 ± 0.0000 138 118 -4.12 ± 0.08 -0.76 ± 0.08 
 1.65 0.364 ± 0.006 0.0036 ± 0.0001 144 112 -4.02 ± 0.08 -0.64 ± 0.10 
 1.70 0.354 ± 0.007 0.0039 ± 0.0001 128 128 -3.88 ± 0.08 -0.69 ± 0.12 
 1.80 0.333 ± 0.009 0.0095 ± 0.0010 181 75 -3.63 ± 0.10 -0.91 ± 0.07 
 1.85 0.317 ± 0.012 0.0105 ± 0.0007 133 123 -3.46 ± 0.12 -0.90 ± 0.06 
 1.90 0.297 ± 0.017 0.0133 ± 0.0013 68 168 -3.27 ± 0.15 -0.92 ± 0.06 

15 1.00 0.384 ± 0.007 0.0007 ± 0.0000 151 105 -3.25 ± 0.07 -0.79 ± 0.12 
 1.05 0.371 ± 0.007 0.0018 ± 0.0001 151 105 -3.14 ± 0.06 -1.12 ± 0.13 
 1.10 0.350 ± 0.010 0.0037 ± 0.0002 148 108 -3.00 ± 0.08 -1.57 ± 0.24 
 1.15 0.342 ± 0.010 0.0072 ± 0.0007 157 99 -2.91 ± 0.08 -1.38 ± 0.16 
 1.17 0.331 ± 0.010 0.0082 ± 0.0007 156 100 -2.82 ± 0.08 -1.38 ± 0.14 
 1.20 0.328 ± 0.009 0.0082 ± 0.0009 177 79 -2.79 ± 0.07 -0.95 ± 0.10 
 1.23 0.308 ± 0.013 0.0084 ± 0.0015 177 79 -2.67 ± 0.07 -0.87 ± 0.09 
 1.25 0.300 ± 0.017 0.0119 ± 0.0008 129 127 -2.62 ± 0.08 -1.03 ± 0.11 

16 2.10 0.360 ± 0.007 0.0007 ± 0.0000 109 147 -4.71 ± 0.11 -0.91 ± 0.13 
 2.20 0.354 ± 0.007 0.0021 ± 0.0001 136 120 -4.57 ± 0.11 -0.94 ± 0.09 
 2.30 0.338 ± 0.009 0.0033 ± 0.0001 124 132 -4.36 ± 0.12 -0.97 ± 0.06 
 2.40 0.312 ± 0.014 0.0053 ± 0.0003 104 152 -4.00 ± 0.16 -0.99 ± 0.07 
 2.50 0.303 ± 0.013 0.0131 ± 0.0007 110 146 -3.87 ± 0.16 -1.15 ± 0.06 

17 1.55 0.386 ± 0.005 0.0002 ± 0.0000 132 124 -4.24 ± 0.07 -0.81 ± 0.19 
 1.60 0.376 ± 0.005 0.0004 ± 0.0000 138 118 -4.12 ± 0.06 -0.88 ± 0.14 
 1.65 0.369 ± 0.007 0.0006 ± 0.0000 106 150 -4.01 ± 0.08 -0.83 ± 0.15 
 1.70 0.363 ± 0.007 0.0011 ± 0.0000 113 143 -3.96 ± 0.08 -0.86 ± 0.14 
 1.75 0.355 ± 0.008 0.0022 ± 0.0001 109 147 -3.83 ± 0.08 -0.93 ± 0.08 
 1.80 0.340 ± 0.008 0.0020 ± 0.0001 137 119 -3.67 ± 0.08 -0.90 ± 0.07 
 1.85 0.333 ± 0.011 0.0038 ± 0.0002 89 167 -3.58 ± 0.12 -0.94 ± 0.06 
 1.90 0.319 ± 0.005 0.0108 ± 0.0003 110 146 -3.44 ± 0.09 -0.92 ± 0.08 

18 1.20 0.361 ± 0.007 0.0010 ± 0.0000 126 130 -3.22 ± 0.08 -0.91 ± 0.08 
 1.25 0.348 ± 0.008 0.0014 ± 0.0001 148 108 -3.12 ± 0.07 -0.96 ± 0.08 
 1.30 0.331 ± 0.009 0.0031 ± 0.0001 151 105 -3.01 ± 0.06 -1.01 ± 0.07 
 1.35 0.313 ± 0.011 0.0050 ± 0.0006 162 94 -2.87 ± 0.07 -1.06 ± 0.13 
 1.40 0.303 ± 0.011 0.0109 ± 0.0005 135 121 -2.74 ± 0.06 -1.16 ± 0.08 
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In Figure 1 we present the isotherms studied for the diblock 4-mer fluids (systems 

1 and 2) composed of segments with equal diameters (!
2
= !

1
), a potential range of 

!
1
= !

2
= 1.5 , and different well depths !

2
" !

1
.  From the figure we see that system 1 

(Figure 1a) which has a higher ratio of !
2
/ !

1
= 1.5  than system 2 (Figure 1b), displays 

higher densities at a given pressure.  We observe good agreement between the simulation 

results and theoretical predictions over a wide range of temperatures and pressures.   
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Figure 1: Isotherms for symmetric diblock 4-mer fluids with a) diameter !
2
= !

1
, well 

depth !
2
= 1.5!

1
 and range !

1
= !

2
= 1.5  (system 1) and b) diameter !

2
= !

1
, well depth 

!
2
= 0.5!

1
 and range !

1
= !

2
= 1.5  (system 2).  SAFT-VR EOS results at T*= 2.0, 3.0, 

4.0, 5.0 (from bottom to top) are represented as continuous curves and the squares 
represent the NPT MC simulation data. 
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In contrast, Figure 2 presents isotherms for diblock 4-mer fluids (systems 3 - 5) 

composed of segments with a size ratio of !
2
/!

1
= 2 , a potential range of !

1
= !

2
= 1.5  

and differing well depths.  System 3 in Figure 2a has the highest ratio of interaction 

energies, !
2
/ !

1
= 1.5 , and system 5 (Figure 2c) the lowest, !

2
/ !

1
= 0.5 .  We again 

observe that the system with the higher ratio of well depths is denser at a given pressure; 

however, in contrast to system 1, system 3 has much larger densities under the same 

pressures due to size effects.  Similar behavior is expected and observed for system 5 

compared to system 2.  Again, in all cases excellent agreement is observed between the 

theoretical predictions and the simulation data. 
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Figure 2: Isotherms for symmetric diblock 4-mer fluids with a) diameter !
2
= 2!

1
, well 

depth !
2
= 1.5!

1
 and range !

1
= !

2
= 1.5  (system 3), b) diameter !

2
= 2!

1
, well depth 

!
2
= !

1
 and range !

1
= !

2
= 1.5  (system 4) and c) diameter  !

2
= 2!

1
, well depth 

!
2
= 0.5!

1
 and range !

1
= !

2
= 1.5  (system 5).  Hetero-SAFT-VR EOS results at T*= 

2.0, 3.0, 4.0, 5.0 (from bottom to top) are represented as continuous curves and the 
symbols represent the NPT MC simulation data. 
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To test the effect of the range of the potential on the PVT and phase behavior, in 

Figure 3 we also present results for 4-mer fluids that have the same size ratio 

(!
2
/!

1
= 2 ) and equal well depth (!

2
= !

1
), but different potential range (!

1
= !

2
= 1.6  

and !
1
= !

2
= 1.4 ).  From the figure we can see that system 7, which has the greatest 

potential range (! = 1.6 ), exhibits a higher density at a given pressure compared to 

system 6 which has a shorter potential range (! = 1.4 ).  
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Figure 3: Isotherms for symmetric diblock 4-mer fluids with a) diameter !
2
= 2!

1
, well 

depth !
2
= !

1
 and range !

1
= !

2
= 1.4  (system 6), b) diameter !

2
= 2!

1
, well depth 

!
2
= !

1
 and range !

1
= !

2
= 1.6  (system 7). Hetero-SAFT-VR EOS results at T*= 2.0, 

3.0, 4.0, 5.0 (from bottom to top) are represented as continuous curves and the symbols 
represent the NPT MC simulation data. 
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If we consider longer chain lengths, the isotherms for 8-mer fluids are presented 

in Figure 4 and Figure 5.  Similar trends are seen in the isotherms as a function of the size 

ratio and interaction energy for the 8-mer systems as for the 4-mer fluids.  Again 

excellent agreement is in general observed between the theoretical predictions and the 

simulation data, though slight deviations are seen at low densities for the systems studied 

in Figure 4.  We can also note from the figures that at a given pressure the densities for 

the 8-mer fluids are slightly higher than those observed for the corresponding 4-mer 

systems, due to chain length effects. 
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Figure 4: Isotherms for symmetric diblock 8-mer fluids with a) diameter !
2
= !

1
, well 

depth !
2
= 1.5!

1
 and range !

1
= !

2
= 1.5  (system 8) and b) diameter !

2
= !

1
, well depth 

!
2
= 0.5!

1
 and range !

1
= !

2
= 1.5  (system 9). Hetero-SAFT-VR EOS results at T*= 2.0, 

3.0, 4.0, 5.0 (from bottom to top) are represented as continuous curves and the symbols 
represent the NPT MC simulation data. 
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Figure 5: Isotherms for symmetric diblock 8-mer fluids with a) diameter !
2
= 2!

1
, well 

depth !
2
= 1.5!

1
 and range !

1
= !

2
= 1.5  (system 10), b) diameter !

2
= 2!

1
, well depth 

!
2
= !

1
 and range !

1
= !

2
= 1.5  (system 11) and c) diameter !

2
= 2!

1
, well depth 

!
2
= 0.5!

1
 and range !

1
= !

2
= 1.5  (system 12). Hetero-SAFT-VR EOS results at T*= 

2.0, 3.0, 4.0, 5.0 (from bottom to top) are represented as continuous curves and the 
symbols represent the NPT MC simulation data. 
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To examine the effect of symmetry on the isotherms we have studied a number of 

asymmetric 6-mer (systems 13 - 15) and 8-mer fluids (systems 16 - 18), the results of 

which are presented in Figure 6 and Figure 7 respectively.  For each chain length, each 

system studied has the same asymmetric molecular structure with !
2
/!

1
= 2 , a potential 

range of !
1
= !

2
= 1.5  but different ratios of the well depths (!

2
/ !

1
).  Good agreement is 

observed between the theory and simulation for each system studied.  We also note from 

the figures that increasing the fraction of the smaller segments (m1) within a molecule 

results in lower densities at a given pressure. For example, the asymmetric 8-mer fluids 

(systems 16 - 18) have a higher fraction of small segments than the symmetric 8-mer 

fluids (systems 10 - 12), and therefore lower densities at a given pressure (comparing 

systems with the same ratio of !
2
/ !

1
).  Similarly if we consider the asymmetric 6-mer 

fluids (systems 13 - 15), which have a lower fraction of small segments than the 

asymmetric 8-mer fluids (systems 16 - 18), for the same ratio of !
2
/ !

1
 the asymmetric 6-

mer systems have higher densities at a given pressure than the corresponding asymmetric 

8-mer systems, despite having less segments per molecule.  
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Figure 6: Isotherms for asymmetric diblock 6-mer fluids with m
1
= 4,  m

2
= 2  and a) 

diameter !
2
= 2!

1
, well depth !

2
= 1.5!

1
 and range !

1
= !

2
= 1.5  (system 13), b) 

diameter !
2
= 2!

1
, well depth !

2
= !

1
 and range !

1
= !

2
= 1.5  (system 14) and c) 

diameter !
2
= 2!

1
, well depth !

2
= 0.5!

1
 and range !

1
= !

2
= 1.5  (system 15). Hetero-

SAFT-VR EOS results at T*= 2.0, 3.0, 4.0, 5.0 (from bottom to top) are represented as 
continuous curves and the squares represent the NPT MC simulation data. 
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Figure 7: Isotherms for asymmetric diblock 8-mer fluids with m
1
= 6,  m

2
= 2  and a) 

diameter !
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, well depth !
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= 1.5!

1
 and range !

1
= !

2
= 1.5  (system 16), b) 

diameter !
2
= 2!
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, well depth !
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 and range !
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2
= 1.5  (system 17) and c) 

diameter !
2
= 2!

1
, well depth !

2
= 0.5!

1
 and range !

1
= !

2
= 1.5  (system 18). Hetero-

SAFT-VR EOS results at T*= 2.0, 3.0, 4.0, 5.0 (from bottom to top) are represented as 
continuous curves and the squares represent the NPT MC simulation data. 
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In order to obtain a comprehensive understanding of the thermodynamic 

properties of the systems studied and fully test the hetero-SAFT-VR approach, we have 

also determined phase diagrams for the symmetric 4-mer (systems 3 - 5, as shown in 

Figure 8) and 8-mer (systems 10 - 12, as shown in Figure 9) fluids with a segment 

diameter ratio of !
2
/!

1
= 2 , a potential range of !

1
= !

2
= 1.5  and differing potential 

depth ratios of !
2

/ !
1
= 0.5,  1.0,  and 1.5 .  If we compare the phase diagrams for all of 

the symmetric 4-mer and 8-mer fluids studied, we can see that the critical temperature of 

the diblock chain fluids increases with an increase in the ratio of !
2
/ !

1
, which is to be 

anticipated as the attractive interactions between the molecules have increased.  

Additionally, as expected from the phase behavior of homonuclear fluids, as the chain 

length increases the critical point moves to higher temperatures and the phase envelope 

narrows.  In all cases excellent agreement is achieved between the hetero-SAFT-VR 

predictions and the simulation data for both the gas and liquid coexisting densities, 

though we note the theory over-predicts the critical point.  This shortcoming of the 

SAFT-VR approach has been addressed for homonuclear chains in recent work by the 

authors [36, 41, 42, 97], and will be extended to heteronuclear chains in future work. 
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Figure 8: Phase equilibrium for symmetric diblock 4-mer fluids with (from top to 
bottom) diameter !

2
= 2!

1
, well depth !

2
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2
= 1.5  (system 3), 

diameter !
2
= 2!

1
, well depth !

2
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1
 and range !

1
= !

2
= 1.5  (system 4), and diameter 

!
2
= 2!

1
, well depth !

2
= 0.5!

1
 and range !

1
= !

2
= 1.5  (system 5).  Hetero-SAFT-VR 

results are represented as continuous curves, and the squares and circles correspond to 
GEMC and NPT MC simulation data, respectively. 
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Figure 9: Phase equilibrium for symmetric diblock 8-mer fluids with (from top to 
bottom) diameter !

2
= 2!
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, well depth !
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 and range !
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= !

2
= 1.5  (system 10), 

diameter !
2
= 2!

1
, well depth !

2
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 and range !
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= 1.5  (system 11), and diameter 

!
2
= 2!

1
, well depth !

2
= 0.5!

1
 and range !

1
= !

2
= 1.5  (system 12). Hetero-SAFT-VR 

results are represented as continuous curves, and the squares and circles correspond to 
GEMC and NPT MC simulation data, respectively. 

 

Finally, in order to gain a better understanding of the effect of molecular structure 

on coexistence properties we have considered the phase equilibrium of asymmetric 6-mer 

(systems 13 – 15, as shown in Figure 10) and asymmetric 8-mer fluids (systems 16 – 18, 

as shown in Figure 11) with three different potential depth ratios.  In contrast to the 

symmetric diblock 8-mer fluid with !
2
/ !

1
= 1.5   (system 10), the asymmetric 8-mer with 

!
2
/ !

1
= 1.5  (system 16) has a lower critical temperature; however, the asymmetric 

diblock 8-mer fluid with !
2
/ !

1
= 0.5  (system 18) has a higher critical temperature than 

the corresponding symmetric 8-mer fluid  (system 12).  It is also observed that the 

coexistence curve for the asymmetric 8-mer fluid with !
2
= !

1
 (system 17) crosses that of 



 47 

the asymmetric 8-mer fluid with !
2
= !

1
 (system 11). For the systems with the same 

value of !
2
/ !

1
, the asymmetric 6-mer fluids have a higher critical point than the 

symmetric 4-mer fluids and a lower critical point than the asymmetric 8-mer fluids due to 

chain length effects.  From the figures we see that the hetero-SAFT-VR prediction agrees 

well with the simulation results for the asymmetric fluids, indicating that the theory is 

able to capture the effect of having chains of different molecular structure, but equal 

chain length, on the phase behavior. 
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Figure 10: Phase equilibrium for asymmetric diblock 6-mer fluids with (from top to 
bottom) m

1
= 4,  m
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2
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1
 and range 
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1
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2
= 1.5  (system 15). Hetero-SAFT-VR results are represented as continuous curves 

and the squares correspond to the GEMC simulation data. 
 



 48 

0.5

1

1.5

2

2.5

3

3.5

0 0.1 0.2 0.3 0.4 0.5

T*

!
 

Figure 11: Phase equilibrium for asymmetric diblock 8-mer fluids with (from top to 
bottom) m

1
= 6,  m
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= 2  and diameter !
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, well depth !
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1
 and range 

!
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2
= 1.5  (system 16), diameter !
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, well depth !
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 and range 
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= 1.5  (system 17), and diameter !

2
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, well depth !

2
= 0.5!

1
 and range 

!
1
= !

2
= 1.5  (system 18). Hetero-SAFT-VR results are represented as continuous curves 

and the squares correspond to the GEMC simulation data. 
 

3.5 Conclusions 

In this work, the SAFT-VR approach has been developed to study hetero-segmented 

chain fluids, with particular focus on symmetric and asymmetric diblock chains. Eighteen 

systems differing in chain length, segment size, potential range, potential well depth, and 

molecular structure have been examined.  In order to gain a comprehensive 

understanding of the thermodynamic properties of the systems studied and test the hetero-

SAFT-VR approach, both NPT MC and GEMC simulation methods were utilized to 

validate the theoretical predictions. The phase behavior of the diblock fluids is found to 

be affected by the interaction energies, segment size and the distribution of segments in 

terms of symmetry, i.e. at a given pressure and temperature, the fluid density rises as the 

ratio of interaction energy and/or segment size increases, as the potential range increases, 
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as the chain length increases, and as the fraction of smaller segments decreases.  The 

critical temperature of the diblock chain fluids rises as the ratio of !
2
/ !

1
 increases, and 

as the chain length increases. Excellent agreement between the theoretical predictions and 

simulation results has been achieved. The average absolute deviation (AAD) between the 

hetero-SAFT-VR predictions and the simulation data for all systems is 1 - 3%.  Slightly 

larger deviations (4 - 10%) are seen at low pressures and for the lowest temperature (T* = 

2) studied.  In the following chapters, we will apply the hetero-SAFT-VR approach to 

study real fluids such as small molecules and polymers composed of different functional 

groups. 
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     Chapter IV 

 

4 APPLICATION OF THE HETERO-SAFT-VR EOS TO POLYHEDRAL 

OLIGOMERIC SILSESQUIOXANES 

 

4.1 Introduction 

Polyhedral oligomeric silsesquioxane (POSS) molecules are unique nanometer-size 

inorganic/organic hybrid structures based on a (SiO1.5)8 core.  POSS can be 

functionalized with the same organic or inorganic group on each corner of the cube 

(R8Si8O12) or with one group on one corner and a different group on the others 

(RR'7Si8O12), the simplest POSS monomer being hydrogen terminated POSS (H8Si8O12). 

The ability to synthesize POSS cubes with different functional groups results in a large 

number of possible POSS-based molecules whose physical properties can be tailored 

through manipulation of the functional groups, opening up many possible application 

areas for POSS-based materials [98].   

POSS molecules can either be physically blended with polymers to form 

nanocomposite materials or chemically grafted to polymeric chains, where they form a 

crosslinked polymer network or serve as pendant groups from the polymer backbone. The 

incorporation of POSS molecules into polymeric materials often results in dramatic 

improvements in the material properties such as oxidation resistance, surface hardening, 

improved mechanical and thermal properties and reductions in flammability and heat 

evolution [99]. The properties of POSS-polymer blends depend on the interactions 

between the POSS molecules and the polymer.  For example, cyclohexyl- and isobutyl-
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POSS fillers, when well dispersed into polymethyl methacrylate (PMMA), decrease the 

zero-shear viscosity.  However, once the solubility limit of the POSS molecules is 

reached, the POSS aggregates into crystallites and leads to an increase in the viscosity 

[100]. In the same study, blends of POSS-PMMA copolymer with isobutyl-POSS were 

observed to show a dramatic increase in viscosity with the addition of even small 

amounts of POSS fillers due to the interactions between the free POSS and POSS 

pendants [100]. 

In recent years research on POSS-based systems, particularly synthesis and 

structural properties, has increased significantly.  Information on the thermodynamic 

properties, however, is more scarce.  The melting points of 8-fold alkyl substituted POSS 

have been studied and show a sharp decrease from octa-propyl-POSS to octa-pentyl-

POSS, while molecules with longer alkyl chains (C5 - C10) show an odd-even effect [101] 

similar to that observed for other homologous series [102]. From a theoretical point of 

view it is interesting to study both octa- and mono-substituted POSS systems with simple 

tether groups like the alkanes, as this allows a systematic study of the effect of the tether 

on the thermodynamic properties. Although such systems might be considered model 

compounds for silsesquioxane-based materials, they do show potentially interesting 

properties, including their use as amphiphiles for novel core/shell type silicate 

nanoparticles [103].  

In order to obtain a better understanding of POSS systems at a molecular level, 

several simulation studies have recently appeared [104-112].  For example, using a 

minimal model to mimic POSS systems, Lamm and co-workers [105] studied the 

structural properties of cross-linked POSS networks using lattice Monte Carlo 
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simulations. The effect of the length of the linkers between POSS cages on network 

structural properties was examined and the porosity was seen to decrease with increasing 

tether length in qualitative agreement with experimental data.  In work closer to the 

current study, a number of atomistic molecular dynamics simulations have been 

performed on POSS-solvent and POSS-polymer systems [104, 107-110].  In particular, 

Striolo and co-workers [108, 109, 111, 113] have studied dilute solutions of hydrogen 

terminated and octa-substituted POSS monomers in poly(dimethylsiloxane), n-

hexadecane and n-hexane to probe the POSS-solvent interactions. This work illustrated 

that it is possible to modulate the effective POSS-POSS interaction by increasing the 

temperature, solvent and/or functional groups on the POSS cage.   

Although molecular simulation is a useful tool with which to study atomic and 

nano-scale processes, a theoretical approach can much more rapidly study a wide range 

of systems than is possible by simulation. There are many theoretical approaches 

available to describe the thermodynamics and physical properties of fluid systems.  

However, in contrast to traditional equations such as activity coefficient models and 

cubic equations of state (EOS), molecular-based approaches provide the opportunity to 

develop a molecular level basis for the observed behavior and a more predictive 

approach. In particular, the molecular-based SAFT approach [114, 115] provides a 

framework in which the effects of molecular shape and interactions on the 

thermodynamic properties can be separated and quantified.  The explicit description of 

the molecular level interactions enables the parameters of the resulting equation of state 

to have physical meaning, leading to more predictive capabilities and a limited reliance 

on fitting to experimental data.  While there are several versions of the SAFT equation 
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available [116, 117], we focus on the SAFT-VR [4, 5] equation in which monomers 

interact through a potential of variable attractive range (VR). In this work, we apply the 

hetero-SAFT-VR approach developed by McCabe and co-workers [8, 64] to study the 

effect of tether groups on the thermodynamic properties of both mono-tethered and 

homogeneously multi-tethered POSS molecules. The theoretical model for POSS is 

described in section 4.2 and details of the molecular dynamics simulations performed to 

parameterize and validate the theoretical model are given in section 4.3.  The theoretical 

results are presented and compared with molecular simulations in section 4.4 and 

conclusions drawn in section 4.5. 

 

4.2 Hetero-SAFT-VR Model for POSS 

The hetero-SAFT-VR approach allows molecules to be described as chains of segments 

that can have different size and/or energy parameters.  In the previous chapter, we have 

validated the hetero-SAFT-VR approach using isothermal-isobaric (NPT) and Gibbs 

ensemble Monte Carlo (GEMC) simulation data and demonstrated that the theory can 

accurately capture the effects of interaction energy, segment size and molecular structure 

on the PVT and phase behavior of heteronuclear diblock fluids [8].  In the same spirit, the 

hetero-SAFT-VR approach allows us to model alkyl-tethered POSS molecules as a single 

spherical POSS core connected to a number of smaller segments that describe the alkyl 

tethers as shown in Figure 12(b). 

We use the equations of the hetero-SAFT-VR for pure fluids given in section 2.1 

to study POSS molecules.  The equation (2.22) of chain term for POSS fluids in hetero-

SAFT-VR becomes  
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A
chain

NkT
= !Nt ln y12

SW "
12( ) + m

2
!1( ) ln y22

SW "
22( )#$ %&  (4.1) 

where N
t
 is the number of tethers per molecule and m

2
 is the number of alkyl segments 

per tether. 
 

 

 

(a) (b) 
 

 
 

(c) (d) 
 

 
(e) 

Figure 12: Schematic illustration of (a) mono-tethered decyl-POSS (b) the hetero-SAFT-
VR model for mono-tethered decyl-POSS, (c) di-tethered propyl-POSS, and (d) and (e) 
the two different tetra-tethered propyl-POSS molecules studied. 
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4.3 Simulation Details 

In order to study POSS molecules with the hetero-SAFT-VR approach the theoretical 

model parameters (i.e. m , ! , ! , ! ) for the POSS cube must be determined.  Typically 

the SAFT parameters are obtained by fitting to experimental thermodynamic property 

data. However, the dearth of experimental data on the thermodynamics of POSS-based 

molecules makes it very difficult to calibrate the hetero-SAFT-VR model by comparison 

to experiment.  Hence, here we calibrate the theory using simulation data based on 

reliable force fields. This can be thought of as a coarse-graining of the atomistic 

simulation, albeit into a coarse-grained theoretical model, as opposed to the usual coarse-

grained force field model.  Molecular dynamics simulations were performed for 7 

different mono- and multi-tethered POSS fluids: mono-tethered propyl-, hexyl- and, 

nonyl- POSS; di-tethered propyl-POSS, tetra-tethered propyl-POSS with two different 

arrangements of the tethers on the POSS cube, and octa-tethered propyl-POSS (as shown 

in Figure 12).   

The molecular dynamics simulations were carried out using the DL_POLY 2 

simulation software [118] with atomistic force fields for the POSS and tether molecules 

as described below.  Simulations were performed in the canonical (NVT) ensemble using 

the Berendsen thermostat [86] to maintain the temperature.  In each simulation 64 POSS 

molecules (ranging from 1920 atoms to 2816 atoms) were used and the usual periodic 

boundary conditions were applied to the simulation box.  Initially simulations were also 

performed with 128 POSS molecules; however, no difference was observed in the 

calculated density and so 64 molecules were used for all production runs.  A time step of 

1 fs was employed and a cutoff of 10 Å used for non-bonded interactions.  Each 
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simulation was started from a lattice configuration and then equilibrated for 100 ps, 

followed by production runs of 400 - 500 ps during which the properties of interest were 

calculated. For each system three isotherms were studied (700 K, 900 K and 1200 K) and 

the pressure profile obtained for a series of densities between !  = 0.1 - 0.45. The 

temperatures were chosen to ensure the POSS systems were above the experimental and 

force field melting points [119]. While POSS monomers probably decompose at 1000 K 

[120], the high temperature results correspond to hypothetical results that would be 

obtained in the absence of decomposition.  From the point of view of determining 

effective parameters for use in a hetero-SAFT-VR model, the absence of decomposition 

in either the simulation or the hetero-SAFT-VR models is not a drawback; our goal here 

is to calibrate the molecular model using simulation data.  A similar problem existed in 

the calibration of alkane force fields against experimental phase equilibrium and critical 

point data [121], as such models also do not include decomposition. 

The Hybrid-COMPASS (HC) force field [122, 123] was used to describe the 

POSS molecules. The HC force field was shown in earlier work to be successful in 

describing the structural properties of POSS systems [119].  The TraPPE united atom 

model [124], which was specifically developed to study the fluid phase behavior of 

alkanes, was used to describe the alkyl tethers.  Ab-initio calculations of alkyl-tethered 

POSS systems [125] have shown that the POSS cage is not significantly influenced by 

the tether and vice versa, indicating that it is possible to combine force fields developed 

independently to study functionalized POSS systems and take advantage of specifically 

developed force fields for the tethered groups.  Below we briefly describe the force fields 

used. 
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4.3.1 Force Field for the POSS Cube 

As in earlier work [119] the simplified or hybrid COMPASS force field was used to 

model the POSS cube.  In this model bond stretching U
b

, bond angle-bending U
!

 and 

torsional motion U!  are respectively described by: 
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The cross interaction parameters ! ij  and !ij  are calculated using a 6th order combining 

rule: 
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where !
i
, ! j , !i , ! j are the interaction parameters for the like atoms. Details of the 

potential model parameters used for the hybrid-COMPASS force field [122, 123] are 

reported in Table 8. 

 

Table 8: Parameters used in the hybrid-COMPASS force field for the POSS systems 
studied. 
 

Bond b0 (Å) k2 (kcal/mol Å2) k3 (kcal/mol Å3) k4 (kcal/mol Å4) 
Si-O 1.640 350.1232 -517.3424 673.7067 
Si-H 1.478 202.7800 -305.3600 280.2700 
Si-C 1.899 189.6500 -279.4200 307.5100 

Angle !
0
 (deg) H2 (kcal/mol rad2) H3 (kcal/mol rad3) H4 (kcal/mol rad4) 

Si-O-Si 159.0 8.5000 -13.4188 -4.1785 
O-Si-O 110.7 70.3069 -6.9375 0.0000 
H-Si-O 107.4 57.6643 -10.6506 4.6274 
C-Si-O 114.9 23.0218 -31.3993 24.9814 

Dihedral V1 (kcal/mol) V2 (kcal/mol) V3 (kcal/mol) 
Si-O-Si-O -0.225 0.000 -0.010 
Si-O-Si-H 0.000 0.000 -0.010 
Si-O-Si-C 0.000 0.000 -0.010 

Non-bonded interactions !
ij  (Å) !

ij  (kcal/mol) 

Si-Si 4.4050 0.19800 
Si-Si(C) 4.3494 0.16054 

Si-O 4.0323 0.08993 
Si-C 4.1744 0.09063 

Si(C)-Si(C) 4.2900 0.13100 
Si(C)-O 3.9437 0.07710 
Si(C)-C 4.1007 0.08560 

O-O 3.3000 0.08000 
O-C 3.6290 0.06342 

 

4.3.2 Force Field for Alkyl Tethers 

The alkyl tethers are described using the TraPPE united-atom force field [124] for 

alkanes in which each carbon atom and its bonded hydrogen atoms are treated as a single 
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spherical interaction site.  Bond-stretching U
b

 and bond-angle-bending U
!

 terms are 

described by simple harmonic functions: 

 Ub =
1

2
kij r ! rij( )

2  (4.8) 

 U
!
=
1

2
k
!
! "!

0( )
2  (4.9) 

where kij  and k
!

 are the force constants, rij  is the equilibrium bond length between 

atoms i  and j  and !
0
 is the equilibrium angle. The torsion potential is expressed as a 

cosine function,  

 U! = c
1
1+ cos !( )"# $% + c2 1& cos 2!( )"# $% + c3 1+ cos 3!( )"# $%  (4.10) 

where c
1
, c

2
, c

3
 are constants and ! is the torsional angle.  In the TraPPE potential the 

non-bonded van der Waals interactions are described via a Lennard-Jones 12-6 potential 

and the cross alkyl-alkyl interactions (i.e. !ij  and ! ij ) are calculated using the Lorenz-

Berthelot combining rules.  The parameters used to study the alkyl tether groups in this 

work are reported in Table 9.  In studying alkyl-POSS molecules a number of interactions 

between the HC and TraPPE force fields must be defined.  As in previous work [119], the 

bond-stretching interactions for Si-CH3 and Si-CH2 are approximated by those for Si-C, 

the angle-bending interactions of O-Si-CH3 and O-Si-CH2, are given by O-Si-C, and the 

torsional interactions for O-Si-CH2-CH2 and Si-O-Si-CH2 are given by X-Si-C-X and Si-

O-Si-C respectively, all from the HC force field. Angle interactions for Si-CH2-CH2 and 

Si-CH2-CH3 are approximated by the C-C-C potential in the TraPPE force field, and the 

torsional interactions for the Si-CH2-CH2-CH2 and Si-CH2-CH2-CH3 bonds are described 

by the C-C-C-C potential in the TraPPE force field. The parameters for the cross 
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nonbonded interactions between atoms in the HC and TraPPE force fields are determined 

following the work of Frischknecht and Curro [126] and are listed in Table 10. 

 

Table 9: Parameters used in the TraPPE force field [124] for the alkyl tethers of the 
POSS systems studied. 
 

Bond rij (Å) kij (kcal/mol Å2) 
C-C 1.540 889.9 

Angle !
0
 (deg) kθ  (kcal/mol rad2) 

C-C-C 114.0 124.3122 
Dihedral  c1 (kcal/mol) c2 (kcal/mol) c3 (kcal/mol) 
C-C-C-C 1.4123 -0.27126 3.14786 

Non-bonded interactions !
ij  (Å) !

ij  (kcal/mol) 
CH3-CH3 3.7500 0.194921 
CH3-CH2 3.8500 0.133544 
CH2-CH2 3.9500 0.091493 

 

Table 10: Parameters for the cross nonbonded interactions between atoms in the hybrid-
COMPASS and TraPPE force fields. 
 
Non-bonded interactions !

ij  (Å) !
ij  (kcal/mol) 

Si-CH3 3.830 0.15960 
Si-CH2 3.886 0.10947 
O-CH3 3.380 0.12470 
O-CH2 3.445 0.08550 

 

4.4 Results 

The parameters for POSS in the hetero-SAFT-VR approach were fitted to molecular 

dynamics simulation data for mono-tethered propyl-POSS at 700 K and 1200K.  The 

parameters for the alky tethers were taken from earlier work on parameter estimation for 

the alkanes.  In an extensive study of the phase behavior of n-alkanes and their mixtures 

with the SAFT-VR approach, McCabe and co-workers determined linear relations for the 
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SAFT-VR parameters for the alkane homologous series [127]. These provide simple 

expressions for the model parameters as a function of molecular weight MW, viz.  

 m! = 0.039M
W
+ 0.873  (4.11) 

 m!
3
= 1.566M

W
+ 24.02  (4.12) 

 m ! k( ) = 6.343MW
+ 76.38  (4.13) 

The number of segments m in the alkyl chain is determined from the simple relation 

m = 1 / 3 c !1( ) +1, as in earlier work [128].  Therefore in this work only the POSS 

parameters are optimized.  The mono-tethered propyl-POSS system was chosen to 

determine the POSS parameters rather than hydrogen terminated POSS in order to take 

into account the effect of the cross-interactions between the POSS and alkyl tether, which 

are expected to be non-ideal, in an effective way. The parameters obtained from fitting to 

the PVT data at 700 K and 1200 K for the POSS cube are !  = 6.949 Å, ! / k  = 815.5 K, 

and !  = 1.8 and a comparison between the theoretical predictions and simulation data for 

mono-tethered propyl POSS is shown in Figure 13.  We note that, particularly at low 

temperatures, some of the pressures reported are negative which clearly reflects a 

metastable state. 
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Figure 13: Isotherms for mono-substituted propyl-POSS at 700 K (solid line), 900 K 
(dotted line), and 1200 K (dashed line).  The circles, squares, and triangles represent 
molecular dynamics simulation results at 700 K, 900 K, and 1200 K respectively. 
 

Once the parameters for the POSS cube were determined, other POSS systems 

were studied to test parameter transferability. In Figure 14 we present the theoretical 

predictions for mono-tethered hexyl-POSS from the hetero-SAFT-VR approach using the 

POSS parameters determined from fitting to PVT data for propyl-POSS and alkyl 

parameters determined using equations (4.11)-(4.13). From the figure we can see that the 

theoretical predictions are in good agreement with the pseudo-experimental data, the 

deviation between the simulation and theoretical results being ~10% in the high density 

region. A similar result is obtained for mono-tethered nonyl-POSS (Figure 15), in that 

good agreement is achieved between the theoretical predictions and the pseudo-

experimental data without additional optimization of the parameters. This transferability 

allows us to predict the behavior of other POSS systems with varying alkyl chain lengths 

as shown in Figure 16 where we consider isotherms at 900 K for tethers from C = 2 to C 
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= 10 respectively.  We find that at a given temperature and pressure the liquid density 

decreases as the tether length increases.  This is consistent with the conclusion drawn for 

the asymmetric diblock model fluids studied in previous work [8], where increasing the 

fraction of the smaller segments within a molecule resulted in lower densities at a given 

pressure and temperature. 
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Figure 14: Isotherms for mono-substituted hexyl-POSS at 700 K (solid line), 900 K 
(dotted line), and 1200 K (dashed line).  The circles, squares, and triangles represent 
molecular dynamics simulation results at 700 K, 900 K, and 1200 K respectively. 
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Figure 15: Isotherms for mono-substituted nonyl-POSS at 700 K (solid line), 900 K 
(dotted line), and 1200 K (dashed line).  The circles, squares, and triangles represent 
molecular dynamics simulation results at 700 K, 900 K, and 1200 K respectively. 
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Figure 16: Prediction of isotherms for mono-tethered alkyl-POSS at 900 K.  The lines 
correspond (from right to left) to ethyl (solid line), propyl, butyl, hexyl, heptyl, octyl, 
nonyl and decyl tethers. 
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We have also studied the effect of the number of tethers on the thermodynamic 

properties of multi-tethered POSS systems. Figure 17 presents theoretical predictions for 

isotherms at 700 K, 900 K, 1200 K for di-tethered propyl-POSS. From the figure we note 

that while there is good agreement between the theoretical predictions and simulation 

data at 1200K, deviations are observed at low pressures for the other temperatures studied.  

We have also calculated isotherms for tetra-tethered propyl-POSS with two different 

arrangements of the tethers on the POSS cube; tetra-tethered propyl-POSS with the 

tethers on one face of the cube (Figure 12d) and tetra-tethered propyl-POSS with the 

tethers on opposite corners of the cube (Figure 12e).  We find from the simulation results 

(as shown in Figure 18) that the differences between the two systems are very small, and 

therefore a comparison with the hetero-SAFT-VR predictions, which cannot distinguish 

between the different arrangements of the tethers on the POSS cube, is reasonable. 

However, we find that while the agreement between the theory and simulation is good at 

low denstities, the density is underpredicted at a given temperature and pressure for 

higher densities (> 0.8 g/cm3). Finally results for octa-tethered propyl-POSS are 

presented in Figure 19.  From Figure 17, Figure 18, and Figure 19 we can see that the 

deviation between the theoretical prediction and the simulation data increases as the 

number of tethers increases.  This deviation may be caused by the fact that the tethers on 

the POSS cage in the hetero-SAFT-VR approach are fully flexible and their arrangement 

cannot be specified as in the MD simulations, and so perhaps steric effects are not 

accurately captured.   
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Figure 17: Isotherms for di-tethered propyl-POSS at 700 K (solid line), 900 K (dotted 
line), and 1200 K (dashed line). The circles, squares, and triangles represent molecular 
dynamics simulation results at 700 K, 900 K, and 1200 K respectively. 
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Figure 18: Isotherms for tetra-tethered propyl-POSS at 700 K (solid line), 900 K (dotted 
line), and 1200 K (dashed line). The circles, squares, and triangles represent molecular 
dynamics simulation results at 700 K, 900 K, and 1200 K, respectively. Empty symbols 
are for the configuration in Figure 12d and solid for the configuration Figure 12e. 
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Figure 19: Isotherms for octa-tethered propyl-POSS at 700 K (solid line), 900 K (dotted 
line), and 1200 K (dashed line).  The circles, squares, and triangles represent molecular 
dynamics simulation results at 700 K, 900 K, and 1200 K respectively. 

 

In order to gain some insight into the effect of the number of tethers on the 

thermodynamic properties, isotherms at 900 K for a series of multi-propyl-substituted 

POSS systems with the number of tethers varying from 2 to 8 were calculated and the 

results are presented in Figure 20.  We find that as the number of tethers increases the 

density decreases at a given temperature and pressure, which is in agreement with the 

MD simulation results for tetra-substituted POSS compared to octa-substituted POSS. 
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Figure 20: Prediction of isotherms for multi-tethered propyl-POSS at 900 K. The lines 
correspond to POSS cubes with 2 (solid line), 3, 4, 5, 6, and 8 tethers (from right to left). 

 

We have also studied the vapor-liquid equilibrium (VLE) of a series of mono-

substituted alkyl-POSS systems, the results of which are presented in Figure 21. From the 

calculations we find that the critical temperature decreases as the length of the tether 

increases, which is consistent with the tethers disrupting the packing and interaction of 

the POSS cubes.  

Since the POSS parameters used in this work were determined by fitting to 

limited pseudo-experimental data we have also studied a number of model fluids in order 

to obtain a better understanding of the effect of the parameters on the observed properties 

and trends.  Each model fluid studied mimics a mono-tethered POSS system in that it is 

composed of two types of segments that have different size and energy parameters, with 

the number of smaller segments ranging from 1 to 10.  The systems studied are listed in 

Table 11 along with the observed trend in the critical temperature as the tether length is 
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increased from 1 to 10.  We find that generally the critical temperature decreases as the 

number of tether segments increases.  Therefore, we expect the predictions from the 

hetero-SAFT-VR approach for mono-tethered alkyl-POSS to be at least qualitatively 

accurate. 
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Figure 21: Prediction of vapor-liquid equilibrium curves for mono-tethered alkyl-POSS. 
The lines correspond to POSS cubes with ethyl (solid line), propyl, butyl, hexyl, heptyl, 
octyl, nonyl and decyl tethers (from right to left). 
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Table 11: Model fluid systems studied and predicted trends in Tc as a function of tether 
length. 
 

System m1 m2 σ2/σ1 ε2/ε1 λ1 λ2 Tc 

1 1! 10 1 1.6 3 1.5 1.5 !  
2 1! 10 1 1.6 3 1.5 1.8 !  
3 1! 10 1 1.8 3 1.5 1.8 !  
4 1! 10 1 1.8 3 1.8 1.8 !"  
5 1! 10 1 1.8 4 1.5 1.8 !  
6 1! 10 1 1.8 4 1.8 1.8 !  
7 1! 10 1 2 3 1.5 1.8 !  
8 1! 10 1 2 3 1.8 1.8 !"  

 

Finally, the VLE curves for a series of octa-substituted alkyl-POSS systems of 

varying tether length have also been studied and are presented in Figure 22. For octa-

tethered POSS we find that the VLE curves intersect at a density of ~0.5 g/cc and the 

predicted critical points increase with increasing tether length.  Experimentally, the 

critical points of the n-alkanes also increases with carbon number.  Furthermore it is well 

known that while the melting points of the alkanes increases with carbon number, the 

relatively short chains show an odd-n/even-n behavior is observed (the alternation 

becomes attenuated with increasing carbon number and is not detectable for n > 16) [129] 

and a plot of critical temperature versus melting point indicates a strong correlation or 

cooperative phenomena between the two properties [102]. The melting points of octa-

substituted alkyl-POSS first decreases from C3 to C5 and then increases slowly from C5 to 

C10, with octa-tethered propyl-POSS having the highest melting point of the systems 

studied and an odd-even effect being observed for C5 – C10, which was the longest alkyl 

chain tether studied [101].  The decrease in melting point from C3 to C5 is presumably 

due to the dominant effect of the POSS cube, which diminishes as the chain length of the 
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alkyl tether increases.  The predicted critical points for octa-substituted alkyl-POSS when 

plotted against their experimental melting points as in Figure 23 appear to follow a 

similar linear trend and could enable the melting points of octa-substituted alkyl-POSS 

molecules with longer tether lengths to be determined from the hetero-SAFT-VR 

predictions for the critical temperature. 
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Figure 22: Prediction of isotherms for mono-tethered alkyl-POSS at 900 K.  The lines 
correspond (from right to left) to POSS cubes with ethyl (solid line), propyl, butyl, hexyl, 
heptyl, octyl, nonyl and decyl tethers. 
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Figure 23: Experimental melting points versus critical temperature for octa-substituted 
alkyl-POSS of increasing chain length from C3 – C10 predicted from the hetero-SAFT-VR 
EOS. 
 

4.5 Conclusions 

The hetero-SAFT-VR approach has been applied to study alkyl-substituted POSS fluids.  

Atomistic molecular dynamics simulations were performed for three mono-tethered 

POSS systems and four multi-tethered POSS systems, and in general good agreement 

obtained between the theoretical predictions and the simulation data.  We find that as the 

length of the alkyl tether increases, the liquid density of mono-substituted POSS systems 

decreases at a given temperature and pressure.  Additionally, for multi-substituted POSS 

systems, the density was seen to decrease as the number of tethers increased at a given 

temperature and pressure.  For the tetra- and octa-substituted POSS systems studied, 

deviations were observed between the simulation data and theoretical predictions, which 

could be due to steric effects that are not captured by the hetero-SAFT-VR approach due 
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to the fully flexible nature of the molecules depicted by the model. However, we note that 

the results for the multi-tethered POSS systems can be considered reasonable since the 

hetero-SAFT-VR parameters for the POSS cube were obtained by fitting to PVT data for 

mono-tethered propyl-POSS and no binary interaction parameter between the POSS 

group and alkyl groups were used to take into account the dissimilarity of the POSS and 

alkyl segments.  The phase behavior of the POSS systems studied was also investigated 

and the critical points predicted as a function of tether length and the number of tethers 

on the POSS cube.  For mono-substituted alkyl-POSS, the critical temperature is 

predicted to decrease with increasing tether length from C3 to C10, while for octa-

substituted alkyl-POSS systems the critical temperature increases as tether length 

increases from C3 to C10.  Furthermore, experimental melting points versus predicted 

critical temperatures for octa-tethered alkyl-POSS systems were found to exhibit a linear-

like trend as the tether length increased from C5 to C10, as is seen for the n-alkanes. 

 



 74 

    Chapter V 

 

5 DEVELOPMENT OF THE GC-SAFT-VR EOS 

 
5.1 Introduction 

There is an increasing need to understand and accurately model the thermodynamics and 

phase behavior of complex fluid systems such as heavy hydrocarbons, branched and 

hyperbranched polymers, and, more generally, molecules with multiple functional 

groups.  In such systems, molecular architecture (e.g., branching) can have an important 

effect on thermodynamic properties.  For example, it is well known that for hydrocarbons 

with a given number of carbon atoms branching typically leads to a decrease in the 

boiling point, or conversely in critical temperature; the cloud point pressure of 

poly(ethylene-1-butene) at a given temperature generally decreases as the degree of 

polymer branching increases [130]. The nature of the functional groups in a molecule or 

incorporation of different functional groups into a polymer backbone also strongly 

influences thermodynamic properties and phase behavior. For example, poly (vinyl 

acetate) (PVAc) is found to be more CO2 soluble than poly (methyl acrylate) (PMA) even 

though the PMA repeat group has the same number of carbon, hydrogen, and oxygen 

atoms as PVAc [131]. 

While experimental thermodynamic and phase behavior data is essential to the 

development of accurate theoretical tools, experiments alone are unable to quantify the 

effects of molecular structure and composition on the phase behavior of pure fluids and 

their mixtures, due to the shear number of experiments that would be needed for a 

systematic study.  Equations of state (EOS) can be used to calculate the thermodynamic 
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properties of pure fluids and their mixtures, however, traditional EOSs like cubic 

equations which dominate in the study of simple fluids, tend to give poor predictions for 

complex fluids and their mixtures, such as polymers and associating systems as they do 

not explicitly take into account the nonsphericity of the molecules and the association 

interactions. Statistical-mechanics-based EOSs such as the SAFT EOS are an attractive 

alternative as, being molecular-based, the model parameters are related to the molecular 

shape, size and interactions of the molecules and so tend to lead to more robust and 

predictive approaches.  

Within the SAFT-VR approach, and typically most SAFT-based equations of 

state, molecules are treated as homonuclear chains composed of identical tangentially 

bonded segments. For example, an alkane is generally modeled as a chain of identical 

segments, the SAFT parameters for which are obtained by fitting to vapor pressure and 

saturated liquid density data.  With this approach it is assumed that each alkane has its 

own individual set of parameters.  In order to develop a more predictive approach several 

authors [34, 62, 132-137] have shown that simple empirical relationships for the n-alkane 

parameters can be obtained by correlating the parameters for individual alkanes against 

molecular weight or the number of carbon atoms. This allows for the extrapolation of the 

model parameters to long-chain n-alkanes for which limited experimental data is 

available and linear polymers such as polyethylene (PE) [6, 138], since PE can be 

considered to be a very long hydrocarbon chain. However, the extension of such 

techniques beyond polyolefins to functionalized polymers and copolymers has met with 

limited success (see for example [139]).  Additionally the use of polymer PVT data (in 

place of the phase coexistence data typically used for small molecules) to determine 
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polymer parameters is generally not successful [140-142].  Several alternative methods 

for developing polymer parameters have been proposed, such as using empirical 

corrections to the parameters for polyethylene [143] and a combination of fitting to 

polymer densities and polymer-solvent cloud point data [65, 144]. Pseudo-group 

contribution type approaches have also been proposed to determine the parameters for 

polymer systems; typically the value of m and !  are obtained from a linear summation 

of the values for each characteristic group defined in the molecule and the energy 

parameters determined from either a fit to vapor pressure and liquid density data for the 

monomer, and then used for the corresponding polymer, or a fit to binary cloud point data 

[145].  

A common feature of these previous studies is the ad hoc way in which 

parameters are put together, which no doubt impacts the need to use pure component 

and/or cross parameters fitted to experimental mixture data, so removing predictive 

capability.  To move away from this trend and towards a predictive approach uniformity 

in the parameters and their means of determination needs to be introduced, which should 

facilitate the use of parameters in a more transferable fashion and reduce the reliance on 

experimental data. Towards this goal we have developed the hetero-SAFT-VR approach 

that allows the study of chains composed of segments of different size and/or energy 

parameters and leads naturally to the development of a group-contribution-like 

formalism.  The GC-SAFT-VR approach allows us to accurately capture the nature of the 

molecular structure, including branching, and functional groups within a molecule in a 

precise, rather than ad hoc way through effective size parameters. Using the GC-SAFT-



 77 

VR approach we can build a database of functional group parameters that can be used to 

model not only small molecules but also polymers containing those functional groups.  

Recently, Tobaly et al., have proposed a group-contribution SAFT-based equation 

of state (GC-SAFT) [146-149], in which the representative groups are defined according 

to the molecules composition and structure; however, the molecules are modeled as 

homonuclear chains as the model parameters are obtained by averaging the parameters 

for the different groups. The GC-SAFT method has been tested using the original SAFT, 

PC-SAFT, and SAFT-VR equations and applied to study the phase behavior of pure 

linear hydrocarbons [146], linear alcohols [146] and their binary mixtures [147], esters 

[148] and binary mixtures of H2 + n-alkanes  and CO2 + n-alkanes [149].  In general the 

GC-SAFT equation provides good predictions for the phase behavior of short-chain 

fluids, though increased deviations from experimental data are observed for the vapor 

pressures of longer-chain fluids (i.e. C > 16) and in the study of mixture systems binary 

interaction parameters fitted to experimental mixture data are needed.  

In this work, we develop a group-contribution method based on the hetero-SAFT-

VR EOS proposed and validated by the authors [8, 64] in order to develop a more 

physically realistic model for real fluids, i.e., one in which the segments of the model 

chain can have different size and/or energy parameters in order to mimic the natural 

heterogeneity of molecules. Such a model allows a quantitative description of the effects 

of molecular architecture and molecular composition on the thermodynamic properties of 

fluids, and provides a clear way to determine parameters for polymers based on the 

functional groups in the repeat unit. The remainder of the chapter is organized as follows.  

In section 5.2 we provide a description of the molecular model used in the GC-SAFT-VR 
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equation; details of the parameter regression and results for alkanes, branched alkanes, 1-

alkenes, alkylbenzene, ketones, esters, and their binary mixtures are presented in section 

5.3; finally conclusions are drawn in section 5.4.  

 

5.2 Models 

As described in section 2.1, the hetero-SAFT-VR approach models fluids as chains 

composed of segments of different size and/or energy. The key functional groups can be 

defined and parameterized in a group-contribution concept. This allows us to model a 

wide variety of organic compounds using the GC-SAFT-VR approach.  For example, n-

alkanes are modeled as chains of CH2 groups capped by a CH3 group at each end.  After 

determining parameters for the CH2 and CH3 groups, parameters for other key functional 

groups can be regressed from experimental data of compounds for the same family. In 

particular, branched alkanes, ketones, and alkylbenzenes have been selected for 

parameterization of a single additional group i.e., the CH group, the carbonyl group 

(C=O), and the benzyl group respectively. In turn we can use the fitted parameters for 

these functional groups to determine the GC-SAFT-VR parameters for other functional 

groups such as the CH3O and CH2O groups in esters. 

 

5.3 Results 

We have developed the GC-SAFT-VR approach and in this initial study determined the 

parameters for eight classes of functional groups by fitting to experimental data for 

selected members of different chemical families, namely n-alkanes, branched alkanes, 1-

alkenes, alkyl-benzenes, ketones, and esters. We will first present results for the phase 
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behavior of each class of pure fluids using the GC-SAFT-VR approach and then illustrate 

the transferability of the groups determined through the study of molecules not included 

in the fitting process and the study of mixture systems, without additional fitting to 

experimental data.  

 

5.3.1 Pure Fluids 

As discussed above, in the GC-SAFT-VR approach we describe the n-alkanes as chains 

composed of two types of segments (CH2 and CH3) the parameters for which are obtained 

by fitting to experimental data for selected alkanes, namely propane (C3H8) - decane 

(C10H22), hexadecane (C16H34), and eicosane (C20H42).  Methane and ethane were 

naturally excluded from the fitting process due to their size and anomalous properties, 

and the two heavier compounds included in order to obtain parameters suitable for both 

light and heavy alkanes.  In order to determine the number of segments m in the model 

chain, we make use of the simple relationship  

 m = 1 3 C !1( ) +1 , (5.1)  

developed in earlier work that has proven to provide a good description of the critical 

temperatures and pressures of linear alkanes [150, 151] and has been widely adopted in 

the study of the n-alkanes.  In the long chain limit equation (5.1) gives a value for m for 

methylene groups (CH2) of 0.333, and since the total number of segments in the n-alkane 

molecule is equal to: 

 m = 2m
CH3

+ C ! 2( )m
CH2

 (5.2) 

where C is the number of carbon atoms, the value of m for the methyl group (CH3) can 

easily be calculated as m
CH3

= 0.667 . The parameters determined for the CH2 and CH3 



 80 

groups are presented in Table 12 - Table 14. We note that the parameters determined for 

the CH2 group are very close to those determined from simple empirical relations for the 

SAFT-VR parameters with molecular weight [7].   

The GC-SAFT-VR description of the n-alkane phase diagrams in comparison 

with experimental data are presented in Figure 24 and Figure 25 and the average absolute 

deviations (AAD) for the vapor pressure and liquid density are reported in Table 15 and 

Table 16 respectively. We find that the average deviation for vapor pressure is less than 

8% for all the n-alkanes used in the fitting process except for propane, which was the 

smallest n-alkane molecule considered and so the alkane for which the influence of the 

CH3 groups will be greatest. Although the agreement with experimental data is not as 

accurate as that obtained by fitting parameters separately for each alkane, we do find that 

our results are generally more accurate than those obtained when using parameters 

determined from correlations of the SAFT-VR parameters with molecular weight or 

carbon number [7]; for comparison the AAD values for results obtained from the 

empirical expressions of Paricaud et al. are also reported in Table 15 and Table 16. 

Similar behavior is observed if the expressions proposed by McCabe et al. are used [127]. 
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Table 12: GC-SAFT-VR parameters for segment size and segment number.  
 

Groups σ  (Å) mi 
CH3 3.737 0.667 
CH2 4.041 0.333 
CH 3.925 0.100 

C=O 3.496 0.580 
CH2=CH 3.574 1.052 

C6H5 3.158 2.693 
CH2O 2.950 1.000 
CH3O 3.078 1.330 

 

Table 13: Segment-segment energy well depth parameters !ij . 
 

Type CH3 CH2 CH C=O CH2=CH C6H5 CH2O CH3O 
CH3 234.250 235.735 153.064 307.223 226.675 165.521 157.702 191.144 
CH2 235.735 237.230 154.034 309.171 228.112 166.570 158.702 192.356 
CH 153.064 154.034 100.015 200.746 148.114 108.155 103.046 124.897 

C=O 307.223 309.171 200.746 402.929 297.288 217.084 206.829 250.689 
CH2=CH 226.675 228.112 148.114 297.288 219.344 160.168 152.602 184.962 

C6H5 165.521 166.570 108.155 217.084 160.168 116.957 111.432 135.062 
CH2O 157.702 158.702 103.046 206.829 152.602 111.432 106.168 128.682 
CH3O 191.144 192.356 124.897 250.689 184.962 135.062 128.682 155.970 

 

Table 14: Segment-segment energy range parameters !ij . 
 

Type CH3 CH2 CH C=O CH2=CH C6H5 CH2O CH3O 
CH3 1.492 1.583 1.725 1.685 1.529 1.734 1.546 1.566 
CH2 1.583 1.667 1.804 1.586 1.621 1.822 1.645 1.662 
CH 1.725 1.804 1.946 1.920 1.766 1.979 1.804 1.818 

C=O 1.685 1.586 1.920 1.891 1.728 1.953 1.764 1.558 
CH2=CH 1.529 1.621 1.766 1.728 1.568 1.781 1.589 1.608 

C6H5 1.734 1.822 1.979 1.953 1.781 2.021 1.824 1.840 
CH2O 1.546 1.645 1.804 1.764 1.589 1.824 1.614 1.635 
CH3O 1.566 1.662 1.818 1.558 1.608 1.840 1.635 1.655 
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Table 15: The average deviation of vapor pressures between experimental data [152] and 
correlated results for pure alkanes. 

 
n-alkanes T (K) Npt AAD P 

(%) 
AAD P* 

(%) 
Propane 130-360 24 13.91 10.35 
n-Butane 160-420 27 5.72 4.35 
n-Pentane 180-460 29 4.77 12.06 
n-Hexane 200-500 31 6.85 16.70 
n-Heptane 220-560 33 4.52 15.58 
n-Octane 240-560 33 3.98 15.21 
n-Nonane 250-590 35 4.20 13.57 
n-Decane 270-610 35 3.68 12.54 

n-Dodecane 300-650 36 3.28 9.01 
n-Hexadecane 350-720 38 5.27 5.88 

n-Eicosane 390-760 38 7.13 7.01 
* Obtained from parameters correlated with molecular weight [7] 

 

Table 16: The average deviation of liquid densities between experimental data [152] and 
correlated results for pure alkanes. 

 
n-alkanes T (K) Npt AAD DLiq 

(%) 
AAD DLiq* 

(%) 
Propane 100-360 27 4.03 2.93 
n-Butane 140-420 29 3.59 2.81 
n-Pentane 150-460 32 2.57 2.21 
n-Hexane 180-500 33 2.48 2.32 
n-Heptane 190-540 36 3.69 3.17 
n-Octane 220-560 35 2.70 2.40 
n-Nonane 220-590 38 2.87 2.41 
n-Decane 250-610 37 2.68 2.18 

n-Dodecane 270-650 39 2.64 2.09 
n-Hexadecane 300-720 43 2.96 2.20 

n-Eicosane 310-760 46 2.26 1.64 
* Obtained from parameters correlated with molecular weight [7] 
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Figure 24: Comparison of GC-SAFT-VR description with experimental vapor pressure 
data for selected light n-alkanes from propane to n-eicosane (from left to right); 
experimental data [152] are represented by circles and calculated results by dashed lines. 
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Figure 25: Comparison of GC-SAFT-VR description with experimental saturated liquid 
density data for selected light n-alkanes from propane to n-eicosane (from right to left); 
experimental data [152] are represented by circles and calculated results by dashed lines. 
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Having presented the agreement with experimental data for n-alkanes included in 

the fitting process we now test the GC-SAFT-VR approach by studying the phase 

diagrams of heavier alkanes, not included in the fitting process. Predictions for the vapor 

pressures and saturated liquid densities of undecane (C11H24) - hexatriacontante (C36H74) 

are compared with experimental data in Figure 26 and Figure 27. The corresponding 

AAD values for the vapor pressures and liquid densities are reported in Table 17 and 

Table 18. For comparison we again provide AAD values for the SAFT-VR description of 

these n-alkanes obtained using parameters from the empirical expressions of Paricaud [7]. 

Generally, we find that the deviations between the GC-SAFT-VR predictions and 

experimental data for the saturated liquid density are much smaller than those obtained 

for predictions for the vapor pressure, indicating that the vapor pressure is a more 

sensitive quantity.  
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Figure 26: Comparison of GC-SAFT-VR prediction with experimental vapor pressure 
data for selected heavy n-alkanes from n-undecane to n-dotriacotane (from left to right); 
experimental data [152] are represented by circles and calculated results by dashed lines. 
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Figure 27: Comparison of GC-SAFT-VR prediction with experimental saturated liquid 
density data for selected heavy n-alkanes from n-undecane to n-dotriacotane (from right 
to left); experimental data [152] are represented by circles and calculated results by 
dashed lines.    
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Table 17: The average deviation of vapor pressures between experimental data [152] and 
predicted results for pure alkanes. 
 

n-alkanes T (K) Npt AAD P 
(%) 

AAD P* 
(%) 

n-Undecane 280-630 36 4.26 12.98 
n-Tridecane 310-670 37 3.27 9.01 

n-Tetradecane 320-690 38 3.88 7.67 
n-Pentadecane 330-700 38 4.09 6.21 
n-Heptadecane 360-730 38 4.93 5.52 
n-Octadecane 370-740 38 6.53 6.32 
n-Nonadecane 380-750 38 7.27 6.53 
n-Heneicosane 400-770 38 8.64 8.29 

n-Docosane 410-780 38 10.93 10.46 
n-Tricosane 410-790 39 9.58 8.80 

n-Tetracosane 410-800 39 10.55 10.06 
n-Pentacosane 430-810 39 11.49 11.73 
n-Hexacosane 440-810 38 11.47 10.96 
n-Heptacosane 450-820 38 9.97 10.74 
n-Octacosane 450-830 39 14.02 14.28 
n-Nonacosane 460-830 38 15.80 15.87 
n-Triacontane 470-840 38 16.75 19.28 

n-Dotriacontane 480-850 38 20.11 22.93 
n-Hexatriacontane 500-870 38 24.26 26.78 

* Obtained from parameters correlated with molecular weight [7] 
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Table 18: The average deviation of liquid densities between experimental data [152] and 
predicted results for pure alkanes. 

 
n-alkanes T (K) Npt AAD DLiq 

(%) 
AAD DLiq* 

(%) 
n-Undecane 250-630 39 2.50 1.99 
n-Tridecane 270-670 41 2.76 2.02 

n-Tetradecane 280-690 42 2.99 2.24 
n-Pentadecane 290-700 42 2.56 1.87 
n-Heptadecane 300-730 44 2.59 1.92 
n-Octadecane 310-740 44 2.60 1.90 
n-Nonadecane 310-750 45 2.56 1.86 
n-Heneicosane 320-770 46 2.64 1.90 

n-Docosane 320-780 47 2.75 1.98 
n-Tricosane 330-790 47 2.82 2.03 

n-Tetracosane 330-800 48 2.92 2.12 
n-Pentacosane 330-810 49 3.20 2.39 
n-Hexacosane 330-810 49 2.65 1.83 
n-Heptacosane 340-820 49 2.91 2.07 
n-Octacosane 340-830 50 3.11 2.27 
n-Nonacosane 340-830 50 2.82 1.96 
n-Triacontane 340-840 51 3.25 2.36 
n-Dotriacotane 350-850 51 3.10 2.22 

n-Hexatriacontane 350-870 53 3.08 2.27 
* Obtained from parameters correlated with molecular weight [7] 

 

In order to describe the heterogeneity of branched alkanes, a CH group needs to 

be defined. The parameters for the CH group were determined by fitting to vapor 

pressure and saturated liquid density data for two families of branched alkanes, 

methylalkanes and ethylalkanes, while using the CH2 and CH3 group parameters already 

determined.  The GC-SAFT-VR description of the branched alkanes for fitting in 

comparison with experimental data are presented in Figure 28 and Figure 29 and the 

parameters obtained for the CH group given in Table 12 - Table 14.  The deviations 

between the GC-SAFT-VR description of the phase diagrams and experimental data are 

reported in Table 19. From Table 19 we note that the agreement with experimental data is 
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good with the deviations obtained being similar to those observed for the n-alkanes; the 

liquid densities are ~4% and the deviations for the vapor pressures generally less than 

8%.  As a test of the theory, 2-methyl heptane, five dimethyl-branched alkanes, and  

squalane were also investigated and the predictive results are plotted in Figure 30 and 

Figure 31 and the deviation are included in Table 20.  We find that the liquid density of 

these systems is very well predicted by the GC-SAFT-VR approach, however the vapor 

pressure is overpredicted as the number of branches increases. The overprediction might 

be caused by the effect of the interaction between the branches of CH3 and the group CH 

directly linked to CH3. 
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Figure 28: Comparison of GC-SAFT-VR description with experimental vapor pressure 
data [152] for selected methyl alkanes from 4-methylheptane to 5-methylnonane (from 
left to right) represented by crosses and for ethyl alkanes from 3-ethylpentane to 3-
ethylheptane represented by squares (from left to right); theoretical calculations for 
methyl alkanes and ethyl alkanes are represented by dashed and solid lines respectively. 
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Figure 29: Comparison of GC-SAFT-VR description with experimental saturated liquid 
density data [152] for selected methyl alkanes from 4-methylheptane to 5-methylnonane 
(from right to left) represented by crosses and for ethyl alkanes from 3-ethylpentane to 3-
ethylheptane represented by squares (from right to left); theoretical calculations for 
methyl alkanes and ethyl alkanes are represented by dashed and solid lines respectively. 
 

Table 19: The average deviation of vapor pressures and liquid densities between 
experimental data [152] and correlated results for pure branched alkanes. 

 
Branched alkanes T (K) Npt AAD P 

(%) 
AAD DLiq 

(%) 
4-methylheptane 160-560 41  3.16 

 230-560 34 4.82  
4-methyloctane 160-585 44  3.31 

 240-585 36 5.79  
5-methylnonane 190-610 43  4.28 

 260-610 36 7.65  
3-ethylpentane 150-540 40  3.91 

 210-540 34 15.80  
3-ethylhexane 280-565 30  4.97 

 280-565 30 2.69  
3-ethylheptane 160-590 44  4.12 

 240-590 36 1.99  
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Table 20: The average deviation of vapor pressures and liquid densities between 
experimental data [152] and predicted results for pure branched alkanes. 

 
Branched alkanes T (K) Npt AAD P 

(%) 
AAD DLiq 

(%) 
2-methyl heptane 170-550 39  3.02 

 225-550 33 9.83  
2, 4-dimethylhexane 275-550 29  5.98 

 275-550 29 14.49  
2, 6-dimethylheptane 175-575 41  4.35 

 245-575 34 19.08  
2, 7-dimethyloctane 220-600 39  4.42 

 260-600 35 18.09  
Squalane 270-760 63  2.55 

 440-760 43 43.25  
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Figure 30: Comparison of GC-SAFT-VR prediction with experimental vapor pressure 
data [152] for 2, 4-dimethylhexane, 2, 6-dimethylheptane, 2, 7-dimethyloctane, and 
squalane (from left to right) represented by crosses and 2-methyl heptane represented by 
squares; theoretical calculations for multi-branched alkanes and 2-methyl heptane are 
represented by dashed and solid lines respectively. 
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Figure 31: Comparison of GC-SAFT-VR prediction with experimental saturated liquid 
density data [152] for 2, 4-dimethylhexane, 2, 6-dimethylheptane, 2, 7-dimethyloctane, 
and squalane (from right to left) represented by crosses and 2-methyl heptane represented 
by squares; theoretical calculations for multi-branched alkanes and 2-methyl heptane are 
represented by dashed and solid lines respectively. 
 

In order to study unsaturated alkanes a functional group needs to be defined and 

parameters determined that incorporates the unsaturated C=C bond.  Using the CH2 and 

CH3 groups previously defined parameters for a CH2=CH group were determined by 

fitting to the experimental vapor pressures and coexisting densities for eight 1-alkenes 

from propene to 1-decene. The parameters for the CH2=CH group are given in Table 12 - 

Table 14. The GC-SAFT-VR description of the alkene vapor pressures and liquid density 

for fitting are given in Figure 32 and Figure 33 and the predicted results of vapor pressure 

and liquid density in Figure 34 and Figure 35. In comparison to the experimental data we 

can see both the fitting results for short 1-alkenes from pentene to 1-decene and 
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prediction results for longer 1-alkene systems from 1-undecene to 1-eicosene agree very 

well with experimental data.  
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Figure 32: Comparison of GC-SAFT-VR description with experimental vapor pressure 
data for selected light 1-alkenes from propene to 1-decene (from left to right); 
experimental data [152] are represented by circles and calculated results by dashed lines. 
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Figure 33: Comparison of GC-SAFT-VR description with experimental saturated liquid 
density data for selected light 1-alkenes from propene to 1-decene (from right to left); 
experimental data [152] are represented by circles and calculated results by dashed lines. 
 

Table 21: The average deviation of vapor pressures and liquid densities between 
experimental data [152] and correlated results for pure alkenes. 

 
Alkenes T (K) Npt AAD P 

(%) 
AAD DLiq 

(%) 
Propene 90-360 28  2.56 

 130-360 24 7.27  
1-Butene 90-415 34  3.44 

 150-415 28 4.71  
1-Pentene 110-460 36  2.79 

 170-460 30 3.90  
1-Hexene 135-495 37  2.29 

 195-495 31 1.71  
1-Heptene 155-535 39  2.50 

 215-535 36 3.64  
1-Octene 175-565 40  2.34 

 235-565 34 3.05  
1-Nonene 195-590 41  2.26 

 245-590 36 4.40  
1-Decene 210-615 42  2.63 

 260-615 37 3.51  
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Figure 34: Comparison of GC-SAFT-VR prediction with experimental vapor pressure 
data for selected heavy 1-alkenes from 1-undecene to 1-eicosene (from left to right); 
experimental data [152] are represented by circles and calculated results by dashed lines. 
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Figure 35: Comparison of GC-SAFT-VR prediction with experimental saturated liquid 
density data for selected heavy 1-alkenes from 1-undecene to 1-eicosene (from right to 
left); experimental data [152] are represented by circles and calculated results by dashed 
lines. 
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Table 22: The average deviation of vapor pressures and liquid densities between 
experimental data [152] and predicted results for pure alkenes. 
 

Alkenes T (K) Npt AAD P 
(%) 

AAD DLiq 
(%) 

1-Undecene 225-635 42  2.33 
 285-635 36 4.23  

1-Dodecene 240-655 43  2.48 
 290-655 38 4.52  

1-Tridecene 255-675 43  3.55 
 305-675 38 4.14  

1-Tetradecene 265-690 44  2.85 
 315-690 39 4.53  

1-Pentadecene 270-705 45  2.88 
 330-705 39 5.58  

1-Hexadecene 280-720 46  3.31 
 340-720 40 6.19  

1-Heptadecene 285-735 48  3.56 
 355-735 41 7.42  

1-Octadecene 295-745 46  2.66 
 365-745 39 7.45  

1-Nonadecene 300-760 47  3.75 
 380-760 39 7.26  

1-Eicosene 305-770 48  3.28 
 385-770 40 7.32  

 

Having defined parameters for the groups forming the “backbone” of organic 

molecules we can now define parameters for common functional groups in other classes 

of organic molecules.  In this initial study we have focused on ketones, esters and 

alkylbenzenes, since the carbonyl (C=O), CH2O, CH3O, and benzenyl groups (C6H5) are 

common functional groups in polymers.  In order to determine parameters for the 

carbonyl group we fitted to experimental vapor pressure and saturated liquid density data 

for 3-pentanone, 3-hexanone, 4-heptanone, 4-octanone, 5-nonanone in which the 

carbonyl group lies in the center of the ketone chain. Ketones have very strong dipolar 

interactions due to the carbonyl group, which is not explicitly described in the original 

SAFT-VR approach but captured through the large value of the range parameter ! . The 
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regressed parameters for C=O are presented in Table 12 - Table 14.  The transferability of 

the ketone parameters was tested through the prediction of the phase diagrams of 6-

undecanone, 8-pentadecanone, and 16-hentriacontanone.  The results are in good 

agreement with experimental data for both the vapor pressure and saturated liquid 

densities as can be seen in Figure 36 and Figure 37 and from the AAD values of ~5% and 

2% (reported in Table 23 and Table 24) for the vapor pressures and saturated liquid 

densities respectively. 
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Figure 36: Comparison of GC-SAFT-VR description with experimental vapor pressure 
data for selected ketones from 3-pentanone to 8-pentadecanone (from left to right); 
experimental data [152] are represented by the symbols, correlated results and predicted 
results by dashed and solid lines respectively. 
 



 99 

200

300

400

500

600

700

800

0 4 8 12

T
 (
K
)

!  (mol/L)
 

Figure 37: Comparison of GC-SAFT-VR description with experimental saturated liquid 
density data for selected ketones from 3-pentanone to 16-hentriacontanone (from right to 
left); experimental data [152] are represented by the symbols, correlated results and 
predicted results by dashed and solid lines respectively. 

 

Table 23: The average deviation of vapor pressures and liquid densities between 
experimental data [152] and correlated results for pure ketones. 
 

Ketones T (K) Npt AAD P 
(%) 

AAD DLiq 
(%) 

3-pentanone 240-560 33  2.75 
 240-560 33 3.04  

3-hexanone 220-580 37  1.38 
 240-580 35 5.57  

4-heptanone 250-600 36  1.06 
 250-600 36 7.21  

4-octanone 250-615 38  0.56 
 290-615 36 7.77  

5-nonanone 270-640 38  2.10 
 280-640 37 5.18  
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Table 24: The average deviation of vapor pressures and liquid densities between 
experimental data [153] and predicted results for pure ketones. 
 

Ketones T (K) Npt AAD P 
(%) 

AAD DLiq 
(%) 

6-undecanone 293-358 13  0.95 
 298-531 45 4.22  

8-pentadecanone 312-351 7  0.84 
 443-600 25 4.08  

16-hentriacontanone 363-573 45  2.16 
 

As discussed above, esters require the definition of two types of functional groups 

(i.e. CH3O for esters having a CH3O group next to the C=O group and CH2O for esters 

with an alkyl chain rather than a terminal CH3 group). We first study esters with CH2O 

and C=O groups and regress the parameters for the CH2O group to experimental vapor 

pressure and liquid density for eight esters from ethyl acetate to nonyl acetate. The 

parameter regression for the CH2O group is performed while keeping the parameters for 

the CH2, CH3, C=O groups and their cross interactions fixed to their previously 

determined values. For the molecules studied both the vapor pressure and liquid densities 

are correlated very well in comparison to the experimental data, as shown in Figure 38. 

However, we do note some deviation from the experimental data for the vapor pressures 

of ethyl acetate and propyl acetate which have short alkyl chains. The transferability of 

the fitted parameters for the CH2O group was tested by comparing GC-SAFT-VR 

predictions with experimental data for ester systems not included in the fitting process. 

Specifically we studied butyl pentanoate, ethyl butanoate, and nonanoicacid butyl ester, 

which have longer alkyl groups next to the C=O and CH2O groups and diethyl succinate 

which has two two C=O and CH2O groups, as shown in Figure 40 and Figure 41 

respectively. The predicted results for butyl pentanoate give a good representation for 
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both the experimental vapor pressures and liquid densities, while only good agreement 

with the liquid densities is obtained for the other three systems.    
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Figure 38: Comparison of GC-SAFT-VR description with experimental vapor pressure 
data for selected light esters from ethyl acetate to nonyl acetate (from left to right); 
experimental data [152] are represented by circles and calculated results by dashed lines. 
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Figure 39: Comparison of GC-SAFT-VR description with experimental saturated liquid 
density data for selected light esters from ethyl acetate to nonyl acetate (from right to 
left); experimental data [152] are represented by circles and calculated results by dashed 
lines. 
 

Table 25: The average deviation of vapor pressures and liquid densities between 
experimental data [152] and correlated results for pure esters. 
 

Esters (CH2O) T (K) Npt AAD P 
(%) 

AAD DLiq 
(%) 

Ethyl acetate 200-510 32  2.68 
 210-510 31 21.91  

Propyl acetate 200-540 35  2.58 
 230-540 32 12.61  

Butyl acetate 205-565 37  2.19 
 245-565 33 6.77  

Pentyl acetate 210-580 38  1.52 
 260-580 33 5.80  

Hexyl acetate 200-610 42  2.08 
 280-610 24 3.52  

Heptyl acetate 250-630 39  2.43 
 290-630 35 7.74  

Octyl acetate 250-640 40  2.02 
 300-640 35 6.11  

Nonyl acetate 260-650 40  2.89 
 330-650 33 5.70  
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Figure 40: Comparison of GC-SAFT-VR prediction with experimental vapor pressure 
data for ethyl butanoate, diethyl succinate, butyl pentanoate, and nonanoicacid butyl ester 
(from left to right); experimental data [152] are represented by circles and calculated 
results by dashed lines. 
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Figure 41: Comparison of GC-SAFT-VR prediction with experimental saturated liquid 
density data for ethyl butanoate, diethyl succinate, butyl pentanoate, and nonanoicacid 
butyl ester (from right to left); experimental data [152] are represented by circles and 
calculated results by dashed lines. 
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Table 26: The average deviation of vapor pressures and liquid densities between 
experimental data [152] and predicted results for pure esters. 
 

Esters (CH2O) T (K) Npt AAD P 
(%) 

AAD DLiq 
(%) 

Butyl pentanoate 190 - 620 44  1.41 
 250 - 620 38 10.48  

Ethyl butanoate 185 - 565 39  1.27 
 215 - 565 36 8.99  

Diethyl succinate 260 – 660 41  1.78 
 290 - 660 38 12.26  

Nonanoicacid butyl ester 240 - 670 44  1.90 
 240 - 670 37 32.13  

 

Similarly, we regress the parameters for CH3O group to the experimental data of 

seven esters: methyl acetate, and methyl propanoate to methyl octanoate in which the 

CH3O group is the end group and always accompanied with the C=O group. The 

regressed parameters for the CH3O group are listed in Table 12 - Table 14. The liquid 

densities of the selected esters are correlated quite well with the experimental data as 

presented in Table 27 and in Figure 43.  
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Table 27: The average deviation of vapor pressures and liquid densities between 
experimental data [152] and correlated results for pure esters. 
 

Esters (CH3O) T (K) Npt AAD P 
(%) 

AAD DLiq 
(%) 

Methyl acetate 200-480 29 10.86 2.51 
Methyl propanoate 210-500 30 7.46 3.10 
Methyl butanoate 220-520 31 4.11 2.17 
Methyl pentanoate 298.20- 402.88 22 3.25 0.28 
Methyl hexanoate 287.65- 360.05 10 4.67 0.32 
Methyl heptanoate 333.07- 402.89 15 1.38 0.45 
Methyl octanoate 284.75- 360.55 10  0.37 

 370 - 420 11 1.70  
Methyl dodecanoate 285 - 705 43  1.52 

 335 - 705 38 4.95  
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Figure 42: Comparison of GC-SAFT-VR description with experimental vapor pressure 
data for seven light esters from methyl acetate to methyl octanoate (from left to right); 
experimental data [152] are represented by circles and calculated results by dashed lines. 
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Figure 43: Comparison of GC-SAFT-VR description with experimental saturated liquid 
density data for seven light esters from methyl acetate to methyl octanoate (from right to 
left); experimental data [152] are represented by circles and calculated results by dashed 
lines. 
 

We have also studied alkylbenzene systems with a single alkyl group which are 

represented by groups CH2/CH3. Short alkyl benzenes from methylbenzene to 

decylbenzene are selected for fitting parameters for the benzenyl group to the 

experimental data, for which the fitting results of the vapor pressure and liquid density 

are plotted in Figure 44 and Figure 45 respectively. Then we test the predictivity of the 

fitted parameters of benzenyl group by applying them to study longer alkylbenzene 

systems starting from undecylbenzene (as plotted in Figure 46). Although the deviations 

of liquid density properties between theoretical results and experimental data in both 

fitting and prediction are good, the shape of the density profile is slightly distorted as 

seen in Figure 45 and Figure 47. It is also observed that the deviations between the 
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predictive vapor pressures and experimental data become larger as the alkyl chain 

increases in Table 29. This is also seen in other systems containing alkyl chain mentioned 

previously. 
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Figure 44: Comparison of GC-SAFT-VR description with experimental vapor pressure 
data for ten light alkylbenzenes from methylbenzene to decylbenzene (from left to right); 
experimental data [152] are represented by circles and calculated results by dashed lines. 
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Figure 45: Comparison of GC-SAFT-VR description with experimental saturated liquid 
density data for ten light alkylbenzenes from methylbenzene to decylbenzene (from right 
to left); experimental data [152] are represented by circles and calculated results by 
dashed lines. 
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Table 28: The average deviation of vapor pressures and liquid densities between 
experimental data [152] and correlated results for pure alkylbenzenes. 
 

Alkylbenzene T (K) Npt AAD P 
(%) 

AAD DLiq 
(%) 

Methylbenzene 180-590 42  4.90 
 220-590 38 10.07  

Ethylbenzene 180-615 45  4.91 
 240-615 39 8.55  

Propylbenzene 175-635 47  4.14 
 255-635 39 2.39  

Butylbenzene 185-660 49  4.37 
 265-660 41 1.99  

Pentylbenzene 200-675 49  3.99 
 290-675 40 2.01  

Hexylbenzene 215-695 49  3.56 
 295-695 41 2.40  

Heptylbenzene 230-710 49  3.03 
 310-710 41 4.91  

Octylbenzene 240-725 50  3.04 
 320-725 42 4.46  

Nonylbenzene 250-740 50  2.99 
 340-740 41 4.33  

Decylbenzene 260-750 50  2.67 
 350-750 41 5.89  
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Figure 46: Comparison of GC-SAFT-VR prediction with experimental vapor pressure 
data for eight heavy alkylbenzenes from undecylbenzene octadecylbenzene (from left to 
right); experimental data [152] are represented by circles and calculated results by dashed 
lines. 
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Figure 47: Comparison of GC-SAFT-VR prediction with experimental saturated liquid 
density data for eight heavy alkylbenzenes from undecylbenzene octadecylbenzene (from 
right to left); experimental data [152] are represented by circles and calculated results by 
dashed lines. 
 

Table 29: The average deviation of vapor pressures and liquid densities between 
experimental data [152] and predicted results for pure alkylbenzenes. 
 

Alkylbenzene T (K) Npt AAD P 
(%) 

AAD DLiq 
(%) 

Undecylbenzene 270-760 50  2.46 
 360-760 41 7.31  

Dodecylbenzene 280-780 51  2.93 
 370-780 42 8.84  

Tridecylbenzene 285-790 52  3.02 
 385-790 42 9.44  

Tetradecylbenzene 290-800 52  2.74 
 390-800 42 12.48  

Pentadecylbenzene 300-805 52  2.17 
 400-805 42 13.64  

Hexadecylbenzene 305-815 53  2.27 
 405-815 43 14.36  

Heptadecylbenzene 295-825 54  2.89 
 415-825 42 18.07  

Octadecylbenzene 310-830 53  3.06 
 420-830 42 20.07  
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5.3.2 Binary Mixtures 

Having studied the phase behavior of pure fluids using the GC-SAFT-VR equation and 

tested the predictive capability of the approach and functional groups defined by studying 

the phase behavior of heavier molecules within the same chemical family, but not 

included in the fitting process, we now turn to binary mixtures to further test the GC-

SAFT-VR approach. As in the study of pure n-alkanes, for binary mixtures only two 

types of groups (CH3 and CH2) are used to represent the n-alkane components studied, 

and no binary interaction parameters are used. Here we illustrate for two binary mixture 

systems of alkanes, one for which the chain lengths of the two alkanes are close and os 

the phase behavior expected to be simple and the other in which the alkanes have very 

different chain lengths.  In Figure 48 we present results for constant pressure Tx slices of 

a simple mixture of hexane + heptane. From the phase diagram we observe good 

agreement between our theoretical predictions and the experimental data.  We then 

considered a system with asymmetry in the chain lengths of the two components and 

studied constant temperature Px slices of the hexane + hexadecane phase diagram in 

Figure 49.  We can see from the figure that good agreement is again obtained between the 

theoretical predictions and experimental data over the wide range of temperatures 

studied.  
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Figure 48: Predicted constant-pressure Tx slices of the phase diagram for hexane (1) + 
heptane (2) by GC-SAFT-VR, compared with experimental data [154, 155] at 0.94 bar 
(circle), 1.01bar (square). 
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Figure 49: Predicted constant-temperature Px slices of the phase diagram for hexane (1) 
+ hexadecane (2) by GC-SAFT-VR, compared with experimental data [156, 157] at 
333.15K (square), 472.3K (circle). 

 

We have also studied the vapor-liquid equilibria of four n-alkane + ketone binary 

mixtures. The results are shown in Figure 50 - Figure 53 and obtained using the fitted 

parameters for the interaction of the CH3, CH2, and C=O groups as given in Table 13 and 

Table 14. From Figure 50, we can see that the bubble-dew point curves at three different 

temperatures as well as the locations of azeotrope for binary mixture system of 3-

pentanone and heptane agree very well with experimental data. In contrast, the 3-

pentanone + hexane binary mixture does not display azeortopic behavior which is 

captured by the theory as shown in Figure 51.  We also note from the figure that the GC-

SAFT-VR predictions for the bubble-dew point curves are in good agreement with the 
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experimental data; a slight overprediction is observed close to the vapor pressure of pure 

hexane. We also obtained one Px slice for binary mixture system of 3-heptanone and 

hexane, its dew point curve agree very well with experimental data while the bubble 

point curve is slightly underpredicted as observed in Figure 52.  Similar prediction of 

three constant termperature Px slices is done for the binary mixture system of longer 3-

nonanone with hexane, its bubble point curves are well represented while they are 

slightly underpredicted when the composition of 3-nonanone increases as seen Figure 53. 

From Figure 50 - Figure 53, we also observe that the region between the bubble point 

curve and dew point curve becomes larger for heavier ketone. 
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Figure 50: Predicted constant-temperature Px slices of the phase diagram for heptane (1) 
+ 3-pentanone (2) by GC-SAFT-VR, compared with experimental data [158, 159] at 
313.2K (circle), 338.15K (square), 353.15K (diamond), 368.15K (cross). 
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Figure 51: Predicted constant-temperature Px slices of the phase diagram for hexane (1) 
+ 3-pentanone (2) by GC-SAFT-VR, compared with experimental data [160] at 283.15K 
(circle), 325.15K (square), 338.15K (diamond). 
 

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
 (
b
a
r
)

x
2   

Figure 52: Predicted constant-temperature Px slice of the phase diagram for hexane (1) + 
3-heptanone (2) by GC-SAFT-VR, compared with experimental data [161] at 338.15K 
(circle). 
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Figure 53: Predicted constant-temperature Px slices of the phase diagram for hexane (1) 
+ 3-nonanone (2) by GC-SAFT-VR, compared with experimental data [162] at 333.15K 
(circle), 343.15K (square), 353.15K (diamond). 
 

We also predicted the T-x phase diagrams for three selected binary mixtures of 

alkanes and esters and one binary mixture of esters. The predicted results for these 

systems are obtained by using the fitted parameters for the interaction of the CH2, CH3, 

C=O, CH2O, and CH3O groups as given in Table 13 and Table 14. Figure 54 and Figure 

55 present the Tx slice for propyl butanoate with n-heptane (C7H16) and n-nonane (C9H20) 

at 1 bar, respectively.  Though the two systems have alkanes differing in only two CH2 

groups, their phase diagrams are quite different; the propyl butanoate + nonanes systems 

displays an azeotrope while the mixture of propyl butanonate + heptane does not.  From 

Figure 54 we can see that the predicted bubble and dew point curves for the propyl 

butanonate + heptane are in excellent agreement with the experimental data. The 

predicted Tx slice for propyl butanoate + nonane system at 1 bar agrees well with 
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experimental data while the azeotrope temperature is slightly underpredicted. We also 

studied a mixture system of methyl pentanoate + heptane (i.e., having a CH3O group). 

The predicted constant pressure curves of that system are presented in Figure 56 where 

the bubble point and dew point curves are slightly overpredicted compared with the 

experimental data. In addition to mixture systems of alkane and ester, we are also 

interested in studying the phase properties of ester mixtures. The mixture system of 

methyl octanoate and methyl hexanoate has also been studied. The Tx diagram for this 

system is presented in Figure 57 and we see that the GC-SAFT-VR equation provides an 

excellent agreement with the experimental bubble point and dew point curves given that 

no parameters have been fitted to the binary mixture data and so the theoretical 

calculation is a pure prediction. 
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Figure 54: Predicted constant-pressure Tx slice of the phase diagram for heptane (1) + 
propyl butanoate (2) by GC-SAFT-VR, compared with experimental data [163] at 1 bar 
(square). 
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Figure 55: Predicted constant-pressure Tx slice of the phase diagram for nonane (1) + 
propyl butanoate (2) by GC-SAFT-VR, compared with experimental data [163] at 1 bar 
(square).  
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Figure 56: Predicted constant-pressure Tx slice of the phase diagram for heptane (1) + 
methyl pentanoate (2) by GC-SAFT-VR, compared with experimental data [164] at 1 bar 
(square).  
 



 120 

345

350

355

360

365

370

375

380

385

0 0.2 0.4 0.6 0.8 1

T
 (

K
)

x
2  

Figure 57: Predicted constant-pressure Tx slice of the phase diagram for methyl 
octanoate (1) + methyl hexanoate (2) by GC-SAFT-VR, compared with experimental 
data [165] at 0.0667 bar (square).  
 

5.4 Conclusions 

In this work, a group-contribution hetero-SAFT-VR approach is developed.  The 

parameters for different key groups have been regressed from the experimental data for 

different chemical families. In particular, linear alkanes, branched alkanes, 1-alkenes, 

alkylbenzenes, ketones, and esters have been studied in this work and parameters 

determined for CH3, CH2, CH, CH2=CH, C6H5, C=O, CH2O, and CH3O groups in order 

to well represent the corresponding families and hence to be extrapolated to other 

systems containing the same groups.  The transferability of the fitted parameters for 

different groups is tested by predicting the phase behavior of heavier molecules. Both 

regression and prediction results of systems studied here are satisfactory.  Hence, the 

group contribution type hetero-SAFT-VR is proved to be able to capture the phase 

behavior of fluids composed of different groups. We also applied the theory to study 
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some mixture systems such as binary mixture systems of alkanes, binary mixture systems 

of alkane and ketone, binary mixture systems of alkane and ester, and binary mixture 

system of esters. The theoretical prediction agrees with the experimental data very well. 

In the next chapter, we will use the parameter database of key functional groups to study 

the VLE and LLE behavior of polymer systems.  
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    Chapter VI 

 

6 APPLICATION OF GC-SAFT-VR EOS TO POLYMER SYSTEMS 

 

6.1 Introduction 

Knowledge of the phase behavior of polymer systems is very useful in the design and 

optimization of polymerization reactors and separators where control of the phase 

behavior (in order to avoid or to induce a phase transition) is essential. For example, the 

solubility of monomers is significant in the design of monomer devolatilization 

equipment in which the remaining monomer is removed from the polymer product under 

low pressure and high temperature conditions in order to protect the environment and 

eliminate the health and safety hazards related with producing and using polymers [166]. 

Both vapor-liquid equilibrium (VLE) and liquid-liquid phase equilibrium (LLE) are very 

important in polymer production, where polymers are produced in one or two phases with 

solvents, unreacted monomers, and additives, which must be separated [167] from the 

polymer product. In fact, polymer systems coexist in two liquid phases more often than 

systems of low molecular weight [168] and hence the LLE of polymer systems has been 

extensively studied. 

While there is a large body of experimental data on the phase behavior (VLE and 

LLE) of polymer systems, experiments under high pressures and/or involving 

components at supercritical conditions can be difficult and expensive to perform.  Hence, 

it is of great interest to study the thermodynamic properties of polymer systems using an 

efficient and robust theoretical modeling tool that can be used to extrapolate to regions of 
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the phase diagram where experimental measurements are not available.  To this end, 

there are a number of thermodynamic models available in the literature to describe the 

phase behavior of polymer systems, such as activity coefficient models and equations of 

state. Traditional equations of state, such as cubic equations, usually work well for 

simple, nearly spherical molecules, such as small alkanes, nitrogen, and carbon 

monoxide, but tend to give poor predictions for polymer systems [117], since they have 

not been derived from a theoretical basis that accommodates for the complexities of 

molecular shape and interactions. Over the past decade, significant efforts have been 

focused on developing molecular-based EOSs to model polymers. SAFT has been 

successfully applied to study the thermodynamics and phase behavior of polymer systems 

since a polymer can be modeled as a very long flexible chain composed of tangentially 

bonded spherical segments, e.g., polyethylene can been treated as a very long n-alkane 

chain [18].   

Several versions of the SAFT EOS have been developed to describe the phase 

behavior of polymer [6, 7, 16, 169] and copolymer systems [30, 59, 170]. In particular, 

Huang and Radosz proposed an engineering version of the original SAFT EOS (HR-

SAFT), that has been used predominately to study polyolefin systems [171-173]. 

However, limited success has been seen for the HR-SAFT equation with other polymers 

and copolymers. More recently, Sadowski et al. developed a perturbed-chain SAFT (PC-

SAFT) [27] to improve the description of polymer systems by using a hard-chain as the 

reference fluid instead of the hard-sphere reference used in HR-SAFT and shows 

promising results for the description of VLE and LLE of polymer mixtures [29, 169, 174, 

175]. At a similar level of theory, the SAFT-VR approach has been proposed in which 
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chain molecules are treated as tangent hard spherical segments that interact through 

attractive potentials of variable range (VR), typically a square-well potential. SAFT-VR 

has been successfully applied to studying the adsorption of light hydrocarbons on 

polyethylene (PE) [6, 7] and cloud point curves of polyethylene solutions [7] using 

parameters for the pure polymer extrapolated from those of lighter hydrocarbons.  

A major problem with modeling polymer systems is that they are often poorly 

characterized with respect to branching (i.e. side chains on the backbone) and 

heterogeneity (e.g., functional groups of different molecular composition) of polymer 

structure. In order to better describe the topology of polymers, e.g., copolymers which are 

composed of different functional groups and polymers that have side chains or pendant 

groups, heteronu 0clear versions of SAFT that allow the model chain to be composed of 

segments of different size and/or energy have been proposed by several authors [30, 59, 

62, 170, 176]. In several of these heteronuclear approaches, copolymers are modeled as 

being composed of two distinct types of segments based on the copolymer topology and 

composition, the sequence of which is described in a statistical fashion through segment 

and bonding fractions that are estimated on the basis of the known molecular structure, 

e.g., the NMR-derived branch density and comonomer incorporation (i.e., mass fraction 

of comonomers in the copolymer composition).  

One of the challenges in modeling polymer systems using the SAFT approach is 

determining the model parameters.  In SAFT, like many equations of state, pure-

component parameters are generally determined by regressing experimental vapor 

pressure and liquid density data. However, identifying pure-component parameters for a 

polymer is more difficult and is afflicted with a higher degree of uncertainty compared to 
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the case of volatile substances [29] since vapor-pressure data are not available. As an 

alternative, pure polymer EOS parameters are usually calculated by fitting to melt PVT 

data; however, it has been shown that SAFT parameters for the dispersion energy and 

segment size obtained do not work well when applied to the description of mixture phase 

behavior, even when large binary parameters are used [117]. Alternatively, polymer 

parameters can be regressed from correlations based on the parameters for smaller 

molecules in a homologous series. For example, this works well for polyolefins by 

extrapolation of n-alkane parameters to high molecular weights [6, 138].  However, it has 

been shown to fail when extrapolating the pure-component parameters for other types of 

polymers, because molecular effects such as the topology of the polymer repeat unit are 

not properly accounted for. Therefore, several approaches [30, 59, 62] have been 

proposed to obtain parameters for different types of polymer segments within a 

heteronuclear SAFT model in order to try to represent the heterogeneity molecular 

composition of the of the polymer.  For example, in the copolymer-SAFT approach 

proposed by Banaszak et al., the branched copolymer is treated as being composed of two 

different types of segments, i.e., segments on the branch (or side chain) and segments on 

the backbone. In their study of poly(ethylene-co-octene-1) [74, 177], the branch (hexyl) 

segment parameters are taken from those for the corresponding alkane (hexane). The 

approach requires binary interaction parameters between each segment type on the 

polymer and the solvent to be fitted to polymer phase equilibrium data.  However, the 

fitted binary parameters are temperature dependent and do not have a consistent trend as 

a function of temperature, hence limiting the predictive capability. Gross and coworkers 

proposed the poly(! " co " # ) model [30] to study copolymers using the PC-SAFT 
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equation. In this approach the parameters for the comonomer segments !  and !  are 

regressed from experimental data for the corresponding homopolymer and homopolymer-

solvent mixture phase equilibrium data and three binary interaction parameters describing 

the homopolymer-homopolymer interactions are defined and determined from 

homopolymer and copolymer phase equilibrium data.  However, while this approach 

provides a more direct route to determining model parameters than copolymer-SAFT, the 

parameter regression becomes difficult when the corresponding homopolymer 

experimental data are not available, and the approach is somewhat dependent on the type 

of experimental data (i.e. PVT, LLE or VLE) used and the binary system chosen for 

parameter regression [178]. 

More recently, Dominik et al. [176] have developed a thermodynamic model to 

study branched polyolefins within the framework of PC-SAFT [30]. In their approach the 

polymer segments are also divided into two types, backbone segments and branch 

segments. For the backbone segments the parameters obtained by Tumakaka et al. for 

polyethylene [65] are used with a dispersion energy parameter adjusted to experimental 

phase behavior data for polyolefins.  The binary interaction parameter between the 

backbone segments and solvent are also taken from Tumakaka et al. [65], while the 

binary interaction parameter between branch segments and solvent are fitted to 

experimental data for polyolefins.  The advantage of this approach over Gross et al.’s 

work on copolymers [30] is that the number of parameters is reduced by two. 

A common limitation of the above fitting methods is that the parameters are 

pulled together in a somewhat ad hoc way, which results in pure component and/or cross 

parameters being fitted to experimental mixture data, thus reducing the predictive ability.  
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In order to make the SAFT EOS a more predictive approach, parameters must be used in 

a transferable way and the dependence on experimental data reduced.  In earlier work, we 

developed the hetero-SAFT-VR model in which molecules are described as chains of 

segments that can have different size and/or energy parameters, and hence are connected 

with different types of bonds [8, 64] and so allows the study of heterogeneity in 

molecular architecture to be captured within a SAFT model.  Based on the hetero-SAFT-

VR equation we have developed a group-contribution-based SAFT approach (GC-SAFT-

VR) in which parameters have been determined for several key functional groups by 

fitting to experimental vapor pressure and saturated liquid density data for a number of of 

small molecules containing the functional groups of interest.  The transferability of the 

parameters obtained for each group was tested by predicting the phase behavior of pure 

fluids not used in the fitting process and binary mixtures of alkanes, ketones, and esters. 

In all cases good agreement was obtained between the GC-SAFT-VR predictions and 

experimental data.  In this work the parameters developed for the functional groups are 

used in a transferable way to study the phase behavior of polymer systems in order to 

investigate the suitability of the GC-SAFT-VR EOS to obtain parameters for polymers. 

In the following sections of this chapter, the models for polymer systems studied are 

described in section 6.2; the results of theoretical predictions for selected binary polymer 

solutions including polymers such as LDPE (Low density polyethylene), PE 

(polyethylene), PBD (polybutadiene), and PS (polystyrene) with a variety of polar and 

nonpolar solvents are presented in section 6.3; finally, the conclusions are drawn in 

section 6.4. 
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6.2 Model 

In the GC-SAFT-VR approach polymers are treated as consisting of repeat units, each of 

which contains several types of functional groups that are connected together via 

different bonds according to their molecular composition and structure. For example, the 

simplest polymer in this study is LDPE in which CH2 is the only functional group in the 

polymer repeat unit.  If there are either functional groups or branches attached to the 

backbone as side chains, the connecting group attached is modeled as a CH group, for 

example since polystyrene (PS) is a homopolymer with a benzyl group attached to the 

hydrocarbon backbone and the repeat unit is given by,  

 

Hence the polymer repeat unit for PS in our model is composed of three types of 

segments; CH, CH2, and C6H5.  

As mentioned in the previous chapter, we have obtained parameters for the CH3, 

CH2, CH, C6H5, C=O, OCH3, and OCH2 functional groups. These regressed parameters 

(the segment diameter ! , well depth ! , and potential range ! ) are used to describe the 

corresponding groups in the polymer repeat unit without any additional fitting. A detailed 

description of the GC-SAFT-VR EOS is provided in the Chapter V. The number of 

repeat units in the polymer chain is calculated based on the molecular weight of the 

polymer, i.e., by dividing the total molecular weight of the polymer by the molecular 

weight of a single repeat unit. Since the number of groups of each type within one repeat 

unit is also known, the total number of segments mi for group of type i in the polymer is 
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obtained by multiplication of the number of repeat units, the number of groups of that 

type within one repeat unit, and the number of segments for a single group which has 

been obtained from the parameter regression for small molecules.   

 

6.3 Results 

We have applied the GC-SAFT-VR to study the phase behavior of pure fluids of small 

molecules and their mixtures and obtained the parameters for eight classes of functional 

groups in Chapter V. In this work, we extend the GC-SAFT-VR approach to study the 

VLE and LLE phase behavior of various binary solvent-polymer systems, using the 

already fitted parameters for functional groups. Although semicrystalline polymers exist 

as amorphous and crystalline form below its melting point, it is usually assumed that gas 

molecules are adsorbed in the amorphous region and do not penetrate into the crystalline 

region of polymer. Therefore, we have focused on studying the VLE of amorphous 

polymers.  We first study the VLE of LDPE, which is a fairly simple polymer, in 

different solvents, and then study the VLE behavior of branched polyolefin, PBD and PS 

solutions. We have also studied the LLE behavior of LDPE solutions and PS solutions.  

In Figure 58 we present the predictions for the solubility of n-pentane and 1-

pentene in LDPE with a weight average molecular weight, (Mw) of 760000 g/mol at 

423.65 K and 474.15 K using the GC-SAFT-VR approach. From the figure we see that 

experimentally more 1-pentene is absorbed than n-pentane under the same pressure and 

temperature, which is also predicted by the GC-SAFT-VR approach. Good agreement 

between the experimental data and theoretical predictions are obtained for both systems 

at low temperature, though we note a slight overprediction of the pressure is seen at the 
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higher temperature, which is above the critical temperature of both n-pentane and 1-

pentene. Overall the agreement between the theoretical predictions and experimental data 

is very good given that no polymer data is used to obtain the model parameters and no 

binary interaction parameters are used.  In addition to the prediction of VLE curves for 

mixture of LDPE and a nonpolar solvent, we also studied the VLE of mixture of LDPE 

and 3-pentanone (CH3CH2C=OCH2CH3). However, as with the pure fluids, when polar 

solvents are considered deviations are observed from the experimental data when the GC-

SAFT-VR parameters are used. Therefore, in order take into account the weaker cross 

interactions in these systems a ! ij  of 0.95, defined by 

!
ij
= "

ij

!
ii
#
ii
+ !

jj
#

jj

#
ii
+#

jj

 

is used between the C=O in 3-pentanone and a CH2 group in LDPE, which is fitted to the 

VLE curve for the LDPE + 3-pentanone system at 425.15 K.  The predictions of VLE for 

the LDPE + 3-pentanone system at 425.15 K and 477.15 K are shown in Figure 59. Both 

vapor-pressure curves at two temperatures agree with experimental data very well. 

 



 131 

0

10

20

30

0 0.1 0.2 0.3 0.4 0.5

1-pentane 
1-pentene

P
 (

b
a
r)

w
1   

Figure 58: Constant-temperature Pw slices of the phase diagram for n-pentane (1) and 
LDPE (Mw = 760000 g/mol) and for 1-pentene (1) + LDPE (Mw = 760000 g/mol) at 
423.65 K and 474.15 K. The dashed and solid lines correspond to the GC-SAFT-VR 
predictions for 1-pentene and pentane systems, respectively and the experimental data for 
n-pentane and LDPE at 423.65 and 474.15 K [179] and for 1-pentene and LDPE at 
423.65 and 474.15 K [179] are represented by empty squares, empty circles, filled 
squares and filled circles respectively.  
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Figure 59: Constant-temperature Pw slices of the phase diagram for 3-pentanone (1) + 
LDPE (Mw = 760000 g/mol) at T = 425.15 K and 477.15 K. The solid lines correspond 
to the GC-SAFT-VR predictions. Experimental data at 425.15 K and 477.15 K [179] are 
represented by squares and circles respectively. 
 

We also studied the effect of molecular weight on the VLE phase behavior of PE 

in toluene, which is a commonly used solvent. The curves predicted for PE system with a 

higher molecular weight (the number average molecular weight, Mn = 6220 g/mol) gives 

higher weight fraction of toluene than for PE system with a lower weight (Mn = 1710 

g/mol) at the same temperature and pressure. This is also consistent with the experimental 

data as shown in Figure 60. Theoretical prediction gives very good results below the 

pressure of 0.8 bar compared with the experimental data. No binary interaction parameter 

is applied to the GC-SAFT-VR parameters in this system.   
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Figure 60: Constant-temperature Pw slices of the phase diagram for toluene (1) + PE 
(Mn = 6220 g/mol) and for toluene (1) + PE (Mn = 1710 g/mol) at T = 393.15 K. The 
lines correspond to the GC-SAFT-VR predictions. Experimental data at 393.15 K [180] 
are represented by squares and circles. 
 

In addition to studying effect of polymer molecular weight on the phase behavior 

we also studied the effect of branching (or side chains) in polyolefins. Figure 61 presents 

the experimental weight fractions of toluene in polydecene-1 and polyheptene-1 at 303.15 

K, compared with the model predictions obtained by the GC-SAFT EOS. Although 

polydecene-1 (Mn = 213900 g/mol) and polyheptene-1 1 (Mn = 224100 g/mol) have 

similar molecular weights they differ in structure, as illustrated in Figure 62. The 

predicted curve for the polydecene-1 with long branches is above that for polyheptene-1 

with short branches, which is in agreement with the experimental data. However, we can 
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see that the branching effect on the VLE of branched polyolefin of high molecular weight 

in toluene is insignificant from both the model predictions and experimental data. As seen 

from the figure, theoretical prediction of the pressure curves obtained without applying 

any binary parameter are in good agreement with the experimental data at low pressures. 

However, the adsorption of toluene in polydecene-1 or polyheptene-1 at the same 

pressure is underpredicted when the weight fraction of toluene is above 0.4.  
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Figure 61: Constant-temperature Pw slices of the phase diagram for toluene (1) + 
polydecene-1 (Mn = 213900 g/mol) and for toluene (1) + polyheptene-1 (Mn = 224100 
g/mol) at T = 303.15 K. The lines correspond to the GC-SAFT-VR predictions. 
Experimental data at 303.15 K [180] are represented by symbols. 
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(a) (b) 

Figure 62: Repeat unit structure of a) poly(decene-1) and b) poly(heptene-1) (from left to 
right). 
 

In contrast to the linear polyolefins studied, PBD has a linear backbone structure 

(CH=CH-CH2-CH2)n that is composed of two different segments CH=CH and CH2. The 

VLE behavior of solution of PBD (Mw = 250000 g/mol) and ethyl benzene at 353.15 K, 

373.15 K, and 403.15 K is illustrated in Figure 63. As the temperature increases, less 

ethyl benzene is dissolved in the PBD solution under the same pressure, which is 

accurately captured by the theory.  Although the theory underpredicts the vapor pressure 

for the low-temperature curve of PBD in ethyl benzene, we note that the agreement is 

good given that no polymer experimental data is used to determine the model parameters 

or binary interaction parameter is used. 
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Figure 63: Constant-temperature Pw slices of the phase diagram for ethylbenzene (1) + 
PBD (Mw = 250000 g/mol) at T = 353.15, 373.15, and 403.15 K. The lines correspond to 
the GC-SAFT-VR predictions. Experimental data at T = 353.15, 373.15, and 403.15 K 
[181] are represented by squares, circles, and diamonds respectively. 

 

Having studied the VLE behavior of some linear and branched polyolefin 

solutions, we are interested in studying the heteronuclear polymer with other pedant 

group. We examine the VLE phase behavior of mixtures of polystyrene (PS) having 

benzyl functional group as pendant to the backbone as illustrated in Figure 64 - Figure 

67. The results obtained with the GC-SAFT-VR EOS for the nonane – PS binary mixture 

for a polymer sample with Mn = 53700 g/mol at 403.15 K, 423.15 K, and 448.15 K are 

presented in Figure 64. From the figure we can see that the model predicts the VLE 

behavior of this system accurately as a function of temperature, again without the use of 

any polymer experimental data or binary parameters fitted to the nonane-PS system. In 

Figure 65, we present the theoretical prediction for the VLE of the toluene - PS system 



 137 

(Mn = 290000 g/mol) at 298.15 K and 333.15 K. Again, excellent agreement between the 

theoretical results and experimental data is achieved without using binary interaction 

parameters.  

Having studied the VLE of PS in nonpolar solvents, we now apply the GC-SAFT-

VR EOS to investigate the VLE behavior of PS in polar solvents such as ketones and 

esters. The results from VLE calculations for the 3-pentanone - PS (Mn = 200000 g/mol) 

system at 293.15 K are presented in Figure 66. Again, in order take into account the 

weaker cross polar interactions a ! ij  of 0.95 is used for the interaction between the C=O 

in pentanone and the CH2 in the polymer. Additionally a ! ij  of 0.976 to used between the 

C=O in pentanone and C6H5 in PS. Using these parameters good agreement between the 

predicted results and experimental data is obtained.  Furthermore, we studied a mixture of 

PS (Mn =290000 g/mol) and propyl acetate (CH3C=OOCH2CH2CH3). The VLE results 

are calculated at 298.15 K and 343.15 K as shown in Figure 67 again using a ! ij of 0.95 

between the C=O group in the acetate and the CH2 group in the polymer and a ! ij of 

0.976 between C=O in the acetate and C6H5 in PS. From the figure, we can see that while 

the theory provides a good description of the experimental data in the low weight fraction 

region, deviations are observed at high weight fractions. However, we note that this 

deviation of the pressure curve of PS in propyl acetate might result from the deviation 

between the correlated vapor pressure and the experimental data of pure propyl acetate. 
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Figure 64: Constant-temperature Pw slices of the phase diagram for nonane (1) + PS 
(Mn = 53700 g/mol) at T = 403.15, 423.15, 448.15 K. The lines correspond to the GC-
SAFT-VR predictions. Experimental data at T = 403.15, 423.15, 448.15 K [181] are 
represented by squares, circles, and diamonds respectively. 
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Figure 65: Constant-temperature Pw slices of the phase diagram for toluene (1)  + 
polystyrene (Mn = 290000 g/mol) at T = 298.15 and 333.15 K. The lines correspond to 
the GC-SAFT-VR predictions. Experimental data at T = 298.15 and 333.15 K [181] are 
represented by squares and circles respectively. 
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Figure 66: Constant-temperature Pw slice of the phase diagram for 3-pentanone (1) + 
polystyrene (Mn = 200000 g/mol) at T = 293.15 K. The dashed line corresponds to the 
GC-SAFT-VR prediction. Experimental data at T = 293.15 K [181] are represented by 
squares.  
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Figure 67: Constant-temperature Pw slices of the phase diagram for propyl acetate (1) + 
polystyrene (Mn = 290000 g/mol) at T = 298.15 and 343.15 K. The lines correspond to 
the GC-SAFT-VR predictions. Experimental data at T = 298.15 and 343.15 K [181] are 
represented by circles and squares respectively. 
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Being able to model the VLE phase behavior of polymers in nonpolar solvents 

successfully and polymer in polar solvents satisfactorily as illustrated before, the 

performance of the GC-SAFT-VR EOS also is further tested by studying binary polymer-

solvent mixtures exhibiting liquid-liquid phase behavior.  Here we used the approach of 

Paricaud et al. [182] to find the coexistence (binodal) composition of the two liquid 

phases in which the spinodal compositions are obtained as a starting point for finding the 

binodals. The GC-SAFT-VR EOS was tested on the liquid-liquid equilibria (LLE) 

behavior of several polymer-solvent systems including PE and PS. Figure 68 shows a 

comparison of the demixing pressures at 460 K for PE (Mw = 108000 g/mol) solutions 

with n-butane and n-pentane. The region above each curve corresponds to the one-phase 

region for each system. Both systems exhibit upper critical solution pressure (UCSP) 

behavior. We find that while the GC-SAFT-VR approach gives the correct trend it 

underpredicts the experimental results if no binary parameters fitted to the LLE data are 

used. If a cross interaction parameter of ! ij
= 0.994  is used between CH2 and CH3 in 

different molecules good agreement with the experimental data is observed as shown in 

Figure 68. 
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Figure 68: Constant-temperature Pw slices of the phase diagram for pentane + PE 
(108000 g/mol) and for butane + PE (108000 g/mol) at T = 460 K. The dashed lines are 
calculated by the GC-SAFT-VR predictions using ! ij = 0.994 between CH2 and CH3 and 
solid lines calculated without using ! ij . Experimental data for pentane systems and 
butane systems at T = 460 K [183] are represented by squares and dots respectively. 

 

We have also compared the demixing curves for solvent-PE with different 

molecular weights. Figure 69 presents the temperature-composition curve for PE (Mw = 

108000 g/mol) in butane at 300 bar and the temperature-composition curve for PE (Mw = 

16400 g/mol) in pentane at 100 bar. The region below each curve corresponds to the one-

phase region for each system. The model predicts the lower critical solution temperature 

(LCST) behavior satisfactorily keeping an interaction parameter of ! ij
= 0.994  between 

CH2 and CH3 in different molecules as used in Figure 68. 
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Figure 69: Constant-pressure Tw slices of the phase diagram for pentane + PE (Mw = 
16400 g/mol) at P = 100 bar and for butane + PE (Mw = 108000 g/mol) at P = 300 bar. 
The lines correspond to prediction from the GC-SAFT-VR EOS. Experimental data for 
pentane systems at P = 100 bar [184]  and for butane systems at P = 300 bar [183] are 
represented by squares and dots respectively. 
 

After studying LLE behavior of PE solutions, we examined the LLE behavior of 

PS in propyl acetate solution. The interactions among the aromatic and hydrocarbon 

groups in PS and carbonyl group in propyl acetate are very complicated, which was seen 

when we studied the VLE behavior of PS in propyl acetate. Here we use the same binary 

cross interaction parameters between C=O and CH2 and between C=O and C6H5 as for 

the VLE properties of PS in propyl acetate along with the ! ij  of 0.994 between cross CH2 

and CH3 groups. Using this approach, the predicted LCST curve displays a much 

narrower phase envelope compared with the experimental data as shown in Figure 70. 
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Figure 70: Constant-pressure Tw slice of the phase diagram for propyl acetate + PS 
(110000 g/mol) at P = 1 bar. The dashed line corresponds to prediction from the GC-
SAFT-VR EOS. Experimental data at P = 1 bar [185] are represented by squares. 
 

6.4 Conclusions 

In this work, GC-SAFT-VR equation is applied to study both the VLE and LLE phase 

behavior of polymer systems. The parameters for the functional groups in the polymer 

repeat units were obtained from the regression of experimental vapor pressure and 

saturated liquid density data for pure fluids. The heterogeneity in the polymer structure 

(e.g., branching and functional groups) is explicitly described in the GC-SAFT-VR EOS.  

In general, the GC-SAFT-VR EOS gives good predictions of the VLE behavior of 

polymer solutions with parameters regressed from the experimental data of pure 

components only. The effects of polymer molecular weight and branching on the VLE 

behavior of polymer solutions are captured by the GC-SAFT-VR EOS.  However, the 

LLE behavior of polymer solutions is more difficult to predict, thus resulting in the use of 
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binary interaction parameters to overcome the overprediction or underprediction of the 

experimental data. Furthermore, a transferrable ! ij  is often applied to effectively take 

into account the dipolar interactions when studying the phase behavior of systems with 

polymer and/or solvent containing C=O group with other groups including the 

hydrocarbon groups and aromatic group. Recently, Zhao et al. [57] has developed a 

SAFT-VR+D equation to study dipolar chain fluids using the dipolar square well fluid as 

the reference state.  This approach can explicitly take into account the magnitude and 

orientation of the dipole moment which have been found to affect the thermodynamics 

and phase behavior of dipolar square well monomer and chain fluids.  Therefore, the use 

of binary parameter might be eliminated, if the polarity of dipolar functional group C=O 

in our GC-SAFT-VR model is explicitly treated by combining the SAFT-VR+D scheme. 
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      CHAPTER VII 

 

7 CONCLUSIONS  

 

Understanding the fluid phase behavior of chemical systems is of great practical 

importance in the design of industrial chemical process and equipment. A reliable and 

accurate modeling tool for the calculation and prediction of the phase behavior of 

chemical systems over the wide range of operating conditions encountered would be of 

great value in industrial practice.  Among the many versions of EOSs, a lot of attention 

has been focused on developing molecular-based approaches. In this work, we focus on 

developing a molecular-based hetero-SAFT-VR approach and investigating its 

applications in the fluid systems of low molecular weight as well as polymer systems and 

addressing the effects of molecular heterogeneity on the phase behavior of these systems.  

Our work extends the original SAFT-VR EOS which is a homonuclear-based model to a 

heteronuclear approach in which the chain fluids are treated as being composed of 

segments of different size and/or energy of interaction, so that the effects of heterogeneity 

in terms of molecular structure and composition on the thermodynamic properties can be 

captured explicitly and quantatively.  Furthermore, by capitalizing on the flexibility of the 

hetero-SAFT-VR approach, we have implemented the concept of group contribution into 

the hetero-SAFT-VR approach and developed the GC-SAFT-VR EOS. Parameters for 

key functional groups have been determined and demonstrated to be transferable from the 

pure component to mixture of small molecules, and polymer solutions.   
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In Chapter III, the hetero-SAFT-VR approach has been validated by comparing 

with both NPT MC and GEMC simulations which are performed for symmetric and 

asymmetric diblock chain fluid systems. The phase behavior of diblock fluids is also 

found to be influenced by the interaction energies, segment sizes, and the segment 

arrangement in terms of symmetry.  Excellent agreement is obtained between the 

theoretical predictions and simulation data, hence validating the use of the SAFT-VR 

approach for heteronuclear chains in more realistic models of polymers and small 

molecules composed of different functional groups. 

In Chapter IV, we have studied the effect of tether groups on the thermodynamic 

properties and phase behavior of POSS fluids through both molecular simulation and the 

hetero-SAFT-VR EOS. The POSS cage is represented by a single sphere and the tether 

groups by one or more smaller spheres, depending on chain length in the hetero-SAFT-

VR approach, Since very limited experimental data is available for the thermodynamic 

properties of POSS systems, the molecular dynamics simulations are carried out to obtain 

pseudo-experimental PVT data at constant temperature with which to regress the SAFT 

parameters for POSS molecules and also to validate the theoretical approach.  The effects 

of tether length and the number of tethers on the phase behavior (PVT and VLE) of POSS 

systems have been investigated by using the hetero-SAFT-VR approach.  Good 

agreement is obtained between the simulation data and the theoretical results and 

predictions are made for systems yet to be studied by simulation or experiment. 

In Chapter V, we have developed the GC-SAFT-VR EOS based on the hetero-

SAFT-VR approach and regressed the parameters for key functional groups to 

experimental vapor pressure and saturated liquid density data of selected classes of 
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compounds including alkanes, 1-alkenes, alkyl benzenes, ketones, and esters.  The 

transferability of the fitted parameters has been tested by comparing the theoretical 

prediction of phase behavior with experimental data of pure fluids not included in the 

fitting process, and also binary mixtures of alkanes, of alkane and ketone, and of alkane 

and ester. Good agreement is obtained between the experimental data and theoretical 

predictions.  Using the GC-SAFT-VR we are able to capture the effects of heterogeneity 

in molecular architecture by defining different representative groups in terms of different 

size/energy parameters.  This allows a quantitative description of the effects of molecular 

structure and molecular composition (i.e. number and type of different functional groups) 

on the thermodynamic properties.  

In Chapter VI, the GC-SAFT-VR EOS has been applied to model polymer 

systems by explicitly addressing the effects of molecular topology (e.g., the composition 

of repeat unit or branching) on polymer solution phase behavior.  The parameters for 

each functional group in the polymer repeat unit have been obtained by regressing to 

experimental vapor pressure and saturated liquid density data for small molecules in 

Chapter V. Having tested the transferability of the fitted parameters for small molecule 

systems, the parameters were then used to study the VLE behavior of different polymers 

(e.g., PE, PS, PDB) in nonploar (e.g., alkanes, toluene) and polar solvents (e.g., ketones, 

esters).  Generally, good agreement between the theoretical predictions and experimental 

data is achieved. The GC-SAFT-VR model has also been used to study the liquid-liquid 

equilibrium of polymer solutions. However, it is found that the LLE properties of 

polymer solutions are more sensitive to the functional group energy parameters, than the 

VLE properties of polymer solutions. We also found that in study of both VLE and LLE 
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behavior of polymer solutions, systems containing C=O group with strong polar 

interaction require a binary parameter between C=O and other groups (CH2 or C6H5) to 

be fitted.  

In future work to enhance the GC-SAFT-VR approach for studying polar systems, 

polar interactions could be explicitly taken into account by implementing the SAFT-

VR+D approach to the GC-SAFT-VR equation. This may eliminate the need for a binary 

interaction parameter between CH2 (or C6H5) group and C=O group. Once the dipole 

interaction is explicitly accounted for in the GC-SAFT-VR approach, we can explore the 

phase behavior of more complex polymer systems with strong dipole moments. For 

example, there has been increasing interest in the development of copolymers soluble in 

supercritical CO2 that are composed of only carbon, hydrogen, and oxygen such as the 

carbonyl group [131, 186, 187]. It was found experimentally that PVAc is more soluble 

in supercritical CO2 (sCO2) than PMA [131], even though a repeat group in PMA has 

the same number of carbon, hydrogen, and oxygen atoms as  PVAc. In order to 

investigate the cause of their different phase behaviors, the dipolar interactions caused by 

C=O group in these polymers should explicitly be accounted for through extending GC-

SAFT-VR approach for polar fluids.  

 Additionally, in the current work, we only focus on the binary mixture systems 

for which the algorithm for the liquid-liquid calculation is simple. However, many 

polymer solutions contain more than two components and so it would be very useful to 

develop an efficient numerical algorithm to calculate the LLE for multi-component 

polymer solutions.  
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Since the corners of POSS cube can functionalized with different functional 

groups, the hetero-SAFT-VR approach could be broadly applied to a wide range of 

systems. An additional interesting application area would be to combine the work 

presented on POSS with the GC-SAFT-VR approach. It would be very interesting to 

study the effects of these functional groups on the thermodynamic properties of POSS 

systems using the GC-SAFT-VR approach. Furthermore, POSS has been used as 

additives to polymeric materials to improve the polymer properties and hence the GC-

SAFT-VR approach could be applied to study the adsorption of POSS molecules in 

polymers. One major drawback to this approach currently is the lack of experimental data 

for validation of the cross interactions (i.e., POSS-solvent or POSS-polymer). Additional 

experimental work in this area would be needed to pursue this area of research. 
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