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CHAPTER I 

 

INTRODUCTION 

 

 In the last fifty years, many sections of the scientific and engineering communities 

have turned their attention to a newfound fascination:  to that which is small.  Beginning 

with Richard Feynman’s landmark speech “There’s Plenty of Room at the Bottom”[1], 

slowly at first and now with an ever-increasing pace scientific communities are looking at 

decreasing the length-scale and seeing what possibilities lie in the new frontier.  It began 

first with electronics; the advent of the transistor gave rise to innumerable electronic 

possibilities, particularly microelectronic possibilities and the development of Moore’s 

Law [2].  However, beginning en masse in the late 1980’s and early 1990’s, attention 

started shifting towards other possibilities on small scales.  With the new micro-

fabrication technologies made available because of microelectronics, the focus shifted to 

the world of fluid mechanics and a new area called “microfluidics”. In 1989, Manz et al. 

[3] indicated that life sciences and chemistry would become the primary application 

fields of microfluidic technologies.  Soon after, microfluidics found its use in a new area 

focusing on reducing laboratory sized processes on a small chip, thus the birth of lab-on-

a-chip devices.   

In use, LOC devices are designed to replicate the functions of their room-sized 

counterparts, consisting of a network of microchannels, electrodes, sensors, and other 

electronic devices on a small scale, as shown in Figure 1.1. 
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Figure 1.1.  Basic lab-on-a-chip consisting of two samples being mixed and resultant 

sample being detected. 
 

LOC devices have a wide range of functions and applications, be it micro-total analysis 

systems (μ-TAS) [4], PCR amplification [5], cell separation [6], electrochromatography 

[7], mixing [8], DNA analysis [9], cell manipulation [10], cell patterning [11], enzymatic 

reactions [12], immunoassay [13], molecular detection [14], heat exchangers [15], and 

pumps [16], amongst other uses. 

 Of chief concern in the field of microfluidics is how to operate these LOC devices, 

particularly what the driving mechanism in the microchannel will be to move the fluid 

along the length of the channel.  Principally, there are two types of driving forces used in 

microchannels:  pressure forces, and electrokinetic forces.  Electrokinetic forces work 

simply by applying an electric field along the length of a microchannel, usually by 

placing electrodes of opposite charge in the wells of the microchannel.  Electrokinetic 

phenomena can be broken down into four basic parts, as shown in Table 1.1. 
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Table 1.1.  Classification of electrokinetic phenomena. 
Name Movement Description Action 

Electroosmosis Liquid moves relative to a 
stationary charged surface 

Applied electric field used to 
induce movement 

Electrophoresis Charged surface moves relative to 
a stationary liquid 

Applied electric field used to 
induce movement 

Streaming 
potential 

Liquid moves relative to a 
stationary charged surface 

Movement used to created an 
electric field 

Sedimentation 
potential 

Charged surface moves relative to 
a stationary liquid 

Movement used to created an 
electric field 

 

The idea of electroosmosis dates back to the research of F.F. Reuss who discovered the 

phenomena in 1809[17].  Initially, there was no fundamental understanding of how 

electroosmosis would be used in application, particularly because electroosmosis is quite 

impractical for macro-scale flow.  However, with the reduction in the length scale 

electroosmosis proves to be quite useful in application. 

 Electroosmotic flow operates by moving liquid in a microchannel relative to a 

stationary charged surface.  When a polar liquid, such as water, and a solid surface 

contact one another, an electric charge develops on the surface of the solid (for most 

microfluidic chips, this charge is negative).  Ions of the opposite charge as the wall, 

called counterions, then migrate to the wall and form a layer several Angstroms thick 

called the compact layer (also referred to as the Stern layer in the literature).  These 

counterions in the compact layer are stationary and do not move relative to the surface.  

However, just above the compact layer is another layer of ions, generally more 

counterions than coions (ions of the same charge as the wall) but a blend of the two, this 

layer  being referred to as the diffuse layer (also called the Gouy-Chapman layer).  The 

difference between the compact and diffuse layer is that the ions in the diffuse layer are 

moving, whereas those in the compact layer are not.  The surface between the compact 
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layer and diffuse layer is called the shear plane, and the measure of electrical potential at 

the shear plane is called the zeta potential.  The compact layer and the diffuse layer 

together are known as the electrical double layer (EDL) as shown in Figure 1.2. 

 

Counter-ions 

Co-ions 

Diffuse Layer 

Compact Layer 

Shear Plane 

Figure 1.2.  Electrical double layer inside a microchannel. 

The EDL’s thickness in a microchannel is independent of the solid surface material, but it 

is dependent on the properties of the fluid being used.  Also, in general the thickness of 

the diffuse layer will be approximately 3 to 5 times that of the compact layer, and the 

overall thickness of the EDL decreases linearly as the bulk ionic concentration of the 

liquid increases.  The zeta potential is an important parameter for electroosmotic flow 

because it has been shown that the velocity of the fluid in a microchannel is directly 

proportional to the zeta potential, an example of which is shown in Figure 1.3. 

 

 4



 

Figure 1.3.  Velocity profile of electroosmotic flow in a sample circular capillary 
microchannel over a range of zeta potentials. 

 
As can be seen, one of the unique properties of electroosmotic flow is the shape of 

velocity profile.  Unlike pressure-driven flow with its parabolic shaped velocity profile, 

electroosmotic flow is considered “plug-like” flow with very little variation in the profile 

except near the EDL. 

 Electroosmotic flow in a converging-diverging heterogeneous microchannel was 

examined.  Thus, the novelty of the research comes in the fact that we considered a 

unique geometry as well as considered a microchannel that has multiple zeta potentials, 

thus compounding the complexity of the work.  Microchannel geometries vary greatly 

from device to device, depending on the function of the device.  Electroosmotic flow has 

been modeled with many common shapes such as rectangular microchannels [18], 
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elliptical microchannels [19], T- and Y- shaped microchannels [20, 21, 22], as well 

converging-diverging microchannels [23].  Also, electroosmotic flow has been modeled 

in heterogeneous channels on several occasions before [24, 25, 26], the key reference to 

the topic coming from Herr et. al. [27].  Three different converging-diverging geometries 

were considered.  The first geometry considered is shown in Figure 1.4. 

 

 

 

 

 

 

 

 

 

 

Figure 1.4.  Geometry 1. 

Geometry 1 was partitioned into three different sections:  A, B, and C.  Section A is the 

entrance and converging areas, section B is the constant cross-section area, and section C 

is the diverging and exit areas, as shown in Figure 1.5.  The channel is dimensioned as 

shown in Figure 1.6. 
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Figure 1.5.  Geometry 1 with individual sections A, B, and C. 

 

 

 

 

 

 

 

 

 

Figure 1.6.  Dimensions of Geometry 1. 

5μm 5μm 10μm 5μm 5μm 

20μm 10μm 

45º 
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The second geometry considered is shown in Figure 1.7. 

 

 

 

 

 

 

 

 

Figure 1.7.  Geometry 2. 

Geometry 2 was partitioned into two sections:  A and B.  Section A consisted of the 

entrance and diverging areas and section B consisted of the converging and exit areas, as 

shown in Figure 1.8;  the microchannel was dimensioned as shown in Figure 1.9. 

 

 

 

 

 

 

 

 

Figure 1.8.  Geometry 2 with individual sections A and B. 

A B 
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5μm 5μm 

10μm 10μm 

10μm 20μm 

26.5º 

Figure 1.9.  Dimensions of Geometry 2. 

The third geometry considered is shown in Figure 1.10. 

 

 

 

 

 

 

 

 

Figure 1.10.  Geometry 3. 

Geometry 3 was partitioned off into two sections:  A and B.  Section A consisted of the 

entrance and converging areas while section B consisted of the diverging and exit areas, 

as shown in Figure 1.11.  Geometry 3 is dimensioned in Figure 1.12. 
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B A 

Figure 1.11.  Geometry 3 with individual sections A and B. 

 
5μm 5μm 25μm 25μm 

30μm 10μm 

22º 

 

 

 

 

 

 

 

 

Figure 1.12.  Dimensions of Geometry 3. 

The effects of the applied electric field strength as well as the effects of several zeta 

potential conditions were examined for each geometry.  First, the velocity profile in each 

section of each geometry was examined for three applied electric field strengths (10 
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V/cm, 50 V/cm, 100 V/cm).  Second, the velocity profile in each section of each 

geometry was examined for several zeta potential conditions as follows: 

 Geometry 1:  ζA = ζ  = ζ ,  ζB C   A = -ζ  = ζ ,   ζB C  AC / ζ  = 0.5  ,   ζB B / ζ  = 0.5 AC

Geometry 2 & 3:  ζA = ζ ,  ζB   A = -ζB ,   ζA / ζ  = 0.5  ,   ζB B / ζA = 0.5 

Lastly, the streamlines for each geometry were examined for each zeta potential case 

listed above. 
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CHAPTER II 

 

THEORY 

 

 Consider the flow of an incompressible Newtonian fluid in a cylindrical capillary as 

shown in Figure 2.1. 

 

d 

L

z 
Flow Direction 

r 
 

 

 

 

 

 

Figure 2.1.  Cylindrical capillary with a radius r, diameter d, length L, and positive 
flow direction z. 

 
In order to model this geometry, we first need to be able to model both the electrical 

double layer field in the channel as well as the electroosmotic flow field.  We will 

establish the governing equations for each field, and then derive these equations using 

appropriate assumptions and defining applicable conditions that the model works for. 

Electrical Double Layer  

In adherence with the theory of electrostatics, the Poisson equation develops a 

relationship between the electrostatic potential, ψ(r), and the net charge density per unit 

volume, ρe, at any point in the liquid, as shown in Equation 1,  
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 is the permittivity of the vacuum. where ε is the dielectric constant of the solution and ε0

With the application of the Boltzmann distribution, the ion number per unit volume in an 

electrolyte solution is shown in Equation 2,  
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where n  and zi∞ i are the bulk ionic concentration and valence of type i ion, respectively, e 

is the charge of the proton, kb is the Boltzmann constant and T is the temperature.  The 

net volumetric charge density is given by Equation 3, 
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For a symmetric electrolyte solution the form becomes that of Equation 4,  
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Non-dimensional variables of use are Equations (5) and (6), 

Tk
e

b

ψψ =∗                                                            (5) 

d
rr =∗                                                              (6) 

The non-dimensional variables can be used to rewrite the Poisson-Boltzmann equation as 

Equation (7),  

( ∗∞
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⎞
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⎝
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∂

∂
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r
r
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)                                   (7) 

Equation (7) is subjected to the boundary conditions of Equations (8) and (9), 
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Electroosmotic Flow Field 

 The electroosmotic flow field can be fully described by the Navier-Stokes equations 

in cylindrical coordinates as shown in Equations 10, 11, and 12, 
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From here, several assumptions can be made to simplify these equations.  First, due to 

very low Reynolds numbers we can safely assume that no vorticity will take place, thus 

completely eliminating Equation 11 and all theta-dependent terms in Equations 10 and 

12.  Second, due to axial symmetry we know that the velocity will change only with 

respect to the z-direction (along the axis of the microchannel), thus leaving us only with 
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the z-component terms in conjunction with the continuity equation, as shown in Equation 

13, 

e
z EP
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rr
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∂

∂
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For homogeneous channels (constant zeta potential along the entire length of the channel) 

and channels without converging-diverging sections, we would normally be able to 

neglect the pressure gradient term in Equation 13.  However, due to the geometry of our 

channel and particularly in heterogeneous cases, the pressure gradient term cannot be 

neglected.  As was shown earlier, the zeta potential for a specific section directly 

influences the velocity in the section, and thus when a plurality of zeta potentials are 

introduced along the length of a channel, different sections will have different velocities.  

The differing velocities result in a pressure gradient occurring at the interface between 

the two sections, in some cases creating a suction of the flow and in other cases inhibiting 

the flow, depending on the conditions.  For an incompressible liquid, continuity demands 

that the volumetric flow rates in all regions are equal; thus, the pressure gradients and 

their resultant effects must be accounted for.   

 Substituting Equation 4 for the net charge density into Equation 13 and introducing 

the non-dimensional variables shown in Equations 14 and 15,  

D
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d
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The full governing equation for the electroosmotic flow field in a channel is Equation 16, 
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The microchannels used were assumed to be sufficiently long so that the flow at the inlet 

and outlet is fully developed and the flow pattern doesn’t change along the channel at 

both the inlet and outlet.  The electroosmotic flow field will be subjected to the inlet and 

outlet boundary conditions shown in Equation 17 and 18, 

0=
∂
∂

z
u                                                          (17) 

0=
∂
∂

z
p                                                          (18) 

Also, because we will be modeling with low electric potential (│ψ│ ≤ 25 mV), the 

Debye-Huckel approximation shown in Equation 19 can be used, 

kT
ze

kT
ze ψψ

≈sinh                                                         (19) 

Lastly, a note should made here concerning Joule heating.  As we are dealing with 

electric fields, the potential of Joule heating effects (temperature increase in the channel 

due to a current passing through) are a real possibility.  However, because our model uses 

low electric field strengths that induce a very low temperature increase (< 1ºC), it has 

been shown before by Çetin and Li [28] that Joule heating effects can be neglected. 
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CHAPTER III 

 

MODEL 

 

 To solve the non-dimensional equation of motion for a converging-diverging 

microchannel (Equation 18), a solver software package called COMSOL Multiphysics 

was used.  COMSOL’s solver package allows us to analyze both the electric field and 

flow field simultaneously simply and easily.  First, the shape for each geometry was 

modeled as a 2D axi-symmetric object, as shown in Figure 3.1. 

 

Figure 3.1.  Completed Geometry 1 structure in COMSOL. 

Next, the specific constants to be used for the calculations were established in COMSOL, 

as shown in Table 3.1. 
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Table 3.1.  Simulation reference parameters. 
Fixed Parameters Symbol Quantity Unit 

valence of ions z 1 - 
absolute temperature T 298 kg/m s 

dielectric constant ε 78.5 C2 / Nm2

permittivity of free space ε0 8.85E-12  C2 / Nm2  
elementary charge e 1.60E-19 C 

molarity of solution M 1x10E-6 mol/L 
Varied Parameters       
electric field strength E 50, 100, 500 mV/m 

zeta potential ζ 10, -10, -20 mV 
capillary diameter d 10-20 μm 

 
 
As can be seen from Table 3.1., the varied parameters were the electric field strength, 

zeta potential, and capillary diameter.  In general, for a solid surface the zeta potential is 

dependent on the bulk ionic concentration, valence of the ions, and pH of the solution 

(pH has the ability to change the zeta potential from positive to negative).  However, the 

zeta potential can also be altered by changing the microchannel surface material (e.g. 

from glass to PDMS) or by placing coatings on the microchannel wall.                            

After the key reference parameters were established, the boundary conditions for 

each case were established.  For the electric field side, the walls of the microchannel were 

considered to be electric insulation and the outlet was considered to be grounded.  The 

inlet to the microchannel was established as an electric potential, and the value that was 

set was dependent upon the desired electric field strength.  All boundary settings are 

shown in Figure 3.2. 
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Figure 3.2.  Boundary settings for the electrical field in the microchannel. 

Next, the boundary conditions were established for the electroosmotic flow field.  

Typically, the boundary conditions for EOF would be set as no-slip due the velocity at 

the wall (compact layer) being zero with the velocity magnitude increasing sharply as it 

moves through the diffuse layer and then finally a flat profile across the channel (see 

Figure 1.3.).  However, because the thickness of the EDL is much smaller than the 

diameter of the channel, it can be neglected. 

If the EDL is thin relative to the channel dimensions, the Helmholtz-

Smoluchowski equation can be used.  The Helmholtz-Smoluchowski originates from the 

simplified version of the Poisson-Boltzmann equation, as shown in Equation 20, 

2

22
2

dr
dEuEOF
φεμ =∇                                                  (20) 
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where uEOF is considered to be the component of the flow due to electroosmosis.  If the 

flow is fully developed, the only gradients that will be present are those in the r direction, 

so the equation becomes Equation 21, 

2

22

2

2

dr
dE

dr
ud EOF φεμ =                                                 (21) 

The differential equation can be solved by two integrations with respect to r and 

application of appropriate boundary conditions (at edge of EDL, fluid velocity and 

potential equal to zero, at the wall the potential is set equal to the zeta potential of the 

wall).  Thus, the Helmholtz-Smoluchowski is shown in Equation 22, 

μ
ζεEuEOF =

                                                    (22) 

The application of the Helmholtz-Smoluchowski is subject to the restriction that the EDL 

is thin relative to the channel dimension.  Equation 22 was applied at the microchannel 

walls for each geometry. 

 The inlet and outlet of the microchannel were established with the boundary 

conditions established in Equations 17 and 18, with consideration that the microchannel 

is sufficiently long so that flow in the inlet and outlet is fully developed. 
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Figure 3.3.  Electroosmotic flow field boundary settings. 

uEOF

Outflow 

uEOF

Inflow 

After all boundary settings were selected, the geometry was meshed using a fine 

triangular mesh (usual minimum element qualities were between 0.6 and 0.8) as shown in 

Figure 3.4.   
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Figure 3.4.  Geometry 1 mesh. 

A grid check was then performed for each mesh to ensure grid independence of the 

results, with the results showing a nice conformance for the mesh used.  Figures 3.5, 3.6, 

and 3.7 show the result of a sample grid check on Geometry 1 in section A.  Grid checks 

in all other locations and geometries were comparable. 
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Figure 3.5.  Grid check of Geometry 1 in section A. 

 

Figure 3.6.  Zoom of velocity magnitude of Geometry 1 in section A. 
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Figure 3.7.  Comparison of maximum velocities for three mesh sizes. 

After the grid check was performed, the model was then solved using COMSOL’s 

stationary non-linear equation solver and results were acquired.  The process was 

repeated for Geometries 2 and 3 with identical boundary settings on both the electrical 

field and electroosmotic flow field as those used for Geometry 1. 

To verify the accuracy of the model, a cylindrical microchannel was constructed 

with the same boundary settings as described above but using the dimensions and 

parameters used by Li [29].  The results show good agreement with Li’s results, as well 

as good agreement with the calculated velocity (using Equation 22) of  m/s. 310205.4 −×
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Figure 3.8.  The electroosmotic flow velocity field of a symmetric electrolyte solution 
in a cross-section of a cylindrical microchannel of 100 μm in diameter with ζ = -200 

mV.  The applied field strength is 300 V/cm.  
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CHAPTER IV 

 

RESULTS 

 

Geometry 1 

 
 Geometry 1 consisted of a microchannel with a converging (nozzle) section at the 

entrance to the microchannel (section A), followed by a cylindrical section of constant 

area (section B), ending with a diverging (diffuser) section at the outlet (section C).  The 

first simulation performed on the geometry was to consider the effects of electrical field 

strength on the velocity profile.  Velocity profiles were generated at the midplane of 

sections A and B, as shown in Figures 4.1. and 4.2.   

 

 

 

 

 

 

 

 

 

 

Figure 4.1.  Velocity profile of Geometry 1 measured in section A for various electric 
field strengths with ζ = -100 mV. 

 

 26



 

 

 

 

 

 

 

 

 
Figure 4.2.  Velocity profile of Geometry 1 measured in section B for various electric 

field strengths with ζ = -100 mV. 
 

As can be seen from both figures, a proportional increase occurs in the magnitude of the 

velocity in relation to the applied electric field.  Thus, doubling the applied electric field 

strength doubles the magnitude of the velocity and vice-versa.  However, it should be 

noted, particularly in Figure 4.2., how much the pressure gradient plays a key role in the 

shape of the profile.  Due to decreased cross-sectional area in section B, the pressure has 

thus increased in the section and produces a pressure gradient along the length of the 

microchannel (thus electroosmotic flow coupled with pressure-driven flow).  As has been 

shown earlier, pure EOF produces plug-shaped velocity profiles that are flat on the top.  

However, as can be clearly seen, Figure 4.2. resembles more of the parabolic shape of 

pressure-driven flow than that of EOF.  Thus, it can be deduced that the pressure gradient 

(and thus the shape of the microchannel that produces the pressure gradient) plays a 

significant role on the velocity of the fluid in the microchannel. 
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 Next, let’s look at the velocity profiles for Geometry 1 for various applied zeta 

potentials, first for section A in Figure 4.3. 

 

Figure 4.3.  Velocity profile of Geometry 1 measured in section A for various zeta 
potentials, E = 100 V/cm. 

The key to understanding the shapes produced for each section is to understand the 

balance between pressure-driven flow and EOF.  First, when the channel is homogeneous 

(zeta potential constant) we see a similar profile as to what was shown in Figure 4.1.  

However, when the zeta potential is doubled in section A to that of section B, we see an 

increase in the magnitude of the velocity relative to the increase in zeta potential.  Even 

more interesting though, when the zeta potential in section B is doubled to that of section 

A, the velocity magnitude is the highest of the group, yet the shape of the profile is a 

negative bell curve.  This shows the influence of suction coming from section B due to 

both the pressure gradient in the section as well as the increasing zeta potential.  
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Likewise, when the zeta potential in each section is reversed, suction also occurs due to 

the zeta potential but the effect of the pressure gradient is much greater than that of zeta 

potential, and thus the velocity magnitude is lower than the rest of the group.  Again, 

these plots show the effect that the pressure gradient has due to the channel being 

heterogeneous, and how this plays a bigger role than the EOF.  Figure 4.4. shows the 

velocity profile in section B under the same conditions. 

 

Figure 4.4.  Velocity profile of Geometry 1 measured in section B for various zeta 
potentials, E = 100 V/cm. 

 
From Figure 4.4., we see again that when the channel is homogeneous, the profile is bell-

shaped in nature and under great influence of the increased pressure due to the 

microchannel dimensions.  When these channel dimensions are coupled with an increase 

in zeta potential in section B (thus section B’s zeta potential is double that of section A 

and C), the velocity magnitude is greatly increased.  However, when zeta potential in 

 29



section B is lower than that of section A/C or opposite of that in A/C, a battle takes place 

between pressure gradients of opposing forces which in turn will cause eddy’s to be 

generated in the channel (see Figure 4.8.).  Again, the general theme is the importance of 

pressure gradients in the channel relative to the electrokinetic forces. 

 Next, let’s look at the streamline  and arrow plots of Geometry 1 under a variety of 

zeta potential cases, as shown in Figures 4.5-4.12. 
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Figure 4.5.  Streamlines of Geometry 1 in a homogeneous microchannel. 

 

 
Figure 4.6.  Arrow plot of Geometry 1 in a homogeneous microchannel. 
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Figure 4.7.  Streamlines of Geometry 1 with ζ / ζ  = 2. AC B

 
Figure 4.8.  Arrow plot of Geometry 1 with ζ / ζ  = 2. AC B
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Figure 4.9.  Streamlines of Geometry 1 with ζ / ζ  = 0.5. AC B

 
Figure 4.10.  Arrow plot of Geometry 1 with ζ / ζ  = 0.5. AC B
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Figure 4.11.  Streamlines of Geometry 1 with ζAC = -ζ .  B

 
Figure 4.12.  Arrow plot of Geometry 1 with ζAC = -ζ .  B
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Figures 4.5, 4.7, and 4.9 show the same streamline plots, indicating that despite the 

different magnitudes of the zeta potential that the fluid follows along essentially the same 

path.  However, when the zeta potential is reversed as shown in Figure 4.11, eddy’s are 

produced in sections A and C that result in zero net flow in the corners of the channel.  

However, there is still positive net flow through the channel as the eddy’s created due to 

zeta potential difference due not inhibit the flow completely.  Flow rates for Geometry 1 

under various applied electric field strengths are shown in Table 4.1., as well as reference 

flow rates (cylindrical microchannel with a constant diameter of 20 μm).  Flow rates for 

Geometry 2 under the various zeta potential conditions are shown in Table 4.2. 

Table 4.1.  Flow rates for Geometry 1 under various applied electric field strengths 
with ζ = -100 mV, as well as reference geometry results. 

E (V/cm) G1 Q (mm3/s) Reference Q (mm3/s) 
10 1.414E-04 2.20E-04 
50 5.655E-04 1.49E-03 
100 1.149E-03 2.98E-03 

 
Table 4.2.  Flow rates for Geometry 1 under various zeta potential conditions with   

E = 100 V/cm. 
Zeta Q (mm3/s) 
ζ = ζ 1.149E-03 AC BB

ζ = -ζ 9.189E-04 AC BB

ζAC/ζB = 0.5 1.241E-03 B

ζB/ζB AC = 0.5 1.636E-03 
 

As can be seen from Table 4.1, the flow rates increase proportionally with an increase in 

electric field strength.  Also, the converging-diverging section of the channel actually 

impedes the flow as the reference channel flow rates are approximately two to three times 

greater than Geometry 1.   
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Geometry 2  

The velocity profiles of Geometry 2 (as well as Geometry 3) show the same trends as 

Geometry 1, that being that a balance of electrokinetic forces and pressure gradients will 

occur in the microchannel.  When the zeta potentials are opposite one another, eddy’s are 

generated in the microchannel that inhibits the flow greatly and in the case of Geometry 

2, causes zero net flow. 

 

 

Figure 4.13.  Velocity profile of Geometry 2 measured in section A for various 
electric field strengths with ζ = -100 mV. 
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Figure 4.14.  Velocity profile of Geometry 2 measured at the intersection of A and B 
for various electric field strengths with ζ = -100 mV. 

 

Figure 4.15.  Velocity profile of Geometry 2 measured in section A for various zeta 
potentials with E = 100 V/cm. 
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Figure 4.15 shows a negative velocity magnitude due to backflow occurring in the 

microchannel when the zeta potentials in the respective areas are oppositve on another.  

The flow is positive near the channel wall, but actually becomes greatly negative in the 

middle of the channel as the flow has created an eddy and is moving in a circular pattern 

instead of flowing downstream. 

 

 

Figure 4.16.  Velocity profile of Geometry 2 measured at the intersection of A and B 
for various zeta potentials with E = 100 V/cm. 

 
In Figure 4.16, it can be seen that the velocity goes to zero in the middle of the channel 

when the zeta potentials are opposite one another.  In fact, what has happened is eddy’s 

are generated in the middle of the channel and at the interface between the two areas of 

opposite zeta charge, in the middle of the channel, there is no net flow moving in this 

section. 
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Figure 4.17.  Streamlines of Geometry 2 in a homogeneous microchannel. 

 
Figure 4.18.  Arrow plot of Geometry 2 in a homogeneous microchannel. 
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Figure 4.19.  Streamlines of Geometry 2 with ζ / ζ  = 2. AC B

 
Figure 4.20.  Arrow plot of Geometry 2 with ζ / ζ  = 2. AC B
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Figure 4.21.  Streamlines of Geometry 2 with ζA/ ζ  = 0.5. B

 
Figure 4.22.  Arrow plot of Geometry 2 with ζA/ ζ  = 0.5. B
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Figure 4.23.  Streamlines of Geometry 2 with ζA = -ζ . B

 
Figure 4.24.  Arrow plot of Geometry 2 with ζA = -ζB. B
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Table 4.3.  Flow rates for Geometry 2 under various applied electric field strengths 
with ζ = -100 mV, as well as reference geometry results. 

E (V/cm) G2 Q (mm3/s) Reference Q (mm3/s) 
10 1.060E-04 1.060E+05 
50 5.301E-04 5.301E+05 
100 1.060E-03 1.060E+06 

 
Table 4.4.  Flow rates for Geometry 2 under various zeta potential conditions with   

E = 100 V/cm. 
Zeta Q (mm3/s) 
ζ = ζ 1.060E-03 AC BB

ζ = -ζ 0.000E+00 AC BB

ζAC/ζB = 0.5 1.696E-03 B

ζB/ζB AC = 0.5 8.482E-04 
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Geometry 3 

 
 

Figure 4.25.  Velocity profile of Geometry 3 measured in section A for various 
electric field strengths with ζ = -100 mV. 

 
 
 

Figure 4.26.  Velocity profile of Geometry 3 measured at the intersection of A and B 
for various electric field strengths with ζ = -100 mV. 
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Figure 4.27.  Velocity profile of Geometry 3 measured in section A for various zeta 

potentials with E = 100 V/cm. 

 
 

Figure 4.28.  Velocity profile of Geometry 3 measured at the intersection of A and B 
for various zeta potentials with E = 100 V/cm. 
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Figure 4.29.  Streamlines of Geometry 3 in a homogeneous microchannel. 

 
Figure 4.30.  Arrow plot of Geometry 3 in a homogeneous microchannel. 
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Figure 4.31.  Streamlines of Geometry 3 with ζA/ ζ  = 2. B

 
Figure 4.32.  Arrow plot of Geometry 3 with ζA/ ζ  = 2. B
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Figure 4.33.  Streamlines of Geometry 3 with ζA/ ζ  = 0.5. B

 
Figure 4.34.  Arrow plot of Geometry 3 with ζA/ ζ  = 0.5. B
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Figure 4.35.  Streamlines of Geometry 3 with ζA = -ζ . B

 
Figure 4.36.  Arrow plot of Geometry 3 with ζA = -ζB. B
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Table 4.5.  Flow rates for Geometry 3 under various applied electric field strengths 
with ζ = -100 mV, as well as reference geometry results. 

E (V/cm) G3 Q (mm3/s) Reference Q (mm3/s) 
10 9.425E-05 3.338E-04 
50 3.770E-04 1.669E-03 

100 7.069E-04 3.338E-03 
 

Table 4.6.  Flow rates for Geometry 3 under various zeta potential conditions with   
E = 100 V/cm. 

Zeta Q (mm3/s) 
ζ = ζ 7.069E-04 AC BB

ζ = -ζ 5.655E-05 AC BB

ζAC/ζB = 0.5 1.060E-03 B

ζB/ζB AC = 0.5 4.807E-04 
 
 
 
 

EDL Field 
 
 Apart from velocity profiles and streamlines, another area of concern is the EDL 

field.  Previously, each geometry was modeled with the Helmholtz-Smoluchowski 

equation which allowed for simple results by neglecting the EDL field.  Due to our 

specific cases (small EDL thickness, small change in radius direction), the EDL field in 

the geometries modeled would be the same as that of a circular capillary with constant-

area.  Thus, modeling the EDL field for all three geometries would produce the same 

results and be trivial.  The only potential for differences however would be in the corners 

of the geometries where there is potential for overlap, such as the intersection of sections 

A and B for Geometry 2 and Geometry 3.  However, this overlap effect could be 

considered negligible again due to the fact that the EDL is thin in comparison to the 

diameter of the microchannel.  Thus, all EDL fields under these conditions would appear 

the same as that of Figure 4.37. 
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Figure 4.37.  EDL field in a circular capillary microchannel. 
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CHAPTER V 

 

CONCLUSIONS 

  
Careful consideration of modeling electroosmotic flow in a heterogeneous 

converging-diverging microchannel show that three effects are taking place inside the 

microchannel that have significant consequences for the flow.  The first effect is that 

applying an electric field along the length of the microchannel causes fluid to flow across 

a stationary charged surface.  Increasing the applied electric field strength results in a 

proportional increase in velocity magnitude.  The second effect is that the geometry of 

the microchannel affects the flow of an incompressible fluid due to the continuity 

equation, creating pressure gradients which can either increase or decrease the magnitude 

of the velocity.  The geometries also play a considerable role in the shape of the velocity 

profile inside the microchannel.  The third effect is that in a heterogeneous microchannel, 

pressure gradients generated at the interface of sections of different zeta potential can 

either advance or retard the flow.  In heterogeneous cases where the zeta potentials are 

opposite, the flow is greatly retarded and in the case of Geometry 2, zero net flow occurs 

in the channel.  Another effect of importance is that microchannels in which the 

downstream section of the channel had a greater zeta potential than the upstream section 

all produced the highest flow rates.  Thus, the higher zeta potential attracts the fluid 

downstream faster and then moves it through its respective section faster than the 

opposite case, when the downstream section has a lower zeta potential. 

In consideration of microchannel design, the designer must consider what the ultimate 

function of the microchannel is before considering these effects.  If the microchannel is 

 52



designed to act as a mixer, then lower flow rates (giving more time for the two products 

to mix) would be more ideal, thus using a lower applied electric field strength and 

perhaps a lower zeta potential downstream.  If the microchannel is to be used for 

cytometry purposes, then higher flow rates are probably more desirable and thus a higher 

applied electric field strength and higher zeta potentials downstream are more desirable.  

Ultimately, the designer must also consider how the use of different materials or fluids of 

varying pH may affect the flow inside the microchannel, as sections with opposite zeta 

potential have greatly retarded flow and in some cases, zero net flow.  Thus, it is greatly 

desirable to avoid opposite zeta potential conditions when designing the channel. 
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