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CHAPTER I 

 

GENETIC MECHANISMS THAT GOVERN SYNAPTIC ASSEMBLY  

AND ELIMINATION DURING DEVELOPMENT 

 

Introduction 

Information flow in nervous systems depends on the asymmetric polarity 

of the neurons that comprise the circuit. Maintenance of the postsynaptic domain 

allows for reception of stimuli from the environment or from other neurons, 

whereas the axonal domain emits a signal from the presynaptic apparatus to the 

next partner in the circuit. Because postsynaptic and presynaptic domains are 

specifically defined by the molecular components responsible for these functions, 

intracellular rearrangement of these molecules is sufficient to redirect information 

flow (Craig and Banker, 1994). The exquisite ability of axonal and dendritic 

specializations to remodel during development or injury is conserved throughout 

phylogeny, from simple eumetazoans such as C. elegans and Aplysia to more 

recently derived primates, including humans. However, the genetic mechanisms 

that govern synaptic remodeling during development are not well understood. 

Metamorphic animals undergo extensive changes in the body plan during 

development, which includes reorganization of the nervous system and 

musculature. The architectural changes that occur in the nervous system during 

metamorphosis are well-documented for crustaceans, nematodes, and multiple 

insect species (White et al., 1978; Atwood, 1992; Consoulas et al., 2000; Tissot 
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and Stocker, 2000). These structural remodeling events are genetically controlled 

and may be triggered by hormones or other diffusible cues that are released 

during metamorphosis (Consoulas et al., 2005; Brown and Truman, 2009). In 

addition to gross metamorphic changes in neuronal architecture, synapses are 

also selectively strengthened or eliminated via activity-dependent mechanisms. 

This type of neuronal remodeling may be coupled to the structural changes 

observed during metamorphosis or may be in response to environmental stimuli 

and form the basis for learning and memory (Griffith and Budnik, 2006; Bailey 

and Kandel, 2008; Giles and Rankin, 2009).  

 Investigations of the plasticity of mammalian neurons were initiated with 

the goal of understanding how neurons respond to injury. For example, axotomy 

of cultured hippocampal neurons often results in the transformation of a residual 

neurite into a new axon (Dotti and Banker, 1987). The mechanisms that 

reorganize circuits post-injury are likely similar to those that function in 

development. Noninvasive imaging techniques such as fMRI (functional magnetic 

resonance imaging) demonstrate that the motor cortex reorganizes following 

injury and also during normal learning (Butefisch, 2004; Gomis-Ruth et al., 2008). 

These results are certainly suggestive of the rewiring of the individual neurons 

within the affected circuit, but this interpretation requires validation through direct 

observation of single neurons. These analyses have relied upon fixed and 

stained tissue slices collected at developmental timepoints. With this 

methodology, however, it is categorically not possible to analyze the same 

animal throughout its development, and therefore dynamic events that may drive 
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synaptic plasticity cannot be observed. Finally, although much has been learned 

from cultures of primary neurons, this approach necessarily excludes the 

potential of detecting plasticity mechanisms that depend on contextual cues 

derived from developmental programs or experience (Ajay and Bhalla, 2006; Yu 

and Zuo, 2011). 

Recent developments in multi-photon imaging are allowing the field to 

move toward visualizing synaptic rearrangement as it occurs in living mammalian 

brains (Chklovskii et al., 2004; Holtmaat and Svoboda, 2009). For instance, the 

stability and maintenance of individual fluorescently-labeled dendritic spines has 

been monitored in vivo throughout the post-natal life of a rodent (Trachtenberg et 

al., 2002). These powerful technologies now allow investigation into mammalian 

synaptic remodeling at a depth that was previously limited to simpler model 

organisms. Therefore, although the conservation of plasticity justifies the 

continued use of invertebrate models to investigate the molecular mechanisms of 

synaptic plasticity, these powerful new tools should allow scientists to validate 

conservation of these remodeling pathways in the mammalian brain (Yu and Zuo, 

2011). 

 Synaptic remodeling events across species may be simplified into three 

steps: disassembly of the existing specialized domain, proper trafficking of 

molecular components to the nascent synaptic domain, and re-establishment of a 

functional synapse at the new connection site (Ho et al., 2011). The mechanisms 

that govern each of these processes have been extensively studied in the 

context of neurodevelopment. In this chapter, I will broadly discuss our current 



4 

understanding of how synaptic domains are established, disassembled, and then 

reconstituted in models of development and plasticity. Part 1 describes the 

mechanisms that create a polarized neuron with distinct presynaptic and 

postsynaptic domains, and how these same processes may be re-used to 

generate new synapses during remodeling. Part 2 discusses synaptic 

architecture and the current understanding of how local mechanisms can alter 

synaptic stability. Part 3 will introduce how transcription governs synaptic 

plasticity. This section features examples of how transcription factors may be 

exploited to uncover downstream genes that are directly involved in synaptic 

remodeling and how this approach relates to our study of a transcriptionally 

regulated program that regulates GABAergic synaptic plasticity in C. elegans. 

 

Part 1: Creating a polarized neuron 

Initial establishment of neuronal polarity 

Cultured hippocampal neurons have provided a useful model for studies of 

neuronal polarity (Craig and Banker, 1994; Barnes and Polleux, 2009). Because 

hippocampal neurons can establish and maintain polarized structures in vitro, the 

mechanisms that govern neuronal polarity are likely to function as cell-intrinsic 

processes (Craig and Banker, 1994). Key events in hippocampal neuron 

polarization have been classified in five successive stages in which an immature 

neuron extends filopodia that ultimately adopt axonal or dendritic identities and 

form synapses (Figure 1.1A) (Dotti et al., 1988). Studies of these dynamic  
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Figure 1.1. Establishment of neuronal polarity in hippocampal neurons. (A) Stages of 
hippocampal neuron development in culture as defined by Dotti et. al., 1988. Adapted from 
Barnes and Polleux, 2009. (B) PI3K directs both a phospho-Akt/GSK-3β/CRMP-2 pathway (left), 
which promotes microtubule outgrowth, and a GTPase/Par pathway (right), which destabilizes the 
actin cytoskeleton. Note intersection of the pathways via GSK-3β regulation. Originally published 
in Yoshimura et. al., 2006. 
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processes have revealed two major, interconnected signaling pathways that drive 

the emergence of polarity, GSK-3β/CRMP2 and Par/GTPase. 

GSK-3β activation specifies the site of axonal outgrowth 

The distal accumulation of phosphatidylinositol 3,4,5-triphosphate (PIP3) 

and phosphorylated Akt (Akt-P) near the tip of a neuronal filopodia marks the 

single neurite destined to become an axon (Shi et al., 2003; Jiang et al., 2005) 

(Figure 1.1B, pathway denoted with left pink arrow). PIP3 is locally produced by 

phosphoinositide-3-kinase (PI3K), which in turn recruits Akt to be phosphorylated 

by phosphoinositide-dependent protein kinases. This key role of PI3K is evident 

in experiments that alter the activity of PTEN (phosphatase and tensin 

homologue deleted on chromosome 10). Normally, PTEN dephosphorylates PIP3 

which results in depletion of local Akt-P; thus PTEN inactivates the ability of PIP3 

and Akt-P to promote axonogenesis. Overexpression of PTEN in cultured 

hippocampal neurons inhibits axon formation, whereas knockdown of PTEN 

results in outgrowth of multiple axons (Jiang et al., 2005). These results have 

been recapitulated in vivo in Pten mutant mice which show neurons with multiple 

axons (in addition to other defects) and in C. elegans egg-laying neurons which 

require age-1/PI3K for the asymmetric distribution of cytoplasmic determinants 

that drive axon extension (Adler et al., 2006; van Diepen and Eickholt, 2008).  

In cultured hippocampal neurons, both PIP3 and Akt-P function to inhibit 

GSK-3β. As in the experiments with PTEN misexpression, constitutive activation 

of GSK-3β blocks axonogenesis whereas knockdown of GSK-3β results in 

multiple axons (Jiang et al., 2005; Yoshimura et al., 2005). PIP3 and Akt-P-
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dependent inactivation of GSK-3β releases CRMP-2 (collapsin response 

mediator protein-2) to interact with tubulin dimers and promote microtubule 

assembly. CRMP-2 also promotes endocytosis of adhesion molecules such as 

Numb to allow for axon outgrowth and transports presynaptic proteins to the 

nascent axons via interaction with kinesin-1 (Inagaki et al., 2001; Fukata et al., 

2002; Nishimura et al., 2003). This crucial role of CRMP-2 in axon establishment 

and subsequent outgrowth is evolutionarily conserved; in C. elegans, proper 

localization of UNC-33/CRMP in neurites is required for axon establishment, 

whereas loss of unc-33/CRMP results in severe axonal abnormalities and 

uncoordinated locomotion (Hedgecock et al., 1985; Tsuboi et al., 2005). 

An additional study, however, indicates that this pathway may be more 

complex than a simple on-off switch for axon outgrowth. In C. elegans 

interneurons, DAF-18/PTEN appears to promote neurite extension, as loss-of-

function daf-18 axons extend more slowly. This may represent a novel function of 

PTEN in establishing polarity. Alternatively, these defects may be due to global 

misregulation of PIP3
 within the neuron, as age-1/PI3K mutations suppress the 

daf-18 defect (Christensen et al., 2011). Nevertheless, this apparently 

contradictory result highlights the importance of regulation of PIP3  and Akt-P 

within neuronal polarity.  

Small GTPases activate Par proteins to induce axonogenesis 

A second polarity establishment pathway is also initiated by PI3K. In this 

mechanism, a positive feedback loop with small Rho-family GTPases and PAR 

(partitioning-defective) proteins reorganizes the actin cytoskeleton in the nascent 
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axon (Yoshimura et al., 2006) (Figure 1.1B, denoted with right pink arrow). In 

this case, PI3K recruits the small GTPase Cdc42 (cell division cycle 42) to the tip 

of a nascent axon. Here, Cdc42 is activated by its GEF (guanine nucleotide 

exchange factor) and destabilizes the actin cytoskeleton (Shi et al., 2003). Local 

and regulated destabilization of the actin cytoskeleton is key for axonal 

development. This can be demonstrated by pharmacological treatment of 

hippocampal neurons with actin destabilizers which results in outgrowth of 

multiple axons (Bradke and Dotti, 1999). Activated Cdc42-GTP also binds Par6 

to localize the Par complex [Par3, Par6, and atypical protein kinase C (aPKC)] to 

the nascent axon. There, the Par complex amplifies PI3K signaling through the 

small GTPase Rac, which is also implicated in actin dynamics. Notably, 

Par3/Par6/aPKC can also inhibit GSK3β activity. This intersection of the two 

polarity pathways results in stabilized microtubules coupled to destabilized actin, 

a hallmark of axon selection (Macara, 2004; Goldstein and Macara, 2007; Zhang 

and Macara, 2008). Again, this pathway appears to have some conservation in 

C. elegans neurodevelopment with related Par proteins. The PAR-1-related 

serine-threonine kinase sad-1 is necessary for exclusive establishment of the 

presynaptic domain, and par-4/LKB1 promotes dendritic growth (Crump et al., 

2001; Biernat et al., 2002; Barnes et al., 2007; Kim et al., 2010; Teichmann and 

Shen, 2010). 

Thus, these pathways (Figure 1.1B) function together to initiate neuronal 

polarity via regulation of the cytoskeleton and to promote outgrowth of a single 

axon in hippocampal neurons. However, not all neurons exhibit these distinctive 
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morphological features (i.e. long axonal process, short protrusive dendrites) that 

are correlated with the spatial segregation of presynaptic and postsynaptic 

components. For example, most C. elegans neurons display a single, 

unbranched process that contain adjacent but partially segregated presynaptic 

and postsynaptic domains (White et al., 1976). Are the same mechanisms that 

drive hippocampal neuron polarity also utilized to establish separate domains 

within this simple architecture? PI3K-GSK3β and PAR-GTPase dependent 

signaling pathways are certainly utilized to establish asymmetric molecular 

domains that are not correlated with prominent differences in local morphology. 

For instance, epithelial cells, newly fertilized eggs, and migrating cells depend on 

the asymmetric distribution of PIP3 and PAR proteins to reorganize the 

cytoskeleton into discrete structural and functional domains (Goldstein and 

Macara, 2007; Bryant and Mostov, 2008). It is conceivable, therefore, that these 

same mechanisms function to establish polarity in neurons with simpler 

architecture, and furthermore, can potentially re-direct polarity within intact 

neurons during synaptic remodeling. A few studies are consistent with this idea 

(Crump et al., 2001; Hung et al., 2007; Christensen et al., 2011), but the 

mechanism is not understood. 

 

Axonogenesis and outgrowth 

 Polarized structures arising from symmetry-breaking events in 

hippocampal neuron polarity are maintained during axonogenesis. In this 

process, an axon may extend long distances relative to the size of the neuron 
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soma to reach its synaptic partner and establish a functional circuit. The 

navigational apparatus that promotes growth at the tip of the axon, termed the 

growth cone, is a highly specialized structure with a dynamic cytoskeleton and is 

capable of sensing and responding to the extracellular environment. The 

morphogens that guide axonal growth, the extracellular matrix through which 

growth cones navigate, and cytoskeletal components that drive axonal growth 

have all been extensively reviewed (Lee and Van Vactor, 2003; Lowery and Van 

Vactor, 2009). Here, I will broadly highlight some key molecules in axon guidance 

and early synaptogenesis that also have roles in synaptic remodeling. 

 Cytoskeletal regulation during growth cone development 

After determining the site of axonogenesis via the symmetry-breaking 

events described above, the cytoskeleton then promotes axonal outgrowth in 

multiple ways: first, microtubules and actin microfilaments form the shape of the 

neurite; second, the cytoskeletal meshwork serves as a scaffold for intracellular 

signaling in the growth cone; and third, the microtubule bundles within the neurite 

function as tracks for transport of organelles and synaptic molecules out to the 

synapse (Lowery and Van Vactor, 2009; Stiess and Bradke, 2011) (Figure 1.2A). 

The growth cone displays dynamic microtubule polymerization and 

depolymerization, surrounded by “treadmilling” F-actin filaments that drive 

filopodial protrusions. Extension of the growth cone requires instability of the 

actin cytoskeleton to allow polymerization of microtubules into the end of the 

growth cone (Conde and Caceres, 2009).  
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Figure 1.2. Regulation of the synaptic microtubule cytoskeleton. (A) Microtubules in 
advancing growth cones are stabilized within the neurite shaft but remain dynamic in the growth 
cone prior to formation of a synaptic bouton at Drosophila NMJs. (B) Futsch/MAP1B associates 
with stable microtubules in the neurite as well as the microtubule loop within the bouton. Synaptic 
stability is also mediated by D-spastin and Wingless/Wnt (WG). (C) Bazooka/Par3, in a complex 
with Par6 and aPKC, promotes association of Futsch with microtubules. Adapted from Conde and 
Caceres, 2009. 
 



12 

Rho family GTPases regulate the actin dynamics in the growth cone that 

drive translocation, while Rac GTPases control microtubule elongation. Rho 

GTPases cycle between an inactive, GDP-bound state and an active, GTP-

bound state, aided by the action of GEFs (which induce the GTP-bound state) 

and GAPs (which promote the GDP-bound state) (Jaffe and Hall, 2005). In the 

growth cone, Cdc42 and Rac generally drive rearrangements of the actin 

cytoskeleton. Cdc42 is a critical regulator for axon outgrowth via its effector 

Wiskott-Aldrich syndrome protein (WASP), which promotes actin polymerization 

and filopodial outgrowth. The WASP-interacting Arp2/3 complex also promotes 

cytoskeletal rearrangement in the growth cone via increased actin branching; 

however, recent data suggest that Arp2/3 negatively regulates axon outgrowth, in 

contrast to its active role in lamellipodial protrusion (Korey and Van Vactor, 2000; 

Strasser et al., 2004; Hall and Lalli, 2011). Ras-family GTPases, in contrast to 

Rho-family GTPases, promote PI3K signal transduction to extend microtubules. 

However, there is evidence that Rac (a Rho-family GTPase) also stimulates 

PI3K, and thus indirectly stimulates microtubule elongation via CRMP 

(Yoshimura et al., 2006; Hall and Lalli, 2011). Thus, these small GTPases, their 

regulators, and their effectors exercise multiple roles in regulating the 

cytoskeleton to establish axon architecture and control growth cone outgrowth.  

In contrast to the dynamic growth cone, the lengthening neurite has a 

central and densely arranged bundle of microtubules. Stabilization of 

microtubules within the neurite requires microtubule-associated proteins (MAPs). 

MAP1B and its homologue Futsch in Drosophila function as critical regulators of 
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this architectural feature (Pedrotti and Islam, 1995; Roos et al., 2000; Gogel et 

al., 2006; Riederer, 2007) (Figure 1.2B-C). All microtubules within the neurite are 

uniformly oriented with plus-ends directed toward the growth cone. This feature is 

unique to axons; dendritic microtubules show mixed orientations. Given that plus-

end directed kinesin and minus-end directed dyenin motors are essential for 

trafficking axonal proteins (see below), the polarized orientation of microtubule 

bundles within axons is critically important for the efficient distribution of synaptic 

proteins in the growing axon (Baas and Lin, 2011). 

The extracellular matrix during growth cone guidance and 

synaptogenesis 

 Neurons and their surrounding support cells secrete a variety of 

proteoglycans, including laminin, fibronectin, and collagens, to generate the 

extracellular matrix (ECM). The ECM forms a semi-rigid structure upon which 

growth cones migrate in response to growth factors that may be embedded 

within the ECM (Hynes, 2009). Collagens, which were originally viewed as 

providing basic structural support for tissue, are now understood to provide a 

wide array of specialized functions including the promotion of axon outgrowth. 

For example, genetic ablation of type XV/XVIII collagens disrupts axon guidance 

in C. elegans and Drosophila (Ackley et al., 2001; Ackley et al., 2003; Meyer and 

Moussian, 2009). In zebrafish, Collagen XVIII serves as a cue to direct motor 

axons into the periphery at the appropriate exit point (Schneider and Granato, 

2006). This growing body of work suggests that collagens are a permissive 

substrate for migration as well as cues for accurate pathfinding and targeting. 
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 Degradation and restructuring of the ECM is required for axonal guidance 

to its target location and forming a synapse with its partner. Matrix metalloprote-

ases (MMPs) are expressed in developing axons of Drosophila (MMP1) and 

mouse (BMP-1/Tolloid, TIMP-2, MMP2, MMP 9), and MMP inhibition causes 

axon guidance and patterning defects in Xenopus. Emerging evidence suggests 

that different MMPs are required for cleaving particular ligands that the axon 

encounters along its path (Llano et al., 2000; Webber et al., 2002; VanSaun and 

Matrisian, 2006; Myers et al., 2011). MMPs are also necessary in later circuit 

formation by promoting synaptogenesis. For instance, MMP3 degrades the 

proteoglycan Agrin at the neuromuscular junction (NMJ) (Werle and VanSaun, 

2003) (see discussion of Agrin below). Thus, MMPs appear to fulfill multiple roles 

of altering the ECM to allow simple mechanical outgrowth, directing the migration 

of the growth cone to the target, and promoting connectivity with synaptic 

partners. 

 

Parallel mechanisms direct polarized trafficking of membrane proteins in 

epithelial cells and neurons 

Polarized epithelial cells are defined by distribution of different integral 

membrane proteins to separate apical or basolateral domains. These membrane 

proteins are sorted for shipment to these specific destinations on the basis of 

intrinsic signal sequences embedded in each protein. Related mechanisms are 

employed in neurons for protein sorting to either axonal or dendritic domains 

(Winckler and Mellman, 1999). For example, viral glycoproteins expressed in 
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either cultured MDCK epithelial cells or hippocampal neurons are sorted to 

corresponding apical and axonal domains. Similarly, proteins that are normally 

sorted to the basolateral domain in epithelial cells are also trafficked to the 

somatodendritic region of neurons (Dotti and Simons, 1990). Based on the 

evident similarity of these sorting mechanisms, the wealth of research in 

epithelial cells has been very useful for revealing key elements of polarized 

trafficking in neurons.  

Basolateral signal sequences in epithelial membrane proteins are typically 

located in the cytoplasmic tail. As these proteins traverse the trans-Golgi 

network, these signal sequences interact with µ subunits of AP-1 or AP-2 adaptor 

complexes for sorting into targeted clathrin-coated vesicles (Mellman, 1996; 

Winckler and Mellman, 1999). This mechanism appears to be conserved in a 

pathway that directs specific neurotransmitter receptors to the dendritic domain 

of C. elegans neurons. A mutation that removes the UNC-101/AP-1 subunit µ1 

results in the mislocalization of glutamate and acetylcholine receptors and ROR-

type receptor tyrosine kinases to axons. These results indicate that UNC-101 is 

required for receptor trafficking to the dendritic domain. Although these AP-1 

adaptor proteins may perform parallel roles in both epithelial and neuronal 

trafficking, the molecular mechanisms are likely to include tissue-specific 

features. For example, AP-1 adaptor proteins function primarily in the Golgi in 

epithelial cells, but UNC-101 is largely restricted to the axon. This key difference 

predicts that membrane receptors may be targeted in C. elegans neurons by a 

transcytosis mechanism in which dendritic proteins are initially broadly directed to 
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the membrane and then endocytosed for trafficking to more specific destinations 

(Dwyer et al., 2001; Margeta et al., 2009). 

Mechanisms that direct trafficking of axonal proteins are less well-

understood in part because of differences in apical sorting in epithelial cells 

compared to axonal targeting in neurons (Silverman et al., 2001). One potential 

explanation for this disparity is the endocytosis/transcytosis mechanism 

mentioned above, which may also be utilized for axonal trafficking. For example, 

β-APP (amyloid precursor protein) is initially targeted to the neuronal cell soma 

membrane. From there, it is endocytosed and trafficked to an axonal destination 

(Winckler and Mellman, 1999). The signals that direct this transcytosis pathway 

and whether they are provided by the axonal protein remain unknown (Brunholz 

et al., 2011).  

The Arf family of small GTPases are important regulators for sorting 

membrane proteins in epithelial cells and neurons. Arf proteins were originally 

identified as regulators of clathrin coat assembly in the trans-Golgi network 

where membrane protein sorting occurs. In addition, Arf GTPase activating 

proteins (ArfGAPs) have been shown to interact with vesicle cargo as well as 

coat proteins, suggesting that Arfs and ArfGAPs are directly involved in a sorting 

mechanism at the trans-Golgi. Arfs also localize to the plasma membrane where 

they can regulate PI3K signaling. These dual roles suggest the possibility that Arf 

activity can mediate “early” sorting at the trans-Golgi as well as “later” sorting 

during transcytosis (Nie and Randazzo, 2006; Myers and Casanova, 2008). 

Evidence that Arfs regulate neuronal polarity via vesicle sorting comes from a 
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recent study in C. elegans revealing that the Arf-related protein ARL-8 is 

necessary for synaptic vesicle (SV) trafficking to the axonal domain. In this case, 

ARL-8 protein travels with SV precursors to prevent “clumping” of presynaptic 

components that might indicate premature synaptogenesis (Klassen et al., 2010). 

Taken together, these data implicate Arf in multiple steps of vesicular sorting in 

polarized cells and predict that Arf signaling is required for accurate delivery of 

axonal proteins to their target domains. 

 

Delivery of synaptic vesicles to axonal domains 

Because of the central role of SVs in neurotransmitter release, the 

translocation of these signaling organelles to the axonal domain is critically 

important to neuronal function. Following establishment of neuronal polarity, 

“packets” of SV precursors are moved in an anterograde direction along 

microtubules by KIF1A kinesins (unc-104 in C. elegans) (Hall and Hedgecock, 

1991; Ahmari et al., 2000). SV trafficking is mediated by adaptor proteins that 

bind kinesins, such as the small GTPase Rab3. Rab3 is an SV vesicle 

component that mediates SV trafficking by cycling through GTP- and GDP-bound 

states. Although Rab3 is a key regulator of SV trafficking, additional mechanisms 

can also traffic SVs to axons in the absence of Rab3 (Pfeffer and Aivazian, 2004; 

Schluter et al., 2004). 

SVs can also move in a retrograde direction along microtubule tracks via 

the minus-end directed transporter dyenin. Regulation of dyenin activity is 

important for SV delivery to axons (Schlager and Hoogenraad, 2009). For 
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example, recent work in C. elegans identified two cyclin-dependent kinases, 

CDK-5 and PCT-1, as well as the cyclin CYY-1, that promote SV targeting by 

inhibiting dyenin-regulated retrograde transport (Ou et al., 2010). As noted below, 

this work also linked these components to a remodeling mechanism in which SVs 

are relocated to a new synaptic domain (Park et al., 2011). The delivery of axonal 

proteins and SVs constitutes an ongoing area of research. 

 

Examples of polarity factors in synaptic remodeling 

In the preceding sections, I have broadly reviewed the establishment of 

polarity and axonogenesis via signal transduction cascades, cytoskeletal 

regulators, and extracellular interactions. Current studies are demonstrating that 

many of the same proteins required for the initial establishment of neuronal 

polarity early in development are also required later for modifying these 

structures in synaptic remodeling mechanisms. Below, I will detail several 

published examples in which neurodevelopment proteins (e. g. MAP1B, Par 

complex, GSK-3β, trafficking regulators, etc.) are required for synaptic 

remodeling. Later chapters will feature additional proteins (Arp2/3, collagens, 

MMPs, ArfGAPs) that our findings have suggested are actively involved in 

synaptic remodeling. 

Par complex and GSK-3β regulate presynaptic domains in the 

Drosophila NMJ 

 The Drosophila NMJ is composed of an axon with multiple synaptic 

terminals or “boutons”. These synaptic boutons are highly enriched in 
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microtubules, which enter the flattened portion of the nerve terminal around the 

periphery of the bouton and then re-enter the neurite (Tsui et al., 1984). During 

larval metamorphosis, new synaptic boutons form from division of existing 

boutons; thus, both the development and remodeling of these synapses requires 

extensive regulation of the microtubule cytoskeleton. One such regulator is novel 

microtubule-associated protein, futsch, which is required for synaptic growth and 

bouton division (Hummel et al., 2000; Roos et al., 2000) (Figure 1.2A-B). The 

nearest vertebrate homologue is MAP1B, a key regulator of neuronal polarity, 

with high N- and C-terminal sequence similarity to futsch. Drosophila futsch 

appears to be positively regulated by bazooka, the Par3 homologue in 

Drosophila. A role for the Par3/Par6/aPKC complex (Figure 1.2C) is suggested 

by the finding that a dominant-negative aPKC mutation causes a phenotype 

similar to that observed in futsch mutants (Ruiz-Canada et al., 2004). Both futsch 

and MAP1B are also regulated by GSK-3β, which functions in a second major 

pathway of axonal specification in early neuronal polarity. Thus, regulation of 

microtubules by MAPs, Par proteins, and GSK-3β is important for initial polarity 

establishment, axonal outgrowth, and later synaptic remodeling (Budnik and 

Salinas, 2011). 

 Par3 and Par6 can alter dendritic specializations 

A central role for the Par3/Par6/aPKC complex in cell polarity is well-

documented for a variety of cell types (Macara, 2004; Mellman and Nelson, 

2008). Recent work indicates that these key proteins also control maturation of 

postsynaptic specializations termed dendritic spines in mammalian neurons. In 
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contrast to the regulation of microtubule stability in the presynaptic boutons of 

Drosophila NMJs, Par proteins in dendrites control actin dynamics to regulate 

dendritic spine morphogenesis. In this setting, Par3 sequesters a Rac GEF 

(Tiam) in order to prevent ectopic Rac activation and stabilize F-actin. When 

Par3 is knocked down, filopodial protrusions do not mature into actin-rich spines 

(Zhang and Macara, 2006). Further study revealed that Par-6 and aPKC also 

participate in the formation of dendritic spines via regulation of Rho GTPase 

activity (Zhang and Macara, 2008). Further evidence from Drosophila NMJ 

postsynaptic domains (in contrast to presynaptic boutons described above) 

demonstrate that Par3/Bazooka localization and actin structure depend on aPKC 

phosphorylation; when the phosphorylation site of Par3/Bazooka is genetically 

disrupted, F-actin is destabilized and receptors are mislocalized (Ramachandran 

et al., 2009). Because of the necessity for remodeling the Drosophila NMJ during 

metamorphosis (described above), these results suggest that Par mediation of 

GTPase activity could be a mechanism for the reorganization of actin in dendritic 

maturation and plasticity. 

A cyclin and cyclin-dependent kinase control anterograde transport 

to relocate synapses 

C. elegans GABAergic motor neurons undergo synaptic remodeling 

program during larval development (discussed at length later in this chapter). 

During this remodeling event, GABAergic synapses are removed from one 

neurite which innervates ventral muscle and reconstituted with dorsal muscle 

(White et al., 1978). The rearrangement accommodates the addition of larval 
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GABAergic motor neurons that synapse onto ventral muscles. Interestingly, this 

process appears to involve a cyclin-dependent kinase-regulated pathway that 

also directs polarized trafficking in differentiating neurons. In this case, the cyclin-

box containing protein CYY-1 appears to drive the removal of existing synapses, 

whereas CDK-5 is responsible for trafficking SVs to the new location. In this 

case, however, CDK-5 utilizes the anterograde kinesin unc-104 (Park et al., 

2011) rather than dyenin which is employed for initial SV trafficking (Ou et al., 

2010).  

Studies in mice have also detected roles for CDK-5 in synaptic 

remodeling, although the mechanism of its function differs. For example, a 

conditional cdk-5 knockout was shown to enhance glutamate receptor turnover (a 

method of remodeling discussed in the following section). Additional evidence, 

however, points to roles for CDK-5 in the SV cycle which could potentially include 

functions that are also active in remodeling C. elegans neurons (Angelo et al., 

2006; Hawasli et al., 2007). 

 

Part 2: Presynaptic and postsynaptic mechanisms of plasticity 

 Neurons communicate with their targets via chemical synapses composed 

of specialized presynaptic and postsynaptic domains. The presynaptic domain 

may be positioned exclusively at the end of the axon, termed “terminaux”, as in 

Drosophila NMJs, or alternatively en passant (“in passing”) along the length of a 

neurite, as in C. elegans and in the mammalian brain (Shen and Scheiffele, 

2010; Budnik and Salinas, 2011). In both cases, the presynaptic specialization 
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Figure 1.3. Ultrastructure of chemical synapses. (A) Electron micrograph from adult rat 
hippocampus. The dendritic shaft is colorized in yellow, the spine neck and head in green, the 
presynaptic terminal in orange, and astroglial processes in blue. Scale bar, 0.5 µm. (B) Three-
dimensional reconstruction of an 8.5-µm-long dendrite (yellow) with the postsynaptic densities 
labeled in red. Scale cube, 0.5 µm3. Originally published in Ho et. al., 2011. 
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is composed of an electron-dense matrix of scaffolding proteins, specific 

cytoskeletal elements, and synaptic vesicles (Figure 1.3A). The postsynaptic 

domain contains the neurotransmitter receptors, ion channels, and components 

of signal transduction pathways that propagate the synaptic signals throughout 

the circuit. In mammalian excitatory synapses, postsynaptic domains are located 

in actin-rich protrusions termed dendritic spines that are readily observable 

(Figure 1.3B). Although postsynaptic domains in C. elegans are not visible in 

electron micrographs, key molecular components of the postsynaptic region are 

conserved (Ho et al., 2011). Before discussing the known mechanisms that 

reorganize these domains during remodeling, I will briefly summarize what is 

known about the establishment of these domains with an emphasis on C. 

elegans neurodevelopment. 

 

Assembly of presynaptic specializations 

 The ultrastructural appearance of the presynaptic domain is similar in C. 

elegans and vertebrate central nervous systems, and several proteins that 

function in synaptogenesis in other nervous systems were first identified in C. 

elegans neurons (Figure 1.4A). One such example is SYD-1, so named for its 

synaptic-defective phenotype. SYD-1 was originally discovered as a key 

determinant of neuronal polarity in developing GABAergic motor neurons. In syd-

1 mutants, SV markers appear diffuse and accumulate in neurites that normally 

do not have axonal components, indicating mis-specification of the presynaptic 

domain (Hallam et al., 2002). Accumulation of SYD-1 at synapses is partially  
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Figure 1.4. Key molecules that function within presynaptic and postsynaptic densities. (A) 
The presynaptic density is organized by SYD-1, ELKS, SYD-2, PTP-3, and UNC-10 in C. 
elegans. Together these molecules recruit RAB-3 and SNB-1 containing synaptic vesicles, which 
are released following calcium ion influx by voltage-gated calcium channels (VGCCs, such as 
UNC-2) and sending of calcium increase by SNT-1. Actin dynamics at the presynaptic density are 
regulated by RhoGTPases during outgrowth which may mediate actin at presynaptic densities 
following maturation. (B) Postsynaptic densities in the dendritic spine are opposed to presynaptic 
densities by the interaction of membrane spanning proteins (LAR in mammals, but not C. 
elegans) and PSD-95 functions to cluster postsynaptic proteins. AMPA and NMDA receptors, 
which sense glutamate, allow influx of calcium (UNC-49 sense GABA and cause Cl- influx, and 
AChRs sense acetylcholine, not depicted here). Influx of calcium via glutamate receptors and/or 
VGCCs can cause changes in AMPA receptor trafficking, actin dynamics, and gene transcription. 
Adapted from Giagtzoglou et. al., 2009. 
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required for the recruitment of additional “downstream” presynaptic proteins 

(Patel et al., 2006). SYD-1 contains a RhoGAP domain, leading to speculation 

that it might interact with and/or mediate cytoskeletal dynamics; however, based 

on analysis of syd-1 mutations that perturb this domain, it appears that GAP 

domain function is not necessary for SYD-1-dependent synaptogenesis (Hallam 

et al., 2002). Thus, SYD-1 is currently proposed to function primarily as a scaffold 

for assembly of active zone proteins. This role of SYD-1 seems particularly 

important considering that SYD-1-interacting proteins are not trafficked to 

synapses via the same UNC-104/KIF1A mechanism as SVs (see earlier section) 

and suggests that SYD-1 arrives at the membrane earlier via dense-core vesicles 

enriched in active zone proteins (Shapira et al., 2003). 

 ELKS (glutamine, leucine, lysine, and serine-rich) family proteins, 

including Piccolo, Bassoon, and Bruchpilot in Drosophila, are presynaptic active 

zone proteins that interact with SYD-1 (Figure 1.4A) The recruitment of ELKS-1 

to C. elegans synapses depends upon SYD-1 (Patel et al., 2006). In Drosophila, 

the synaptic localization of ELKS family member Bruchpilot also depends on the 

syd-1 homologue, DSyd-1; ELKS in turn recruits Liprin-α (discussed below) 

(Fouquet et al., 2009; Owald et al., 2010). In Drosophila and vertebrates, ELKS 

appears also localizes RIM (Rab3a-interacting molecule) to the active zone 

which then recruits synaptic vesicles. However, this role for ELKS may be 

dispensable in C. elegans. In all cases, ELKS appears to promote synaptic 

transmission via recruitment of calcium channel subunits (Deken et al., 2005; 

Patel et al., 2006; Saheki and Bargmann, 2009). 
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As noted above, Liprin-α, named SYD-2 in C. elegans and Dliprin-α  in 

Drosophila, is recruited to the active zone by the early synaptic organizer SYD-1 

in C. elegans and by ELKS in Drosophila (Figure 1.4A) (Zhen and Jin, 1999; Yeh 

et al., 2005; Patel et al., 2006). Liprin-α was originally identified via its interaction 

with transmembrane LAR tyrosine kinase (PTP-3 in C. elegans) in a yeast two-

hybrid screen (Ackley et al., 2005; Stryker and Johnson, 2007). Mutations in syd-

2 in C. elegans and Drosophila, as well as defective ptp-3 in C. elegans, cause 

reduced active zone complexity (Zhen and Jin, 1999; Ackley et al., 2005). This 

result is perhaps not surprising, given the myriad of interactions of Liprin-α with 

other synaptic proteins. For instance, Liprin-α forms a complex with RIM and 

ELKS that, in turn, interacts with UNC-13, a component for regulated synaptic 

vesicle release. Liprin-α also interacts with the MALS/Vel-Calsk-Mint1 complex, 

which is required for synaptic vesicle release (Stryker and Johnson, 2007). LAR, 

in contrast, appears to integrate signals from the ECM to regulate active zone 

stability. For instance, PTP-3/LAR has been shown to interact with the large 

glycoprotein Nidogen, encoded by nid-1 in C. elegans (Ackley et al., 2003), and 

Drosophila LAR interacts with two extracellular heparin sulfate proteoglycans, 

Syndecan and Dallylike (Stryker and Johnson, 2007). While SYD-2/Liprin-α and 

its interacting proteins appear to function at the nexus of the developing synapse, 

SYD-2 single mutants and mutants of other synaptic proteins have differing 

phenotypes with varying severity, suggesting that the interactions between these 

proteins are complex and not fully understood (Giagtzoglou et al., 2009). 
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The localization of the PAR-1-related serine/threonine kinase SAD-1 at the 

synapse depends on SYD-1 and SYD-2. As noted earlier, synaptic vesicles are 

mislocalized to dendritic domains in sad-1 mutant GABAergic motor neurons. 

This polarity defect is markedly similar to that of syd-1 mutants and suggests that 

both proteins regulate SV localization (Crump et al., 2001; Hung et al., 2007). 

Hippocampal neurons that lack SAD kinases also display this characteristic 

phenotype (Kishi et al., 2005). SAD-1 also exercises additional roles in synaptic 

morphology and function (Crump et al., 2001; Inoue et al., 2006; Patel et al., 

2006) 

Role of calcium in SV release 

Synaptic vesicle exocytosis involves docking, priming, and fusion steps, 

followed by endocytosis to complete the synaptic vesicle cycle (Murthy and 

Stevens, 1999; Harris et al., 2001). The synaptic localization of components that 

execute these processes is not fully understood, but in some cases, appears to 

depend on SYD-1, SYD-2, and ELKS as described above (Figure 1.4A) (Murthy 

and De Camilli, 2003; Patel et al., 2006). A discussion of each component of the 

exocytic and endocytic machinery is outside the scope of a chapter devoted to 

neuronal polarity and remodeling. I will instead focus on the role of intracellular 

calcium in exocytosis because of evidence of a necessary role for neuronal 

activity in synaptic plasticity (presented later in this chapter and in Chapter V).  

 Synaptic vesicle fusion depends on a local increase in calcium via voltage-

gated calcium channels (VGCCs) (Figure 1.4A). Three distinct L-type calcium 

channel subunits are required for this process in C. elegans: UNC-2, EGL-19, 
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and CCA-1 (Richmond et al., 2001; Saheki and Bargmann, 2009; Gao and Zhen, 

2011). Additional necessary components include an auxiliary subunit of UNC-2, 

UNC-36, and two novel channel subunits, NCA-1 and NCA-2 (Schafer et al., 

1996; Yeh et al., 2008). The localization of UNC-2 at the synapse is dependent 

upon UNC-36 as well as a novel endoplasmic reticulum transmembrane protein 

encoded by CALF-1 (Saheki and Bargmann, 2009). The synaptotagmin 

homologues in C. elegans (e.g. SNT-1) and Drosophila integrate the rise in 

intracellular calcium from these channels to trigger synaptic vesicle release 

(Figure 1.4A) (Littleton et al., 1993; Nonet et al., 1993). When calcium levels 

rise, synaptotagmin associates with the active zone protein RIM, which in turn 

binds GTP-bound Rab3 on SVs. RIM also binds SNAP-25 to promote docking 

and release of SVs. Current models suggest that RIM functions as a scaffold to 

assemble a calcium-sensitive SV release complex (Coppola et al., 2001; Sudhof, 

2004).  Many of these presynaptic proteins are also required for synaptic 

plasticity. For instance, RAB-3 and RIM are both necessary for long-term 

synaptic plasticity (Lledo et al., 1993; Tsetsenis et al., 2011).  

 

Assembly of postsynaptic specializations 

A functional dendrite must include postsynaptic domains with the proper 

complement of neurotransmitter receptors and signal transduction proteins 

(Bruneau et al., 2009). In the mammalian central nervous system, excitatory 

transmission is largely directed through actin-rich protrusions termed dendritic 

spines (Figure 1.3B). Formation of these structures depends on localized 
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regulation of the actin cytoskeleton. These dendritic spines are established and 

maintained by the Rho family of small GTPases and the downstream actin-

binding proteins that they regulate (Figure 1.4B) (Wegner et al., 2008; Lin and 

Webb, 2009; Svitkina et al., 2011). However, in contrast to the largely activity-

independent filopodial protrusions of the axonal growth cone, the cytoskeletal 

reorganization that drives spine formation is stimulated by signaling activity from 

presynaptic partners (Portera-Cailliau et al., 2003; Calabrese et al., 2006). 

Dendritic spines are highly enriched in AMPA (α-amino-3-hydroxy-5-

methyl-4-isoxazole propionic acid)-type glutamate receptors (AMPARs), which 

are the main transducer for excitatory input in the mammalian central nervous 

system. These receptors are composed of heteromeric glutamate receptor 

subunits (i.e. GluR2/GluR1 or GluR2/GluR3 subunits), and the functional 

properties of the channel depend upon this subunit composition (Derkach et al., 

2007). Another type of ionotropic receptor, N-methyl-D-aspartate receptor 

(NMDAR), also functions at glutamatergic synapses (Figure 1.4B). NMDARs are 

ligand-gated, requiring co-activation by glutamate and glycine, and also voltage-

gated. This dual-sensing function of NMDARs and subsequent calcium influx is 

utilized in synaptic plasticity (see below) (Yashiro and Philpot, 2008). 

 The postsynaptic density protein PSD-95 interacts with glutamate 

receptors at the postsynaptic membrane (Rutter and Stephenson, 2000; 

Chetkovich et al., 2002). PSD-95 contains a PDZ domain and is a member of the 

membrane-associated guanylate kinase (MAGUK) family of postsynaptic 

signaling proteins (Xu, 2011). While overexpression of PSD-95 promotes 
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NMDAR clustering, it is not clear that PSD-95 is necessary to recruit glutamate 

receptors to the synapse, as time-lapse imaging reveals that receptors appear at 

postsynaptic densities prior to the arrival of PSD-95. Nevertheless, PSD-95 still 

appears to be a central organizer of the postsynaptic domain with many 

interacting proteins (Han and Kim, 2008). In C. elegans, the apparent PSD-95 

homologue DLG-1 is required for epithelial junction formation, but it is not 

necessary for postsynaptic assembly (Firestein and Rongo, 2001). Instead, 

glutamate receptor localization appears to be driven by a different PDZ-domain 

containing protein, LIN-10/Mint, and a type II calcium/calmodulin-dependent 

protein kinase (CaMKII), UNC-43 (Rongo and Kaplan, 1999; Stricker and 

Huganir, 2003).  

 Whereas glutamate mediates excitatory synapses in the mammalian 

central nervous system, GABA and glycine are the predominant inhibitory 

neurotransmitters. Initiation and maintenance of postsynaptic clustering of GABA 

A-type and glycine receptors is driven by multiple proteins including a tubulin-

associated protein, Gephyrin, a ubiquitin-like protein GABARAP, a dystrophin-

glycoprotein complex, and other associated proteins involved in scaffolding and 

trafficking (Bruneau et al., 2009). In C. elegans, GABA inhibitory signaling has 

been extensively studied at NMJs in the ventral cord motor circuit. The ionotropic 

GABA receptor expressed in muscle is encoded by the unc-49 locus. Alternative 

splice forms of UNC-49 yield UNC-49A, B, and C; however, UNC-49A is barely 

detectable and UNC-49B and C apparently form the GABA-gated chloride 

channel. The pharmacological properties of the UNC-49B-C heteromeric 
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receptors are similar to the vertebrate GABA-A receptor (Schuske et al., 2004). 

UNC-49 clusters in postsynaptic NMJs are directed by GABAergic innervation 

from motor neurons; in cases where presynaptic domains are misplaced by axon 

guidance defects or removal of SV trafficking machinery, UNC-49 clusters 

adjacent to misplaced presynaptic domains, indicating that the presynaptic 

domain is sufficient to drive clustering. Interestingly, UNC-49 clustering does not 

require GABA but does depend on SV function. The molecular identity of the 

presynaptically-derived UNC-49 clustering signal is currently unknown (Gally and 

Bessereau, 2003). 

 In the mammalian peripheral nervous system, the cholinergic NMJ has 

been well studied to identify factors that cluster acetylcholine receptors (AChR). 

The heparin sulfate proteoglycan Agrin functions as a key organizing signal. 

Agrin is secreted by motor neurons to promote neurotransmitter receptor 

clustering via activation of muscle-specific kinase (MuSK) (Magill-Solc and 

McMahan, 1988; Glass et al., 1996). However, this induction of AChR clustering 

by Agrin does not appear to be conserved in C. elegans; instead, AChRs are 

clustered at NMJs in a different mechanism by a transmembrane protein with 

multiple CUB domains, LEV-10 (Gally et al., 2004; Hrus et al., 2007). The 

downstream effector for Agrin, Rapsyn, does appear to be conserved and 

functions in a similar way in both C. elegans and vertebrates. Rapsyn is a 

membrane-targeted protein that anchors AChRs to the underlying postsynaptic 

cytoskeleton via Dystrophin and Utrophin (Banks et al., 2003; Nam et al., 2009). 

In Drosophila, cholinergic Drosophila NMJs undergo remodeling during 
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metamorphosis, suggesting that addition or removal of AChRs at the membrane 

could take place in a synaptic remodeling program. However, outside of MuSK 

and PSD-95, no other key factors have been identified that function in AChR 

remodeling (Hesser et al., 2006; Bruneau and Akaaboune, 2010; Drever et al., 

2011). 

 

Disassembly of synapses in pruning 

 Synapse elimination is an important mechanism required for both 

maturation and remodeling of neuronal networks. In some cases, synaptic 

elimination is accompanied by axonal retraction, as in the maturation of the 

vertebrate NMJ (Luo and O'Leary, 2005; Shen and Scheiffele, 2010). In the 

newborn mouse, individual muscle fibers are innervated by axons from multiple 

motor neuron partners. Individual NMJs are eliminated in an activity-dependent 

competition during development until a single axon innervates each muscle fiber. 

High-resolution studies have demonstrated that active synapses “win” over 

inactive synapses; however, the molecular cues that govern the pruning 

mechanism are unknown (Sanes and Lichtman, 1999; Lichtman and Colman, 

2000). 

 Other instances of synaptic elimination coupled with retraction have been 

observed for neurons in both the hippocampus and visual cortex. In these cases, 

elimination is triggered by interaction of axon-guidance regulators PlexinA3 (in 

the neurons) and Semaphorin 3F (in the target). In PlexinA3-knockout mice, 

hippocampal synapses continue to mature at the transient target site, suggesting 
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that elimination of the synapse is the cue for retraction of the neurite. However, 

the downstream mediators of Semaphorin signaling, and how they contribute to 

synapse removal and axon retraction, are unknown (Yaron et al., 2005; Low et 

al., 2008; Shen and Scheiffele, 2010).  

 A different mechanism for synaptic pruning has been demonstrated in C. 

elegans (Miller, 2007). In the immature egg-laying circuit, HSN neurons form 

presynaptic specifications along vulval muscle. Normally, a subset of these 

synapses is removed at a later developmental stage. However, in either syg-1 or 

syg-2 mutant animals, these synapses persist into adulthood (Shen et al., 2004). 

SYG-1 and SYG-2 encode IgSF membrane proteins. SYG-2 is expressed in 

guidepost cells and interacts with SYG-1 in the neighboring HSN axon to position 

SYG-1 near the target egg-laying musculature. SYG-1 functions in this location to 

prevent degradation of a nascent presynaptic zone (Figure 1.5). The mechanism 

of this effect depends the local disruption of E3 ubiquitin ligase activity by SYG-1. 

Nascent synapses at distal locations in the HSN axon, however, are not 

protected and are ultimately removed by proteolytic activity (Ding et al., 2007).  

 

Activity-dependent mechanisms at the synapse 

In addition to synapse removal and establishment of entirely new pre- and 

postsynaptic domains, existing domains can be modulated by increasing or 

decreasing synaptic strength in response to stimulation. In the two examples 

described below, postsynaptic domains are altered by changing calcium influx, 

neurotransmitter receptor enrichment, and cytoskeletal specializations. Here, I 
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Figure 1.5. Localized ubiquitin-proteasome function eliminates immature synapses. The 
protein SYG-1, in HSN egg-laying neurons in C. elegans, is localized by SYG-2 in guidepost 
cells. SYG-1 blocks proteolysis of synaptic proteins at primary synapses by binding and 
inactivating SKR-1, but allows destruction of secondary synapses by the SKP-Cullin-F-box 
complex. E2, E2 ubiquitin conjugating enzyme; RBX, Ring finger protein. Originally published in 
Miller, 2007. 
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will focus on local changes at the synapse; in the following section (Part 3), I will 

describe how these synaptic alterations can interact with gene expression.

 cAMP-dependent short term plasticity in Aplysia 

Seminal work from Eric Kandel’s group in the sea slug Aplysia revealed 

that short-term synaptic changes depend on a cyclic AMP (cAMP) second-

messenger system to strengthen synapses and can occur in the absence of 

protein synthesis. These experiments showed that neural stimulation elevates 

cAMP at Aplysia synapses by activating adenylyl cyclase. In turn, the local 

increase in cAMP levels enhances synaptic activity (Brunelli et al., 1976). In this 

mechanism, cAMP activates cAMP-dependent protein kinase A (PKA) which 

downregulates K+ channel activity. The resultant decrease in K+ current 

enhances Ca2+ influx which increases neurotransmitter release (Klein and 

Kandel, 1978; Bacskai et al., 1993; Braha et al., 1993; Kandel, 2001). 

 AMPAR and spine plasticity induced by local calcium changes 

 The glutamate receptors on the dendritic spines of hippocampal neurons 

undergo activity-dependent remodeling. Because NMDA receptors are both 

ligand-gated as well as voltage-gated, they are considered “coincidence 

detectors” that are selectively activated with of frequent stimulation (Rutter and 

Stephenson, 2000; Yashiro and Philpot, 2008; Ho et al., 2011). The resultant 

Ca2+ influx initiates a signal transduction cascade involving protein kinase 

activation (including PKA and CaMKII) that promotes phosphorylation and 

trafficking of AMPA receptors. Net effects include either long-term potentiation 

(LTP), in which AMPAR concentration at the membrane increases, or long-term 
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depression (LTD), in which AMPARS are removed from the plasma membrane 

(Figure 1.4B) (Malenka and Bear, 2004; Jiang et al., 2006; Derkach et al., 2007; 

Shepherd and Huganir, 2007; Fu and Zuo, 2011). The induction of LTP in favor 

of LTD, or vice versa, appears to depend on the magnitude and frequency of the 

calcium ion influx; one large calcium increase stimulates LTP, whereas a 

prolonged rise of calcium over multiple stimulations results in LTD (Yang et al., 

1999; Newpher and Ehlers, 2008).  

The addition or removal of AMPA receptors from the dendritic membrane 

is correlated with increased or decreased F-actin within the spine, respectively 

(Okamoto et al., 2004). Even in stable spines, actin is rapidly turned over via 

cofilin (which promotes addition of new actin monomers via prevention of actin 

capping), indicating a homeostatic, dynamic actin cytoskeleton within spines 

(Morgan et al., 1993; Star et al., 2002). Thus, the actin cytoskeleton is readily 

remodeled in response to changes in synaptic strength by the action of Rho-

family GTPases. The effectors of these GTPases are actin-binding proteins that 

can promote actin filament extension and larger spines (downstream of Rho) or 

actin destabilization and smaller spines (downstream of Rac). GTPases can also 

stimulate PIP2 signaling, which promotes actin polymerization (Calabrese et al., 

2006). Note here the recapitulation of the earlier theme of cytoskeletal 

rearrangements via GTPases and PI3K signaling; these mechanisms underlie 

both the establishment of neuronal domains as well as later remodeling events. 
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Part 3: Regulation of gene expression to remodel synapses 

The examples of synaptic remodeling described above are regulated by 

temporal changes in neural activity. Synaptic plasticity can also occur by the 

activation of transcription factors that regulate expression of proteins that 

promote plasticity. The production of new proteins in developmental synaptic 

remodeling programs typically results in long-term changes to synaptic 

patterning.  Synaptic activity can also stimulate transcription factor activity, and 

this activity-dependent transcription can function in concert with developmentally-

programmed plasticity (Kania et al., 2000; Polleux et al., 2007; Barbosa et al., 

2008; Lai et al., 2008; Boulanger et al., 2010; de la Torre-Ubieta and Bonni, 

2011). Below, I will present examples of well-characterized transcriptional 

pathways that regulate synaptic remodeling. 

 

Activity-dependent gene expression in Aplysia 

 Long-term memory depends on the upregulation of protein synthesis by 

synaptic activity. As summarized in the previous section, a local rise in cAMP 

levels at synapses enhances synaptic activity in the short term by promoting 

neurotransmitter release. However, cAMP also functions in long term plasticity 

(termed long-term facilitation, LTF) by regulating gene expression. Persistent 

activation of PKA by cAMP recruits mitogen-activated protein kinase (MAPK) to 

the synapse. Both PKA and MAPK then translocate to the nucleus, where they 

activate transcription of a specific suite of genes. These co-regulated genes are 

activated by the cAMP response element protein CREB-1 through a CREB 
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binding enhancer site. These “immediate response” genes then trigger a 

transcriptional cascade that activates additional downstream genes to strengthen 

synaptic connections (Kaang et al., 1993; Martin et al., 1997; Bartsch et al., 

1998). Net effects include increased size and number of active zones as well as 

enhancement of the synaptic vesicle pool (Bailey and Kandel, 2008).  

Intriguingly, this mechanism can also strengthen a specific synapse by 

selective transport of mRNA to the target synapse for local protein synthesis. 

This process offers a solution to the long-standing conundrum of how a global 

increase in transcription can strengthen a single synapse (Steward, 1997; 

Kandel, 2001). Another key to understanding local synapse strengthening is the 

evidence that persistent PKA activation results in the transcription of a 

deubiquitinating (DUB) enzyme that can recycle ubiquitin and promote 

degradation of existing synaptic proteins (Hegde et al., 1997; Bingol and Sheng, 

2011). Given the role of spatially-localized E3-ligase function via SYG-1/SYG-2 

interactions in C. elegans (Figure 1.5), the transcriptional activation of this DUB 

in Aplysia suggests another connection between transcriptional and spatial 

mechanisms of plasticity.  

 

Regulation of excitatory synapse plasticity by calcium-dependent 

transcription 

 The influx of calcium in dendritic spines, as described earlier, is capable of 

altering synaptic efficacy, but it can also induce changes in gene transcription. 

Interestingly, differential gene expression can be induced based on the way 
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calcium enters the cell. For instance, transcription of brain-derived neurotrophic 

factor (BDNF) is greatly increased when intracellular calcium rises via VGCCs 

(voltage gated calcium channels), but less so when calcium enters via NMDA 

receptors, despite the fact that both channels cause comparable calcium spikes 

(Bading et al., 1993; Greer and Greenberg, 2008). Although this mechanism is 

not understood, it is possible that the method of calcium entry results in different 

spatial pools of calcium and activation of different effectors such as 

calcium/calmodulin-dependent protein kinases (i.e. CaMKII CaMKI, CaMKIV), 

MAP kinases, and the phosphatase calcineurin (Figure 1.6) (Ginty, 1997; Greer 

and Greenberg, 2008). 

 CREB functions as of one the major calcium-activated transcription factors 

in vertebrate neurons. CREB activation induces expression of bdnf (brain-derived 

neurotrophic factor), c-fos, and other genes that induce plasticity (Ho et al., 

2011). Activation of CREB generally occurs via phosphorylation by 

calcium/calmodulin-dependent protein kinases and results in an increase in 

synapse number (Figure 1.6A). In contrast, another important transcriptional 

regulator of plasticity, MEF2 (myocyte enhancer factor 2), is activated by 

calcineurin-dependent dephosphorylation and reduces excitatory synapse 

number (Figure 1.6B) (Flavell et al., 2006). This MEF2-dependent effect is 

mediated by downstream genes, including a synaptic RasGAP (synGAP) and 

activity-regulated cytoskeletal-associated protein (arc) (Flavell et al., 2006; 

Flavell et al., 2008). synGAP and Arc both negatively regulate synapse 

development by inhibiting Ras, which in turn results in internalization of  
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Figure 1.6. Components of activity-dependent gene expression pathways. Influx of calcium 
via glutamate receptors (NMDAR) and VGCCs (Cav1.2 shown in figure) cause activation of 
transcriptional pathways based on different calcium signaling effectors. (A) MAP kinase signaling 
(RAF, MEK, ERK in figure) cause activation of CREB and transcription of bdnf. (B) MEF2 
activation by calcineurin causes transcription of synGAP and arc. (C) Npas4 transcription is 
activated by calcium influx, though the effector is not clear. Npas4 then activates the transcription 
of bdnf and other LTP effectors. Adapted from Greer and Greenberg, 2008. 
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glutamate receptors (Vazquez et al., 2004; Shepherd and Bear, 2011). Additional 

candidate MEF2 targets have been revealed by mRNA profiling studies, in which 

MEF2 was mis-expressed (gain-of-function or knockdown) to identify transcripts 

with altered expression. This study revealed over one hundred genes with 

potential roles in synaptic maturation and destabilization (including arc). The 

roles of individual genes from this list remain to be validated (Flavell et al., 2008). 

Together, the CREB and MEF2 activity-dependent transcriptional pathways 

demonstrate that changes in gene expression can promote or inhibit 

synaptogenesis.  

 

Activity-dependent transcription mediates GABAergic synapse 

development 

 Although the regulation of excitatory synapse number and function by 

calcium-dependent transcription has been well-characterized, less is known 

about the activity-dependent regulation of inhibitory GABAergic synapses. The 

recent discovery that the bHLH-PAS family transcription factor controls 

GABAergic synaptic assembly in the mouse brain offers a useful opportunity to 

define a transcriptional mechanism for activity-dependent regulation of inhibitory 

synaptic assembly. Npas4 was identified in a microarray screen for genes that 

are transcribed in mouse cortical neurons in response to excitatory stimulation 

(Figure 1.6C) (Shamloo et al., 2006; Lin et al., 2008). When Npas4 activity is 

knocked down, GABAergic synapse number is reduced but excitatory synapses 

are not affected. Among the activity-dependent transcription factors, Npas4 
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seems to be unique in that it is activated by VGCC, NMDA and AMPA calcium 

transients, but not forskolin (which activates PKA) or growth factors that drive 

expression of other activity-dependent transcription factors. A microarray profiling 

experiment to identify Npas4 target genes uncovered the neurotrophin bdnf, a 

known regulator of synaptic plasticity. RNAi knockdown of BDNF confirmed its 

role in Npas4-dependent regulation of inhibitory synaptic assembly. This 

experiment also suggested that additional Npas4-regulated transcripts identified 

in the microarray experiment are also likely to contribute to this Npas4 function. 

These genes include additional transcription factors, ion channels, G-protein 

signaling components, and trafficking and endocytosis factors. The validation of 

these genes, as well as further investigation into the mechanism of Npas4 

activation, will help guide our understanding of how inhibitory synapses are 

modified by activity-dependent transcription (Lin et al., 2008). 

 

Opposing nuclear hormone receptors regulate Drosophila mushroom body 

remodeling during development 

 As described above, synaptic remodeling can be executed by 

transcriptional programs that depend on temporal changes in neuronal activity. 

Below I describe two examples of plasticity that depend on transcriptional 

pathways regulated by developmental cues. 

The mushroom bodies in Drosophila, which function in olfactory learning 

and memory, are comprised of two vertical (α and α’) and three medial (β, β’, and 

γ) lobes. Initially, the larval-born γ neurons extend processes into both dorsal and 
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medial lobes. As the fly undergoes later metamorphic stages, the larval-specific 

dorsal neurites are selectively pruned such that in the adult stage, γ neurons only 

have processes in the medial lobe. The γ neuron remodeling program is 

coordinated with other developmental events by ecdysone, a steroid hormone 

that cues molting. In mushroom bodies, a heterodimeric nuclear receptor formed 

by the interaction of the ecdysone receptor (ECR) and a protein encoded by 

ultraspiracle (USP) regulates transcription in response to ecdysone to promote γ 

neuron pruning (Technau and Heisenberg, 1982; Lee et al., 2000; Williams and 

Truman, 2005).  

 A recent study has identified two additional nuclear hormone receptors 

that regulate ECR activity. In loss-of-function mutants for the transcription factor 

ftz-f1, γ neurons retain their larval branching patterns into the adult stage; 

overexpression of a similar nuclear hormone receptor, Hr39, results in a similar 

phenotype. Epistasis experiments revealed that both ftz-f1 and Hr39 regulate 

ECR-B1 in an antagonistic fashion. Whereas Hr39 normally prevents pruning, ftz-

f1 promotes pruning in two ways: first, by transcriptionally preventing Hr39 

expression, and second, by promoting expressing of ECR-B1. The impact of this 

pruning event on learning and memory has not yet been studied; however, Hr39-

overexpressing animals are viable and present an opportunity to uncover the 

behavioral consequence of mushroom body overgrowth as well as the 

downstream effectors of this transcriptional network (Boulanger et al., 2010). 
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A transcriptional program regulates remodeling in C. elegans 

 The C. elegans motor circuit undergoes a major expansion at the end of 

the first larval stage (the L1-L2 transition) to yield nineteen GABAergic motor 

neurons. As in other metamorphic animals, this expansion requires significant 

remodeling of the existing embryonic circuit to accommodate the additional 

neurons (White et al., 1976; Von Stetina et al., 2005). A mutation that disables 

the activity of a nuclear hormone receptor, unc-55, dysregulates remodeling in 

the GABAergic motor circuit and suggests that this key event is regulated by a 

transcriptional mechanism. Here, I introduce the C. elegans motor circuit, the 

larval reorganization of the GABAergic motor circuit during synaptic remodeling, 

and the transcriptional program that we have exploited to identify key 

components of this pathway. 

Structure and function of the GABAergic motor circuit in C. elegans 

 Six GABAergic ventral nerve cord motor neurons are generated in the C. 

elegans embryo. Thirteen additional GABAergic motor neurons are added to the 

circuit during early larval development (Figure 1.7A). The cell soma for each of 

these “D-class” GABAergic motor neurons extends an anteriorly-directed ventral 

process with a circumferential commissure that projects a posteriorly-directed 

process in the dorsal nerve cord. D-class neurons form inhibitory synapses with 

dorsal and ventral body wall muscle cells (Schuske et al., 2004). Like mammalian 

GABAergic interneurons, D-class motor neurons are specified by the 

homeodomain-containing transcription factor unc-30/Pitx2, which drives 

expression of glutamic acid decarboxylase (unc-25/GAD) to synthesize GABA  



45 

 
 
 
 
 
 
 
 
 

 
Figure 1.7. The adult GABAergic motor circuit. In both panels, anterior is to the right and 
dorsal is up. (A) anti-GABA immunostaining of an adult wild-type C. elegans hermaphrodite. 
There are 26 neurons that stain for GABA; nineteen of these are located in the ventral nerve cord 
and comprise the GABAergic motor circuit. Scale bar, 100 um. (B) Cross-inhibition in the motor 
circuit promotes coordinated locomotion. DD and VD GABAergic motor neurons (blue) synapse to 
the dorsal and ventral body muscles, respectively. Cholinergic motor neurons (red) send inputs to 
the ventral and dorsal body muscles, as well as to the GABA motor neurons. Release of 
acetylcholine leads to contraction of the body wall muscle on one side and stimulates GABA 
release onto muscles on the opposite side. This stimulation and contralateral inhibition causes 
the body to bend and leads to coordinated locomotion. Adapted from Schuske et. al. 2004 
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and the GABA synaptic vesicle transporter (unc-47/VGAT) which loads GABA 

into synaptic vesicles (Eastman et al., 1999; Westmoreland et al., 2001; Martin et 

al., 2002). Loss of unc-30 abrogates anti-GABA staining and causes a movement  

phenotype consistent with the loss of functional GABAergic inhibitory NMJs 

(McIntire et al., 1993). 

The characteristic architecture of the GABAergic motor circuit has 

suggested a model to explain the role of GABAergic signaling in locomotion. 

Dorsal D (DD) motor neurons provide output to dorsal muscle, whereas Ventral D 

(VD) motor neurons exhibit only ventral NMJs. Thus, DD and VD motor neurons 

establish separate inhibitory synapses on opposing muscle groups. When a 

cholinergic motor neuron stimulates muscle contraction and a resultant body-

bend on one side of the animal, muscles on the opposite side are inhibited by 

GABA signaling (Schuske et al., 2004). This “cross-inhibition” model of C. 

elegans movement presumes dyadic cholinergic synapses on both muscle and 

D-class processes (Figure 1.7B). In this configuration, GABA motor neurons are 

activated on one side adjacent to the contracting muscle to then release an 

inhibitory signal that relaxes muscle on the opposite side. This model is 

consistent with the “shrinker” phenotype of GABA-deficient animals in which both 

dorsal and ventral muscles contract simultaneously with cholinergic stimulation 

(White et al., 1976; Schuske et al., 2004; Von Stetina et al., 2005). It is not clear, 

however, how GABAergic motor neurons are stimulated by cholinergic signals 

because the postsynaptic components that would mediate this response in 

GABAergic motor neurons have never been identified or visualized in vivo. 



47 

Development and remodeling in the GABAergic motor circuit 

As noted above, GABAergic motor neuron differentiation occurs in two 

waves. First, six DD motor neurons are born in the embryo, and later, thirteen VD 

motor neurons are added during a postembryonic expansion of the motor circuit 

at the L1-L2 transition. In the embryo, DD motor neurons initially establish NMJs 

with ventral body wall muscle (Figure 1.8A). This synaptic arrangement can be 

observed by expression of fluorescently-tagged synaptobrevin (e.g. SNB-

1::GFP), which labels synaptic vesicles, in GABAergic motor neurons. The 

resultant bright GFP puncta, corresponding to clusters of synaptic vesicles, are 

observed exclusively on the ventral side of the newly hatched L1 larvae (Figure 

1.8B). SNB-1::GFP is also observed in cell bodies of DD motor neurons due to 

overexpression of the transgene.  

DD motor neurons undergo a stereotypical change in this synaptic pattern 

during the L1-L2 larval transition (Figure 1.8C-D, dorsal puncta). During this 

period, DD ventral NMJs are removed and then re-established on the dorsal side. 

This change in synaptic location is accomplished with no evident alteration in DD 

neurite morphology (White et al., 1978). As noted in an earlier section, a recent 

study demonstrated that the synaptic trafficking regulators CYY-1 and CDK-5 

function in this process; CYY-1 removes ventral presynaptic proteins, and CDK-5 

facilitates trafficking to nascent dorsal synapses (Park et al., 2011). Additionally, 

the timing of the remodeling event depends on the heterochronic gene, lin-14. 

LIN-14 protein is localized to the nucleus and functions in a variety of cell types 

to promote L1-stage-specific features; in the case of DD motor neurons, LIN-14  
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Figure 1.8. DD motor neurons undergo a stereotyped synaptic remodeling event during 
development. In all panels, anterior is to the right and dorsal is up.  (A) Embryonic DD motor 
neurons (blue) extend an anterior ventral process and commissure to the dorsal nerve cord. 
NMJs are established with ventral muscles and are maintained throughout most of the first larval 
stage (L1). (B) GABAergic NMJs can be labeled with SNB-1::GFP. In the L1 animal, NMJs are 
formed by DDs exclusively within the ventral neurite. (C) Toward the end of the L1 larval period, 
ventral DD motor neuron NMJs are removed and new NMJs are assembled in the dorsal DD 
process. Postembryonic VD motor neurons (red) are born during this stage and adopt ventral 
NMJs. (D) Synaptic arrangement of L2 GABAergic motor neurons marked with SNB-1::GFP. Note 
small puncta on both the dorsal and ventral sides of the animal (fluorescent granules in the 
middle of the animal represent gut autofluorescence, inset panels have been enhanced to show 
synapses).  
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maintains the DD L1 synaptic pattern until the L1-L2 transition. In lin-14 mutants, 

DDs remodel precociously. The mechanism by which LIN-14 prevents 

precocious remodeling is unknown (Hallam and Jin, 1998).  

One interesting facet of the DD remodeling program is the ability to correct 

polarity or synaptogenic defects in immature DD motor neurons. In syd-1 and 

sad-1 mutants, axonal SNB-1::GFP-labeled vesicles distribute evenly in dorsal 

and ventral DD neurites in the L1 stage instead of the exclusively ventral location 

of SVs in wild-type DD motor neurons. Interestingly, however, remodeled DD 

motor neurons do not show these defects in syd-1 or sad-1 mutants, but display 

synapses of normal morphology exclusively localized to the dorsal nerve cord 

(Hallam et al., 2002; Hung et al., 2007; Kim et al., 2010) These results indicate 

that SYD-1 and SAD-1 are dispensable for the establishment of correctly located 

synapses in mature DD motor neurons and therefore indicate that an alternative 

set of factors must govern the polarized placement of synapses during the 

remodeling event. 

As mentioned above, VD motor neurons are born at the end of the L1 

stage and normally do not remodel (Walthall and Plunkett, 1995; Zhou and 

Walthall, 1998; Shan et al., 2005). Ventral VD synapses are established during 

the L2 larval stage and persist in the adult in this location (Figure 1.8C-D). This 

exclusively ventral pattern of VD synapses is disrupted in syd-1 and sad-1 

mutants which show dorsal as well as ventral clusters of presynaptic markers 

(e.g. SNB-1::GFP) in the VD neurites (Hallam et al., 2002; Hung et al., 2007).  
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Figure 1.9 UNC-55 transcriptionally prevents synaptic remodeling of VD motor neurons. In 
all panels, anterior is to the right and dorsal is up. (A) Wild-type VD motor neurons form ventral 
NMJs (left) but VD motor neurons remodel ectopically in unc-55 mutants and adopt dorsal NMJs 
(right). (B) UNC-55 is selectively expressed in VD motor neurons to prevent ectopic synaptic 
remodeling. (C) flp-13 is repressed by UNC-55 in VD motor neurons. In wild-type (top), pflp-
13::GFP is expressed in DD motor neurons (white arrowheads), but GFP is de-repressed in VDs 
in unc-55 mutants (bottom panel, red arrowheads). 
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In unc-55/COUP-TF mutants, VD ventral synapses are removed and established 

instead in the dorsal nerve cord, similar to the synaptic pattern observed in DD 

motor neurons (Figure 1.9A). UNC-55 is selectively expressed in VD motor  

neurons in the ventral nerve cord and thus, UNC-55 is predicted to function cell-

autonomously to prevent synaptic remodeling (Figure 1.9B). 

The Walthall laboratory has identified one target of unc-55, the 

neuropeptide FLP-13. In wild-type animals, flp-13 expression (observed with pflp-

13::GFP) is restricted to DD motor neurons. In unc-55 mutants, pflp-13::GFP is 

expressed in both DD and VD motor neurons (Figure 1.9C), indicating de-

repression of the flp-13 promoter in the absence of UNC-55. Furthermore, 

removal of a canonical COUP-TF binding site in the transgenic flp-13 promoter 

resulted in GFP expression in wild-type VD motor neurons that contain functional 

UNC-55. These results predict that UNC-55 normally functions as a 

transcriptional repressor in VD motor neurons (Shan et al., 2005). However, FLP-

13 does not appear to be required for execution of the synaptic remodeling 

program observed in unc-55 mutant VD motor neurons (W. Walthall, personal 

communication). 

Because UNC-55 functions as a repressor in VD motor neurons, and loss 

of unc-55 results in VD remodeling, unc-55 is proposed to function as a 

developmental switch that prevents VD motor neurons from activating a 

remodeling program that is otherwise exclusively active in DD motor neurons 

(Figure 1.9B). This model is consistent with the finding that ectopic expression of 

UNC-55 in DD motor neurons blocks the relocation of DD synapses to the dorsal 
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nerve cord, similar to the synaptic pattern of wild-type VD motor neurons (Shan 

et al., 2005). Together, these results suggest that unc-55 targets function in a 

transcriptional program that remodels GABAergic motor neurons. Thus, we 

chose to identify these target genes that are de-repressed in unc-55 VD motor 

neurons and examine these candidate genes for roles in synaptic remodeling. 

In the following chapters, I describe our characterization of the role of unc-

55 in synaptic remodeling and the strategy that we used to identify its 

downstream targets. Based on the high conservation between C. elegans and 

mammals in factors required for neuronal polarity, synaptogenesis, and 

remodeling, we expect that the suite of downstream genes that we have 

uncovered should provide a rich resource for future studies of the mechanism of 

synaptic plasticity. 
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CHAPTER II 

 

THE UNC-55/COUP-TF TRANSCRIPTION FACTOR BLOCKS A  

SYNAPTIC REMODELING PROGRAM IN GABAERGIC MOTOR NEURONS  

 

Introduction 

The importance of transcription factors in synaptic remodeling is well-

established, but the downstream targets that carry out the remodeling program 

are less understood (Barbosa et al., 2008; Flavell and Greenberg, 2008; Tian et 

al., 2010). In C. elegans, the single COUP-TF orphan nuclear receptor has been 

shown to control synaptic remodeling in the GABAergic motor neuron circuit 

(Zhou and Walthall, 1998). During normal development, embryonically-born 

Dorsal D (DD) motor neurons initially establish synaptic output to ventral 

muscles. After hatching in the L1 larval stage, ventral DD synapses are re-

localized to the dorsal nerve cord. This rearrangement occurs within the intact 

neuron and without any gross changes in neurite morphology. VD motor 

neurons, which arise at the end of the L1 larval stage, innervate ventral muscles 

(White et al., 1978). The isolation of a mutant in the unc-55 locus revealed that 

the COUP-TF transcription factor is expressed in VD motor neurons to prevent 

the adoption of dorsal synaptic outputs (Zhou and Walthall, 1998). 

Members of the COUP-TF family comprise one of the largest orphan 

nuclear hormone receptor subgroups. Although some evidence indicates that 

retinoic acid interacts with the ligand-binding domain of COUP-TF proteins, the 
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ligands that regulate this family in vivo are unclear (Pereira et al., 2000; Kruse et 

al., 2008). In addition to determining a variety of tissue types during development 

of other model systems (i.e. adipocytes, kidney), COUP-TF is an important 

regulator of neurodifferentiation and migration (Pereira et al., 2000; Park et al., 

2003). In the mammalian forebrain, COUP-TF is expressed in GABAergic 

interneurons, where it induces early-born cell division and directed cell migration 

from the telencephalon to the cortex during embryogenesis (Tripodi et al., 2004; 

Naka et al., 2008). Thalamocortical projections from serotonergic sensory areas 

in the cortex rely upon COUP-TF expression for proper neuron differentiation and 

targeting (Zhou et al., 1999; Armentano et al., 2007). Cerebellar neuron 

expansion and patterning also depends upon COUP-TF (Kim et al., 2009). 

Although some COUP-TF targets have been identified, the specific targets that 

execute cell division, differentiation, migration, and axonal targeting functions in 

the above cases are unknown (Pereira et al., 2000; Montemayor et al., 2010).  

The COUP-TF homologue in Drosophila, seven-up (svp), specifies 

photoreceptor subtype by regulating a transcriptional cascade within the 

developing eye. The neuroblasts that ultimately comprise the compound eye are 

temporally defined by early-born cells that express the transcription factors 

hunchback and Kruppel, and later-born cells that express only Kruppel or neither 

of these transcription factors. seven-up functions to repress hunchback 

expression to prevent an expansion of early-born neuroblasts at the expense of 

late-born neuroblasts (Mlodzik et al., 1990; Hiromi et al., 1993; Kruse et al., 

2008). Unpublished results suggest that hbl-1/hunchback in C. elegans is also 
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regulated by unc-55/COUP-TF (K. Thompson-Peer and J. Kaplan, personal 

communication). 

Because of the conserved role of COUP-TF in neurodevelopment in other 

organisms, we hypothesized that we could use the ectopic remodeling phenotype 

in unc-55 mutants to identify conserved synaptic remodeling genes (as detailed 

in subsequent chapters). However, we first required a set of molecular tools that 

could be used to monitor the synaptic remodeling program that is regulated by 

unc-55. 

 

Author Contributions 

 Identification of the lesions in the unc-55 locus was undertaken by the 

Walthall laboratory at Georgia State University. Kathie Watkins in the Miller 

laboratory assisted in construction of the unc-55(gf) strain by microinjecting the 

pSA6 plasmid into dpy-20 mutants. All other experiments in this chapter were 

performed by Sarah Petersen. 

 

Methods 

Strains and genetics: Nematode strains were maintained at 20-25°C with 

standard culture techniques (Brenner, 1974). All animals used in this study were 

hermaphrodites. Animals were genotyped for the presence of the e1170 lesion 

with primers e1170_for (5’ CCC AAG AAG AAA AGA GAG GT 3’) and e1170_rev 

(5’ TAA GGA CTA CAC GGA TCC TG 3’). These primers yield an 854-bp 

product that may be sequenced via Sanger sequencing to identify e1170. 
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Strain list:  

note: unc-119(+) refers to unc-119-rescuing minigene from MM051 (Maduro and 

Pilgrim, 1995) (see details of strain construction) 

CZ333 juIs1[punc-25::SNB-1::GFP; lin-15+] 

CB402 unc-55(e402) >10x outcrossed 

CB1170 unc-55(e1170) >10x outcrossed 

VC1736 unc-55;F55D12.6(gk818) 

NC1851 unc-55(e1170); juIs1[punc-25::SNB-1::GFP; lin-15+] 

EG1653 oxIs22 [punc-49::UNC-49::GFP; lin-15(+)] 

NC2122 unc-55; oxIs22 [punc-49::UNC-49::GFP; lin-15(+)] 

ZM54 hpIs3[punc-25::SYD-2::GFP; lin-15(+)]   

NC1849  unc-55(e1170); hpIs3[punc-25::SYD-2::GFP; lin-15(+)]   

NC1551 dpy-20; wdEx603(pC04G2.1::unc-55a::gfp; dpy-20+) 

NC1639 wdIs49(pttr-39::unc-55a::gfp; dpy-20+) III 

NC2078 unc-119; wdIs75[pttr-39::unc-38::GFP; unc-119+] 

NC2167 unc-38; unc-119; wdIs75[pttr-39::unc-38::GFP; unc-119+] 

NC2191 unc-38 unc-55; unc-119; wdIs75[pttr-39::unc-38::GFP; unc-119+] 

NC2231 unc-119; wdEx703[punc-25::DYS-1::YFP; unc-119+] 

NC2267 unc-119; wdEx729[punc-25::F35D2.3::YFP; unc-119+] 

 

Microscopy and synapse scoring: SNB-1::GFP assays were performed with 

the transgene juIs1[punc-25::SNB-1::GFP; lin-15+] (Hallam and Jin, 1998), SYD-

2::GFP assays used hpIs3[punc-25::SYD-2::GFP; lin-15+]  (Yeh et al., 2005), 
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and UNC-49::GFP assays used oxIs22 [punc-49::UNC-49::GFP; lin-15+] 

(Bamber et al., 1999). Animals were anesthetized with 0.1% tricaine/tetramisole, 

mounted on a 2% agarose pad, and imaged with a Zeiss Axiovert microscope 

using Metamorph software or a Leica TCS-SP5 confocal using LAS-AF software. 

 

Movement assays: Animals were first tapped on the tail to ensure that they 

were capable of forward locomotion, then tapped on the head to assess ability to 

execute backward locomotion. Animals were binned into the following categories: 

“severe Unc” (coil ventrally immediately upon tapping), “moderate Unc” (coil 

ventrally while attempting backward locomotion), and “wild-type” (sustain 

backward locomotion with at least two body bends). To present the data in 

Figure 2.3, all “severe” and “moderate” Unc worms were grouped into a single 

“uncoordinated” category.  

 

Construction of unc-55(gf) strain 

The 891-bp ttr39 promoter was cloned into a pGEM vector containing unc-55a 

cDNA (kindly provided by Bill Walthall) to create pSA3. The pttr-39::unc-55a 

cassette was then cloned into pPD117.01 in-frame with GFP to create pSA6. 

This construct (25 ng) was co‐injected with dpy-20 rescuing plasmid (25 ng) into 

dpy‐20(e1282) animals to yield NC1551. Gamma irradiation of the transgenic line 

and outcrossing dpy-20 yielded NC1639 containing wdIs49[pttr-39::unc-55a::gfp; 

dpy-20+] III. 
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Construction of unc-38::GFP strain 

The pJL29 plasmid with genomic unc-38 containing GFP inserted between the 

M3 and M4 transmembrane domains was kindly provided by Jean-Louis 

Bessareau (Rowland et al., 2006). The UNC-38::GFP construct was PCR-

amplified and cloned into pCR2.1 to yield pSA27, then cloned into a derivative of 

pitr-1::DYS-1::YFP (kindly provided by Kang Shen) (Poon et al., 2008) with the 

pitr-1 promoter replaced with the pttr-39 promoter (Earls et al., 2010) to yield 

pSA30. The unc-119 minigene [originally from MM051 (Maduro and Pilgrim, 

1995)] was then cloned into the backbone to yield pSA33. This construct was 

linearized and transformed into unc-119 worms via microparticle bombardment 

(Praitis et al., 2001) to yield a spontaneous integrated transgene, wdIs75. 

However, GFP is not visible via light microscopy with this transgene in either 

wild-type or unc-38 mutant backgrounds. Consequently, we immunostained with 

mouse anti-XFP antibodies (Roche) and goat anti-mouse IgG Cy3 (each 1:1000 

dilution) to detect expression of UNC-38::GFP (Finney and Ruvkun, 1990). 

Animals were co-stained with DAPI, mounted on a 2% agarose pad, and imaged 

on a Zeiss Axioplan compound microscope. 

 

Construction of DYS-1::YFP and F35D2.3::YFP strains 

The pitr-1::DYS-1::YFP and pitr-1::F35D2.3::YFP plasmids were kindly provided 

by Kang Shen (Poon et al., 2008). The pitr-1 promoter was replaced with punc-

25 (Earls et al., 2010) to yield pSA57 (DYS-1) and pSA58 (F35D2.1). The unc-

119 minigene [originally from MM051 (Maduro and Pilgrim, 1995)] was then 
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cloned into the backbone to yield pSA59 (DYS-1) and pSA60 (F35D2.1). Both 

constructs were linearized and transformed into unc-119 worms via microparticle 

bombardment (Praitis et al., 2001) to yield wdEx703[punc-25::DYS-1::YFP; unc-

119+] and wdEx729[punc-25::F35D2.3::YFP; unc-119+] in NC2231 and NC2267, 

respectively. 

 

Results 

The e1170 allele is a genetic null allele of unc-55 

The unc-55 locus encodes a nuclear hormone receptor family member 

with a DNA binding domain (DBD) and a downstream ligand binding domain 

(LBD) with a canonical ligand binding signature (Figure 2.1). The DBD contains 

two zinc fingers, termed P-box (proximal) and D-box (distal), for binding the 

canonical TGACCT half-site recognition sequence within the promoter of target 

genes, typically called the hormone response element. The LBD of unc-55 

contains a signature motif typically used for dimerization and binding of the ligand 

to activate the transcriptional response function of nuclear hormone receptors 

(Renaud and Moras, 2000). However, unc-55 and the COUP-TF family of 

transcription factors are classified as orphan nuclear hormone receptors, with no 

confirmed ligand for the ligand-binding domain (Pereira et al., 2000), although 

retinoic acid is a candidate (Kruse et al., 2008) 

Two unc-55 point-mutation alleles, e402 and e1170, were isolated in a 

screen by Sydney Brenner (Brenner, 1974) (Figure 2.1). For our studies, we 

have primarily used the e1170 allele. The e1170 allele contains an insertion  
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Figure 2.1. Genetic features and mutations in UNC-55. The unc-55 locus encodes a nuclear 
hormone receptor with a DNA-binding domain, containing two zinc fingers termed P-box and D-
box, and a ligand-binding domain. Point mutations in the unc-55 locus, their location, and the 
nucleotide change are denoted with dotted arrows. The e1170 frameshift mutation is marked in 
red. Dotted lines for gk818 and tm3355 denote deleted regions. 
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(CCCC  CCCCC) in the DNA binding domain which results in premature 

termination of the protein at amino acid 26 due to a nonsense codon. Therefore, 

the e1170 allele is presumed to be a genetic null. Much of the literature to date 

uses unc-55(e402), which was later shown by the Walthall lab to correspond to a 

Q>Y mutation in the ligand-binding domain of unc-55. Interestingly, the 

phenotypes for e402 and e1170 appear indistinguishable, suggesting that e402 

point mutation is in fact a genetic null. However, it is unclear whether this 

phenotype is the result of inability of the UNC-55 protein to bind its ligand, or if 

the protein is otherwise inactive due to misfolding. 

 The unc-55(gk818) deletion allele (Figure 2.1) was isolated in the 

Vancouver Gene Knockout Lab, removes the N-terminal region of unc-55, as well 

as a predicted ORF, F55D12.6, which is entirely contained within the first intron 

of the unc-55 coding region and is predicted to encode a ribosomal protein. 

Phenotypically, the gk818 allele appears similar to the e1170 allele; however, 

because of the additional knockout of the F55D12.6 locus, we used the e1170 

allele for further analysis. Additional point mutants have been isolated by the 

Walthall lab (Figure 2.1) in an EMS mutagenesis screen: jd3 and jd4, which each 

result in the conversion of cysteine to tyrosine in the DNA binding domain. Three 

alleles, jd9, jd13, and u411, each contain the same insertion of the Tc1 

transposon in the DNA binding domain. In addition, another deletion allele, 

tm3355, was recently isolated by the National BioResource Project-Japan. We 

have not characterized these additional unc-55 alleles. 
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Presynaptic markers SNB-1::GFP and SYD-2::GFP are mislocalized in  

unc-55 VD motor neurons 

We confirmed the VD output defect in unc-55 mutants by visualizing 

GABAergic neuromuscular junctions (NMJs) with the GFP-tagged SNB-

1/synaptobrevin marker juIs1[punc-25::SNB-1::GFP], kindly provided by Mike 

Nonet (Figure 2.2A-B) (Hallam and Jin, 1998). As predicted from the model 

(Figure 1.9), dorsal SNB-1::GFP puncta are more abundant in the adult unc-55 

mutant than in wild-type. This phenotype arises from the progressive remodeling 

of VD motor neurons throughout larval development due to ectopic activation of 

the UNC-55-regulated remodeling program. In contrast to the brief remodeling 

period in DD motor neurons (Hallam and Jin, 1998), the number of dorsal 

GABAergic synapses from VD motor neurons increases from the L2 to the adult 

(Figure 2.2C).  Ventral GABAergic synapses are concurrently reduced during 

this period until the adult stage when few SNB-1::GFP puncta are observed in 

the ventral nerve cord of unc-55 animals (Figure 2.2D).  

To determine if other presynaptic components are similarly relocated, we 

used the GFP-tagged SYD-2/Liprin-α to mark the VD presynaptic membrane 

domain (Figure 2.2E). At the L2 stage, the number of SYD-2::GFP ventral 

puncta in unc-55 animals is comparable to wild-type but progressively decline 

during later larval stages in a pattern mimicking that of SNB-1::GFP (Figure 

2.2F). This result is indicative of the relocation of the entire presynaptic 

apparatus in unc-55 mutant VD motor neurons. The progressive appearance of a  
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Figure 2.2. Remodeling of presynaptic components SNB-1 and SYD-2 during development 
of unc-55 mutants. (A-D) The synaptic vesicle marker, SNB-1::GFP, marks GABAergic motor 
neuron NMJs. Scale bar, 20 µm, inset panels, 50 µm. (A) SNB-1::GFP puncta are visible in both 
dorsal (DD motor neurons) and ventral (VD motor neurons) adult nerve cords. (B) In unc-55 
mutants, ventral SNB-1::GFP puncta are depleted whereas the number of dorsal SNB-1::GFP 
puncta increases. (C-D) Quantification of SNB-1::GFP puncta in dorsal and ventral nerve cords 
throughout development. N > 10 for each genotype at each stage. Error bars indicate standard 
deviation. * p < 0.05, ** p < 0.01, *** p < 0.001 for wild-type vs. unc-55 in 2-way ANOVA with 
Bonferroni’s Multiple Comparison Test. (C) Dorsal SNB-1::GFP puncta are more numerous in 
unc-55 mutants than wild-type due to ectopic remodeling of VD motor neurons. (D) Ventral SNB-
1::GFP puncta are more numerous in wild-type than in unc-55 mutants. Ventral SNB-1::GFP 
puncta are significantly depleted during development in unc-55 mutants indicating that VD motor 
neurons initially establish ventral NMJs in the L2 and then remodel to favor dorsal outputs in the 
adult. † p < 0.05, ††† p < 0.001, L2 vs. L3, L4, or YA for  1-way ANOVA with Bonferroni’s Multiple 
Comparison Test. (E) The liprin alpha membrane protein, SYD-2::GFP, marks GABAergic motor 
neuron presynaptic specializations. Panels represent 50 µm length of dorsal (D) or ventral (V) 
nerve cords. (F) Quantification of SYD-2::GFP puncta in the ventral nerve cord throughout 
development. SYD-2::GFP localization in unc-55 is indistinguishable from wild-type at the L2 
stage, but ventral SYD-2::GFP puncta are depleted as VD motor neurons remodel during 
development. N > 10 for each genotype at each stage. Error bars indicate standard deviation. *** 
p < 0.001 for wild-type vs. unc-55 in 2-way ANOVA with Bonferroni’s Multiple Comparison Test, 
†† p < 0.01, ††† p < 0.001, L2 vs. L3, L4, or YA for  1-way ANOVA with Bonferroni’s Multiple 
Comparison Test. 
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movement defect during unc-55 larval development is also consistent with this 

model and is described in the following section. 

 

unc-55(e1170) mutants causes a progressive ventral coiling defect 

Cholinergic motor neurons form dyadic synapses to excite both muscle 

and GABAergic motor neurons (Von Stetina et al., 2005), while GABAergic motor 

neurons form inhibitory NMJs with dorsal and ventral muscle (Driscoll and 

Kaplan, 1997; Schuske et al., 2004; Von Stetina et al., 2005). This arrangement 

predicts a cross-inhibitory network (Figure 2.3A) in which cholinergic motor 

neuron stimulation and muscle contraction on one side of the body results in 

GABA-stimulated relaxation of muscle on the opposite side of the body. This 

pattern would result in sinusoidal body bends that cause coordinated forward and 

backward locomotion (Figure 2.3B).  

Mutations in the unc-55 locus were originally isolated due to a backward 

movement phenotype characterized by ventral coiling (Figure 2.3C). This loss of 

backing ability is due to ectopic remodeling of VD motor neurons, which causes a 

loss of inhibition on ventral muscle with a concurrent increase of inhibitory 

GABAergic synapses onto dorsal muscle. As observed in other mutants with 

genetically ablated GABAergic motor neuron function (i.e. unc-25, unc-47), unc-

55 mutants are able to execute forward locomotion. The “foraging” motor circuit 

in the head likely compensates for the absence of proper GABAergic innervation 

to body wall muscle during forward locomotion. Thus, the loss of ventral 

innervation in unc-55 mutants is more prominent during backward locomotion.  
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Figure 2.3. Progressive loss of ventral muscle inhibition in unc-55 mutants leads to ventral 
coiling. (A) Model of cross-inhibition with cholinergic (red) and GABAergic (blue) neurons to 
innervate body wall muscle (gray). Contralateral stimulation by cholinergic motor neurons and 
relaxation by GABAergic motor neurons results in coordinated locomotion. This output depends 
on the prevention of VD synaptic remodeling by UNC-55. Adapted from Schuske et. al., 2004. (B-
C) Backward locomotion following head tap at t=0 for wild-type (B) and unc-55(e1170) (C) adults. 
Time is indicated in seconds following head-tap, and panels are oriented with anterior to the left 
and ventral side down. Note sinusoidal backward locomotion in wild-type and ventral coiling in 
unc-55 adult. (D) VD motor neurons initially form ventral NMJs in unc-55 as indicated by 
movement similar to wild-type at younger stages. A progressive increase in uncoordinated 
movement as the animal ages is indicative of ongoing VD motor neurons remodeling. ** p < 0.01, 
*** p < 0.001 for wild-type vs. unc-55, Fisher’s Exact Test, n > 100 for each genotype at each 
stage. 
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The initial ventral enrichment and then subsequent elimination of SNB-

1::GFP and SYD-2::GFP in the unc-55 mutant suggests that VD motor neurons 

establish synapses in L2 larva, but that these ventral NMJs are gradually 

removed as development proceeds (e.g., 74+20 SNB-1::GFP puncta in unc-55 

L2 vs. 29+6 in unc-55 adult). Because ventral output from VD motor neurons is 

required for normal locomotion, this model predicts that coordinated movement 

should progressively decline as unc-55 mutants undergo larval development. To 

test this idea, we quantified the Unc-55 backward movement defect at different 

larval stages. Although this experiment showed that that a higher proportion of 

unc-55 L2 larvae display uncoordinated backward locomotion than wild-type 

(29% of unc-55 vs. 13% of wild-type) this disparity is enhanced during larval 

development until the adult stage when virtually all unc-55 mutant animals show 

uncoordinated backward movement vs. only 6% of wild type animals (Figure 

2.3D). This behavior parallels the progressive depletion of synaptic markers in 

the ventral nerve cord during unc-55 development (Figure 2.2D, F) and therefore 

is consistent with the proposal that VD synapses are initially functional but are 

then are removed as ectopic remodeling ensues. 

 

Ventral muscles retain UNC-49B/GABA-B receptor clusters in unc-55 

mutants 

As an additional test of the finding that VD motor neuron initially establish 

ventral synapses in unc-55 mutants, we examined the localization of the 

postsynaptic GABA receptor UNC-49B to ventral muscles, a result that depends 
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on a synaptic signal from GABAergic motor neurons (Gally and Bessereau, 

2003). UNC-49::GFP puncta are initially evident only on the ventral side in early 

L1 larvae at locations corresponding to DD presynaptic markers. At the L1-L2 

transition, UNC-49::GFP puncta in dorsal muscle appear, corresponding to the 

establishment of dorsal DD synapses. UNC-49 clusters in ventral muscle are 

apparently maintained by the establishment of nascent VD synapses; in a 

genetic mutant (lin-6) that blocks postembryonic cell divisions that give rise to VD 

motor neurons, these ventral UNC-49B clusters are removed after the L2 stage. 

This result indicates that VD input is required to sustain ventral UNC-49 clusters 

after DD motor neurons remodel (Gally and Bessereau, 2003).  

We found that ventral UNC-49::GFP puncta persist in unc-55 mutant 

adults (Figure 2.4A-B) (62+22 in wild-type vs. 66+23 in unc-55). This finding is 

consistent with the conclusion that VD motor neuron synapses are initially 

established in L2 larvae as suggested by the coincident ventral localization of 

SNB-1 and SYD-2 presynaptic markers at this stage (Figure 2.2D, F). Taken 

together with the behavioral assay (Figure 2.3D), our findings argue that the 

Unc-55 synaptic defect in VD motor neurons arises from ectopic activation of a 

remodeling program that effectively dismantles an initial set of signaling 

competent synapses to reconstitute them on the dorsal side. The establishment 

of ventral synapses prior to remodeling in unc-55 VD motor neurons mirrors the 

synaptic arrangement of DD motor neurons during development. It is likely, 

therefore, that the components required to remove immature ventral synapses in 

DD motor neurons are also activated in unc-55 VD motor neurons.  
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Figure 2.4. UNC-49B remains clustered in ventral muscle in unc-55 mutants. (A) GABA 
receptors (UNC-49B::GFP) cluster in both dorsal and ventral muscle in wild-type adults to receive 
input from GABAergic motor neurons. (B) GABA receptor localization in body wall muscle is 
unperturbed in unc-55 adults, suggesting that L2 unc-55 VDs initially form functional ventral 
synapses. Scale bar, 20 µm, inset panels, 50 µm. (C) Quantification of UNC-49B::GFP puncta in 
ventral muscle of wild-type and unc-55 adults. Receptor localization is unchanged in unc-55 
relative to wild-type, p > 0.1, Student’s t-test. 
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UNC-55 expression in DD motor neurons results in a dorsal coiling defect 

 Our model predicts that UNC-55 blocks the activation of a remodeling 

program in VD motor neurons that is normally executed in the DD motor neurons. 

The Walthall laboratory tested this model with a transgenic strain carrying UNC-

55 expressed in DD and VD motor neurons with the unc-30 promoter. They 

found that ectopic UNC-55 expression in DD motor neurons is sufficient to block 

remodeling (Shan et al., 2005). We repeated this experiment with the ttr-39 

promoter because of an incompletely penetrant lethal phenotype and other 

morphological defects observed in the punc-30::UNC-55 strain, a phenotype 

which is possibly due to expression from the unc-30 promoter in other neurons. 

The ttr-39 promoter is specific to DD and VD motor neurons, so we used this 

promoter to express the unc-55a cDNA isoform tagged with GFP. This unc-55 

gain-of-function [unc-55(gf)] mutant consistently shows bright UNC-55::GFP 

expression in GABAergic motor neurons. Sporadic expression is also observed 

in other unrelated cell types (Figure 2.5A).  

Importantly, we found that ectopic expression of UNC-55 in DD motor 

neurons induces a characteristic movement defect. When tapped on the head, 

wild-type worms execute typical sinusoidal backward locomotion. In contrast, 

unc-55(gf) mutant adults show a dorsal coiling phenotype (Figure 2.5B). This 

result is indicative of excess excitatory input to dorsal muscles, an outcome 

predicted to result from the retention of ventral DD GABAergic synapses in the 

adult. Thus, the phenotype is consistent with a model in which ectopic UNC-55 

expression blocks the DD remodeling program (Figure 2.5C). It follows that  
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Figure 2.5. Ectopic UNC-55 expression in DD motor neurons induces dorsal coiling. (A) L3-
stage larvae expressing pttr-39::UNC-55a::GFP [unc-55(gf)] with DIC (top) and GFP fluorescence 
(middle). Scale bar, 20 µm. Enlargement (bottom) shows expression in nuclei of GABAergic 
motor neurons in the ventral nerve cord. Scale bar, 5 µm. (B) Backward locomotion following 
head tap at t=0 for wild-type and unc-55(gf) adults. Time is indicated in seconds following head-
tap, and panels are oriented with anterior to the left and ventral side down. Note sinusoidal 
backward locomotion in wild-type and dorsal coiling in unc-55(gf) adult. (C) Model of synaptic 
arrangement in post-L2 wild-type and unc-55(gf) GABAergic motor neurons. Note DD motor 
neurons maintain ventral synapses (triangles) due to ectopic unc-55 expression. 
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these unc-55 targets are also likely to be ectopically expressed in unc-55 mutant 

VD motor neurons where they drive the relocation of synapses to the dorsal side. 

The GFP translational fusion to the UNC-55 protein in this strain makes it 

particularly useful for future studies in this project. For instance, targets of UNC-

55 may be identified via differential gene expression studies (see Chapter III) in 

wild-type and unc-55(gf) GABAergic motor neurons, and anti-GFP antibodies 

may be used for ChIP experiments to immunopreciptate UNC-55::GFP and its 

bound DNA sequence to identify target promoter sequences (Niu et al., 2011). 

The sensitivity of these assays could be enhanced by exploiting this strain to 

isolate UNC-55::GFP-labeled larval stage GABAergic motor neurons (Zhang et 

al., 2011) and nuclei (Okada et al., 2011) as starting material.  

 

Dendritic proteins are localized primarily in ventral processes in wild-type 

and unc-55 GABA motor neurons 

 The cross-inhibition model of the motor circuit (Figure 2.3A) predicts that 

DD and VD motor neurons are polarized with neurites reserved exclusively for 

axonal or dendritic components. In this model, DD motor neurons receive inputs 

from ventral cholinergic motor neurons, whereas VD motor neurons are 

innervated by cholinergic synapses on the dorsal side (Figure 2.6A). We wanted 

to test this model by observing the localization of dendritic components in 

GABAergic motor neurons and then determine if these domains are reorganized 

in unc-55. For this experiment, we expressed fluorescently-tagged proteins that 

were strong candidates for localization to the postsynaptic (dendritic)  
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Figure 2.6. UNC-38, DYS-1, and F35D2.3 are primarily localized to the ventral nerve cord of 
GABAergic motor neurons. (A) Model for the location of postsynaptic domains in GABAergic 
motor neurons throughout development. (B) Expression of UNC-38::GFP in an adult VD motor 
neuron is punctate and restricted to the ventral nerve cord (VNC). UNC-38::GFP was not 
detected in the dorsal nerve cord. Expression of DYS-1::YFP (C) and F35D2.3::YFP (D) in adults 
is punctate and mostly restricted to the ventral nerve cord (VNC). The dorsal nerve cord (DNC) 
has relatively few, dim, tiny puncta in the animals shown, which represent the highest level of 
DNC fluorescence observed among all animals assayed. Scale bars, 10 µm. 
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compartment. The nicotinic acetylcholine receptor (nAChR) subunit UNC-38, the 

dystrophin homologue DYS-1, and the fibrillin protein encoded by F35D2.3 were 

predicted to be localized in the ventral neurite of DD motor neurons and the 

dorsal neurite of VD motor neurons (Poon et al., 2008; Klassen et al., 2010). 

Therefore, we expected to see puncta representative of GABAergic dendritic 

domains in both the ventral and dorsal nerve cord. Surprisingly, we found that 

UNC-38::GFP puncta were localized exclusively in the ventral nerve cord. To 

account for the possibility that endogenous UNC-38 protein is competing with 

transgenic UNC-38::GFP for proper localization, we crossed the UNC-38::GFP 

transgene into the unc-38 mutant background. However, UNC-38::GFP 

localization in unc-38 mutants is the same as in wild-type, with strong UNC-

38::GFP puncta in the ventral nerve cord and none in the dorsal nerve cord 

(Figure 2.6B). We conclude that either UNC-38 does not mark dorsal VD 

postsynaptic domains, or that the location of VD motor neuron is not in dorsal 

neurites. Similarly, DYS-1::YFP (Figure 2.6C) and F35D2.3::YFP (Figure 2.6D) 

were predominantly expressed in the ventral nerve cord. Few small puncta were 

rarely observed in the dorsal nerve cord (1-2 animals out of >20 examined). 

Thus, DYS-1::YFP and F35D2.3::YFP do not reliably mark the proposed dorsal 

VD dendritic domain.  

The data from our panel of candidate postsynaptic markers do not 

conclusively address the location of dendritic domains of GABAergic motor 

neurons. The cross-inhibition model of GABAergic function in the motor circuit 

(Figure 2.3) predicts that these proteins would be localized in both the dorsal 
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and ventral nerve. We instead saw strong punctate localization of these markers 

in the ventral nerve cord with little to no expression in the dorsal cord. One 

explanation for this result is that these markers are not representative of the 

postsynaptic domain in GABAergic motor neurons. It is also possible, however, 

that the current cross-inhibition model (Figure 2.3A) is incorrect. Other 

acetylcholine receptor subunits (e.g., acr-9, acr-16) are expressed in GABAergic 

motor neurons, and examining the subcellular localization of these proteins in DD 

and VD motor neurons may help to resolve this question. 

 

Discussion 

The COUP-TF homologue unc-55 functions as a transcriptional switch to 

block a synaptic remodeling program  

unc-55 encodes the single COUP-TF nuclear hormone receptor in C. 

elegans (Zhou and Walthall, 1998). COUP-TF proteins function as transcription 

factors and adopt multiple roles in neural development including the widely 

observed function of preventing the adoption of alternative cell fates (Armentano 

et al., 2007; Tomassy et al., 2010). For example, in Drosophila, seven-up/COUP-

TF preserves the specification of photoreceptors R1, R3, R4, and R6 by blocking 

the R7 fate (Mlodzik et al., 1990), a role that resembles that of unc-55 which 

prevents VD motor neurons from expressing a specific DD motor neuron trait 

(Walthall and Plunkett, 1995). Similarly, COUP-TFI and COUP-TFII maintain the 

balance of GABAergic neuron types arising from different regions of the 

ganglionic eminence in the mammalian forebrain (Lodato et al., 2011). The 
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conservation from nematodes to mammals of analogous roles for COUP-TFs in 

establishing GABAergic neuron fates is intriguing and may reflect a primordial 

genetic program that operates in both contexts (Hammock et al., 2010).  

 The proposal that unc-55/COUP-TF regulates GABAergic neuron 

remodeling was originally based on the observation of a diagnostic movement 

defect and the relocation of synaptic varicosities in the unc-55 mutant animals 

(Walthall, 1990; Walthall and Plunkett, 1995). Here, this hypothesis is validated 

by our results demonstrating that both an “early” marker of the presynaptic 

apparatus, SYD-2, as well as a “late” arriving synaptic vesicle component, SNB-

1, are both relocated in VD motor neurons (Figure 2.2). Our work also 

established, for the first time, that VD motor neurons appear to form functional 

ventral synapses and the reconstitute them in the dorsal nerve cord in unc-55 

mutants (Figure 2.3). This temporal order of first ventral, then dorsal synaptic 

assembly mirrors the remodeling program that is normally executed in DD motor 

neurons. Moreover, the finding that ectopic expression of UNC-55 can block DD 

remodeling (Figure 2.5) (Shan et al., 2005) is also consistent with the idea that 

unc-55-regulated targets in VD motor neurons are likely to include genes that 

also drive remodeling in wild-type DD motor neurons.  

 

Open questions regarding postsynaptic domain specification and 

maintenance in the GABAergic motor circuit 

 Our results showed that the GABA receptor subunit, UNC-49B, remains 

clustered in postsynaptic ventral muscle following remodeling of unc-55 mutant 
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VD motor neurons (Figure 2.4). This finding is consistent with the idea that VD 

motor neurons initially establish functional ventral synapses. We note that in lin-6 

mutants in which the VDs are genetically ablated, UNC-49B clusters induced by 

immature DD motor neurons are subsequently removed from ventral muscle after 

DD remodeling is complete (Gally and Bessereau, 2003). Thus, we argue that 

the persistent appearance of UNC-49B ventral puncta in unc-55 mutants must be 

due to the establishment of VD ventral synapses in the L2 stage prior to 

remodeling. However, our results showing that the density of UNC-49B::GFP 

puncta along the length of the ventral nerve cord did not change throughout 

development (data not shown) must mean that the additional UNC-49B::GFP 

subunits are assembled on muscle as the animal lengthens. This result is 

surprising because, as noted above, early maintenance of UNC-49B::GFP 

clusters depends on a signal from VD motor neuron synapses which are actively 

removed during larval development in an unc-55 mutant. Thus, our data 

suggests that UNC-49B GABA receptor subunits may not require an exogenous 

cue to promote assembly in later developmental periods. An alternative model 

suggests that the “presynaptic factor” which promotes GABA receptor clustering 

is not remodeled along with other synaptic components in VD motor neurons and 

continues to promote postsynaptic NMJ specification in ventral muscle 

throughout the life of an unc-55 mutant animal. Further studies, especially the 

identification of the VD-derived factor that promotes GABA receptor clustering, 

are needed to understand the specification of GABA postsynaptic domains in 

muscle. 
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We also met with surprising results in our attempts to understand the 

dendritic domain of the GABA motor neurons. The cross-inhibition model of 

nematode locomotion (Figure 2.3) suggests that GABAergic motor neurons 

specify separate axonal and dendritic domains on opposite sides of the animal. 

In this model, adult DD motor neurons provide output to dorsal muscle while 

receiving input from ventral cholinergic motor neurons in dyadic synapses that 

also excite ventral muscle. VD motor neurons adopt the opposite polarity, with 

cholinergic input on the dorsal side and GABAergic output to ventral muscles. 

This architecture was initially inferred from electron micrograph reconstruction of 

the ventral nerve cord and was at least partially confirmed by the well-established 

distribution of presynaptic markers (e.g. SNB-1::GFP) to dorsal DD synapses and 

ventral VD synapses. However, this model also predicts that postsynaptic (i.e. 

dendritic) markers should show the opposite pattern of localization corresponding 

to ventral DD and dorsal VD inputs. Our experiments with the candidate dendritic 

markers, UNC-38 (nAChR), DYS-1 (dystrophin), and F35D2.3 (fibrillin) did not 

show this pattern. We found that these presumptive dendritic proteins localize 

predominantly to the ventral nerve cord throughout the life of the animal. This 

must mean that these fluorescently tagged proteins are not dendritic markers, or 

that the current model of the GABAergic circuit is not correct. Therefore, the 

actual location of the dendritic domain in DD and VD motor neurons remains an 

open area of investigation.  

The original impetus for marking the dendritic domain of GABAergic motor 

neurons was to determine if the remodeling program that relocates the axonal 
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domain also specifies a reciprocal change in the dendritic compartment. Again, 

we did not observe that the dendritic markers tested in this study were relocated 

from their initial positions in the L1 ventral nerve cord by the DD remodeling 

program. We also found no change in the number of UNC-38::GFP puncta in the 

unc-55 ventral nerve cord compared to wild-type (data not shown, N=2 for both 

wild-type and unc-55). These data fail to substantiate a model in which the unc-

55-regulated synaptic remodeling program reverses the signaling polarity of 

GABAergic motor neurons. This experiment should be revisited in the future 

when we have a more comprehensive understanding of GABAergic motor 

neuron dendritic domains. 

 

Conclusions 

 Despite our difficulties in elucidating postsynaptic specification in 

GABAergic motor neurons and body wall muscle, it is clear that DD and VD 

motor neurons have polarized axonal domains, and that unc-55 VD motor 

neurons largely mimic the remodeling event observed in wild-type DD motor 

neurons. Furthermore, remodeling is blocked when UNC-55 protein is ectopically 

expressed in DD motor neurons. Together, these data support the hypothesis 

that synaptic remodeling genes are repressed by UNC-55, and therefore that the 

identification of UNC-55 targets should reveal the downstream effectors that 

drive synaptic remodeling. We have adapted this approach and report the results 

of our studies in the following chapters.  
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CHAPTER III 

 

CELL-SPECIFIC PROFILING OF LARVAL GABAERGIC MOTOR NEURONS  

TO UNCOVER UNC-55/COUP-TF-REGULATED TRANSCRIPTS 

 

Introduction 

 The overarching goal of this project was to identify synaptic remodeling 

genes in GABAergic motor neurons that are normally activated in DD motor 

neurons. Our strategy for addressing this question is based on the model that 

remodeling genes are ectopically activated in VD motor neurons lacking the 

COUP-TF homologue, unc-55. Available genetic evidence is consistent with a 

model in which UNC-55 functions as a transcriptional repressor to prevent 

expression of synaptic remodeling genes in VD motor neurons; in unc-55 mutant 

VD motor neurons, these unc-55 target genes are de-repressed to activate the 

DD synaptic remodeling program. The ectopic remodeling of VD motor neurons 

in unc-55 mutants causes a backward movement defect that involves excessive 

ventral coiling (see Chapter II) due to the loss of GABAergic inhibition on ventral 

muscle. Previous attempts to identify unc-55-regulated genes via genetic screens 

have focused on this phenotype; however, no suppressors of Unc-55 were 

identified using this approach (W. W. Walthall, Y. Jin, personal communication), 

suggesting redundancy or complexity of the remodeling program. 

 We therefore decided to utilize the recently developed mRNA-tagging 

strategy to identify transcripts that are de-repressed in unc-55 GABAergic motor 
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neurons. In this method, epitope-tagged poly-A binding protein (3xFLAG::PAB-1) 

is expressed exclusively in the cell type of interest using a cell-specific promoter. 

mRNA from this cell type can then be co-immunoprecipitated with epitope 

(FLAG)-tagged PAB-1 via commercially available anti-FLAG antibodies and 

subjected to genomic analysis, such as C. elegans gene expression microarrays 

(Von Stetina et al., 2007b). This approach has proven more sensitive than whole-

animal expression profiling and has been previously utilized to detect 

transcription factor targets in another subset of C. elegans motor neurons (Von 

Stetina et al., 2007a).  

 In this chapter, I describe the generation and validation of the first gene 

expression profile of larval wild-type GABAergic motor neurons, identification of 

unc-55 targets via comparison of wild-type and unc-55 cell-specific gene 

expression profiles, attempts to validate the screen via GFP reporters, screens of 

candidate targets for synaptic remodeling roles via RNAi suppression, and 

confirmation of a role in GABAergic synaptic patterning for a subset of the unc-

55-regulated targets identified by this approach. 

 

Author Contributions 

All microarray experiments described in this chapter (benchwork and 

analysis) were a joint effort with a fellow graduate student and subsequent 

postdoctoral fellow in the lab, Joseph Watson, who is second-author on our 

Journal of Neuroscience paper describing some of these experiments. Joseph 

and I received additional assistance from other members of the lab, including 
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postdoctoral fellow Steve Von Stetina and graduate student Clay Spencer. The 

wdIs31 transgenic strain was created with the microinjection help of a research 

assistant in the lab, Kathie Watkins. A former postdoctoral fellow in the lab, Sue 

Barlow, generated the embryonic GABAergic profiles to which the larval 

GABAergic profiles are compared. Alyssa Fesmire, an undergraduate in our lab, 

assisted with the construction and analysis of cnt-1 strains. 

 

Methods 

Strains and genetics: Nematode strains were maintained at 20-25°C with 

standard culture techniques (Brenner, 1974). The wild-type strain is N2 and all 

references to unc-55 mutants used the allele unc-55(e1170) (Walthall, 1990).  

 

Strain list:  

note: unc-119(+) refers to unc-119-rescuing minigene from MM051(Maduro and 

Pilgrim, 1995) (see details of strain construction) 

mRNA tagging strains: 

NC1412  dpy-5(e907); wdEx562[pttr-39::3xFLAG::PAB-1 dpy-5(+)] (prior to 

integration) 

NC1645 dpy-5(e907); wdIs31[pttr-39::3xFLAG::PAB-1 dpy-5(+)] IV 

(integrated strain) 

NC1546 dpy-5(e907) unc-55(e1170); wdIs31[pttr-39::3xFLAG::PAB-1 dpy-

5(+)] IV 
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GFP reporter strains: 

BC11521 dpy-5(e907); sIs10354[rCesY39D8C.1::GFP + pCeh361]  

NC2080 dpy-5(e907) unc-55(e1170); sIs10354[rCesY39D8C.1::GFP + 

pCeh361] 

BC15319 dpy-5(e907); sEx15319[rCesC54D10.10::GFP + pCeh361] 

NC2085 dpy-5(e907) unc-55(e1170); sEx15319[rCesC54D10.10::GFP + 

pCeh361] 

BC13365 dpy-5(e907); sEx13365[rCesC54D10.10::GFP + pCeh361] 

NC2086 dpy-5(e907) unc-55(e1170); sEx13365[rCesC54D10.10::GFP + 

pCeh361] 

BC13447 dpy-5(e907); sEx13447 [rCesC11E4.1::GFP + pCeh361] 

NC2087 dpy-5(e907) unc-55(e1170); sEx13447 [rCesC11E4.1::GFP + 

pCeh361] 

BC12422 dpy-5(e907); sEx12442 [rCes F23F12.9a::GFP + pCeh361] 

NC2088 dpy-5(e907) unc-55(e1170); sEx12442 [rCes F23F12.9a::GFP + 

pCeh361] 

NC2096 unc-119; wdEx680[pnlp-26::GFP; unc-119+] 

NC2113 unc-55(e1170); unc-119; wdEx680[pnlp-26::GFP; unc-119+] 

BC13641 dpy-5; [dpy-5+; pnas-38::GFP] 

BC12934 dpy-5(e907) I; sIs12169[rCesT19D2.1::GFP + pCeh361] 

NC2128 dpy-5(e907) unc-55(e1170); sIs12169[rCesT19D2.1::GFP + 

pCeh361] 

BC15234 dpy-5(e907) I; sEx15234[rCesT18H9.1::GFP + pCeh361]  
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RNAi strains: 

NC1613 eri-1 (mg366) juIs1[punc-25::SNB-1::GFP; lin-15+] 

NC1713 eri-1; wdIs20[punc-4::SNB-1::GFP] 

NC1852 unc-55(e1170); eri-1(mg366) juIs1[punc-25::SNB-1::GFP; lin-15+] 

Synaptic analysis strains: 

CZ333 juIs1[punc-25::SNB-1::GFP; lin-15+] 

NC1851 unc-55(e1170); juIs1[punc-25::SNB-1::GFP; lin-15+] 

NC2100 arx-5(ok1990)/hT2; juIs1[punc-25::SNB-1::GFP; lin-15+] 

NC1915 cnt-1(tm2313) II outcrossed 2x 

NC1919 cnt-1(tm2313); juIs1[punc-25::SNB-1::GFP; lin-15+] 

NC2129 unc-55(e1170); cnt-1(tm2313); juIs1[punc-25::SNB-1::GFP; lin-15+] 

 

GABA mRNA-tagging strain: An 861 bp fragment from the promoter region of 

ttr‐39 was amplified with 5’ primer (5’ ATT ATT  ATT TCT ATC GGC TA 3’) and 

3’ primer (5’ ATG ATT TTT TGT TTT AAC AA 3’) and inserted into pENTR 

D‐TOPO (Invitrogen) via TOPO TA reaction. Pttr‐39 was then inserted upstream 

of 3XFLAG::PAB‐1 via Gateway LR reaction with pSV41 resulting in the 

expression vector pSA2. The entire pttr‐39::3XFLAG::PAB‐1 cassette was then 

amplified via PCR, and half of the PCR reaction (12 µL) was co‐injected with 

dpy‐5 rescuing plasmid pCes361 (25 ng) into dpy‐5(e907) animals. Gamma 

irradiation of the transgenic line yielded NC1645 dpy‐5(e907); wdIs31[Pttr‐39:: 

3xFLAG::PAB‐1 dpy‐5(+)] IV. The integrant was outcrossed five times prior to 

microarray profiling (Spencer et al., 2011). 
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Gene expression profiling experiments used the wdIs31[pttr-39::3xFLAG:: 

PAB-1] transgene in both wild-type and unc-55 backgrounds. For unc-55 profiles, 

a dpy-5(e907) unc-55(e1170) recombinant was generated and crossed into 

NC1645 to yield NC1546 dpy-5(e907) unc-55(e1170); wdIs31. wdIs31 

transgenics were immunostained with monoclonal mouse anti-FLAG antibodies 

(Sigma) and goat anti-mouse IgG Cy3 (each 1:1000) to detect expression of 

FLAG-PAB-1.(Finney and Ruvkun, 1990) To identify GABA motor neurons, 

animals were co-stained with DAPI, mounted on a 2% agarose pad, and imaged 

on a Zeiss Axioplan compound microscope. DD and VD motor neurons were 

identified by their stereotyped locations in the ventral nerve cord.  

 

Detection of unc-55-regulated transcripts from GABA neuron-specific 

microarray profiling results: mRNA tagging methods were as described (Von 

Stetina et al., 2007b). Briefly, anti-FLAG beads were used to isolate GABA-

neuron specific RNA from lysates of wild-type and unc-55 mutant mid-L2 stage 

larvae expressing the wdIs31 transgene. ~10 ng of RNA for each sample was 

amplified with WT-OvationTM Pico RNA Amplification System (NuGen 

Technologies) and ~5 µg of labeled target cDNA was hybridized to Affymetrix C. 

elegans GeneChip arrays. Independent data sets were collected from multiple 

samples and three wild-type (N2) and four unc-55 mutant mRNA tagging 

samples with high Pearson correlation coefficients (R2 > 0.8 minimum, R2
 > 0.91 

actual) were selected for further analysis. Probe intensities were normalized with 

robust multi-array analysis (RMA). Transcripts were called as “present” or 
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“absent” based on MAS 5.0 probe intensity, filtering out genes enriched in 

reference, and adding genes enriched in L2 GABA motor neurons, as previously 

described (Von Stetina et al., 2007b). Transcripts showing >2-fold difference at 

<1% false discovery rate (FDR) between wild-type vs. unc-55 mutant data sets 

were identified with two-class unpaired analysis in Significance Analysis of 

Microarray (SAM) (Irizarry et al., 2003).  

 

Annotation of expression profiles: Genes were classified based on gene 

ontology with Perl scripts and hand annotation as previously described (Von 

Stetina et al., 2007b) Gene ontology was refined using information consolidated 

at wormbase.org, release WS221, i.e. INTERPRO protein domains, GO terms 

inferred from mutant phenotype (IMP), and gene descriptions contributed to 

Wormbase with references. Conservation was based on BLASTP E-values (<e-10 

to H. sapiens) (wormbase.org). 

 

UNC-55 binding site analysis. We generated a text file containing the sequence 

of 2 kb of the 5’ regulatory regions of candidate unc-55 targets in FASTA format 

via WormMart (wormbase.org). We then used the EMBOSS application “fuzznuc” 

at the Galaxy project (main.g2.bx.psu.edu) for a nucleic acid pattern search for 

putative UNC-55 binding sites TGACCT and TGACCC on either strand of the 

regulatory region for candidate UNC-55 genes. As a control, we also collected 2 

kb of the 5’ regulatory regions for all cosmids in WormBase release WS170 and 

searched for putative UNC-55 binding sites in the regulatory region of all genes. 
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Data generated by fuzznuc was manually compiled to determine number of 

genes with and without UNC-55 binding sites in promoter regions.  

 

Microscopy and synapse scoring: SNB-1::GFP assays were performed with 

the transgene juIs1[punc-25::SNB-1::GFP; lin-15+] (Hallam and Jin, 1998), 

Animals were anesthetized with 0.1% tricaine/tetramisole, mounted on a 2% 

agarose pad, and imaged with a Zeiss Axiovert microscope using Metamorph 

software or Leica TCSSP5 confocal microscope with Leica Application Suite 

Advanced Fluorescence (LAS-AF) software. For linescan intensity studies (cnt-1, 

arx-5), Z-stacks collected at 1.0 µm/step with a 40x objective were collapsed into 

maximum intensity projections. Linescan intensity values along the ventral nerve 

cord of each adult animal were collected with Leica Application Suite Advanced 

Fluorescence (LAS-AF) software. For each animal, the linescan intensity values 

were scaled such that the minimum intensity value was set to 0 and the 

maximum intensity value was set to 255 to compensate for differences in 

background fluorescence. All intensity values for each animal were averaged, 

and then average intensity per animal was averaged by genotype. Statistical 

tests were performed comparing the average intensity among all animals in each 

genotype. 

 

RNAi screening: Hedgehog-like candidate genes were assayed by RNAi in 

juIs1; eri-1(mg366 (NC1613); the Unc-55 RNAi suppression screen was 

performed with unc-55(e1170); juIs1; eri-1(mg366) (Kennedy et al., 2004). In 
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both cases the RNAi hypersensitive eri-1 mutation was confirmed by PCR assay 

(Earls et al., 2010). RNAi knockdown by feeding used bacterial clones from the 

C. elegans RNAi library (Kamath et al., 2003) with plates created as previously 

described (Earls et al., 2010) with the exception that no EGTA was added to 

media. Three L4 hermaphrodites were grown on each RNAi plate at 20-23°C for 

5 days until F2 progeny reached young adult stage. SNB-1::GFP puncta in the 

ventral nerve cord were counted for >5 animals per clone. Negative control RNAi 

(L4440 containing no genomic insert) was analyzed with each set of clones 

screened. For the Hedgehog assays, unc-30 was used as a positive control; for 

the suppression screen, irx-1 and unc-8 were used as positive controls. Counting 

was performed with the observer blinded to the identity of the RNAi clones until 

after data collection was completed. In the suppression screen, “hits” were 

defined as RNAi clones that resulted in a significant increase in ventral SNB-

1::GFP puncta according to these criteria: (1) ventral puncta were significantly 

higher in animals treated with RNAi for a candidate unc-55 target than empty 

vector (p<0.01, Student’s t-test); (2), this phenotype was detected in at least half 

the animals scored, i.e. a penetrance of greater than 50%. For this criterion, 

“phenotype” means a number of puncta above the empty vector control upper 

bound (~40 puncta). All conserved hits were re-screened independently to 

confirm unc-55 suppression. For all hits, the RNAi feeding plasmid was purified 

from library clones via QIAprep Spin Miniprep kit (Qiagen) and sequenced to 

verify the gene identity. 

 



89 

Results 

The GABA profiling strain, wdIs31, yields reproducible datasets 

 We generated multiple strains carrying pttr-39::3xFLAG::PAB-1 to profile 

L2-stage GABAergic motor neurons with the mRNA-tagging method (Figure 

3.1A). Multiple strains were generated via microparticle bombardment and 

microinjection and showed variable levels of transgenic rescue, ectopic 

expression of 3xFLAG::PAB-1, and overall health. One of these strains, NC1412, 

was selected for integration based on bright anti-FLAG immunostaining, limited 

ectopic transgene expression, and wild-type health of the strain. The transgene 

was integrated via gamma irradiation (see Methods) to yield wdIs31. In this 

strain, immunostaining of 3xFLAG::PAB-1 is restricted to GABAergic motor 

neurons at all stages (Figure 3.1B). 

 To identify GABAergic transcripts, seven samples of mid-L2-stage 

GABAergic mRNA were collected and hybridized to C. elegans Affymetrix 

GeneChip arrays. Of these, we selected three datasets (509DMM25, 

509DMM44, 509DMM48) that showed high RMA-normalized probe intensity of 

GABAergic genes as well as high correlation among datasets (n=3, R2=0.97, 

Figure 3.1C) to use in additional analyses. Using the normalized probe intensity, 

we identified 10731 unique transcripts that were expressed (expressed genes, 

EGs) in larval GABAergic neurons based on a “present” call in two of the three 

datasets. Most EGs are likely to be housekeeping genes with roles in many 

tissue types, such as ribosomal proteins (e. g. 26 40S and 44 60S ribosomal 

proteins), cytoskeletal proteins (e. g. eight alpha-tubulin, three beta-tubulin, and  
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Figure 3.1. The mRNA tagging method with the larval GABAergic profiling strain, wdIs31. 
(A) The mRNA tagging method. Lysates are treated with anti-FLAG-coated beads to capture 
FLAG-tagged PAB-1 cross-linked to cell-specific mRNA. Immunoprecipitated mRNA is amplified 
and labeled for hybridization to a C. elegans Affymetrix GeneChip array (see Methods). (B) Anti-
FLAG staining of FLAG-tagged PAB-1 transgenic line, wdIs31[pttr -39::3xFLAG::PAB-1]  is 
restricted to GABAergic motor neurons in both L1 (top panel) and L2 (middle panel) larvae; 
ventral cord motor neuron soma are stained with DAPI (bottom panel). Scale bar, 10 µm. (C) 
Pearson correlation coefficients (R2) for larval GABAergic datasets 509DMM25, 509DMM44, and 
509DMM48 were calculated from normalized probe intensity. Note high values (near 1), which 
indicate low variability in sample collection. 
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six Arp2/3 complex components), regulators of protein turnover (e. g. more than 

30 proteasome components or regulators), and basal polymerases (e. g. at least 

41 RNA polymerase subunits/factors). In addition, 59% of the 2886 EGs with 

known expression patterns (as of WormBase Release WS170) were annotated 

as having neuronal expression. Of these, many have functions in a broad range 

of neurons, such as axon guidance genes (netrin receptors unc-5 and unc-40, 

sax-3/Roundabout), neurotransmitter receptors (3 dopamine receptors and 24 

acetylcholine receptors) and neuropeptides (22 FMRFamide-like and at least 29 

in other classes).  

 

Comparison of larval GABAergic gene expression to other cell types  

To identify genes with significant and/or selective function in GABAergic 

motor neurons, we compared the three well-correlated GABAergic replicates to a 

reference mRNA dataset from all larval cells. This analysis revealed 1476 

transcripts enriched >1.5-fold in GABAergic motor neurons with a threshold of 

10% False Discovery Rate (FDR). A more stringent dataset of 733 transcripts 

enriched >1.5-fold with a 5% FDR does not contain unc-55 which suggests that 

this treatment may exclude some bona fide GABAergic genes; therefore, we 

opted to use the <10% FDR threshold for subsequent analysis.  

Transcripts encoding proteins predicted to have a wide variety of cellular 

functions were enriched in GABAergic motor neurons (Figure 3.2A). One 

prominent group of enriched transcripts encode transcription factors, including 

ten homeobox-family transcription factors (e. g. Aristaless/ARX homologue alr-1,  
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Figure 3.2. Gene expression profiles of GABAergic motor neurons. (A) Gene ontology of 
transcripts enriched >1.5-fold in larval (L2) GABAergic motor neurons compared to a mock-
immunoprecipitated N2 reference, representative of all cells (10% FDR). Only 1060 transcripts (of 
1476) with annotation (i.e. GO terms) indicative of gene function are included in the chart; the 
remaining 416 transcripts are uncharacterized with no predicted function. (B) Expression levels of 
transcripts in larval GABAergic motor neurons relative to reference. Fold change indicated over 
column; enrichment in GABA motor neurons is denoted in red, and depletion in GABA motor 
neurons is denoted in green.  Fold change calculated by Significance Analysis of Microarrays 
(SAM). Note GABAergic (unc-30, ttr-39, unc-25, unc-47, unc-46) and neuronal transcripts (rab-3, 
sad-1, snb-1, unc-64, unc-57) are enriched in GABAergic motor neurons but non-neuronal 
transcripts (egl-15, unc-15, unc-42) are significantly depleted in GABAergic motor neurons (i.e. 
enriched in “all cells” reference). (C) Significant overlap of transcripts elevated in embryonic and 
larval GABAergic expression profiles. For complete list of common transcripts, see Table 3.1. 
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LIM homeodomain-containing lin-11, zinc-finger transcription factor zag-1, and 

Iroquois/IRX homologue irx-1) and thirteen members of the nuclear hormone 

receptor superfamily (e. g. COUP-TF homologue unc-55). Some of these 

transcription factors have established roles in GABAergic neuron development 

(e.g. alr-1, lin-11, unc-55), which validates our methodology (Zhou and Walthall, 

1998; Melkman and Sengupta, 2005). Many of these transcription factors, 

however, have known roles in other C. elegans neurons or in the neuronal 

development of other organisms, but no reported functions in GABAergic motor 

neurons (Sarafi-Reinach et al., 2001; Gomez-Skarmeta and Modolell, 2002; 

Clark and Chiu, 2003; Smith et al., 2010). The enriched GABAergic motor neuron 

dataset includes 107 mRNAs predicted to encode regulators of transcription. This 

finding could be indicative of a complex network of gene regulation that specifies 

for proper GABAergic motor neuron differentiation and function.  

To test the validity of our method, we searched our list of enriched 

transcripts for genes with known roles in identified transcripts with key roles in 

GABAergic neuronal development. For instance, the Pitx homologue, unc-30, 

which defines GABA neuron fate (Jin et al., 1994), is elevated 27-fold in DDs and 

VDs versus all cells (Figure 3.2B). The GABA-specific genes unc-25, unc-47, 

unc-46, and ttr-39, as well as known neuronal genes (e.g. rab-3, sad-1, snb-1, 

unc-64, unc-57), also showed high levels of enrichment. Furthermore, transcripts 

known to be expressed in tissues other than GABA neurons, such as those 

expressed in vulval muscle (egl-15), body wall muscle (unc-15), and non-GABA 

interneurons (unc-42) were significantly depleted.  
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 For additional validation and to identify dynamically-regulated genes, we 

compared our larval GABAergic enriched profile to an unc-25::GFP embryonic 

enriched profile generated by Sue Barlow via the MAPCeL approach (Fox et al., 

2005). For this comparison, we used the more-stringent 5% FDR larval GABA 

dataset, which has a comparable number of enriched transcripts (733) to the 

embryonic profile (673). We see significant overlap (p < 10-30) between the larval 

and embryonic enriched gene lists, despite the significant differences in how the 

datasets were collected (MAPCeL vs. mRNA-tagging, unc-25 vs. ttr-39 

promoters, etc.). This result confirms the validity of our approach and allows us to 

identify 98 key genes common to both profiles (Figure 3.2C). These include 

neuronal genes (e.g. rab-3, unc-57) and all expected GABAergic (unc-30, unc-

47, unc-46, unc-25, ttr-39, oig-1) genes, as well as transcripts not previously 

known to be expressed in GABAergic motor neurons (Table 3.1) We note, for 

instance, neuropeptides (flp-15, nlp-13) and membrane proteins (potassium 

channel F14F11.1, stomatins sto-2 and sto-4) with previously unidentified 

expression or function in GABAergic motor neurons. Of particular interest is the 

enrichment of the GABA receptor unc-49. To date, unc-49 expression has been 

observed only in muscle with transcriptional and translational reporters; however, 

a cell-autonomous feedback role for GABA receptor in GABAergic motor neurons 

has been suspected but not confirmed (B. Bamber, personal communication). 

This idea is substantiated by our finding that the unc-49 transcript is enriched in 

both embryonic and larval GABAergic motor neurons.  
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Table 3.1. Genes enriched in both embryonic and larval GABAergic profiles 
 

Sequence 
Name 

Gene 
Name Description 

Embryonic 
Fold 

Enrichment 

Larval Fold 
Enrichment 

Previously 
ID'd in 

GABAs? 
Adhesion 

C09E7.3 oig-1 Predicted adhesion 
molecule 49.7 14.8 yes 

C33F10.5 rig-6 Contactin 5.7 2  

Calcium Binding 
Y105E8A.7 lev-10 Cubilin 4.2 6  
Y64G10A.7  Fibrillin 2.3 10.2  

Cytoskeleton 

C01G10.11 unc-76 Fasiculation/elongation 
factor zeta 3.1 8.4 yes 

Enzymes 
C34F6.4 hst-2 Sulfotransferase 2.1 2.2  
D1022.8 cah-2 Carbonic anhydrase 8.8 5.9  

F10G8.6  Predicted ATPase, 
nucleotide-binding 1.8 2.6  

F53B6.2  ADAM 9.9 6.1  
H15N14.2 nsf-1 AAA+type ATPase 2.4 2.6  

R153.1 pde-4 Cyclic nucleotide 
phosphodiesterase 1.9 2  

T05H10.2 apn-1 Apurinic/apyrimidinic 
endonuclease 2.7 5.1  

Y34B4A.7  
Predicted 
spermine/spermidine 
synthase 

1.9 3.5  

Y75B12B.2 cyn-7 Cyclophilin A 2.1 2.7  
ZK994.3 pxn-1 Peroxidasin 4.1 5.8  

GPCR signaling 
C09B7.1 ser-7 G-protein coupled receptors 2.4 2.4  

C33G8.5 srab-4 Sra family integral 
membrane protein 1.8 4.2  

F15A8.4  7-transmembrane receptor 7.8 4.5  
F53F10.4 unc-108 GTPase Rab2 2 2.1 yes 
Y87G2A.4 aex-6 GTPase Rab27 1.8 2.8  

Ion channels, receptors, membrane proteins 
C40C9.2 acr-9 Acetylcholine receptor 24.7 14.2 yes 
C53A5.5  K+ channel subunit 4.2 2  
F10G7.5  Transporter 2.5 2.2  
F14F11.1  K+ channel subunit 2 3  
F32A6.5 sto-2 Stomatin 6.3 8.1  
R12H7.1 unc-9 Innexin 2.5 5.6  
T21C12.1 unc-49 GABA receptor 4.4 3.5  
Y110A7A.3 unc-63 Acetylcholine receptor 2.1 2.2 yes 
Y48B6A.9 hot-7 GPI-linked signaling protein 12.8 5.7  
Y71H9A.3 sto-4 Stomatin 4.4 2  
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Sequence 
Name 

Gene 
Name Description 

Embryonic 
Fold 

Enrichment 

Larval Fold 
Enrichment 

Previously 
ID'd in 

GABAs? 
Transcriptional Control 

B0564.10 unc-30 Homeobox transcription 
factor, Pitx family 20.1 69.6 yes 

D1037.1  SON DNA binding protei 2 2.2  

F58A4.7 hlh-11 Transcription factor, helix-
loop-helix 1.7 4.1  

R08B4.2 alr-1 Homeobox transcription 
factor Aristaless 4.1 4.3 yes 

Y54F10AM.4 ceh-44 Homeobox transcription 
factor, CUT family 2 3.6  

Axon Guidance 
K12F2.2 vab-8 Kinesin 1.9 3.3 yes 

Kinases/Phophatases 
B0478.1 jnk-1 Jun-N-terminal kinase (JNK) 3.7 5.6 yes 
C18B12.2  Calcitonin receptor 2.2 10.2  
C50F2.8  MAGUK 2 6.5  
E01H11.1 pkc-2 Protein Kinase C 3.5 5.7  
M03C11.1  Ribosomal protein S6 kinase 2.2 4.7  
R90.1  Casein kinase 2.2 2.9  
Y42G9A.4  Mevalonate kinase 2.2 3.3  
Y71H10A.1  Phosphofructokinase 1.7 2.6  

Neuropeptides 
CC4.2 nlp-15 Neuropeptide-like 3.1 2.8 yes 
E03D2.1 nlp-13 Neuropeptide-like 8 12.8  
ZK1320.10 nlp-11 Neuropeptide-like 3.4 4.5  
ZK525.1 flp-15 FRMFamide-like 6.5 3.6  

Other 
C04G2.1 ttr-39 Transthyretin-related protein 14.6 10.2 yes 

F13G3.9 mif-3 Macrophage migration 
inhibitory factor 2.4 3.8  

K06A5.8  WD repeat protein 2.5 1.9  

R06A4.4 imb-2 
Nuclear transport receptor 
Karyopherin-
beta2/Transportin 

2 2.4  

ZC84.3  CLIP-associating protein 4 3.5  

ZK1073.1  Differentiation-related gene 
1 protein 2 4.1 yes 

H28G03.1  Nuclear riboprotein 1.9 3.6  

Novel/Uncharacterized 
C06E7.2   6.2 9.4  
C13A10.2   5.9 17.7  
C16E9.2   4.3 7.6  
C24A3.2   2.5 3.4  
C43H6.1   2.1 1.8  
C54G4.5   8.4 5.1  
C55F2.2   7.0 14.3  
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Sequence 
Name 

Gene 
Name Description 

Embryonic 
Fold 

Enrichment 

Larval Fold 
Enrichment 

Previously 
ID'd in 

GABAs? 
F13C5.1   2.0 2.4  
F15G9.1   1.8 3.7 yes 
F21C10.3   1.9 2.0  
F28E10.1   4.4 2.9  
F29G6.2   3.5 11.4  
F45E4.3   4.0 1.8  
F53B1.3   2.0 2.2  
F58A3.4   2.6 2.1  
F58H1.7   3.2 2.8  
H14E04.3   7.5 6.5  
M03E7.1   7.7 3.6  
R05D7.3   2.4 8.1  
R07E4.5   2.7 2.4  
T10G3.5 eea-1  2.3 2.7  
T24D5.2   2.8 9.5  
T27C4.1   4.3 6.2  
Y49E10.23   3.0 3.7  
Y51H4A.20   2.4 3.5  
Y53F4B.45   2.4 4.8  
Y54G2A.26   2.0 3.4  
Y73B3A.15   4.3 4.6  
ZK287.3   1.7 2.5  
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We predict that some of the differentially enriched genes (i.e., enriched in 

the embryonic but not larval profile, and vice versa) are dynamically regulated in 

DD motor neurons or expressed in a subset (DD or VD) of GABAergic motor 

neurons. Therefore, these datasets could be useful in the future for identifying 

genes with roles specific to DD or VD motor neurons.  

 

GABA-specific expression profiles reveal candidate unc-55 target genes 

Because UNC-55 functions as a transcription factor to repress synaptic 

remodeling genes, we reasoned that UNC-55-regulated transcripts would be 

enriched in an unc-55 GABAergic gene expression profile vs. wild-type (Figure 

3.3A). To identify these enriched candidate synaptic remodeling genes, we 

profiled larval animals during the L2 stage in which VD motor neurons initiate 

remodeling in unc-55 mutants (see Chapter II). Transcripts were isolated from 

unc-55 DD and VD motor neurons by co-immunoprecipitation with FLAG::PAB-1 

from wdIs31[pttr-39::3xFLAG::PAB-1] and hybridized to Affymetrix Gene Chip 

Arrays. Comparison of highly reproducible unc-55 datasets (n=4, R2=0.93, 

Figure 3.3B) to the three wild-type datasets described above yielded 188 

significantly enriched transcripts that were 2-fold enriched at <1% FDR (Figure 

3.3C, red). This dataset is predicted to include genes that are normally repressed 

by unc-55 in wild-type animals and candidates for genes that promote synaptic 

remodeling. The proposal that UNC-55 functions largely as a transcriptional 

repressor is consistent with our finding that only 11 transcripts were significantly 

depleted in the unc-55 dataset (Figure 3.3C, green).  
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Figure 3.3. Identification of unc-55 targets via gene expression profiling of GABAergic 
motor neurons. (A) Experimental design: In wild-type L2 larvae, synaptic remodeling genes are 
expressed in DD motor neurons but not in VD motor neurons; in unc-55(e1170) larvae, synaptic 
remodeling genes are also expressed in VD motor neurons. (B) Pearson correlation coefficients 
(R2) for unc-55 GABAergic datasets 509DMM45, 509DMM46, 509DMM50, and 509DMM51 were 
calculated from normalized probe intensity. (C) Volcano plot indicating transcript expression in L2 
unc-55 GABAergic motor neurons relative to wild-type GABAergic motor neurons. A score, which 
indicates significance of change in normalized probe intensities relative to reference, was 
calculated with SAM for all transcripts. A high score indicates high significance; the horizontal cut-
off line corresponds to a false discovery rate of 1% among the 199 significantly enriched/depleted 
transcripts. Transcripts significantly enriched at least 2-fold in unc-55 mutants (188) are indicated 
in red and transcripts at least 2-fold depleted (11) are indicated in green. Most transcripts were 
not significantly different from wild-type and are represented in gray. Note right-ward bias of the 
distribution, indicating that more transcripts are enriched in unc-55 mutants than depleted as 
predicted by previous studies indicating that UNC-55 primarily functions as a repressor. (D) Gene 
ontology of transcripts enriched at least 2-fold in unc-55 L2 GABAergic motor neurons compared 
to wild-type (1% FDR), i.e. candidate unc-55 targets. Only 95 transcripts (of 188) are included in 
the chart; five genes in other categories and 88 uncharacterized genes were excluded. For a 
complete list of transcripts enriched in unc-55 GABAergic motor neurons, see Table 3.2. 
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Of the 188 candidate unc-55 targets identified in our analysis, 79 (42%) 

are conserved in humans (BLAST E-value >10) (Table 3.2), and 88 of the 188 

candidate remodeling genes (46%) are novel genes with uncharacterized 

function. The remaining 100 unc-55 candidate targets were classified into 

functional groups based on KOGs, BLAST homologue function, or other 

identifying information using previously published gene classes  (Figure 3.3D). 

We found a wide range of cellular functions encoded among these putative 

synaptic remodeling genes, including ion channels (e. g. degenerin-family acid 

sensing ion channel unc-8, aquaporin aqp-4), cytoskeletal/trafficking regulators 

(e. g. Arp2/3 complex component arx-5, Centaurin β ArfGAP cnt-1), and proteins 

that likely function in remodeling the extracellular matrix (two matrix 

metalloproteases, fourteen collagens). 

 

UNC-55 may directly regulate some candidate targets identified in the 

microarray profile 

To verify that our microarray dataset represents unc-55 regulated genes, 

we looked for enrichment of the COUP-TFII binding site within 2 kb of upstream 

regulatory regions among our candidate targets. The canonical COUP-TFII 

binding half-site TGACCT (Pereira et al., 2000) is present at least once in 92/188 

candidate unc-55 targets (49%), which is significantly more frequent than the 

motif appearing in the 2 kb upstream region of all annotated genes (7142/17,704 

or 40%, p=0.02, Fisher’s Exact Test). The presence of the non-canonical COUP-

TFII binding site TGACCC (Montemayor et al., 2010) is also significantly  
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Table 3.2. Genes enriched in unc-55 GABAergic motor neurons 
 

Sequence 
Name 

Gene 
Name Description Fold 

Enrichment 
Human 

Homologue? 
Channels and Membrane Proteins 

R13A1.4 unc-8 ASIC/DEG/ENaC 4.0 yes 
C33G3.3 lgc-21 ligand-gated ion channel 3.5  
Y58A7A.1  copper transporter 2.4   
ZC13.4 mab-7 EGF-domain containing 2.4   
F40F9.9 aqp-4 aquaporin 2.4 yes 
C25E10.5  predicted transporter 2.4 yes 
F53H8.3  permease 2.3  yes 
K03B8.9 deg-3 acetylcholine receptor 2.2 yes 
F21F8.11  permease 2.2 yes 
Y39D8C.1 abt-4 ABC transporter 2.2 yes 
F28H1.4   chemokine-like factor 2.2 yes 

Fibronectins 
F26G1.5  Fibronectin 5.9  
C42D4.3  Fibronectin 5.0  
F35B3.4  Fibronectin 3.5  

Cytoskeleton 
H06A10.1  spindle matrix formation protein 3.1  
Y37D8A.1 arx-5 Arp2/3 subunit 2.1 yes 

Transcription 
F55D12.4 unc-55 COUP-TFII 3.2 yes 
T14F9.5 lin-32 Atonal transcription factor 2.5 yes 
C36F7.1 irx-1 Iroquois transcription factor 2.5 yes 
T22B7.1 egl-13 SOX5 transcription factor 2.2 yes 

FGF pathway 
T23B12.5   FGF receptor activating protein 2.7 yes 
M176.6 kin-15 FGF receptor related 2.1 yes 

G protein signaling 
D1079.1   7-transmembrane receptor 2.6  
Y70D2A.1  7-transmembrane receptor 2.2  
Y17G7B.15 cnt-1 centaurin beta ArfGAP ** yes 

Neuro-related 
Y43F8C.2 nlp-26 neuropeptide-like 2.2 yes 
F23H12.1 snb-2 synaptobrevin-related 2.0 yes 

Calcium binding 
H10E21.4  calmodulin 5.8 yes 
Y69H2.3  fibrillin 2.3 yes 
F35D2.3  fibrillin 2.2 yes 

Iron binding 
W08E12.3  Iron ion binding 3.0  
W08E12.4  Iron ion binding 2.9  
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Sequence 
Name 

Gene 
Name Description Fold 

Enrichment 
Human 

Homologue? 
W08E12.2  Iron ion binding 2.6 yes 

Lectins 
R07C3.12 clec-44 C-type lectin 2.8 yes 
Y38E10A.5 clec-4 C-type lectin 2.4 yes 

Lipid-binding 
C06E8.5  LPS binding protein 4.8  
F10D11.6  lipid-binding glycoprotein 3.1 yes 
C06G1.1   LPS binding protein 2.3  

Ubiquitin 
C28G1.1 ubc-23 huntingtin interacting E2 ligase 2.2 yes 

Secreted surface proteins 
F48G7.8  Secreted surface protein 8.1  
T05B4.11 phat-5 Secreted surface protein 3.6  
F23B12.4  Secreted surface protein 2.6  
F48G7.5  Secreted surface protein 2.3  
F01D5.5   Secreted surface protein 2.2  
F21A3.3  secreted EGF-domain containing 2.2  

Hedgehog-related 
T18H9.1 grd-6 Groundhog family 6.6 yes 
ZC168.5 grl-21 hedgehog-like 5.3  
F41E6.2 grd-5 Secreted surface protein 3.4  
F42C5.7 grl-4 Groundhog-like 3.1 yes 

Collagens 
C50B6.4 col-161 collagen type IV/XIII 5.6 yes 
F08G5.4 col-130 collagen type IV/XIII 5.3 yes 
M195.1 col-77 collagen type IV/XIII 4.5 yes 
F09G8.6 col-91 collagen type IV/XIII 3.4 yes 
C46A5.3 col-14 collagen type IV/XIII 3.4 yes 
F38A3.2 ram-2 collagen type IV/XIII 3.2 yes 
C44C10.1 col-180 collagen type IV/XIII 3.1 yes 
C09G5.4 col-39 collagen type IV/XIII 3.1 yes 
F33D11.3 col-54 collagen type IV/XIII 2.9 yes 
F15H10.2 col-13 collagen type IV/XIII 2.8 yes 
F15H10.1 col-12 collagen type IV/XIII 2.7 yes 
B0024.2 col-150 collagen 2.3 yes 
F57B1.3 col-159 collagen type IV/XIII 2.1 yes 
T11B7.3 col-118 cuticle collagen 2.0 yes 

Peptidase inhibitors 
F45G2.5 bli-5 endopeptidase inhibitor  5.3  
K08B4.6 cpi-1 cysteine protease inhibitor 4.5  
F35B12.4  endopeptidase inhibitor 4.3  
C54D10.10 endopeptidase inhibitor  3.7 yes 
F32D8.7   endopeptidase inhibitor  2.8  
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Sequence 
Name 

Gene 
Name Description Fold 

Enrichment 
Human 

Homologue? 
Metalloproteases 

T19D2.1   predicted ADAM 4.0 yes 
F57C12.1 nas-38 astascin/BMP-1 related 3.7 yes 

Other Enzymes 
K08E3.1 tyr-2 tyrosinase 4.4 yes 
W01A8.6  carboxypeptidase 4.2 yes 
C11E4.1   glutathione peroxidase 3.7 yes 
Y18H1A.9  Zinc carboxypeptidase 3.2 yes 
R11A5.7  Zinc carboxypeptidase 3.1 yes 
R07G3.2 lips-17 Triacylglycerol lipase 3.0  
K01A2.5   predicted hydrolase 3.0 yes 
C46H11.2  Flavin-containing monooxygenase 3.0 yes 
T09B9.1  predicted esterase 2.6 yes 
ZK430.8 mlt-7 peroxidase 2.5 yes 
T05H4.7   predicted chitinase 2.5  
ZC434.9   predicted carboxypeptidase 2.3 yes 

F59B2.3  N-acetyl-glucosamine-6-phosphate 
deacetylase 2.3 yes 

F20G2.1   Predicted short chain-type 
dehydrogenase 2.3 yes 

C26F1.2 cyp-32A1 cytochrome p450 family 2.3 yes 
T10E9.3   histidine catalysis 2.3  
F36G9.12 oac-20 O-acyltransferase 2.2  

C42C1.7 oac-59 integral membrane O-
acyltransferase 2.2  

F14E5.5 lips-10 triacylglycerol lipase 2.2  
K06A4.5 haao-1 3-hydroxyanthranilate oxygenase 2.1 yes 
F14B6.6   galactosyltransferase 2.1  

M03A8.1 dhs-28 17-beta-hydroxysteroid 
dehydrogenase 2.1 yes 

ZC455.10 fkb-4 peptidylprolyl isomerase 2.1 yes 
T05C3.6  phospholipase  2.0 yes 

Other 
T03F7.7  SEC14-related 2.8 yes 
F49H12.3  KCTD-domain containing 2.5  
Y37B11A.2 DNA polymerase 2.2 yes 
R02E12.6 hrg-1 vacuolar H+-ATPase associated 2.2  
Y92C3B.1 kbp-4 kinetochore binding protein 2.1  
Y113G7B.12 reverse transcriptase 2.1 yes 

Novel/uncharacterized 
Y47D7A.15  6.2  
F35C5.10 nspb-11   5.8  
F07F6.5 dct-5   5.7  
H04M03.2 nspb-6   5.4  
F43C11.3   5.2  
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Sequence 
Name 

Gene 
Name Description Fold 

Enrichment 
Human 

Homologue? 
K04C2.5   5.2  
ZK970.7   5.0  
F09F7.8 nspb-12  4.9  
C49H3.12   4.8  
F35A5.3 abu-10  4.5 yes 
K10H10.4   4.4  
C38C6.6 tag-297   4.4  
T21C9.9     4.4  
ZK1307.2   4.3  
ZK682.5   4.3 yes 
C05E7.2   4.3  
Y77E11A.14  4.2  
W01B11.5 pqn-72  4.0 yes 
ZK662.2   3.9  
R09B5.5 pqn-54  3.8 yes 
R07B1.9   3.8  
R09F10.7 pqn-57  3.8 yes 
T01D1.6 abu-11  3.8 yes 
B0034.1   3.7  
C26F1.1   3.6  
M03E7.2   3.6  
T23F1.6 pqn-71  3.5 yes 
K01D12.5     3.4  
F39D8.1 pqn-36   3.4 yes 
F45E4.5   3.4  
Y95B8A.2   3.4  
Y46G5A.20  3.3 yes 
D2096.6   3.3  
F20B10.3   3.3  
C02D4.1 jud-4  3.2  
F14B8.4   3.2  
M28.8   3.2  
F38A5.10 nspb-4  3.1  
C50F7.5   3.1 yes 
K02B7.3     3.1  
R07E5.4   2.9  
Y7A9D.1     2.8  
Y40C7B.4   2.8  
F38A5.5 nspb-3  2.8  
C55A6.12   2.7  
R13A5.3 ttr-32 transthyretin-like domain containing 2.7  
F56B6.6   2.7  
T14A8.2   2.7  
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Sequence 
Name 

Gene 
Name Description Fold 

Enrichment 
Human 

Homologue? 
T24C4.4     2.7  
C05E7.1   2.7  
C02E7.7   2.7  
T25G12.3     2.7  
K11H12.4   2.6  
B0310.6   2.6  
Y69A2AR.28  2.6  
F53H4.3   2.6  
F55G11.4   2.6  
T05A7.1     2.6  
W01F3.2   2.6  
C35C5.9   2.5  
F35E12.8   2.5  
W03F8.6     2.4  
T05D4.4 osm-7  2.4  
Y66A7A.7   2.4  
C49F5.7   2.4  
F42C5.10   2.4  
C10C5.2     2.4  
Y45F10A.7  2.3  
C08B6.3   2.3  
F14B8.7   2.3 yes 
Y45G12C.1  2.3  
F46C8.8     2.3  
T17H7.7   2.2  
F23H11.6     2.2  
Y75B8A.39  2.2  
Y69E1A.5   2.2 yes 
F01D5.6   2.1  
F36G3.1   2.1 yes 
C04E12.2   2.1  
F35E12.7 dct-17   2.1  
F18E9.3   2.1 yes 
K04A8.1     2.0  
Y37D8A.16  2.0  
K08D12.4   2.0  
C39H7.4   2.0  
Y97E10AR.3  2.0  
ZK154.1   2.0  
R90.2 ttr-27 transthyretin-like domain containing 2.0  
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enriched over all 2 kb promoter regions (50/138 or 27% in unc-55 target 

promoters vs. 4569/17,704 or 21% in all promoters, p < 0.05, Fisher’s Exact 

Test) (Figure 3.4A). We predict that these non-canonical binding motifs may be 

important based on high conservation among distantly related nematode species. 

For example, three conserved non-canonical half-sites were identified in the 

upstream regulatory region of a candidate unc-55 target, the homeodomain-

containing protein irx-1/Iroquois (see further discussion in Chapter IV).  

We next asked if we could validate our unc-55 microarray results via 

promoter::GFP transgenic strains, reasoning that remodeling genes may be 

normally expressed in DD motor neurons and de-repressed in unc-55 mutants.  

Transcriptional reporters for seven candidate genes containing putative UNC-55 

binding sites in the cis-regulatory region were obtained from the C. elegans Gene 

Expression Consortium (Hunt-Newbury et al., 2007) (see Methods for full strain 

list); for nlp-26, we built a reporter strain with a plasmid kindly provided by the 

Hart lab (Nathoo et al., 2001). Each of these strains carry a transgenic array that 

includes the intergenic 5’ region of a candidate unc-55 target fused to the GFP 

coding sequence. Surprisingly, none of these transgenic strains express GFP in 

wild-type or unc-55 GABAergic motor neurons (Figure 3.4B), but do show 

expression in other tissues (data not shown). Although it is possible that some of 

these genes are in fact not regulated by unc-55 and are false positives in our 

microarray screen, it is also possible that at least a subset of these transgenic 

arrays do not contain the full complement of cis-regulatory elements required to 

recapitulate endogenous gene expression. We have confirmed that this latter  
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Figure 3.4. Analysis of UNC-55 binding sites in candidate target genes. (A) Percentage of 
genes with at least one putative unc-55 binding site within 2 kb upstream of the transcription start 
site, among all genes (black) and those in the unc-55 dataset (blue). The proportion of genes 
containing UNC-55 binding sites (TGACCT or TGACCC) is significantly higher than chance (i.e. 
found in all genes). * p < 0.05, Fisher’s Exact test. (B) Candidate unc-55 targets enriched in our 
dataset which contain UNC-55 binding sites were surveyed with available promoter::GFP 
transgenic strains. ND = no data. 
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explanation is in fact the case for irx-1, which does not show expression or 

regulation in GABAergic motor neurons with an intergenic promoter::GFP 

transgenic array (data not shown), but does display GFP expression that is 

largely restricted to remodeling motor neurons (DD and unc-55 VD) in larval 

stages when expressed from an irx-1::GFP fosmid that includes 40 kb of 

genomic DNA surrounding the irx-1 locus (see Chapter IV). In any case, we next 

focused our effort on utilizing a functional screen to identify the subset of unc-55-

regulated transcripts for roles in synaptic remodeling. 

 

Hedgehog-related proteins have a role in GABA motor neuron synaptic 

organization 

Hedgehog (Hh) signaling has an established role in motor neuron fate 

determination in the vertebrate spinal cord (Jessell, 2000). In the developing 

vertebrate spinal cord, Sonic Hedgehog (Shh) is secreted from the ventral 

notochord and floorplate and functions as a graded morphogen to specify neuron 

identity in the spinal cord. Ventral V3 interneurons and motor neurons 

differentiate in the presence of high Hh levels while V1 and V2 interneurons, 

which are positioned more dorsally, are induced by lower Hh levels (Chiang et 

al., 1996; Ericson et al., 1996). During spinal cord development, diffusible Hh 

ligand binds to the Patched (Ptc) receptor on neuroblasts. Hh binding releases 

Ptc suppression of Smoothened (Smo) activity, which in turn activates Gli-

mediated transcription (Stone et al., 1996; Quirk et al., 1997; Pan et al., 2006). 

Integration of Hh-signaling with other morphogens gradients results in expression 
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of a combinatorial code of homeodomain transcription factors that specify spinal 

cord neurons (Jessell, 2000). Although Hh signaling is crucial for development in 

other invertebrates and vertebrates, C. elegans does not appear to have a 

canonical Hh-signaling pathway due to the absence of a Smo homologue 

(Zugasti et al., 2005; Burglin and Kuwabara, 2006; Burglin, 2008). However, C. 

elegans Hh-related and Ptc-related proteins are required for key developmental 

events such as larval molting (Kuwabara et al., 2000; Zugasti et al., 2005; Hao et 

al., 2006a; Hao et al., 2006b).  

We found enrichment of four Groundhog or Ground-like family members in 

our unc-55 candidate target list, grd-5, grd-6, grl-4, and grl-21. These are 

predicted to encode Hh-like ligands with conserved C-terminal autocatalytic 

domains and similar N-terminal signaling sequences (Aspock et al., 1999). 

Additionally, the Hedgehog modulator Glypican, gpn-1/dally-like (Burglin and 

Kuwabara, 2006), and multiple V0-ATPase (vha) genes involved in secretion of 

Hh-related proteins (Liegeois et al., 2006) are enriched in the wild-type dataset of 

GABA neurons (Figure 3.2) by 1.8-fold. Together, these data suggest a role for 

Hh-related signaling in GABA neuron synaptogenesis.  

These findings suggest that RNAi knockdown of these Hh-related genes 

may cause synaptic remodeling defects in the DD motor neurons (Figure 3.5A). 

To test this idea, we ablated grd-5, grd-6, and grl-4 function by the RNAi feeding 

method in a hypersensitive line carrying a GFP-labeled synaptic vesicle marker 

(eri-1; juIs1[punc-25::SNB-1::GFP]) (Hallam and Jin, 1998; Timmons et al., 2001; 

Kennedy et al., 2004). Animals treated with grd-5, grd-6, or grl-4 RNAi appear to  
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Figure 3.5. Knockdown of Hedgehog-related genes causes defects in both GABAergic and 
cholinergic motor neurons. (A) Predicted function for Hh-like ligands regulated by unc-55. 
Based on their enrichment in unc-55 VD motor neurons, Hh-like proteins were predicted to 
promote remodeling in wild-type DD motor neurons and contribute to the localization of SNB-
1::GFP puncta (marking GABAergic NMJs) in the dorsal nerve cord (DNC). In animals treated 
with RNAi against Hh-like proteins grl-4, grd-5, or grd-6, we predicted a loss of dorsal NMJs and 
concurrent gain in ventral NMJs due to a disruption in the synaptic remodeling program. (B) 
Percentage of L4 animals displaying uncoordinated backward locomotion when treated with RNAi 
against candidate synaptic remodeling genes. Empty vector served as a negative control; the Unc 
behavior in these worms is likely caused by the eri-1 mutation used to sensitize the animals to 
RNAi. unc-55 served as a positive control. *** p < 0.01, other bars are not significantly different 
from empty vector. (C) Representative views (20 µm) of GABAergic SNB-1::GFP in adult dorsal 
(DNC) and ventral (VNC) nerve cords. Defective synaptogenesis appears restricted to the ventral 
nerve cord; linescans (in arbitrary fluorescence units) are of the ventral nerve cord, indicating 
aberrant synapses. (D) Percentage of GABAergic (D-class, in black) and cholinergic (A-class, in 
white) neurons with ventral synaptic defects (as seen in panel C) in animals treated with RNAi 
against Hh-like ligands grl-4, grd-5, and grd-6 or Patched-related proteins ptc-1 and F43D9.1. * p 
< 0.05, ** p < 0.01, Student’s t-test vs. control empty vector (EV) for each neuronal type. 
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have a backward movement defect compared to reference empty-vector treated 

animals (Figure 3.5B). This phenotype included slower backing, pausing, and 

variable body bend amplitude. Negative control animals (RNAi with empty vector) 

consistently showed a weak Unc phenotype that can be attributed to the eri-1 

mutation. Positive controls (unc-55 RNAi) coiled upon backing as predicted. In all 

cases, RNAi-treated and mutant animals were evaluated in a blind test with 

controls. Thus, although the movement defect resulting from inactivation of these 

Hh-related genes is incompletely penetrant and not statistically different from 

empty-vector control, they are robust.  

 GABAergic synapses marked with SNB-1::GFP showed aberrant 

localization in the ventral nerve cord of adult animals after RNAi treatment of Hh-

related genes (Figure 3.5C, bottom images and linescans). In contrast, 

GABAergic synapses in the dorsal nerve cord of Ground-RNAi treated animals 

were unaffected in comparison to the empty vector control (Figure 3.5C, top). 

These results suggest that Hh-related signaling pathways are essential for 

normal development of VD synapses in the ventral nerve cord but are not 

required for the creation of DD synapses in the dorsal nerve cord. The absence 

of a detectable role in DD remodeling is surprising given our results that Ground-

family transcripts (grd-5, grd-6, grl-4, and grl-21) are de-repressed in unc-55 

mutant neurons. However, the potent effect in the ventral cord provides strong 

evidence of a previously unknown role for Hh-related protein function in synaptic 

assembly. 
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 To determine if this effect is specific for GABAergic (D-class) motor 

neurons, we expanded our analysis to include the synapses of cholinergic (A-

class) motor neurons using the synaptic marker wdIs20[punc-4::SNB-1::GFP]. 

When treated with RNAi to knock down Hh-related ligands grl-4, grd-5, and grd-

6, both GABAergic and cholinergic synapses displayed partial but significant 

disorganization relative to control empty-vector treated animals (Figure 3.5D). 

Furthermore, we found that while D-class neurons were more sensitive to 

perturbations of Hh-related ligands than A-class, cholinergic motor neurons were 

uniquely affected by knockdown of Ptc-related receptors ptc-1 and F43D9.1 

(Figure 3.5D). These data indicate a broad role for previously uncharacterized 

Hh-related ligands and receptors, and suggest that their function is not limited to 

GABAergic motor neuron synaptic remodeling.  

These forward-genetic-screen experiments with wild-type animals, while 

revealing a previously unidentified purpose for Hh-related proteins in C. elegans, 

did not further our understanding of the unc-55-regulated synaptic remodeling 

pathway. Thus, we took a different approach involving a diagnostic RNAi screen 

with unc-55 mutants to identify the subset of unc-55 targets that function in 

GABAergic synaptic remodeling. 

 

An RNAi screen reveals unc-55 target genes that function in synaptic 

remodeling 

UNC-55 is proposed to prevent synaptic remodeling by repressing 

transcription of specific target genes (Shan et al., 2005). This assumption 
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predicts that genetic ablation of these unc-55 regulated genes should effectively 

“suppress” the Unc-55 synaptic phenotype by disabling the ectopic remodeling 

process. Therefore, we used RNAi (see Methods) to screen candidate unc-55 

targets (Table 1) for the restoration of GABAergic synapses to the ventral side of 

unc-55 mutants (Figure 3.6A-C). Bacterial RNAi feeding clones for 138 of the 

188 candidate unc-55 targets available in the Ahringer RNAi library (Kamath et 

al., 2003) were tested for induction of ventrally localized SNB-1::GFP puncta in 

RNAi-treated unc-55 animals vs. an empty vector negative control (see Methods) 

(Figure 3.6D-E). This assay revealed multiple suppressors of the Unc-55 

phenotype, including the C-lectin clec-44, the Iroquois homeodomain-containing 

transcription factor irx-1, the DEG/ENaC channel subunit unc-8, the Arp2/3 

subunit arx-5, the Hedgehog-related ligand grl-4, and the synaptobrevin 

homologue snb-2 (Figure 3.6F). In total, this screen detected significant RNAi 

suppression of the Unc-55 synaptic phenotype in 49 candidate unc-55-regulated 

genes for a hit rate of ~40%. We note that 19 of these synaptic remodeling genes 

are conserved in humans (Figure 3.6G, Table 3.3). Genes in our microarray 

profile that do not show RNAi suppression of the Unc-55 remodeling phenotype 

could be involved in other unc-55-dependent traits. 

We have begun to explore the roles of these candidate unc-55 targets in 

synaptic remodeling. Below are our preliminary results for the ArfGAP cnt-1 and 

the Arp2/3 complex component arx-5; in Chapter IV, I describe a comprehensive 

characterization of the homeodomain-containing protein irx-1/Iroquois in synaptic 

remodeling; Chapter V presents additional results pointing to a role for the  
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Figure 3.6. RNAi of candidate UNC-55 targets identifies genes required for synaptic 
remodeling.  (A-C) Experimental design of Unc-55 suppression screen. (A) In wild-type animals, 
SNB-1::GFP puncta (marking GABAergic NMJs) localize to both dorsal and ventral nerve cords. 
(B) In unc-55 animals, synaptic remodeling genes are de-repressed in VD motor neurons and 
SNB-1::GFP is depleted from the ventral nerve cord. (C) RNAi knockdown of UNC-55 target 
genes in unc-55 mutants disrupts synaptic remodeling and restores SNB-1::GFP puncta to the 
ventral nerve cord. (D-F) Representative views (50 µm length) of GABAergic SNB-1::GFP in adult 
ventral nerve cords. Linescans (in arbitrary fluorescence units) of the ventral nerve cord 
(excluding DD/VD cell bodies, see arrowheads in panel D). (D) SNB-1::GFP puncta are abundant 
in the ventral nerve cord of wild-type adults (E) but largely absent from unc-55(e1170) mutant 
animals treated with control RNAi (empty vector). (F) RNAi knockdown of candidate unc-55 
targets (clec-44, irx-1, unc-8, arx-5, grl-4, snb-2) in unc-55 mutants partially restores ventral SNB-
1::GFP puncta. (G) Conserved hits from Unc-55 RNAi suppression screen. Hits were scored as 
significantly different from empty vector control (p < 0.01, Student’s t-test) with restoration of 
ventral SNB-1::GFP puncta in >50% of animals scored. N represents all animals scored, 
combined from at least two separate RNAi treatments (see Methods). Boxes on the box-and-
whisker plot span the 25th to 75th percentile and whiskers indicate the minimum/maximum number 
of ventral puncta observed; the vertical line in each box indicates the 50th percentile. Conserved 
hits show < e-10 vs. human homologues by BLAST. 
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Table 3.3. unc-55-regulated synaptic remodeling genes identified via 
microarray and RNAi suppression screens 
 

Protein Type 
Enriched in 
microarray1 

Screened for 
Unc-55 

suppression Hits2 
Conserved 

Hits3 Gene Names 
channels and 
membrane proteins 11 9 4 2 unc-8, F28H1.4 

secreted surface 
protein 6 4 1 0  

Hedgehog-like family 4 3 1 1 grl-4 
G-protein signaling 2 3† 2 1 cnt-1 
fibronectin 3 2 0 0  
lectin 2 1 1 1 clec-44 
transcriptional control 5 4 2 1 irx-1 
cytoskeleton 2 2 1 1 arx-5 
lipid binding 3 3 1 0  
calcium binding 3 3 0 0  
iron binding 3 0 0 0  
FGF signaling 2 2 1 1 T23B12.5 
neuro-related 2 2 1 1 snb-2 
ubiquitin 1 1 0 0  
peptidase inhibitor 5 5 1 0  
metalloprotease 2 2 2 2 nas-38, T19D2.1 

other enzyme 24 19 9 4 C11E4.1, F20G2.1, 
K01A2.5, ZC434.9 

collagen 14 11 3 3 col-12, col-54,  
col-77 

other 6 1 0 0  
novel/uncharacterized 88 61 19 1 pqn-36 
Total 188 138 49 19  
1 determined by >2-fold enrichment, 1% false discovery rate 
2 determined by significant enrichment of ventral SNB-1::GFP puncta and a phenotype observed in at 
least 50% of animals screened, see Methods 
3 determined by BLAST score less than 10-10 
† ArfGAP cnt-1 added to candidate target RNAi screen based on its enrichment in a dataset with less 
stringent SAM parameters (>1.5x enrichment, 5% false discovery rate) 
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DEG/ENaC cation channel subunit, UNC-8, in an activity-dependent mechanism 

of synaptic remodeling. 

 

cnt-1, a Centaurin β ArfGAP homologue, is required for unc-55 remodeling 

 The combined approach of microarray and RNAi screening (Table 3.3) 

revealed cnt-1 as a candidate UNC-55 target necessary for synaptic remodeling. 

cnt-1 encodes a protein related to Centaurin β, an ADP-ribosylation factor (Arf) 

family GTPase activating protein (GAP) which also contains C-terminal ankyrin 

repeats and a pleckstrin homology (PH) domain predicted to bind 

phosphoinositides. The ArfGAP domain in Centaurin family proteins regulates the 

small GTPase Arf, which has defined roles in actin assembly at the plasma 

membrane as well as in vesicular sorting and trafficking in the Golgi (Randazzo 

et al., 2007; Myers and Casanova, 2008). At the plasma membrane, Centaurins 

can link Arf activity with phosphatidylinositol (PI) second-messenger signaling via 

interaction with the PH domain (Jackson et al., 2000). PI pathway components, 

such as the lipid kinase PI3K, have been shown to regulate synaptic stabilization 

in long-term potentiation (Kelly and Lynch, 2000; Kim et al., 2011). Interestingly, 

GIT (GPCR kinase interacting proteins) proteins also contain ArfGAP domains at 

their N-termini and associate with Liprin-α (C. elegans SYD-2) to organize 

synaptic active zone assembly (Kim et al., 2003; Hoefen and Berk, 2006). 

Furthermore, an Arf-like GTPase, ARL-8, was recently shown to regulate 

synaptic vesicle precursor trafficking in C. elegans neurons by physically 

traveling with synaptic components, suggesting that proper activation of Arfs may 
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be key to regulating synaptic trafficking and/or localization (Klassen et al., 2010). 

Because of these intriguing connections, we examined cnt-1 to explore its 

potential roles in synaptic remodeling. 

 Based on its close similarity to vertebrate Centaurin β, C. elegans CNT-1 

is predicted to adopt similar roles, but this possibility has not been previously 

addressed. To elucidate a potential role for CNT-1 in remodeling, Vanderbilt 

undergraduate Alyssa Fesmire and I analyzed a cnt-1 deletion allele (tm2313), 

available from the Mitani Lab and the National Bioresource Project. This cnt-1 

allele removes 341 bp of coding sequence (Figure 3.7A), resulting in deletion of 

part of the ArfGAP domain and part of the PH domain. When we crossed cnt-

1(tm2313) into unc-55(e1170) mutants, we found that SNB-1::GFP was partially 

restored to the ventral nerve cord and also relatively depleted from the dorsal 

nerve cord (Figure 3.7B). Quantification of SNB-1::GFP fluorescence along the 

length of unc-55; cnt-1 dorsal nerve cords revealed a significant reduction in 

SNB-1::GFP (Figure 3.7C). However, Alyssa noticed that expression of the SNB-

1::GFP transgene is sometimes diminished in the cnt-1 background, and it is 

possible that the reduction in dorsal SNB-1::GFP may be due to transgene 

silencing. Because of this possibility, Alyssa specifically looked for restoration of 

SNB-1::GFP in the ventral nerve cord in the “VD anterior region” (i.e. the ventral 

neurite immediately anterior to each VD soma) of VD motor neurons expressing 

high SNB-1::GFP in the soma indicating that the transgene is not silenced. We 

found that SNB-1::GFP is in fact restored to the ventral nerve cord of unc-55; cnt-

1 double mutants (Figure 3.7D), confirming our RNAi result. These data suggest  



119 

 
Figure 3.7. cnt-1(tm2313) suppresses unc-55 VD remodeling. (A) The exon structure of the 
cnt-1 locus on Chromosome II. cnt-1 has two predicted isoforms; the tm2313 deletion (red) 
removes the sequence that encodes the predicted ArfGAP domain (gray) in both isoforms. (B) 
SNB-1::GFP localization in the dorsal (DNC) and ventral (VNC) nerve cords of unc-55 and unc-
55; cnt-1 adults. Note decreased density of puncta in the dorsal nerve cord of unc-55; cnt-1 
double mutant with increased ventral fluorescence, indicating suppression of the Unc-55 defect. 
Arrowheads denote GABAergic neuron soma, scale bars indicate 10 µm. (C) SNB-1::GFP 
intensity (in arbitrary units) is increased in the dorsal nerve cord across the length of the animal of 
unc-55 mutants due to ectopic VD remodeling but is reduced in unc-55; cnt-1 mutant adults. * p < 
0.05, ** p < 0.01, Students t-test. Error bars denote standard deviation. (D) SNB-1::GFP is 
increased in the ventral processes of unc-55; cnt-1 double mutants, as indicated by measuring 
the fluorescence in the VNC of individual “VD anterior regions” (between adjacent VD cell 
bodies). Data not collected for wild-type. *** p < 0.001, Student’s t-test. Error bars denote 
standard deviation. 
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that CNT-1 is required for unc-55 VD synaptic remodeling, perhaps by regulating 

Arf GTPase activity to mediate vesicular trafficking, for instance (see discussion 

of arl-8 in Chapter I). 

 

Arp2/3 complex component arx-5 is required for remodeling but has 

broader roles in synaptogenesis 

 arx-5, the p21 subunit of the Arp2/3 complex (ARPC3) (Sawa et al., 

2003), is another candidate unc-55 target gene revealed in our RNAi screen. As 

noted in Chapter I, the enrichment of F-actin in both pre- and post-synaptic 

domains is well-documented, and Arp2/3 regulation of actin branching appears to 

govern actin organization at the synapse. (Dillon and Goda, 2005; Lin and Webb, 

2009). Due to the enrichment of branched actin at dynamic synapses (i.e. 

dendritic spines) and the finding that F-actin is stabilized via increased synaptic 

activity (Wegner et al., 2008), we selected arx-5 as an attractive unc-55 

candidate for elucidating the role of actin dynamics in synaptic remodeling.  

 To validate our RNAi results, we obtained a deletion allele of arx-5, 

ok1990, from the C. elegans Gene Knockout Consortium (Figure 3.8A). ok1990 

deletes the C-terminal half of the ARX-5 coding sequence and results in 

homozygous sterile adults which likely corresponds to the null phenotype. We 

determined that the arx-5(ok1990) mutation partially suppressed the ectopic 

accumulation of SNB-1::GFP in the dorsal nerve cord of unc-55 mutant animals 

(Figure 3.8B). This effect is not observed in the arx-5 single mutant which 

therefore rules out the possibility that arx-5 is necessary for completion of DD  
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Figure 3.8. arx-5(ok1990) blocks dorsal synaptogenesis in unc-55 and causes gaps in 
ventral synaptogenesis. (A) The exon structure of the arx-5 locus on Chromosome III. The 
ok1990 deletion (red) is a predicted null allele. (B) SNB-1::GFP intensity (in arbitrary units) is 
increased in the dorsal nerve cord across the length of the animal of unc-55 mutants due to 
ectopic VD remodeling but reduced in unc-55; arx-5 mutant adults. This reduction is specific to 
the unc-55 ectopic remodeling defect; arx-5 single mutants have dorsal fluorescence comparable 
to wild-type. * p < 0.05, ** p < 0.01, Students t-test. Error bars denote standard deviation. (C) 
SNB-1::GFP intensity (in arbitrary units) is unchanged in the ventral nerve cord of unc-55; arx-5 
adults compared to unc-55. Error bars denote standard deviation. (D) Wild-type SNB-1::GFP 
puncta are distributed evenly across the ventral nerve cord, whereas arx-5(ok1990) mutants 
show distinct gaps (dashed lines), potentially due to axon extension or synaptic patterning defects 
in VD motor neurons. Scale bars indicate 10 µm. 
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synaptic remodeling and, instead, argues for a role in ectopic remodeling in unc-

55 VD motor neurons (Figure 3.8B). 

 However, we did not see a increase in ventral fluorescence in the unc-

55(e1170); arx-5(ok1990) double mutants at the adult stage (Figure 3.8C), as 

was previously observed with arx-5 RNAi (Figure 3.6). This disparity may be due 

to a more severe effect of the null allele on arx-5 function that blocks 

synaptogenesis in the ventral nerve cord. arx-5 mutant have large asynaptic 

gaps in the ventral nerve cord (Figure 3.8D) which may be due to defects in 

patterning, trafficking, or axon extension. However, the dorsal cord appears 

unperturbed at this stage. This result suggests that arx-5 must be available at 

some level for VD synaptogenesis. Further experiments are needed to test 

whether arx-5(ok1990) can block VD remodeling at younger stages, or if the 

additional defects observed in the mutant result in aberrant synaptogenesis 

throughout development and thereby prevent suppression of Unc-55. 

 

Discussion 

Microarray experiments reveal a gene expression profile of larval wild-type 

and unc-55 GABAergic motor neurons 

 We used the mRNA-tagging technique to produce gene expression 

profiles for wild-type and unc-55 larval GABAergic motor neurons (Von Stetina et 

al., 2007b; Watson et al., 2008; Spencer et al., 2011). Comparison of the wild-

type GABAergic dataset to a reference profile (collected from all cells) identified 

over 1400 genes with potential roles in GABAergic development and function 
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(Figure 3.1-2). These GABAergic mRNA samples were also used in tiling arrays 

and compared to over thirty other tissue types by a fellow graduate student in the 

lab, Clay Spencer. This study identifies cohorts of genes that appear to be co-

regulated and regulatory elements that may drive this differential gene 

expression (Spencer et al., 2011). These findings are particularly important 

because they can lead to future studies to clarify the roles of genes encoding 

novel or uncharacterized function in the GABAergic dataset.  

Our goal was to use the mRNA tagging approach to uncover genes with 

potential roles in synaptic remodeling. Thus, we used the wild-type GABAergic 

profile as a reference for unc-55 larval GABAergic gene expression to identify 

transcripts regulated by the synaptic remodeling repressor, UNC-55. This 

analysis revealed 188 transcripts with significant enrichment in unc-55 mutant 

GABAergic motor neurons; these transcripts likely encode proteins with roles in 

executing the synaptic remodeling program in DD and unc-55 VD motor neurons 

(Figure 3.3). We then used a functional genetic approach to identify which of 

these 188 genes are required for ectopic remodeling in unc-55 mutant VD motor 

neurons. 

 

unc-55 blocks expression of a complex synaptic remodeling program  

Our RNAi suppression screen identified at least 50 genes that promote 

synaptic remodeling (Table 3.3). Whether these remodeling genes are also 

required for the creation of dorsal synapses awaits additional detailed analysis 

(see Chapter IV and Chapter V for studies on two of these targets). This in-
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depth analysis will be crucial for developing models of how these downstream 

effectors control remodeling. Nineteen of these genes encode proteins with 

conserved human homologs and together embody a wide array of potential 

cellular functions (Figure 3.6). This finding parallels profiling results for the 

transcription factor Mef2 which also identified a diverse spectrum of downstream 

genes that affect synaptic assembly in the hippocampus (Flavell et al., 2008).  

Other downstream effectors of synaptic remodeling revealed by our 

approach could fulfill additional roles. For example, RNAi knockdown of the 

DEG/ENaC cation channel subunit protein UNC-8 impedes the removal of ventral 

GABAergic motor neuron synaptic components in unc-55 mutants. This finding 

indicates that wild-type UNC-8 protein functions in a biological process that 

destabilizes ventral synapses in remodeling VD motor neurons. A potential role 

for UNC-8 in synaptic plasticity is consistent with findings that members of the 

closely related ASIC (Acid Sensing Ion Channel) family are synaptically localized 

and contribute to learning and memory mechanisms that depend on neuronal 

activity (Coryell et al., 2007; Voglis and Tavernarakis, 2008; Zha et al., 2009). 

Our evidence suggests the additional possibility that ASIC proteins are also 

involved in developmentally regulated synaptic plasticity. In this context, we 

suggest that UNC-8 may fulfill an indirect role in the removal of ventral 

GABAergic synapses by stabilizing dorsal outputs.  

A notable group of UNC-55-regulated genes revealed by our study points 

to an important role for the extracellular matrix (ECM) in synaptic remodeling. 

The mammalian neuromuscular junction is bisected by a basal lamina that 



125 

courses between presynaptic and postsynaptic membranes (Chiu and Sanes, 

1984). This characteristic feature is preserved in C. elegans (White et al., 1986) 

and thus it is reasonable to expect that remodeling of GABAergic synapses could 

involve specific changes in ECM architecture. One of the ECM-related genes in 

our list, clec-44, encodes a presumptive C-lectin cell surface protein. A likely role 

for clec-44 in synaptogenesis is supported by the finding that a related C-lectin, 

clec-38, contributes to the assembly of the presynaptic apparatus in C. elegans 

GABAergic motor neurons (Kulkarni et al., 2008). Potential ECM components 

regulated by unc-55 include three collagen genes, col-12, col-54 and col-77. 

Collagens fulfill multiple roles at the neuromuscular synapse such as anchoring 

neurotransmitter receptors and promoting synaptic maturation and maintenance 

(Fox, 2008; Latvanlehto et al., 2010). Recent reports indicate that GABAergic 

neurons in the mouse hippocampus (Su et al., 2010) and in the C. elegans motor 

circuit (Ackley et al., 2003) secrete specific collagens that promote 

synaptogenesis. Finally, our study found that two of the conserved synaptic 

remodeling genes encode the predicted matrix metalloproteases (MMPs), nas-38 

(a nematode astacin homologous to mammalian BMP1) and T19D2.1 (predicted 

to function as A Disintegrin And Metalloproteinase, ADAM). Important roles for 

MMPs in synaptic plasticity are indicated by the findings that injury-induced 

remodeling and activity-dependent LTP in the hippocampus require MMP activity 

(Ethell and Ethell, 2007; Wang et al., 2008). 
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unc-55-regulated genes that function in synaptic remodeling are also 

crucial for synaptogenesis 

In addition to identifying unc-55-regulated synaptic remodeling genes, this 

study also uncovered additional, broader synaptogenic roles for a subset of unc-

55 targets. Knockdown of Hh-related proteins grl-4, grd-5, and grd-6, resulted in 

defects in NMJ morphology in the ventral nerve cord. Although Hh has well-

defined roles in cell differentiation in the spinal cord and other tissues, little is 

known about how Hh signaling might mediate synaptogenesis or synaptic 

remodeling. In the Drosophila retina, Hh is trafficked to the growth cone of 

photoreceptor neurons and released from the axon to induce differentiation of the 

postsynaptic neuron (Kunes, 2000; Chu et al., 2006). This suggests that Hh-like 

ligands may be expressed and secreted from C. elegans motor neurons to 

promote NMJ formation. Intriguingly, aberrant synaptic morphology from Hh-

RNAi treatment was only observed in the ventral nerve cord, not the dorsal nerve 

cord. This result indicates that these components are necessary for synapses 

created by VD motor neurons, but are not required for DD synaptogenesis in the 

dorsal nerve cord. These results suggest the intriguing possibility that these Hh-

related genes are expressed at a basal level for homeostatic roles in VD 

synaptogenesis in the ventral nerve cord, but that UNC-55 blocks higher levels of 

expression that contribute to a remodeling program that relocates VD synapses 

to the dorsal nerve cord. Additional studies with reporter genes, perhaps 

fosmid::GFP transgenes to more closely recapitulate endogenous gene 

expression, may be used to test this model. 
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 Similarly, the Arp2/3 component, arx-5, appears to have roles in VD 

remodeling as well as normal morphology (Figure 3.6, 3.8). The Arp2/3 complex 

is composed of seven conserved components that function together to nucleate 

the formation of branched actin networks (Machesky and Gould, 1999). The 

observation that residual ventral VD synapses are retained with RNAi disruption 

of arx-5 function in an unc-55 mutant (Figure 3.8) suggests that reorganization of 

the actin cytoskeleton is required for their removal. This finding is intriguing 

because F-actin (filamentous actin) is a known synaptic component and has 

been shown to promote synaptic assembly and function (Dillon and Goda, 2005). 

Here, our results are consistent with an alternative model in which actin 

polymerization leads to disassembly of the presynaptic machinery. We also 

observed, however, that arx-5 is required for normal VD morphology, suggesting 

that basal expression of arx-5 in VDs promotes synaptogenesis while UNC-55 

prevents higher expression that promotes remodeling. We are intrigued by the 

possibility that a single subunit of the Arp2/3 complex (composed of seven 

subunits) is transcriptionally regulated to tightly mediate synaptic placement. We 

predict that arx-5-mediated cytoskeletal reorganization could also depend on the 

unc-55-regulated synaptic remodeling gene, cnt-1, which encodes a conserved 

Centaurin-β Arf GTPase activating protein (ArfGAP). Arf family GTPases are key 

regulators of the actin cytoskeleton and vesicular trafficking in neurons (Myers 

and Casanova, 2008; Klassen et al., 2010).  

Additional studies are now needed to elucidate the role of cnt-1 in 

remodeling. Alyssa Fesmire found that arf-1.1, which encodes a protein related 
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to ARF1 in humans, is co-expressed with cnt-1 in unc-55 GABAergic motor 

neurons (1.5-fold enriched in unc-55 mutants, 5% FDR). Additionally, a related 

Arf family member, arf-1.2, is enriched in the wild-type GABAergic dataset, 

suggesting differential Arf expression in remodeling vs. non-remodeling neurons. 

Centaurins are known to preferentially bind particular Arf GTPases (Jackson et 

al., 2000). Therefore, it would be useful for building a model of CNT-1 function to 

determine if either of these Arf GTPases is also involved in synaptic remodeling.  

 

Conclusions 

The phenomenon of synaptic plasticity is widely observed and crucially 

important to the development and maintenance of functional nervous systems 

(Consoulas et al., 2000; Bailey and Kandel, 2008; Barnes and Finnerty, 2010). 

Our approach has now discovered a large and diverse array of protein types with 

necessary roles in synaptic remodeling. Future studies will explore the specific 

functions of these components which offer a powerful opportunity to elucidate the 

molecular mechanism of this fundamental biological process. We have 

characterized the synaptic remodeling function of two of these genes, the 

transcription factor irx-1/Iroquois, and a degenerin, acid-sensing ion channel 

family member, unc-8, in subsequent chapters. 
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CHAPTER IV 

 

IRX-1/IROQUOIS PROMOTES REMODELING OF GABAERGIC SYNAPSES 

DOWNSTREAM OF UNC-55/COUP-TF 

 

Introduction 

As detailed in Chapter III, we used candidate unc-55 targets in an RNAi 

suppression screen to reveal suppressors of ectopic synaptic remodeling in unc-

55 mutants. Our approach yielded nineteen conserved synaptic remodeling 

genes. Of these, we selected irx-1/Iroquois, which encodes a homeodomain-

containing transcription factor, for additional experiments to confirm its role in 

GABAergic remodeling. 

The importance of homeodomain-containing transcription factors in 

patterning various tissue types has been well-established (De Robertis et al., 

1991; Tsuchida et al., 1994; Akam, 1995). Typical homeobox genes contain a 

homeodomain consisting of 60 amino acids, whereas atypical homeobox genes 

contain a larger or smaller homeodomain. One subclass of atypical homeobox 

genes, TALE (Three-Amino acid Loop Extension in the homeodomain), includes 

the Iroquois family of transcription factors (Bertolino et al., 1995; Burglin, 1997). 

Iroquois family proteins are defined by the TALE homeodomain as well as a 

conserved 13-amino acid “IRO box” of unknown function (Burglin, 1997; Gomez-

Skarmeta and Modolell, 2002).  
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Iroquois family transcription factors were first identified as regulators of 

proneural genes in Drosophila and Xenopus (Cavodeassi et al., 2001). During 

Drosophila dorsoventral eye patterning, Wnt and Hedgehog signaling in the 

dorsal eye primordium promote the expression of iro transcription factors. The 

boundary where dorsal Iroquois-expressing cells meet ventral non-expressing 

cells forms the midline of the compound eye. Misexpression of iro genes in the 

eye primordium results in the formation of an ectopic boundary (Cavodeassi et 

al., 1999). Iroquois family genes also are required for patterning vertebrate brain 

and spinal cord. In the chick brain, Irx3 defines the posterior half of the forebrain, 

whereas Irx2 patterns the hindbrain. The Xenopus Iroquois homologue, Xiro1, 

has a similar role in brain patterning (Gomez-Skarmeta and Modolell, 2002; 

Kobayashi et al., 2002). In the vertebrate spinal cord, Irx3 is activated in 

response to the Hh-gradient to specify dorsal interneuron fates (Briscoe and 

Ericson, 1999; Muhr et al., 2001). 

Multiple Iroquois-family genes with tissue-specific roles are found in most 

model organisms (i.e. three in Drosophila, six in mice and humans). In contrast, 

C. elegans contains a single Iroquois homologue encoded by irx-1 (Gomez-

Skarmeta and Modolell, 2002; Mukherjee and Burglin, 2007). Prior to this study, 

the role of IRX-1 function in C. elegans was unknown. Because of the well-

established role of Iroquois in neural development and the potential to identify a 

synaptic remodeling role for Iroquois, we selected irx-1 from the list of Unc-55 

suppressors for additional experiments. We have found that irx-1 is indeed a key 

regulator of C. elegans synaptic remodeling, and study of irx-1 offers an 
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attractive opportunity to characterize a new and potentially conserved role of 

Iroquois family members in synaptic remodeling.   

 

Author Contributions 

 The IRX-1::GFP fosmid construct was built by Mihail Sarov, 

TransgeneOmics Facility at the Max Planck Institute of Molecular Cell Biology 

and Genetics. All electrophysiological assays were performed by Janet 

Richmond, University of Illinois at Chicago. 

 

Methods 

Strains and genetics: Nematode strains were maintained at 20-25°C with 

standard culture techniques (Brenner, 1974). The wild-type strain is N2 and all 

references to unc-55 mutants used the allele unc-55(e1170) (Walthall, 1990). All 

animals used in this study were hermaphrodites. 

 

Strain list:  

note: unc-119(+) refers to unc-119-rescuing minigene from MM051 (Maduro and 

Pilgrim, 1995) (see details of strain construction) 

General synaptic remodeling analysis strains: 

CZ333 juIs1[punc-25::SNB-1::GFP; lin-15+] 

NC1851 unc-55(e1170); juIs1[punc-25::SNB-1::GFP; lin-15+] 

NC2296 unc-119; juIs1[punc-25::SNB-1::GFP; lin-15+]; wdEx658[punc-

25::mCherry::unc-54UTR, unc-119(+)] 
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NC2319 unc-55(e1170); unc-119; juIs1[punc-25::SNB-1::GFP; lin-15+]; 

wdEx658[punc-25::mCherry::unc-54UTR, unc-119(+)] 

ZM54 hpIs3[punc-25::SYD-2::GFP; lin-15(+)]   

NC1849  unc-55(e1170); hpIs3[punc-25::SYD-2::GFP; lin-15(+)]   

NC1859  lin-6(e1466) dpy-5(e61)I/hT2[bli-4(e937) let(q782) qIs48](I;III); 

juIs1[punc-25::SNB-1::GFP; lin-15+] 

irx-1::GFP strains: 

NC2233 unc-119(ed3); wdIs78[irx-1::GFP; unc-119+ fosmid] 

NC2298 unc-55; unc-119(ed3); wdIs78[irx-1::GFP; unc-119+ fosmid] 

irx-1(csRNAi) strains: 

NC2111 unc-119(ed3); wdEx686[pttr-39::irx-1::unc-10UTR; unc-119+; punc-

25::mCherry::unc-54UTR; pttr-39::irx-1 antisense::unc-10UTR] 

NC2297 unc-119(ed3); juIs1[punc-25::SNB-1::GFP; lin-15+]; wdEx686[pttr-

39::irx-1::unc-10UTR; unc-119+; punc-25::mCherry::unc-54UTR; 

pttr-39::irx-1 antisense::unc-10UTR] 

NC2169 unc-55(e1170); unc-119(ed3); juIs1[punc-25::SNB-1::GFP; lin-15+]; 

wdEx686[pttr-39::irx-1::unc-10UTR; unc-119+; punc-

25::mCherry::unc-54UTR; pttr-39::irx-1 antisense::unc-10UTR] 

irx-1 mutant strains: 

FX03354 irx-1(tm3354)/+ 

NC2345 irx-1(tm3354)/unc-55(e1170); juIs1[punc-25::SNB-1::GFP; lin-15+] 

Electrophysiology strains: 

EG5025 oxIs351[punc-47:ChR2::mCherry::unc-54UTR lin-15+ LITMUS 38i]  
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NC2211 unc-55 (e1170); oxIs351[punc-47:ChR2::mCherry::unc-54UTR lin-

15+ LITMUS 38i] 

NC2212 unc-55 (e1170); unc-119(ed3); oxIs351[punc-

47:ChR2::mCherry::unc-54UTR lin-15+ LITMUS 38i]; wdEx686[pttr-

39::irx-1::unc-10UTR; unc-119+; punc-25::mCherry::unc-54UTR; 

pttr-39::irx-1 antisense::unc-10UTR] 

irx-1(gf) strain: 

NC2347 unc-119(ed3); juIs1[punc-25::SNB-1::GFP; lin-15+]; wdEx753[pttr-

39::IRX-1::GFP; unc-119+] 

 

Microscopy and synapse scoring: SNB-1::GFP assays were performed with 

the transgene juIs1[punc-25::SNB-1::GFP; lin-15+] (Hallam and Jin, 1998) and  

SYD-2::GFP assays used hpIs3[punc-25::SYD-2::GFP; lin-15+]  (Yeh et al., 

2005). Animals were anesthetized with 0.1% tricaine/tetramisole, mounted on a 

2% agarose pad, and imaged with a Zeiss Axiovert microscope using Metamorph 

software. Images in Figure 4.1, 4.3, and 4.6, were obtained with a Leica TCSSP5 

confocal microscope with Leica Application Suite Advanced Fluorescence (LAS-

AF) software and created using maximum intensity projections of Z-stacks 

collected at 1.0 µm/step with a 40x objective. 

For irx-1(csRNAi) quantification, individual VD motor neurons expressing 

mCherry (control or irx-1(csRNAi)-labeling) were scored. For each mCherry+ VD, 

the number of SNB-1::GFP puncta in the anterior interval between the VD and 
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the next anterior VD were counted in the dorsal and ventral nerve cords. These 

analyses were considered puncta per “VD anterior region”.  

For SYD-2::GFP quantification, Z-stacks collected at 1.0 µm/step with a 

40x objective were collapsed into maximum intensity projections. Linescan 

intensity values along the ventral nerve cord of each adult animal were collected 

with Leica Application Suite Advanced Fluorescence (LAS-AF) software. For 

each animal, the linescan intensity values were scaled such that the minimum 

intensity value was set to 0 and the maximum intensity value was set to 255. All 

intensity values for each animal were averaged, and then average intensity per 

animal was averaged by genotype/RNAi treatment. Results in this graph are from 

>8 adults for each genotype/RNAi treatment. 

For irx-1(gf) studies, the wdEx753 transgene was crossed into the 

juIs1[punc-25::SNB-1::GFP] background. In this strain, SNB-1::GFP is normally 

excluded from the nucleus. We performed mosaic analysis by identifying 

individual VD motor neurons scoring as “wild-type” (SNB-1::GFP in cell soma, but 

no IRX-1::GFP in nucleus) or irx-1(gf) (IRX-1::GFP localized in nucleus, with 

SNB-1::GFP in soma). We observed that very high IRX-1::GFP expression 

sometimes silenced SNB-1::GFP expression. Therefore, the fluorescence in the 

nucleus (IRX-1::GFP) and soma (SNB-1::GFP) of every neuron scored was 

quantified using confocal microscopy and Z-stack maximum intensity projections 

in LAS-AF software. Only neurons with equivalent fluorescent intensity in the 

nucleus and soma were scored as “irx-1(gf)” neurons. Adjacent neurons with 

high cell soma intensity/low nuclear intensity were scored as “wild-type” neurons. 
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For each VD, the number of SNB-1::GFP puncta in the anterior interval between 

the VD and the next anterior VD were counted in the dorsal and ventral nerve 

cords. These analyses were considered puncta per “VD anterior region”. 

 

Construction of irx-1::GFP: GFP and the unc-119 minigene were inserted into 

a fosmid containing the irx-1 locus (Sarov et al., 2006; Zhong et al., 2010). In this 

construct, GFP is fused within the irx-1 C-terminus and produces a functional 

protein capable of rescuing the lethality observed in irx-1 null mutants (data not 

shown). The irx-1::GFP fosmid was purified using a modified column-less Qiagen 

miniprep protocol (Warming et al., 2005) and unc-119 worms were transformed 

via microparticle bombardment with 8 µg irx-1::GFP fosmid coated on gold beads 

at 1800 psi as previously described (Spencer et al., 2011). Bombardment yielded 

a spontaneous integrant, wdIs78.  

 

Movement assays: For irx-1 global (i.e., feeding) RNAi movement assays, unc-

55; juIs1 L4 larvae were treated with empty vector and irx-1 RNAi as described 

previously (Chapter III) with the exception that eri-1(mg366) was not used in this 

assay. Worms were tapped on the head to assess suppression of the Unc-55 

backward movement defect and were binned into “severe Unc” (coil ventrally 

immediately upon tapping), “moderate Unc” (coil ventrally while attempting 

backward locomotion), and “wild-type” (sustain backward locomotion with at least 

two body bends) categories. 
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Construction of irx-1(csRNAi): Whole-worm cDNA was generated by RT-PCR 

of mixed-stage N2 RNA with poly-dT (Affy 100) primers and Superscript II 

(Invitrogen). 2 µL of the RT-PCR reaction was used as template to PCR-amplify 

irx-1 cDNA (1131 bp). irx-1 cDNA was cloned into pCR2.1 via TOPO TA cloning 

(Invitrogen) resulting in plasmid pSA17. The “irx-1 sense” construct pSA47 was 

cloned as follows: The pttr-39 promoter (composed of 891 bp immediately 

upstream of ttr-39) and irx-1 cDNA were PCR-amplified and cloned into a 

derivative of pitr-1::DYS-1::YFP (kindly provided by Kang Shen) (Poon et al., 

2008) resulting in irx-1 sense RNA expression in GABA neurons. The unc-119 

minigene (originally from MM051 (Maduro and Pilgrim, 1995)) was cloned into 

the backbone to produce pSA47. The “irx-1 antisense” construct pSA49 was 

cloned as follows: irx-1 cDNA was PCR-amplified and inserted into pSA47 in the 

opposite orientation, replacing forward-irx-1 with reverse irx-1 sequence. The 

unc-119 minigene was replaced with punc-25::mCherry from pMLH41 (Earls et 

al., 2010) to result in pSA49. pSA47 (“irx-1 sense”) and pSA49 (“irx-1 antisense”) 

were linearized and ligated, then transformed into unc-119 worms via 

microparticle bombardment (Praitis et al., 2001). The presence of “irx-1 sense” 

was identified by wild-type (unc-119+) movement, and the presence of “irx-1 

antisense” was detected as mCherry expression in the GABA motor neurons. 

 

Electrophysiology: Electrophysiology measurements were collected from 

dissected preparations, as previously described (Richmond and Jorgensen, 

1999), with the following modifications to recording media. The extracellular 



137 

solution consisted of 150 mM NaCl, 5 mM KCl, 5mM CaCl2, 4 mM MgCl2, 10 mM 

glucose, 5 mM sucrose, and 15 mM HEPES 15 (pH 7.4, ~340 mOsm).  The 

patch pipette was filled with 120 mM KCl, 20 mM KOH, 4 mM MgCl2, 5 mM N-

tris[Hydroxymethyl] methyl-2-aminoethane-sulfonic acid, 0.25 mM CaCl2, 4 mM 

Na2ATP, 36 mM sucrose, 5 mM EGTA (pH 7.2, ~ 315mOsm). Electrophysio-

logical measurements were carried out in wild-type, unc-55, and unc-55; irx-

1(csRNAi) with the oxIs351 GABA channelrhodopsin transgene in the 

background. Recordings of GABAergic activity were collected from body wall 

muscles, patched in the whole-cell voltage clamp mode at a holding potential of -

60mV, in the presence of 10-4M d-tubocurare (dTBC) to block muscle stimulation 

from acetylcholine receptors. 

 

DD remodeling timecourse: For the DD remodeling timecourse, NC2296 was 

used as the “wild-type” reference for irx-1(csRNAi) to eliminate the possibility of 

remodeling delays due to unc-119 rescue or mCherry expression. Separate 

groups of 100 gravid wild-type (NC2296) and irx-1(csRNAi) (NC2297) adults 

were picked to single 60mm plates and allowed to lay eggs for one hour and then 

removed from the plate. The mid-point of the hour in which eggs were laid was 

considered to be t=0. Plates were incubated at 23°C throughout the timecourse. 

Beginning at 21 hours post-lay and for each hour thereafter, larvae were picked 

off wild-type and irx-1(csRNAi) plates and imaged (as above) on a Zeiss Axiovert 

microscope. The number of dorsal SNB-1::GFP puncta, number of GFP+ 

neurons (i.e. GABA neurons), and number of mCherry+ neurons (i.e. wild-type 
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mCherry or irx-1(csRNAi)) were recorded for >6 worms for each timepoint. Data 

were recorded from worms with mCherry in >50% of GABA (GFP+) neurons. 

Results were pooled from three separate timecourse experiments.  

 

Construction and analysis of irx-1(gf): To generate pttr-39::irx-1::GFP; unc-

119+, the entire GFP-tagged irx-1 ORF from the irx-1::GFP fosmid was PCR-

amplified and cloned into pCR2.1 via TOPO-TA cloning to yield pSA64. The irx-

1::GFP ORF was then cloned into pSA47 (see above) to yield pSA70. This 

construct was transformed into unc-119 worms via microparticle bombardment 

as above. Animals exhibited mosaic wdEx753[pttr-39::IRX-1::GFP; unc-119+] 

expression in DD and VD motor neurons.  

 

Results 

irx-1 is expressed in remodeling GABAergic motor neurons 

The elevation of irx-1 transcript in unc-55 mutants suggests that irx-1 is 

negatively regulated by unc-55. Moreover, the RNAi results indicate that irx-1 is 

required for GABA neuron remodeling. These findings suggest that irx-1 should 

be normally expressed in remodeling DDs and de-repressed in unc-55 VDs. To 

test this idea, we engineered an irx-1 reporter gene in which GFP was fused to 

the irx-1 coding sequence in a construct that spans the complete irx-1 gene as 

well as large flanking regions (see Methods). The resultant IRX-1::GFP fusion 

protein is capable of rescuing the lethal phenotype of an irx-1 null allele (data not 

shown). Thus, we reasoned that endogenous irx-1 gene regulatory sequences 
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should be preserved in this construct and that the chimeric IRX-1::GFP protein 

retains native activity. IRX-1::GFP was consistently detected in the nuclei of DD 

motor neurons from both wild-type and unc-55 mutant animals (Figure 4.1A-B, 

73 of 76 wild-type DDs and 77 of 78 of unc-55 DDs). Moreover, IRX-1::GFP is 

not expressed in wild-type VD motor neurons (2 of 170) but is de-repressed in 

unc-55 VD motor neurons (171 of 176). Weak IRX-1::GFP expression was also 

observed in hypodermal nuclei and in two unidentified head neurons (data not 

shown). We found that the Pitx-1 homolog unc-30, which is necessary for DD 

remodeling in the L1, is also required for expression of IRX-1::GFP in GABA 

motor neurons (GFP expression in 0 of 40 DD motor neurons and 0 of 90 VD 

motor neurons). This result is consistent with the idea that the GABAergic motor 

neuron synaptic remodeling program is controlled by modulation of the opposing 

roles of UNC-30 (positive) and UNC-55 (negative) (Shan et al., 2005). Together, 

these findings support a role for irx-1 in synaptic remodeling and confirm that the 

native irx-1 gene is negatively regulated by unc-55. 

To predict whether irx-1 is directly regulated by unc-55, we searched the 

upstream regulatory region of irx-1 for COUP-TF binding sites. UNC-55 

represses expression of the flp-13 locus in VD motor neurons via a single COUP-

TF half-site, TGACCT, which represents the canonical COUP-TF binding site 

(Shan et al., 2005). In general, COUP-TFs bind imperfect direct or inverted 

repeats of TGACCT with variable lengths of separation between a pair of half-

sties (Park et al., 2003). In the irx-1 promoter, we found two variants of the 

canonical binding half-site (Montemayor et al., 2010), TGACCC and TGACCA,  
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Figure 4.1. irx-1::GFP is expressed in remodeling GABAergic motor neurons. (A) IRX-
1::GFP is restricted to the nucleus of DD motor neurons in wild-type L4 larvae. In unc-55 mutants, 
IRX-1::GFP is observed in both DD and VD motor neurons (DD5 and VD10 shown for examples). 
Similar expression patterns were observed for all DD and VD motor neurons. Scale bar, 5 µm. 
(B) Quantification of IRX-1::GFP expression in GABAergic motor neurons of L2 larvae. Note that 
IRX-1::GFP is de-repressed in unc-55 VD motor neurons and not expressed in unc-30 
GABAergic motor neurons. *** p < 0.0001, Fisher’s Exact 2-tailed Test. (C) Location and 
conservation of predicted COUP-TF binding half-sites in the irx-1 5’ regulatory region. Distances 
are indicated in base pairs upstream of the irx-1 start site. 
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with high conservation among nematode species (Figure 4.1C). It remains an 

open question whether these sites are physically occupied by UNC-55 to repress 

irx-1 expression. 

 

Ectopic irx-1 function is required for the Unc-55 backward locomotion 

defect 

In unc-55 mutants, the loss of GABAergic ventral input from VD motor 

neurons results in ventral coiling during backward locomotion (Walthall and 

Plunkett, 1995). If irx-1 function is required for VD synaptic remodeling in an unc-

55 mutant, then the loss of irx-1 activity should preserve ventral VD inputs and 

thus restore normal backward movement (i.e., “suppress” the Unc-55 movement 

defect).  Because an irx-1 null allele results in embryonic and early larval 

lethality, we used global RNAi to test this model. As expected, unc-55 animals 

from control RNAi plates displayed the characteristic backward Unc phenotype 

(Figure 4.2A,). In contrast, a substantial fraction of surviving unc-55 animals 

from irx-1 RNAi feeding plates were capable of sustained backward locomotion 

(Figure 4.2B). We quantified this effect by scoring three distinct categories of 

movement: severe Unc (coils ventrally with tap on the head), moderate Unc 

(attempts backward locomotion before coiling ventrally), and wild-type (executes 

at least 2 body bends of backward locomotion, see Methods).  All control-treated 

unc-55 adults exhibited Unc backward locomotion (39% severe Unc, 61% 

moderate Unc, N=61); in contrast, most of the irx-1 RNAi-treated unc-55 adults 

showed wild-type backward locomotion (80%, N=50) (Figure 4.2B). The small  
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Figure 4.2. irx-1 knockdown restores backward locomotion in unc-55 mutants. (A) unc-55 
mutants coil ventrally during backward locomotion due to loss of inhibitory GABAergic input to 
ventral muscles (top panels). Treatment of unc-55 mutants with irx-1 RNAi restores backward 
locomotion (bottom panels). Animals were tapped on the head (asterisk) at t = 0. (B) 
Quantification of irx-1 suppression of backward movement defect in unc-55 adults treated with 
control (empty vector) or with irx-1 RNAi. Animals were binned in three categories: “severe Unc” 
which coil ventrally immediately after a head tap, “moderate Unc” which attempt backward 
locomotion but stop after coiling ventrally (for example, see top panels in A), and “wild-type” 
which sustain backward locomotion (at least 1 body length, for example, see bottom panels in A). 
All control-treated animals exhibit uncoordinated backward locomotion (N = 61), whereas most 
(>80%) irx-1 treated animals show wild-type backward movement (N = 50).  
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fraction showing some Unc behavior (18% moderate Unc, 2% severe Unc) may 

be attributed to the incomplete effect of RNAi knockdown or to necessary 

remodeling roles for additional unc-55 regulated genes (Figure 4.2B). To confirm 

that irx-1 function in this pathway is cell-autonomous, we constructed a 

transgenic line carrying a heritable GABA-specific irx-1 RNAi array, wdEx686[irx-

1(csRNAi)]. The irx-1(csRNAi) transgene expresses both sense and antisense 

irx-1 RNA strands under control of the GABA-specific ttr-39 promoter; GABA 

neurons with the irx-1(csRNAi) array are marked by co-expression of 

GABA::mCherry (see Methods). These experiments confirmed that selective 

ablation of irx-1 in ventral cord GABA neurons is sufficient to suppress the Unc-

55 backward movement defect (data not shown). 

 

irx-1 promotes synaptic remodeling in unc-55 mutant VD motor neurons  

Our finding that cell-specific irx-1 RNAi restores backward locomotion to 

an unc-55 mutant suggests that cell-autonomous knockdown of irx-1 is also likely 

to block synaptic remodeling in unc-55 VD motor neurons. To test this prediction, 

we scored the distribution of SNB-1::GFP puncta in the dorsal and ventral nerve 

cords of unc-55; irx-1(csRNAi) mutant animals. These arrays show mosaic 

expression and the mCherry marker identifies the subset of GABAergic neurons 

that actually carry either the irx-1(csRNAi) or the wdEx658 control array (see 

Methods). We first confirmed that SNB-1::GFP is strongly enriched in the dorsal 

nerve cord (Figure 4.3A) and depleted in the ventral nerve cord (Figure 4.3C) of 

mCherry-marked GABA motor neurons in unc-55 mutant animals carrying the  
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Figure 4.3. Cell-autonomous expression of irx-1 is required for synaptic remodeling in unc-
55 VD motor neurons. (A-D) SNB-1::GFP puncta label GABAergic NMJs. mCherry marks cells 
expressing the control wdEx658 transgenic array (panels A and C) or specific neurons 
expressing the irx-1(csRNAi) transgene, wdEx686 (panels B and D) (see Methods). A-B, dorsal 
nerve cord, C-D, ventral nerve cord.  Common region of single adult animal in panels A, C and 
separate adult in B, D. Scale bars = 10 µm. (A) Note dense array of SNB-1::GFP puncta in the 
dorsal nerve cord of unc-55 adult. (B) Fewer SNB-1::GFP puncta are observed in the region 
corresponding to dorsal arm of irx-1(csRNAi) expressing VD motor neuron (marked with 
mCherry). Note that dorsal SNB-1::GFP puncta from DD3 in this region do not overlap with the 
VD6 mCherry marker. (C) SNB-1::GFP puncta are depleted from the ventral nerve cord of unc-55 
adults. (D) Expression of irx-1(csRNAi) in VD7 (marked with mCherry) of an unc-55 mutant 
restores ventral SNB-1::GFP puncta. SNB-1::GFP puncta are absent from neighboring VD6 
motor neuron that does not express irx-1(csRNAi). (E) Dotted lines denote anterior regions of 
mCherry-marked VD motor neurons in which SNB-1::GFP puncta were counted (see Methods). 
(F) Quantification of irx-1(csRNAi) suppression of the Unc-55 synaptic remodeling defect. ** p < 
0.0001, 2-way ANOVA with Bonferroni’s Multiple Comparison Test. N = 50 VD anterior regions 
per genotype. (G) Average fluorescence intensity of SNB-1::GFP in the ventral nerve cords of 
unc-55, unc-55/+, and unc-55/irx-1 adults. * p < 0.05, Student’s t-test.  
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wdEx658 control array. In contrast, unc-55 mutant VD motor neurons that 

express irx-1(csRNAi) show fewer SNB-1::GFP puncta in the dorsal nerve cord 

(Figure 4.3B) with a concomitant increase in ventral SNB-1::GFP-marked NMJs 

(Figure 4.3D, arrowheads). To quantify this effect, we counted SNB-1::GFP 

puncta in a region (“VD anterior region”) that includes the dorsal and ventral 

processes of the given mCherry marked VD motor neuron (Figure 4.3E). In wild-

type animals, the number of ventral NMJs (from VDs) was roughly equivalent to 

the number of dorsal NMJs (from DDs) in each VD anterior region (Figure 4.3F, 

12.7+2.9 ventral puncta, 10.1+2.8 dorsal puncta, N=50 VD anterior regions). As 

expected, in unc-55 mutants, the number of dorsal SNB-1::GFP puncta was 

significantly increased (22.4+4.0, p<0.0001 vs. wild-type, 2-way ANOVA with 

Bonferroni’s Multiple Comparison Test) with a corresponding depletion of ventral 

puncta (2.3 +1.7, p<0.0001 vs. wild-type, N=50 VD anterior regions) (Figure 

4.3F). In comparison to unc-55 mutant VD motor neurons, unc-55; irx-1(csRNAi) 

VDs had significantly fewer dorsal puncta and more ventral puncta (Figure 4.3F, 

14.6+2.5 dorsal puncta, p<0.0001 vs. unc-55, 12.9+2.3 ventral puncta, p<0.0001 

vs. unc-55, N=50 VD anterior regions). These results confirm that knockdown of 

irx-1 specifically in unc-55 mutant VDs prevents remodeling and substantiates 

the proposal that de-repression of irx-1 in unc-55 mutants promotes VD 

remodeling.  

We wanted to test whether a null allele of irx-1 could also suppress the 

unc-55 defect to confirm the irx-1 RNAi results. Because of the technical 

challenges of building an unc-55; irx-1 double mutant and the lethality observed 
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in irx-1 homozygotes, we analyzed unc-55/irx-1(tm3354) heterozygotes. We 

found that unc-55/+ displays a partial ectopic remodeling phenotype as indicated 

by a significant loss of SNB-1::GFP intensity in the ventral nerve cord (Figure 

4.3G). This subtle but significant ectopic remodeling defect is suppressed in unc-

55/irx-1 (double heterozygotes). This result confirms our RNAi knockdown 

experiments and demonstrates that loss of irx-1 prevents remodeling in unc-55 

VD motor neurons.  

 

Cell-specific irx-1 knockdown restores GABAergic input to ventral muscles 

in unc-55 mutants 

The restoration of backward locomotion (Figure 4.2) as well as ventral 

GABAergic SNB-1::GFP puncta to unc-55; irx-1(csRNAi) animals (Figure 4.3) is 

indicative of functional GABAergic inputs to ventral body wall muscles. To test 

this idea, we recorded miniature postsynaptic events (mPSCs) in the ventral 

muscles of wild-type, unc-55, and unc-55; irx-1(csRNAi). These animals were 

treated with the cholinergic antagonist, d-tubocurare (dTBC), to insure that all 

mPSCs are exclusively induced by GABAergic signaling (Richmond and 

Jorgensen, 1999). Recordings from ventral muscles detected robust mPSCs in 

wild-type adults (Figure 4.4A). In contrast, mPSCs were rarely observed in 

ventral recordings of unc-55 mutants (Figure 4.4A) as predicted from the 

observation that VD synapses are largely confined to the dorsal nerve cord in 

unc-55 animals (Walthall and Plunkett, 1995). irx-1(csRNAi) expression in unc-55 

mutants restores mPSCs to ventral muscle (Figure 4.4A) and thus indicates that  
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Figure 4.4. irx-1 knockdown restores ventral GABAergic synaptic output in unc-55 
mutants. (A) Miniature post-synaptic currents (mPSCs) are abundant in ventral body muscles of 
wild-type and unc-55; irx-1(csRNAi) animals but are rare in unc-55 mutants. Animals in panel A 
were treated with d-tubocurare (dTBC) to block cholinergic activity. (B) Quantification of results in 
panel A shows restoration of ventral mPSCs to unc-55 mutants treated with irx-1(csRNAi). As a 
control, unc-55 animals were recorded without dTBC. Robust cholinergic mPSCs in unc-55 
animals in the absence of dTBC indicate that the Unc-55 defect is specific to GABAergic 
synapses. * p < 0.05, Mann-Whitney U-test. N = 4-6 for each genotype, error bars indicate 
standard deviation. (C) Average mPSC amplitude is similar for all recordings, indicating that 
mPSCs are quantal. N = 4-6 for each genotype, error bars indicate standard deviation. 
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the ventral GABAergic SNB-1::GFP puncta that reappear in this strain (Figure 

4.4D, F) correspond to functional synapses. These results were confirmed by 

quantification; mPSCs were virtually absent from unc-55 ventral muscles 

(45.8+20.3 events/sec in wild-type, N=5, vs. 0.05+0.06 events/sec in unc-55, 

N=4, p<0.02, Mann-Whitney U-test) but were significantly restored in unc-55; irx-

1(csRNAi) animals (22.6+15.0 events/sec, N=6, p<0.02 vs. unc-55, p>0.1 vs. 

wild-type, Mann-Whitney U-test). Robust ventral mPSCs were detected in unc-55 

mutants in the absence of dTBC thereby demonstrating that ventral cholinergic 

inputs are not perturbed by ectopic VD remodeling (Figure 4.4B). Similar mPSC 

event amplitudes were observed for all genotypes (p<0.01 in all comparisons, 

Mann-Whitney U-test), suggesting that quantal neurotransmitter release for the 

residual mPSCs in unc-55 mutants and receptor sensitivity are unchanged 

(Figure 4.4C).  

We conclude that the sparse occurrence of ventral mPSCs in unc-55 is 

due to a loss of ventral GABAergic input and that the restoration of ventral 

activity by irx-1(csRNAi) indicates re-establishment of ventral GABAergic 

synapses. However, we also found that these synapses were apparently 

incapable of evoked release (data not shown) when stimulated via a 

channelrhodopsin excitation system (Liu et al., 2009). This result predicts that irx-

1 knockdown does not restore full functionality to these synapses and that 

knockdown of other unc-55-regulated genes in addition to irx-1 would be required 

for evoked release of these VD ventral synapses. 
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SYD-2 is not enriched at restored unc-55; irx-1 ventral synapses 

The Liprin-α homologue in C. elegans, syd-2, encodes a membrane 

protein required for normal synaptogenesis in both immature and remodeled 

GABAergic motor neurons (Zhen and Jin, 1999). Because of the normal SNB-

1::GFP morphology (Figure 4.3) but only partially restored function (Figure 4.4) 

of VD ventral synapses in an unc-55 mutant, we wanted to examine the 

localization of SYD-2 in unc-55; irx-1(RNAi)-treated adults.  

In unc-55 mutants, SYD-2 localization mirrors the localization of SNB-1 

and is remodeled to dorsal synapses of VD motor neurons with a concurrent 

depletion of SYD-2 in the ventral nerve cord (see Chapter II). Interestingly, 

whereas irx-1 knockdown results in ventral SNB-1::GFP-labeled synapses in 

unc-55 mutants, SYD-2::GFP is not restored to the ventral nerve cord in unc-55; 

irx-1(RNAi) larvae (Figure 4.5). This result suggests that irx-1 functions to 

regulate synaptic vesicle trafficking, as indicated by ventral SNB-1::GFP-labeled 

synaptic vesicles, but does not regulate the localization of the membrane 

component SYD-2. This absence of SYD-2 at unc-55; irx-1 restored ventral 

synapses may explain why these synapses are incapable of evoked release, as 

discussed in the previous section. 

 

irx-1 is required for normal DD motor neuron remodeling 

Our results have shown that irx-1 is required for ectopic remodeling of VD 

motor neurons in unc-55 mutants. Because irx-1 is normally expressed in DD 

motor neurons, we next asked whether irx-1 is also necessary for DD  
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Figure 4.5. SYD-2 does not co-localize with restored ventral synapses in unc-55; irx-
1(RNAi)-treated adults. Both SNB-1::GFP and SYD-2::GFP are depleted from the ventral nerve 
cord in unc-55 mutants (white bars) relative to wild-type (black bars). Only SNB-1::GFP is 
restored to the ventral nerve cord of irx-1(RNAi)-treated unc-55 animals; SYD-2::GFP localization 
remains unchanged (gray bars). Values are shown are average normalized arbitrary fluorescence 
units among >8 adults of each genotype/RNAi-treatment. p < 0.05 relative to wild-type, Student’s 
t-test.  
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remodeling. Dorsal synapses from DDs are established late in the first larval 

stage (White et al., 1978; Hallam and Jin, 1998). To visualize this remodeling 

event, we monitored the appearance of dorsal SNB-1::GFP puncta at 1 hour 

intervals during this period (Figure 4.6A). In wild-type larvae, dorsal SNB-1::GFP 

puncta are initially detected at 22 hours (elapsed time since egg-laying, see 

Methods) and increase in number until reaching a plateau at the onset (~30 

hours) of the L2 stage.  DD remodeling is significantly slower in L1 larvae 

carrying the irx-1(csRNAi) transgene with an approximate 4-hour delay in the 

initial detection of dorsal SNB-1::GFP puncta at 26 hours (Figure 4.6A, ** 

p<0.01, wild-type vs. irx-1(csRNAi), Student’s t-test). This effect is strikingly 

evident in DD motor neurons with high irx-1(csRNAi) expression (indicated by 

punc-25::mCherry, see DD5 in Figure 4.6C, D) in which dorsal SNB-1::GFP 

puncta are small and few in number compared to DDs without cell-specific irx-1 

knockdown (DD6 in Figure 4.6C, D).  

We note, however, that DD remodeling is not completely blocked by irx-

1(csRNAi) but appears to reach completion later in larval development (Figure 

4.6A). To determine if this effect could be due to an overall delay in the GABA 

neuron developmental program, we monitored the expansion of GABA motor 

neurons during this period. L1 larvae are born with 6 DD motor neurons; 13 VD 

motor neurons are added to the ventral cord by the end of the L1 stage (White et 

al., 1978). We noted no difference in the rate of appearance of GABAergic motor 

neurons in wild-type vs. irx-1(csRNAi) animals and conclude that the timing of 

this expansion is not perturbed by irx-1(csRNAi) (Figure 4.6B, all timepoints  
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Figure 4.6. irx-1 function is required for the normal progression of synaptic remodeling in 
DD motor neurons. (A-B) DD synaptic remodeling is delayed in irx-1(csRNAi) animals. (A) DD 
remodeling was quantified by counting dorsal SNB-1::GFP puncta during L1-L2 larval stages. In 
wild-type (SNB-1::GFP; GABA::mCherry-expressing) larvae, DD remodeling begins at 22-24 
hours (see Methods) in L1 larvae and is completed by the L2 stage. In contrast, remodeling is 
delayed in irx-1(csRNAi) larvae. ** p < 0.01, wild-type vs. irx-1(csRNAi), Student’s t-test. Error 
bars indicate standard deviation. N = 6-21 for each genotype at each hour, results pooled from 
three independent experiments. (B, C) irx-1(csRNAi) causes cell-autonomous delays in DD motor 
neuron synaptic remodeling. Image of a mosaic irx-1(csRNAi)-expressing larva at 29 hours when 
DD remodeling is largely complete in wild-type (Top panel). Strong expression of the irx-
1(csRNAi) transgene, indicated by the mCherry marker, in DD5 but not DD6 (or DD4) is 
correlated with reduced dorsal SNB-1::GFP puncta in DD5 compared to DD6 (inset panels). (D) 
Generation of GABAergic motor neurons is not disrupted by abrogation of irx-1 activity. The 
normal complement of 6 embryonic DD motor neurons was observed in both wild-type and irx-
1(csRNAi) larvae prior to remodeling (t = 21 hours). The rate of appearance of the 13 post-
embryonic VD motor neurons was not delayed in irx-1(csRNAi) larvae compared to wild-type. 
Scale bar, 10 µm. (E) SNB-1::GFP is removed from DD ventral processes by late larval stages in 
irx-1-treated animals. lin-6 was used as a tool to genetically ablate VD motor neurons so as to 
assess the localization of SNB-1::GFP in DD motor neurons only. There is no significant 
difference between the number of ventral DD puncta in control versus irx-1 RNAi.  
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p>0.05, wild-type vs. irx-1(csRNAi), Student’s t-test). We also confirmed that irx-1 

RNAi does not inhibit expression from the unc-25 promoter and therefore exclude 

the possibility that this would account for the reduced number of GFP puncta 

arising from the punc-25::SNB-1::GFP reporter (data not shown). 

To confirm that DD remodeling reaches completion despite knockdown of 

irx-1 expression, we examined the localization of SNB-1::GFP in lin-6 mutants. In 

these mutants, VD motor neurons are genetically ablated and thus all SNB-

1::GFP puncta are representative of DD NMJs only, rather than both DD and VD 

NMJs (Hallam and Jin, 1998). In lin-6 animals treated with irx-1 RNAi, very few 

puncta are observed in the ventral nerve cord of late larval-stage animals, 

comparable to the number of ventral puncta in control RNAi-treated animals 

(Figure 4.6E). This result indicates that that NMJs are completely removed from 

irx-1 DD ventral processes by late-larval stages and supports the above 

conclusion that irx-1 knockdown does not completely block DD remodeling. 

On the basis of these results, we conclude that irx-1 normally promotes 

DD remodeling. However, because RNAi knockdown of irx-1 retards but does not 

arrest DD remodeling, we conclude that additional genes functioning in parallel to 

irx-1 may provide partially redundant function.  

 

irx-1 is sufficient to induce synaptic remodeling in VD motor neurons 

The finding that irx-1 promotes DD remodeling suggested that irx-1 might 

also be sufficient to drive synaptic remodeling in wild-type (i.e., unc-55+) VD 

motor neurons. To test this idea, we used the ttr-39 promoter to drive expression 
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of IRX-1::GFP in GABAergic motor neurons. ttr-39 is specific to DD and VD 

motor neurons (Cinar et al., 2005) and is not regulated by unc-55 (data not 

shown). IRX-1::GFP in these animals localizes to the nucleus (Figure 4.7A, see 

also Figure 4.1A) of DDs and VDs, unlike the marker SNB-1::GFP which 

remains in the cytoplasm. We used this difference in GFP localization to 

distinguish gain-of-function IRX-1::GFP-positive or irx-1(gf) VDs (nuclear GFP) 

from wild-type VDs (cytoplasmic GFP only). Wild-type VD motor neurons in these 

mosaic animals show SNB-1::GFP puncta in the ventral process of the VD 

anterior region as expected (Figure 4.7A-B, VD5). In contrast, irx-1(gf) VD motor 

neurons exhibit an Unc-55-like phenotype with excess dorsal SNB-1::GFP 

puncta coupled with a concomitant depletion on the ventral side (Figure 4.7A-B, 

VD6). We quantified this result by counting SNB-1::GFP puncta adjacent to wild-

type and irx-1(gf) VD motor neurons (Figure 4.7C). Comparable numbers of 

dorsal (from DD motor neurons) and ventral (VD motor neurons) SNB-1::GFP 

puncta were detected in regions anterior to wild-type VDs (Figure 4.7C, 10.2+2.4 

dorsal puncta vs. 11.2+1.8 ventral puncta, N=20 wild-type VD anterior regions). 

Ventral puncta were virtually eliminated, however, from irx-1(gf) VDs which show 

a strong Unc-55-like phenotype (17.0+2.0 dorsal puncta vs. 1.7+1.7 ventral 

puncta, N=20 irx-1(gf) VD anterior regions, **p<0.01, 2-way ANOVA with 

Bonferroni’s Multiple Comparison Test). The similarity of the cell-specific irx-1(gf) 

phenotype to that of unc-55 suggests that ectopic irx-1 is sufficient to induce 

synaptic remodeling in VD motor neurons and that irx-1 is a primary downstream 

effector of the Unc-55 remodeling phenotype (Figure 4.8).  
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Figure 4.7. Ectopic irx-1 expression is sufficient to drive remodeling in VD motor neurons. 
(A) Mosaic expression of GFP-labeled IRX-1 (IRX-1::GFP) with the ttr-39 promoter labels the 
VD6 nucleus (arrowhead) but not VD5. Residual SNB-1::GFP in the VD5 cell soma is excluded 
from the nucleus (arrow) (adult stage). Note absence of ventral SNB-1::GFP puncta in the ventral 
process of VD6 and corresponding enhanced SNB-1::GFP expression in the dorsal VD6 process. 
Scale bar, 10 µm. (B) Schematic diagram of results from panel A. In VD6, unc-55 represses 
endogenous irx-1 but does not block IRX-1::GFP expression from the ttr-39 promoter which 
drives remodeling. (C) Quantification of the irx-1(gf) phenotype. SNB-1::GFP puncta were 
counted in the dorsal and ventral nerve cords within each “VD anterior region” for wild-type vs. 
IRX-1::GFP-expressing VD neurons as indicated. ** p < 0.01, 2-way ANOVA with Bonferroni’s 
Multiple Comparison Test, N.S., not significant.  
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Figure 4.8. Genetic pathways that control synaptic remodeling. unc-55 prevents expression 
of irx-1 and 48 additional factors (18 conserved) to block synaptic remodeling in VD motor 
neurons. unc-30 promotes irx-1 expression. irx-1 is normally expressed in DD motor neurons 
where it drives synaptic remodeling in parallel to at least one additional partially redundant 
pathway. 
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Discussion 

With these experiments, we have defined the role of the conserved 

homeodomain-containing transcription factor, IRX-1/Iroquois, in synaptic 

remodeling, thus validating one of our microarray and RNAi screen hits (see 

Chapter III) and establishing experimental methods for systematic analysis of the 

remaining targets. Our results show that IRX-1 is both necessary and sufficient in 

VD motor neurons for the Unc-55 remodeling phenotype. We also demonstrated 

that IRX-1 contributes to developmentally regulated remodeling of DD motor 

neurons. Thus, these results are consistent with the hypothesis that the ectopic 

remodeling activated in unc-55 mutant VD motor neurons includes key 

components that also drive the re-organization of synaptic output in DD motor 

neurons.  

Our findings indicate that irx-1 coordinates the overall remodeling scheme 

by directing the elimination of ventral VD synapses while simultaneously 

promoting the creation of dorsal VD synapses. This central role for irx-1 could 

result from its function as a master regulator that coordinates expression of 

separate sets of genes with remodeling roles at either dorsal or ventral synaptic 

locations. Alternatively, remodeling could be orchestrated by a cell biological 

mechanism in which assembly of dorsal synapses activates a negative feedback 

loop that destabilizes ventral synapses (Ding et al., 2007; Park et al., 2011). Our 

results do not distinguish between these possibilities but systematic identification 

of irx-1 targets and their sites of action should help to resolve this question. 
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We note that DD remodeling is delayed but not entirely prevented when 

irx-1/Iroquois function is disabled (Figure 4.6) whereas remodeling of unc-55 

mutant VDs is completely blocked (Figure 4.3). This finding suggests that 

additional partially redundant synaptic remodeling genes that function in parallel 

to irx-1 may be active in DD motor neurons (Figure 4.8). The existence of DD-

specific remodeling genes could also explain why our RNAi screen was capable 

of detecting transcripts with roles in ectopic VD remodeling but did not prevent 

DD motor neurons from eventually establishing dorsal synapses in the adult 

(Chapter III). 

The irx-1 locus encodes a transcription factor containing a homeodomain 

and flanking IRO box (Burglin, 1997) with strong homology to human Iroquois 

genes. In other organisms, the Iroquois family of transcription factors has been 

shown to pattern the nervous system by specifying neural ectoderm and later 

functioning to refine neural architecture (Cavodeassi et al., 2001; Gomez-

Skarmeta and Modolell, 2002).  Here, we have demonstrated that irx-1 has an 

important role in synaptic remodeling during C. elegans neurodevelopment. Our 

results show that irx-1 is normally expressed in DDs to promote synaptic 

remodeling but is negatively regulated in nearby VDs by unc-55 (Figure 4.1) to 

prevent that adoption of the DD pattern of synaptic output (Figure 4.3).  

Although COUP-TF and Iroquois proteins have been separately observed 

to perform developmental functions in common neural tissues, such as the 

vertebrate eye and cerebellum (Matsumoto et al., 2004; Cheng et al., 2005; Kim 

et al., 2009; Tang et al., 2010), our results identify the first regulatory link 
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between these two conserved transcription factors. We have identified 18 other 

conserved unc-55-regulated synaptic remodeling genes in our microarray and 

RNAi screens. There is a strong possibility that these genes may also be 

regulated by irx-1 in within this synaptic remodeling transcriptional program.  

Future experiments will address whether these genes are positively regulated by 

irx-1 to promote synaptic remodeling in wild-type DD motor neurons and unc-55 

VD motor neurons. 
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CHAPTER V 

 

A DEGENERIN-FAMILY ACID SENSING ION CHANNEL, UNC-8, 

REGULATES SYNAPTIC REMODELING IN GABAERGIC MOTOR NEURONS 

 

Introduction 

 Non-voltage-gated and acid-sensing ion channels have been implicated in 

synaptic plasticity in multiple model organisms, but the mechanisms by which 

they modulate plasticity are unclear (Wemmie et al., 2006; Voglis and 

Tavernarakis, 2008). In our microarray and RNAi screens for UNC-55 targets, we 

uncovered the degenerin-family non-voltage gated sodium channel UNC-8 as a 

potential mediator of GABAergic synaptic remodeling. Based on sequence 

homology, UNC-8 is predicted to function as an acid-sensing ion channel (ASIC). 

Because recent studies have placed ASICs as mediators of synapses in both 

learning and memory in other model organisms, we have pursued UNC-8 as an 

UNC-55 target with a potential key physiological role in the GABAergic synaptic 

remodeling program. 

 UNC-8 was originally described as a putative mechanotransducing 

channel with a structure similar to that of other ion channel proteins, such MEC-4 

and MEC-10, which are also members of the degenerin/epithelial sodium 

channels (DEG/ENaCs) family. These proteins contain two membrane-spanning 

domains and a large extracellular loop containing three cysteine-rich domains 

(Tavernarakis et al., 1997) (Figure 5.1). Gain-of-function mutations in unc-8 are  



161 

 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 5.1. Structure and features of acid-sensing ion channel (ASIC) subunits. ASIC 
subunits contain two membrane-spanning domains (M1 and M2, in blue) and a large extracellular 
domain for sensing protons and other ligands. Three cysteine-rich domains, which have been 
identified in UNC-8 by Tavernarakis et. al. (1997), are indicated in red. Figure adapted from 
Wemmie, et. al., 2006. 
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dominant and cause neuronal swelling and severe uncoordination (Brenner, 

1974). The unc-8(gf) swollen neuron defect is reminiscent of a necrotic 

phenotype caused by misregulated or constitutively open degenerin ion channels 

(Chalfie and Wolinsky, 1990; Driscoll, 1996). In contrast, recessive loss-of-

function alleles of unc-8 cause a very subtle behavioral phenotype, with slightly 

reduced amplitude and wavelength of sinusoidal body bends (Tavernarakis et al., 

1997). Although unc-8 has been postulated to function as a stretch receptor, 

direct evidence of this role is lacking.  

Another potential role for unc-8, based on its protein structure and role in 

synaptic re-patterning (see Chapter III), is as an ASIC channel that contributes to 

synaptic function. ASIC proteins are members of the DEG/ENaC superfamily, 

with similar protein topology and selective sodium ion transport (Wemmie et al., 

2006). ASICs are expressed throughout central and peripheral nervous systems 

of mammals. Channel activity of ASIC proteins is stimulated at low pH (<7.2) 

(Krishtal and Pidoplichko, 1980; Benson et al., 2002; Wemmie et al., 2006). This 

acid-sensing function has been proposed to result in a positive feedback loop in 

which presynaptic ASICs are activated by the acidification of the synaptic cleft 

that accompanies neurotransmitter release (Miesenbock et al., 1998; Voglis and 

Tavernarakis, 2008). The large extracellular domain that is characteristic of ASIC 

family proteins mediates this response to low pH and also can detect other 

regulatory cues. For instance, ASIC3 can be stimulated by small molecules (e.g., 

2-guanidine-4-methylquinazoline) at physiological pH, and neuropeptides can 

potentiate acid-evoked currents (Askwith et al., 2000; Yu et al., 2010). Thus, the 
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physiological mechanisms that regulate ASIC activity in vivo could involve 

diverse classes of signals. 

 In cell culture models, ASICs are enriched at dendritic spines of 

hippocampal neurons (Wemmie et al., 2006; Zha et al., 2009). Dendritic spines 

are dynamic sites of activity-dependent synaptic plasticity via long-term 

potentiation (LTP) and long-term depression (LTD), both of which are mediated 

by calcium. In the best-understood mechanism of LTP/LTD, glutamatergic 

receptors facilitate an influx of calcium during periods of high stimulation, which 

then functions as a second messenger to modify function (Yang et al., 1999; 

Yashiro and Philpot, 2008). In ASIC1-null mice, LTP is reduced, and the animals 

manifest deficits in learning and memory, specifically in conditioned fear and 

pain, while restoration of ASIC1 expression in the amygdala reverses these 

behaviors (Wemmie et al., 2002; Wemmie et al., 2004; Coryell et al., 2008). 

ASIC1 is presumed to function at the postsynaptic membrane due to the dendritic 

enrichment of ASIC1 in cultured cells (Wemmie et al., 2006). In contrast, ASIC-1 

in C. elegans functions specifically in presynaptic dopaminergic neurons to 

mediate neurotransmitter release and dopamine-dependent learning behavior 

(Voglis and Tavernarakis, 2008). In either postsynaptic or presynaptic context, 

however, these studies suggest that the influx of sodium ions functions to 

promote synaptic strength. However, the mechanism by which ASICs modulate 

synaptic function is unclear.  

The potential of ASICs to detect synaptic activity by proton-sensing in the 

synaptic cleft, the ability of ASICs to transduce cations, and the localization of 
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ASICs at sites of dynamic synaptic formation and elimination all point to a 

mechanistic role for ASICs in learning and memory. In our microarray and RNAi 

screens, we identified unc-8 as a candidate UNC-55-regulated remodeling gene 

(see Chapter III), suggesting that this potential ASIC is involved in 

developmentally-controlled synaptic plasticity. In this chapter, I describe our 

studies of unc-8 in the GABAergic synaptic remodeling program and propose a 

model for how unc-8 contributes to the mechanism. 

 

Author Contributions 

 The recombineering protocols (Zhang et al., 2008; Tursun et al., 2009) to 

generate unc-8::GFP were optimized with the help of fellow graduate students 

Clay Spencer and Rachel Skelton. The unc-55; unc-2 experiment described in 

this chapter was performed by an undergraduate in the lab under my mentorship, 

Megan Gornet.  

 

Methods 

Strains and genetics: Nematode strains were maintained at 20-25°C with 

standard culture techniques (Brenner, 1974). The wild-type strain is N2 and all 

references to unc-55 mutants used the allele unc-55(e1170)(Walthall, 1990). All 

animals used in this study were hermaphrodites. 

 Construction of unc-8; juIs1 recombinants strains: Both unc-8 and 

juIs1[punc-25::SNB-1::GFP] map to chromosome IV. Because the integration site 

of juIs1 on chromosome IV is unknown, we used a brute-force screening 
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approach instead of traditional three-point recombination techniques (Brenner, 

1974). For n491 (Unc phenotype) and n491n1193 (fainter phenotype), unc-

8/juIs1 F1 heterozygotes were built and allowed to self. F2 progeny with the 

appropriate Unc-8 movement phenotype were then visually screened for the 

juIs1 GFP marker, indicating the presence of a recombinant unc-8 juIs1 

chromosome IV. These F2s were allowed to self and generate homozygous F3s 

for further analysis. 

The deletion alleles unc-8(tm2071) and unc-8(tm5052) do not show an 

obvious movement phenotype and presence of the deletion allele must be 

assessed via single worm PCR. For these alleles, unc-8/juIs1 F1 heterozygotes 

were allowed to self. Bright juIs1-expressing F2 animals, assumed to be 

homozygous for juIs1, were picked, allowed to self, and then genotyped for the 

presence of the unc-8 deletion allele to detect a potential recombinant unc-8 

juIs1 chromosome IV. Animals that bred true for juIs1 (i.e. homozygous juIs1 

among F3s) and contained an unc-8 deletion allele were presumed to be 

recombinants. Homozygous unc-8 juIs1 were isolated via single-worm PCR and 

kept for further analysis. For both tm2071 and tm5052, >220 homozygous juIs1 

animals were screened to find one F3 containing a recombinant juIs1 unc-8 

chromosome, indicating close linkage of juIs1 to the unc-8 locus. 

 

Strain list:  

RNAi strains: 

NC1613 eri-1 (mg366) juIs1[punc-25::SNB-1::GFP; lin-15+] 
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NC1852 unc-55(e1170); eri-1(mg366) juIs1[punc-25::SNB-1::GFP; lin-15+] 

unc-8 alleles 

MT1085 unc-8(n491) 

MT2612 unc-8(n491n1193)  

FX02071 unc-8(tm2071) 

NC1909 unc-8(tm2071) outcrossed 2x 

FX05052 unc-8(tm5052) 

NC2324 unc-8(tm5052) outcrossed 2x 

FX05074 unc-8(tm5074) 

FX05145 unc-8(tm5145) 

Synaptic analysis strains: 

CZ333 juIs1[punc-25::SNB-1::GFP; lin-15+] 

NC1851 unc-55(e1170); juIs1[punc-25::SNB-1::GFP; lin-15+] 

NC1715 unc-8(n491n1193) juIs1[punc-25::SNB-1::GFP; lin-15+] 

NC1850 unc-55(e1170); unc-8(n491n1193) juIs1[punc-25::SNB-1::GFP; lin-

15+] 

NC2051 unc-8(tm2071) juIs1[punc-25::SNB-1::GFP; lin-15+] 

NC2125 unc-55(e1170); unc-8(tm2071) juIs1[punc-25::SNB-1::GFP; lin-15+] 

NC2387 unc-8(tm5052) juIs1[punc-25::SNB-1::GFP; lin-15+] 

NC2388 unc-55(e1170); unc-8(tm5052) juIs1[punc-25::SNB-1::GFP; lin-15+] 

NC2415 unc-8(n491) juIs1[punc-25::SNB-1::GFP; lin-15+] 

NC2585 wyIs202[pflp-13::gfp::rab-3, pflp-13::mcherry; podr-1::GFP] 
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NC2480 wyIs202[pflp-13::gfp::rab-3, pflp-13::mcherry podr-1::GFP]; unc-

8(tm5052) 

NC2443 unc-55(e1170); juIs1[punc-25::SNB-1::GFP; lin-15+]; unc-2(e55) 

unc-8(csRNAi) strains 

NC2529 unc-119; wdIs86[pttr-39::unc-8; unc-119+; punc-25::mCherry; pttr-

39::unc-8 antisense] 

NC2601 unc-55(e1170); unc-119; juIs1[punc-25::SNB-1::GFP; lin-15+]; 

wdIs86[pttr-39::unc-8; unc-119+; punc-25::mCherry; pttr-39::unc-8 

antisense] 

unc-8::GFP strains 

OH4956 otIs151[pceh-36::RFP; rol-6(d)]; otEx2876[punc-8::GFP; elt-2::GFP] 

NC2320 pttr-39::mCherry V; otEx2876[punc-8::GFP; elt-2::GFP] 

NC2321 unc-55(e1170); pttr-39::mCherry V; otEx2876[punc-8::GFP; elt-

2::GFP] 

NC2527 unc-119; wdEx840[unc-8::GFP + unc-119 recombineered fosmid] 

 

Microscopy and scoring: SNB-1::GFP assays were performed with the 

transgene juIs1[punc-25::SNB-1::GFP; lin-15+] (Hallam and Jin, 1998) and RAB-

3::mCherry assays were performed with the transgene wyIs202[pflp-13::RAB-

3::mCherry; podr-1::GFP] (Park et al., 2011). Animals were anesthetized with 

0.1% tricaine/tetramisole, mounted on a 2% agarose pad, and imaged with a 

Zeiss Axiovert microscope using Metamorph software. Confocal images were 

obtained with a Leica TCSSP5 confocal microscope with Leica Application Suite 
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Advanced Fluorescence (LAS-AF) software and created using maximum 

intensity projections of Z-stacks collected at 1.0 µm/step with a 40x objective.  

To calculate fluorescence intensity for the enhancement graph in Figure 

5.4, linescan intensity values along the ventral nerve cord of each adult animal 

were collected with Leica Application Suite Advanced Fluorescence (LAS-AF) 

software. Mean intensity values for each animal were calculated, and then 

averaged with independent measurements for the same genotype. Statistical 

tests were performed comparing the average intensity among all animals in each 

genotype (N>8 per genotype). 

To visualize punc-8::GFP, confocal images were collected to exclude the 

strong pelt-2::GFP expression in the intestine. pttr-39::mCherry was used to 

identify GABAergic motor neurons on the confocal microscope in these 

experiments. punc-8::GFP average area intensity was collected from maximum 

projections for individual DD and VD motor neurons. To normalize VD expression 

to DD expression in Figure 5.2D, average intensity of all VDs in a single worm 

was divided by the average DD intensity in the same worm. Statistical tests were 

performed by comparing the average VD/DD intensity among each worm (N>6 

per genotype). 

For quantifying unc-8(csRNAi) results, individual VD motor neurons 

expressing mCherry (control or unc-8(csRNAi)-labeling) were scored. For each 

mCherry-labeled VD, the number of SNB-1::GFP puncta in the anterior interval 

between the VD soma and the next anterior VD neuron were counted in the 
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dorsal and ventral nerve cords. These analyses were considered puncta per “VD 

anterior region” (Petersen et al., 2011). 

 

Construction of unc-8 feeding RNAi clone: Primers were designed to amplify 

2266bp of the unc-8 genomic locus, beginning with the 5’ start site and ending in 

the eighth exon. This ~2.3 kb unc-8 fragment was amplified and cloned in pCR8 

via TOPO-TA reaction (Invitrogen) to generate pSA53. The unc-8 fragment was 

then cloned into L4440-Gateway via LR Clonase II Gateway reaction (Invitrogen) 

to yield pSA54. The L4440-Gateway vector contains symmetric T7 promoters for 

double-stranded RNA expression in bacteria,. The pSA54 plasmid resulting from 

the LR reaction was transformed into HT115 E. coli for use in RNAi feeding 

experiments, termed “RNAi - Miller” in unc-8 RNAi experiments.  

 

Construction of unc-8(csRNAi): The “unc-8 sense” construct pSA76 was 

cloned as follows: The ~2.3 kb unc-8 fragment used in “RNAi - Miller" 

experiments was amplified with primers containing 5’AscI/3’SacII adaptors and 

cloned into pCR2.1 via TOPO-TA reaction (Invitrogen) to yield pSA75. The unc-8 

fragment was then subcloned into the existing GABAergic cell-specific RNAi 

(csRNAi) plasmid pSA47 (see Methods, Chapter IV) (Petersen et al., 2011) via 

AscI/SacII to yield pSA76. The “unc-8 antisense” construct pSA78 was cloned as 

follows: the ~2.3 kb unc-8 fragment used in “RNAi - Miller" experiments was 

amplified with primers containing 5’SacII/3’AscI adaptors and cloned into pCR2.1 

via TOPO-TA reaction (Invitrogen) to yield pSA73. The unc-8 fragment from 
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pSA73 was then inserted into existing GABAergic cell-specific RNAi (csRNAi) 

plasmid pSA47 (see Methods, Chapter IV) via AscI/SacII to yield pSA77. The 

unc-8-containing region of pSA77 between ScaI and SacII was then inserted into 

existing GABAergic csRNAi plasmid pSA49 (replacing the “irx-1 antisense” 

cassette) to yield pSA78. pSA76 (“unc-8 sense”) and pSA78 (“unc-8 antisense”) 

were linearized and ligated, then transformed into unc-119 worms via 

microparticle bombardment (Praitis et al., 2001) to yield a spontaneous integrant, 

as indicated by 100% transmission of rescued (unc-119+) movement (indicating 

“unc-8 sense”) and mCherry expression in all GABAergic motor neurons 

(indicating “unc-8 antisense”). 

 

DD remodeling timecourses: For all DD remodeling timecourses, separate 

groups of 100 gravid control and mutant adults were picked to single 60-mm 

plates and allowed to lay eggs for one hour and then removed from the plate. 

The mid-point of the hour in which eggs were laid was considered to be t=0. 

Plates were incubated at 23°C throughout the timecourse. Beginning at 18 hours 

post-lay and for each hour thereafter, larvae were imaged (as above) on a Zeiss 

Axiovert microscope. For experiments with punc-25::SNB-1::GFP, the number of 

dorsal SNB-1::GFP puncta and number of GFP+ neurons (i.e. GABA neurons) 

were recorded for >10 larvae for each timepoint. For experiments with pflp-

13::RAB-3::GFP, only the number of RAB-3::GFP puncta were recorded either in 

the dorsal or ventral nerve cords; pflp-13 is not expressed in VD motor neurons 

so that could not be used as a proxy for GABAergic development. 
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Recombineering UNC-8::GFP fosmid: We adapted the Hobert lab 

recombineering protocol to insert GFP at the C-terminal end of a fosmid 

containing unc-8 (Tursun et al., 2009). The fosmid WRM0635cA02 was obtained 

from GeneService and purified via column-less miniprep (NCI protocol available 

at http://web.ncifcrf.gov/research/brb/protocol/Protocol3_SW102_galK_v2.pdf). 

0.5-2 µg fosmid was then transformed into electrocompetent SW105 cells, 

prepared as directed (Tursun et al., 2009). Presence of the fosmid in SW105 was 

verified via colony PCR using primers specific to the unc-8 locus. The GFP-galK 

recombineering cassette was amplified with 50 kb homology arms (using PAGE-

purified primers) from pBALU1 (available from the Hobert Lab, see Tursun, et. 

al.) and gel purified. 200 ng of GFP-galK PCR product was transformed into 

electrocompetent, λ Red recombinase-activated, fosmid-containing SW105 cells, 

prepared as directed in Tursun, et. al. Cells containing fosmid+GFP-galK were 

first grown for >60 hours at 32°C and then streaked on MacConkey+galactose 

plates with chloramphenicol to ensure insertion of recombineering cassette. To 

excise galK from the GFP intron, colonies were incubated with 0.1% arabinose 

as directed in Tursun et. al. to create an unc-8::GFP expression fosmid. This 

unc-8::GFP fosmid was then purified via column-less miniprep (NCI protocol). 

 We then used the Fisher lab protocol to insert unc-119 into the unc-

8::GFP fosmid (Zhang et al., 2008). 2 µg of unc-8::GFP fosmid was co-

transformed with the “pLoxP unc-119” plasmid (Zhang et al., 2008) into 

electrocompetent SW106 cells. Following electroporation, cells were recovered in 

arabinose to insert the pLoxP unc-119 plasmid into the unc-8::GFP fosmid via a 
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single loxP site Cre recombination. Presence of unc-119 in the fosmid was 

confirmed via colony PCR, and the unc-8::GFP+unc-119 fosmid was purified via 

column-less miniprep (NCBI protocol) to transform into unc-119 mutants via 

microparticle bombardment. 

 

Results 

punc-8::GFP is expressed in remodeling GABAergic motor neurons 

 Based on the >4-fold elevation of unc-8 transcript in our profile of unc-55 

GABAergic neurons, UNC-55 normally inhibits unc-8 expression. Furthermore, 

based on the apparent requirement for unc-8 function in remodeling of unc-55 

mutant VD motor neurons (see Chapter III), we also hypothesized that unc-8 

would be normally expressed in DD motor neurons. To test these predictions, we 

obtained a strain carrying transgenic GFP driven by 2792 bp of the 5’ intergenic 

region of unc-8 [kindly provided by the Hobert lab (Etchberger et al., 2007)] 

(Figure 5.2A). Because this strain is co-labeled with a bright intestinal marker 

(note bright intestinal cells in Figure 5.2A, lower panel), we also expressed pttr-

39::mCherry in this background to mark GABAergic motor neurons. This 

experiment showed that punc-8::GFP is brightly expressed in mCherry-labeled 

DD motor neurons in both wild-type and unc-55 mutant animals (Figure 5.2B). In 

contrast, punc-8::GFP is weakly detected in wild-type VD motor neurons, but 

shows a much stronger signal in unc-55 VD motor neurons (Figure 5.2B). To 

quantify this visual assessment, we measured the fluorescence intensity in wild-

type and unc-55 DD and VD motor neurons (Figure 5.2C). This analysis  
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Figure 5.2. punc-8::GFP is expressed in remodeling GABAergic motor neurons. (A) The 
punc-8 transgene in otEx2876 contains the intergenic 5’ regulatory region of unc-8 fused to GFP 
by overlap PCR (top panel). Note bright intestinal marker (indicated by yellow asterisk in bottom 
panel) which co-injected with punc-8::GFP. Figure adapted from Etchberger et. al., 2007. (B) 
punc-8::GFP expression is restricted to DD motor neurons in wild-type but observed in both DD 
and VD motor neurons in unc-55 mutants. GABAergic motor neurons are indicated with mCherry 
(via pttr-39::mCherry) and DD motor neurons were distinguished from VD motor neurons by their 
stereotypical location in the ventral nerve cord. (C-D) Quantification of punc-8::GFP intensity in 
GABAergic motor neurons. Raw data (C) indicates an increase in fluorescence in both DD and 
VD motor neurons in the unc-55 mutant (N.S., not significant in DD motor neurons), while 
normalization to DD fluorescence (D) confirms that the punc-8::GFP is derepressed in VD motor 
neurons. *** p < 0.001, wild-type vs. unc-55, Student’s t-test. Error bars indicate standard 
deviation. N = 24 DDs and 54 VDs per genotype. 
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revealed that punc-8::GFP is significantly elevated in unc-55 VD motor neurons 

(Figure 5.2D) to a level similar to that in DD motor neurons. These data are 

consistent with a model in which unc-8 is strongly expressed in remodeling DD 

motor neurons, but is not expressed in VD motor neurons due to repression by 

UNC-55. 

 

unc-8 RNAi inhibits ectopic remodeling of unc-55 VD motor neurons 

 We first observed that loss of unc-8 blocks synaptic remodeling in 

the RNAi screen of candidate unc-55 targets (Figure 3.6). This screen knocked 

down expression of unc-8 via a commercially available RNAi construct (Kamath 

et al., 2003), which is complementary to approximately 1 kb of the unc-8 coding 

region (Figure 5.3A, “RNAi-Ahringer”, named for the lab in which it was created). 

We created an additional RNAi clone that spans a larger region of the unc-8 

locus to confirm this result and to limit the possibility of an off-target phenotype 

(Figure 5.3A, “RNAi-Miller”). Knockdown of unc-8 with either RNAi construct 

results in similar and significant restoration of SNB-1::GFP to the ventral nerve 

cord of unc-55(e1170) in an RNAi-sensitized (eri-1) background (Figure 5.3B, 

25.2 + 7.4 ventral SNB-1::GFP in control RNAi unc-55 adults vs. 46.7 + 10.9 in 

unc-55 with unc-8(RNAi-Ahringer) and 44.3 + 9.0 with unc-8(RNAi-Miller), p < 

0.001, Student’s t-test). Furthermore, these experiments showed that knockdown 

of unc-8 in unc-55 mutants also results in decreased dorsal SNB-1::GFP 

fluorescence in addition to enhanced ventral SNB-1::GFP (Figure 5.3C), as 

expected for a gene that is specifically required for synaptic remodeling.  
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Figure 5.3. unc-8 is cell-autonomously required for unc-55 synaptic remodeling.  (A) unc-8 
is encoded by R13A1.4 on Chromosome IV; exons and transmembrane (TM) domains are 
indicated in light blue. Complementary RNAi sequences (RNAi-Miller, RNAi-Ahringer) are 
indicated in dark blue and genetic mutations are annotated in red. (B) Suppression of unc-55 via 
unc-8 RNAi (blue bars) and unc-8(tm5052) (red bar) as indicated by an increase in ventral SNB-
1::GFP puncta. *** p < 0.001 vs. wild-type, Student’s t-test. Error bars indicate standard deviation. 
N=11-19 worms per genotype. (C) The gain in ventral puncta in unc-55 mutants treated with unc-
8 RNAi is accompanied by a subtle but significant decrease in dorsal SNB-1::GFP puncta. * p < 
0.05, *** p < 0.001 vs. unc-55, Student’s t-test. Error bars indicate standard deviation. N=7 
matched dorsal and ventral nerve cords per RNAi treatment. (D) Dotted lines denote anterior 
regions of mCherry-marked VD motor neurons [carrying either control mCherry or unc-8(csRNAi)] 
in which SNB-1::GFP puncta were counted (see Methods). (E) Quantification of irx-1(csRNAi) 
suppression of the Unc-55 synaptic remodeling defect. *** p < 0.001, Student’s t-test. Error bars 
indicate standard deviation. N > 50 VD anterior regions per genotype. 
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unc-8 functions cell-autonomously in VD motor neurons to promote 

synaptic remodeling 

 Based on the enrichment of unc-8 in the GABA-specific unc-55 profile, we 

predicted that the function of unc-8 in remodeling is cell-autonomous. To test this 

idea, we built a heritable cell-specific RNAi construct, wdIs86[unc-8(csRNAi)], 

which disrupts unc-8 expression specifically in GABAergic motor neurons. This 

unc-8(csRNAi) construct expresses both sense and antisense RNA in GABA 

motor neurons under control of the ttr-39 promoter. unc-8(csRNAi) neurons are 

marked with mCherry. We scored the SNB-1::GFP pattern in the dorsal and 

ventral processes of VD motor neurons (“VD anterior regions”, Figure 5.3D) of 

unc-55; GABA::mCherry control and unc-55; unc-8(csRNAi) mutant animals. As 

a reference, we confirmed that unc-55; GABA::mCherry VD motor neurons 

display strong SNB-1::GFP enrichment in dorsal neurites with a corresponding 

depletion of ventral NMJs. VD motor neurons with unc-8(csRNAi), however, have 

significantly fewer dorsal puncta (13.8 + 3.3 vs. 21.5 + 3.6 in unc-55, p < 0.001) 

with more ventral puncta (8.2 + 3.2 vs. 3.8 + 2.8 in unc-55, p < 0.001) (Figure 

5.3E). These results are indicative of a cell-autonomous role for UNC-8 in 

GABAergic motor neuron remodeling. 

 

unc-8(tm5052) suppresses the Unc-55 remodeling defect 

 We tested loss-of-function unc-8 alleles to validate the RNAi results. The 

original mutations identified in the unc-8 locus (n491, e15, e49, lb82) are 

missense mutations that encode a constitutively open sodium channel and result 
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in a gain-of-function neuronal swelling phenotype reminiscent of necrotic 

excitotoxicity (Tavernarakis et al., 1997). We tested a deletion allele generated 

for this study by the Mitani lab (Tokyo Women’s Medical University), unc-

8(tm5052), that deletes a portion of the fifth and the entire sixth exon and results 

in an early stop codon prior to the seventh exon (Figure 5.3A). Because this 

allele removes the first membrane-spanning domain (Tavernarakis et al., 1997), 

and should block translation of the remainder of the unc-8 sequence, we predict 

that tm5052 corresponds to an unc-8 null mutation.  

 We crossed this putative null allele, unc-8(tm5052), into the unc-

55(e1170) background and tested for restoration of ventral SNB-1::GFP. The 

unc-55(e1170); unc-8(tm5052) double mutant showed significant suppression of 

the Unc-55 defect (Figure 5.3B, 28.8 + 7.3 ventral puncta in unc-55 vs. 48.8 + 

10.0 ventral puncta in unc-55; unc-8 double mutants, p < 0.001, Student’s t-test). 

Interestingly, two other predicted unc-8 loss-of-function alleles, n491n1193 or 

tm2071 (Figure 5.3A, data not shown), did not suppress unc-55. n491n1193 

contains the gain-of-function n491 lesion as well as a second mutation, n1193, 

that reverses the n491 dominant trait and causes a “fainting” phenotype that is 

actually a result of a second mutation in the unc-80 gene (Mei Zhen, personal 

communication). tm2071 is a deletion allele that removes a portion of the 

extracellular loop of unc-8 and causes a frameshift that is predicted to disrupt the 

second transmembrane domain (Figure 5.3A). unc-55; unc-8(tm2071) are 

indistinguishable from unc-55 single mutants (data not shown).  
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Based on our RNAi results and the prediction that unc-8(tm5052) encodes 

a genetic null, we conclude that unc-8 functions downstream of unc-55 to 

promote synaptic remodeling of GABAergic motor neurons. The lack of unc-55 

suppression by unc-8(tm2071), however, is intriguing and suggests that UNC-8 

channel function may be dispensable for remodeling. A structure-function 

analysis with an allelic series of unc-8 mutations could help to resolve this 

conundrum. The Mitani lab has already provided two additional alleles (tm5074, 

tm5145, see Figure 5.3A) and will continue to collaborate with us to generate 

additional alleles to address this question. 

 

unc-8 promotes remodeling in parallel to the potent remodeling regulator, 

irx-1/Iroquois 

 In Chapter IV, we demonstrated that the homeodomain-containing 

transcription factor, IRX-1/Iroquois, is both necessary and sufficient for 

remodeling GABAergic synapses downstream of unc-55. Because IRX-1 

functions as a transcription factor, we considered the possibility that unc-8 

expression is positively regulated by IRX-1. Alternatively, UNC-8 and IRX-1 could 

function in parallel to promote relocation of synapses in unc-55 VD motor 

neurons. We designed a set of experiments to distinguish between these two 

potential models. 

 First, we tested an unc-8 mutation for enhancement of the irx-1 RNAi 

phenotype. Both unc-8(tm5052) and irx-1(RNAi) alone result in the restoration of 

SNB-1::GFP puncta to the ventral nerve cord of unc-55 mutants (Figure 5.4A-B). 
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Figure 5.4. unc-8 functions in parallel to irx-1/Iroquois to promote synaptic remodeling. (A) 
Representative 75-µm lengths of SNB-1::GFP puncta in dorsal (D) and ventral (V) nerve cords of 
each indicated genotype. Images of each dorsal and ventral nerve cords are from a common 
region of a single adult. Note that SNB-1::GFP increases in the ventral nerve cord and decreases 
in the dorsal nerve cord from the top panels (unc-55) to bottom panels (unc-55; unc-8; irx-1). In 
unc-55(e1170); unc-8(tm5052); irx-1(RNAi), dotted line indicates a region where the ventral nerve 
cord is obscured by the vulva. (B) Quantification of the enhanced suppression observed in panel 
(A). SNB-1::GFP fluorescence in arbitrary units (A.U.) averaged from >6 ventral nerve cords of 
each genotype. * p < 0.05, *** p < 0.001, Student’s t-test. Error bars indicate standard deviation. 
(C) Expression of punc-8::GFP is unaffected by irx-1 RNAi. (D) irx-1 and unc-8 both promote 
synaptic remodeling downstream of unc-55 in parallel pathways. 
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We reasoned that if IRX-1 and UNC-8 function in parallel pathways, then unc-

8(tm5052) should enhance the suppression observed in unc-55; irx-1 (RNAi-

treated) animals. The results of this experiment are consistent with this idea; the 

unc-55; unc-8(tm5052) double mutant treated with irx-1 RNAi showed brighter 

and denser puncta compared to either unc-55; unc-8(tm5052) or unc-55; irx-

1(RNAi) (Figure 5.4A). We quantified this effect by measuring SNB-1::GFP 

fluorescence intensity in the ventral nerve cord. SNB-1::GFP fluorescence is 

significantly more intense in unc-55; unc-8(tm5052); irx-1(RNAi) adults [* p < 0.05 

vs. unc-55; irx-1(RNAi), *** p < 0.001 unc-55; unc-8(tm5052)] (Figure 5.4D). 

 Because irx-1 RNAi does not result in a null phenotype, we considered the 

possibility that unc-8 could enhance the unc-55 suppression of irx-1 RNAi even if 

both genes function in a common pathway. Thus, we devised additional tests to 

address this question. First, we noted that irx-1 RNAi had no effect on expression 

of the unc-8::GFP reporter gene, which argues against irx-1 regulation of unc-8 

expression (Figure 5.4C). In another test, we asked if unc-8 is required for the 

ectopic VD remodeling defect shown by irx-1(gf) mutant animals (Figure 4.7). 

We reasoned that if unc-8 functions downstream of irx-1, then loss of unc-8 

should suppress ectopic remodeling. Alternatively, if unc-8 instead functions in a 

parallel pathway, it should be repressed by wild-type UNC-55 and therefore 

should have no effect on irx-1(gf) remodeling. We observed that the irx-1(gf) 

ectopic remodeling phenotype was not suppressed by unc-8 RNAi (data not 

shown, N=5 irx-1(gf) unc-8-RNAi animals), though this experiment could be 

repeated with unc-8(tm5052) to validate this result. These results are consistent 
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with a model in which irx-1 and unc-8 function in two separate pathways, both 

downstream of unc-55, to promote synaptic remodeling (Figure 5.4D).  

 

unc-8 functions in removal of ventral synapses during synaptic remodeling 

We have shown that unc-8 is necessary for remodeling of VD motor 

neurons in unc-55 mutants. Because the remodeling program in VD motor 

neurons is similar to that in DD motor neurons (i.e., both can be repressed by 

UNC-55), and because punc-8::GFP is expressed in DD motor neurons (Figure 

5.2), we next examined whether unc-8 is also required for DD remodeling. To 

visualize the establishment of DD dorsal synapses at the L1-L2 transition, the 

appearance of dorsal SNB-1::GFP puncta was noted at hourly intervals in wild-

type and unc-8(tm5052) mutants. Dorsal SNB-1::GFP puncta are detected in L1 

larvae beginning around ~19-20 hours after initiating the experiment (see 

Methods) in both wild-type and unc-8(tm5052) mutants (Figure 5.5A). Dorsal 

NMJs continue to form at a similar rate in wild-type and unc-8(tm5052) over the 

next 4-5 hours until remodeling is complete at the onset of the L2 stage (~24 

hours). To control for potential differences in developmental timing between wild-

type and unc-8, we also monitored the appearance of VD motor neurons, which 

are generated while DD motor neurons are remodeled (Figure 5.5B). Again, unc-

8(tm5052) mutants showed no significant difference in the rate of appearance of 

VD motor neurons from wild-type, suggesting that neither GABAergic 

development nor establishment of dorsal DD motor neuron NMJs is delayed due 

to loss of unc-8.  
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Figure 5.5. unc-8 functions specifically in removal of ventral NMJs during synaptic 
remodeling. (A-B) unc-8(tm5052) does not delay formation of dorsal NMJs during DD synaptic 
remodeling. (A) DD remodeling was quantified by counting dorsal SNB-1::GFP puncta during L1-
L2 larval stages. In both wild-type and unc-8(tm5052) larvae, DD remodeling begins at ~19 hours 
(see Methods) in L1 larvae and is completed by the L2 stage. All timepoints, not significantly 
different. (B) Generation of GABAergic motor neurons, visualized with juIs1[punc-25::SNB-
1::GFP], is not disrupted by loss of unc-8. The normal complement of 6 embryonic DD motor 
neurons was observed in both wild-type and unc-8(tm5052) larvae prior to remodeling (t = 18 
hours) and the 13 post-embryonic VD motor neurons appeared at the same rate in wild-type and 
unc-8(tm5052). (C-D) Removal of immature DD ventral synapses is delayed in unc-8(tm5052). 
(C) DD remodeling was quantified by counting ventral GFP::RAB-3 (wyIs202) puncta during the 
L1-L2 transition. In wild-type, removal of ventral synapses begins at ~20 hours and is completed 
around ~28 hours, occurring at a slower rate than the appearance of dorsal NMJs (D). In unc-
8(tm5052) mutants, removal of ventral NMJs begins later, ~24 hours, and is not completed by t = 
30. However, dorsal NMJ formation appears normal with wyIs202 (D). ** p < 0.01, *** p < 0.001, 
Student’s t-test. For all graphs, error bars indicate standard deviation. For (A-C), results are 
pooled from three independent timecourses, for (D), results from one timecourse are presented. 
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To test whether removal of DD ventral NMJs is disrupted in unc-

8(tm5052), we used the wyIs202[pflp-13::GFP::RAB-3] transgene which labels 

NMJs in DD motor neurons but not VD motor neurons. With this marker, all 

GFP::RAB-3 puncta in the ventral nerve cord should correspond to DD synapses. 

In wild-type larvae, ventral synapse removal begins around the same time as 

dorsal NMJ establishment (~20 hours), but the rate of synapse removal in the 

ventral nerve cord is slower than the establishment of dorsal NMJs. Whereas the 

number of dorsal synapses reaches a plateau 4-6 hours after the initiation of DD 

remodeling, the removal of DD ventral synapses continues for ~10 hours and 

extends into the L2 period (Figure 5.5C, black line).  

In unc-8(tm5052) mutants, initiation of ventral synapse removal is not 

initiated until several hours after wild-type, such that persistent ventral synapses 

are still visible in the L2 stage (Figure 5.5C, gray line, ** p < 0.01, *** p < 0.001). 

As an internal control for these results, we used wyIs202[pflp-13::GFP::RAB-3] to 

monitor the appearance of dorsal NMJs for remodeling DD motor neurons 

(Figure 5.5D). This experiment confirms the earlier result obtained with the 

juIs1[punc-25::SNB-1::GFP] marker in which dorsal DD NMJs appear at virtually 

identical rates in wild-type and unc-8 animals. Therefore, our evidence strongly 

suggests that unc-8 is required for the removal of ventral synapses as DD motor 

neurons remodel but is not necessary for the establishment of DD dorsal NMJs 

This result suggests that the pathway that drives synaptic assembly in the 

remodeling program is uncoupled from the mechanism that removes synapses 

on the ventral side.  
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GABAergic synaptic remodeling is activity-dependent 

 In mammals, synapses may be selectively assembled or eliminated via 

activity-dependent mechanisms that can operate in genetically-regulated 

developmental programs (Sanes and Lichtman, 1999; Shen and Scheiffele, 

2010). Given the role of unc-8 in GABAergic remodeling, and the evidence that 

ASICs can mediate activity-dependent plasticity (Zha et al., 2006; Coryell et al., 

2008), we wondered if the DD synaptic remodeling program is sensitive to 

changes in neuronal activity. To explore this possibility, we compared wild-type 

DD motor neuron remodeling to the rate of remodeling in a tom-1 mutant. The 

tom-1 locus encodes the single nematode homologue of tomosyn, which forms 

an inhibitory SNARE complex with UNC-64/syntaxin that prevents synaptic 

vesicle priming and excess neurotransmitter release at NMJs in wild-type 

animals (McEwen et al., 2006; Gracheva et al., 2007). Thus, tom-1 mutants 

exhibit excess synaptic activity. Because tom-1 L1 larvae develop more slowly 

than wild-type, the appearance of dorsal SNB-1::GFP puncta are plotted against 

the number of VD motor neurons in the ventral nerve cord.  

A comparison of L1 timepoints revealed that tom-1 mutants show 

significantly more dorsal SNB-1::GFP puncta than wild-type. Furthermore, tom-1 

larvae appear to complete remodeling (indicated by a plateau of SNB-1::GFP 

puncta) prior to the onset of L2 stage, before all postembryonic VD motor 

neurons are generated [Figure 5.6A, * p < 0.05, *** p < 0.001, wild-type (black 

line) vs. tom-1 (blue line), Student’s t-test]. These results suggest that DD 

remodeling program is influenced by synaptic activity.  
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Figure 5.6. Synaptic activity and calcium channels influence GABAergic remodeling. (A) 
DD remodeling was quantified by counting dorsal SNB-1::GFP (juIs1) puncta during L1-L2 larval 
stages. Because tom-1 delays normal development, timepoints are binned according to the 
number of GABAergic motor neurons in the ventral nerve cord (VNC). Thirteen VD motor neurons 
are added in the late L1 stage to the existing six embryonic DD motor neurons (19 GABAergic 
motor neurons total). tom-1 mutants (blue line) exhibit precocious remodeling compared to wild-
type (black line). * p < 0.05, *** p < 0.001, Student’s t-test. unc-8(tm5052) suppresses ectopic 
tom-1 remodeling (gray line). †† p < 0.01, Student’s t-test. Results are pooled from >3 
independent timecourses per genotype. Error bars omitted for clarity. (B) Loss of the L-type 
calcium subunit unc-2 suppresses unc-55 VD remodeling. SNB-1::GFP is not detected in the 
ventral nerve cord (V) of unc-55 adults but is restored in unc-55; unc-2 double mutants. Note 
concurrent reduction of SNB-1::GFP in dorsal nerve cord (D) relative to unc-55 (not quantified). 
Representative 50-um lengths of each dorsal and ventral nerve cords are derived from a common 
region of a single adult. (C) Quantification of unc-2 suppression of unc-55. In unc-55; unc-2 
mutants, more SNB-1::GFP puncta are detected in the ventral nerve cord compared to unc-55 
single mutant. *** p < 0.001, Student’s t-test. Error bars indicate standard deviation. N>10 adults 
per genotype. 
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 Given that excess activity appears to stimulate the precocious appearance 

of dorsal DD NMJs, we next wondered whether unc-8 might be required for this 

remodeling event in the tom-1-sensitized background. This experiment showed 

that the unc-8(tm5052) mutation effectively slows the otherwise early dorsal 

synaptogenesis observed in tom-1 single mutants [Figure 5.6A, †† p < 0.01, tom-

1 (blue line) vs. tom-1; unc-8 (gray line), Student’s t-test]. This result indicates 

that unc-8 is required for precocious remodeling in tom-1 mutants and therefore 

indicates that unc-8 regulates an activity-dependent mechanism. It is unclear if 

tom-1 function is cell-autonomous for DD motor neuron remodeling, or if the 

enhanced rate of remodeling in tom-1 is due to excess synaptic vesicle release 

from other neurons. However, the cell-autonomous role of unc-8 in VD synaptic 

remodeling suggests that unc-8 functions similarly in DD motor neurons. This 

question can be directly addressed by using the unc-8(csRNAi) transgene to 

knock down unc-8 function in tom-1 DD motor neurons. 

 

GABAergic synaptic remodeling is calcium-dependent 

 We next decided to test whether changes in calcium influx, which is known 

to mediate activity-dependent plasticity, could also affect the GABAergic synaptic 

remodeling program. To address this question, we utilized a null mutant of an L-

type calcium channel, unc-2(e55). This experiment was performed by 

undergraduate Megan Gornet. For this assay, Megan tested the role of unc-2 in 

remodeling of unc-55 VD motor neurons. In unc-55 mutant adults, the ventral 

nerve cord is largely devoid of SNB-1::GFP puncta (Figure 5.6B, top panel). 
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However, a loss-of-function unc-2 mutant delays the Unc-55 VD remodeling 

program (Figure 5.6B, bottom panel); in unc-55; unc-2(e55) double mutants, 

SNB-1::GFP puncta were significantly more abundant in the ventral nerve cord 

than in the unc-55 control(Figure 5.6C, 22.7+4.2 ventral puncta in unc-55 vs. 

30.8+5.6 in unc-55; unc-2; *** p < 0.001). This result suggests that calcium 

signaling is required for ectopic VD motor neuron remodeling in unc-55 mutants, 

either directly (cell-autonomously) or indirectly, and is again suggestive of an 

activity-dependent effect on GABAergic plasticity. Whether calcium also 

modulates DD remodeling, and whether other L-type calcium subunits are also 

required, remains an open question. 

 

Where is UNC-8 positioned to mediate synaptic removal from the ventral 

nerve cord? 

 Based on the expression pattern of other ASICs at synaptic membranes 

and the isolation of UNC-8 from lipid rafts (Sedensky et al., 2004; Voglis and 

Tavernarakis, 2008; Zha et al., 2009), we predicted that UNC-8 localizes to 

GABAergic motor neuron processes to execute its role in the remodeling 

program. To test this model, we used recombineering to build a GFP-tagged 

UNC-8 fosmid (Zhang et al., 2008; Tursun et al., 2009). This construct 

encompasses the unc-8 genomic region and presumably spans the cis-

regulatory elements that regulate native UNC-8 expression. In wild-type larvae 

and adults, UNC-8::GFP is brightly expressed in DD motor neurons and in 

multiple sensory neurons (not shown), with some dim expression in other neuron 
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subtypes including some VD motor neurons (DDs indicated with arrows, Figure 

5.7A, top panel). Importantly, punctate UNC-8::GFP in the ventral nerve cord is 

likely indicative of localization to DD motor neuron processes (Figure 5.7A, 

bottom panel). Although additional analysis is necessary to confirm this result, 

this finding suggests that UNC-8 may function locally to remove ventral synapses 

of remodeling GABAergic motor neurons (Figure 5.7B). It follows that the role of 

UNC-8 in promoting the assembly of dorsal GABAergic synapses (Figure 5.2, 

5.5) may be indirect. 

 

Discussion 

UNC-8 mediates synaptic plasticity in GABAergic motor neurons 

 The RNAi screen of unc-55 targets revealed unc-8 as a potent suppressor 

of the Unc-55 phenotype (see Chapter III). Here, I have presented evidence that 

UNC-8 is normally expressed in DD motor neurons but is repressed by UNC-55 

in VD motor neurons to block the DD synaptic remodeling program (Figure 5.2). 

The RNAi result was confirmed with an unc-8 null allele which also showed 

strong suppression of the Unc-55 phenotype. A cell-autonomous role for UNC-8 

was established by cell-specific RNAi knockdown of unc-8 in GABAergic motor 

neurons (Figure 5.3). Although our evidence shows that IRX-1/Iroquois functions 

as a key regulator of synaptic remodeling, we have also discovered that UNC-8 

functions in an independent, parallel remodeling pathway (Figure 5.4-5). Based 

on preliminary evidence with tom-1 and unc-2 mutants, we propose that 

GABAergic motor neuron remodeling is activity dependent. Furthermore,  



189 

 
 
 
 
 
 
 
 
 
 

 
Figure 5.7. Potential role of UNC-8 in the ventral nerve cord of remodeling GABAergic 
motor neurons. (A) UNC-8::GFP is detected in DD motor neuron soma and in a punctate pattern 
along the ventral nerve cord. (B) Potential mechanism for UNC-8 in GABAergic synaptic 
remodeling. Left panel depicts a remodeling motor neuron with dorsal NMJs and ventral UNC-8 in 
a discrete, punctate pattern. Right panel shows an enlargement of the dotted box and 
demonstrates how UNC-8 might function in the membrane of ventral neurites to promote NMJ 
elimination.  
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because UNC-8 is required for precocious remodeling in the tom-1 mutant, we 

also propose that UNC-8 participates in an activity-dependent mechanism that 

drives synaptic remodeling (Figure 5.6-5.7). 

 UNC-8 is a member of the ASIC subfamily of degenerin family non-voltage 

gated sodium channels (Figure 5.1). In other studies, ASICs have been 

proposed to modulate postsynaptic glutamate receptors and presynaptic 

neurotransmitter release, either directly through elevating cytoplasmic sodium 

cations or indirectly by promoting calcium influx through other cation channels 

(Zha et al., 2006; Voglis and Tavernarakis, 2008). An activity-dependent role for 

UNC-8 in GABAergic synaptic remodeling is consistent with the observation that 

the unc-8(tm5052) allele, which is predicted to produce a truncated UNC-8 

protein consisting of a short N-terminal intracellular domain, suppresses the 

removal of ventral synapses in unc-55 mutants (Figure 5.3). However, a different 

deletion allele, unc-8(tm2071) that is predicted to introduce a frameshift which 

disrupts the second transmembrane domain does not suppress the UNC-55 

phenotype. This conundrum can be addressed by testing additional unc-8 

mutations but would suggest that UNC-8 channel activity is actually not required 

for its role in remodeling. Furthermore, we could not show that unc-8(n491), a 

gain-of-function allele with presumably excess channel activity, affects synaptic 

remodeling (data not shown). Therefore, it is possible that our results have 

detected a novel function for ASIC protein function in synaptic plasticity. We will 

test this model by using the unc-8(tm2071) as a negative control in other assays, 
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such as the delay in elimination of RAB-3::mCherry from the ventral nerve cord 

during DD remodeling. 

 

unc-8 promotes synaptic elimination during GABAergic remodeling 

The finding that unc-8 is required for synaptic elimination is particularly 

intriguing in light of the results from the Shen lab (Park et al., 2011). They used 

photoconvertible Dendra-labeled RAB-3 to demonstrate that ventral NMJ 

components are dismantled and trafficked to the dorsal nerve cord during DD 

remodeling (Park et al., 2011). However, the Shen lab did not quantify the rates 

of synaptic formation and elimination; in our study, we observed that removal of 

ventral synapses actually occurs at a slower rate than establishment of dorsal 

synapses even in wild-type DD motor neurons. Therefore, while some ventral 

synaptic proteins are likely included in remodeled dorsal synapses, we have 

demonstrated here that removal of ventral synapses is not rate-limiting for dorsal 

synaptogenesis. Furthermore, we found that the persistence of ventral synapses 

in an unc-8 mutant does not affect the timing of dorsal NMJ establishment; in 

fact, our data indicate that at the onset of L2, DDs in unc-8 mutants have more 

synapses overall, including the normal complement of dorsal synapses as well as 

excess ventral synapses. Thus, we have identified a specific role for unc-8 in a 

remodeling program that likely has separately regulated synaptic elimination and 

formation mechanisms.  
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How does UNC-8 promote synapse removal? 

In addition to structure-function studies based on the allelic series of unc-8 

mutants (Figure 5.3), we need additional assays to determine the localization of 

UNC-8::GFP in GABAergic motor neurons. Because UNC-8::GFP is so brightly 

expressed in wild-type DD motor neurons, and dimly expressed elsewhere, we 

predict that the bright UNC-8::GFP puncta in the ventral nerve cord are 

representative of UNC-8 localization in DD motor neurons (Figure 5.7A). 

However, because the transgenic protein is driven by its own promoter, we 

cannot exclude the possibility that these puncta are actually representative of 

expression in another neuronal type. We are therefore currently examining the 

relative localization of these puncta to other GABAergic markers, i.e. testing to 

see if UNC-8::GFP overlaps with cytosolic GABAergic mCherry or colocalizes 

with synaptic RAB-3::mCherry in the ventral nerve cord of immature DD motor 

neurons.  

We can nevertheless speculate about UNC-8 function in remodeling 

based on the hypothesis that it is localized in DD ventral processes. First, if in 

fact UNC-8 is localized in ventral DD processes, we would therefore predict that 

UNC-8 has a direct, local role in removal of immature ventral NMJs and/or 

maintenance to prevent formation of additional ventral NMJs (Figure 5.7). The 

involvement of sodium influx via UNC-8 for this removal remains debatable; our 

tm2071 allele suggests that channel activity is not necessary, at least in VD 

motor neurons, to promote synaptic elimination. However, it is reasonable to 

suggest that UNC-8 is somehow detecting a signal (protons or other ligands) 
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from cholinergic motor neurons, which form synapses on the ventral processes of 

larval and adult DD motor neurons (White et al., 1976).  

 

Activity dependence, calcium, and ASICs in the GABAergic synaptic 

remodeling program 

 The precocious remodeling observed in tom-1 mutants (Figure 5.6) 

strongly suggests that DD remodeling is promoted, either directly or indirectly, by 

synaptic activity. In this sensitized background, we found that unc-8(tm5052) 

actually slows the formation of dorsal NMJs, which is a phenotype we did not 

observe in single unc-8 mutants. One possible explanation is that the slower 

removal of ventral NMJs in unc-8 motor neurons impedes the formation of dorsal 

synapses in tom-1 mutants by keeping synaptic proteins sequestered in ventral 

NMJs. While this is not the case in unc-8 single mutants, tom-1 mutants may be 

more sensitive to the delay in synaptic elimination due to the earlier need for 

trafficking of synaptic proteins to the dorsal side. This idea can be tested with the 

DD synaptic marker wyIs202[pflp-13::GFP::RAB-3] to assess the rate of ventral 

synaptic elimination in tom-1 and tom-1; unc-8 mutants. 

Our finding that the L-type calcium channel subunit, unc-2, prevents 

ectopic VD synaptic remodeling, is particularly intriguing. In mammalian neurons, 

dendritic spines are remodeled by local calcium influx that induces LTP and 

stabilization of the synapse (Yang et al., 1999). In C. elegans, UNC-2 has been 

shown to localize and function at GABAergic synapses (Saheki and Bargmann, 

2009). Therefore, while unc-8 appears to function in synaptic removal, away from 
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nascent dorsal synapses, it seems likely that unc-2 functions to form or maintain 

remodeled dorsal NMJs. This result is consistent with current experiments 

performed by Megan Gornet, which places UNC-2::GFP at dorsal NMJs of both 

wild-type DD motor neurons as well as unc-55 mutant VD motor neurons (data 

not shown). Whether this remodeling role is unique to unc-2, or is observed with 

other calcium channels (cca-1, egl-19) is a current area of study in this project by 

Megan as well as graduate student Tyne Miller. 

 

Conclusions 

 We have discovered that the ASIC subunit UNC-8 functions in GABAergic 

synaptic remodeling, specifically in removal of immature ventral synapses and 

perhaps indirectly promoting dorsal synaptogenesis. While we have determined 

that GABAergic synaptic remodeling is activity-dependent and sensitive to 

changes in intracellular calcium, how UNC-8 fits into the mechanism of 

remodeling remains unclear. Further experiments in this study will attempt to 

understand whether unc-8 functions as an ASIC, whether its channel activity is 

required, and whether it signals through influx of sodium or calcium ions to 

function in synaptic remodeling. 
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CHAPTER VI 

 

GENERAL DISCUSSION AND FUTURE DIRECTIONS 

 

Key Findings and Discussion 

Our work has characterized the molecular features of a synaptic 

remodeling program in C. elegans and identified genetic factors that control this 

process. Although the developmental plasticity of DD motor neurons was first 

reported over thirty years ago (White et al., 1978), we are only beginning to 

create a comprehensive view of the genetic program that drives this event. To 

understand this process, we have exploited the ectopic remodeling program in 

unc-55(e1170) mutants, in which VD motor neurons remodel to mimic the polarity 

of DD motor neurons (Walthall, 1990; Shan et al., 2005).  

Our results (Chapter II) indicate that unc-55 mutant VD motor neurons 

initially establish ventral NMJs that are later removed as new synapses emerge 

on the dorsal side. Our analysis of a locomotory behavior that depends on ventral 

GABAergic signaling suggests that these transient ventral VD synapses are 

functional. This possibility is also consistent with the finding that presynaptic 

active zone markers SYD-2 and SNB-1 are co-localized in ventral VD motor 

neuron processes during early larval development of unc-55 mutant animals. 

Electrophysiological measurements could verify that these transient ventral 

synapses in unc-55 mutants are functional; however, these experiments are 

technically difficult due to the small size of L2 larvae. The idea that UNC-55 
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negatively regulates a remodeling program similar to the program in DD motor 

neurons is also supported by our confirmation that ectopic UNC-55 expression in 

DD motor neurons blocks GABAergic innervation of dorsal muscles. Based on 

these data, we propose that DD and VD motor neurons are likely remodeled by a 

common pathway and that UNC-55 normally functions as a transcriptional switch 

to prevent execution of this program in VD motor neurons. 

We used a powerful cell-specific profiling technique, the mRNA tagging 

method, to identify the transcripts that are upregulated when remodeling is 

ectopically induced in unc-55 mutant VD motor neurons (Chapter III). A 

comparison of the wild-type and unc-55 datasets identified 188 upregulated 

transcripts, which represent candidate UNC-55 targets. An RNAi screen of these 

targets identified nineteen conserved genes with necessary roles in ectopic VD 

remodeling. One of the synaptic remodeling genes uncovered in our screens 

encodes the Iroquois homeodomain-containing transcription factor, IRX-1 

(Chapter IV). We used a functional irx-1::GFP transgene (provided by Mihail 

Sarov, Max Planck Institute) to confirm that IRX-1 is selectively expressed in 

remodeling neurons (i.e. DD and unc-55 VD motor neurons). We confirmed that 

IRX-1 function is cell autonomous using cell-specific RNAi to show that 

knockdown of irx-1 specifically in GABAergic motor neurons suppresses the Unc-

55 remodeling phenotype. In collaboration with Janet Richmond (University of 

Illinois at Chicago), we used electrophysiological measurements to establish, for 

the first time, that functional ventral GABAergic synapses are absent in unc-55 

mutant adults and that IRX-1 is required for removing these inhibitory inputs to 
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ventral muscles. In addition to demonstrating that IRX-1 is required for the 

synaptic remodeling program in unc-55 VD motor neurons, we also showed that 

knockdown of irx-1 perturbs DD remodeling and that ectopic expression of IRX-1 

is sufficient to drive VD remodeling. Together, these experiments establish irx-1 

as a key regulator of synaptic remodeling. 

 It was particularly exciting to discover that the ion channel protein UNC-8, 

a member of the DEG/ENaC/ASIC family of non-voltage gated ion channels, 

functions in the GABAergic motor neuron remodeling program (Chapter V). 

Degenerin-family ASICs have been implicated in learning and memory, but the 

mechanism of this effect is not well understood (Wemmie et al., 2004; Coryell et 

al., 2008). Our studies with a promoter::GFP transgene indicate that UNC-8 is 

normally expressed in DD motor neurons but that UNC-8 expression is blocked 

in the VD motor neurons by UNC-55. We confirmed the cell-autonomous role of 

UNC-8 that these results suggest by showing that cell-specific RNAi of unc-8 in 

the GABAergic motor neurons inhibits remodeling. Interestingly, our results 

indicate that UNC-8 functions in parallel to IRX-1 and therefore may be directly 

repressed by UNC-55. The physiological role of UNC-8 in synaptic remodeling is 

unclear. Our analysis of mutant UNC-8 proteins in vivo resulted in the surprising 

finding that the N-terminal region is required to promote remodeling, but UNC-8 

channel activity may not be required. Despite the uncertainty of a role for UNC-8 

channel activity in remodeling, our initial assumption that ion channel function 

might be required led us to perform additional tests for an activity-dependent 

mechanism. These genetic experiments revealed that an L-type calcium channel, 
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UNC-2, is necessary for ectopic synaptic remodeling and that excessive 

neurotransmitter release triggers precocious synaptic remodeling.  

 

Roles for synaptic remodeling genes in broader GABAergic neuron 

development 

 Throughout this study, we found evidence that genes identified in our 

microarray and RNAi screens, originally designed to specifically identify synaptic 

remodeling genes, are also required for broader developmental roles in 

GABAergic neurons as well as in other tissues. For instance, despite the strong 

backward locomotion suppression observed in unc-55; irx-1(RNAi) animals 

(Figure 4.2), irx-1 was not uncovered as a suppressor of Unc-55 backward 

locomotion in mutagenesis screens (W. Walthall, Y. Jin, personal 

communication). We attribute this result to the fact that irx-1 encodes a protein 

with essential embryonic function. This result in particular demonstrates the utility 

of our approach in which candidate UNC-55-regulated genes were initially 

identified with a microarray screen that did not depend on a target gene 

phenotype. Furthermore, our microarray results were validated with a secondary 

RNAi test that reduced but did not completely eliminate gene function.  

The enrichment of transcripts for grl-4, grd-5, and grd-6 in the unc-55 

microarray dataset suggests that these Hh-like ligands are normally expressed in 

remodeling DD motor neurons but not in VD motor neurons. However, RNAi 

knockdown of grl-4, grd-5, and grd-6 resulted primarily in VD motor neuron 

defects (Figure 3.5). This result may be due to necessary roles for Hh ligands 
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produced by DD motor neurons to indirectly promote VD synaptogenesis. 

Interestingly, GRL-4 was also identified as a regulator of synaptic remodeling in 

our RNAi screen; knockdown of grl-4 in unc-55 mutants resulted in GABAergic 

synapses in the VNC with aberrant morphology. This result suggests that GRL-4 

may be required at lower levels for proper VD synaptogenesis and can promote 

remodeling at higher levels in unc-55 VD motor neurons.  

Validation of our microarray and RNAi screens has been complicated by 

the pleiotropic function of other genes as well. Preliminary analysis of deletion 

alleles for the CNT-1/ArfGAP and the Arp2/3 complex component ARX-5 showed 

that knockout of these genes results in axon guidance defects and reduced 

synaptogenesis phenotypes that were not detected by RNAi knockdown (Figure 

3.7-8). These findings are likely indicative of additional roles for these highly 

conserved proteins in other aspects of neuronal development. For example, 

GTPase-dependent regulation of the actin cytoskeleton is crucial to multiple 

events, including the establishment of neuronal polarity, process outgrowth, and 

synaptogenesis (see Chapter I). Thus, it is not surprising to discover that CNT-

1/ArfGAP and ARX-5 exercise other roles in GABAergic neuron morphogenesis. 

One conceivable model is that ARX-5 and CNT-1 are both expressed in low 

levels in VD motor neurons for proper axonogenesis and synaptogenesis, but 

that UNC-55 maintains expression below a critical threshold required for synaptic 

remodeling (Figure 6.1). This model is consistent with the finding that unc-55 

heterozygous animals display mild but significant evidence of remodeling (Figure 

4.3). This result suggests that the remodeling program may be sensitive to  
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Figure 6.1. Model for UNC-55-regulated targets with essential roles in GABAergic 
development. In this model, an unc-55-regulated transcript may be expressed highly in wild-type 
DD motor neurons to promote remodeling and at lower levels in VD motor neurons due to 
repression by UNC-55. In unc-55 VD motor neurons, the higher level of gene expression 
promotes remodeling. Knockdown of the gene via RNAi in an unc-55 background reduces its 
expression, but does not completely block gene expression and results in a wild-type VD synaptic 
arrangement. Knockout of the gene via a null mutant, however, completely abrogates gene 
function and disrupts VD morphology. 
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relatively minor changes in expression levels and therefore that tight regulation of 

remodeling gene expression is necessary for proper GABAergic connectivity. 

 

Future Directions 

Toward a deeper analysis of the cell biological role of UNC-55 candidate 

target genes 

 UNC-55 candidate genes were initially screened with a SNB-1::GFP 

marker for a necessary role in dismantling ventral synapses (Figure 3.6). Our 

evidence indicates that at least two of these proteins, irx-1 and unc-8, are also 

necessary for the nascent assembly of new synapses on the dorsal side in 

remodeling neurons. These dual roles are consistent with other evidence 

suggesting that these events are coupled by a mechanism that traffics 

presynaptic components from disassembled ventral synapses to the dorsal side 

(Park et al., 2011). Our results, however, suggest that this coupling mechanism is 

not absolute. For example, we observed that assembly of dorsal synapses in 

remodeling DD motor neurons is complete before ventral synapses are entirely 

removed. In addition, we showed that UNC-8 is necessary for the removal of 

ventral synapses in wild-type DD motor neurons but is not required for assembly 

of dorsal synapses. Thus, it is possible that a subset of UNC-55 targets identified 

in our microarray dataset may be exclusively involved in assembly of dorsal 

synapses in remodeling GABAergic motor neurons. These genes would not have 

been detected by our RNAi assay, which was limited to noting the restoration of 

SNB-1::GFP to ventral VD synapses.  
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One way to examine the role of remodeling genes in synaptic assembly 

and disassembly is time-lapse imaging. The Shen lab has examined the 

movement of SV precursors labeled with GFP::RAB-3 as they are trafficked in 

cholinergic neuron commissures (Klassen et al., 2010), and a graduate student in 

the Miller lab, Cody Smith, has collaborated with Matt Tyska to develop time-

lapse imaging techniques that allow observation of protein trafficking within 

sensory neurons (Smith et al., 2010). This approach could be adapted to observe 

the dynamic localization of fluorescently-labeled SVs (e.g. RAB-3::GFP, SNB-

1::GFP) within remodeling GABAergic motor neurons. With this approach, the 

removal of synapses in the VNC and assembly of synapses in the DNC could be 

monitored continuously during GABAergic motor neuron remodeling. The 

movement of GFP-labeled SVs in commissures could also be observed to test 

the prediction that SV precursors are trafficked in a net ventral-to-dorsal direction 

during remodeling. Furthermore, this imaging approach could be used to observe 

the movement of SV precursors in neurons with mutations in Unc-55 suppressor 

genes to determine which aspect of the remodeling program (e.g. disassembly, 

trafficking, synaptogenesis) is perturbed in the mutant. 

 Because we wanted to find genes with critical roles in synaptic 

remodeling, we used the marker SNB-1::GFP which indicates the location of SV 

pools. The arrival of SVs, however, is one of the final steps in synaptogenesis 

(Patel et al., 2006) (see Chapter I for review). It is possible that use of another 

marker, such as one that labels the active zone (i.e. SYD-2/Liprin-α, UNC-

10/RIM), would reveal a different, although perhaps overlapping set of synaptic 
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remodeling genes. For instance, the Kaplan lab has reported that knockdown of 

the transcription factor hbl-1/Hunchback-like suppresses the Unc-55 defect as 

marked with fluorescently-labeled endophilin (K. Thompson-Peer, personal 

communication). However, we have been unable to repeat this result with SNB-

1::GFP. Whereas SNB-1 is associated with SVs, endophilin functions in 

endocytosis during synaptic vesicle recycling (Ringstad et al., 1999; Schuske et 

al., 2003). Thus, one explanation for these disparate results is that endophilin 

and SVs are recruited to synapses by different mechanisms, such that 

knockdown of specific remodeling genes could affect one marker and not the 

other.  

 This observation suggests a related question: Do remodeling motor 

neurons use a different, novel synaptogenic program? Previous work has 

demonstrated that SYD-1 and SAD-1 are dispensable for dorsal synaptogenesis 

in remodeled DD motor neurons (Zhen and Jin, 1999; Hallam et al., 2002), 

Although novel synaptogenic genes could be found in our unc-55 dataset, they 

could not be identified by our RNAi suppression screen; our assay looked for 

restored synapses in the ventral nerve cord, but knockdown of a presumptive 

synaptic recruitment or scaffolding protein would actually block restored ventral 

synapses. Thus, identification of these genes would be best accomplished with a 

forward genetic screen looking for defective dorsal synapses in DD remodeling. 

Additional gene expression profiling experiments of L1-stage DD motor neurons 

could also identify candidates for a novel synaptogenic program, particularly 

when compared to the list of genes enriched in unc-55 VD motor neurons. 
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The irx-1 remodeling pathway 

 One of the strongest regulators of synaptic remodeling revealed in our 

screens is the Iroquois homeodomain-containing transcription factor IRX-1. This 

suggests that many remodeling factors enriched in the unc-55 microarray screen 

are positively regulated by IRX-1. Furthermore, irx-1 is a strong regulator of DD 

remodeling; when irx-1 is knocked down, DD remodeling is significantly delayed. 

This suggests that genes regulated by irx-1 likely function in dorsal 

synaptogenesis during GABAergic motor neurons remodeling. By determining 

which genes function downstream of irx-1 in VD motor neurons, we can 

effectively create a “short-list” of candidate genes that normally drive remodeling 

in DD motor neurons. These irx-1-pathway genes can be identified by RNAi or 

genetic suppression of the irx-1(gf) ectopic remodeling phenotype observed in 

VD motor neurons (Figure 4.7). In this epistasis experiment, knockdown of a 

gene that is required for remodeling downstream of IRX-1 should suppress 

ectopic irx-1(gf) remodeling. In contrast, a knockdown of a gene that functions in 

parallel or upstream of IRX-1 would not suppress irx-1(gf) due to constitutive 

repression by wild-type. This question is particularly suited for an RNAi screen for 

downstream irx-1 targets; thus, I have built an RNAi-sensitized (eri-1 mutant) 

strain carrying the SNB-1::GFP transgene and the mosaic irx-1(gf) construct. 

Strong candidates for irx-1-pathway genes may be found within our list of Unc-55 

suppressors from the RNAi screen (Figure 3.6). Therefore, a candidate gene 

approach to identify irx-1 targets is favorable to a unbiased screen, particularly 

because mosaic analysis of irx-1(gf) strain is labor-intensive.  
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For any candidate hits, additional tests for irx-1 regulation can be 

performed, such as the irx-1 enhancement and promoter::GFP experiments with 

unc-8 described in Chapter V. Generation of promoter::GFP and fosmid::GFP 

transgenic worms is fairly straightforward (see Chapter V Methods for 

recombineering protocol); these strains can then be analyzed for regulation by 

unc-55 and irx-1. Remodeling genes downstream of both unc-55 and irx-1 should 

first, show expression in DD motor neurons but not VD motor neurons in wild-

type; second, show expression in both DD and VD motor neurons in unc-55; and 

third, exhibit abrogation of expression in unc-55 DD and VD motor neurons when 

treated with irx-1 RNAi. For genes that are not downstream of irx-1 (e.g. unc-8), 

enhancement of irx-1 RNAi or irx-1(csRNAi) suppression of unc-55 may be 

tested in remodeling gene mutants (as in Figure 5.4) 

Although IRX-1 is an important factor for synaptic remodeling, several of 

our experiments have demonstrated that other remodeling genes are necessary 

in parallel to IRX-1. For instance, knockdown of irx-1 does not completely block 

DD remodeling (Figure 4.6), nor does it restore SYD-2 to ventral VD synapses in 

an unc-55 mutant (Figure 4.5). Our work has demonstrated that UNC-8 is a key 

remodeling factor that functions in a parallel pathway to irx-1. The experiments 

described above should parse out genes that function in parallel to irx-1 and 

define the major pathways that control GABAergic remodeling. 
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Does UNC-8 locally break down synapses in the VNC? 

 We have generated an UNC-8::GFP transgenic strain that is expressed in 

DD motor neurons and shows distinct GFP puncta along the ventral nerve cord 

(Figure 5.7). This observation, coupled with results demonstrating that UNC-8 is 

required specifically required for removing ventral DD synapses (Figure 5.5), is 

consistent with the idea that UNC-8 exercises a local function to destabilize 

ventral synapses. As stated in Chapter V, we can test this model by tracking 

UNC-8::GFP co-localization with NMJs marked with RAB-3::mCherry and testing 

for loss of RAB-3::mCherry at sites of UNC-8::GFP enrichment. The use of time-

lapse imaging, described above, could be particularly informative to address this 

question. 

 Our data from unc-8 deletion mutants (Figure 5.3) suggest that the N-

terminal region of unc-8 is required to promote remodeling, but channel activity is 

not. This prediction is based on the absence of Unc-55 suppression with unc-

8(tm2071), an allele which removes a portion of the extracellular loop of the 

DEG/ENaC/ASIC protein and introduces a frameshift that perturbs the amino 

acid sequence of the second transmembrane domain. However, it remains to be 

tested whether the UNC-8 protein encoded by unc-8(tm2071) is capable of 

channel activity; if so, it would predict that UNC-8 channel activity drives 

remodeling, not the N-terminal region. Furthermore, DEG/ENaC/ASICs have the 

ability to conduct calcium as well as sodium ions (Bianchi et al., 2004; Wemmie 

et al., 2006). The potential that UNC-8 might be permeable to calcium is 

particularly interesting given our finding that the L-type calcium channel subunit 
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UNC-2 is necessary for remodeling (discussed below). Understanding the 

channel activity of native UNC-8 as well as UNC-8 mutants will distinguish 

whether ventral synapse removal is promoted directly by cation influx through 

UNC-8 or by another novel mechanism. 

 

Activity-dependence in developmental synaptic remodeling 

 The precocious remodeling phenotype observed in tom-1 mutants (Figure 

5.6A) indicates that synaptic vesicle release promotes synaptic remodeling of 

GABAergic motor neurons. This effect could be driven by synaptic activity within 

the GABAergic motor neurons or could alternatively result from a non-cell 

autonomous effect of excess signaling from other motor circuit neurons. These 

models can be distinguished by RNAi knockdown of tom-1 specifically in the 

GABAergic motor neurons, which is predicted to accelerate DD remodeling if 

TOM-1 function is cell-autonomous. Conversely, we could rescue TOM-1 

function specifically in GABAergic motor neurons and look for restoration of wild-

type timing of the remodeling program. tom-1 knockdown in other ventral cord 

motor neurons could also be evaluated for a non-cell-autonomous effect. 

Additionally, we can test other components of the synaptic vesicle release 

pathway (see Chapter I for review) for necessary roles in remodeling. For 

instance, removal of unc-10/RIM should prevent synaptic release and could 

therefore delay synaptic remodeling and potentially suppress tom-1-dependent 

precocious remodeling. 
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 The finding that knockdown of the L-type calcium channel subunit UNC-2 

blocks Unc-55 synaptic remodeling is particularly exciting (Figure 5.6B), as it 

links transcriptional regulation to an activity-dependent mechanism of synaptic 

plasticity. Based on work from the Bargmann lab which demonstrated that UNC-2 

functions cell-autonomously at GABAergic synapses to promote synaptic release 

(Saheki and Bargmann, 2009), we predict that UNC-2-dependent synaptic 

activity in unc-55 VD motor neurons could be required for synaptic remodeling. 

This model can be tested by asking if expression of UNC-2 in GABAergic motor 

neurons is sufficient to restore ectopic remodeling to unc-55; unc-2 VD motor 

neurons. It is also possible that remodeling is driven by calcium-dependent 

activity from other neurons. Cholinergic motor neurons are obvious candidates 

because they provide excitatory input to the GABAergic motor neurons in C. 

elegans. A potential role for cholinergic motor neurons in remodeling could be 

tested by evaluating a genetic mutant of the acetylcholine biosynthetic gene cha-

1 (choline acetyltransferase) (Rand and Russell, 1984). An undergraduate in our 

lab, Megan Gornet, will be working on this question next semester. 

In vertebrate neurons, activity-dependent modulation of synapses 

depends on the influx of calcium and the protein kinases that transduce this cue 

(see Chapter I for review) (Yang et al., 1999; Flavell and Greenberg, 2008). 

Because calcium-dependent protein kinases have established roles in C. elegans 

synaptic function (Rongo and Kaplan, 1999; Liu et al., 2007), it is reasonable to 

predict that some may therefore also have a role in GABAergic remodeling. 

There are several calcium-dependent serine/threonine protein kinases enriched 
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in our L2 GABAergic dataset, including cmk-1/CaMKI (enriched 5.7-fold), unc-

43/CaMKII (enriched 2-fold), unc-51/ULK (enriched 2.4-fold), and mnk-1/MAPK-

interacting kinase (enriched 3.1-fold) (Chapter III). We can test these for a role in 

remodeling by treating larvae with feeding RNAi looking for suppression of unc-

55 VD remodeling and a delay in wild-type DD remodeling. If in fact we can 

identify a calcium-dependent kinase required for remodeling, it would be 

interesting to test whether it also regulates transcription (i.e. activation of irx-1 or 

other unc-55 targets to drive remodeling) as observed in vertebrate calcium-

dependent plasticity (Greer and Greenberg, 2008; Wiegert and Bading, 2011). 

 

Actin dynamics in synaptic remodeling 

One of the intriguing hits in our microarray and RNAi screen is the Arp2/3 

complex p21 subunit encoded by arx-5, named ARPC4 in mammals. As noted in 

Chapter I, the modulation of actin dynamics is crucial for establishing neuronal 

polarity and for establishing and modifying synapses. There is some evidence 

that the seven-subunit complex composed of Arp2, Arp3, and five accessory 

ARPC subunits mediates branched actin formation in these processes along with 

the actin nucleating factor, Wiskott-Aldrich syndrome protein (WASP) (Strasser et 

al., 2004; Wegner et al., 2008). Recently, it was shown that expression of the 

ARX-5 homologue in mammals, ARPC3, is specifically modulated by a 

microRNA (miR-29) to promote remodeling of dendritic spines (Lippi et al., 2011). 

This result suggests that, in both C. elegans and mammals, ARX-5/ARPC3 is 

specifically regulated to modify actin dynamics at the synapse in remodeling. 
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Thus, it follows that other Arp2/3 complex components (ARX-2/Arp2, ARX-

1/Arp3, etc.) may also be required for GABAergic motor neuron remodeling. We 

can test for the requirement of these proteins in DD and unc-55 VD synaptic 

remodeling with RNAi knockdown. This will help us understand if the Arp2/3 

complex is functioning in remodeling or if some novel role of ARX-5 promotes 

remodeling.  

Structural analysis suggests that mammalian WASP specifically interacts 

with the p21 ARPC3 subunit (Kreishman-Deitrick et al., 2005). WSP-1/WASP has 

been shown to prevent excess synaptic release in C. elegans motor neurons, 

perhaps by stabilization of the actin cytoskeleton at the synapse which is 

predicted by the synaptic localization of WSP-1::GFP (Zhang and Kubiseski, 

2010). Thus, given that WSP-1 likely interacts with ARX-5, and we have found 

remodeling defects when synaptic vesicle release is perturbed, the role of WSP-1 

and its interaction with ARX-5 seems like a promising avenue to understand how 

actin dynamics at the synapse modify synaptic activity and ultimately synaptic 

remodeling. For instance, do wsp-1 mutants display early DD remodeling (as 

observed in tom-1 mutants, which also have excess synaptic vesicle release)? If 

so, does knockdown of arx-5 in wsp-1 mutants suppress this phenotype? This 

study, as well as testing additional components of the Arp2/3 complex and the 

cell-autonomy of ARX-5 in synaptic remodeling, is now being pursued by a new 

graduate student in our lab, Tyne Miller. 
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