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CHAPTER I 
 
 

INTRODUCTION 
 
 

Introduction to epithelial adhesion    
 
 
 
Multicellularity and adhesion molecules 

          The rise of multicellularity marks a significant event across evolution, allowing biological 

systems to overcome the limit of surface-to-volume ratio of individual cells and greatly increase in 

size and complexity. (Carnahan et al., 2010; Oda and Takeichi, 2011) Whereas the origin of 

multicellularity is still under debate, an end result is two fundamental characteristics that 

distinguish multicellular organisms from either unicellular or pluricellular (colonial) species: 

intercellular adhesion and cross-cellular signaling. For example, Aliivibrio fischeri can live in a 

symbiotic form and achieve coordination of gene expression via luciferase signaling across 

multiple cells through a mechanism called quorum sensing. It does not, however, qualify as 

multicellular organism due to the lack of intercellular adhesion. In multicellular organisms, a 

number of gene families have evolved over time to serve this adhesive function. All have in 

common is a feature involving the molecular interaction between integral membrane proteins on 

apposing cells, and thus referred to as cell-adhesion molecules (CAMs). In vertebrates, there are 

four major types: 1) Occludins and Claudins; 2) Cadherins; 3) Ig-superfamily CAMs; 4) Selectins 

(Gumbiner, 2005a). CAMs can distribute loosely across the entire lateral membrane or cluster 

into distinct patches to form cell-cell junctions. Differing in the localization and function, 

intercellular junctions are further categorized as 1) Tight junctions (TJ); 2) Adherens Junctions 

(AJ); 3) Desmosomes 4) Gap Junctions (Gumbiner, 2005a).  
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                Whereas all cellular junctions can generate adhesive force, their physical properties 

differ in terms of magnitude and half-life. Magnitude is largely determined by the quantity of 

adhesive molecules and the affinity of the protein-protein interactions. Half-life on the other hand, 

is more dependent upon CAM turnover ratio at the membrane. Technologies enabling quantitative 

measurement of the physical properties of these junctions are just now beginning to emerge. 

Intercellular adhesions differ markedly in different types of epithelium. For example, forces 

generated by normal movement of the gut result in constant wounding of the epithelial lining of GI 

tract. The epidermis on the other hand, withstands substantial mechanical stress and still 

maintains the integrity of intercellular adhesion. This flexibility in intercellular adhesions arises 

from selective usage of different CAM classes, different family members within a class, and 

different expression levels of CAMs. Consistently, the presence of tight junctions (TJ) or 

desomosomes (DM) varies across different tissue types, conferring different strength of 

intercellular adhesions. However, adherens junctions (AJ) on the other hand, are universally 

expressed across all tissue types. In other words, classic cadherin complex must sit at a unique 

position to integrate critical signaling pathways that are essential for all types of epithelial tissues. 

 
 
 
Redundancy at Intercellular junctions 

               Vertebrates differ substantially from all other animals in that they have evolved 20 

different classical cadherin family members. Each tissue type typically expresses two to four 

members (Gumbiner, 1996; Gumbiner, 2005b; Takeichi, 2014). The extracellular and 

transmembrane domains vary discretely as needed to confer tissue specificities. The intracellular 

domains on the other hand, are structurally and functionally conserved, as all of them invariably 

bind to p120-catenin (p120), β-catenin (or γ-catenin, functionally interchangeable at the cadherin 

complex, and for simplicity, will be refered to only as β-catenin afterwards) and α-catenin 

(indirectly through β-catenin). β-catenin mediates the linkage between cadherins and the actin 

cytoskeleton network via association with α-catenin, although it remains to be determined 
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whether this association is direct or indirect (mechano-sensitive)(Takeichi, 2014). p120 binds to 

the juxta-membrane domain and masks a canonical endocytic di-leucine motif to retain the 

complex at the cell surface. (DEE for VE-cadherin)(Miyashita and Ozawa, 2007; Nanes et al., 

2012). Because p120 performs this function for all classical cadherins, it is widely viewed as a 

master regulator of cadherin stability. Indeed, if p120 is removed, the entire cadherin complex 

(including β, γ, α-catenin) is internalized and degraded (Davis et al., 2003; Ireton, 2002).  

 

             Since all classical cadherins share the same set of catenins, the very type of cadherins at 

AJs can switch from one to another (e.g. E-cadherin to N-cadherin) (Figure 1A), while normal 

localization of the catenins (p120, β-, α-catenin) is not affected. On the other hand, this design 

allows different types of cadherins to compensate for each other partly, which serves as a failsafe 

mechanism against catastrophe in cell-cell adhesion if one cadherin is mutated or down-regulated 

(Figure 1B). For the same reason, experimentally, depletion of one cadherin family member is 

often amorphic because of the compensation. To circumvent the redundancy between classical-

cadherin family members, a very efficient method to deplete adherens junctions is directly 

decreasing the levels of p120-catenin. Depletion of p120 exposes this motif to endocytic 

machineries and leads to destabilization of most (if not all) classical cadherins across various 

epithelial types. In cell lines expressing multiple cadherin members, p120 depletion renders them 

all unstable. Thus, p120 KD or KO studies often lead to convincing results in testing whether AJs 

are critical for cell-cell adhesion. The MCF10A cells are particularly striking in that they rapidly 

disaggregate into single highly motile cells after treatment of siRNAs against p120, even though 

this cell type expresses multiple cadherins at high levels (Kurley et al., 2012). In mammary gland 

epithelium, p120 KO cells are sloughed off from the neighboring wildtype cells due to loss of 

adhesion. However, different results have been reported in some cell types. For example, in 

MDCK (Mardin-Darby Canine Kidney) cells, intercellular adhesion remains largely intact upon 

almost 90% percent down-regulation of p120 (Dohn et al., 2009). The colony formed by the p120-

depleted cells is held together normally by forming tight junctions and desmosomes. Notably, 
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E-cadherin

N-cadherin

E-cadherin

N-cadherin
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E-cadherin N-cadherin

p120
β-catenin 
α-catenin 

A.

B.

E-cadherinP-cadherin

Cadherin Sharing
stable adhesionstable adhesion
P-cadherin

CDH1
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Figure 1. (A) Illustration of cadherin transition from E- to N-cadherin. Note that intracellular components (p120, beta-, alpha-
catenin) are intact. (B) Illustration of cadherin sharing between E-cadherin and P-cadherin. In case of E-cadherin loss by 
mutation or deletion, P-cadherin is up-regulated at the adherens junction and maintains stable cell-cell adhesion. 
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upon p120 KO in the epidermis, no barrier defect is detected even though all CCC components 

are destabilized significantly (Perez-Moreno et al., 2006). These opposite results highlight an 

important but previously unresolved paradox: whereas AJs are indeed critical in providing 

physical attachment between cells, this requirement is nonetheless replaceable by other types of 

junctions (TJ, Desmosomes etc.) if they are available and expressed at sufficient levels. Thus, the 

next question is what is unique function of p120/cadherin complex that is not replaceable by other 

types of junctions.  

 

 

 

Adhesion and signaling at adherens junctions 

 

Mutual dependence between cell-cell adhesion and signaling at junctions 

                Cadherins mediate intercellular adhesion via linking neighboring cells to the cortical 

actin cytoskeleton network. In the mean time, cadherins also recruit actin modulators (directly or 

indirectly through catenins) to locally alter adhesion and/or cortical actin organization(Takeichi, 

2014). Moreover, CCC has also been shown to crosstalk with other signaling pathways on the 

membrane to further regulate cell growth, motility, polarity and metabolism. Studying these roles, 

however, is inherently complicated by the interdependency between the adhesion and signaling 

activities of cadherin complex. Thus, it becomes increasingly necessary to separately investigate 

cadherins’ role as an adhesion provider and a signaling organizer. The next section highlights 

serveral properties unique to p120-catenin, illustrating why separating these two activities is 

important, how a paradigm can be established and applied to investigate other cadherin-

associated proteins.  

 

             A seminal study by Ozawa group in 2007 shed important insight on how to separate 

these two core acitivites of p120/E-cadherin. Mutation of a double-leucine motif upstream of the 
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p120-binding site renders Ecadherin resistant to endocytosis, irrespective of p120 binding. Thus, 

it is now possible to circumvent the requirement for p120 with respect to cadherin stability. 

Surprisingly, this analysis uncovered several novel adhesion-independent activities. For example, 

p120 KD in MDCK cells cultured on collagen gel were unable to maintain the cuboidal cell shape, 

with apical membranes abnormally invaginated into the intercellular space. This morphological 

defect cannot be rescued by expressing a stablized E-cadherin mutant (LAEA in this case, with 

less mutations), but was completely reversed by inhibition of the Rho-ROCK pathway. It is worth 

noting that the rescue by ROCK inhibition happens in the complete absence of E-cadherin 

complex at the junctions. Moreover, the Rho-suppressing activity of p120 appears to go well 

beyond regulation of cell shape, as loss of this activity also led to major defects in epithelial 

lumenogenesis, a common irregularity found in many p120 KO tissues. Applying this 

methodology in vivo should provide important new insights into roles of p120 beyond its cadherin 

stabilizing function. More importantly, the same mindset also applies to loss-of-function studies of 

other AJ components. For example, it remains to be determined whether the α-catenin KO 

phenotypes are consequences of impaired cadherin-linkage to the cytoskeleton or other signaling 

roles. 

 

 

The role of p120/E-cadherin complex in epithelial architecture and morphogenesis 

            Epithelial monolayer is a highly organized structure consisting of individual polarized 

epithelial cells that are connected and aligned together on top of extracellular matrix. A universal 

principle of organization for polarized epithelial cells is the physical and functional segregation of 

membranes into three distinctive domains(Martin-Belmonte and Mostov, 2008). Basal 

membranes impart anchorage, lateral membranes organize adhesive contacts and apical 

membranes establish a free surface for exchange of materials(Brien and Zegers, 2002). The 

geometric organization of these three membrane compartments underlies the basis of cell shape 

(box2). Whereas apical and basal membranes are always one facet, the lateral membranes are 
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often segregated into four to six facets depending on the numbers of contacts with neighboring 

cells. The facet number of lateral membranes changes constantly during cell rearrangements, 

and can be directly modulated by myosin-mediated contractility. For example, during axis 

elongation in Drosophila, lateral membranes on the anterior-posterior (AP) side are contracted by 

the planar polarized myosin-II bundles, which lead to complete removal of the facets along the AP 

axis and so-called rosette formation(Kasza and Zallen, 2011) (Figure 2A).  On the other hand, 

lateral membranes can expand along the vertical axis to accommodate increasing cell height. 

During wing imaginal disc development in Drosophila, cells start with the cuboidal cell shape, but 

quickly elongate and become highly columnar within a short time frame. The underlying 

mechanism was attributed to Dpp signaling and importantly, compartmentalized Rho1 and 

myosin-II activity along the length of lateral membranes(Gibson, 2005; Widmann and Dahmann, 

2009). Thus it seems that the lateral membranes can be either stretched or shrunk by varying 

myosin activity, to accommodates changes in epithelial cell shapes. The when the area of lateral 

membranes change significantly, what happens to the cadherin complex that localizes within? 

During the onset of convergent extension, E-cadherin localization switches from a homogenous 

pattern (around all edges) to a planar polarized one with significant less along the AP edges. In 

the mean time, Rok and myosin-II become concentrated along AP edges and initiate contraction 

of the lateral membranes along this edge (Figure 2A). Importantly, this segregation between E-

cadherin and Myosin-II is critical for convergent extension to proceed normally(Simões et al., 

2010). There are two remaining issues to be resolved here. First, does increased activity of 

Myosin-II and contraction leads to increased endocytosis of E-cadherin along the AP edges? On 

the other hand, does the accumulation of E-cadherin along the DV edge actively suppress 

Myosin-II activity and contractility?  

 

             Whereas it is tempting to suggest the mutual exclusiveness between E-cadherin and 

myosin-II represents the underlying mechanism of symmetry breaking, there are conflicting 

evidences in different experimental systems. For example, at zonula adherens (ZA) in MCF10A 
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Figure 2. (A) Illustration of cell intercalation during convergent extension of drosophila germ band. Myosin concentrates along the 
D-V (Dorsal-Ventral) edge; E-cadherin accumulates along A-P (Anterior-Posterior) edge. (B) Illustration of nascent adherens 
junction formation. Note the down-regulation of myosin activity along the cell-cell contact by E-cadherin complex, which creates 
isotropic tensions (arrows) that drives cell shape maturation. (C) Illustration of mouse blastocyst compaction in WT and E-cadherin 
KO embryos. 
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or Caco2 cells, Myosin-II and E-cadherin co-localize, and seem to work together to promote the 

integrity of this apical specialization of cadherin-based junctions (Smutny et al., 2010). On the 

other hand, during de novo cell-cell adhesion, homophilic ligation of E-cadherin seems to actively 

exclude myosin-II from cell-cell contacts and restrict contractility to cell-medium contacts. For 

example, when a doublet of MDCK cells forms cell-cell contacts on plastic, RhoA activity is locally 

down-regulated by E-cadherin engagement (Figure 2B). In the mean time, myosin-II and 

phospho-MLC are excluded from the cell-cell contacts and concentrate at cell-medium contacts, 

enabling intercellular adhesion to expand along the X-Y axis(Yamada and Nelson, 2007). This 

pattern also applies to polarized epithelial cells during de novo adhesion formation. When 

cultured on collagen gels, MDCK cells establish a cuboidal cell shape without the prerequisite to 

reach confluence (compared to filters). In this case, the intercellular adhesion expands in both X-

Y and Y-Z axis. It is worth noting that the expansion of cell-cell adhesion along Y-Z axis is 

actually equivalent to the establishment of cell height. During this process, myosin-II is again 

excluded from cell-cell contacts, where E-cadherin and p120-ctn localize. On the other hand, 

down-regulation of p120-ctn leads to loss of E-cadherin from cellular junctions and in the same 

time, accumulation of myosin-II bundles at cell-cell contacts, which in turn blocks expansion of 

cell-cell adhesion along the Z-axis. Thus, during de novo intercellular adhesion formation, E-

cadherin complex actively suppress contractility across the entire lateral membrane, and enables 

enlargement of cell-cell contacts and establishment of epithelial shape. Recently, this mechanism 

is further confirmed in vivo. E-cadherin has long been suggested to be critical for early mouse 

embryo morphogenesis, specifically compaction, a process by which cells pack themselves into a 

tighter tissue. Whereas it was postulated that E-cadherin mediate this process solely by 

strengthening adhesion, this study nicely shows that in fact the mechanism is via redirecting 

contractility away from cell-cell contacts by E-cadherin (Figure 2C). Importantly, similar to the 

convergent extension in Drosophila, myosin-II and phospho-MLC become segregated from E-

cadherin during 8-cell stage. It remains to be determined, how exactly E-cadherin suppresses 

myosin-II activity and excludes its localization from cell-cell contacts. One intuitive hypothesis is 
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that E-cadherin recruits a RhoGAP to cell-cell contacts and thus locally inhibits the RhoA-ROCK-

Myosin pathway. There are multiple RhoGAPs shown to localize to cell-cell contacts, yet it 

remains unknown which RhoGAP is recruited to the E-cadherin complex in a spatiotemporal 

manner that coincides with de novo cell-cell adhesion formation and/or mouse embryo 

compaction. Regardless which RhoGAP is involved, an important paradigm seems to emerge: E-

cadherin/p120 complex contributes to the maturation of cell-cell contacts via both mediating cell-

cell adhesion and redistributing tension around the cell cortex. 

 

 

p120 and RhoA: an ancient functional coupling critical in tumorigenesis 

              p120 is critical for cadherin stability in vertebrates by blocking endocytosis, but this 

mechanism does not apply to invertebrates such as C.elegans or Drosophila(Myster et al., 2003; 

Pettitt et al., 2003). Consistently, the double-leucine motif at the juxtamembrane domain of 

vertebrate classical cadherins is not conserved in either HMR-1 (C.elegans) or DE-cadherin 

(Drosophila). In these two organisms, p120 is considered dispensable, as genetically null adults 

are clearly viable and exhibit no observable defects in intercellular adhesion. On the other hand, a 

recently study shows that Drosophila p120 become necessary under stress and dp120ctn loss 

results in increased heat-shock sensitivity and reduced lifespan(Stefanatos et al., 2013). 

Interestingly, there are also alterations in the expression pattern of multiple relish/NF-κB target 

genes, although the underlying mechanism is unknown. This observation echoes a previous 

report for a role of p120 in NF-κB signaling in mice, which was attributed to p120‘s activity 

towards RhoA. In addition, another Drosophila study show that p120 and Rho1 (Drosophila 

homolog of RhoA) is genetically linked. In this case, dCSK loss in discrete patches led to 

epithelial exclusion, invasive migration and apoptotic death, which are mediated by dp120ctn, 

Rho1, JNK and MMP2(Vidal et al., 2006). Together, it appears that the activity of p120 towards 

RhoA is likely conserved in Drosophila, in contrary to its activity towards cadherins.  
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         The dCSK study also reveals another potential evolutionary link between p120 and Src. 

dCSK is a direct inhibitor of Src, a non-receptor tyrosine kinase that is highly conserved across 

evolution(REYNOLDS, 2007). Thus the phenotypes upon dCSK loss are actually driven by the 

unscheduled activation of Src, and yet they all depend on the presence of p120 and Rho1. In 

vertebrates, p120 was originally identified as a Src phosphorylation substrate. Later, p120 was 

shown to be essential for Src-induced anchorage-independent growth of MDCK cells. The 

mechanism was then attributed to p120’s activity towards RhoA (mammalian homolog of Rho1) 

since inhibition of ROCK bypassed this requirement of p120 and rescued growth of Src-

transformed cells(Dohn et al., 2009). Thus the suppression of RhoA by p120 is necessary for Src-

induced oncogenic growth.  

 

            Apparently, p120-RhoA-ROCK pathway is also controlled by Rac1, a major small GTPase 

involved in both actin dynamics and tumorigenesis. In fibroblasts, Rac1 is activated by PDGF 

receptor tyrosine kinase and initiates the so-called Bar-Sargi pathway that eventually leads to 

inhibition RhoA and formation of a distinct actin pattern, namely dorsal circular ruffles 

(DCR)(Wildenberg et al., 2006). p120 KD blocks this Rac1-induced RhoA suppression and leads 

instead to actin stress fibers (ASF) formation. The Rac1-RhoA antagonism seems to be also 

critical for epithelial morphogenesis. When culturing MDCK cells in 3D collagen, they 

spontaneously develop into a cyst-like structure with apical membrane facing a central located 

lumen. Inhibition of Rac1 activity through either the integrin-blocking antibody or dominant-

negative Rac1 induces a so-called inverted polarity phenotype, with the apical pole facing cyst 

periphery instead and complete absence of lumen formation (O'Brien et al., 2001). This defect 

was then traced to activation of the RhoA-ROCK-Myosin pathway and treatment of either Y27632 

or blebbstatin reversed the phenotype(Yu et al., 2005). Interestingly, p120 KD in MDCK cells also 

induced the inverted polarity defect. In this case, RhoA inhibition but not Rac1 activation rescued 

the phenotype, which put p120 downstream of Rac1 but upstream of RhoA in this pathway. Thus, 

p120 seems to mediate the Rac1-RhoA antagonism at both single and multicellular level. 
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Mechanical and molecular consequences of p120 modulation  

              Since the identification of p120 as an integral component of classical cadherin complex, 

numerous studies have been done to investigate consequences of modulating p120 levels in 

various cell lines and tissue types. However, the molecular and functional aftereffects are so 

diverse and interconnected that it remains difficult to pinpoint a pathway to accurately illustrate 

the biological activity of p120.  At the molecular level, p120 has been shown to affect cadherin 

stability, the localization of α-catenin, p190RhoGAP, Epb41l5 (lulu), CCDC85 (DIPA), Rho-ROCK 

activity, Kaiso- , JNK-, NFkB- and YAP-mediated transcription. At the functional level, p120 has 

been involved in collective migration, lumenogenesis, oncogenic proliferation, Inflammation, 

stemness, differentiation, mitosis and stress response. A daunting but critical task would be to 

identify the interconnectivity and establish the hierarchy among these distinct molecular activities, 

and then connect them to the various functional manifestations. Additionally, recent progress on 

mechano-transduction revealed significant changes in cellular behaviors in response to 

mechanical cues. This adds another layer of complexity to the problem since p120 modulation is 

often accompanied by dramatic alterations in cell-cell adhesion, cell shape, actomyosin and 

microtubule networks(Wozniak and Chen, 2009). In other words, these physical consequences 

could indirectly affect the aforementioned phenotypes associated with p120 modulation. This 

section aims to address this vast interconnection and suggest a roadmap for future investigation 

of the biological activity of p120.   

 

            During contact inhibition of proliferation (CIP), epithelial cells within the monolayer 

stopped dividing when reaching the maximum space allotted. Whereas the process has been 

long linked to E-cadherin mediated cell-cell contact, Recent reports suggest instead that the 

mechanism is based on suppression of YAP activity(Aragona et al., 2013). There are at least two 

major pathways proposed through which E-cadherin engagement inhibits YAP. On one hand, CIP 

requires cadherin ligation and appears to trigger Hippo signaling through Merlin and 
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Kibra(Gumbiner and Kim, 2014). On the other hand, α-catenin can independently inhibit YAP 

activity through a sequestration mechanism via 14-3-3(Schlegelmilch et al., 2011). Since p120 KD 

or KO leads to destabilization of both cadherins and α-catenin, it is not surprising that down-

regulation of p120 abrogates CIP and activates YAP. Additionally, whereas RhoA has been 

shown to activate YAP in many ways, elevated RhoA-ROCK activity upon p120 KD could 

contribute to YAP activation as well. While it worth finding out which downstream effect plays a 

major role, a more important question is how mechanical signals are sensed and transduced to 

YAP by the cadherin complex and whether or how p120 actively mediates this process. For 

example, does increased tension applied to the cadherin complex induce changes in p120 

phosphorylation profile and modify the affinity between p120 and E-cadherin? Does E-

cadherin/p120/β-catenin/α-catenin complex transit between a “open” and “closed” conformation in 

different tensional environments, sending an “on” or “off” switch signal to YAP? With advancing 

techniques in profiling components of cadherin complex aka. “cadhesome”, it would be 

fascinating to compare the cadhesome under different tensional conditions and identify mechano-

responsive interactions. Recent development of bioengineered devices that allow quantitatively 

controlled application of forces upon intercellular junctions should be ideal to test these 

hypotheses.  
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Hypothesis 
 
                 For my thesis work, my hypothesis is that p120’s activity toward E-cadherin and RhoA 

are molecularly separate but functionally dependent on one another. Whereas the cadherin-

stabilizing activity is essential for maintaining strong cell-cell adhesion, the Rho-suppressing 

activity is required for apical membrane integrity and epithelial lumenogenesis. These two 

activities of p120 work together to promote the maintenance of cell shape in the larger context of 

an epithelial monolayer.  
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CHAPTER II 

 
 

MATERIALS AND METHODS 
 
 

 
 
Cell culture 

           MDCK II cells were cultured in DMEM (Life Technologies) supplemented with 10% fetal 

bovine serum (FBS; Hyclone/Thermo Scientific) and 1% penicillin–streptomycin (Life 

Technologies/Invitrogen). Phoenix 293 and 293T cells were cultured in DMEM supplemented with 

10% heat-inactivated FBS and 1% penicillin–streptomycin. For 3D cyst formation, 90% confluent 

MDCK II cells were trpsinized and diluted 1:10 into a fresh plate. Cultured overnight, cells were 

trpsinized again, dissociated using pipet and examined under microscope to make sure 

generation of single cell suspension. Cells were then counted using hemocytometer, centrifuged 

and resuspended to achieve the concentration of 1.5X106 cells/ml. Collagen solution per 1ml was 

made on ice by adding the following solutions sequentially: ddH2O 75 μl, 10XDMEM 100 μl 

(D2429, Sigma), HEPES (200 mM) 100 μl, NaHCO3 (74 mg/ml) 50 μl, Collagen I (354236, BD) 

670 μl, NaOH (40 mg/ml) 1 drop. Mix 20 μl cells resuspension with 1 ml collagen solution and 

distribute 100 μl to each well on the 16-well chamber slide (178599, Lab-Tek). Put into the 

incubator for approximately 20 mins and then add 200 μl DMEM on top of the collagen gel per 

well. For 2D collagen culture, 85 μl collagen solution was added into the chamber and allowed 

solidify in the incubator for 20 mins, then 10 μl resuspension of cells were mixed with 200 μl 

DMEM and added on top of the collagen gel. Culture for 3 days and then fixed and stained.  

 
 

Virus production and transduction 

              Retrovirus was generated by transfecting the Phoenix 293 cells using calcium phosphate 

method. Retrovirus constructs used were all based on the LZRS-neo as described before19. Virus 

was harvested 48 hrs post-transfection by passing the supernatant through a 0.45-μm filter. 
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Target cells were infected by incubation with retrovirus-containing media containing 4 μg/ml 

Polybrene for overnight and replaced with normal culture medium. 48 hrs post-infection, cells 

were selected using either G418 (1 mg/ml) for 7 days. Lentiviral particles were generated by 

transfecting 293T cells with the petrosuper shRNA plasmid of interest, psPAX2 packaging 

plasmid, and pMD2.G envelope plasmid, using calcium phosphate method. Lentivirus was 

harvested 48 hrs post-transfection, and target cells were infected as described above. 

Approximately 48 hrs post-infection, infected cells were selected using puromycin (0.5 mg/ml) for 

2 days. 

 
 

Antibodies and reagent 

             The primary antibodies of p120 (mAb pp120, 0.5 μg/ml, BD), (pAb F1aSH, 1:500) and 

(mAb 15D2, 2 μg/ml) were generated as described(Wu et.al., 1998). 15D2 was used for 

immunoprecipitation, pp120 was used for western blotting, pp120 and F1aSh were used for 

immunofluorescence. Other antibodies include E-cadherin (1:1000, BD), E-cadherin (rr-1, 1:500), 

N-cadherin (1:500, BD), β-catenin (1:1000, Sigma-Aldrich), α-catenin (1:500), Ezrin (1:1000, BD), 

Cingulin (1:500, gifts from Dr. Sandra Citi), Tubulin (1:1000, VAPR), Cleaved-Caspase3 (1:500, 

Cell signaling), Kaiso (1:500, VAPR), Flag (1:1000, Sigma-Aldrich), Myc (9B11,1:500, Cell 

signaling), NMMIIA (1:500, Covance). Nucleus stained with Hoechst (1:1000) , Actin stained with 

Alexa-fluor Phalloidin (594 or 488) (1:200, Invitrogen). Secondary antibodies for Western blotting 

were anti–mouse Alexa Fluor 680 (Invitrogen) and anti–rabbit IRdye 800 (Rockland 

Immunochemicals, Boyertown, PA). Secondary antibodies used for immunofluorescence analysis 

included anti–mouse IgG, anti–mouse IgG2a, anti-mouse IgG1, anti-mouse IgG2b, and anti–

rabbit IgG conjugated to Alexa Fluor 488 or 594 (Invitrogen) Reagents used include ROCK 

inhibitor Y27632 (EMD/Millipore), (-) Blebbstatin (EMD/Millipore), DMSO (Fisher). 
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Plasmids 

               pRetroSuper retroviral vectors expressing shRNA directed against canine p120 was 

generated as previously described (Davis et al., 2003). LZRS-Neo-3XFlag-Gateway vector was 

used for exogenous expression of p120 (full-length and mutants). LZRS-Neo-MS was used for 

exogenous expression of Ecadherin (full-length and mutants), DN-RhoA-myc and DA-RhoA-myc. 

Point mutations were generated using SLIM (site-directed Ligase-Independent Mutagenesis). 

 
 

Collagen Overlay Assay 

             MDCK II cells were resuspended at 1.5X106 cells/ml as described above. 55 μl collagen 

solution was added into each chamber and allowed solidify. 50 μl cells resuspension mixed with 

200 μl DMEM were then added on top of the collagen gel. 24 hrs later, carefully remove the 

medium from the chamber, and add 85 μl collagen solution and allow solidify for 20 mins. 200μl 

DMEM was then added on top of the collagen gel and cultured for another 48 hrs before fixation 

and staining. Transparent lumen and tubules should be visible for wildtype MDCK II cells under 

bright-field microscope.  

 
 

Immunofluorescence, Immunoblotting, Immunoprecipitation 

             Lysate preparation, western blot and immunoprecipitation procedures, immunostaining on 

2D coverslips have been described previously25. For immunostaining for 3D cyst or cells on 

collagen, the entire collagen gel was transferred from the chamber slide to a 24-well plate. Fixed 

using 4% Paraformaldehyde in PBS+ (500 ml PBS, 1mM CaCl2, 0.5 mM MgCl2) for 30 mins. 

Washed with PBS+ and permeabilized with 0.025% Saponin in PBS+ for 1 hr. Washed with PBS+ 

and then incubated with quench solution (75 mM NH4Cl, 20 mM Glycine in PBS+) for 1 hr. 

Washed and incubated with blocking buffer ( 1% BSA, 1% goat serum, 0.025% Saponin in PBS+) 

for 1 hr. Dilute primary antibody with blocking buffer and incubate at 4oC overnight. Washed for 4 

hrs and incubated with secondary antibody at 4oC overnight. Washed for 4 hrs and stain the 
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nucleus with Hoechst for 30 mins. Collagen gels were then transferred onto the slides, mount with 

prolong gold and store at 4oC before viewing. Images were collected using Zeiss LSM 510 

confocal microscope at 40X or 63X magnification. For Z-stacks, 0.45 μm sections were taken. All 

images and movies were then processed with Image J with 3D view plugin or Volocity 6.3 demo.  

 

 

Statistics 

              Statistical analyses were preformed using Prism (GraphPad La Jolla, CA, USA) with two-

tailed Student’s t-tests or Mann-Whitney tests. For quantification of cyst volume, diameters from 

60-80 cysts were measured and sphere volume was calculated accordingly. For cyst morphology 

distribution analysis, values are mean ± s.d. from three replicate experiments, with n>100 cysts 

per replicate. 
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CHAPTER III 

 

P120-CATENIN CONTROLS CONTRACTILITY ALONG THE VERTICAL AXIS OF EPITHELIAL 

LATERAL MEMBRANES 

 

Introduction 

          A universal principle of organization for polarized epithelial cells is the physical and 

functional segregation of membranes into three distinctive domains. Basal membranes impart 

anchorage, lateral membranes organize adhesive contacts and apical membranes establish a 

free surface for exchange of materials (Mostov et al., 2003). On the other hand, epithelial tissues 

vary widely in size and shape to accommodate diverse epithelial functions (Gumbiner, 1996; 

Gumbiner, 2005). Although determinants of epithelial cell fate are well described, the molecular 

mechanisms controlling cell height and shape are poorly understood. In Drosophila melanogaster 

(Drosophila), recent evidence suggests that molecular gradients of the morphogen Dpp 

(Decapentaplegic) in the wing imaginal disc specify not just cell fate, but also position-specific 

control of epithelial architecture(Gibson, 2005; Shen and Dahmann, 2005). Although mechanistic 

details are still unclear, the Dpp pathway appears to modulate epithelial cell height, in part, by 

controlling compartmentalization of Rho1 (Drosophila homolog of RhoA) activity along the length 

of the lateral cell membrane(Gibson, 2005; Shen and Dahmann, 2005; Widmann and Dahmann, 

2009). Whether (and how) Rho activity affects cell height in vertebrate epithelial systems is 

currently unknown.   

 

             A potentially important discrepancy between Drosophila and vertebrate systems is the 

relative function of p120-catenin (aka p120), which binds directly to the cytoplasmic 

juxtamembrane domain of E-cadherin in both systems. In C. elegans and Drosophila, p120 is 

considered dispensable, as genetically null adults are clearly viable(Fox et al., 2005; Myster et al., 
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2003; Pacquelet et al., 2003; Pettitt et al., 2003), albeit sensitive to stress(Stefanatos et al., 

2013). In vertebrates, on the other hand, p120 gene ablation is embryonic lethal. Downregulation 

in vertebrate epithelial tissues leads to a variety of morphologic defects and is observed 

frequently in most epithelial cancers (e.g., colon, lung, pancreas, breast, prostate)(Davis and 

Reynolds, 2006; Kurley et al., 2012; Smalley-Freed et al., 2010). Moreover, in contrast to its 

Drosophila and C.elegans counterpart, vertebrate p120 is essential for cadherin stability. 

Removal of p120 in most epithelial cell types causes rapid internalization of the cadherin 

complex, in vitro and in vivo(Davis, 2003; Davis and Reynolds, 2006; Kurley et al., 2012; 

Marciano et al., 2011; Smalley-Freed et al., 2010; Xiao, 2003). In Drosophila, the E-cadherin-

containing adherens junction (AJ) is largely restricted to an apical compartment delimited by the 

septate junction. Compartmentalized suppression of Rho occurs along the lateral domain by a 

cadherin-independent mechanism and plays an important role in modulating cell height(Widmann 

and Dahmann, 2009). Vertebrate E-cadherin (along with p120-, α- and β-catenins), on the other 

hand, is typically localized along the entire lateral membrane(Wu et al., 2014). Notably, vertebrate 

p120 is well established as an inhibitor of Rho (Fang, 2004; Noren et al., 2000; Ponik et al., 2013; 

Reynolds et al., 2000; Schackmann et al., 2011; Wildenberg et al., 2006; Zebda et al., 2013). In 

the cytoplasm, inhibition of Rho by p120 occurs by a RhoGDI-like mechanism and is mutually 

exclusive with binding to E-cadherin (Reynolds et al., 2000). Membrane bound p120, on the other 

hand, can interact with a spectrum of Rho mediators (e.g., RhoGEFs, RhoGAPs, ROCK, 

Shroom3) depending on parameters such as cell and/or tissue type and sub-cellular 

localization(Lang et al., 2014; Noren et al., 2000; Ponik et al., 2013; Smith et al., 2011; 

Wildenberg et al., 2006). For example, in many polarized columnar epithelia, p120 interacts 

apically with specific RhoGEFs that modulate apical constriction(Lang et al., 2014) and 

basolaterally with RhoGAP family members(Zebda et al., 2013; Ponik et al., 2013; Anastasiadis, 

2015 in press). These observations suggest that p120 acts as a coordinating hub for mediators of 

local Rho activity and raise the possibility that p120 in vertebrates may participate in regulating 

lateral cell height through local suppression of Rho. 
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             Vertebrate p120 function has been extensively studied in conditional KO mice(Davis and 

Reynolds, 2006; Kurley et al., 2012 2012cs; Marciano et al., 2011; Perez-Moreno et al., 2006; 

Smalley-Freed et al., 2010). Phenotypes vary widely depending on the organ and tend to involve 

striking changes in tissue morphology. Although any of these phenotypes could potentially be 

linked to Rho(Ponik et al., 2013), distinguishing Rho-mediated effects from those caused by 

cadherin destabilization have been inherently difficult because p120’s effects on Rho are epistatic 

to and dependent on its cadherin stabilizing activity. Nonetheless, cadherin stability cannot by 

itself account for the wide spectrum of p120 KO phenotypes observed in vitro and in vivo(Davis 

and Reynolds, 2006; Dohn et al., 2009; Kurley et al., 2012; Perez-Moreno et al., 2006; Perez-

Moreno et al., 2008; Ponik et al., 2013). Additionally, we and others have found that 

physiologically relevant results are often masked or blocked altogether when the cells are 

cultured on hard surfaces(Baker and Chen, 2012; Brugge, 2012; Dohn et al., 2009; Paszek et al., 

2005; Töyli et al., 2010). Moreover, epithelial cells that are columnar normally adopt completely 

different shapes when cultured by conventional means on plastic. MDCK cells, for example 

remodel into very flat disc-shaped cells featuring wide basal footprints and lateral domains that 

make strong cell- cell contacts but are otherwise almost nonexistent. We have therefore 

transitioned to 2D cultures on thick collagen pads (which enable cuboidal to columnar 

morphology) and/or 3D cell cultures in collagen. Here, using a vertebrate epithelial cell model 

(i.e., MDCK II cells), we separate p120’s cadherin stabilizing- and RhoA-suppressing functions 

under conditions that, for the first time, permit selective assessment of phenotypes caused by the 

impact of p120 on Rho. Unexpectedly, selectively removing p120‘s Rho-suppressing activity 

dramatically disrupts the integrity of the apical surface by contracting lateral membranes, 

irrespective of E-cadherin stability. The physical defect stems from excessive actomyosin 

contractility along the vertical axis of lateral membranes, causing dramatic basal dislocation of the 

tight junction and expansion of the apical domain, leaving cell polarity intact. Interestingly, the 

impact of this excess contractility is not restricted to regulation of cell shape, as the effect is 

James Yu
21



accompanied by major defects in epithelial lumenogenesis. Significantly, this defect is completely 

reversed by inhibition of ROCK or myosin, irrespective of E-cadherin stability. Thus, although 

most of p120 ablation phenotypes are attributed to adhesion defects, the phenotypes described 

here are rescued by suppression of Rho but not E- cadherin. 

 

 

Results 

 

p120 ablation disrupts the apical surface of MDCK cell monolayers 

              In many epithelial cell types, p120 ablation leads to complete loss of cell-cell adhesion 

(e.g., MCF10A, A431)(Kurley et al., 2012; Xiao, 2003), making it difficult to distinguish between 

direct consequences of p120-loss and collateral fallout associated with loss of all contact-

dependent signaling. Moreover, p120 activity has important effects that manifest only in the 

context of adhesion-intact cell monolayers (e.g., lumen formation, collective migration) and are 

thus masked by loss of cell-cell contacts. MDCK cells circumvent many such issues because 

intercellular adhesion can be maintained by E-cadherin-independent junctions upon knockdown 

of p120, despite the near complete loss of AJs. Notably, tight junctions and desmosomes are 

unaffected(Dohn et al., 2009). 

 

            When cultured on plastic, the morphologies of WT and p120 KD MDCK cells are 

essentially identical (data not shown). When plated on collagen, however, the cells polarize and 

develop sufficient height to qualify as cuboidal or columnar cell monolayers, even when 

subconfluent. In this scenario, p120 KD induced dramatic changes in cell morphology. On the 

other hand, overexpression of p120 (isoform 1A or 3A) by at least two-fold has no overall impact 

cell shape (Figure 4C, D, E). Using Transmission Electron Microscopy (TEM), we observed large 

gaps between neighboring cells only in p120 KD cells (Figure 4F). Although the tight junction was 

retained, the apical surface at cell-cell contacts was significantly distorted (Figure 4F, white 
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arrow). To further characterize this effect, the cells were immunostained for ezrin (apical marker) 

and the tight junction marker cingulin. Normally, ezrin staining is confined to a thin zone (aka the 

apical section) across the top of the epithelial monolayer and highlights the perfectly flat apical 

surface of WT MDCK monolayers. Note that there is little or no detectable ezrin staining in other 

confocal planes (e.g., middle or basal sections)(Fig 1A,B). However, in the p120 KD cells, 

confocal cross sections show that ezrin staining clearly invaginates well into the middle section of 

the cell (Figure 3A, arrows). Figure 3C shows confocal cross sections of the same experiment. 

Note the aberrant presence of ezrin staining in the intercellular space across the middle section 

(Figure 3C, arrow). The lower panels show that p120 staining is confined to the lateral 

membranes in WT cells and substantially down-regulated in p120 KD cells. 3D reconstructions 

graphically illustrate the topography of ezrin stained WT and p120 KO surfaces viewed from the 

top (left panel) and bottom (right panel)(Figure 3D). Whereas the WT surface is relatively flat (see 

video 1), the KD surface is deeply invaginated, as illustrated dramatically by the bottom up view 

(Figure 3D, arrow, lower right panel, also see video 2).  

 

             Interestingly, the dome shaped apical surfaces is reminiscent of apical expansion 

phenotypes induced by overexpression of members of the apical polarity complex (i.e., Par3, 

Par6)(Chalmers et al., 2005) or down-regulation of members of the lateral polarity complex (i.e., 

Lgl, Scrib, or Dlg)(Yamanaka, 2006). Overexpression of gp135 or down-regulation of KIBRA can 

also induce apical expansion(Nielsen et al., 2000; Yoshihama et al., 2011). For the polarity 

proteins, apical expansion is driven by mis-targeting of apical membrane proteins to lateral 

membranes, irrespective of the placement of tight junctions(Tanentzapf and Tepass, 2002). 

gp135 accumulation, on the other hand, physically expands the apical membrane, in part via 

recruitment of NHERF and Ezrin. Apical membrane also expands in 3D MDCK cysts upon KIBRA 

knockdown (KD), due to hyper-activation of aPKC. Notably, in the latter cases (gp135 and KIBRA 

KD),  the mechanism was shown to not involve mis-targeting to apical or basolateral membranes. 

Instead, the tight junction is retained at the boundary between apical and lateral membranes but 
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displaced basally by the expanding apical surface(Nielsen et al., 2000; Yoshihama et al., 2011). 

To determine whether either of these mechanisms was responsible for the p120 KD phenotype, 

we first examined the effect of p120 KD on the placement of tight junctions relative to the apical 

surface. Importantly, cingulin staining shows that tight junctions localize at the very tip of the 

surface invaginations, illustrating that the boundary between apical and lateral domains remain 

intact (Figure 3F). Maximal intensity projections of cingulin staining to the X-Y plane show that the 

p120 KD tight junctions remain circumferentially continuous, albeit basally dislocalized (Figure 

3G). Being morphologically consistent with the gp135-NHERF-Ezrin or KIBRA KD mechanism, 

we measured Ezrin protein levels in the p120 WT and KD cells and found no differences (Figure 

3I). Additionally, inhibition of aPKC activity via myristoylated PKCζ-PS inhibitor failed to rescue 

the apical membrane defect in p120 KD cells (Figure 3H). Thus, although morphologically similar 

to the apical expansion phenotypes associated with polarity genes, it appears that neither of the 

mechanisms accounts for the p120 ablation phenotypes here. 

 
 
 

p120/E-cadherin interaction is essential for maintaining a flat apical membrane 

               In p120 rescue experiments, analysis of mosaic p120 rescue suggests that suppression 

of the apical membrane invagination is dependent on the p120/E-cadherin-mediated cell-cell 

contacts. For example, the cell in the crosshairs of Figure 3E, (right panel) makes E-cadherin 

based adhesions on three sides (Figure 3E, arrowhead). The fourth side (Figure 3E, arrowheads), 

on the other hand, does not, and exhibits apical defects (i.e. invagination) on that side only. Thus, 

although the phenotype could in theory be linked to a cytoplasmic or nuclear p120 function, the 

data strongly implies a mechanism involving the cadherin bound fraction of p120. Moreover, in 

exploratory studies we deleted each of the Arm repeats individually and conducted p120 KD/add-

back experiments to identify domains in p120 required to suppress apical expansion. 

Interestingly, suppression was selectively mediated by repeats 1-6, exactly the same repeats that 

mediate E-cadherin binding to p120(Ireton, 2002) (Figure 4A,B).  
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              To address mechanism, we used a single amino acid p120 mutant described recently 

(p120K401M)(Ishiyama et al., 2010a) to selectively uncouple its interaction with E-cadherin 

(Figure 5C, 5A,B). p120-1A and p120-3A isoforms containing the K401M mutation localized 

exclusively to the cytoplasm (Figure 5A) and failed to co-immunoprecipitate with or stabilize either 

E- or N-cadherin (Figure 5B, Figure 6A,B). Importantly, these mutants retain interaction with 

Kaiso, whose p120 interaction domain is known to overlap with that of E-cadherin (Figure 5B). 

p120 KD/add-back experiments with these p120 K401M mutants failed to rescue the apical 

invagination phenotype (Figure 5D), indicating that cytoplasmic p120 is inactive. 

 

              To determine whether direct interaction between p120 and E-cadherin is essential for the 

steady state suppression of apical invagination, we first asked whether simply targeting p120 to 

lateral membranes (irrespective of E-cadherin-binding) is sufficient. The p120 K401M mutants 

were fused at the C-terminus to a CAAX-box motif (Figure 7A,B), known to relocate cytoplasmic 

proteins to the plasma membrane(Seabra, 1998). Interestingly, localization of these p120 K401M-

CAAX mutants is almost indistinguishable from that of endogenous p120, including exclusion 

from the apical surface. (Figure 7C,D). However, although p120 K401M-CAAX is abundantly 

expressed on lateral membranes, the unstable internalized pool of E-cadherin in the p120 KO 

cells is clearly not rescued by these mutants (Figure 7C). When plated on collagen, p120 KD cells 

expressing the p120 K401M-CAAX mutants showed no sign of apical invagination rescue (Figure 

7D). Thus, while localization of p120 to lateral membranes is essential for suppression of apical 

invagination, it is clearly not sufficient.  

 

              Next, we asked whether E-cadherin is sufficient to suppress apical invagination, 

irrespective of p120-binding. Because E-cadherin is rapidly degraded if p120 is not bound, we 

first generated an endocytosis-resistant E-cadherin mutant (from human E-cadherin) by changing 

the classic di-leucine endocytosis motif to alanine residues(Miyashita and Ozawa, 2007; Nanes et 
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al., 2012). To further rule out any contribution from bound p120, we also introduced the p120 

uncoupling point mutation (i.e., Ecad E762A)(Ishiyama et al., 2010a), resulting in the construct 

termed Ecad-LAEA (see schematic, Figure 5C, 7B). When expressed in p120 KD MDCK cells, 

Ecad-LAEA localizes normally to lateral membranes (Figure 7E, 3rd column), whereas 

endogenous E-cadherin remains entirely cytoplasmic (Figure 7E, 1st column). Because the E-

cadherin mAb RR1 used in column-1 is canine specific, it detects only the endogenous MDCK E-

cadherin. Notably, the E-cadherin mAb used in column-3 (BD) recognizes both canine and human 

E-cadherin, permitting visualization of Ecad-LAEA. p120 staining in the Ecad-LAEA cell line, on 

the other hand, is comparable to that in the p120 KD cells and almost undetectable (Figure 7E). 

E-cad-LEAE is thus stably retained on lateral membranes despite almost undetectable p120-

binding. Importantly, LAEA E-cadherin restored junctional localization of α-catenin that was 

internalized upon p120 KD in MDCK cells (Figure 8A, 6B) and cell-cell adhesion in the cadherin-

deficient A431D cells (Figure 8C, 6D). To determine whether Ecad-LAEA can, in fact, suppress 

apical expansion, without assistance from p120, the cells were again plated on collagen and 

examined by Ezrin staining for apical membrane invagination. Unexpectedly, although Ecad-

LAEA retention is in fact unaffected by p120 loss, it is nonetheless unable to reverse the apical 

invagination phenotype (Figure 7F). We further quantified the phenotype by measuring the length 

of apical invagination (LAI) as a proxy to the extent of apical expansion. As shown in Figure 7G, 

p120 KD induces a 3.2-fold increase of LAI (from 1.154 to 3.717 µm). Although Ecad-LAEA 

rescue did reduced the magnitude of the effect slightly (i.e. 2.7 fold vs 3.2 fold), these results 

show that stable surface retention of E-cadherin by itself was unable to appreciably rescue the 

p120 ablation phenotype. Moreover, to be described later, directly activating RhoA in WT cells 

leads to a comparable level of increase in LAI as Ecad-LAEA rescue (Figure 7G, 7D). Thus, 

instead of directly modulating RhoA activity, restoring the E-cadherin-actin linkage by Ecad-LAEA 

could potentially slightly limit the scale of apical membrane deformation by activated junctional 

contractility.  
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Apical invagination is a function of excess contractility along lateral membranes 

              Another established consequence of p120 ablation is activation of the RhoA-ROCK-

myosin pathway(Dohn et al., 2009; Perez-Moreno et al., 2006; Wildenberg et al., 2006), 

suggesting a potential role for unbalanced actomyosin contractility. To test whether the presence 

of collagen alters p120’s ability to inhibit this pathway, we blotted for downstream effectors of 

ROCK in WT, KD and RE cells cultured on collagen. As shown in Figure 15G, p120 KD induces a 

notable increase of phosphorylation of cofilin and p120 RE (Rescue, p120 KD + p120 1A) 

strongly suppresses this activity. Although the phospho-MLC antibodies we tried did not work well 

on Western blots, we did notice a dramatic increase of the protein level of MLC, and an upward 

band shift corresponding to the active phosphorylated form of MLC. (Figure 15G, MLC blot long 

exposure). These data all point to increased ROCK and myosin activity in p120 KD cells 

compared to WT or RE. To further test this hypothesis, we blocked the RhoA-ROCK-Myosin 

pathway by inhibition of either ROCK (Y27632) or Myosin II (Blebbstatin). Indeed, even in the 

near complete absence of AJs (Figure 9C), both inhibitors completely reversed the apical defect 

associated with p120 KD (Figure 9A). Using the same quantification method described earlier, 

both Y27632 and Blebbstatin were found to reduce the length of apical invagination (LAI) of p120 

KD cells to the same level as WT (Figure 9B). On the other hand, treatment with either DMSO or 

an aPKC inhibitor (PKCζ pseudo substrate) has no effect on LAI (Figure 9B). The defect, 

therefore, is not due to cadherin loss per se but is instead caused by excessive activation of Rho.  

It is worth noting that two Rho-uncoupled p120 mutants have been described previously, one 

involving deletion of an N-terminal region (ΔNTR), the other an intermediate sequence (ΔIns) of 

six amino acids located between ARM5 and ARM6 (Yanagisawa et al., 2008). However, this Rho-

GDI-like activity is reported when p120 is over-expressed and apparently restricted to unbound 

p120 as it is not detected in E-cadherin-associated fractions(Anastasiadis and Reynolds, 2001; 

Reynolds et al., 2000; Yanagisawa et al., 2008). Further, these mutants (p120-ΔNTR, p120-ΔIns 

completely rescued the apical defect in p120 KD cells (Figure 15A, 13B), indicating that the 
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suppression of Rho by cadherin-bound p120 is in fact independent of the Rho GDI-like 

mechanism.  

 

           To better understand the impact of constitutively elevated Rho activity upon p120 loss, we 

next examined consequences of directly activating (DA-RhoA) or suppressing (DN-RhoA) RhoA, 

respectively, via expression of previously characterized (myc-tagged) dominant active (myc-

RhoAG14V) and negative (myc-RhoAT19N) RhoA constructs(Hall, 1998). When introduced 

separately into wildtype MDCK cells, DA-RhoA effectively recapitulated the apical invagination 

defect (Figure 9D). Of particular interest is that the junctional presence of p120 is strongly 

maintained (Figure 9E), as is E-cadherin (Figure 9F), and yet the apical invagination defect is 

readily apparent. In contrast, cell morphology was unaffected by DN-RhoA (Figure 9D). Other 

variables, including the levels of members of E-cadherin complexes were unaffected by either 

construct (Figure 9G). Further, blocking ROCK activity effectively resolved the apical invagination 

defect induced by expression of DA-RhoA (Figure 9H). Thus, the apical defect is strongly 

associated with excessive contractility and fully dependent on ROCK.   

 

             To characterize the localization of active RhoA (RhoA-GTP form) upon p120 KD, a 

recently developed RhoA sensor, GFP- AHPH (kindly provided by Alpha Yap), was transiently 

transfected into both WT and p120 KD MDCK cells cultured on collagen gels. Low level GFP-

expressing cells were imaged because high level expression causes the sensor to mis-localize 

diffusely to the cytoplasm. Interestingly, in collagen plated WT MDCK cells, RhoA-GTP was 

exclusively detected at the apical or basal (less frequent) domain. It was virtually never observed 

with p120 along the lateral membrane (Figure 10A, left panel). However, in p120 KD cells, RhoA-

GTP relocalized to cell-cell contacts (Figure 10A, right panel) and notably, was no longer 

observed at the apical membrane. Confocal analysis placed the signal just under the the apical 

invaginations (Figure 10B, right panel). This data further supports the notion that p120 locally 

suppresses RhoA activity. We then examined the effect of p120 knockdown on Myosin II, a 
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downstream effector of RhoA. Indeed, localization of the major myosin isoform (NMMIIA) in 

MDCK cells reveals that it is normally excluded from lateral cell junctions (Figure 10A, 

arrow)(Yamada and Nelson, 2007; Yu et al., 2008). However, p120 KD induced a striking 

accumulation of NMMIIA at lateral membranes (Figure 10C arrow and D). Quantification of this 

phenomenon on a junction by junction basis reveals the robust presence of NMMIIA on 22.2 ± 

4.3% (three independent experiments, 102/486 in total) of the p120 KD intercellular membranes, 

whereas NMMIIA is essentially never seen at WT cell junctions (i.e., 3/803, Figure 10E). Notably, 

the myosin bundles do not recapitulate the circumferential belt-like localization observed in some 

epithelial systems(Ebrahim et al., 2013; Smutny et al., 2010). Generation of cell contractility is 

mediated by conformational changes in the head domain of NMMIIA(Hall et al., 1982). 

Importantly, the recruitment of NMMIIA was almost invariably accompanied by apical membrane 

expansion (i.e., 98%, see Figure 10F), as evidenced by immuno-staining for Ezrin (Figure 10G). 

Strikingly, when present, NMMIIA was found at the very tip of the ezrin demarcated apical 

invagination (Figure 10G, lower-right panel), which was shown to terminate abruptly at the tight 

junction (Figure 3F). The data suggest an explanation for why the apical surface is so 

dramatically affected by loss of a lateral membrane protein. Apparently, the contractile force 

generated in the absence of p120 is a function of a locally activated RhoA and subsequent 

accumulation of myosin at the tight junction, which then transduces the force directly to the apical 

membrane, accounting for its invagination. We propose that this vertical suppression of 

contractility is a core function of p120, and ultimately essential for the characteristic rectangular 

morphology of individual epithelial cells and their collective ability to assemble a perfectly flat 

apical surface (Figure 10H, model). 
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Discussion 

 

              Generation of an epithelial monolayer from individual cells is a coordinated process 

involving cell-cell adhesion and acquisition of shape (Figure 11B)(e.g., squamous, cuboidal, 

columnar). It is initiated by lateral cell-cell contacts, which then expand radially to form lateral 

membranes. The phenomenon is well characterized in two dimensional MDCK cell cultures and 

involves a zippering process along the X and Y axis(Yamada and Nelson, 2007). Notably, our 

model is similar in concept except that expansion also occurs in the z-axis to accommodate the 

vertical dimension induced by plating the cells on collagen. Normally, this process ends in the 

formation of a perfectly flat apical membrane (Figure 11A, the 3rd and 4th panel). In the absence 

of p120, the process apparently fails, resulting in a phenotype essentially identical to that 

exhibited by the WT cells at the earliest stage of epithelial maturation illustrated experimentally in 

Figure 11A (1 hr time point). 

 

             Whereas p120’s cadherin stabilizing activity is well-established and essential for 

adhesion (Step I, Figure 11B), the role of p120‘s Rho-suppressing activity has been elusive. Here, 

we separate p120’s cadherin stabilizing- and RhoA-suppressing functions via a stabilized E-

cadherin mutant that is retained on the cell surface irrespective of p120 binding. Surprisingly, the 

RhoA-suppressing activity is critical for suppressing contractility along the vertical axis of lateral 

epithelial membranes. Moreover, this function is essential for maintenance of individual cell shape 

in the overall context of collective epithelial architecture (Step II, Figure 11B). Although 

establishment of epithelial cell shape is generally attributed to tension-generating mechanisms 

such as apical constriction, here we demonstrate that along the lateral cell membranes, it is in 

fact suppression of contractility that is critical. 

 

             Importantly, the impact on cell shape (following p120 KD) was not rescued by forced E-

cadherin stability (via the LAEA mutation, see Figure 7F) suggesting that the invagination 

James Yu
38



James Yu
39



phenotype is not primarily a function of cadherin stability.  Although the stabilizing mechanism is 

well established, it is possible that cadherin signaling and/or other activities may nonetheless be 

compromised. On the other hand, the fact that the mutant interacts normally and restores α- and 

β-catenin to endogenous levels, indicates that the cytoskeletal linkage is largely intact.  Moreover, 

in cadherin-deficient cell lines such as A431D, the behavior of the mutant is almost 

indistinguishable from that of WT E-cadherin. Further, inhibition of the Rho-ROCK-myosin 

pathway completely rescued the apical membrane defect, despite the fact that the entire E-

cadherin complex was absent (Figure 9B). Additionally, ectopic expression of constitutively active 

Rho had no effect on E-cadherin stability and yet effectively recapitulated the apical defect 

associated with p120 ablation (Figure 9D, E). Remarkably, in WT cells, activated RhoA was 

detected almost exclusively at the apical membrane, whereas the signal shifted entirely to the 

lateral membrane (along with recruitment of myosin) upon depletion of p120. Thus, cadherin-

bound p120 apparently maintains a low tension zone along the lateral membrane via suppression 

of RhoA. Notably, mutually exclusive presence of E-cadherin and Myosin II at cell-cell contacts is 

a relatively common phenomenon. For example, convergent extension in Drosophila is 

dependent on the segregation of E-cadherin and myosin II to D-V and A-P edges, 

respectively(Simões et al., 2010). Similarly, E-cadherin drives compaction in the early mouse 

embryo by redirecting myosin away from cell-cell contacts (Maître et al., 2015). 

 

              Interestingly, although constitutive membrane targeting is frequently sufficient to activate 

receptor-associated cofactors, the CAAX-box targeting of cadherin-uncoupled p120 to basolateral 

membranes did not rescue p120 ablation. The experiment was remarkable in that the localization 

of E-cadherin-uncoupled CAAX-p120 and that of WT E-cadherin-bound p120 was essentially 

indistinguishable, and yet only the E-cadherin bound p120 was active. The crystal structure of the 

p120/E-cadherin complex shows the JMD core of E-cadherin embedded in a groove along one 

side of the Arm repeats, leaving most of the p120 surface still exposed and available for 

interaction with other proteins(Ishiyama et al., 2010b). Thus, one possibility is that suppression of 
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Rho by p120 is enabled by (and perhaps dependent on) interaction with E-cadherin. Plausible 

mechanisms include an E-cadherin triggered conformational change in p120, or alternatively, de-

novo generation of a new “combinatorial” binding site consisting of polypeptides from both p120 

and E-cadherin. A third possibility is that E-cadherin may simply hold p120 in an “active” 

orientation.  

 

              Notably, MDCK cells do express other cadherins (e.g., N-cadherin)(Stewart, 2000), 

which along with E-cadherin share a common cellular pool of p120(Carnahan et al., 2010). 

Apparently for that reason, E-cadherin knockdown alone in these cells does not noticeably alter 

p120 localization (Figure 8C,D), and removing just E-cadherin has no effect on either apical 

organization or lumen formation (Figure 8E,F). Thus, E-cadherin is not the only classical cadherin 

that can engage p120 to suppress Rho activity. For example, although E- and N-cadherin have 

clearly evolved disparate roles, as exemplified by their alternative usage in epithelial to 

mesenchymal transition (EMT), they (and probably other classical cadherins) are apparently 

redundant with respect to regulation of junctional tension. 

 

                   An emerging paradigm in Drosophila development is the specification of cell height by 

compartmentalization of Rho activity along lateral epithelial membranes(Gibson, 2005; Shen and 

Dahmann, 2005; Widmann and Dahmann, 2009). For example, Dpp morphogen gradients specify 

the timing and amount of RhoGAP transcription during wing development. RhoGAP then 

accumulates along lateral membranes to suppress Rho. Removal of Dpp interrupts the pathway, 

causing unscheduled elevation of Rho-mediated contractility and shortening of the lateral 

membranes. Although acute p120-ablation is not directly comparable to the elegant 

spatiotemporal sculpting orchestrated by developmental programs, the end result is consistent 

with the drosophila paradigm and indicative of p120’s essential role in suppressing lateral 

contractility. Interestingly, although the RhoGAP involved has yet to be identified in our MDCK 

model, a very recent study in C.elegans has identified a previously uncharacterized linker, PICC-1 
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(PAC-1-Interacting Coiled-Coil Protein-1), that the bridges C. elegans p120 (JAC1) to PAC-1, a 

RhoGAP with specificity toward cdc42 and Rho(Anderson et al., 2008; Klompstra et al., 2015). 

Remarkably, PICC-1 turns out to be the worm homologue of vertebrate CCDC85B (aka DIPA), a 

direct p120 binding partner identified recently in our lab(Markham et al., 2014). This newly 

identified role for p120 seems rather important and unlikely to be confined to C. elegans, as 

virtually all of the C. elegans players in the story can be matched to highly conserved vertebrate 

homologs. Moreover, several clues support the notion that the scenario just described is quite 

likely to be conserved in the mammalian embryo. Thus, it appears that recruitment of various 

RhoGTPase modulators (such as the RhoGAP PAC-1) to control local GTPase activities may in 

fact be the paradigm for which p120 was originally intended in ancient metazoa. 
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CHAPTER IV 

 

P120 IS CRITICAL FOR EPITHELIAL LUMENOGENSIS AND CYST FORMATION 

 

Introduction 

 

            The embryonic lethality of p120 KO mice forces researchers to selectively knockout p120 

in epithelial cells of various organs, using tissue-specific promoters. As mentioned earlier, 

depletion of p120-catenin is a very efficient method to remove all CCC from the membrane, which 

also means that both adhesive and signaling functions of cadherins are disrupted altogether. 

Thus presumably, phenotypes from p120 KD or KO are always a mixed bag of defective 

intercellular adhesion and cadherin-associated signaling. In most cases, it is very difficult to 

separate them apart. For example, p120 KO in the mammary gland leads to completely inhibition 

of branching morphogenesis(Kurley et al., 2012). One explanation could be that the mammary 

epithelial cells fail to form the tubular structure because they cannot efficiently adhere to each 

other. However, it also makes sense that the disruption in cadherin-associated signaling via 

p120-catenin to cortical actin network could leads to defects in collective cell migration, a process 

that is necessary for tubules formation. Consequently, although it is clear that p120-catenin being 

absolutely critical for mammary gland development, the underlying mechanism remains 

inconclusive. Interestingly, studies with results coming from a polar opposite direction shed lights 

on how to solve this inevitable problem. As noted earlier, p120 KO in mouse epidermis has no 

effect on intercellular adhesion due to compensation by the presence of extensive desmosomal 

junctions. And yet, a dramatic cell-autonomous inflammation develops within the epithelium, 

which is attributed to elevated NFkB activity(Perez-Moreno et al., 2006). In this case, it is obvious 

that cadherins’ adhesive function is irrelevant here since the cells hold together nicely. As a 

result, the inflammatory phenotype can be exclusively contributed to the signaling role of p120-
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catenin. An important clue to be drawn here is that depletion of p120-catenin in a context of intact 

intercellular adhesion is critical to define its signaling role. Whereas it is difficult to replicate the 

junctions profile of epidermis in other tissue types, a more generalizable approach would be 

restoring AJs directly after depletion of p120-catenin. A seminal study led by Ozawa group back 

in 2007 shed a critical insight on how to achieve this. Whereas p120-uncoupled Ecadherin is 

unstable, simultaneous mutating a double-leucine motif upstream of the p120 binding site renders 

Ecadherin resistant to endocytosis. In other words, the so-called EALA-Ecadherin mutants could 

mediate stable intercellular adhesions in the complete absence of p120. Based on this piece of 

observation, an experimental paradigm can be established: the result of whether p120 KD/KO 

phenotypes can be sufficiently rescued by EALA-Ecadherin would inform to what extent these 

phenotypes represent an adhesion or signaling defect. Thus applying this methodology in vivo 

should conclusively determine whether a certain p120 KO phenotype represents a defect in 

intercellular adhesion or impaired junctional signaling. Here we used a MDCK 3D cyst model to 

mimic epithelial morphogenesis in vivo, which in the mean time allowed easy genetic 

manipulation. It turns out that the Rho-suppressing activity is indeed required for both three-

dimensional cell growth and epithelial lumenogenesis, both of which were previous masked by 

the apparent cell-cell adhesion defect. 

  

 

Results 

 

Cyst-growth is blocked by p120 KD and rescued by inhibition of ROCK or myosin 

              Although junctional tension has been examined extensively in 2D cell cultures (Maître et 

al., 2012; Liu et al., 2010; le Duc et al., 2010; Wu et al., 2014; Engl et al., 2014), cells grown in 

this manner lack 3D characteristics such as cell height and exhibit many other behaviors that are 

not observed in vivo. To interrogate p120 function under more complex conditions, we examined 

the effects of p120 KD on MDCK cell cyst morphogenesis in 3D collagen cultures. Normally, 
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single cells embedded in collagen proliferate continuously and reach ~50 cells per cyst by day 7 

(Figure 13E, top panel). In sharp contrast, we find that p120 KD induces growth arrest by day 4 at 

the 8-12 cell stage (Figure 13B, 11E, mid panel). Caspase 3 staining revealed that apoptosis 

actually decreases slightly in the p120 KD cells (Figure 13 C, D), suggesting that the size deficit is 

not linked to apoptosis but most likely growth arrest. Importantly, growth was restored by 

expression of shRNA-resistant p120 cDNA (Figure 13 E, bottom panel). As expected, E-cadherin 

was destabilized by p120 KD and rescued by expression of WT p120 (triple flag-tagged) from an 

shRNA-resistant cDNA (Figure 13 A). Total cell counts (Figure 12 B) and live cell imaging (Video 

1 and 2) exclude the unlikely possibility that the reduced cyst size resulted from cell dissociation 

and/or migration.  

 

               The mechanism underlying cell growth arrest following p120 ablation is not yet clear. 

However, cell growth was effectively restored by addition of 2 μM or 4 μM Y27632 (ROCK 

inhibitor) to the p120 KD cultures, again implicating unscheduled activation of Rho. Interestingly, 

although the inhibitor is added at day zero, it is not until beyond day3 that the rescue effect is 

evident (Figure 13 G, H). Note that 4 μM Y27632 slowed cyst growth in general (Figure 13 H, 

both WT and KD), consistent with reported side effects in cytokinesis attributed to this drug when 

used at higher concentrations. 

 

Inverted polarity caused by p120 knockdown is rescued by inhibition of ROCK 

                To facilitate quantitative measurements of specific morphogenetic events, the process 

of cyst morphogenesis was subdivided into four distinct stages using ezrin and actin as markers 

to track progression (Figure 12 C). Stage I (inverted polarity stage) is defined by inverted polarity, 

as indicated by localization of Ezrin externally at the cell-ECM interface, prior to initiation of 

lumenogenesis. Stage II (unopened lumen stage), is defined by the appearance of Ezrin stained 

pre-apical patches at cell-cell contacts marking the site of future lumen formation. Stage III 

(multiple lumen stage) is defined by the presence of two or more open lumens. Stage IV (single 

James Yu
46



lumen stage) is the mature cyst, a circular monolayer of cells with Ezrin-stained apical surfaces 

facing a centrally located lumen. Progression from one stage to the next is expressed as the 

percentage of cysts at each stage from day 1 to day 8 (Figure 12 C). Notably, on day 1, 

96.76%±0.64% (Mean±SEM) of the cysts exhibit inverted polarity, indicating that they have yet to 

initiate the process of reorienting polarity. From day 2 to day 4, apical membrane components are 

efficiently relocated away from extracellular matrix and concentrated internally at cell-cell 

contacts, presumably by transcytosis (Apodaca et al., 2012). 

 

             p120 KD led to several morphogenetic defects in cyst development. After 8 days in 

collagen, 57.96%±4.94% of WT cysts had developed normally to stage 4. In contrast, the majority 

(68.51%±2.26%) of p120 KD cysts growth arrested in stage 1 (Figure 13 I, J). In the absence of 

p120, the normal internalization and relocation of apical membranes following exposure to 

collagen did not occur. Interestingly, restoring expression of p120 efficiently rescued the 

relocation defect but most of the rescued cysts (88.84%±1.84%) failed to form single lumens and 

instead arrested at the multiple-lumen stage 3 (Figure 13 I, J). To distinguish “partial rescue” 

(e.g., insufficient p120) from the possibility of an overexpression phenotype, we examined the 

effect of overexpressing p120 (isoforms 1A or 3A) in WT MDCK cells (i.e., retaining endogenous 

p120). These experiments show that p120 overexpression typically results in a multiple lumen 

phenotype (Figure 12, E-G), as also observed in the knockdown/add-back experiments. Given 

that the KD/AB cysts typically express higher than WT levels of p120, it appears that the multiple 

lumen effect we observe is due to p120 overexpression. 

 

             Interestingly, as with other p120 KD phenotypes, inhibition of ROCK (Y27632) effectively 

rescues inverted polarity, with the majority of cysts manifesting internal lumens (stages 2, 3, 4), 

as apposed to the inverted polarity (stage 1) observed in untreated controls (Figure 13 K, L). It is 

worth noting that Y27632 treatment does not rescue single-lumen formation of p120 KD cells 
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effectively, presumably because endogenous cadherins are required for this event (Jia et al., 

2011; Troxell et al., 2001). 

 

Suppression of junctional contractility is essential for lumen formation 

            During cyst development, cell proliferation and lumen formation are spatially and 

temporally linked. Deregulated junctional contractility upon p120 KD interrupts both cell growth 

and lumen formation, but whether these phenotypes are interdependent is unknown. To address 

this issue, we turned to two alternative assays that enable assessment of lumen formation under 

conditions where p120 KD does not suppress growth. The so-called “dome assay” takes 

advantage of the fact that cells attaching to the plate in the context of collagen spontaneously 

form a two-layered colony separated by multiple lumens (Figure 14 A,B,C). Interestingly, in the 

absence of p120, the bilayer forms as in the WT scenario but no lumen is generated (Figure 14 

A,B). Note that lumens are clearly outlined by dense circular actin (Figure 14 A) and appear as 

transparent bubble-like structures under bright field illumination (Figure 14 B, black arrowheads). 

In contrast, the structures observed in p120-deficient bilayers are gaps, not lumens. Notably, 

under bright field microscopy, the transparent bubble-like structures, which are indicative of 

sealed lumens, are completely absent from the p120 KD bilayers (Figure 14 B, compare upper 

and lower panels). 

 

            The second alternative, the so-called “collagen overlay assay”, was designed to be 

inducible, and more importantly, to form lumens independent of cell proliferation (Hall et al., 

1982). Briefly, MDCK cells were seeded at very high density on a layer of collagen and allowed to 

growth arrest as a confluent monolayer (Figure 14 C). The cells were then overlaid with a second 

layer of collagen, invoking an intrinsic epithelial differentiation program that drives de novo lumen 

formation and regenerates the free apical surface (Figure 14 C). Normally, this process involves 

relocation of apical proteins to intercellular junctions where the nascent lumen is formed (Hall et 

al., 1982), as illustrated by ezrin-stained circles (Figure 14 D,E). However, in the absence of 
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p120, ezrin localizes randomly across the entire cell membrane and lumen formation does not 

occur. Importantly, lumen formation is rescued by restoring p120 expression (Figure 14 D,E). 

Thus, p120 is essential for lumen formation, apparently independent of its role in cell proliferation.  

 

             To distinguish potential Rho-mediated effects from those caused by cadherin 

destabilization, we used the same p120-CAAX and Ecad-LAEA mutants described above and 

tested their ability to rescue lumen formation in p120 KD cells. Indeed, neither p120 (Figure 15 E) 

nor E-cadherin (Figure 15 F) alone at the cell-cell junction is able to rescue this lumen formation 

defect (Figure 15, arrows showing where lumen form). Additionally, p120 mutants lacking the 

NTR or Ins regions faithfully rescued lumen formation (Figure 15 C, D, arrows), consistent with a 

RhoGDI-independent mechanism. Interestingly, ROCK and myosin inhibitors again rescue effects 

of p120 knockdown, this time in the context of lumen formation. Using the collagen overlay assay, 

we find that addition of either Y27632 or Blebbstatin, p120 KD cells are now able to target apical 

membrane to specified foci, restoring the ability to generate lumina (Figure 14 F, arrows). The 

pictures were intentionally taken at low magnification to show restoration of the pattern of lumen 

formation in p120 KD cells in the presence of drug treatment. Although the effects of blebbstatin 

and Y27632 are not identical, both clearly rescue formation of lumen that is exemplified by the 

distinct apical membrane foci surrounded by nucleus (Figure 14 F, insert, arrows). Together, 

these observations indicate a pivotal role for cadherin-bound p120 in controlling junctional 

contractility during epithelial morphogenesis. 

 

Discussion 

 

               The data indicate that suppression of contractility by p120 goes well beyond the control 

of cell height and shape. Lumen formation, orientation of cyst polarity and even cell growth are 

clearly dependent on appropriate regulation of tension at this level. Exactly how contractility 

controls these events is not yet established, in part because NMMIIA activity impacts nearly all 
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cellular processes that influence epithelial morphogenesis (Vicente-Manzanares et al., 2009). It is 

significant, however, that virtually all of the phenotypes induced by p120 ablation are effectively 

reversed by specific inhibition of ROCK. Although p120‘s stabilizing function is clearly essential, 

the extent of rescue by ROCK inhibition reinforces the notion that p120 is also a key regulator of 

cellular tension. Interestingly, E-cadherin is increasingly recognized as a mechanosensor of 

intercellular forces (Engl et al., 2014; Smutny and Yap, 2010; le Duc et al., 2010; Taguchi et al., 

2011). The fact that p120 stabilizes E-cadherin on one hand and regulates contractility on the 

other, places p120 at the intersection between sensing and transducing mechanical forces at 

sites of cell-cell adhesion. 

                It is worth noting that p120 KD seemed not to impact cyst polarity or lumenogenesis 

when cell were cultured in Matrigel. This apparent discrepancy could be explained by the 

differences between Collagen I (the model we use here) and Matrigel.  The original report on cyst 

inverted polarity was performed in Collagen I. It turns out that Matrigel would actually suppress 

the inverted polarity phenotype because of the presence of laminin-1 (along with other ECM 

factors), which acts as a strong polarization signal to drive internal polarity orientation and 

lumenogenesis. For the same reason, MDCK cells in Matrigel generate internal lumens as early 

as the two-cell stage whereas it takes days for cells in 3D collagen to finish the transition from 

inverted to normal polarity. We suggest that p120 and RhoA play a direct role in this window of 

transition and p120 KD arrests the development at the inverted polarity stage. Laminin-1 

(potentially with other ECM factors) bypasses the requirement of p120 in cells cultured in 

Matrigel, as shown in the Development paper and in our hands as well. 

 

                Previously, the role of RhoA in cyst formation was suggested to be downstream of 

integrin signaling. When cysts (grown in 3D collagen gel) were treated with beta1-integrin 

blocking antibody AIIB2, cysts show inverted polarity, and RhoA inhibition rescued the polarity. 

Potentially, we suggest two scenarios to explain this similarity. First, p120 may be required to 

mediate the inhibition of RhoA by Rac1 downstream of RTKs (i.e., the Bar-Sargi pathway). 
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Whether or not the exact mechanism applies to MDCK cells, the antagonism between Rac and 

Rho is clear, and p120-dependent. Interestingly, the same antagonism between  Rac and RhoA 

controls cyst polarity orientation but is driven instead by beta1-integrin signaling. Under this 

hypothesis, p120 might actually play a downstream role of integrin-Rac1 signaling to mediate 

suppression of RhoA. Second, the crosstalk between integrin and cadherin signaling may actually 

represent two distinct steps during translocation of apical proteins from the outside to the inside 

during cyst formation. It is worth noting that the inverted polarity phenotype results from the failure 

of transcytosis of apical proteins through VACs (vesical apical compartment), which involves both 

endocytosis from the integrin localized outer membranes and exocytosis to the cadherin/p120 

localized inner membranes.  Disrupting either step would result in the failure to establish correct 

polarity orientation. While beyond the scope of this manuscript, investigating the interplay 

between p120/cadherin and VACs docking onto cell-cell junctions would be interesting and 

worthwhile.  
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CHAPTER IV 

 

FUTURE DIRECTIONS 

 

The controversy around the cross-regulation between cadherin complex and Myosin 

              p120-Ecadherin complexes represent a great tool for epithelium to build and maintain 

organized shapes. Actin-Myosin complexes on the other hand, serve as a two-edged sword: 

conferring resistance to deformation and in the mean time, providing reshaping forces as needed. 

Previous evidences center around mechanisms of “who controls who” or “friends or enemy”. In 

other words, does myosin-mediated contraction promote or disrupt the stability of cadherin-based 

junctions? On the other hand, does E-cadherin organize a signaling nexus to activate or 

deactivate actin-myosin activity? These are critical questions that definitely worth further 

investigations. However, it is worth noting that conclusions on either side might not be mutually 

exclusive. The epithelium varies significantly in shape, size and dynamics between different 

tissues, or even within the same tissue. The apparent opposite conclusions regarding how 

myosin and E-cadherin regulate each other may simply represent different requirements of the 

epithelium to acquire a particular shape or rearrange into a particular pattern. Thus, mechanisms 

aside, another potential future direction would be how to manipulate cell shapes or control cell 

rearrangements from an engineering perspective. First, separate tools need to be devised to tune 

up or down cadherin-based adhesion and myosin-mediated contractility, respectively. Second, 

combinatorial manipulations of both adhesion and contractility could be performed to investigate 

their impacts on individual cell shapes and intercellular rearrangements. Finally, observations 

from those manipulations should provide the basis for constructing theoretical models explaining 

mechanics of different epithelial structures and dynamics.  
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Adherens junctions as the sensor of mechanical forces  

            The classic outside-in and inside-out models nicely explain how integrin complexes 

“sense” and respond to mechanical forces that orginate from the extracellular matrix. On the other 

hand, only upon recently convincing evidences emerged to support that adherens junctions could 

also transduce forces in a similar manner. However, in comparison to the integrin-mediated 

mechano-transduction, three questions remain unanswered for cadherins. First, does the 

conformation of cadherins change in response to pulling or stretching forces? In other words, at 

what step are the physical forces translated into biochemical signals?  Second, after the force 

being “sensed” by the cadherin complex, what intracellular components of the complex 

mediate(s) the signaling relay to cortical acto-myosin networks? In other words, how does the 

outside-in work here for adherens junctions? Finally, whereas it is well documented that individual 

epithelial cells change their shapes in response to intercellular tensions, how the epithelium 

coordinates the changes at short (among 5-6 neighboring cells) and long ranges (hundreds of 

cells)? It is worth noting that the “inside-out” step for adherens junctions would be actions upon 

neighboring cells, instead of extracellular matrix. Thus, the end of “inside-out” signaling of one 

particular cell might simply kickstart the “outside-in” signaling of the neighboring cells.   

 

            Experimental-wise, the foremost would be constructing devices that allow applying 

stretching, pulling or compressing forces upon epitheliums, ideally without provoking the integrin 

signaling. Second, proteomic assays of the “cadhesome” should be performed with or without the 

mechanical tensions applied. Proteins coming or leaving the cadherin complex under tensions 

would be the prime candidates for the tranducer of mechanical forces. Finally, live imaging or 

immunofluorescence on fixed cells against these candidates should reveal the temporal-spatial 

information on the dynamics of the mechano-transduction.  
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