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TERMINOLOGY 

 

Compartment Major storage unit considered in the model (i.e. root, stem, leaf), 

which includes both the portion floating in the cytoplasm as well as 

part that is bound to cell walls and vacuoles 

 

Cytoplasm Liquid that fills the plant cells 

 

Cell walls/ 

vacuoles 

Surface area to which the Cd can be bound within a compartment 

 

Order of uptake The assumption that the Cd is taken from the soil into the roots, then 

stem and then into the leaf 

 

Regional gain Input of Cd from the preceding compartment into the target 

compartment in its floating form (cytoplasm) 

 

Local “loss Input from cytoplasm form to bound form  

 

Regional loss Output from cytoplasm of the target compartment into the following 

compartment; this process does not exist for the leaf compartment 

 

Xylem Also known as the “highway” of the plant, this structure allows 

advective transport of the Cd from one compartment into another. 

Responsible for the transport of water and mineral nutrients from the 

roots throughout the plant 
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LIST OF ABBREVIATIONS 

 

Parameters 

α Uptake rate 

β Surface-to-biomass ratio 

K Half saturation constant if Km; otherwise, permeability constant (described later) 

k Growth rate 

i Ratio increment rate 

 

Variables 

C Concentration 

M Mass of Cd 

B Biomass of a particular compartment (such as root) 

R Ratio between the compartments 

 

Descriptions (subscript, superscript) 

* Partial expression (e.g. not necessarily explaining the entire uptake process) 

t current time (if a variable is not specified, it’s the current time by default) 

t+1 one step in the future 

ave average of two time steps, namely t and t+1 
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r root compartment 

s stem compartment 

l leaf compartment 

c Cd floating in the cytoplasm 

b Cd bound to the cell walls/vacuoles 

min minimum or threshold concentration before there is net uptake 

max phytotoxicity limit 

m half saturation constant for root uptake 

f final (as in final weight, if Mf) 
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CHAPTER I 

 

SOIL CONTAMINATION AND REMEDIATION STRATEGIES 

 

Introduction 

As societies increasingly rely on manufactured chemicals, soil contamination can 

become a major public health concern. From organics to radionuclides to heavy metals, soil 

contamination arises from accidental spills from engineered structures, application of 

pesticides and herbicides, percolation of contaminated surface water to subsurface strata, 

leaching of wastes from landfills, and direct discharge of industrial wastes to soils (McGrath 

et al., 2002; Adriano, 2001). More than 200,000 sites in the U.S. are identified for soil 

contamination. Yet until the 1970s, there was limited awareness of the dangers associated 

with soil contamination. In the 1980s, the U.S. Environmental Protection Agency (USEPA) 

established regulatory standards for soil quality. However, because contaminated soil sites are 

wide-spread and large in volume, and because of the extent and difficulties of managing 

contaminated soils, billions of dollars in costs can depend on the selection and 

implementation of appropriate remedial decisions.  

Cadmium (Cd) is a naturally occurring transition metal element found in almost all 

environmental media, and in the II oxidation state naturally (Adriano, 2001). In non-polluted 

areas, sedimentary rocks typically contain the highest concentrations of about 3.5 parts per 
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million (ppm). Cd tends to be stable in the divalent form although the most common Cd 

compound in nature is CdS. Until its toxicity became apparent in 1960s, the exposure to Cd 

was relatively high in developed countries, especially in the United States, Japan and the 

former Soviet Union, due to its usage in factories. Cd is produced commercially as a 

by-product of the Zn industry. In addition to Cd, literature findings regarding Zn are discussed 

in this thesis due their chemical similarities. Although there are a limited number of 

commercial applications of Cd, its usage is wide-spread: protective plating for steel, 

stabilizers for polyvinyl chloride, pigments in plastics and glasses, electrode material in 

nickel-cadmium batteries, and as a component of various alloys (Friberg et al., 1992; Adriano, 

2001). Therefore, Cd can be found in household appliances, automobiles and trucks, 

agricultural implements such as phosphorous fertilizers, airplane parts, industrial tools, and 

hand tools, and fasteners of all kinds are commonly cadmium-coated (Kirkham. 2006; Lasat, 

2000).  

Humans can directly ingest Cd from food, liquids or edible products that are in contact 

with Cd-coated containers. Cd is taken up through the roots of plants to become concentrated 

in edible leaves, fruits and seeds; this biological phenomenon is the basis of this study. Cd 

also builds up in animal milk and fatty tissues. Seafood, such as mollusks and crustaceans, 

can be a source of cadmium as well (Kaneta et al., 1986).  

Cd was the cause of Itai-itai disease in Japan during the 1950s, where ingestion of the 
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metal led to brittle bones and kidney failure along with other side effects. Because of this 

incidence, the Japanese government has set 1 ppm of Cd in rice grain as the maximum 

allowable limit, as opposed to 3.4 ppm, which was commonly found during the incident 

(Kaneta et al., 1986; Adriano, 2001). Oral exposure to Cd has adverse affects on the kidney, 

liver, bones, testes, the immune system, and the cardiovascular system. Beyond 20 mg Cd per 

kg of human tissue, excessive fluid loss may eventually lead to death (NIH, 1998; Lasat, 

2000).  

In an effort to protect people from exposure to Cd, various government agencies have 

taken steps to protect residents from Cd exposure. The USEPA controls the concentration of 

the discharge and solid wastes from factories; the Occupational Safety and Health 

Administration (OSHA) sets limits on maximum permissible exposure to Cd dust and 

fumes; and the Food and Drug Administration (FDA) controls the amount of Cd in ceramic 

plates (ATSDR, 1998).  

 

Phytoremediation 

Along with physical excavation, chemical barriers and bioremediation, phytoremediation 

is a technique used to isolate and clean up contaminated sites. Traditional treatment methods 

such as excavation require subsequent treatment and disposal of the removed soil and 

sediments. Furthermore, usually the pore solution contained in the sediment needs treatment 



4 

as well. In the US alone, the remediation of metal-contaminated soils based on relatively 

destructive engineering-based methods is estimated to cost about 400 billion dollars (Milner 

and Kochian, 2008).  

As opposed to these costly invasive techniques, phytoremediation is gaining popularity 

as an eco-friendly and aesthetically-pleasing option. In some situations, the vegetation 

simultaneously stimulates bioremediation, a technique where microorganisms immobilize 

and/or chemically transform contaminants. The market in the US alone for the 

decontamination of soil and groundwater through phytoremediation was in excess of $100 

million in the year 2000, and this technique is expanding rapidly (Fitter et al. 2002). Due to 

various capabilities for different species to stabilize, sequester, store, evaporate and/or 

transform the original contaminants into less harmful products, most soil contaminated by 

organics, radionuclides, metals are treatable through phytoremediation (Gouthu et al., 1997; 

Grispen et al., 2006; Pugh et al., 2002; Narayanan et al., 1999).  

Among various phytoremediation techniques, phytoextraction, also known as 

phytoaccumulation, is the main subject of this study, and has been used as an effective 

method for cleaning up contaminated environments. The idea is to remove contaminants, 

specifically heavy metals or radionuclides, from a soil by utilizing the natural capability of 

plants to take up the contaminants along with water and essential nutrients and store them in 

aboveground tissues. Eventually the plants are harvested to be treated and/or disposed.  



5 

Secondary benefits of this method are decreased rates of transport of contaminant by wind, 

rain and groundwater due to physical (plant) obstruction and increased water evaporation 

(USEPA, 2001). Due to the ease of this technique, those plants designated to accumulate the 

contaminants are referred to as natural “vacuum cleaners”. Specifically, the plants that 

favorably/selectively uptake and store unusually high amounts of the pollutants in the 

aboveground biomass are referred to as hyperaccumulators (USDA, 2007; Lasat, 2000). The 

criterion for defining hyperaccumulation is also 100 µg Cd per g in stem dry matter and 

10,000µg Zn per g in stem dry matter. Although these criteria are somewhat arbitrary, the 

concentrations of metals in hyperaccumulators are about 100 to 1,000 fold higher than those 

in normal plants growing on soils with background metal concentrations and about 10 to 100 

folds higher than most other plants growing on metal-contaminated soils (McGrath et al., 

2002).  

Thlaspi caerulescens, commonly known as alpine pennycress, has been studied 

extensively as a promising hyperaccumulator of Cd (Kirkham. 2006; Lasat, 2000; McGrath et 

al., 2002) and is the subject of this study. Alpine pennycress is a small, weedy member of the 

broccoli and cabbage family that thrives on soil that contains high levels of zinc (Zn) and Cd 

(USDA., 2007). In fact, pennycress plants that were originally from regions with high Cd 

concentration in the soil had better growth --- by developing more and bigger leaves, taller 

stems, and by producing more fruits and heavier seeds --- when planted in slightly Cd 
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contaminated soil than non-polluted environment (Basic et al., 2006). 

Along with its tendency to favorably accumulate contaminants of interest, an effective 

hyperaccumulator should fulfill most, if not all, of the following requirements 

(Padmavathiamma et al., 2007; Grispen et al., 2006): 

1. Sufficient tolerance for the contaminant of interest; 

2. Absorb large quantities of toxin into the roots; 

3. Transport the toxin to the stems; 

4. Have a high growth rate; and  

5. Minimize the risk of transferring metals to high trophic levels of the food chain. 

 

First requirement may seem redundant as the unusually high tolerance of the plants 

to the specific contaminants is the definition of hyperaccumulators. Unlike nutrients such as 

nitrogen (N) or phosphorous (P), which allows greater biomass than in absence of those 

nutrients, Cd is a non-essential element where the acceptable concentration range is only 

between 0.05-2 ppm (Table 1.1; Blackshaw et al., 2004). Furthermore, the tolerance of this 

heavy metal can vary even among alpine pennycress and results in various plant health 

impacts (Roosens et al., 2003; Das et al., 1997). One measure of plant health is its biomass. 

Figure 1 gives a good illustration of the difference in biomass for a population of Sedum 

alfredii, another Zn/Cd hyperaccumulator commonly found in China discussed more in detail 
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later in this chapter, that is accustomed to heavy metal loading as opposed to an another 

population of S.alfredi that is not normally exposed to heavy metals (DeChamps et al. 2004). 

In addition to a decrease in biomass, the latter population also showed other phytotoxicity 

symptoms such as wilting, drooping leaves and root necrosis (Sun et al., 2007, Zhou and Qui, 

2005, Xavier da Rosa Corre et al., 2006; Das et al., 1997). In general, typical phytotoxicity 

effects can be summarized in five categories: modifications in the development cycle, 

thinning, modification in color, necrosis --- local death of tissues or organs --- and 

deformation (OEPP, 2007). 

 

Table 1.1: Effect of typical levels of heavy metals in plants (Padmavathiamma et al., 2007) 
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Figure 1.1: Fresh weights of different tissues of mine (a) and non-mine (b) populations of 

Sedum alfredii exposed to a range of Cd for 7 days ;mean +/- SD, n =3. (DeChamps et al. 

2004) 

 

The first requirement also involves a second important idea pertaining to changes in 

plant tolerance at different stages of growth. A plant may be tolerant of high levels of Cd or 

Zn when it is transplanted to contaminated soil after growing to maturity in an 

uncontaminated soil, but it may not germinate if the seeds are placed in a contaminated soil.  

Even if the level of the contaminant of interest may not pose a problem, if the soil 

mixture also contained other contaminants that inhibit the growth of the plant, then its 

remediation capacity is limited. For an example, alpine pennycress has limited tolerance for 

copper (Cu). Therefore, despite its excellent remediation capability for Cd and Zn, this plant 

may not be able to accumulate these transition metals if the Cu toxicity inhibit normal 

functioning of the plant (McGrath et al., 2001). 
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Alpine pennycress is an effective Cd hyperaccumulator, fulfilling the second 

requirement. Sometimes hyperaccumulators can contain even higher concentrations of the 

metal than that of the soil (Lagerwerff et al., 1971). According to the study from Lombi et al. 

(2001b), over a period of 391 days, alpine pennycress were found to contain up to 263 mg of 

Cd per kg of biomass, which is much greater than 100 mg/kg of biomass, the typical toxicity 

limit for alpine pennycress defined by most authors. Furthermore, another study showed that 

alpine pennycress grown in a nutrient + Cd solution may accumulate up to 10,000 mg of Cd 

per kg of fresh biomass before phytotoxicity symptoms appear, though uptake is typically one 

to two orders of magnitude lower when grown in soil (Maxted et al. 2007).  

Whereas most plants avoid absorption of heavy metals, it may seem odd for pennycress 

and other hyperaccumulators to purposefully take up and store heavy metals in its tissues 

(Figure 2). One evolutionary theory that attempts to explain this rare phenomenon states that 

the metal accumulation is a self defense strategy – leaf feeding insects are discouraged from 

eating the leaves when the plant contains Zn and/or Cd (Jiang et al., 2005). Another 

explanation states that the Zn transporters, proteins required at the root membrane for uptake, 

also have some affinity to Cd, therefore transporting the Cd in the process of transporting Zn, 

an essential element (Maxted et al. 2007, Schwartz et al., 2003, Zhao et al., 2001; Lombi et al, 

2001a). 

Regarding requirement 3, the capability to transport a contaminant from the root to the 
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stems is probably the most important characteristics of a hyperaccumulator (Xing et al., 2008). 

A typical plant stem Cd concentration is 0.1 - 10 ppm, whereas that of an alpine pennycress is 

as much as 10,000 ppm (Milner and Kochian. 2008). After all, if the heavy metals are not 

stored in the aboveground tissues, the contaminant cannot be harvested with the biomass.  

Interestingly, when Zn and Cd uptake were compared between alpine pennycress and a 

related non-accumulator, field pennycress (Thalspi arvense), most Zn and Cd was stored in 

roots for field pennycress with almost no stem metal concentration, whereas alpine 

pennycress translocated significant amounts of Zn and Cd in the stems (Ozturk et al., 2003; 

Lasat et al., 1996; Lasat et al., 1998; Xing et al., 2008; Sun et al., 2007).  

The fourth idealistic feature is a large biomass. The efficiency of phytoextraction is the 

product of a simple equation: biomass x element concentration in biomass. Unfortunately, 

pennycress weighs less than 10 grams. This raises the following question: If there is no 

hyperaccumulator that has large biomass, could a regular plant with high biomass that is 

capable of taking up contaminants, albeit not at the rate of hyperaccumulators, clean up a site 

just as effectively? A study from Lombi et al. (2001b) compared chemically enhanced 

phytoextraction by maize (Zea mays) of Cd + EDTA (ethylene-diamine-tetraacetic acid), a 

chelating agent that increases the bioavailability of Cd in soil, to that of the 

phytoaccumulation done by pennycress for untreated Cd. In this study, most of the metal in 

the maize was stored in the roots rather than stems, failing the third criteria for 
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hyperacumulator, therefore phytoextraction would not be an effective means of remediation 

(Das et al., 1997). To worsen the situation even more, what remains in the roots is released to 

the soil with decomposition of the plant matter, thereby contributing to a temporal spike in the 

heavy metal concentration in the soil solution. Furthermore, by adding chelating agents, the 

mobility and bioavailability of Cd increases, therefore transport through percolation down 

through soil medium also becomes easier (Wenzel et al., 2003). Because the tolerance level of 

the maize is much lower than that of the alpine pennycress, they would need to be harvested 

immediately after the chemical treatment, putting strict schedule constraints on harvestation 

(Kirkham 2006; Macnair, 2003). Therefore even though many hyperaccumulators are small, 

the difference in concentrations that the hyperaccumulators can tolerate and non-accumulator 

high biomass crop is often greater by 100 to 1,000-folds, whereas the difference in biomass is 

most likely to be in the order of magnitude of two, therefore the most limiting factor for 

present phytoextraction technology is no the biomass (McGrath et al., 2001). 

Lastly, but not least, minimizing the risk of transferring metals from alpine pennycress to 

higher trophic levels of the terrestrial food chain is a management issue that needs to 

considered when implementing this technology. Where alpine pennycress is naturally 

occurring, it is subject to livestock grazing (Montana Field Guide, 2008; Raskins et al., 1994). 

Therefore, transfer into other organisms is another concern that phytoremediation in general 

introduces. 
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As an alternative to the alpine pennycress, Sedum alfredii is reported as Zn/Cd 

hyperaccumulator for the first time in 2002. Its features like fast growth, large biomass, 

asexual reproduction and perennial growing up to 40 cm in height, propagate 3-4 times in a 

year under favorable environmental conditions make this species worth examining. Also the 

max Cd concentrations in stem and leaf is 4512 mg of Cd per kg of plant biomass as opposed 

to 100 mg Cd kg-1 for pennycress (Sun et al. 2007). The only drawback in implementing this 

plant for phytoextraction purposes in the U.S may be the fact that this Chinese native plant 

may not be favorably accepted over endemic alpine pennycress. 

Choosing phytoremediation over conventional invasive approaches as a clean-up 

technique seems appropriate for mild to moderately polluted soil (Macnair, 2003; Maxted et 

al., 2007). Based on a literature review, alpine pennycress possesses many of the important 

characteristics of an ideal phytoextracting plant. Although the biomass is small, looking at 

long term management issues such as harvesting and planting frequency, there is merit to 

examine alpine pennycress (Robinson, 1998).  
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CHAPTER II 

 

PHISIOLOGY OF METAL HYPERACCUMULATION 

 

Introduction 

Whenever plants grow on contaminated soil, pollutants may be incorporated within 

the aboveground tissue of the plants. Currently, scientists know about 400 plant species, less 

than 0.2% of all angiosperms, in families such as Asteraceace, Brassicaceae, 

Caryophyllaceae, Poaceae, Violaceae and Fabaceae that possess both the ability to uptake 

high amounts of heavy metals and store them in stems (Adriano, 2002; Ghosh and 

Singh,2005). The Brassicaceae is best represented and known to have 87 species that are 

classified as metal hyperaccumulators, one of which is alpine pennycress T.caerulescens 

(McGrath et al., 2002; Grispen et al., 2006; Raskins et al., 1994). In order to ensure a 

successful phytoextraction practice, the complex interaction between climatic conditions, soil 

properties, site hydro-geology as well as basic plant mechanism should be modeled (Lasat, 

2000). 

This chapter covers both qualitative and quantitative descriptions of uptake, 

transport and storage of heavy metals as these pollutants journey from soil to epidermal cells 

in leaves. The discussion also extends to the general growth behavior of plants, a concept 

incorporated in one of the model simulations in the next chapter. The ultimate aim of this 
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study is to mathematically simulate fundamental physiological and biochemical differences 

between the hyperaccumulators and non-accumulators. 

 

Cd availability in the soil 

In order to estimate the uptake of metals by roots, a model needs to consider heavy metal 

concentrations in the soil, root sizes and surface area, and inflow into the roots (Clarkson, 

1985). The problem basically hinges on supply of the metals, the plants’ demand for the 

metals, and the uptake mechanism.  

Generally, Cd is fairly immobile in the soil profile, evidenced by both unpolluted and 

polluted soils. When Cd is found in uncontaminated soil, it usually retains the Cd 

concentration of the original parent rock unless the soil has been subjected to long-term 

cultivation. Cd retention is also high, as evidenced by a soil that contained 90% of the Cd 

applied as a sewage sludge mixture in the top 0 - 15 cm of the surface, equivalent to the depth 

of accumulation over the years of application (Adriano, 2001). Ironically, in another case, Cd 

arising as a side product of P fertilization resided much longer than the P itself (Adriano, 

2001; McGrath et al. 2002). From an engineering standpoint, this relative immobility in soils 

is favorable for clean up. 

Total Cd content in soil is important to preliminary assess the potential hazard of the area. 

However, the bioavailability of the Cd is even more important parameter when considering 
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the metal in the context of phytoextraction. Definition of the availability goes as “the rate and 

extent at which a chemical is released from a medium of concern or the bioavailability of the 

chemical to living receptors” (Kirkham, 2006). Most labile form of the metal are found in the 

soil solution as free metal ions and soluble metal complexes or adsorbed to inorganic soil 

constituents at ion exchange sites (E value in Figure 2.1; Lombi et al. 2001b); however, there 

are theories that a plant may also access non-labile or “fixed” form, such as Cd bound to soil 

organic matter, precipitated such as oxides, hydroxides, and carbonates; and embedded in 

structure of the silicate minerals (L value in Figure 2.1; Lasat, 2000; Raskins et al., 1994).  

 

 

Figure 2.1: Schematic representation of the definition of the E and L values and the 

extraction power of weak and strong chemical extractants. The size of the boxes is not at scale 

(Hammer et al., 2006).  

 

This topic begs the question whether or not the hyperaccumulator has greater 

capacity of immobilizing the Cd into bioavailable form than the non-accumulators, therefore 

resulting in higher uptake of the metals. Some previous studies suggested that the 

hyperaccumulator may release some of the immobile forms of Cd through root exudate. 

However, that does not seem to be the case; between alpine pennycress and Brassica napus, a 
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non-accumulator species, L value test showed that despite taking up more metals, pennycress 

accessed the same pool of metals as B.napus (Hammer et al. 2006; Ayoub et al. 2007; Maxted 

et al. 2007; Knight et al. 1997). Also in hydroponic studies, where the soluble and 

bioavailable Cd concentration is the same, the uptake rate of the hyperaccumulator is still 

significantly higher (Lasat, 1996). This finding suggests that the differences in the uptake rate 

must be explained by the uptake mechanism rather than availability. 

pH, cation exchange capacity (CEC), redox potential as well as presence of organic 

matter, other chemically similar metals, and fertilizers govern the bioavailability. Cd, like all 

other heavy metals, is almost always more extractable with decreasing pH (Everhart, 2006; 

Yanai et al. 2005). Metal desportion from soil binding sites into solution is stimulated due to 

H+ competition for binding sites (Lasat, 2000). As long as the plant itself does not suffer 

damage from low pH, the Cd absorption by lettuce, Swiss chard, radish, corn and rice, to 

name a few, has been greater in acidic conditions (Adriano, 2001). Also related to pH is CEC, 

a capacity of a soil for ion exchange of positively charged ions between the soil and the soil 

solution. High CEC provides a buffering effect due to greater sorption and immobilization 

capacity of the metals. In addition, especially in unpolluted soils, CEC is inversely correlated 

with Cd bioavailability (Adriano, 2001; Lasat, 2000).  

Other metals such as Zn, Ca, Mn in solution seem to compete with Cd. Therefore, even if 

Cd surrounding a root is in readily available form, the uptake may be inhibited if other metals 
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are also in abundance. Because Cd competes with Zn in forming protein complexes at the 

uptake sites, the presence of one metal specie can negatively affecting the total uptake of the 

other can be expected (Cosio et al., 2004; Milner et al., 2008). 

 

GROWTH AND METABOLISM FUNCTIONS: Calculates 
mass and activity of each compartment

ROOT 
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Figure 2.2: Schematic for model 

 

Roots: Uptake, Transport and Storage 

Hyperaccumulators tend to strongly localize their roots where high concentrations of 

heavy metals occur, that is, within “hot spots” when the concentration distribution is uneven. 

In contrast, a non-accumulator has an opposite behavior, avoiding Cd-rich soil hot spots 

(Vogel-Mikus et al. 2005; Schwartz et al. 2003; Hammer et al. 2006). Once the roots are 
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densely grown, they may compete for bioavailable metals as the radii of influence 

surrounding roots start to overlap with one another. Models that make no allowance for root 

competition tend to overestimate the uptake of mobile nutrients such as potassium (K), while 

still giving reasonable fits for Cd uptake, which is immobile in nature (Clarkson, 1985). 

Regardless of the competitive uptake between the roots, a hyperaccumulator’s preference for 

heavily metal-contaminated soil, as opposed to non-accumulator that avoids those hot spots, 

results in higher metal tissue concentration in the hyperaccumulator over non-accumulator 

(Vogel-Mikus et al. 2005).  

Unlike passive nutrient uptake, specific transporters on root membranes are required for 

active Cd uptake. At the molecular scale, high levels of the Zn transporter, ZNT1, which is 

primarily responsible for Zn intake, but also has some affinity for Cd, are expressed in 

hyperaccumulators even when the plants have high Zn tissue concentration. 

Non-accumulators such as field pennycress show much weaker expression of the protein and 

the expression was stimulated by Zn deficiency (Pence et al. 2000; McGrath et al., 2002). The 

difference in the abundance of the transporters would partially explain why the 

hyperaccumulators would higher Zn concentration. In the case of Cd, its uptake is believed to 

be unspecific and inadvertent via transporters for other essential nutrients such as Fe, Zn, and 

Mn, although some recent studies also hypothesize the existence of Cd specific transporters 

(McGrath et al, 2002; Lombi et al., 2001a). 
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Most terrestrial plants have a limited capacity for dealing with excess metals, and 

store these heavy metals in the cell walls and vacuoles in order to lower concentration in the 

root cytoplasm, and to prevent transport into the stems so as to minimize damage to the 

photosynthetic apparatus (Clemens, 2000; Clemens et al., 2002; Milner and Kochian. 2008). 

ZTP1 is a transporter found on tonoplast, the cytoplasmic membrane surrounding the vacuole, 

separating the vacuolar contents from the cytoplasm in the cell, especially concentrated in the 

leaves and is also believed to minimize damage to the photosynthetic function (Milner and 

Kochian, 2008). HMA, heavy metal ATP-ase, primarily found in roots, is another player 

believed to increase Cd tolerance and is responsible for transport into the xylem leading to 

further transport into aboveground biomass.(Milner and Kochian. 2008; White et al., 2002; 

Pence et al. 2000). Aside from the removal through vacuole binding, although not discussed 

in depth in this thesis, complexation of metals with ligands results in decreased free ion 

activity and thus decreases toxicity (Clemens, 2000; Clemens et al., 2002; McGrath et al., 

2002; Zhang et al., 2008; Sun et al., 2005). 
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Figure 2.3: Model of Zn transport into and across the root pennycress. The model depicts 

some of the aspects of and differences in the movement of Zn2+ from the soil into and across 

the root of hyperaccumulating alpine pennycress (T.caerulescens) and non-accumulator field 

pennycress (T. arvense). (Milner and Kochian, 2008). 

 

It is noteworthy that there are evidences of plants forming possible symbiotic 

relationship with arbuscular mycorrhizal fungi (AMF). AMF associations increase the area of 

nutrient exploitation in soil by roots and usually increase acquisition of nutrients in nutrient 

limiting conditions (McGrath et al., 2002; Sung et al., 2001). This has triggered several 

studies that explore the contribution of fungi to plant uptake; however, results are mixed on 

whether or not they are effective at either inhibiting or enhancing heavy metal uptake. 

Members of the Brassicaceae are generally believed to be non-mycorrhizal and despite the 

diverse samples of pennycress from Slovenia, Austria, Italy and Germany, at best, these plants 

were poorly colonized.  Therefore the chance is small to find these organisms actually aiding 

effectiveness of phytoremediation using pennycress (Regvar et al. 2003).
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Root’s Regional Loss: Soil solution to root cytoplasm 

Knowing that Cd inflow to the root is a function of the concentration of Cd in the 

soil solution and the concentration of Cd in the root cytoplasm, the following describes the 

uptake of Cd into the root: 
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Here, concentration of Cd ‘floating’ in the root cytoplasm increases according to a 

Michaelis-Menten-type uptake, which is only a function of the soil solution concentration 

(Grafe and Kuchenbuch, 2002). αr,c,max is the fastest possible uptake rate, specifically governed 

by the number of active binding/transport sites. If the soil solution concentration Csol is high, 

there is plenty of Cd in the soil solution for the root to take up; therefore the actual uptake rate 

αr,c approaches αr,c,max. In order to account for competition of Zn, Mn or Ca with Cd for 

binding sites, αr,c,max would need to be reduced accordingly (Das et al., 1997; Macnair, 2003). 

Csol,min in (1) describes the lowest concentration that needs to be achieved before net 

uptake by the root occurs. Below this minimum concentration, the probability of Cd 

encountering a binding site is negligible, and therefore no uptake is observed. It is important 

to note that negative uptake is not physically possible, therefore (1) is applied only when Csol 

is greater than Csol,min. Since hyperaccumulator has more densely packed uptake sites than 

non-accumulator, increasing the chance of uptake, alpine pennycress would have lower Csol,min 

than field pennycress. 
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The half-saturation constant Km, the concentration at which the uptake rate is half of 

the maximum uptake rate, controls the uptake rate. Km represents the affinity of the 

transporter to Cd. A low Km value, high affinity, indicates that high levels of ions are 

transported into the cells, even at low external ion concentration (Milner and Kochian. 2008; 

Lasat, 2000).  

In addition, the uptake process may be slowed or completely shut down as the root 

cytoplasm approaches the phytotoxicity limit Cr,c,max due to enzyme degeneration that Cd 

causes. The exponents a and b modulates the strength of how much the uptake and the 

counter-acting regulatory mechanism affect the overall uptake rate, respectively.  The a to b 

ratio is expected to be greater for a hyperaccumulator than for a non-accumulator because 

non-accumulators react quickly to avoid intake of Cd once the Cd level is even slightly 

elevated, therefore making b for a non-accumulator a greater value than for a 

hyperaccumulator. 

  

Root’s Local “Loss”: cytoplasm to vacuole and cell wall exchange 

Once Cd is inside the plant, it can either remain in the cytoplasm, go into vacuoles, 

or be transferred into the xylem. From a floating Cd molecule in root cytoplasm to being 

bound to cell walls/vacuoles in the root is described as: 
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Note that this is a “loss” from the cytoplasm standpoint, and conversely a “gain” for Cd 

bound in the roots. The form of the equation is very similar to that of the regional gain. The 

Michaelis-Menten-like uptake is regulated by how permeable Kr is, or in other words, how 

easily accessible the cell wall/vacuole binding sites are for the floating Cd and may be a 

function of ZTP1 abundance, analogous to ZNT1 affinity to Cd. αr,b,max describes the fastest 

rate at which the Cd can bind to these available sites.  

The second parenthetical portion of (2) describes the availability of the binding sites. 

As the availability diminishes, the process is slowed and eventually ceases. The exponents c 

and d describe the extent of influence that accessibility and vacancy of binding sites have on 

the overall binding rate, respectively. The available binding sites are function of vacuole 

surface area to root biomass ratio βr, the average root biomass over the time difference Br
ave, 

and the actual binding rate αr,b from equation (2): 
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where the concentration Cr is obtained by dividing the mass of Cd by the total compartment 

biomass, or 
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Root’s Regional Loss: Going from root cytoplasm to stem cytoplasm 

The advective regional loss of the root cytoplasm through xylem driven by 

transpiration is also the regional gain of the stem cytoplasm (Appendix A). Therefore the 

higher the Cr,c, the more it is advected upwards into the next compartments but also 

counteracted by the phytotoicity limit of the stem, as described below: 
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The above equation only applies when Cr,c is greater than Cr,c,min, or else the transport of Cd to 

the stem is negligible. αs,c,max is mainly a function of the transpiration rate and the ease with 

which it reaches the xylem, related to the HMA abundance.  

The expression in the second parenthesis in (4) describes the slowing of the process 

as the stem cytoplasm reaches its toxicity limit, analogous to the toxicity limit of the root. The 

exponents e and f describe the extent of advective transport and how the shut-down 

mechanism affects the overall uptake rate, respectively.  

 

Mass Balance in the Root Compartment 

 In summary, a change in the concentration of Cd in the root cytoplasm is equal to 

the inflow from the soil solution (1) minus the amount lost to vacuoles within the roots (2) 

and to xylem that transports Cd to the stems and leaves (4), or mathematically described as: . 
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For Cd bound to the roots, the change observed is solely a function of the local “gain”. As 

discussed previously, if there are vacancies in the vacuole, there is inflow into the vacuoles. If 

this is a net gain for vacuoles, the change in concentration with respect to time is positive. 
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Stems and Leaves: Transport and Storage 

 

Regional gain and loss : Transpiration driven transport 

The regional loss for a root is that amount of Cd advected into the stem cytoplasm using 

xylem, also known as regional gain. Analogously, the regional loss for the stem becomes a 

regional gain of leaf cytoplasm. Because Cd is not volatile, there is no regional loss for the 

leaves, and therefore any Cd reaching the leaves will permanently stay in the compartment. 

Important factors influencing final leaf concentrations could be activity levels of 

metal transporters, as mentioned previously, as well as transpiration rates (Macnair, 2003). 

The magnitude of these fluxes must be significantly larger for hyperaccumulators relative to 

non-accumulators for them to have great upward transport capacity evidenced in the literature 

findings. 
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Local “loss”: Sequestration at Midway and the Final Destination 

 Provided that all the cell walls and vacuoles are not saturated, the Cd in stem is 

either stored sequestered in the stem either as a bound Cd to vacuole or a ligand complex or 

travel up to the leaf. As for the Cd that reached the leaves, epidermal cells, which contain no 

choloroplast, have 2-fold higher concentration of Cd than in mesophyll cells, which are 

primarily responsible for carrying out phytosynthetic operations(Cosio et al., 2005; Ma et al., 

2004; McGrath et al., 2002).  

  

Growth of the Plant using Logistic Model 

 Growth of the plant ties directly to the concentration of Cd because the amount of 

Cd is divided by the biomass as described in equation (3b). The model in this study uses 

logistic equation to describe the growth of the root and stem biomass combined (Caloin and 

Yu, 1982). The rate of growth in mass is a product of growth coefficient k, the current mass 

Mr+s., and the difference between the final and current masses, Mr+s/Mr+s,f, as described below: 
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where combined biomass Mr+s is a summation of root biomass Mr and stem biomass Ms, or 

srsr MMM +=+         (8) 

 Similarly, the stem-to-root ratio is a homologous function starting from zero, 

meaning no stem is present initially, and increases until it reaches a ratio that stabilizes at 
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maturity.  

The stem to root ratio is defined as: 
r

s

M

M
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The initial conditions where R(t=0) = 0 are known, because there is no initial stem biomass 

and R(t=∞) is a plateau that is reached at maturity.  In this model, the logistic curve, like that 

of growth of the stem-to-root ratio, is assumed.  
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Rearranging the definition of stem-to-root ratio, Ms = Rs_rMr can be substituted into equation 

(8)., and Mr+s can be re-written as : 
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Substituting this equation into the autocatalytic equation then obtains 












+−=












+−+=+

+

+

fsr

r
rsrr

r

fsr

r
rsrrsrs

r
rs

M

M
RMk

dt

dM

M

M
RMRi

dt

dM
R

,

_

,

____

)1(1

)1(1)1()1(

   (12) 

 

Summary 

Cd is readily transported throughout the plant following its uptake by the roots. 

Assuming that the Cd desorption took place, the first step is in the intake is a metal influx 

across the root cell membrane, aided by transport protein ZNT1. Then it then has a chance of 

being stored in root vacuoles or transferred to the xylem for transport to the stems. Finally, the 
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metal influx may reach either stem or leaf cell membrane and become sequestered in their 

respective vacuoles. The vacuole capacity is a function of biomass, which follows the logistic 

growth curve.  
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CHAPTER III 

CASE STUDY: CADMIUM UPTAKE BY ALPINE PENNYCRESS 

Introduction 

The physiology and morphology of alpine pennycress make it an ideal 

hyperaccumulator (Assunção,et al., 2003). However, one attribute that may disfavor the use 

of alpine pennycress is its low biomass and slow growth. In order to understand how to 

maximize the effectiveness of phytoextraction, a mathematical model based on a solid 

understanding of biological mechanisms is necessary. Environmental protection agencies 

have used various kinds of models including empirical ones that attempt to describe observed 

phenomena without hypothesizing how they happen, but there are severe limitations to this 

approach (Collins et al., 2006). Alternatively, mechanistic models seek to explain how an 

observed phenomenon happens. One mechanistic model, developed by the University of 

Illinois, that simulated uptake and translocation of metals , had a simplistic basis that limits its 

utility for gaining deeper insights into the mechanistic processes involved (Asuncion et al., 

2003; Sung et al., 2001). On the other hand, more elaborate models exist that simulate 

microbial interception of nutrients in the rhizosphere and age-dependent factors related to the 

physiology of roots, (e.g., Clarkson, 1985; Belimov et al. 2005). This study evaluates the 

ability of a physiological model of alpine pennycress, as a poor biomass accumulator but a 

good translocator, to capture the essence of the entire system and fundamental processes 
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without involving unnecessary details. Interestingly, a study done by the UK and Danish 

environmental agencies found that out of the six plant uptake models they examined, which 

ranged from simple empirical models to involved mechanistic models, the complexity of the 

estimation did not have any correlation with the accuracy or precision of the estimate (Collins 

et al., 2006). The purpose of this work is to develop an understanding of the magnitude of 

each mechanism that controls uptake, translocation and storage of Cd, from the roots all the 

way up to the leaves. The final model structure can hopefully be used to suggest possible 

management strategies for the case of Cd uptake by alpine pennycress. 

 

Hypothesis and Model Assumptions 

 For the first part of the simulation, uptake performances in a hydroponic setting are 

compared for: (a) a hyperaccumulator alpine pennycress with a high uptake rate and a low 

biomass, (b) a non-accumulator field pennycress with a lower uptake rate and a similar low 

biomass, and (c) a much larger non-accumulator maize with a high uptake rate and a high 

biomass. The alpine pennycress is predicted to be an efficient tool for phytoremediation 

because of its faster uptake rate and higher capacity for Cd, which means that the soil can be 

cleaned up quicker and with fewer croppings (Macnair, 2003). Maize is expected to be a poor 

choice for phytoextraction because, even though the uptake rate is higher, the concentration in 

the biomass will still be small for a given harvest period (Das et al., 2007).  
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 In the second part of the simulation experiment, plant growth is included. The 

hypothesis is that the toxicity limit would be reached quicker than with a mature plant due to 

the small initial biomass, assuming it germinates successfully. During the course of its growth, 

the plant would only experience a dilution effect if the uptake rate is slower than the growth 

rate. However, since the uptake rate is a function of biomass and since the plant is continually 

taking up Cd since germination, observation of the dilution effect is unlikely. 

All of the plants in the model are assumed to be under idealized climatic conditions: 

no seasonal or diurnal variation in terms of solar radiation, water content and essential 

nutrient levels. Furthermore, no symbiosis with fungi or bacteria is assumed, which may 

enhance or inhibit further Cd uptake. The parametric values (Appendix B) used in the model 

are from hydroponic studies where Cd concentration is 5 µM. When plants are actually sown 

onto soil for real application, uptake rates of one to two orders of magnitude slower should be 

expected. 

 

Input Parameters 

The fundamental difference between alpine and field pennycress is the maximum 

uptake rate αr,c,max, the former being about six times faster than the latter (Lasat et al., 1998). 

Other differences between alpine and field pennycresses include the sensitivity of field 

pennycress to the current concentration of Cd in the tissue, causing greater resistance to 
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uptake and translocation. The maximum concentration that the non-accumulator can handle 

before it reaches the phytotoxicity limit in the cytoplasm is much smaller than it is in a 

hyperaccumulator, yet there is a greater number of binding sites in the non-accumulator. The 

translocation to stem and leaf is also not observed as is the case for hyperaccumulator 

counterpart.  

The maize has the same uptake rate assigned as the alpine pennycress, which 

implies the total number of sites is still high. For the purpose of this exercise, the uptake rate 

for maize is equivalent to that of the alpine pennycress. Therefore the only difference is the 

significantly larger biomass for maize in comparison to alpine pennycress. 

For the growth experiment, the starting biomass is less than 1% of the mature plant 

used in the previous simulations and the total biomass increases according to  a logistic (?) 

equation described in Chapter 2. The maximum uptake rate is also proportional to the ratio of 

the actual biomass to the maximum biomass for each time step. 

Since a typical harvest interval for phytoextraction usually lies between nine to 

twelve weeks, the simulations were done for 1,500 hour intervals or until the plant reached 

the phytotoxicity limits. Also, unless explicitly stated, all the Cd concentrations in the 

accompanying figures are that of cytoplasm and not the vacuole/cell wall bound forms.  
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Results and Discussion 

 With phytotoxicity limits of the alpine pennycress set to 0.2, 0.9 and 1.035 mg per g 

for root, stem, and leaf biomass, respectively, the simulation suggests that in a hydroponic 

condition, the leaf concentration (green) would reach its maximum concentration after a little 

over 180 hours, or a week and a half (Figure 3.1). However, already 20 hours into the 

simulation, the root concentration (red) approaches the phytotoxicity limit and since the 

vacuoles are fairly fast at binding the Cd, the Cd in the bound form reaches saturation a few 

hours after Cd appears in each compartment (not shown). 

 

 

Figure 3.1: Simulation of an alpine pennycress uptake and translocation of Cd over 200 hours  
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A non-accumulator, unlike a hyperaccumulator, has a much lower maximum uptake 

rate (Figure 3.2). When only the uptake rate is varied, keeping everything else fixed, the 

results show a similar, but much delayed, phytotoxicity effect where the phtotoxicity limit in 

the leaf is reached around 1,100 hours after planting. Again, the root maximum is reached 

relatively early on, before 200 hours, relative to the time where the leaf maximum is reached. 

Because the transfer rate is high, a significant increase in the stem concentration does not take 

place until the leaves cannot take any more Cd.  

 

 

Figure 3.2: Modification of Figure 3.1 with slower uptake 
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When other parameters are changed to simulate field pennycress, not only did the 

non-accumulator take much longer time to accumulate significant Cd, but also concentrations 

that would be effective for harvest at the end of 1,500 hours were not reached. Field 

pennycress has very low absorption capacity, which is also limited by the much smaller 

uptake rate. For a given system, pennycress would require a much higher number of harvest 

cycles.  

 

 

Figure 3.3: Field pennycress uptake and translocation of Cd over 1,500 hours  
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As expected, due to its large biomass, the maize did not yield a significant Cd 

concentration, even within the roots where the concentration remained 0.1 mg per g of 

biomass (Figure 3.4). Since the stems and leaves also have great biomass, the maize does not 

seem to gain a significant concentration of Cd. 

As mentioned before, the maize has a large biomass but very short longevity once 

Cd is injected into the system. The absorbed Cd stays in the root. Extracting Cd through 

maize means that the metal must to be in an available and mobile form, in which a lot of the 

Cd may be lost from the system either through vertical or horizontal transport, usually causing 

more spread of the contaminant. The pore water concentration of Cd, Ni, and Zn all increase 

with cropping; this may seem counter-intuitive when the objective is to lower the 

concentration. However, note that it is the concentration in the pore water and not that of the 

total heavy metal concentration per mass of soil. Therefore, this may imply that, after each 

cropping, the roots (non-harvestable portion) release the Cd stored in that tissue and increase 

the total soluble Cd, at least temporarily.  
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Figure 3.4: Maize uptake and translocation of Cd over 1,500 hours 

 

For the purpose of the growth simulation exercise, in order to demonstrate a dilution 

effect, the hyperaccumulator was grown at an accelerated rate where the full biomass is 

achieved within a week, unlike the typical slow-growing pennycress (Figure 3.5). Since the 

growth technically has a dilution affect, the actual accumulation rate of Cd concentration in 

the alpine pennycress would much faster if the growth is slower than simulated (Figure 3.6). 

 

 



46 

 

Figure 3.5: Accelerated growth curve of the alpine pennycress in the uptake and translocation 

simulation. The gold line is the total biomass, red for root, green for stem, blue for leaf, purple 

for stem to root ratio, light blue for leaf to root ratio 

 

The growing alpine pennycress lives less than 200 hours before it is damaged by Cd 

(Figure 3.6). A major difference observed in this simulation is that the stem (green) 

concentration reaches the phytotoxicity limit first, followed quickly by the leaf (blue), as a 

result of the combination of fast translocation from the root and small stem biomass. Although 

this timing may seem similar to that of Figure 3.1, since the biomass is smaller, even if the 

concentration is equivalent, the total amount of Cd harvested would be much less in this case. 
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Figure 3.6: Growing alpine pennycress uptake and translocation of Cd over 180 hours 

 

Conclusions and Recommendations for Future Work 

This model is a product of both scientific understanding and mathematical 

application that captures the essence of the uptake, translocation and storage of a heavy metal, 

specifically Cd, by plants. Not only does the hyperaccumulating alpine pennycress flourish on 

contaminated site, but indeed prefers to situate its roots into the metal “hot spots” so that it 

can absorb large quantities of Cd into the roots and then transfer them into stems and leaves. 

The only drawback to this species is its slow growth rate and low biomass. However, even 

with these negative features, it still absorbs a much greater quantity of Cd than a 

non-accumulator with a large biomass. 
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Accumulation of heavy metals involves several steps, including metal transport 

across root cell membranes quantified by the Michaelis-Menten equation (1); xylem loading 

and translocation as in equation (4); and sequestration of metals in specialized leaf cells or 

vacuoles as in equation (2). The major conclusion from the numerical simulation is that the 

most important factor that affects plant contamination is the maximum uptake velocity, which 

governs the regional uptake by the roots. 

Even though the basis of the mathematical formulae used in this model has a 

qualitative explanation, further data are required to calibrate and validate the model. For an 

example, phytotoxicity usually affects the metabolism of the plant, which is not accounted for 

in the model. As the concentration approaches the toxicity limit, the maximum uptake rate 

would also decrease due to plant’s increased investment into protecting itself. Therefore the 

uptake rate is likely overestimated in the current model and implies that the estimated harvest 

time may be longer than indicated in the simulations.  

Similarly, the effects of exchanges between mobile and non-exchangeable soil Cd 

on the uptake rate are not accounted for in this study. If the uptake rate is significantly slower 

than the chemical exchange, then in a moderately polluted soil, pore water Cd concentration 

can be assumed to stay constant until the ending stage of the clean up. On a similar note, other 

metals such as Zn, Fe, Cu have a competitive effect on Cd uptake (Basic et al. 2006; Smith 

and Yamanaka, 2006). Despite the lack of precise quantitative data, the results are still not 
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likely to change the fact that alpine pennycress still performs better than field pennycress or 

other species that are endemic to polluted locations.  
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APPENDIX A  

PECLET (Pe) NUMBER FOR TRANSPIRATION  
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 In the Michaelis-Menten.m model, the advective transport due to transpiration is 

considered to be the main driving force that translocate Cd from root to stem and from stem to 

leaf. That is not to suggest diffusion does not occur. However, by calculating for Peclet 

number, a dimensionless number relating the rate of advection of a flow to its rate of 

diffusion, 

1500
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Pe     (A.1) 

where L is characteristic length, specifically of the plant in this case, V is velocity of 

transpiration and D is the diffusion coefficient of anion/cation in water, neglecting diffusion is 

justified. 

 This condition may change if the transpiration velocity is found to be slower when 

the temperature is lower, the humidity is higher, and/or diffusion coefficient is greater if Cd is 

found in more diffusive form. 
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APPENDIX B 

PARAMETERS USED IN THE MODEL  
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B.1.1 PARAMETER VALUES FOR T.CAERULESCENS IN FIGURE 3.1 (UNIT, SOURCES, ACCEPTABLE RANGE, if applicable) 

Symbol Sub- 

category 

Description 
Root Stem Leaf 

α c, max Maximum uptake rate into cytoplasm 

(work in conjunction w/ half saturation 

constant below) 

1.375 x 10
-3

 (mgCd 

g
-1

root hr
-1, 

p.61) 

Same magnitude as 

root 
Same magnitude as root 

α b, max Maximum adsorbance rate onto cell 

walls/vacuoles 

Same as or slightly smaller than uptake into cytoplasm because the cell walls are 

very electronegative, therefore use the same as α[compartment], c, max 

β  Surface to biomass ratio 0.03 (cm2/g, conservative estimate using sphere model) 

κO  Half saturation constant – inter 

compartment 
0.45 (µM) 

Assume same value as 

leaf 

9.68 (µM, Cosio et al. 2004, 

+/- 5.78) 

κI  Half saturation constant – intra 

compartment 
Small value since Vmax should be easily met.  Approximate value of 0.1µM 

i  Ratio increment rate Calculated using integration and growth rate: approx. growth rate 

k  Growth rate 0.1 (1/day, Trapp. 

2000) 

0.1 (1/day, Trapp. 

2000) 
0.1 (1/day, Trapp. 2000) 

15 (days, estimate from flowering timing in 

Bond et al., 2007) 
N/A 

t crit Critical time in which the next 

compartment starts growing 

N/A 20 (days, Bond et al., 2007) 
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B.1.2 VARIABLES VALUES FOR T.CAERULESCENS IN FIGURE 3.1 (UNIT, SOURCES, ACCEPTABLE RANGE, if applicable) 

 

Symbol Sub- 

category 

Description 

 

Root Stem Leaf 

C c, max Phyto-toxicity limit (dependent on the 

concentration in cytoplasm) 

0.20 (mg/g, 

Nedelkoska and 

Doran, 1999) 

0.920 (mg/g, Cosio et 

al. 2005) 

1.035 (mg/g, Cosio et 

al. 2005) 

C* b, max Maximum adsorbance space available  

on cell walls/vacuoles  
biomass x βr biomass x βr biomass x βl 

C c, min Minimum concentration before any net 

transfer of Cd into the next 

compartment is observed 

0 mM 0 mM 0 mM 

C* c, min Minimum concentration necessary 

before any net transfer of Cd onto cell 

walls or into vacuoles observed 

0 mM 0 mM 0 mM 

B final Final biomass (in optimal condition) 
0.2 (g for root, Roosens et al., 2003, conservative) or 1.43 g for the entire 

plant 

1.62 = stem::root (unitless, DeChamps et al., 

2005, conservative; up to 1.70) 
 

R max Ratio increment rate (in optimal 

condition) 

 
0.43 = leaf::stem (unitless, G.S. Banuelos et al. 

2002, 0.38 to 0.44) 
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APPENDIX C 

MODEL ALGORITHM 
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 The MATLAB code below is for growth simulation specifically, however, the 

format from one to another is identical and the only thing that differ from one case study to 

another is the parameter values. 

 

%ACTIVE Transport to roots and passively to stems and leaves 

% Hope to demonstrate the highest (though realistic) uptake by 

% T.caerulescens - hyperaccumulator WITH GROWTH and no harvest 

  

  

%-------------------------------------------------------------------------- 

% ----------------------------USER INPUT ---------------------------------- 

% ------------------------------------------------------------------------- 

  

% TIME 

% BIOMASS OF THE PLANT  

  Mass.final = 1.43; % [g] Total biomass of a mature plant (including leaf) 

  Mass.start = 0.1; % [g] Starting seed biomass 

  

% PLANT GEOMETRY RATIO IN OPTIMAL CONDITION[IF SPECIFIED] 

 Ratio.stem_root.mature = 1.62; % Final stem to root biomass ratio @ maturity 

 Ratio.stem_root.start = 0.1; % (Optional) Non-zero starting ratio for stem to root @ t = critical stem growth + dt 

 Ratio.leaf_stem.mature = 0.43; % Final leaf to stem ratio @ maturity (G.S. BANUELOS ET AL. 2002) 

 Ratio.leaf_stem.start = 0.1; % (Optional)Non-zero starting ratio for leaf area to total weight @ t = critical stem growth + dt 

  

% CRITICAL TIME UNDER IDEAL CONDITIONS: 20 DEGREE CELSIUS, PLENTY OF WATER, ENOUGH 

SUNLIGHT...ETC 

 Time.crit.stem = 0; % [hrs] Amount of time it takes to grow stem 

 Time.crit.leaf = 0; % [hrs] Amount of time it takes to grow leaf 

  

%   ----- NOT USED MATERIAL ------------------- 

%INCLEMENT WEATHER CONDITION  

  

%DECLARATION/DEFINITION OF VARIABLES 

%-------------------------------------------------------------------------- 

%----------------------------------TIME------------------------------------ 

%-------------------------------------------------------------------------- 
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% Time scales and steps  

tmin = 1; % Starting time 

tmax = 200; % [total hours-tmin] length of the experiment 

tnow = tmin; % counter for the current time 

dt = 0.01; % [hr] time step 

  

tstepmax = (tmax-tmin)/dt + tmin; % max number of steps for the for-loop 

tstep = tmin:dt:tmax; 

  

t.lag.root_stem = 0; % [hr] the traveling time from active transport site to xylem and into stem cell 

t.lag.root_leaf = 0; % [hr] the traveling time from active transport site to xyltem and into leaf cell 

% ------------------------------------------------------------------------ 

% ----------------------------CONCENTRATION------------------------------- 

% ------------------------------------------------------------------------- 

%[mg/kg for biomass concentration and micro-mol for solution] 

% current concentration 

c.sol.cur = 5; % [micro-M] Current solution concentration @ root surface with initial value 

c.lroot.cur = 0; % Current root concentration in liquid form with initial value 

c.lstem.cur = 0; % Current stem concentration in liquid form with initial value 

c.lleaf.cur = 0; % Current leaf concentration in liquid form with initial value 

c.sroot.cur = 0; % Current root concentration in solid form with initial value 

c.sstem.cur = 0; % Current stem concentration in solid form with initial value 

c.sleaf.cur = 0; % Current leaf concentration in solid form with initial value 

  

% one-step future concentration 

c.sol.new = 0; % New solution concentration @ root surface with initial value 

c.lroot.new = 0; % New root concentration in liquid form with initial value 

c.lstem.new = 0; % New stem concentration in liquid form with initial value 

c.lleaf.new = 0; % New leaf concentration in liquid form with initial value 

c.sroot.new = 0; % New root concentration in solid form with initial value 

c.sstem.new = 0; % New stem concentration in solid form with initial value 

c.sleaf.new = 0; % New leaf concentration in solid form with initial value 

  

% Constant concentrations; characteristics inherent to the plants 

% Phytotoxicity limit (in cytoplasm + cell walls/vacuoles) 

c.root.max = 0.20;% [mg/g] concentration at which the metal kills the root 

c.stem.max = 0.90;% [mg/g] concentration at which the metal kills the stem 

c.leaf.max = 1.035;%[mg/g] concentration at which the metal kills the leaf 
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% Minimum concentration before flow 

c.sol.min = 0; % [micro-M]concentration at which, if below, there is no net flow from soil to root 

c.root.min = 0; % [micro-M] concentration at which, if below, there is no net flow from root to stem 

c.stem.min = 0; % [micro-M] concentration at which, if below, there is no net flow from stem to leaf 

  

% Binding site capcity; may vary with surface area growth ** TO BE 

% CALCULTED LATER - ONLY DECLARING AT THIS STAGE 

c.root.cap = 0;% [mg/g]concentration of the root that is bound to cell wall/vacuoles 

c.stem.cap = 0;% [mg/g]concentration of the stem that is bound to cell wall/vacuoles 

c.leaf.cap = 0;% [mg/g]concentration of the leaf that is bound to cell wall/vacuoles 

  

% capacity of Cd per area [mg/g cm^2] - depending on adsorption type 

capacity.area.root = 1; 

capacity.area.stem = 1; 

capacity.area.leaf = 1; 

  

% Concentration matrix 

c.system = zeros(3, tstepmax); % concentration made in matrix form for each time step 

c.lsystem = zeros(3, tstepmax); % concentration of each compartment in liquid form for each time step 

c.ssystem = zeros(3, tstepmax); % concentration of each compartment in solid form for each time step 

  

  

%------------------------------------------------------------------------ 

%-------------------------------MASS------------------------------------- 

%------------------------------------------------------------------------ 

  

% ---------------PROCESSING OF USER-DEFINED INPUT------------------------- 

% Ratio of leaf to total 

Ratio.leaf_root.mature = Ratio.stem_root.mature * Ratio.leaf_stem.mature; 

  

% maturity stem +root biomass is final total mass minus final leaf mass 

Mass.stem_root.final = Mass.final-Ratio.leaf_root.mature/(Ratio.leaf_stem.mature + Ratio.leaf_root.mature + 

Ratio.leaf_root.mature); 

     

% Ratio of leaf to total 

Ratio.leaf_root.mature = Ratio.stem_root.mature * Ratio.leaf_stem.mature; 

  

% Fraction difference betwee starting biomass and total biomass @ maturity 

f.mass.total = (Mass.final-Mass.start)/Mass.start; 



59 

f.mass.stem_root = 0.9999; 

f.mass.leaf_stem = 0.9999; 

  

% Fraction different between starting ratio and "mature" ratio 

f.ratio.stem_root = (Ratio.stem_root.mature - Ratio.stem_root.start)/Ratio.stem_root.start; 

f.ratio.leaf_stem = (Ratio.leaf_stem.mature - Ratio.leaf_stem.start)/Ratio.leaf_stem.start; 

  

% Growth increment parameters 

% 99.99% maturity weight and ratio is understood as a full grown plant 

% i.e. product.log.mass = 

% log((Mass.final-0.9999*Mass.final)/0.9999*Mass.final)-log((Mass.final-Mass.start)/(Mass.start)) 

product.log.mass.total = reallog(0.0001)- reallog(f.mass.total); 

product.log.mass.stem_root = reallog(0.0001)- reallog(f.mass.stem_root); 

product.log.mass.leaf_stem = reallog(0.0001) - reallog(f.mass.leaf_stem); 

product.log.ratio.stem_root = reallog(0.0001)-reallog(f.ratio.stem_root); 

product.log.ratio.leaf_stem = reallog(0.0001)-reallog(f.ratio.leaf_stem); 

  

%-----------------------------BIOMASS-------------------------------------- 

% Biomass at present - relates to the carrying capacity of the compartment 

m.root.cur = Mass.start/(Ratio.stem_root.start + Ratio.stem_root.start*Ratio.leaf_stem.start+1);  % [g] 

m.stem.cur = m.root.cur*Ratio.stem_root.start;  % [g] 

m.leaf.cur = m.stem.cur*Ratio.leaf_stem.start;  % [g] 

m.total.cur = Mass.start; % [g] 

  

m.stem_root.crit = 0; % Mass of stem and root at t.crit.leaf 

  

m.stem_root.cur = m.root.cur + m.stem.cur;  

  

% Biomass at one-step in the future - relates to the carrying capacity of 

% the compartment 

m.root.new = m.root.cur; 

m.stem.new = m.stem.cur; 

m.leaf.new = m.leaf.cur; 

m.total.new = m.total.cur; 

  

% Biomass growth rate [1/hr]  

k.growth.root = 0.004167; 

k.growth.stem = k.growth.root; 

k.growth.leaf = k.growth.root; 
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% Maximum biomass [g] 

 m.root.max = Mass.final/(Ratio.leaf_root.mature + Ratio.stem_root.mature + 1); 

 m.leaf.max = Ratio.leaf_root.mature*m.root.max; 

 m.stem_root.max = Mass.final-m.leaf.max; 

 % maturity stem +root biomass is final total mass minus final leaf mass 

 %m.root.max = m.stem_root.max/(1+Ratio.stem_root.mature); 

 m.total.max = Mass.final; 

  

% Biomass ratio at present 

 r.stem_root.cur = Ratio.stem_root.start; 

 r.leaf_stem.cur = Ratio.leaf_stem.start; 

  

% Biomass ratio in the future 

 r.stem_root.new = r.stem_root.cur; 

 r.leaf_stem.new = r.leaf_stem.cur; 

  

% Maximum biomass ratio  

r.stem_root.max = Ratio.stem_root.mature; 

 r.leaf_stem.max = Ratio.leaf_stem.mature; 

  

% Critical time for stem and leaf growth (initiate ratio growth) 

 t.crit.stem = tmin + Time.crit.stem; % [hr] time where critical mass for root is reached 

 t.crit.leaf = tmin + Time.crit.leaf; % [hr] time where critical mass for stem is reached 

  

% Ratio growth rate  

% Note: Ratio reaches until 99.99 % of the full biomass and ratio is 

% approximated as a full grown plant 

 k.ratio.stem_root = product.log.ratio.stem_root/(product.log.mass.stem_root/k.growth.root-t.crit.stem*dt); 

 k.ratio.leaf_stem = product.log.ratio.leaf_stem/(product.log.mass.leaf_stem/k.growth.leaf-t.crit.leaf*dt); 

  

% mass matrix 

m.system = zeros(3, tstepmax); % biomass over time 

m.lsystem = zeros(3, tstepmax);% Cd in cytoplasm over time 

m.ssystem = zeros(3, tstepmax);% Cd bound in cell walls/vacuoles over time 

  

% ratio matrix 

%r.system = zeros (2, tstepmax); % stem:root ratio over time 
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% mass + ratio matrix 

m_r.system = zeros (6, tstepmax); 

  

%----------------------MASS OF CADMIUM------------------------------------- 

% Mass of total Cd in each compartment at present 

m.lroot.cur = 0; % Current root concentration in liquid form with initial value 

m.lstem.cur = 0; % Current stem concentration in liquid form with initial value 

m.lleaf.cur = 0; % Current leaf concentration in liquid form with initial value 

% Surface area of total Cd in each compartment at present 

m.sroot.cur = 0; % Current root concentration in solid form with initial value 

m.sstem.cur = 0; % Current stem concentration in solid form with initial value 

m.sleaf.cur = 0; % Current leaf concentration in solid form with initial value 

  

% Mass of total Cd in each compartment at one-step in the future 

m.lroot.new = 0; % New root concentration in liquid form with initial value 

m.lstem.new = 0; % New stem concentration in liquid form with initial value 

m.lleaf.new = 0; % New leaf concentration in liquid form with initial value 

% Surface area of total Cd in each compartment at one-step future 

m.sroot.new = 0; % New root concentration in solid form with initial value 

m.sstem.new = 0; % New stem concentration in solid form with initial value 

m.sleaf.new = 0; % New leaf concentration in solid form with initial value 

  

%-------------------------------------------------------------------------- 

%--------------------------UPTAKE RATE------------------------------------- 

%-------------------------------------------------------------------------- 

  

%transfer rate [initially set to unity] 

    % transfer from one compartment to another (i.e. solution to root) 

        % max rate for the given condition (age, weather) 

        a.root.max = 0.000013752*(m.root.cur/m.root.max); % [g/g hr]fastest transfer rate possible to root [nmol/(g*min), 

0.0397 nmol/(g*sec)] 

        a.stem.max = a.root.max* (m.leaf.cur/m.leaf.max); % [mg/g hr]fastest transfer rate possible to stem 

        a.leaf.max = a.root.max * (m.leaf.cur/m.leaf.max); % [mg/g hr]fastest transfer rate possible to leaf 

        % actual transfer rate to next compartment ** TO BE CALCULTED LATER 

        a.lroot = 0; % actual transfer rate to root 

        a.lstem = 0; % actual transfer rate to stem 

        a.lleaf = 0; % actual transfer rate to leaf 

         

    % transfer within a compartment (i.e. to/from cell walls/vacuoles and 
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    % liquid form).  This parameter indicates how fast the Cd compounds can 

    % bind to the solid structure 

        % max rate for given condition 

        a.sub.root.max = 0.9 * a.root.max; % [g/g hr] transfer rate for the root metal to partition to cell wall/vacuoles 

        a.sub.stem.max = 0.9 * a.stem.max; % [g/g hr] transfer rate for the stem metal to partition to cell wall/vacuoles 

        a.sub.leaf.max = 0.9 * a.leaf.max; % [g/g hr] transfer rate for the leaf metal to partition to cell wall/vacuoles 

        % actual transfer rate to next compartment (this may be negative 

        % value) 

        a.sroot = 1; % actual transfer rate from liquid to cell walls/vacuoles in root 

        a.sstem = 1; % actual transfer rate from liquid to cell walls/vacuoles in stem 

        a.sleaf = 1; % actual transfer rate from liquid to cell walls/vacuoles in leaf 

  

   a.lsystem= zeros(3,tstepmax); % Keep track of the uptake rates in cytoplasm 

   a.ssystem= zeros(3,tstepmax); % Keep track of the uptake rates in cytoplasm 

%-------------------------------------------------------------------------- 

%-------------------------------OTHERS------------------------------------- 

%-------------------------------------------------------------------------- 

% half saturation  [micro-M] 

k.soil = 0.45; %Michaelis-Menten constant, aka half saturation constant 

k.stem = 9.68; % describes the difficulty transporting from root to stem 

k.leaf = 9.68; % describes the difficulty transporting from stem to leaf 

k.sub.root = 0.0000000000001; % permeability constant for root vacuoles 

k.sub.stem = 0.0000000000001; % permeability constant for stem vacuoles 

k.sub.leaf = 0.0000000000001; % permeability constant for leaf vacuoles 

c.total = zeros(3, tstepmax); % total concentration 

  

% Interior surface-biomass equivalent ratio 

beta.root = 0.03; % [cm^2/g] root ratio, which is expected to be greater value due to its thin nature 

beta.stem = 0.03; % [cm^2/g] stem ratio  

beta.leaf = 0.03; % [cm^2/g] leaf ratio, which is expected to be greater value due to its flat nature 

  

% Plot and movie parameters. 

% v = 0; %Movie frame counter 

% han = plot (x,cold); % Handle for plotting 

% set (han, 'LineWidth', 2) % Sets plot parameters 

% axis([xmin xmax 0 100]) % Modify concentration as the intial cond. 

% nframes = 100; % Number of frames 

% temp1 = tmax/nframes; % Conditional for taking frames 
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%-------------------------------------------------------------------------- 

%--------------------------DATA PROCESSING--------------------------------- 

%-------------------------------------------------------------------------- 

  

% Initial condition 

v = 0; 

for(tnow = tmin:tstepmax) % repeats for tmax amount of time 

    %---------------------------------------------------------------------- 

    %----------------GROWTH OF THE PLANT ---------------------------------- 

    %---------------------------------------------------------------------- 

     

    % Solving for the ratio 

    % Stem to root ratio using logistic curve 

     if (tnow>=t.crit.stem) 

     r.stem_root.new = r.stem_root.cur + k.ratio.stem_root * r.stem_root.cur *(1-(r.stem_root.cur/r.stem_root.max))* dt; 

     end 

     if(tnow == t.crit.stem) 

     m.stem.cur = r.stem_root.cur*m.root.cur; 

     end 

    % Leaf area to stem biomass ratio using logistic curve as long as stem 

    % has a biomass and new biomass calculation 

     if(tnow>=t.crit.leaf) 

     r.leaf_stem.new = r.leaf_stem.cur + k.ratio.leaf_stem * r.leaf_stem.cur * (1-(r.leaf_stem.cur/r.leaf_stem.max))* dt; 

     if(tnow == t.crit.leaf) 

        m.leaf.cur = r.leaf_stem.cur*m.stem.cur; 

     end 

     m.total.cur = m.root.cur + m.stem.cur + m.leaf.cur; % Total mass calculation 

     m.total.new = m.total.cur + 0.5 * k.growth.leaf * m.total.cur*(1-(m.total.cur/m.total.max));  

     end 

  

    m.root.new = m.total.new/(r.leaf_stem.new * r.stem_root.new + r.stem_root.new + 1); 

     if (tnow>=t.crit.stem) 

     m.stem.new = r.stem_root.new* m.root.new; 

     end 

    % Leaf biomass update which is solved by knowing the ratio between the 

    % leaf surface area and the total mass 

    if (tnow>=t.crit.leaf) 

     m.leaf.new = r.leaf_stem.new * m.stem.new; 

    end 
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     % Root + stem biomass update 

     %if(m.root.cur <= m.root.max)% only if the 

    % maximum root biomass isn't reached 

     %m.stem_root.new = m.stem_root.cur + k.growth.root* (1-(m.stem_root.cur/m.stem_root.max))*dt; 

    % Root biomass update 

    % m.root.new = m.root.cur + k.growth.root* m.root.cur * (1-(m.root.cur/m.root.max))*dt; 

     %m.root.new = m.stem_root.new/(1+r.stem_root.new); 

    %end 

    % Stem biomass update which is solved by knowing the ratio between stem 

    % and root 

    % if (tnow>=t.crit.stem) 

    % m.stem.new = r.stem_root.new* m.root.new; 

    % end 

    % Leaf biomass update which is solved by knowing the ratio between the 

    % leaf surface area and the total mass 

   %  m.leaf.new = r.leaf_stem.new * m.stem.new; 

  

    m.system(3,tnow) = m.root.cur; %Storing root biomass information for current time step 

    m.system(2,tnow) = m.stem.cur; %Storing stem biomass information for current time step 

    m.system(1,tnow) = m.leaf.cur; %Storing leaf biomass information for current time step 

     

     m_r.system(6, tnow) = m.total.cur; 

     m_r.system(5, tnow) = r.stem_root.cur; 

     m_r.system(4, tnow) = r.leaf_stem.cur; 

     m_r.system(3,tnow) = m.root.cur; %Storing root biomass information for current time step 

     m_r.system(2,tnow) = m.stem.cur; %Storing stem biomass information for current time step 

     m_r.system(1,tnow) = m.leaf.cur; %Storing leaf biomass information for current time step 

     

    %---------------------------------------------------------------------- 

    %------RE-CALCULATING THE MAX ADSORPTION AND UPTAKE RATE--------------- 

    %---------------------------------------------------------------------- 

     

  

    a.root.max = 0.000013752*(m.root.cur/m.root.max); % [g/g hr]fastest transfer rate possible to root  

    a.stem.max = a.root.max * (m.leaf.cur/m.leaf.max); % [mg/g hr]fastest transfer rate possible to stem 

    a.leaf.max = a.root.max * (m.leaf.cur/m.leaf.max); % [mg/g hr]fastest transfer rate possible to leaf 

     

     % max concentration of the root that is bound to cell wall/vacuoles 
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    c.root.cap = beta.root * m.root.cur* capacity.area.root;  

    % max concentration of the stem that is bound to cell wall/vacuoles 

    c.stem.cap = beta.stem * m.stem.cur * capacity.area.stem; 

    % max concentration of the leaf that is bound to cell wall/vacuoles 

    c.leaf.cap = beta.leaf * m.leaf.cur * capacity.area.leaf; 

  

    %---------------------------------------------------------------------- 

    %----------------TRANSPORT FROM SOIL TO ROOT--------------------------- 

    %---------------------------------------------------------------------- 

    % NOTE: Gain/loss is only from the liquid standpoint 

      

    % local root concentration tracker 

    c.lroot.postLocal = 0; 

    m.lroot.postLocal = 0; 

    cond.stem = 1; % possibility of calculating transfer to stem (1 or 0, if none) 

     

    % SOIL ACTIVE TRANSPORT 

    % regional gain: transfer rate from solution to root 

    if (c.sol.cur>c.sol.min) 

    % checks if there is enough soil solution concentration to transfer into the  

    % The maximum tranfer capacity for specific solution concentration was defined above 

    % actual tranfer rate is calculated using Michaelis-Menton formula 

    a.lroot = a.root.max *((c.sol.cur-c.sol.min)/(k.soil + 

(c.sol.cur-c.sol.min)))^(1)*(1-(c.lroot.cur/c.root.max))^(m.root.max/m.root.cur);  

    % 'a.lroot' describes the change of concentration with respect time. 

    % 'a.root.max' is the fastest transport rate from the soil solution 

    % into the root.  Michaelis-Menten type of uptake is also regulated by 

    % the proximity to phytotoxicity limit  

    else 

        a.lroot = 0; 

    end 

  

    % local loss: transfer rate root in liquid form to root in solid form 

    % Transfer to the solid-bound phase is a function of the concentration 

    % in cytoplasm and the how close the solid-bound phase is to reaching the maximum capacity 

        a.sroot = a.sub.root.max * (c.lroot.cur/(k.sub.root + c.lroot.cur))^(1)*(1-(c.sroot.cur/c.root.cap))^(1); 

     

    % --------calculatting he cytoplasm and cell wall-bound concentration after local "loss" ---- 
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        m.lroot.cur = c.lroot.cur/1000 * m.root.cur; % [g/g] 

        m.sroot.cur = c.sroot.cur/1000 * m.root.cur; % [g/g] 

        % Express curr ent Cd content in terms of mass; converted from mg/g 

        % to g/g 

         

        a.diff.root1 = a.lroot - a.sroot; 

        % local variable that shows the difference between the regional gain and local loss 

        if (a.diff.root1 > 0) 

        m.lroot.postLocal = m.lroot.cur + ((m.root.cur + m.root.new)/2) *((a.diff.root1)* dt); 

        m.sroot.new = m.sroot.cur + ((m.root.cur + m.root.new)/2)*(a.sroot*dt); 

        % The new Cd in cytoplasm = current + regional gain - local loss 

        % The new Cd in cell wall-bound = current + local "loss" 

        else 

        m.sroot.new = m.sroot.cur + ((m.root.cur + m.root.new)/2)*(a.lroot*dt); 

        m.lroot.postLocal = m.lroot.cur; 

        % The new Cd in cytoplasm = current; NO gain because everything is 

        % gone to the bound form 

        % The new Cd in cell wall-bound = current + what was available from 

        % regional gain 

        cond.stem = 0; 

        end 

         

        c.lroot.postLocal = m.lroot.postLocal / m.root.new * 1000; %[mg/g] 

        % The new Cd bound is due to local "gain" 

        c.sroot.new = m.sroot.new/m.root.new * 1000; % [mg/g] 

        % Converting the Cd content back in terms of concentration which 

        % may or may not the dilute the previous concentration depending on 

        % the growth         

  

    %---------------------------------------------------------------------- 

        % regional loss: transfer rate from root to stem 

    t.lag.diff = tnow - t.lag.root_stem/dt-1; 

    if (tnow > tmin && cond.stem == 1 && t.lag.diff > 0 && c.lsystem(3, t.lag.diff) >= c.root.min && m.stem.cur > 0 && 

c.lstem.cur < c.stem.max) 

        % Insure that there's no back flow from stem to root by checking... 

        % enough lag time is present 

        % there is enough concentration to result in net positive flow to 

        % stem; stem actually has biomass; and stem concentration is NOT 

        % saturated  
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    a.lstem = a.stem.max*((c.lsystem(3, (t.lag.diff))-c.root.min)/(c.root.max - c.root.min ))^(1)*(1-(c.lstem.cur/(k.stem + 

c.stem.max)))^(m.leaf.max/m.leaf.cur); 

    check = 100; 

    % a.k.a. stem's regional gain 

    else 

        a.lstem = 0; % if the threshold is not met, no transfer of Cd 

        check = 2;   

    end 

    

     

    % calculatting he next time step concentration 

        % update liquid concentration: new = temporary current - regional loss 

        a.diff.root2 = a.diff.root1 - a.lstem; 

        if (a.diff.root2 > 0) 

            % if the demand from the stem is smaller than that of the supply 

            % from the root 

            m.lroot.new = m.lroot.postLocal + ((m.root.cur + m.root.new)/2) *(- a.lstem* dt); 

            % the demanded amount is subtracted from the root 

            check2 = 100; 

        else 

            % if the demand from the stem is larger than that of the supply 

            % from the root 

            m.lroot.new = m.lroot.postLocal + ((m.root.cur + m.root.new)/2) *(- a.diff.root2* dt); 

            % all the can supplied from the root is subratected from the 

            % root 

            check2 = 2; 

        end 

        % The new Cd in cytoplasm = regional gain - local loss - regional loss. 

        % Average of the two time step (current & future) are taken. 

        c.lroot.new = m.lroot.new/m.root.new * 1000; %[mg/g] 

        % Converting the Cd content back in terms of concentration which 

        % may or may not the dilute the previous concentration depending on 

        % the growth 

         

  

         

    % store concentration information for the time step  

    c.system(3,tnow) = c.lroot.cur + c.sroot.cur; % concentration total for the compartment for current time step 

    c.lsystem(3,tnow) = c.lroot.cur; % concentration of each compartment in liquid form for current time step 
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    c.ssystem(3,tnow) = c.sroot.cur; % concentration of each compartment in solid form for current time step 

    m.lsystem(3,tnow) = m.lroot.cur; % mass of Cd floating in cytoplasm for current time step 

    m.ssystem(3,tnow) = m.sroot.cur; % mass of Cd bound to the cell walls/vacuoles for current time step 

    a.lsystem(3,tnow) = a.lroot; 

    a.ssystem(3,tnow) = a.sroot; 

    %---------------------------------------------------------------------- 

    %-----------------TRANSPORT FROM ROOT TO STEM ------------------------- 

    %---------------------------------------------------------------------- 

    

    if (cond.stem == 1)% No transfer will occur as long as there is no biomass in the stem 

    % regional gain: transfer rate from root to stem 

    % ALREADY BEEN CALCULATED ABOVE AS "a.lstem" 

     

    % local root concentration tracker 

    c.lstem.postLocal = 0; 

    m.lstem.postLocal = 0; 

    cond.leaf = 1; % possibility of calculating transfer to stem (1 or 0, if none) 

     

    % local loss: transfer rate root in liquid form to root in solid form 

    % Process that transfers from the solid-bound phase to cytoplasm and 

    % vice versa is identical to that of the root 

        a.sstem = a.sub.stem.max * (c.lstem.cur/(k.sub.stem + c.lstem.cur))^(1)*(1-(c.sstem.cur/c.stem.cap))^(1); 

     

     % --------calculatting he cytoplasm and cell wall-bound concentration after local "loss" ---- 

  

        m.lstem.cur = c.lstem.cur/1000 * m.stem.cur; % [g/g] 

        m.sstem.cur = c.sstem.cur/1000 * m.stem.cur; % [g/g] 

        % Express current Cd content in terms of mass; converted from mg/g 

        % to g/g 

         

        aa.diff.stem1 =((m.root.cur + m.root.new)/2) * a.lstem - ((m.stem.cur + m.stem.new)/2) * a.sstem; 

        aa.diff.stem.rev1 = ((m.stem.cur + m.stem.new)/2) * a.sstem - ((m.root.cur + m.root.new)/2) * a.lstem; 

         

        % local variable that shows the difference between the regional gain and local loss 

        if (aa.diff.stem1 > 0) 

        m.lstem.postLocal = m.lstem.cur + (aa.diff.stem1 * dt);  

        % mass of ROOT is correct for conservation of mass 

        m.sstem.new = m.sstem.cur + ((m.stem.cur + m.stem.new)/2)*(a.sstem * dt); 

        % The new Cd in cytoplasm = current + regional gain - local loss 
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        % The new Cd in cell wall-bound = current + local "loss" 

        else 

        m.lstem.postLocal = m.lstem.cur; 

        m.sstem.new = m.sstem.cur + (aa.diff.stem.rev1 * dt);  

        % The new Cd in cytoplasm = current; NO gain because everything is 

        % gone to the bound form  

        % The new Cd in cell wall-bound = current + what was available from 

        % regional gain 

        cond.leaf = 0; 

        end 

         

        c.lstem.postLocal = m.lstem.postLocal / m.stem.new * 1000; %[mg/g] 

        % The new Cd bound is due to local "gain" 

        c.sstem.new = m.sstem.new/m.stem.new * 1000; % [mg/g] 

        % Converting the Cd content back in terms of concentration which 

        % may or may not the dilute the previous concentration depending on 

        % the growth         

  

    %---------------------------------------------------------------------- 

        % regional loss: transfer rate from root to stem 

    t.lag.diff2 = tnow - t.lag.root_leaf/dt-1; 

    if (tnow > tmin && cond.leaf == 1 && t.lag.diff2 > 0 && c.lsystem(2, t.lag.diff2) > c.stem.min && m.leaf.cur > 0 && 

c.lleaf.cur < c.leaf.max) 

        % Insure that there's no back flow from stem to root by checking... 

        % enough lag time is present 

        % there is enough concentration to result in net positive flow to 

        % leaf; leaf actually has biomass; and leaf concentration is NOT 

        % saturated  

    a.lleaf = a.leaf.max*((c.lsystem(2, (t.lag.diff2))-c.stem.min)/(c.stem.max - c.stem.min))^(1)*(1-(c.lleaf.cur/(k.leaf + 

c.leaf.max)))^(m.leaf.max/m.leaf.cur);  

    % a.k.a. stem's regional gain 

    else 

        a.lleaf = 0; % if the threshold is not met, no transfer of Cd 

    end 

    

     

    % calculatting he next time step concentration 

        % update liquid concentration: new = temporary current - regional loss 

        aa.diff.stem2 = aa.diff.stem1 - a.lleaf * ((m.stem.cur + m.stem.new)/2); 
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        if (aa.diff.stem2 > 0) 

            cond.leaf = 1; 

            m.lstem.new = m.lstem.postLocal + ((m.stem.cur + m.stem.new)/2) *(- a.lleaf* dt); 

        else 

            cond.leaf = 0; 

            m.lstem.new = m.lstem.postLocal; 

            a.lleaf = aa.diff.stem1/((m.stem.cur + m.stem.new)/2); 

        end 

        % The new Cd in cytoplasm = regional gain - local loss - regional loss. 

        % Average of the two time step (current & future) are taken. 

        c.lstem.new = m.lstem.new/m.stem.new * 1000; %[mg/g] 

        % Converting the Cd content back in terms of concentration which 

        % may or may not the dilute the previous concentration depending on 

        % the growth 

         

    % store concentration information for the time step  

    c.system(2,tnow) = c.lstem.cur + c.sstem.cur; % concentration total for the compartment for current time step 

    c.lsystem(2,tnow) = c.lstem.cur; % concentration of each compartment in liquid form for current time step 

    c.ssystem(2,tnow) = c.sstem.cur; % concentration of each compartment in solid form for current time step 

    m.lsystem(2,tnow) = m.lstem.cur; % mass of Cd floating in cytoplasm for current time step 

    m.ssystem(2,tnow) = m.sstem.cur; % mass of Cd bound to the cell walls/vacuoles for current time step 

    a.lsystem(2,tnow) = a.lstem; 

    a.ssystem(2,tnow) = a.sstem;    

    %---------------------------------------------------------------------- 

    %-----------------TRANSPORT FROM STEM TO LEAF ------------------------- 

    %---------------------------------------------------------------------- 

     

    if (cond.leaf == 1) % No transfer to leaf as long as there is no biomass 

        % and less than half of the binding sites in the stem is filled 

    % regional gain: transfer rate from stem to leaf 

    % ALREADY BEEN CALCULATED ABOVE AS "a.lleaf" 

     

    % local loss: transfer rate root in liquid form to root in solid form 

    % Transfer to the solid-bound phase is a function of the concentration 

    % in cytoplasm and the how close the solid-bound phase is to reaching 

    % the maximum capacity 

        a.sleaf = a.sub.leaf.max * (c.lleaf.cur/(k.sub.leaf + c.lleaf.cur))^(1)*(1-(c.sleaf.cur/c.leaf.cap))^(1); 
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        % --------calculatting he cytoplasm and cell wall-bound concentration after local "loss" ---- 

  

        m.lleaf.cur = c.lleaf.cur/1000 * m.leaf.cur; % [g/g] 

        m.sleaf.cur = c.sleaf.cur/1000 * m.leaf.cur; % [g/g] 

        % Express current Cd content in terms of mass; converted from mg/g 

        % to g/g 

         

        aa.diff.leaf1 = a.lleaf*((m.stem.cur + m.stem.new)/2) - a.sleaf*((m.leaf.cur + m.leaf.new)/2); 

        aa.diff.leaf.rev1 =  a.sleaf*((m.leaf.cur + m.leaf.new)/2) - a.lleaf*((m.stem.cur + m.stem.new)/2); 

         

        % local variable that shows the difference between the regional gain and local loss 

        if (aa.diff.leaf1 > 0) 

        m.lleaf.postLocal = m.lleaf.cur + (aa.diff.leaf1* dt); 

        m.sleaf.new = m.sleaf.cur + ((m.leaf.cur + m.leaf.new)/2)*(a.sleaf*dt); 

        % The new Cd in cytoplasm = current + regional gain - local loss 

        % The new Cd in cell wall-bound = current + local "loss" 

        else 

        m.lleaf.postLocal = m.lleaf.cur; 

        m.sleaf.new = m.sleaf.cur + (aa.diff.leaf.rev1*dt); 

        % The new Cd in cytoplasm = current; NO gain because everything is 

        % gone to the bound form 

        % The new Cd in cell wall-bound = current + what was available from 

        % regional gain 

        end 

         

        c.lleaf.postLocal = m.lleaf.postLocal / m.leaf.new * 1000; %[mg/g] 

        % The new Cd bound is due to local "gain" 

        c.sleaf.new = m.sleaf.new/m.leaf.new * 1000; % [mg/g] 

        % Converting the Cd content back in terms of concentration which 

        % may or may not the dilute the previous concentration depending on 

        % the growth         

  

    %----------------------------------------------------------------------   

    c.lleaf.new = c.lleaf.postLocal; 

     

    % store concentration information for the time step  

    c.system(1,tnow) = c.lleaf.cur + c.sleaf.cur; % concentration total for the compartment for current time step 

    c.lsystem(1,tnow) = c.lleaf.cur; % concentration of each compartment in liquid form for current time step 

    c.ssystem(1,tnow) = c.sleaf.cur; % concentration of each compartment in solid form for current time step 
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    m.lsystem(1,tnow) = m.lleaf.cur; % mass of Cd floating in cytoplasm for current time step 

    m.ssystem(1,tnow) = m.sleaf.cur; % mass of Cd bound to the cell walls/vacuoles for current time step 

    a.lsystem(1,tnow) = a.lleaf; 

    a.lsystem(1,tnow) = a.sleaf; 

    end 

    end 

    %---------------------------------------------------------------------- 

    %-------------------------UPDATE MATRIX ------------------------------- 

    %---------------------------------------------------------------------- 

    %total concentration 

    c.total= sum(c.system); 

    %Update time step (i.e. next time step's current = current's new) 

    c.sol.cur = 5;  %New solution concentration 

    c.lroot.cur = c.lroot.new; % New root concentration in liquid form  

    c.lstem.cur = c.lstem.new; % New stem concentration in liquid form 

    c.lleaf.cur = c.lleaf.new; % New leaf concentration in liquid form  

    c.sroot.cur = c.sroot.new; % New root concentration in solid form  

    c.sstem.cur = c.sstem.new; % New stem concentration in solid form  

    c.sleaf.cur = c.sleaf.new; % New leaf concentration in solid form  

     

    m.lroot.cur = m.lroot.new; % New root mass in cytoplasm 

    m.lstem.cur = m.lstem.new; % New stem mass in cytoplasm 

    m.lleaf.cur = m.lleaf.new; % New leaf mass in cytoplasm 

    m.sroot.cur = m.sroot.new; % New root mass bound on cell walls/vacuoles 

    m.sstem.cur = m.sstem.new; % New stem mass bound on cell walls/vacuoles  

    m.sleaf.cur = m.sleaf.new; % New leaf mass bound on cell walls/vacuoles 

     

    m.root.cur = m.root.new; % New root biomass 

    m.stem.cur = m.stem.new; % New stem biomass 

    m.leaf.cur = m.leaf.new; % New leaf biomass 

    m.total.cur = m.total.new; % New total biomass 

     

     r.stem_root.cur = r.stem_root.new; % New stem to root ratio 

     r.leaf_stem.cur = r.leaf_stem.new;% New leaf area to total biomass ratio 

      

    % m.stem_root.cur = m.stem_root.new; 

    %---------------------------------------------------------------------- 

    %------------------------PLOT------------------------------------------ 

    %---------------------------------------------------------------------- 
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    % Movie 

    temp2 = mod(tnow,2); 

   if (temp2 == 0) 

        v = v + 1; % count the frame 

        plot(tstep-tmin, c.lsystem); %Plot 

        axis([1 tmax-tmin 0 1.5]); 

        Mov (v) = getframe; 

   end 

end 

 

 

 


