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CHAPTER I

INTRODUCTION

I.1 New Demands on Distributed, Real-time and Embedded Systems

Component-Based Software Engineering (CBSE) [27] is increasingly used as a para-

digm for developing applications in both the enterprise [1] and embedded, severely resource-

constrained applications [76]. CBSE facilitates systematic software reuse by encouraging

developers to create black box components that interact with each other and their environ-

ment through well-defined interfaces. This allows applications of greater complexity to be

composed from smaller units of functionality,e.g.,commercial off-the-shelf components,

and preexisting applications. These applications are packaged along with descriptive and

configuration meta-data, and made available for deploymentinto a production environment.

Managing deployment and configuration of component-based applications in general

is an extremely complex and challenging problem for the following reasons. First, there

may be complex requirements and relationships amongst individual components. Compo-

nents may depend on one another for proper operation, or specifically require or exclude

particular versions. If these relationships are not described and enforced, component appli-

cations may fail to deploy properly; even worse, malfunction in subtle and pernicious ways.

Second, a component might expose configuration hooks that change its behavior, and the

deployment system must manage and apply any required configuration information. Fur-

thermore, several components in a deployment may have related configuration properties,

and the deployment infrastructure should ensure that theseproperties remain consistent

across an entire application. Third, in the case of enterprise systems, components must be

installed and have their connection and activation managedon remote hosts.

Distributed, real-time and embedded (DRE) systems are an emerging class of applica-

tions which share properties of both enterprise systems andseverely resource-constrained
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systems. DRE applications are similar to the enterprise kindin that they are distributed

across a large domain. Like embedded systems, DRE applications are often mission-

critical and carry stringent safety, reliability, and quality of service (QoS) requirements.

Deployment of DRE systems, in addition to the complexities described above, carry their

own set of unique challenges. First, applications in the DRE domains may have particular

dependencies on the target environment, such as particularhardware/software (e.g., GPS,

sensors, actuators, particular operating systems). Second, the deployment infrastructure

must contend with strict resource requirements in environments with finite resources (e.g.,

CPU, RAM, network bandwidth).

The deployment infrastructure must ensure that these resources are present and avail-

able in an environment that is changing due to a number of factors including loss or damage

to nodes, changing availability of resources such as network bandwidth, and contention

from other applications. Third, these applications often have changing goals and QoS

requirements in response to new situations in the environment, and the deployment infras-

tructure must be able to react and modify the deployed application accordingly. Finally,

real-world applications do not live in a vacuum and in many cases be homogeneous with

respect to their distribution middleware, and must often interface with either legacy systems

or applications from different vendors. Such heterogeneity cannot be foreseen by the com-

ponent middleware developers, so a mechanism to inject new communication mechanisms

is desireable.

I.2 Overview of Research Needs

In this section we list the research needs that arise in the context of deployment and

configuration of different varieties of DRE systems. These new directions of research are

organized according to research focus areas that make up this dissertation.

2



I.2.1 Focus Area 1: Deployment and Configuration for Resource-Constrained Sys-

tems

Resource-constrained systems present unique challenges toboth component middle-

ware and deployment and configuration infrastructure not found in other DRE systems. An

example of such a resource-constrained system includes thedomain of sensor webs. Sensor

webs are large-scale, networked systems often made up of heterogeneous computing plat-

forms that include commodity servers and DRE systems. Unfortunately, the configuration

and operation of individual sensor webs are often performedin anad hocmanner, which

impedes adding new sensors, updating and modifying their software, and reconfiguring

them to accommodate evolving conditions and changing science needs. These challenges

include standardized execution of low-level hardware-dependent actions and on-going data

tasks, automated provisioning of agents for heterogeneousfield hardware, and minimizing

deployment infrastructure overhead.

Traditional heavyweight component middleware, while an attractive solution for the

reasons outlined above, can be inappropriate for all elements of the sensor web software

due to extremely limited resources. First, severely constrained available memory limits the

number of components that may be deployed to each node. Second, heavyweight compo-

nents may take a comparatively long time to deploy and could cause the sensor web to not

react quickly enough to changes in the environment or mission and violate QoS guarantees.

While other approaches to component-based development for extremely embedded ap-

plications, such as Programming in the Many (PitM) [41], effectively meet the stringent

footprint requirements, they lack the interoperability and rich ecosystem of CORBA ser-

vices provided by CCM. Moreover, it limits the communication mechanisms to simple

message passing, lacking the rich datatype descriptions and interface communication pro-

vided by a more expressive component model. ChapterII describes the integration of

more advanced component middleware and deployment and configuration techniques to

a representative sensor web called SEAMONSTER. This chapterexamines in detail the
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challenges inherent in applying component middleware to embedded sensor web platforms

and presents the Action/Effector framework, an extremely lightweight component model

for encapsulating low-level hardware dependent tasks.

I.2.2 Focus Area 2: Heterogeneous and Adaptable Deploymentand Configuration

Frameworks

Production-quality, large-scale distributed computing systems often cannot be limited

to a single component model, particularly if they must integrate and interface with legacy

systems. While it is possible to use multiple individual deployment frameworks to de-

ploy and configure applications, this approach can complicate the planning process (i.e.,

assigning instances to nodes, ensuring that sufficient resources exist, performing static ver-

ification, etc.), thereby leading to problems during systemintegration. These problems

stem from potentially incompatible tooling, meta-data formats, and problems coordinating

the activity of disparate deployment infrastructures.

In addition to the need to potentially support multiple deployment targets, our experi-

ence with the development of large-scale DRE systems described earlier in this section has

demonstrated that applications and/or users may have wildly different expectations of the

behavior of the D&C infrastructure based on (1) domain requirements (e.g., safety critical-

ity or domain requirements), (2) the stage of the development process (e.g., development/-

testing vs. deployment/operation). Examples of such behavior adaptation include cus-

tomized error handling semantics, differing models of application liveness monitoring, or

customized discovery services for connecting disparate portions of the application.

Some frameworks for heterogeneous deployment do already exist, but are inappropriate

for DRE systems. One such tool, DeployWare [21], provides a way to create “personali-

ties” that allow for the deployment of multiple component models. DeployWare, however,

provides anemic support for meta-data that can be shared throughout the lifecycle of a com-

ponent application, which can make it difficult to use in larger projects in which multiple,
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independent teams must collaborate. Another tool, ADAGE [38] provides heterogeneous

deployment for grid environments. It, however, is inappropriate because it is not possible

to capture specific component/node pairings, which are necessary in DRE systems to en-

sure that components are properly allocated to domain hardware in order to provide QoS

guarantees. Neither tool provides a standard mechanism to customize the behavior of the

deployment toolchain.

ChapterIII describes the LocalityManager, a novel framework for creating a heteroge-

neous and adaptable deployment infrastructure, based on the OMG Deployment and Con-

figuration specification which provides robust meta-data facilities. The LocalityManager

provides mechanisms whereby thespecific deployment logic, i.e., the target component

model for deployment, may be augmented through plug-ins called Installation Handlers

that are loaded at run-time.Generic deployment logic, portions of the deployment pro-

cess that are component middleware agnostic, may also be customized through the use of

Deployment Portable Interceptors.

I.2.3 Focus Area 3: Efficient and Deterministic Deployment Latency

Domains that feature DRE applications are often characterized as “open” since appli-

cations in these domains must contend not only with changingenvironmental conditions

(such as changing power levels, operational nodes, or network status), but also evolving

operational requirements and mission objectives [24]. To adapt to changing environments

and operational requirements, it may be necessary to changethe deployment and configu-

ration characteristics of these DRE systems at runtime. Examples of potential adaptations

include deployment or tear down of individual component instances, changing connection

configuration, or altering QoS properties in the target component runtime. As a result of

stringentquality of service(QoS) requirements in these domains, it is important that any

changes to DRE system deployment and configuration occur as quickly and predictably as

possible,i.e., DRE systems expect short and bounded deployment latencies.
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Not only are timely and dependable runtime deployment and configuration changes

essential in DRE systems; even initial application startup time can be an important metric.

For example, in extremely energy-constrained systems, such as distributed sensor networks,

a common power saving strategy may involve completely deactivating field hardware and

periodically restarting it to take new measurements or activate actuators [64]. In such

environments, deployments must be fast and time-bounded.

Other contemporary deployment infrastructure tooling forlarge-scale domains, such as

GoDIET [77] or DeployWare [21], are optmized for computational grids, with relatively

homogeneous hardware and networks, as well as relatively few component instances on

large numbers of nodes. Some DRE domains such as shipboard computing environments,

however, have very high component density on relatively fewnodes. ChapterIV describes

in detail sources of deployment latency in DRE component deployment infrastructure, and

steps taken in the LocalityManager to overcome these difficulties.

I.2.4 Focus Area 4: Design Approaches to Extensible Component Middleware

Existing and planned enterprise DRE systems must increasingly support large data

spaces generated by thousands of collaborating nodes, sensors, and actuators that must

exchange information to detect changes in the operational environment, make sense of that

information, and effect changes. These capabilities require scalable publish/subscribe (pub-

/sub) semantics [19] that support a range of QoS properties, that control properties, such as

liveliness, latency, deadlines, timing, and reliability.Unfortunately, the conventional com-

ponent technologies used to develop enterprise DRE systems either do not provide first

class support for pub/sub semantics or do so in an ineffective manner that is not scalable

and does not support real-time QoS properties.

A standardized, QoS-enabled pub/sub technology called theOMG Data Distribution

Service (DDS) [53] has emerged as a promising pub/sub technology to support the require-

ments of enterprise DRE systems. DDS includes standard QoS policies and mechanisms
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to handle data (de)marshaling, node discovery and connection, and configuration. Middle-

ware based on the DDS standard has been applied successfullyin mission-critical domains,

such as air traffic management systems [18] and tactical information systems [28].

Integration of new distribution middleware and features into component models is not

a straightforward process. First, interfaces provided by the component container and stan-

dardized generated code may lack the expressivity necessary to fully take advantage of the

new middleware. Second, proper integration often requiresdeep knowledge of both the

new distribution middleware and the component container implementation — developers

with such dual expertise may not exist. ChapterV describes DDS4CIAO, a framework

that combines key advantages of the DDS middleware, such as low latency communication

and extensive QoS policy support, with the strengths of a mature component model, such

as simplified application composition and automatic deployment and configuration. This

integration is accomplished via entities called connectors that live outside the container.

I.3 Dissertation Organization

The remainder of this dissertation describes each of the above focus areas and research

challenges incurred within each area in more detail and describes how this dissertation

resolves these challenges. ChapterII outlines the application of D&C frameworks to

resource-constrained sensor webs. Next, ChapterIII describes the LocalityManager, a

framework for heterogeneous and adaptive deployment and configuration infrastructure.

ChapterIV presents the design principles and substantial empirical evidence that illustrates

performance optimizations to deployment latency in the LocalityManager. ChapterV de-

scribes DDS4CIAO, a connector-based integration of DDS intoLightweight CCM that

makes it possible to realize the missing pub/sub capabilities within CCM without breaking

the original component programming model. Finally, ChapterVII describes future research

directions and concluding remarks.
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CHAPTER II

DEPLOYMENT AND CONFIGURATION FOR RESOURCE CONSTRAINED
SENSOR WEBS

A variety of sensor webs [13] can now provide data in near real-time to help scientists

study and predict weather, natural disasters, and climate change. Modern sensor webs pro-

vide capabilities for information to be gathered from sensors around the globe and quickly

transmitted to local or remote servers where significant computational resources are avail-

able for model building, data analysis, and prediction. With the appropriate infrastructure,

these systems can facilitate the real-time collection and analysis of sensor data even under

changing environmental conditions and multiple concurrent science objectives.

Sensor webs are large-scale, networked systems often made up of heterogeneous com-

puting platforms that include commodity servers and distributed real-time embedded (DRE)

systems. Unfortunately, the configuration and operation ofindividual sensor webs are of-

ten performed in anad hocmanner, which impedes adding new sensors, updating and

modifying their software, and reconfiguring them to accommodate evolving conditions and

changing science needs.

Like other DRE systems, the field subsystems of sensor webs canbenefit from recent

advances in middleware infrastructures. The use ofquality-of-service (QoS)-enabled com-

ponent middlewarehelps automate remoting, life-cycle management, system resource man-

agement, deployment, and configuration in DRE systems. QoS-enabled component mid-

dleware supports explicit configuration of QoS aspects (e.g., priority and threading models),

and provides many desirable real-time features (e.g., priority propagation, scheduling ser-

vices, and explicit binding of network connections). In integrated, adaptive sensor webs,
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QoS-enabled component middleware helps address the large,heterogeneous set of sen-

sor assets and computational resources that must be coordinated and managed to address

weather, climate change, and disaster prediction/management problems.

Sensor web hardware is also increasingly configurable and must operate inopenen-

vironments where operating conditions, workload, resource availability, and connectivity

cannot be accurately characterizeda priori. Our previous work described the design of the

Multi-agent Architecture for Coordinated Responsive Observations(MACRO) [75], which

provides a QoS-enabled component middleware platform thatautomates many system con-

figuration and management tasks for sensor web applications, including dynamic system

management and autonomous operation of configurable sensorwebs in open DRE system

environments. This chapter addresses new distributed deployment challenges that result

from applying the MACRO platform to theSouth East Alaska MOnitoring Network for

Science, Telecommunications, Education, and Research(SEAMONSTER) [20], which is a

representative sensor web for monitoring glacial change and watershed effects.

The remainder of this chapter is organized as follows: SectionII.1 summarizes adaptive

sensor web challenges in SEAMONSTER that include standardized execution of low-level

hardware-dependent actions and on-going data tasks, automated provisioning of agents for

heterogeneous field hardware, and minimizing deployment infrastructure overhead; Sec-

tion II.2 describes how we addressed these challenges by extending MACRO to include

an Action/Effector framework that standardizes the execution of lightweight actions, auto-

mates the provisioning of MACRO agents, and optimizes the footprint of the underlying

QoS-enabled component middleware; SectionII.3 empirically evaluates how these exten-

sions address deployment challenges; SectionII.4 compares MACRO with related work.
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II.1 Motivation

II.1.1 Overview of SEAMONSTER

SEAMONSTER is a glacier and watershed sensor web at the University of Alaska

Southeast (UAS) [20]. This sensor web monitors and collects data regarding glacier dy-

namics and mass balance, watershed hydrology, coastal marine ecology, and human im-

pact/hazards in and around the Lemon Creek watershed and Lemon Glacier. The collected

data is used to study the correlations between glacier velocity, glacial lake formation and

drainage, watershed hydrology, and temperature variation.

The SEAMONSTER sensor web, as shown in FigureII.1, includes sensors and weath-

erized computer platforms that are deployed on the glacier and throughout the watershed to

collect data of scientific interest. The data collected by the sensors is relayed via wire-

less networks to a cluster of servers that filter, correlate,and analyze the data. These

data collection and processing applications are being transitioned to run on top of a QoS-

enabled component middleware platform consisting of theComponent-Integrated ACE

ORB (CIAO) [80], which is open-source, QoS-enabled, component middleware that im-

plements the OMG Lightweight CORBA Component Model (CCM) [50] and Deployment

and Configuration [49] specifications.

Figure II.1: SEAMONSTER field sensors and UAS servers
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II.1.2 Distributed Deployment and Adaptation Challenges in SEAMONSTER

Effective deployment of data collection and filtering applications on SEAMONSTER

field hardware and dynamic adaptation to changing environmental conditions and resource

availability present significant software challenges for efficient operation of SEAMON-

STER. While SEAMONSTER servers provide significant computational resources, the

field hardware is computationally constrained. The server-based MACRO agents perform

extensive planning and scheduling to provide direction andcoordination of tasks to be

performed by the computationally limited field resources. In the field, the limited compu-

tational resources require software solutions with small footprints and low computational

complexity.

Field nodes in a sensor web often have a large number of observable phenomena in

their area of interest. The type, duration, and frequency ofobservation of these phenomena

may change over time, based on changes in the environment, occurrence of transient events

in the environment, and changing goals and objectives in thescience mission of the sen-

sor web. Moreover, limited power, processing capability, storage, and network bandwidth

constrain the ability of these nodes to continually performobservations at the desired fre-

quency and fidelity. Dynamic changes in environmental conditions coupled with limited

resource availability requires individual nodes of the sensor web to rapidly revise current

operations and future plans to make the best use of their resources.

To handle dynamic changes effectively, sensor web nodes must be capable of goal-

driven, functional adaptation. Moreover, they must have the capability to adapt the local

system in light of resource constraints and fluctuations throughout the sensor web to main-

tain efficient and correct operation of the overall system. Prior work [35] describes how

MACRO addresses these challenges by combining the planning and resource management

services of its server agents with the template plan schemasof its field agents. This chapter

extends our prior work by focusing on the following unexplored challenges associated with
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providing a flexible deployment infrastructure to support system management and dynamic

adaptation of the SEAMONSTER field nodes.

II.1.3 Challenge 1: Standardized Execution of Planned Low-Level Actions and Data

Tasks

Most tasks performed by MACRO agents on the SEAMONSTER servercluster involve

on-going data processing and analysis that are implementedby components selected and

configured during planning/scheduling. A scheduled plan for the deployment and opera-

tion of these configured components is passed to a resource management service, which

allocates them to individual server nodes and adjusts configuration settings and operating

system parameters to handle fluctuations in resource usage and availability. The resource

management service employs the deployment infrastructureto coordinate the deployment,

configuration, connection, and execution of the specified components. This provides a

standardized, flexible system for implementing tasks as configured components.

Data collection and transmission tasks on field nodes are implemented as components

for the same reasons as data processing tasks on the servers.However, many of the other ac-

tivities that MACRO agents plan and perform on field nodes consist of low-level, hardware-

dependent actions that execute only briefly to configure sensors or the power management

hardware subsystem. Implementing these short-duration “actions” as components would

incur disproportionate amounts of overhead for their deployment and execution than for

data processing “tasks” that typically execute over longerperiods of time and have to trans-

mit data streams to other components. Given the limited computational resources available

on field nodes, the overhead for implementing brief, low-level actions as components is

unacceptable.

Lower levels of granularity are needed for efficient execution of many planned activities

on field nodes. Agents could implement these actions directly, but this would require hard-

coding of hardware-dependent actions into each field agent.Alternatively, grouping these
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actions into larger pre-planned sets of actions executing as a component would proportion-

ally reduce the overhead. However, this would negatively impact maintainability through

duplication of action code segments and constrain the available options for planning. In-

stead, a standardized deployment and execution framework,such as that provided by a mid-

dleware infrastructure for components, but with lower overhead, would greatly enhance the

maintainability of the system and simplify initial system development. SectionII.2.3.1de-

scribes how such a framework has been designed and incorporated in MACRO to address

this challenge.

II.1.4 Challenge 2: Automated Agent Provisioning for a Variety of Field Hardware

Field nodes in a sensor web may have a large number of possibleconfigurations, due

to a variety of sensors, software, and situations that they may be tasked to observe and

appropriately react. Consequently, the agents that manage these nodes must be as flexible

as possible. Hard-coding available tasks into agent code requires that new versions of each

agent be created as nodes add new responsibilities or hardware. The solution developed to

address the previous challenge should include integrationwith the deployment infrastruc-

ture to download and load at runtime appropriate action implementations. SectionII.2.3.2

describes how the deployment infrastructure may be leveraged to dynamically provision

agents with available, context-specific actions at deployment time.

II.1.5 Challenge 3: Minimizing Deployment Infrastructure O verhead

The SEAMONSTER sensor web, described in SectionII.1.1, includes many field nodes

operating with extremely limited computational resources. SEAMONSTER includes two

types of computational platforms for field nodes [64]:

• Primary Microservers. These units are weatherized single board computers (SBC)

that are designed to have very limited power consumption andprecise control over the
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power consumption of the SBC and attached devices. The SBC is a commercial off-the--

shelf (COTS) product that has a 200 MHz low-power ARM processorwith 64 MB of

built-in RAM.

• Adjunct Microservers. These units are re-purposed COTS Linksys NSLU-2 network

attached storage devices that are essentially inexpensiveSBCs. These computers consist

of a 133 Mhz (with simple hardware modifications possible to reach 266 MHz) ARM

processor with 32 MB of built-in RAM. These units provide a low-cost alternative to using

Primary Microservers for some field nodes. However, they lack power control capabilities

and have even more limited computational power primarily due to the minimal amount of

RAM.

Each platform presents an environment where the resident footprint of the middleware

infrastructure and component implementations is critically important. Excessive footprint

will at best cause excessive memory swapping to occur, significantly degrading perfor-

mance and shortening the life of attached flash drives, and atworst cause deployment fail-

ure due to exhaustion of memory, as happened occasionally during initial trials of MACRO

software in the SEAMONSTER testbed. SectionII.2.3.3describes initial efforts to reduce

the footprint of the middleware.

II.1.6 Challenge 4: Local power management with sleep/wake cycles

SEAMONSTER’s need for power management is motivated by limited availability of

power, due to variable weather conditions limiting the ability to recharge the batteries. The

available power is often insufficient for continuous operation of the processor, requiring the

system to periodically power down completely. Moreover, toprotect against “wedging”

(which is a situation where the operating system becomes unresponsive), it is useful to

periodically hard-reset the microservers, which are difficult to physically access in the field.

When a microserver returns from one of these sleep/wake cycles,i.e., when the boot process
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completes, local agents and applications must be correctlyre-deployed and connections

between nodes must be correctly re-established. SectionII.2.3.4

II.2 Minimizing Infrastructure Overhead in MACRO

This section explains how MACRO addresses the challenges described in SectionII.1.

This chapter begins with an overview of the agent-based system developed in our previ-

ous work, along with a description of its middleware infrastructure. The new MACRO

Action/Effector framework is introduced, which addressesthe deployment infrastructure

challenges encountered in the SEAMONSTER project.

II.2.1 Overview of MACRO

The MACRO platform provides a powerful computational infrastructure for enabling

the deployment, configuration, and operation of large-scale sensor webs that are composed

of many constituent sensor webs. FigureII.2 shows how MACRO supports intelligent

autonomy via agents at the following two levels of abstraction:

• Mission level, where agents interact with users to allocate high-level science tasks to

sensor webs and coordinate scheduled plans to achieve thesegoals, and

• Resource level, where local server and field agents achieve mission goals through

functional adaptation of a sensor web in light of current environmental conditions and

resource availability.

The work presented in this chapter focuses on the resource level of MACRO, which is

applicable to individual sensor webs, such as SEAMONSTER.

System adaptation for current conditions and science goals, described as a set of de-

sired data products and results, is directed by MACRO server-based agents with func-

tional knowledge of the sensor web system and available software components and ac-

tions. MACRO server-based agents employ novel services, such as theSpreading Activa-

tion Partial Order Planner(SA-POP) [34] and theResource Allocation and Control Engine
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Figure II.2: MACRO Agent Architecture

(RACE) [70]. These agents use the SA-POP service to (1) decompose goalsinto subgoals

that are achieved at the server or by individual field nodes and (2) plan/schedule for their

achievement.

With information from field agents about current conditionsand local activities, SA-

POP produces scheduled, high expected utility plans to achieve an optimized set of current

goals. These scheduled plans are also broken into subplans by SA-POP. These subplans

describe (1) the selection/configuration of server-based software components, which are

allocated and managed by the RACE service on the servers, and (2) hardware-dependent

actions on individual field nodes, as well as additional component deployments.

Although the sub-plans generated by SA-POP on the servers can provide an important

starting point for deployments and actions on the field nodes, changing local conditions

may invalidate those plans or require modification to them for effective, rapid reaction to

environmental phenomena and changing resource availability. Since local field agents have

limited computational resources, extensive planning and scheduling, such as that provided

by SA-POP, is not possible for rapid reaction to local changes. Instead, field agents use a

set of template plan schemas that cover a range of conditionsand local subgoals to which

they are applicable.

Server-based agents provide the field agents with the current set of local subgoals to
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pursue and suggested schema instantiations correspondingto the sub-plans produced by

SA-POP. The task of the field agent is therefore the simpler choice of an appropriate set

of schemas to instantiate as local conditions evolve. The extensive planning/scheduling

performed by MACRO server agents using SA-POP—together withthe choice of plan

schemas to instantiate by MACRO field agents—provide effective system adaptation to

achieve science goals in light of changing environmental conditions and resource availabil-

ity.

The implementation of agents in MACRO is based on the CIAO [80] QoS-enabled com-

ponent middleware (described in SectionII.2.2 to ensure interoperability across heteroge-

neous computing platforms, reduce development costs, and improve overall robustness and

scalability. The agents operate on the CIAO middleware to ensure that a diverse set of

Figure II.3: The MACRO Architecture

science objectives can be met, as shown in FigureII.3. This architecture helps facilitate

real-time, adaptive data acquisition, analysis, fusion, and distribution.

II.2.2 Overview of MACRO’s QoS-enabled Component Middleware

The MACRO middleware infrastructure is based on the CORBA Component Model

(CCM) [52], which is an extension to the Common Request Broker Architecture (CORBA) [48]

that supports Component Based Software Engineering. CCM enhances re-usability by al-

lowing developers to focus only on application business logic, abstracting away the details
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of communication and configuration. Components interact with one another only through

well-defined ports, which includefacets(provided interfaces),receptacles(required inter-

faces), andevent sources and sinks(asynchronous publish/subscribe transport).

The CCM middleware used in MACRO is theComponent Integrated ACE ORB(CIAO) [78].

CIAO is a QoS-enabled implementation of the Lightweight CCM (LWCCM) [51] specifi-

cation built on top ofThe ACE ORB(TAO). CIAO provides a clear separation of concerns

betweenconfiguration logic, specified at deployment time via XML-based meta-data, and

business logic.

CIAO’s deployment and configuration capabilities are provided by theDeployment and

Configuration of Component Based Systems(DnC) [59] specification, which was created

by the OMG in response to the need for generic and standard mechanisms for deploying

component-based applications. The DnC standard includes both adata model(i.e., descrip-

tions of components, component compositions, target domains, and associated configura-

tion meta-data) and aruntime model(i.e., a set of interfaces used to manage application

life-cycles).

The DnCruntime modelin CIAO is implemented by theDeployment And Configuration

Engine(DAnCE) [14]. DAnCE is a set of daemons executing in thedomain, which is

the collection of nodes and communication methods that comprise the target environment.

Important elements of the runtime model are shown in FigureII.4 and include:

• Node Manager, which is a daemon that runs on all nodes in the domain and is re-

sponsible for deploying, configuring, and managing all components deployed to that node.

This daemon also supports the monitors necessary to report the resource status on the node

to the MACRO agents. Each node in the sensor web will have a running Node Manager.

• Execution Manager, which is a daemon that coordinates the activities of allNode

Managersin a given domain. This daemon is the primary point of controlfor the life-

cycle of all component applications. Primary microserverswith direct connections to the

SEAMONSTER server cluster will have Execution Managers.
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• Target Manager, which is a daemon that collates and reports resource availability in a

given domain. Information is collected from resource monitors installed in individualNode

Managers. Like the Execution Manager, this daemon will run on primary microservers

with direct connections to the servers.

• Repository Manager, which is a daemon that maintains a collection of component

meta-data and binary implementations. IndividualNode Managersmay contact nearby

repositories to download binaries for components they are tasked to deploy, and MACRO

agents may query the repository for information about components available for deploy-

ment. An instance of theRepository Managerwill run on the primary server for use by the

MACRO server agents and server deployments. Another instance will reside on primary

microservers with direct connections to the SEAMONSTER server cluster for use by nodes

in the field.

II.2.3 Applying MACRO to Address SEAMONSTER Challenges

The remainder of this section explains how MACRO applies and enhances the CIAO

and DAnCE middleware described above addresses the sensor web challenges identified in

SectionII.1.2.
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1 s t r u c t P r o p e r t y {
2 s t r i n g name ;
3 any v a l u e ;
4 } ;
5 t y p e d e f sequence < Prope r t y > P r o p e r t i e s ;
6 v a l u e t y p e A c t i o n _ I n f o {
7 p u b l i c s t r i n g i d ;
8 p u b l i c P r o p e r t i e s r e s o u r c e _ r e q u i r e m e n t s ;
9 p u b l i c P r o p e r t i e s i n i t _ a r g u m e n t s ;

10 p u b l i c P r o p e r t i e s exec_arguments ;
11 p u b l i c P r o p e r t i e s r e f e r e n c e _ r e q u i r e m e n t s ;
12 }

Listing II.1: Action_Info Data Structure Example.

II.2.3.1 Addressing Challenge 1: MACRO’s Action/Effector Framework

MACRO’s Action/Effector framework has been developed to provide a standardized

mechanism that has two primary benefits for implementing short-lived, lightweight “ac-

tions,” as opposed to on-going “tasks” implemented as components. First, it allows the

MACRO agents with their SA-POP planning service and plan schemas to use a common

vocabulary for describing preconditions, dependencies, and effects of individual actions,

as well as resource requirements of the associated action implementations. Second, it pro-

vides a clear separation of concerns between invoking the action and the business logic of

the action, similar to that of components,i.e., it provides a mechanism that agents can use

to execute a set of actions without knowledge at compile or link time of the implementation

of those actions.

Action meta-data.

Listing II.1 describes theAction_Info data structure which allows an action to pro-

vide meta-data about itself to the system/agents.

This meta-data describes properties (e.g., a unique identifier, argument identifiers and
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1 l o c a l i n t e r f a c e Ac t ion {
2 r e a d o n l y a t t r i b u t e A c t i o n _ I n f o i n f o ;
3 vo id i n i t i a l i z e ( i n ObjSeq r e f e r e n c e s ) ;
4 vo id e x e c u t e ( i n any arguments ,
5 ou t any r e s u l t ) ;
6 vo id r e l e a s e ( ) ;
7 } ;

Listing II.2: Action Interface

types, return value identifier and type) and requirements (e.g. CPU and memory require-

ments, hardware/sensor resources, and component or objectreferences). This data structure

is implemented as a CORBA valuetype, which will leave open the possibility for deriva-

tion though inheritance should additional fields need to be added later without breaking

backwards compatibility with the interfaces described below.

Action interface. Listing II.2 describes the interface for the Action itself.

This interface provides a vehicle for provision of meta-data, and operations to manage

the full life-cycle of an Action. To provide lightweight actions with minimal overhead,

this interface is specified as alocal interface, which instructs the CORBA IDL compiler to

omit generation of code that allows for remote invocation ofthe object, creating a locality

constrained object. This design substantially reduces overhead, as shown in SectionII.3.3.

While this locality constraint prevents MACRO agents from directly accessing Action ob-

jects, the framework provides a mechanism which does not constrain their use by those

agents. This framework allows MACRO agents to access and execute actions while hid-

ing the complexities of action deployment and execution through the Effector interface

described in SectionII.2.3.1.

The Action attributeinfo allows the Action implementation to self-describe its meta-

data, ultimately providing information to the agents aboutits requirements and capabilities.

This information is also used by an implementation of the Effector interface to determine
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1 ex te rn ‘ ‘C ’ ’ {
2 A c t i o n _ p t r c r e a t e _ a c t i o n (vo id ) ;
3 }

Listing II.3: Action Factory

which object references and arguments are to be passed to theoperations contained in this

Action interface.

These operations allow the Effector to manage the life-cycle of Actions. Theinit-

ialize operation is invoked upon creation of the Action, providingit with object ref-

erences to deployed components and objects that the business logic may need in order to

successfully execute. Theexecute operation implements the business logic of the Ac-

tion. This operation accepts two parameters, both of type CORBA Any, which is a generic

container which may contain any valid CORBA data type, allowing the Actions to accept

arguments or provide results in a flexible, but standardized, manner. Finally, therelease

operation informs the Action that it is about to be deallocated so that it may release any

resources that it holds.

Each Action implementation provides a factory method (an example of which is found

in Listing II.3) that is used by the Effector to construct instances of the action at runtime.

Similar to the method used by the DnC specification [59] to construct component instances,

this factory method is declared asextern “C” , which will allow the Effector interface to

load actions at runtime using methods similar todlopen anddlsym , which are POSIX

APIs for dynamically loading shared libraries.

Effector interface. Listing II.4 describes the Effector interface, which is used by the

MACRO agents to load and execute actions. This interface is provided as either a facet

or a supported interface on a component. It is used by MACRO agents to execute plans or

schemas and interact with the components providing abstractions of the available hardware,

as shown in FigureII.5. For example, theload_action method may be used by an agent

or other Effector client to load a new action from a named shared library that contains a
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1 i n t e r f a c e E f f e c t o r {
2 A c t i o n _ I n f o l o a d _ a c t i o n ( i n s t r i n g l i b ra ry_name ,
3 i n s t r i n g fac to ry_name ) ;
4 vo id u n l o a d _ a c t i o n ( i n s t r i n g i d ) ;
5 A c t i o n _ I n f o q u e r y _ a c t i o n ( i n s t r i n g i d ) ;
6 S t r i n g S e q l i s t _ a c t i o n s ( ) ;
7 vo id e x e c u t e _ a c t i o n ( i n s t r i n g id ,
8 i n any arguments ,
9 ou t any r e s u l t ) ;

10 } ;

Listing II.4: Effector Interface

provided factory symbol. The operations on the Effector interface allow MACRO agents to

(1) manage the life-cycle of Actions installed in the Effector, (2) determine which Actions

have been loaded and query their meta-data, and (3) instructthe Effector to execute an

Action.

Action
Implementation

Effector Implementation

MACRO
Agent

execute_action

execute

Figure II.5: The Action/Effector Framework

II.2.3.2 Addressing Challenge 2: Providing Flexible AgentProvisioning

The Action/Effector framework described in SectionII.2.3.2 provides a mechanism

through which MACRO agent implementations may be dynamically provisioned at de-

ployment time with Action objects apropos to the particularhardware configuration, in-

cluding its suite of available sensors, on which the agent resides. Component interface
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1 component E f f e c t o r P r o v i d e r {
2 p r o v i d e s E f f e c t o r e f f e c t ;
3 a t t r i b u t e A c t i o n _ F a c t o r i e s f a c t o r i e s ;
4 } ;

Listing II.5: Example Component with Effector

descriptions, similar to standard CORBA object descriptions, may have attributes of ar-

bitrary types. As seen in ListingII.5, the example component has an attribute of type

Action_Factories , which is a sequence of structures containing a pair of string mem-

ber variables indicating a library name and factory symbol name.

Component deployments are described via XML files that capture information about

component configuration, topology, and connections. TheseXML descriptors may be used

to populate the value of this attribute with desired libraryname/factory name pairs at de-

ployment time. Moreover, through the mechanism used to describe the implementation

dependencies of components (i.e., shared libraries implementing a component), it is pos-

sible to indicate to the Node Manager that shared libraries implementing Actions also be

downloaded from the RepositoryManager, as described in Section II.2.2. This approach

allows the component providing the Effector interface to invoke theload_action oper-

ation for each library/entrypoint pair provided during activation.

II.2.3.3 Addressing Challenge 3: Reducing Middleware Footprint

Initial efforts to run MACRO (and the associated middleware infrastructure) presented

difficulties and, in some cases, failures due to the large footprint of the default configuration

of CIAO and the limited memory capacity of the SEAMONSTER nodes. To reduce mem-

ory footprint, the initial application of the deployment infrastructure to SEAMONSTER

field hardware included two straightforward modifications:

24



• Leverage compiler optimizations.Most compilers have the ability to provide space-

saving optimizations to most code, which an experienced programmer can easily leverage

to provide footprint reduction.

• Leverage mechanisms present in underlying middleware.The build system of

the middleware underpinning of CIAO provides configuration settings that allow one to

strip unneeded features from compiled binaries, such as unused portions of the ACE and

TAO libraries, which can provide also provide substantial footprint savings in resource-

constrained environments.

While these steps are relatively straightforward and not particularly novel, SectionII.3.2

shows that they were sufficient to reduce the static footprint of the middleware stack to a

level that allowed successful use of the MACRO platform on SEAMONSTER hardware.

II.2.3.4 Addressing Challenge 4: Ensuring Correct Re-Deployment After Reboot

The MACRO approach to resolving this challenge involves creating all deployments as

locality-constrained deployments. Locality-constrained deployments describe only compo-

nents that reside on a single node and refer to connections with components on other nodes

using external references. This approach is in contrast to the use of a global deployment

plan, which can include components deployed to several nodes, describing connections

across nodes by referring to the connected components directly. With locality-constrained

deployments each node must execute both the globaland local deployment entities, rather

than only the local ones. Although this increases local nodeoverhead, it allows the mid-

dleware to correctly reconstitute its agent and other software deployments upon reboot.

Correctly executing these locality constrained plans on each node requires that connec-

tions external to each individual node be correctly re-established. By default, DAnCE only

supports connections between components within the context of a single global deploy-

ment plan. Since we are using multiple “global” deployment plans that have been locality

constrained and deployed using a DAnCE stack unique to each node, correct re-connection
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cannot be achieved using only inter-plan connections. Thiswas resolved by enhancing

DAnCE to be able to make use of external directory services, such as the CORBA Naming

Service, to resolve these external connections at deployment time.

Future work includes extensions to the deployment infrastructure to allow reconsti-

tution of local deployments from global deployment plans, thereby reducing middleware

overhead on the field nodes.

II.3 Experimental Results

This section presents the results of experiments that evaluate (1) the effectiveness of

MACRO’s Action/Effector framework for lightweight, hardware-dependent actions and (2)

the reduction of middleware footprint described in SectionII.2.3.4. These results show

that the efforts described reduced the total static footprint of MACRO and its underlying

middleware stack. They also show the reduction in overhead achieved by implementing

short-lived actions in the Action/Effector framework discussed in SectionII.2.3.2, rather

than using heavier-weight components.

II.3.1 Hardware/Software Testbed and Experiment Methodology

The static footprint results were obtained via a cross-compiler tool-chain used to build

software for the SEAMONSTER hardware. This tool-chain consists ofg++ 4.1.2 andld

2.17, which are hosted on Debian Linux 4.0 and targetarm-linux-gnu . The CIAO

middleware platform was version 0.6.6.

For the initial baseline results, this platform was compiled using default options, with

debugging symbols disabled and the compiler optimization level at03 , which instructs the

g++ compiler to optimize for speed. For the results based on our optimization efforts, the

middleware was compiled using built-in methods for reducing footprint and the compiler

was instructed to optimize using0s , which instructs theg++ compiler to optimize for

space. In all cases, we used the GNUstrip utility to remove any debugging symbols

26



from the compiled binaries to ensure the footprint metrics just measured the size of the

executables.

Executable footprint sizes were determined by statically linking all required symbols

from the underlying middleware into the final binary, ensuring that all necessary symbols

from the underlying middleware are present, while not including any unnecessary symbols.

For the purposes of calculating the size of a component, we assume that any symbols

necessary from the underlying middleware were already present in the component server,

and thus the calculation of the component footprint sizes was obtained by summing the size

of thesharedlibraries that implement the component. This size includesCORBA stubs and

skeletons, the servant (the component specific portions of the container), and the executor

(business logic) implementation.

Run-time results were obtained using a primary microserver described in SectionII.1.6.

This microserver consists of a 266 Mhz ARM processor with 64 MBof built-in RAM. The

operating system is a derivative of the Debian Sarge runningGNU/Linux kernel 2.4.26,

which was provided by the manufacturer of the microserver (Technologic Systems).

II.3.2 Initial Footprint Reduction

The results of the efforts described in SectionII.2.3.4 are summarized in TableII.1.

TheExecutionManager andNodeManager (which were described in SectionII.2.2)

Table II.1: Results of Initial Footprint Optimization

Entity Default Optimized Savings

ExecutionManager 12,203 KB 11,136 KB 1,067 KB
NodeManager 13,865 KB 12,623 KB 1,242 KB
NodeApplication 12,710 KB 11,460 KB 1,250 KB
Null Component 670 KB 605 KB 65 KB
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and theNodeApplication (which is a component server spawned during the deploy-

ment process) each experienced a reduction in footprint of∼1 megabyte. The combined

savings reduced the footprint of node-local infrastructure (i.e., the NodeManager and

NodeApplication ) from 26.5 MB to 24 MB. Although this reduction allowed us to

deploy and operate a prototype MACRO-based application on the SEAMONSTER hard-

ware, this deployment consumed nearly all available physical memory on the primary

microservers, and resulted in frequent thrashing on the memory-constrained adjunct mi-

croservers.

These results show that largest consumers of memory in the middleware stack are the

DAnCE daemons, in particular theExecutionManager andNodeManager . The foot-

print of the newer deployment and configuration aspects of the middleware has been largely

overlooked until now and needs to be addressed. Perhaps moreimportantly is the latency

experienced during deployment, which has been observed to take as long as several minutes

on SEAMONSTER hardware. Moreover, the DAnCE implementationused in MACRO

tangles concerns of deployment and configuration with the runtime elements of the compo-

nent server in theNodeApplication . This entanglement increases footprint by repli-

cating large swathes of deployment logic in each component server. Careful analysis and

re-factoring of the deployment infrastructure is therefore needed to substantially decrease

footprint and deployment latency.

This serves in part as motivation for our work on the LocalityManager framework de-

scribed in ChapterIII , which outlines our efforts to re-factor the DAnCE frameworkand

address deployment latency issues.
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II.3.3 Impact of Action/Effector Framework on MACRO Execution Overhead

MACRO’s Action/Effector framework (described inII.2.3.2) substantially reduces foot-

print overhead compared to using CIAO’s complete component implementations to encap-

sulate SEAMONSTER tasks and actions. TableII.2 summarizes the differences in footprint

size between these two approaches.

Table II.2: Action/Effector Footprint

Implementation Type Size

Component 623 KB
Action Implementation 23 KB
Effector 123 KB

When implemented as a component, the action has a footprint ofover half a megabyte,

substantially limiting the number of action implementations that could simultaneously be

deployed to a single resource-limited field node.

When the action was implemented in MACRO’s new Action/Effector framework, how-

ever, its footprint was only 23 KB, which is a fraction of the memory required by an execut-

ing component. Moreover, an implementation of the Effectorframework as a component

facet adds only 123 KB to the footprint of an existing MACRO agent component, one of

which is required per node.

Table II.3: Action/Effector Footprint

Deployment Latency Average Time (Seconds)

Component 218.96
Action/Effector 3.23

A more important result, moreover, is the deployment latency experienced by a compo-

nent compared against the latency experienced by an Action implementation. In this case,

deployment latency refers to the amount of time from the moment deployment is started
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(e.g., load_action in the Action/Effector framework) until deployment is completed

and the component or Action is ready for invocation. As shownin TableII.3, which docu-

ments the average of twenty runs of each, the difference in deployment latency is dramatic,

with component deployment requiring over three minutes while an Action is deployed in

only three seconds. These results do not include the time required to download the compo-

nent implementation from theRepositoryManager , which could be substantial over a

bandwidth-limited wireless connection, but is only required the first time a component is

used on the microserver.

II.4 Related Work

This section compares the work on MACRO with related work.

Resource-Constrained Component Models.Programming in the Many (PitM) [41] is

anarchitectural styleaimed at the domain of distributed, highly mobile, severelyresource

constrained embedded systems. While this component model meets the stringent footprint

requirements of SEAMONSTER, it lacks the interoperability and rich ecosystem of ser-

vices offered by CORBA and CCM. PitM also limits communication between components

to message-passing, lacking the rich interface-based communication possible with CIAO.

The SOFtware Architectures (SOFA) component model [32] based onArchitecture Defi-

nition Languages, which view applications as hierarchies of connected components. This

component model provides capability for runtime modifications that may be lighter weight

than CIAO components, but which must be described atdesign time[29], thereby limiting

flexibility compared with MACRO.

Decision-theoretic planning and scheduling.The planning service used by MACRO

server-based agents – SA-POP – is a decision-theoretic planner allowing uncertainty both

in environmental conditions and action outcome, like C-SHOP[7] that does so with hi-

erarchical planning and Drips [26] that produces conditional plans. However, to enable

planning with resource constraints, such as those of sensorwebs, many have chosen to
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separate the planning and scheduling/resource aspects of the problem (e.g., [71] and [17]).

This approach works well when the resource/time constraints are relatively loose or there

are relatively few alternatives in the planning process that could use fewer or different re-

sources. However, with tight resource constraints, as are often present in sensor webs,

others have chosen to integrate planning and scheduling as SA-POP does. For example, Ix-

TeT [37] uses partial-order planning like SA-POP and allows interleaving resource conflict

resolution with the planning process, but does not perform decision-theoretic planning and

incorporates scheduling/timing information directly into the action representation.

Plan schemas for resource-constrained planning and scheduling. The MACRO field

agents use plan schemas (also called template plans or skeletal plans) [22], which have also

been used in other situations where complete planning was too time consuming for appro-

priate responses. MACRO’s plan schemas have been enhanced with scheduling informa-

tion, such as in [42], and generated through partial order planning techniques, like [31].

The combination of MACRO server-based agents using the SA-POP planning/scheduling

service with generated schemas used by MACRO field agents provides a uniquely flex-

ible solution for autonomy in sensor webs with a server cluster connected to DRE field

systems.

II.5 Summary and Lessons Learned

The lessons learned from our extensions to the MACRO distributed deployment infras-

tructure include:

• Feasible integration of non-component entities.The Action/Effector framework

has demonstrated the feasibility of integrating non-component entities into component as-

semblies where footprint, latency, or lifetime rules out the use of a full component. In

fact, the Action/Effector framework could be seen as a simple component framework. In

this case, Actions are themselves components and Effectorsare a simplified container that

provides only lifecycle services and no built-in distribution middleware.
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• Unitary Effector may limit framework flexibility. A unitary Effector (i.e., one

which is incapable of operating in a hierarchical manner with other effectors) may limit

flexibility in dynamic sensor web environments. Extending the Effector interface to support

hierarchical and peer behavior with other Effectors deployed to the same node(s) potentially

has two advantages: (1) it allows Effectors to expand their vocabulary as nearby nodes

and devices power up/down in response to changing power availability and (2) it allows

the creation of “meta-Actions,” which are ordered compositions of one or more concrete

actions across one or more Effectors.

• A synchronous Effector interface may cause unacceptable delays. If an Action

hangs or takes longer to complete than expected, the presentsynchronous interface will also

cause the agent plan execution code to hang. This behavior isundesirable, however, since

it may cause the agent to miss other important deadlines in its current plan of execution.

Asynchronous Effector and Action interfaces can alleviatethis concern.

• CIAO footprint is too large for resource constrained systems. The stringent re-

source constraints (i.e., 32-64 MB RAM and processors operating at 266 MHz or less) of

SEAMONSTER field hardware were a significant hurdle due to theoverhead (especially

memory footprint) of CIAO components and deployment infrastructure. Previous CIAO

developments focused on environments with significantly greater resources,e.g., more than

a gigabyte of RAM and processors faster than two gigahertz. While CIAO is operational

on the SEAMONSTER hardware, as indicated in SectionII.3, further work is needed to

make the middleware efficient under tight resource constraints.

• DAnCE footprint and deployment latency is too high for resource constrained

systems. As shown in SectionII.3, the largest consumers of memory in the middle-

ware stack are the DAnCE daemons, in particular theExecutionManager andNode-

Manager . The footprint of the newer deployment and configuration aspects of the mid-

dleware has been largely overlooked until now and needs to beaddressed. Perhaps more

importantly is the latency experienced during deployment,which has been observed to take
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as long as several minutes on SEAMONSTER hardware. Improvements in the deployment

latency for DAnCE are further discussed in ChapterIV.

To further reduce the overhead of CIAO components and the DAnCEdeployment in-

frastructure, we are working on multiple approaches, including context-aware generative

techniques to prune unnecessary code/features:

• Generative component specialization.The CCM specification includes several fea-

tures and capabilities in the component definition that may not be necessary in all situations,

such as generic navigation, introspection, and security features, which contribute to foot-

print bloat. Generative techniques could be used to prune these features on a case-by-case

basis.

• Generative container specialization.The CIAO container is intended to be a generic

solution providing a large feature set to satisfy user needsin most situations. As such, it

contains features and services that may not be necessary in specific deployments, and could

be pruned by generating scenario-specific container implementations.

An avenue for simplication of both the component logic and container implementation

are discussed in ChapterV and ChapterVI .

• Improve separation of concerns in DAnCE.The current DAnCE implementation

tangles concerns of deployment and configuration with the run-time elements of the com-

ponent server in theNodeApplication . This entanglement increases footprint by repli-

cating large swathes of deployment logic in each component server. Careful analysis and

re-factoring is therefore needed to substantially decrease footprint and deployment latency.

Work that significantly improves the separation of concernsin DAnCE and largely ad-

dresses this item is discussed in ChapterIII .
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CHAPTER III

HETEROGENEOUS AND ADAPTIVE DEPLOYMENT AND CONFIGURATION
FRAMEWORKS

Large-scale distributed real-time and embedded (DRE) computing systems, such as

shipboard computing environments [39] and air-traffic management [18] systems, are in-

creasingly being developed with the use of component-basedsoftware technologies. Comp-

onent-based development not only offers useful abstractions for developing large systems [27]

by encouraging systematic reuse and composition, they alsosimplify the deployment and

configuration process at runtime. The CORBA Component Model (CCM)[52] along with

the Deployment and Configuration Specification (D&C) from the Object Management

Group [59], and the SOFA component model [10] assist in the deployment and configu-

ration of component-based applications.

Production large-scale distributed computing systems often cannot be limited to a sin-

gle component model, particularly if they must integrate and interface with legacy sys-

tems. While it is possible to use multiple individual deployment frameworks to deploy and

configure applications, this approach can complicate the planning process (i.e., assigning

instances to nodes, ensuring that sufficient resources exist, performing static verification,

etc.), thereby leading to problems during system integration. These problems stem from

potentially incompatible tooling, meta-data formats, andproblems coordinating the activity

of disparate deployment infrastructures.

The originalDeployment and Configuration Engine(DAnCE) framework provides an

offline deployment and configuration for theComponent Integrated ACE ORB (CIAO) [80]

CCM implementation. The Locality-Enhanced (LE-DAnCE) version described in this pa-

per provides a deployment tool-chain that can handle heterogeneous deployments and adapt

its behavior dynamically to meet changes in the requirements of the applications it deploys.
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The remainder of this chapter will be organized as follows. SectionIII.1 provides an

overview of the Deployment and Configuration Specification for Component Based Ap-

plications. Next, SectionIII.2 discusses the research challenges addressed herein. Sec-

tion III.3 describes solutions to these challenges. Finally, SectionVI.2 will describe future

enhancements to the LE-DAnCE framework and SectionIII.4 will describe related work.

III.1 D&C Standard Overview

The OMG D&C specification provides standard interchange formats for meta-data used

throughout the component application development lifecycle, as well as runtime interfaces

used for packaging and planning. Below we focus on the interfaces, meta-data, and archi-

tecture used for runtime deployment and configuration.

III.1.1 Runtime D&C Architecture

The runtime interfaces defined by the OMG D&C specification for deployment and

configuration consists of the two-tier architecture shown in FigureIII.1. This architecture

consists of a set of global entities used to coordinate deployment and a set of node-level

entities used to instantiate component instances and configure their connections and QoS

properties. Each entity in these global and local tiers correspond to one of the following

three major roles:

• Manager. The Manager role, found at the global level as theExecutionManager

and at the node-level as theNodeManager, corresponds to a singleton daemon that

manages all deployment entities in a single context. The Manager serves as the entry

point for all deployment activity and serves as a factory forimplementations of the

ApplicationManagerrole.

• ApplicationManager. The ApplicationManager serves as a lifecycle manager for

running instances of a component application. The global entity is known as the
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Figure III.1: OMG D&C Architectural Overview and Separation of C oncerns

DomainApplicationManagerand the node-level entity is known as theNodeApplication-

Manager. Each ApplicationManager represents exactly one component application

and is used to initiate deployment and teardown of the application. This role serves

as a factory for implementations of theApplicationrole.

• Application. This role represents a deployed instance of a component application,

and is used to finalize the configuration of the associated component instances and

to begin execution of the deployed component application. At the global level, this

entity is called theDomainApplication, while the node-level entity is called theNode-

Application.

III.1.2 D&C Deployment Data Model

In addition to the runtime entities described above, the D&Cspecification also con-

tains an extensive data model that is used to describe component applications throughout

their deployment lifecycle. The meta-data created by the specification is intended for use

as (1) an interchange format between various tools (e.g., development tools, application

modeling and packaging applications, and deployment planning tools) applied to create the

applications and (2) directives that describe the configuration and deployment used by the
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runtime infrastructure. Most entities in the D&C meta-datacontains a section where arbi-

trary configuration information may be included in the form of a sequence of name/value

pairs, where the value may be an arbitrary data type. This configuration information is

used to describe everything from basic configuration information (such as shared library

entrypoints and component/container associations) to more complex configuration infor-

mation (such as QoS properties or initialization of component attributes with user-defined

data types).

This meta-data is broadly grouped into three categories: packaging, domain, and de-

ployment. Packaging descriptors are used from the beginning of application development

to specify component interfaces, capabilities, and requirements. After implementations

have been created, this meta-data is further used to group individual components into as-

semblies, describe pairings with implementation artifacts (i.e., shared libraries), and create

packages that contain both meta-data and implementations that may be installed into the

target environment. Domain descriptors are used by hardware administrators to describe

the capabilities (e.g., CPU, memory, disk space, and special hardware such as GPS re-

ceivers) present in the domain.

Both the domain and packaging meta-data are then used by a planning agent (either a

human or automated software tool) to map the described component instances into physi-

cal reality through the creation of the third type of meta-data supported by the OMG D&C

standard: thecomponent deployment plan(CDP), which contains the following informa-

tion:

• Implementation Artifact Descriptions (IAD) .

The IAD section of the deployment plan describes the variousartifacts that must be

present on a node for successful component deployment. Artifacts include—but are

not limited to—executable files and shared libraries that provide binary implementa-

tions of components.

• Monolithic Deployment Descriptions (MDD). The MDD section references all
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IAD entries necessary for one particular component type. Italso contains additional

configuration information that is necessary for all instances of that type,e.g. entry-

points and factory functions used to load the implementation from shared libraries.

• Instance Deployment Descriptions (IDD). IDD entries represent concrete instances

deployed into the domain. This section of the meta-data describes the node in which

a particular component should be instantiated and containsadditional configuration

properties that should be applied to that instance,e.g., QoS configuration informa-

tion.

• Plan Connection Descriptions (PCD). The PCD section describes all connections

that must be established as part of the deployment. These entries reference appli-

cation IDD entries that are part of a particular connection and contains additional

information (such as port names and QoS configuration) that may be necessary for

the connection to be successfully established.

The OMG D&C standard suggests that all meta-data be serialized to an XML format

for on-disk storage and for use as an interchange format between the various tools used

for application development and planning. This XML format must be converted into the

native binary format used in the interfaces of the runtime infrastructure, however, so the

deployment infrastructure can use it.

III.2 Adaptive D&C Challenges in Component-based DRE Systems

The LE-DAnCE deployment framework is motivated by a desire tohave a deployment

framework that is able to both deploy heterogeneous applications (consisting of potentially

multiple component frameworks in DRE systems) and adapt its behavior to meet changing

requirement and expectations.

This section describes the key challenges of creating a heterogeneous and adaptive
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D&C tool that have motivated the key features of LE-DAnCE thatare described in Sec-

tion III.3.

III.2.1 Challenge 1: Support for Heterogeneous Deployments

The process of applying the PSM to the OMG D&C specification specializes the PIM

using a particular component model (such as CCM or EJB) as the target for deployment.

Transforming the model with the deployment target,i.e. the component model we wish to

deploy, as the object of the transformation has the following two categories of important

categories specialization of the UML model and semantics found in the PIM:

(1) Data Model and runtime model transformation. The data and runtime model that

results from the PIM to PSM transformation is mapped to a format suited to the deployment

of the target component model. Transforming an OMG D&C-basedmodel to CCM, for

example, results in the creation of a data model and runtime interfaces that are specified in

the OMG interface definition language (IDL). This transformation itself does not pose an

inherent problem for supporting heterogeneous deployments (i.e., deployments consisting

of more than one deployment target). This is due to the fact that almost all of the the

IDL data structures that are created are agnostic to the deployment target in that they can

easily represent non-CCM entities. However, some of the IDL data structures contain

concrete data elements that are specific to CCM. For example, the data structures used to

communicate connection meta-data contains CORBA Object references. If an attempt was

made to reuse the same transformation (including the IDL andthe data structures) for other

non-CCM component models these data structures might not be semantically meaningful.

(2) Configuration property language. The transformation defines a particularprop-

erty languagethat communicates target-specific meta-data (such as shared library names,

entry points, and component model specific configuration data) in the D&C deployment

plan. This property language consists of standard-defined name/value pairs that are en-

coded in property fields that decorate most entries in a deployment plan. These fields are
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used by a D&C framework to describe meta-data specific to a component model that is

needed to deploy and configure instances.

SectionIII.3.1 describes how LE-DAnCE addresses the challenge of supporting hetero-

geneous deployments by introducing an Installation Handler, a well-defined interface used

by D&C infrastructure to manage instance life-cycles.

III.2.2 Challenge 2: Customized Behavior During Deployment

Our experience with the DRE system domains described in SectionIII has demonstrated

that applications may have different expectations of the behavior of the D&C infrastructure

based on (1) the domain requirements (e.g., safety-criticality, QoS requirements), or (2)

the stage in the development process (e.g., development/testing vs. deployment/operation).

These differences in behavior include the following:

Customized error handling semantics. The deployment process for an application

may result in many types errors, ranging from incorrect configuration data that may cause

components to initialize improperly to application faultsthat cause runtime entities to crash.

While some applications (e.g., in safety-critical domains) should only be activated if and

only if they have error-free deployments, other applications (i.e., applications that are fault

tolerant) may want their applications activated with “best-effort” deployment semantics,

whereby deployment errors may be suppressed so as to not inhibit successful deployment

and activation. Moreover, some end-users may want to ignorecertain classes of errors (e.g.,

an invalid CPU affinity setting) or errors from individual instances in a deployment.

Application liveness/status monitoring.End-users may want to leverage customized

mechanisms to monitor the liveness/status of particular instances in their applications, par-

ticularly in “best-effort” deployment scenarios. Such mechanisms may be constrained by

the types of information end-users want to capture, or the format and/or transport used to

deliver system events. This information may be useful at theapplication layer (e.g., to
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ensure that certain services are available and to glean information about their configura-

tion) or to a runtime planner/system management servicee.g., to enable automatic failure

detection/recovery).

Customized discovery.Proper deployment and functioning of applications often de-

pends on discovery services that can locate elements of the deployment infrastructure or

to accomplish connections between instances in a deployment plan. Certain domains (e.g.,

security critical) many have stringent requirements as to how these discovery services must

secure and manage access to these services that cannot be foreseen by the D&C imple-

menter

SectionIII.3.2 describes how LE-DAnCE addresses the challenge of providingeasily

customized behavior during deployment by creating a well-defined interfaces users can

leverage to provide customizations invoked during deployment.

III.2.3 Challenge 3: Customization of Behavior at Run-time

D&C infrastructure intended for long-running systems—or intended to provide deploy-

ment services to a variety of applications in DRE systems—must often adapt to changing

conditions and requirements at runtime.

One use-case for adaptive behavior in D&C framework is the ability to select deploy-

ment-time behavior customizations (see SectionIII.2.2) since not all customizations may

be appropriate for a particular deployment. Moreover, it may not be possible to knowa

priori , i.e. before the deployment tools are distributed to a target computing environment,

which component models a D&C infrastructure may need to deploy. For example, an ap-

plication may be assembled from components implemented with several different CCM

implementations, which while compatible at runtime, have differing interfaces for deploy-

ment. Ideally, the D&C infrastructure should be able to upgrade at runtime its capability to

deploy different versions of component models without requiring recompiling or restarting

the infrastructure.
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SectionIII.3.3 describes how LE-DAnCE addresses the challenge customizingbehav-

ior at runtime by providing a facility to deploy installation handlers and interceptors at

runtime.

III.3 Decoupling the D&C Specification from Target Component Model

To address the challenges described in SectionIII.2, the existing DAnCE D&C frame-

work was enhanced with a novel infrastructure entity calledthe LocalityManager. The

LocalityManager represents a key change in how the OMG D&C specification transforms

platform-independent D&C models to target specific component models. Rather than map-

ping the entire specification to a particularcomponent model, we map the data and runtime

model to a particulardistribution middlewarethat is used only to represent and communi-

cate deployment meta-data and deployment directives at runtime. Using such an approach

for mapping the D&C PIM to concrete language elements allowsus to reuse much of the

data model which, as outlined in SectionIII.2.1 is largely agnostic to the deployment target.

NodeApplication

Process Localities

<<spawn>>

LocalityManager

Configuration Plugins

callback

configuration_complete

preparePlan

startLaunch

pre_process_plan

pre_install_instance

install_instance

post_install_instance
Connection Information

Figure III.2: Locality Manager
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The LocalityManager, a key feature in our Locality-Enhanced DAnCE (LE-DAnCE),

is an entity spawned by the NodeApplication entity described in SectionIII.1.1. The Lo-

calityManager entity is intended to be a generic application server, maintaining a strict

separation of concerns betweengenericdeployment logic and thespecificruntime logic

necessary to deploy a particular deployment target. To provide a well-defined interface

between the NodeApplication and the LocalityManager, we have reused elements from the

D&C specification by including operations from theManagerinterface and inheriting from

theApplicationManagerandApplicationinterfaces.

FigureIII.2 shows the initial start up sequence of the LocalityManager.

The remainder of this section describes the structure and functionality of the Locality-

Manager.

III.3.1 Instance Installation Handlers

To address the challenge described in SectionIII.2.1, the implementation of the Locali-

tyManager is entirely agnostic to the particular componentmodel it is attempting to deploy,

delegating allcomponent model specificlife-cycle management operations to pluggable In-

stance Installation Handlers, which we describe below.

Instance installation handlers represent a well-defined interface that is used by the Lo-

calityManager to manage the life-cycle of all entities thatare installed during deployment.

The operations that are included in this interface were heavily influenced by the typical

CCM Component life-cycle, which is shown in FigureIII.3. The included operations al-

low the LocalityManager to install/remove an instance, create/remove a connection, indi-

cate that configuration is complete, and to activate/passivate an instance. The operations

in this interface are currently used by the locality managerto perform all initial deploy-

ment actions, and can be used in the future to provide for application re-deployment and

re-configuration in the future.

It is important to note that not all instance types will require every lifecycle operation
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Figure III.3: Typical CCM Component Lifecycle

in the installation handlers to be implemented. For example, a total of four installation han-

dlers were created to support the installation and management of CIAO components. First,

it is necessary to instantiate a CIAO container to host any components hence an installa-

tion handler was created that initializes the CIAO runtime and is capable of instantiating

containers.

Second, an installation handler was created to support the installation of CCM Homes.

Neither of these first two entities have the same number of lifecycle states as a CCM com-

ponent. For example, neither have connections nor distinctactive/passive states, so the

relevant operations in the handler remain unimplemented. Finally, handlers were created

that are able to load components directly from a dynamicallyloaded shared library or from

an appropriate factory operation on a CCM Home. These handlersimplement all of the

lifecycle operations in the installation handler.

Despite the differences in how each of these entities is installed and behaves at runtime,

the common interface for managing their lifecycle allows the LocalityManager to treat

each as an abstract instance. More importantly, it allows the LocalityManager to easily be

configured to deploy entirely new instance types provided appropriate installation handlers

are loaded.

For example, assume an application is made of only CIAO components. To accomplish

this deployment, the LocalityManager would require two installed installation handlers -

one for the containers that will host the components, a second installation handler that
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manages the life-cycle of the components. In this case, the deployment plan would contain

a instance that represents a container, and other instancesthat represent the components

to be installed. The LocalityManager would first select (based on meta-data in the plan)

the installation handler for the container and invoke the “install” operation, which causes

the container handler to bootstrap the CIAO infrastructure.Next, the LocalityManager

will select the handler for CIAO Components, and invoke “install” operations for each

component instance, which will cause the handler to interact with the already installed

container to create a component.

As a further example, lets assume that we now wish to introduce heterogeneity into

this deployment example by also including non-CCM component instances. This can be

accomplished by annotating the instances with an appropriate identification string and pro-

viding appropriate installation handlers for the new component model.

III.3.2 Deployment Portable Interceptors

Addressing the challenge described in SectionIII.2.2, by providing a mechanism for

end-users to customize the behavior of the middleware, the LocalityManager also imple-

ments a mechanism which can be used to modify the elements of the deployment plan both

before and after invocation of each life-cycle management operation. This mechanism,

which we call “Deployment Portable Interceptors”, was inspired by CORBA Portable In-

terceptors [46], and is described below.

The Deployment Portable Interceptor (DPI) facility in the LocalityManager allows end-

users to supplement or modify behavior during deployment. The operations in the DPI

interface derived from the operations present in the Installation Handler interface. Each

operation in the Installation Handler interface resulted in two operations added to the DPI

interface – one which is invokedbeforethe lifecycle operation, and another which is in-

voked after.

In Figure III.2, for example, the LocalityManager invokes a DPI hook before(a pre
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hook) and after (aposthook) theinstall_instancelifecycle operation. All of the “pre” in-

terceptors receive the same parameters as their associatedInstance Handler operation, and

are allowed to manipulate those parameters to change the behavior of the operation. For ex-

ample, an alternative discovery service for connections may be implemented by overriding

thepre_connectinterception point with logic that would retrieve the appropriate connection

reference and modify the parameters passed to theconnect_instanceoperation.

The “post” interceptors generally receive the same parameters of the lifecycle operation

that preceded them, in addition to an additional parameter that contains any error result

(i.e., exception) that may have arisen during execution. Unlike the “pre” interceptor, the

“post” event is only allowed to manipulate the error parameter, if present. This parameter

allows the interceptor to, for example, log success or failure of the event (i.e., for a system

health and status service), or to clear the error status, causing that error to be overlooked by

the LocalityManager implementation (i.e., for implementation of best-effort deployment

semantics).

III.3.3 Configuration of Handlers and Interceptors

Finally, to address the challenge outlined in SectionIII.2.3 and provide a mechanism to

provision both Installation Handlers and Deployment Interceptors at runtime, the Locality-

Manager is capable of installing these entities during deployment as they would any other

instance as described below.

Allowing runtime adaptation of the deployment framework requires the ability to dy-

namically add or remove instance installation handlers anddeployment interceptors on a

per-deployment basis. In the LocalityManager, we have added a facility which invokes

user-supplied configuration plug-ins during start-up through a well-defined interface. In

FigureIII.2, this process takes place after the LocalityManager initially calls back to the

NodeApplication to receive configuration meta-data that ispresent in the deployment plan.

Meta-data provided to the LocalityManager consists of a series of name/value pairs.
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The name of each property is used to select an appropriate configuration plug-in to which

the value is provided. By including both a property on the LocalityManager instance in the

plan that describes the desired Instance Handlers and Deployment Interceptors for the plan,

and a configuration plug-in that is able to interpret that property, it is possible to load them

before the LocalityManager attempts to install any instances in the plan.

This facility has utility outside the configuration of Handlers and Interceptors. For ex-

ample, we used these plug-ins to change QoS parameters (suchas priority or CPU affinity)

of the LocalityManager instance at deployment time withoutintroducing platform-specific

code into the LocalityManager.

III.4 Related Work

DeployWare [21] is a framework for managing heterogeneous software deployments

in grid environments. Deployments in this system are described using a domain-specific

modeling language that captures deployment meta-data in a manner agnostic to the eventual

deployment target. Heterogeneous deployments are then accomplished by using appropri-

ate “personalities”, which are hierarchies of Fractal components that implement parts of the

deployment process. Unlike the OMG D&C specification, DeployWare does not provide a

well-defined set of meta-data that can be used throughout theapplication development life-

cycle nor does it provide a way to model hardware resources inthe computational domain.

Such meta-data is desirable for fostering both reuse and a library of COTS component

applications. As a result, DeployWare can be harder to use inlarger projects in which

multiple, independent teams must collaborate.

ADAGE [38] is another grid deployment tool that is capable of heterogeneous deploy-

ment capable of deploying both CCM and MPI applications. In this system, applications

are described in a middleware-specific description language which is provided to a “trans-

lator” that converts that description into a middleware agnostic format called the Generic

Application Description (GADe) model. Like the OMG D&C specification, it provides a
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description language for hardware resources, but does not provide an expressive vehicle for

component meta-data. For example, it is not possible to capture specific component/node

pairings, which are decided by the deployment tool, or to capture QoS attributes, such

as Processor/Core affinity or process priority. While this automatic planner included in

ADAGE makes the planning process easier for the grid environments for which this tool is

intended, it is not desirable for DRE systems in which specificcontrol over the application

topology may be required to provide sufficient quality of service for the application.

SOFA [10] is a component model with its own D&C framework that provides many

advanced features for component-based software, including behavior specification and ver-

ification, software connectors for supporting many communication middleware platforms,

and a robust redeployment mechanism. While SOFA’s componentmodel and D&C frame-

work have many advanced and interesting features, it supports neither heterogeneous de-

ployment nor adaptation of the behavior of the D&C frameworkfound in DAnCE.

The work that comes close to the goals of LE-DAnCE is describedin [67]. The authors

also use hierarchical separation of concerns to provide concurrent, and hence faster deploy-

ments. A major difference of this work with that of LE-DAnCE isthat the former does not

consider the OMG D&C specification but rather some general concepts of deployment and

configuration. One of the primary goals of LE-DAnCE is to provide solutions to standard-

ized technologies for wide applicability. Naturally, in LE-DAnCE we seek solutions that

will not break the standards, yet enable us to provide elegant performance optimizations.

The work presented in [30] seeks to find deployment solutions in dynamic environ-

ments. While the goal of dynamic environments is similar to that of LE-DAnCE, the focus

of this related research is mostly on deploying a hierarchical component – essentially an

assembly of components treated as a single unit – while ensuring that the deployment of

individual monolithic units do not violate architectural constraints of the platform and the

network before deploying that component.
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III.5 Summary and Lessons Learned

This chapter described the LocalityManager, which is an extension to the OMG D&C

specification and key feature of LE-DAnCE, that adds three important capabilities to the

original standardized deployment framework to support heterogeneous deployment and

adaptation. First, the LocalityManager usesInstance Installation Handlersto deploy ap-

plications that use heterogeneous component models by encapsulating middleware-specific

deployment logic in a well-defined interface that handles all lifecycle events. Second, it

can adapt the behavior of the deployment tool-chain at runtime through the use ofDeploy-

ment Portable Interceptors. Third, the D&C tool-chain can adapt more readily to changing

requirements by having the ability to load both installation handlers and interceptors at

runtime.

The implementation of heterogeneous deployment and interceptors found in the Local-

ityManager described in this chapter is complicated by the fact that the deployment plan

meta-data defined by the D&C specification is poorly suited tocapture deployment order-

ing or dependencies. It is therefore hard to determine the order in which instances should

be installed when there are implicit dependencies,e.g., CIAO containers must be installed

prior to the components they host. This challenge was addressed in the LocalityManager by

following a FIFO approach to select the order of installing instance types. While sufficient

for current end-users, this approach will not scale as the number of installed interceptors

and/or installation handlers increase.

This this issue could be addressed by adapting the hierarchical deployment specifica-

tion techniques in the DeployWare and SOFA component models. In particular, this prior

work could be leveraged to build robust redeployment and reconfiguration capabilities into

DAnCE to support adaptive deployment behavior in applications managed by this frame-

work. Moreover, as we gain a complete understanding of the shortcomings of the OMG

D&C specification and the associated PIM to PSM mapping process, we will work within

the OMG to produce an updated specification.
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CHAPTER IV

DETERMINISTIC AND EFFICIENT DEPLOYMENT IN COMPONENT-BASED
ENTERPRISE DISTRIBUTED REAL-TIME AND EMBEDDED SYSTEMS

Component-based software engineering techniques are increasingly applied to develop

large-scaledistributed real-time and embedded(DRE) systems, such as air-traffic man-

agement [18], shipboard computing environments [39], and distributed sensor webs [75].

These domains are often characterized as “open” since applications in these domains must

contend not only with changing environmental conditions (such as changing power lev-

els, operational nodes, or network status), but also evolving operational requirements and

mission objectives [24].

To adapt to changing environments and operational requirements, it may be necessary

to change the deployment and configuration characteristicsof these DRE systems at run-

time. Examples of potential adaptations include deployment or tear down of individual

component instances, changing connection configuration, or altering QoS properties in the

target component runtime. As a result of stringentquality of service(QoS) requirements

in these domains, it is important that any changes to DRE system deployment and config-

uration occur as quickly and predictably as possible,i.e., DRE systems expect short and

bounded deployment latencies.

Not only are timely and dependable runtime deployment and configuration changes

essential in DRE systems; even initial application startup time can be an important metric.

For example, in extremely energy-constrained systems, such as distributed sensor networks,

a common power saving strategy may involve completely deactivating field hardware and

periodically restarting it to take new measurements or activate actuators [64]. In such

environments, deployments must be fast and time-bounded.
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To support these requirements, the efficiency and QoS provided by the deployment in-

frastructure should be considered alongside the componentmiddleware used to develop

DRE systems. Standards, such as the OMGDeployment and Configuration(D&C) speci-

fication [59] for component-based applications, have emerged in recentyears.1 The OMG

D&C specification provides comprehensive development, packaging, and deployment frame-

works for a wide range of component middleware.

In the OMG D&C specification, deployment instructions are delivered to the deploy-

ment infrastructure via acomponent deployment plan(CDP), which contains the complete

set of deployment and configuration information for component instances and their asso-

ciated connection information. During DRE system initialization, such information must

be parsed, components deployed on the nodes, and the system activated in a timely and

deterministic manner. In this chapter, the timeliness of the deployment infrastructure to

execute the deployment plan is referred to as the “deployment latency,” which includes the

time starting when a CDP is provided to the deployment infrastructure to the time at which

all deployment instructions have been executed and the system activated.

This chapter motivates and describes architectural enhancements made to the OMG

D&C specification to achieve determinstic deployment latencies for large-scale DRE sys-

tems. The solution is called theLocality-Enhanced Deployment and Configuration En-

gine(LE-DAnCE), which extends the earlierDeployment and Configuration Engine(DA-

nCE) [14]. LE-DAnCE was developed with the sole aim of cleanly separating concerns

defined by the OMG D&C specification and demonstrating its feasibility. After applying

DAnCE to a range of representative DRE systems [39, 64], however, the lack of appro-

priate optimizations and architectural limitations of theOMG D&C specification yielded

performance bottlenecks that adversely impacted deployment latencies. Moreover, these

performance bottlenecks stemmed from more than just limitations with the original DAnCE

1Although originally developed for theCORBA Component Model(CCM) [56], the OMG D&C specifi-
cation is defined via a UML metamodel that is applicable to many other component models.
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implementation, but involve inherent architectural limitations with the OMG D&C specifi-

cation itself. This paper explains how LE-DAnCE overcomes these limitations.

The remainder of this chapter is organized as follows: Section IV.1 summarizes the

OMG D&C specification and analyzes key sources of overhead stemming from architec-

tural limitations with the OMG D&C specification and naïve implementation techniques

adopted in DAnCE; SectionIV.2 describes how these sources of overhead were addressed,

focusing on deployment latency; SectionIV.3 analyzes the results of experiments con-

ducted to compare LE-DAnCE with DAnCE; SectionIV.4 compares this research with

related work on deploying and configuring large-scale distributed applications; and Sec-

tion IV.5 presents concluding remarks and lessons learned.

IV.1 Impediments to Efficient and Deterministic Deployment Latency

This section presents an overview of the process used by the OMG Deployment and

Configuration(D&C) specification for component-based applications and then describes

how an implementation of this specification called theDeployment and Configuration En-

gine(DAnCE) [14] supports the separation of concerns espoused in the D&C specification.

Key sources of overhead are exposed that impact deployment latencies in DRE systems

and pinpoint the architectural limitations in the D&C specification that exacerbate these

overheads. An overview of the meta-data and interfaces defined by the standard may be

found in SectionIII.1.

IV.1.1 OMG D&C Deployment Process

Component application deployments are performed in a four phase process that is cod-

ified in the OMG D&C standard. TheManagerandApplicationManagerare responsible

for the first two phases and theApplication is responsible for the final two phases, all of

which are described below:

1. Plan preparation. In this phase, a CDP is provided to theExecutionManager, which
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(1) analyzes the plan to determine which nodes are involved in the deployment and

(2) splits the plans into “locality-constrained” plans, one for each node containing

only information for each node. These locality-constrained plans have only instance

and connection information for a single node. EachNodeManageris then contacted

and provided with its locality-constrained plan, which causes the creation ofNode-

ApplicationManagerswhose reference is returned. Finally, theExecutionManager

creates aDomainApplicationManagerwith these references.

2. Start launch. When theDomainApplicationManagerreceives the start launch in-

struction, it delegates work to theNodeApplicationManagerson each node. Each

NodeApplicationManagercreates aNodeApplicationthat loads all component in-

stances into memory, performs preliminary configuration, and collects references for

all endpoints described in the CDP. These references are thencached by aDomain-

Applicationinstance created by theDomainApplicationManager.

3. Finish launch. This phase is started by an operation on theDomainApplication

instance, which apportions its collected object references from the previous phase

to eachNodeApplicationand causes them to initiate this phase. All component in-

stances receive final configurations and all connections arethen created.

4. Start. This phase is again initiated on theDomainApplication, which delegates to

the NodeApplicationinstances and causes them to instruct all installed component

instances to begin execution.

IV.1.2 Sources of Deployment Latency Overheads

The remainder of this section discusses the sources of overheads that impact deploy-

ment latencies in the context of the architecture defined by the OMG D&C specification.

The existing DAnCE [14] OMG D&C implementation is used as a vehicle to demonstrate

these sources of overhead. The major sources of latency overhead stem from multiple
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complexities in the OMG D&C standard, including the processing of deployment meta-

data from disk in XML format and an architectural ambiguity in the runtime infrastructure

that encourages sub-optimal implementations.

IV.1.3 Challenge 1: Parsing Deployment Plans

Component application deployments for OMG D&C are describedby a data structure

that contains all the relevant configuration meta-data for the component instances, their

mappings to individual nodes, and any connection information required. This CDP is seri-

alized on disk in a XML file whose structure is described by an XML Schema defined by

the OMG D&C standard. This XML document format for CDP files presents significant

advantages by providing a simple interchange format between modeling tools [25], is easy

to generate and manipulate using widely available XML modules for popular programming

languages, and enables simple modification and data mining by text processing tools, such

as perl, grep, sed, and awk.

Processing these CDP files during deployment and even runtime, however, can lead to

substantial deployment latency costs, as shown in SectionIV.3.2. This increased latency

stems from the following sources:

• XML CDP file sizes grow substantially as the number of component instances and

connections in the deployment increases, which causes significant I/O overhead to

load the plan into memory and to validate the structure against the schema to ensure

that it is well-formed.

• The XML document format cannot be directly used by the deployment infrastructure,

so it must first be converted into the native OMGInterface Definition Language(IDL)

format used by the runtime interfaces of the deployment framework.

In many enterprise DRE systems, component deployments that number in the thousands

are not uncommon, and component instances in these domains will exhibit a high degree
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of connectivity. Given the structure of CDPs outlined in Section III.1.2, both these factors

contribute to large plans. While the above latency source is most immediately applicable

to initial application deployment, it can also present a significant problem during potential

re-deployment activities at application runtime that involve significant changes to the ap-

plication configuration. While CDP files that represent re-deployment or re-configuration

instructions may not be as large as for the initial deployment, the responsiveness of the

deployment infrastructure during these activities is evenmore important to ensure that the

application continues to meet its stringent QoS and end-to-end deadlines during online

modifications.

SectionIV.2.1 describes how LE-DAnCE resolves Challenge 1 by pre-processing large

deployment plans offline into a portable binary representation.

IV.1.4 Challenge 2: Serialized Execution of Deployment Actions

The complexities presented in this section involve the serial (non-parallel) execution of

deployment tasks. The related sources of latency in DAnCE exist at both the global and

node level. At the global level, this lack of parallelism results from the underlying CORBA

transport used by DAnCE. The lack of parallelism at the local level, however, results from

the lack of specificity in terms of the interface of the D&C implementation with the target

component model that is contained in the D&C specification.

The D&C deployment process presented in SectionIV.1.1 enables global entities to

divide the deployment process into a number of node-specificsubtasks. Each subtask is

dispatched to individual nodes using a single remote invocation, with any data produced

by the nodes passed back to the global entities via “out” parameters that are part of the

operation signature described in IDL. Due to the synchronous nature of the CORBA mes-

saging protocol used to implement DAnCE, the conventional approach is to dispatch these

subtasks serially to each node. This approach is simple to implement, in contrast to the

complexity of using the CORBAasynchronous method invocation(AMI) mechanism [6].
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To minimize initial implementation complexity, synchronous invocation was used in

an (admittedly shortsighted) design choice in an earlier implementation of DAnCE. This

global synchronicity did not cause problems for relativelysmall deployments (less than 100

components). As the number of both nodes and instances assigned to those nodes begin to

scale up, however, this global/local serialization imposes a substantial cost in deployment

latency.

This serialization problem, however, is not limited only tothe global/local task dis-

patching and exists in the node-specific portion of the infrastructure as well. The D&C

specification provides no guidance in terms of how the NodeApplication should interface

with the target component model (in this case, CCM), instead leaving such an interface as

an implementation detail. Early versions of DAnCE directly instantiated the CCM con-

tainer and components directly in the address space of the NodeApplication. To alleviate

the resulting tedious and error-prone deployment logic, welater separated the CCM con-

tainer into a separate process. In DAnCE, the D&C architecture was implemented using

three processes, as shown in FigureIV.1.
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Figure IV.1: Simplified DAnCE Architecture

The ExecutionManager and NodeManager processes instantiate their associated App-

licationManager and Application instances in their address space. When the NodeApplication

installs concrete component instances it spawns one (or more) separate component server
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processes as needed. The component server processes use an interface derived from an

older version of the CCM specification that allows the NodeApplication to individually

instantiate containers and component instances. This approach is similar to that taken by

CARDAMOM [58], which is another CCM implementation tailored for enterprise DRE

systems, such as air-traffic management systems.

While the DAnCE architecture shown in FigureIV.1 improved upon the original imple-

mentation that collocated all CCM entities in NodeApplication address space, it was still

problematic with respect to parallelization. Rather than performing only some processing

and delegating the remainder of the concrete deployment logic to the component server

process, the DAnCE NodeApplication implementation insteadintegrates all logic neces-

sary for installing, configuring, and connecting instancesdirectly, as shown in FigureIV.2.

Locality processing logic

Component Server Launching Logic

CCM Home Installation Logic

CCM Component Installation Logic

CCM Component Connection Logic

CIAO Local Facet Connection Logic

CIAO Teardown Logic

NodeApplication Implementation

Figure IV.2: DAnCE NodeApplication Implementation

This tight integration made it hard to optimize the node-level installation process for

the following reasons:

• The amount of data shared by thegeneric deployment logic(the portion of the Node-

Application implementation that interprets the plan) and the specific deployment

logic (the portion which has specific knowledge of how to manipulate components)
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made it hard to parallelize their installation in the context of a single component

server since that data must be modified during installation.

• Since groups of components installed to separate component servers can be consid-

ered separate deployment sub-tasks, these groupings couldbe also parallelized.

SectionIV.2.2 describes how LE-DAnCE resolves Challenge 2 by leveraging asyn-

chronous features of the underlying CORBA middleware to paralellize at the global level.

IV.2 Overcoming Deployment Latency Bottlenecks in LE-DAnCE

This section describes the enhancements we developed forLocality Enhanced DAnCE

(LE-DAnCE), which is a new implementation of the OMG D&C standard that addresses

the challenges outlined in SectionIV.1.2. SectionIV.2.1 describes how we reduced de-

ployment latency arising from the challenge of processing the XML-based deployment de-

scriptors outlined in SectionIV.1.3. SectionIV.2.2 then introduces techniques LE-DAnCE

uses to increase deployment and configuration parallelism to overcome the challenge of

deployment latency bottlenecks in DAnCE outlined in SectionIV.1.4.

IV.2.1 Improving Runtime Plan Processing

There are two approaches to resolving the challenge of XML parsing outlined in Sec-

tion IV.1.3.

1. Optimize the XML to IDL processing capability. DAnCE uses a vocabulary-

specific XML data binding [83] tool called theXML Schema Compiler(XSC). XSC reads

D&C XML schemas and generates a C++-based interface to XML documents built atop

theDocument Object Model(DOM) XML programming API. In general, DOM is a time/-

space-intensive approach since the entire document must first be processed to fully con-

struct a tree-like representation of the document before the XML-to-IDL translation process

can occur.
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An alternative is to use theSimple API for XML(SAX), which uses an event-based

processing model to process XML files as they are read from disk. While a SAX-based

parser would reduce the time/space spent building the in-memory representation of the

XML document, the performance gains may be too small to invest the substantial develop-

ment time required to re-factor the DAnCE configuration handlers, which serve as a bridge

between the XSC generated code and IDL. In particular, a SAX-based approach would still

require a substantial amount of runtime text-based processing. Moreover, CDP files have

substantial amounts of internal cross-referencing, whichwould require the entire document

be processed before any actual XML-to-IDL conversion couldoccur.

2. Pre-process the XML files for latency-critical deployments. This optimization ap-

proach (used by LE-DAnCE) is accomplished via a tool that leverages the existing DOM-

based XML-to-IDL conversion handlers in DAnCE to (1) convertthe CDP into its runtime

IDL representation and (2) serialize the result to disk using theCommon Data Represen-

tation (CDR) [55] binary format defined by the CORBA specification. This platform-

independent binary format used to store the CDP on disk is the same format used to trans-

mit the plan over the network at runtime. The advantage of this approach is that it leverages

the heavily optimized de-serialization handlers providedby the underlying CORBA imple-

mentation (TAO) to create an in-memory representation of the CDP data structure from the

on-disk binary stream.

IV.2.2 Parallelizing Deployment Activity

To support parallelized dispatch of deployment activity atthe node level, OMG D&C

standard was enhanced by adding a LocalityManager to LE-DAnCE. The LocalityManager

unifies all three deployment roles outlined in SectionIII.1.1, and functions as a replacement

for the component server in FigureIV.1. An overview of LE-DAnCE’s LocalityManager

appears in [65].

The LE-DAnCE node-level architecture (e.g., NodeManager, NodeApplicationManager,
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and NodeApplication) now functions as a node-constrained version of the global portion of

the OMG D&C architecture. Rather than having the NodeApplication directly causing the

installation of concrete component instances, this responsibility is now entirely delegated

to LocalityManager instances. The node-level infrastructure performs a second “split” of

the plan it receives from the global level by grouping component instances into one or more

component servers. The NodeApplication then spawns a number of LocalityManager pro-

cesses and delegates these “process-constrained” (i.e., containing only components and

connections apropos to a single process) plans to each process in parallel.

Unlike the previous DAnCE NodeApplication implementation,the LE-DAnCE Local-

ityManager functions as a generic application server that maintains a strict separation of

concerns between the general deployment logic required to analyze the plan and the spe-

cific deployment logic required to actually install and manage the lifecycle of concrete

component middleware instances. This separation is achieved using entities calledInstance

Installation Handlers, which provide a well-defined interface for managing the lifecycle of

a component instance, including installation, removal, connection, disconnection, and acti-

vation. Installation Handlers are also used in the context of the NodeApplication to manage

the life-cycle of LocalityManager processes.

FigureIV.3 shows the startup process for a LocalityManager instance. During the start

launch phase of deployment, an Installation Handler hostedin the NodeApplication spawns

a LocalityManager process and handles the initial handshake to provide configuration infor-

mation. The NodeApplication then instructs the LocalityManager to begin deployment by

invoking preparePlan() andstartLaunch() . During this process, the Locality-

Manager will examine the plan to determine what instance types must be installed (e.g.,

container, component, or home). After loading the appropriate Installation Handlers, the

LocalityManager will delegate the actual installation process for these instances via the

install_instance() method on the Installation Handler.

The new LE-DAnCE LocalityManager and Installation Handlersmake it substantially
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Figure IV.3: LocalityManager Startup Sequence

easier to parallelize than in DAnCE. Parallelism in both the LocalityManager and Node-

Application is achieved using an entity called theDeployment Scheduler, which is shown in

FigureIV.4. The Deployment Scheduler combines the Command pattern [23] and the Ac-

tive Object pattern [69]. Individual deployment actions (e.g., instance installation, instance

connection,etc.) are encased inside an Action object, along with any required meta-data.

Each individual deployment action is an invocation of a method on an Installation Handler,

so these actions need not be re-written for each potential deployment target. Error handling

and logging logic is also fully contained within individualactions, further simplifying the

LocalityManager.

Individual actions,e.g., install a component or create a connection, are scheduled for

execution by a configurable thread pool, which can provide user-selected single-threaded

or multi-threaded behavior, depending on the requirementsof the application. This thread

pool could also be used to implement more sophisticated scheduling behavior. For example,

it might be desirable to implement a priority-based scheduling algorithm that dynamically

reorders the installation of component instances based on meta-data present in the plan.

During deployment, the LocalityManager determines which actions to perform during

each particular phase and creates one Action object for eachinstruction. These actions
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Figure IV.4: DAnCE Deployment Scheduler

are then passed to the deployment scheduler for execution while the main thread of con-

trol waits on a completion signal from the Deployment Scheduler. Upon completion, the

LocalityManager reaps either return values or error codes from the completed actions and

completes the deployment phase.

To provide parallelism between LocalityManager instanceson the same node, the LE-

DAnCE Deployment Scheduler is also used in the implementation of the NodeApplication,

along with an Installation Handler for LocalityManager processes. Using the Deployment

Scheduler at this level also helps to overcome a significant source of latency whilst conduct-

ing node-level deployments. Spawning LocalityManager instances can take a significant

amount of time compared to the deployment time required for component instances, so

parallelizing this process can achieve significant latencysavings when application deploy-

ments have many LocalityManager processes per node.

IV.3 Experimental Results

This section analyzes the results of experiments we conducted to empirically evaluate

LE-DAnCE’s ability to overcome the deployment latency bottlenecks we encountered in

DAnCE, as described in SectionIV.2.
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IV.3.1 Overview of Hardware and Software Testbed

These experiments were conducted in ISISLab (www.isislab.vanderbilt.edu ),

which consists of 4 IBM Blade centers consisting of 14 blades each. Individual blades are

equipped with dual 2.8 GHz Intel Xeon CPUs, 1GB of RAM, and 4 Gigabit network in-

terface cards. Connectivity is provided by 6 Cisco 3750G-24TSswitches and a single

3750G-48TS switch. ISISLab leverages the Emulab [82] configuration software to provide

customized system configurations and virtual network topologies.

For the following experiments, a deployment of 11 nodes was created with Fedora Core

8 with G++ 4.1.2 used to compile the 1.0 release of DAnCE and CIAOmiddleware frame-

works. The default Linux kernel included with Fedora Core 8 was replaced with a vanilla

Linux kernel version 2.6.23 patched with the latest Real-Time Pre-Emption patchset [43].

The component application deployed as part of these tests included a single component

type with one provided port (’facet’) and one required port (’receptacle’). The component

application itself is intentionally simple,i.e. the component implementations contain mini-

mal application logic to emphasize sources of latency in thedeployment framework due to

the, rather than latencies due to implementation details ofthe application components.

All results reported below are the average of 15 repetitionsof the experiment.

IV.3.2 Experiment 1: Measuring XML Processing Overhead

Experiment design. A python script was used to generate XML deployment descrip-

tors for applications containing 500, 1,000, 5,000, 10,000, 50,000, and 100,000 component

instances equally distributed over 10 nodes. Each component has a single connection to one

other component. Each of these XML-based deployment plans was then converted to an

in-memory IDL representation using the same methods used during a normal LE-DAnCE

deployment.
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Experiment results. TableIV.1 contains the results for the plans described at the be-

ginning of this section, and the timing results for the pre-processing described in Sec-

tion IV.2.1.

Table IV.1: CDP Sizes and Conversion Times

Components XML Size CDR Size Conversion CDR Read

500 112 KB 48 KB 0.196 Sec .001982 Sec
1000 304 KB 120 KB 0.323 Sec .003602 Sec
5000 1.4 MB 608 KB 3.974 Sec .015747 Sec
10000 2.7 MB 1.2 MB 9.543 Sec .030199 Sec
50000 13.1 MB 5.8 MB 540.003 Sec .147542 Sec
100000 27 MB 12 MB 1038.288 Sec .285286 Sec

This table shows that the time taken to parse an XML deployment plan and convert it to

IDL can be significant. It is worth noting that the plans generated as part of this experiment

contain the absolute minimum meta-data necessary to successfully deploy the components.

If additional configuration information is included — such as attribute initialization (es-

pecially involving user-defined complex data types), QoS configurations, or densely con-

nected plans — the amount of XML that must be converted for a given component count

can increase quickly. In this case, we are attempting to showcase the lower bound on the

bottleneck — any additional meta-data included in a plan will always be larger than the test

case excercised here.

While the on-disk sizes of the various CDP files are somewhat interesting, of particular

interest are the conversion times from the on-disk format tothe in-memory IDL format used

by the deployment tools. The results in TableIV.1 demonstrate that the CDR encoding is

an improvement of several orders of magnitude over runtime XML processing. Moreover,

the approach described in SectionIV.2.1 exhibits a linear increase in the plan processing

time as a function of the number of instances, rather than theexponential behavior shown

by runtime XML conversion.
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IV.3.3 Experiment 2: Measuring Application Deployment Latency

Table IV.2: Deployment Times (Seconds) for Plans with No Delay

Components Total Time Prepare Plan Start Launch Finish Launch Start

1000 1.925 1.761 0.1426 0.0135 0.0061
5000 41.163 40.130 0.2870 0.0255 0.0179
10000 165.623 165.092 0.4576 0.0409 0.0316

Experiment design.To gauge the deployment latency incurred by LE-DAnCE across

a wide range of deployment plan sizes, the component application deployments generated

for the experiment in SectionIV.3.2 were executed. Each plan was executed a total of 25

times, and the reported measurements represent the arithmetic mean of all executions.

Experiment results. TableIV.2 shows the results from this experiment. These results

demonstrate the substantial deployment latency savings ofparallel deployment compared to

serialized deployments. If we disregard the plan preparation timings, the remaining phases

of the deployment would require ten times the amount taken bythe remaining phases (e.g.,

the 1,000 component deployment would require at least 1.622seconds additional time).

The timing results for the plan preparation phase reveal yetanother source of deploy-

ment latency. The plan preparation phase includes two important steps, as discussed in

SectionIV.1.1. The first is a split plan operation to divide the global plan into locality-

constrained plans for each node. Next, each node in the deployment performs its own

local split to determine how many LocalityManager instances to start, as discussed in Sec-

tion IV.2.2. The nonlinear growth of the time required for this phase shown in TableIV.2

makes extremely large deployments infeasible, which is thereason why results for 50,000

and 100,000 components are not included.
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IV.3.4 Experiment 3: Measuring the Predictability of Deployment Latency

Experiment design.This experiment characterizes the predictability of the deployment

latency performance of LE-DAnCE. To accomplish this, we repeatedly deployed the test

application with 1,000 components and analyzed the performance metrics over 500 itera-

tions. After each deployment, the testbed was reset and the LE-DAnCE daemons restarted

on each node. For this experiment, all DAnCE executable were executed as root and placed

in the round robinSCHEDRRscheduling class with the highest possible priority.

Experiment results. The results for this experiment are shown in FigureIV.5.
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Figure IV.5: Latency Jitter for 1000 Component Deployment

This figure represents the deployment latencies over the course of 500 iterations for

the total deployment latency and the two most time consumingphases: plan preparation

and start launch. The top line of the figure represents the total latency, the middle line

represents plan preparation, and the bottom represents thestart launch phase (the remaining

two phases of deployment took too little time to graph). Thisfigure shows that the LE-

DAnCE latency results are relatively stable.

Of particular interest in FigureIV.5 is identifying the source of most jitter in these

results. Most spikes in the total deployment latency are also accompanied by spikes in the

plan preparation deployment phase. This is likely due to jitter due to network access, as
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control messages to individual nodes in this phase contain portions of a large deployment

plan and are substantially larger than the messages for other phases.

Table IV.3: Deployment Latency Results for 600 iterations of a 10 00 component
deployment.

Total Time Prepare Plan Start Launch Finish Launch Start

Mean 1.9311 1.7476 0.16548 0.01275 0.0049
Max 2.2874 2.0043 0.41976 0.05526 0.0127
Min 1.8503 1.6890 0.13752 0.01072 0.0045
Std. Dev. 0.0780 0.0402 0.05581 0.00559 0.00098

IV.4 Related Work

This section compares our research on LE-DAnCE with related work in the area of

deploying and configuring large-scale distributed applications.

GoDIET [77] is a deployment framework intended for grid-based distributed applica-

tions. GoDIET uses XML meta-data defined by a UML model to (1) describe applications

and their requirements and (2) wrap applications they wish to deploy inside components

based on the Fractal [8] component model. They propose a hierarchical approach to de-

ployment that addresses deployment latency challenges in grid-based distributed systems.

Their approach first partitions nodes present in the domain into two or more segments and

then spawns separate deployment processes for those domains. GoDIET is optimized for

deployment of applications to grid domains with hundreds ofnodes but an extremely lim-

ited number of components per node, and performs best when nodes have a mapped NFS

mount point in the local file system.

In contrast, LE-DAnCE focuses on applications with high component density,e.g.,such

deployments will often have hundreds or thousands of components per node, often de-

ployed across tens or hundreds of processes within that node. In addition, applications in
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DRE domains often cannot use a shared file system to distributecomponent implementa-

tions due to inherent complexities in the network topology,security concerns, or hetero-

geneity of the target domain. Moreover, LE-DAnCE automatically coordinates connec-

tions between components, whereas the connections must be performed programmatically

via GoDIET.

DeployWare [21] is another framework for managing deployments in grid environ-

ments based on the Fractal [8] component model. It supports heterogeneous deployments

and currently supports middleware intended for the grid environment, such as MPI [5] and

GridCCM [66]. Like LE-DAnCE, DeployWare captures deployment meta-datain a manner

that is relatively agnostic to the eventual deployment target. Unlike LE-DAnCE, however,

DeployWare does not capture more complex deployment meta-data (such as connection

information and QoS metadata) required for DRE systems. LikeGoDIET, DeployWare is

optimized for delivering relatively few instances/components to a large number of nodes,

and thus uses a similar approach to optimizing deployment latency by partitioning the node

into subgroups. In contrast, LE-DAnCE provides a more generic D&C solution by support-

ing low deployment latencies across a large number of possible hardware and component

application sizes and configurations.

The work that comes close to the goals of LE-DAnCE is describedin [67], which uses

hierarchical separation of concerns to provide concurrent—and hence faster—deployments.

This work differs from LE-DAnCE since it does not focus on a standard (e.g., the OMG

D&C specification), but rather some general concepts of deployment and configuration. In

contrast, LE-DAnCE is aimed at providing a standardized solution to enhance applicability

while also optimizing performance and minimizing/bounding latency.

The work presented in [30] seeks to find deployment solutions in dynamic environ-

ments. The focus is on deploying a hierarchical component (which is an assembly of com-

ponents treated as a single unit), while ensuring the deployment of individual monolithic
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units do not violate architectural constraints of the platform and the network before de-

ploying that component. While the goal of their deployment solution is similar to that of

LE-DAnCE, their approach differs in its focus on the deployment of hierarchical compo-

nents (i.e. amalgamations of primitive components with other hierarchical components),

which they represent at runtime via “membrane” components that act as proxies for in-

ternal primitive components. In contrast, the meta-data present in the D&C specification

supports such hierarchies at design time, but is flattened byLE-DAnCE for runtime deploy-

ment to avoid the overhead of additional component instances implemented as membranes

at a per-process level.

CaDAnCE [15] was an earlier effort we conducted to reduce latency and increase pre-

dictability of DRE system D&C operations. It focused on simultaneous deployment of mul-

tiple applications from a single deployment plan in which certain components are shared

among multiple sub-applications. CaDAnCE demonstrated thatdependencies among these

sub-applications can yield deployment-order priority inversions where low-priority ap-

plications may complete their deployments ahead of a mission-critical sub-application.

CaDAnCE solved this problem using priority-inheritance to ensure determinstic deploy-

ment for high-priority sub-applications that are deployedsimultaneously with other low-

priority sub-applications and with which they share components. The goals and approach

of CaDAnCE are orthogonal to the goals of LE-DAnCE since CaDAnCE focuses on re-

ordering component deployment and installation of particular components within the con-

text of a single application, whereas LE-DAnCE focuses on reducing overall deployment

latency for an entire application.

IV.5 Summary and Lessons Learned

This chapter described the OMGDeployment and Configuration(D&C) specification

for component-based applications and explored sources of deployment latency overhead

that degraded the responsiveness of theDeployment And Configuration Engine(DAnCE),
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which is an open-source implementation of the D&C specification. Key features of the

Locality-Enhanced Deployment and Configuration Engine(LE-DAnCE) were described

that improved DAnCE to alleviate key sources of deployment latency overhead asssoci-

ated with XML pre-processing andLocalityManagerarchitecture. The effectiveness of the

LE-DAnCE LocalityManagerarchitecture was then empirically evaluated by (1) deploy-

ing a number of high component-density applications to demonstrate the performance of

the toolchain as the number of components grows and (2) measuring the predictability of

these performance results by repeatedly deploying the samesetup on a 1,000 component

deployment.

The following lessons were learned conducting this research:

Split Plan process incurs significant deployment latency.The results presented in Sec-

tion IV.3 showed that the plan preparation phase of deployment is a large source of de-

ployment latency, due in large part to inefficiency in the LE-DAnCE “split plan” algorithm.

To alleviate this inefficiency our future work will determine if this algorithm can further

be optimized or investigate ways that the plan can be split before deployment to reduce

runtime deployment latency.

The startLaunch operation is a significant source of jitter.The start launch phase of de-

ployment produces the largest amount of jitter in the LE-DAnCE deployment process. Prior

experiments [73] conducted on DAnCE showed this jitter stemmed from the dynamic load-

ing of component implementations at runtime and can be alleviated by directly compiling

component implementations and plan meta-data into the deployment infrastructure [74].

While this approach reduces jitter and latency, it is also invasive to the D&C implementa-

tion, hard to maintain, and removes much of the flexibility from the D&C toolchain. Our

future work is exploring more flexible ways to reduce this jitter via work that builds on these

previous efforts at static configuration of not only the component middleware (CIAO), but

also the plug-in architecture of LE-DAnCE.
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CHAPTER V

EXTENDING MIDDLEWARE CAPABILITIES USING CONNECTORS

The trend towards realizing enterprise distributed real-time and embedded (DRE) sys-

tems motivates the use of component-based middleware, suchas the OMG’s Lightweight

CORBA Component Model (LwCCM) [47]. Component-based middleware offers DRE

system developers significant flexibility in modularizing their system functionalities into

reusable units, simplifies the deployment and configurationof the systems, and supports

dynamic adaptation of system capabilities. Deployment andconfiguration standards, such

as the OMG’s Deployment and Configuration (D&C) specification [59], play a major role

in realizing these capabilities.

Existing and planned enterprise DRE systems must increasingly support large data

spaces generated by thousands of collaborating nodes, sensors, and actuators that must

exchange information to detect changes in the operational environment, make sense of that

information, and effect changes. These capabilities require scalable publish/subscribe (pub-

/sub) semantics [19] that support a range of QoS properties, that control properties, such as

liveliness, latency, deadlines, timing, and reliability.Unfortunately, the conventional com-

ponent technologies used to develop enterprise DRE systems either do not provide first

class support for pub/sub semantics or do so in an ineffective manner that is not scalable

and does not support real-time QoS properties.

A standardized, QoS-enabled pub/sub technology called theOMG Data Distribution

Service (DDS) [53] has emerged as a promising pub/sub technology to support the require-

ments of enterprise DRE systems. DDS includes standard QoS policies and mechanisms

to handle data (de)marshaling, node discovery and connection, and configuration. Middle-

ware based on the DDS standard has been applied successfullyin mission-critical domains,

such as air traffic management systems [18] and tactical information systems [28].
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While the DDS specification simplifies key implementation aspects of pub/sub appli-

cation, these benefits come at price of increased complexityof configuration glue code

that must be written and maintained. Moreover, this configuration boilerplate code tightly

couples the QoS configuration of a DDS application at compile-time, unless application

developers create ad hoc methods of specifying the middleware configuration at runtime.

Analysis [2] has shown that as 80% percent of DDS-related code in a typical applications

is associated with configuring the middleware. Likewise, over half of the DDS API that

developers must learn is configuration-related.

Addressing these deployment and configuration requirements of modern DRE systems

calls for component-based middleware, such as LwCCM, to provide first-class support for

QoS-enabled, pub/sub technologies, such as DDS. This need has been recognized and doc-

umented through the efforts of industry and academic collaborators in the OMGDDS for

Lightweight CCM(DDS4CCM) [57] specification. Implementing this specification is hard,

however, due to inherent and accidental complexities in integrating LwCCM and DDS.

The inherent complexities stem from (1) differences in the language bindings and memory

management strategies of the two middleware technologies,(2) incompatibilities between

the various specifications, (3) deployment and configuration challenges to recognize DDS

abstractions within LwCCM, and supporting variants of DDS in asingle LwCCM imple-

mentation. The accidental complexities stem from (1) manual approaches to creating the

deployment and configuration meta-data for DDS elements within LwCCM, and (2) the

need to minimize runtime overhead imposed by both the deployment and configuration

meta-data, and the additional abstraction atop native DDS.

This chapter describes how LwCCM and DDS have been integrated to address the

inherent and accidental complexities described above as follows:

1. Systematic use of the extensible interface pattern in theform of mixins to extend

existing interfaces as well as the deployment and configuration meta-data to bridge

the incompatibilities between the two technologies.
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2. A template-driven code generation approach that maximizes the potential for porta-

bility between various DDS implementations and maximizes maintainability.

3. Options to customize the integration are provided, whichensures that the runtime

footprint of the resulting system does not pay unwanted memory footprint penalties.

4. Improvements to the D&C approach mandated by the DDS4CCM specification.

These contributions enable the realization of a product-line of DDS4CCM systems

where it is possible to vary the implementations of the DDS technology used as well as

support a wide range of port types for the LwCCM component technology. Empirical

evaluations of our approach demonstrate that our implementation of the DDS4CCM spec-

ification, which is called DDS4CIAO, substantially eases thedevelopment of DDS-based

applications while providing performance almost identical to native DDS applications.

The remainder of this chapter is organized as follows. Section V.1 summarizes key

challenges encountered when integrating DDS within LwCCM; Section V.2 describes the

design of DDS4CIAO that resolves the challenges described inSectionV.1.3; SectionV.3

examines the code generation of DDS4CIAO and analyzes the results of experiments that

evaluate the performance of DDS4CIAO; and SectionV.4 compares DDS4CIAO with re-

lated work.

V.1 Impediments to Integrating LwCCM and DDS

In this section both the inherent and accidental challengesin providing first class sup-

port for Data Distribution Service (DDS) within the Lightweight CORBA Component

Model (LwCCM) is presented.1 To better appreciate these challenges, first provide an

overview is provided of LwCCM and DDS, and the deployment and configuration stan-

dard. Subsequently these challenges are elaborated.

1The LwCCM is a subset of the OMG CORBA Component Model. In the rest of this paper LwCCM is
references because of the focus on DRE systems but the issuesapply equally well to CCM.
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V.1.1 Overview of the OMG Data Distribution Service (DDS)

The OMG DDS specification [53] defines a standard architecture for exchanging data

in pub/sub systems. DDS provides a global data store in whichpublishers and subscribers

write and read data, respectively. DDS provides flexibilityand modular structure by de-

coupling: (1)location, via anonymous publish/subscribe, (2)redundancy, by allowing any

numbers of readers and writers, (3)time, by providing asynchronous, time-independent

data distribution, and (4)platform, by supporting a platform-independent model that can

be mapped to different platform-specific models, such as C++ running on VxWorks or Java

running on Real-time Linux.

DDS entities includetopics, which describe the type of data to be written or read,data

readers, which subscribe to the values or instances of particular topics, anddata writ-

ers, which publish values or instances for particular topics. Moreover,publishersmanage

groups of data writers andsubscribersmanage groups of data readers.

Properties of these entities can be configured using combinations of DDS-supported

QoS policies. Each QoS policy has∼2 parameters, with the bulk of the parameters having

a large number of possible values,e.g., a parameter of type long or character string. DDS

provides a wide range of QoS capabilities that can be configured to meet the needs of topic-

based distributed systems with diverse QoS requirements. DDS’ flexible configurability,

however, requires careful management of interactions between various QoS policies so

that the system behaves as expected. It is incumbent upon thedeveloper to use the QoS

policies appropriately and judiciously.

V.1.2 Addressing Limitations in the LwCCM Port System via DDS4CCM

The OMG’s DDS4CCM [57] specification was developed to overcome the following

limitations in LwCCM and DDS while still preserving the inherent advantages of each

technology.
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Limitation 1: Support for event-based pub/sub communication in LwCCM is ex-

tremely limited. LwCCM does not specify a particular distribution middleware that must

be used inside the container for communicating events. Whilethis approach allows a

substantial amount of flexibility on the part of implementation authors, allowing them

to choose to implement this support using, for example, the CORBA Event Service or

CORBA Notification Service, has two important drawbacks. First, the integration of new

pub/sub middleware requires modification of not only the core container implementation,

but potentially also the deployment and configuration infrastructure in order to properly

operate. As a result, this is an extremely complex task, often requiring that the integrator

be an expert in both the LwCCM implementation and the desired distribution middleware.

Second, in order to remain completely generic, the interface available to component

developers for event-based communication consists of onlytwo operations: 1) a single

method per port that allows for a single event to be publishedat a time, and 2) a single

callback operation that provides an event to the component as it arrives. This prevents the

component from taking advantage of many features of pub/submessaging middleware that

provide for status notifications and per-message QoS adjustment.

Limitation 2: Grouping of related services must be done in an ad-hoc manner.

In many cases, services offered by a component require more than one interface in or-

der to provide correct operation. As a simple example, consider a scenario in which two

components expect to cooperate via mutually connected interfaces. In this scenario, one

component provides an interface “A” and requires an interface “B”, while another com-

ponent provides complementary ports (i.e., provides “B” but requires “A”). In order for

semantically correct operation, the connections for both “A” and “B” must go to the same

component, but there exists no way in LwCCM to indicate this constraint on an interface

level. To accomplish this goal, developers must rely on ad-hoc naming conventions and
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documentation. This approach has the unfortunate side effect of complicating the plan-

ning process and potentially causing subtle and perniciousruntime errors if connections

are mis-configured.

The DDS4CCM specification addresses these limitations by enabling LwCCM to lever-

age the powerful pub/sub mechanisms of DDS. First, it provides a substantially simplified

API to the application developer that completely removes the configuration of the DDS

middleware from the scope of the application developer. Second, it provides a set of ready-

to-use ports that hide the complexity and groups data writing/access API with the appro-

priate callback and status interfaces. Third, by providingintegration with the LwCCM

container, DDS applications are now able to take advantage of robust and mature deploy-

ment and configuration technologies that obviates the need to write boilerplate application

startup code, runtime configuration of QoS policies, and coordinated startup and teardown

of applications across multiple nodes.

In particular, DDS4CCM proposes two new constructs —extended ports, which allow

for the grouping of related services, andconnectors, which allow for flexible integration

of new distribution middleware. These new entities are defined using an extension of the

IDL language for components (IDL3) called IDL3+. It is possible to map each of these new

IDL3+ language constructs back to basic IDL3 using simple mapping rules to enable insep-

arability with older CCM implementations. Next, a brief overview of these enhancements

is provided.

Extended Ports: Extended ports provide a mechanism whereby component designers

can group semantically related ports to create coherent services offered by a component.

These extended ports, defined using a new IDL keywordporttype , are defined outside

the scope of components. Extended ports are allowed to contain any number of standard

LwCCM ports in either direction. While these ports are allowed in terms of the speci-

fication to contain standard LwCCM event ports, in practice this is highly unlikely due

to the limitations outlined earlier. Moreover, in combination with connectors (described
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1
2 i n t e r f a c e Data_Source {
3 Data p u l l ( i n long uu id ) ;
4 } ;
5 i n t e r f a c e N o t i f i e r {
6 vo id d a t a _ r e a d y ( i n long uu id ) ;
7 } ;
8 p o r t t y p e N o t i f i e d D a t a {
9 p r o v i d e s Data_Source d a t a _ s o u r c e ;

10 uses N o t i f i e r d a t a _ r e a d y ;
11 } ;
12 component Sender {
13 p o r t N o t i f i e d D a t a d a t a _ o u t ;
14 } ;
15 component Rece i ve r {
16 m i r r o r p o r t N o t i f i e d D a t a d a t a _ i n ;
17 } ;

Listing V.1: Extended Port IDL

next), these extended port definitions could be used to recreate the behavior of the existing

standard CCM event infrastructure.

Listing V.1 shows IDL for an example extended port. In this example, a service is cre-

ated whereby one component may notify another of data that isready to be sent, and the

destination component may optionally choose to pull that data from the source component.

Since each of the interfacesData_Source andNotifier are semantically linked,i.e.,

operation of the component application would be fundamentally broken if these ports are

not pairwise connected, they are grouped into a singleporttype . This is an indication

to both high level modeling tools and the component runtime that these ports must be con-

nected as a pair, and can generate appropriate deployment plan meta-data to connect them

at runtime. Extended ports are assigned to components usingtwo new IDL3+ keywords.

Theport keyword indicates that the component supports the extendedport as described.

Themirrorport keyword indicates that the componentinvertsthe direction of the ex-

tended port,i.e., facets become receptacles.
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Some extended ports may vary only in the data type used as parameters. In order to

avoid the necessity of re-defining an extended port for each new data type, IDL3+ offers

a new template syntax that may be used to define services that are generic with respect to

data type.

Connectors: While the extended port feature described above is quite useful, their

power is most suited to providing novel communications mechanisms to components that

provide/use those interfaces. In order for the extended ports to provide a coherent interface

to a new distribution middleware, such as DDS or the CORBA EventService, the business

logic that supports that abstraction must be contained in some entity. This unit of business

logic is called aconnector. Connectors combine one or more extended ports to provide

well-defined interfaces to new distribution middleware or communication techniques be-

tween components. In many cases, a single connector will support at least two extended

ports, one intended for each “side” of the communications channel. By separating the core

communications business logic, these connectors can then be used as COTS components

across several applications without requiring modification of the core container code.

Connectors are defined in similar fashion to a component, using the new IDL3+ key-

word connector . Connectors may contain, of course, one or more extended ports. In

addition, they may also support attributes which are intended to be used to assist in runtime

configuration,i.e. topic names, port numbers, QoS parameters,etc.. Finally, connectors

also support inheritance which can be used to extend existing connectors with new capabil-

ities. At runtime, instead of creating a new IDL type structure for the connector infrastruc-

ture, they are defined as components, deriving their interface from the sameCCMObject

used by regular components. Indeed, in the IDL3+ to IDL3 mapping, theconnector

keyword becomescomponent . This approach is much desirable in that no additional

work is necessary in the D&C toolchain to support the deployment and configuration of
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connectors. Moreover, connector implementations can takeadvantage of the same Com-

ponent Implementation Framework that is available to standard LwCCM components and

thus can take advantage of advances in services offered by the container.

V.1.3 Challenges in Integrating LwCCM and DDS

Although the DDS4CCM specification attempts to address the limitations of individual

technologies, realizing an implementation of the DDS4CCM specification is fraught with

multiple inherent and accidental complexities explained below:

Challenge 1: Indicating that a connector implementation has been fully config-

ured, and should be made ready for execution.After a connector implementation has

received all necessary configuration information, it must proceed to create the underly-

ing low-level DDS entities (e.g.,DomainParticipant , DataWriter and/orData-

Reader ) that are necessary for correct operation. To accomplish this task, the specification

mandates the use of an operation calledconfiguration_complete on the external

connector interface. This operation, however, is not delegated to the connector business

logic and thus is insufficient to fully inform the connector implementation of completed

configuration. SectionV.2.1discusses our approach to resolve this challenge.

Challenge 2: Reducing D&C-related runtime memory footprint. The DDS4CCM

specification mandates the use of LwCCM Homes (which nominallyact as factories for

component instances) as the primary vehicle for passing configuration information from

the deployment plan to individual connector implementation during deployment. While

this approach is certainly functional and sound (and in keeping with the spirit of the Lw-

CCM specification), our experience developing component applications with LwCCM re-

veals that the home entity often adds very little value to theconfiguration of individual

component, or in this case connector, instances. In most cases, the home implementation is

little more than a simple factory that directly instantiates the component and nothing else.

Meanwhile, the home instance carries a non-negligible amount of runtime footprint due
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to the CORBA interface and accompanying home-specific generated container code that is

necessary. SectionV.2.2discusses our approach to resolve this challenge.

Challenge 3: Reducing Connector-related runtime memory footprint. The deci-

sion to treat connectors for all intents and purposes as fullLwCCM components greatly

simplifies the implementation by substantially reducing the number of changes in the core

container necessary to support the specification. A consequence of this decision, however,

is that the runtime footprint of a LwCCM application using connectors could substantially

increase. For example, assuming a deployment where each component instance has an

associated connector instance, the number of actual “components” in the deployment is

doubled. In memory-constrained DRE systems, this can be a significant impediment. Sec-

tion V.2.3discusses our approach to resolve this challenge.

Challenge 4: Supporting Local Interfaces as FacetsAll of the extended ports con-

tained in the DDS4CCM specification are defined as “local interfaces”. Local interfaces

are significantly different from standard CORBA interfaces due to the fact that they are

not generated with any of the infrastructure necessary to support remote invocation. As

a result, any invocation on these interfaces does not travelthrough the CORBA internal

infrastructure and as such only incurs overhead nominally involved in a virtual method in-

vocation. The problem this strategy causes with the deployment and configuration aspect

of LwCCM is very subtle: since these local interfaces lack the necessary remoting code, it

is impossible to pass references to these local objects through a standard CORBA interface.

Indeed, this behavior is undefined; any attempt to do so will fail and cause an exception

to be propagated to the caller. Unfortunately, all of the standard-defined connection meth-

ods, including the Component Navigation interfaces used by the D&C tooling to make

connections between components rely on being able to retrieve object references to Facets

over a standard CORBA interface and pass these references to the receptacle component

over a similar interface. Not having an object reference forthe extended port implies that
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the existing D&C tooling cannot be leveraged in a straightforward manner. SectionV.2.4

discusses our approach to resolve this challenge.

Challenge 5: Supporting Multiple DDS ImplementationsOne significant benefit of

writing DDS applications using the DDS4CCM API is that it potentially makes it substan-

tially easier to switch between various DDS implementations. Prior work [84] has shown

that differences in the architecture between these different implementations cause them to

have different strengths depending on the architecture of the application and hardware en-

vironment. Moreover, due to the proprietary nature of most DDS implementations and the

different licensing requirements of each implementation,the ability to quickly and easily

switch the targeted implementation would greatly facilitate the development of COTS DDS

components. While it is currently possible to target multiple DDS implementationsat com-

pile timedue to the presence of a standard API, subtle differences in the implementations of

these APIs can make this difficult to accomplish. Ideally, any implementation of the DDS-

4CCM specification would be architected in such a way that the core business logic of the

connector is shielded from the differences between DDS implementations. In addition, the

connector architecture could make it possible to delay the choice of DDS implementation

from compile time to deployment time. SectionV.2.5 discusses our approach to resolve

this challenge.

Challenge 6: Making it easy for users to define their own connectors The DDS-

4CCM specification provides for two connector types that correspond to common DDS

usage patterns. The first provides for a state transfer pattern, and is intended to connect

“Observable” components that publish state to other “Observer” components that consume

that state. The second provides for event transfer connecting supplier components to con-

sumer components. These two connectors, however, are not intended to be the only ones

that are supported in the context of the specification. To that end, two “base” connectors are

provided that collect the various configuration meta-data as attributes. It is intended that

users be able to define their own connectors that are better suited to their usage cases. To
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support this capability, the code generation techniques should be extensible such that it is

easy for users to create their own connectors without havingto modify the code generators.

SectionV.2.6discusses our approach to resolve this challenge.

V.2 Resolving LwCCM and DDS Integration Challenges in DDS4CIAO

This section describes how the challenges in integrating LwCCM with DDS described

in SectionV.1.3 by are resolved presenting the architectural and design choices made for

DDS4CIAO, which is our implementation of the DDS for Lightweight CCM specification

outlined in SectionV.1.2.

V.2.1 Accurate Indication of Successful Connector Configuration

The central difficulty outlined inChallenge 1from SectionV.1.3 revolves around the

final configuration stage of the D&C process. In this case, there lies a crucial phase before

the application is “activated”, but after it is fully configured. In this portion of the D&C

process, the connector business logic must make themselvesready for execution by, for

example, instantiating various DDS entities. In FigureV.1, which shows the lifecycle stages

that connectors and components go through, this is represented by the “Passive” state.

Unfortunately, the LwCCM specification currently provides nomechanism to communicate

to the connector that it has entered this state; the only notification that is received when the

component/connector becomes passive is when the prior state was “Active”. To understand

the reason for this, it is best to have a grasp of the layout of connectors and components at

runtime.

Instantiated connectors consist of two primary pieces. First, there is a “Servant”, which

consists of the external CORBA interface and connector-specific container code. The Ser-

vant has two primary parts to its interface: (1) operations common to all connectors which

come from the LwCCM specification (called theCCMObject interface), and (2) opera-

tions that result from the ports specified in the IDL declaration of the connector. Second
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Figure V.1: LwCCM Component and Connector Lifecycle Stages

is the “Executor”, which contains the actual business logicthat implements the connector.

Operations on this interface result from two sources: (1) specification-defined lifecycle op-

erations (called theSessionComponent interface), and (2) operations that result from

the ports defined for the connector.

The configuration_complete operation mentioned in SectionV.1.3 is part of

theCCMObject interface but is not, however, present on theSessionComponent in-

terface so it cannot be directly delegated.2 Unfortunately, the first lifecycle operation that

is invoked on the Executor interface after its constructionas defined by the LwCCM speci-

fication isccm_activate . This lifecycle operation, however, must be disjoint from and

occur later thanconfiguration_complete .

One approach to work around this problem is to delay the creation of the DDS en-

tities until the activation phase of the application lifecycle. This is problematic, however,

because there exists no guarantee that a connector fragmentwill be activatedbeforeits con-

nected component. If a component is activated before its connector and attempts to initiate

outbound communication, that communication would naturally fail, potentially causing

pernicious and difficult to reproduce errors. The ability for component business logic to

2This artifact results from the standards specification.
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receive a notification upon configuration completion but before activation has proven to

be useful for components as well as connectors because connectors are anyway treated as

components.

As a result, a new interface that may be optionally used to extend the behavior of

component executors to be able to receive these notifications has been created. This in-

terface, which theConfigurableComponent is called, uses a variation of the ex-

tension interface pattern to avoid changing the standard-definedSessionComponent

interface. This new interface is intended to act as a mixin sothat the component imple-

mentations wishing to receiveconfiguration_complete will inherit from this in

addition to the standardSessionComponent interface. The container, then, when it

receivesconfiguration_complete from the D&C tooling, will attempt a dynamic

cast on the component implementation to determine if the operation should be delegated

on a per-component basis.

V.2.2 Avoiding D&C-related Memory Footprint

Challenge 2, described in SectionV.1.3, deals with eliminating unnecessary footprint

from the specification-defined deployment and configurationrequirements of connectors.

DDS4CCM connectors are configured via attributes present in the IDL interfaces defined

by the specification, which allow for the fragment to be associated with a particular DDS

domain and topic as well as the QoS policies.

Many hardware platforms commonly used for DRE systems remainextremely memory-

constrained, so the additional runtime memory footprint imposed by the CCM home is at

best undesirable. To avoid this additional overhead, DDS4CIAO provides the capability

to install “un-homed” components and connectors. These un-homed components are allo-

cated from simple factory functions exported from their implementation libraries in much

the same manner that Homes are already constructed. Component-specific container code,
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which is generated automatically from IDL, is then able to interpret the D&C plan meta-

data and individually invoke the attribute setter methods on the component.

V.2.3 Reducing Connector-Related Memory Footprint

The solutionChallenge 3, described in SectionV.1.3, attempts to reduce the runtime

footprint of connector implementations. In order to accomplish this goal, it must be deter-

mined which, if any services that a component requires that are not necessary for connector

implementations. Given the limitations of the standard LwCCMevent ports described in

SectionV.1.2, it is highly unlikely that these inflexible port types wouldbe used in the

context of a connector — indeed, the extended port/connector infrastructure could be used

to fabricate replacement infrastructure. Moreover, the DDS4CCM specification makes no

use of the existing event infrastructure, making it an apt candidate for removal.

As a result, the event infrastructure was removed from the connector infrastructure in

such a way that it would still be present for standard components that may need to interface

with legacy systems. In this case, there are two pieces to theevent support in DDS4CIAO:

(1) the base classes that provide support to the component-specific generated container

code, and (2) the component-specific generated container code itself, which includes a

component-specific context that provides services to the component business logic. The

first portion of the event support — the base classes described above were split into two

pieces — aconnectorbase and acomponentbase. The container base contains all neces-

sary functionality for component and connectors minus the LwCCM event support. The

necessary plumbing LwCCM event support is contained in the component base, which de-

rives from the connector base. This way the code generation infrastructure can choose to

omit support for the event infrastructure if desired by selecting a different base class for the

generated code. Our approach makes this artifact configurable.
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V.2.4 Supporting Local Facets

The solution toChallenge 4outlined in SectionV.1.3 is threefold. First, and most

obviously, the Navigation and Introspection implementations generated for components

with local facets and receptacles had to be modified to suppress any knowledge of these

local ports. While this approach solves the issue of undefinedbehavior from trying to

marshal one of these local object references, it also completely removes any standards-

based mechanism by which a connection can be made by either the D&C tooling or any

user attempting to use the Navigation interfaces. To address this undesired effect, a new

connection API was created in the private interface to the CIAO container (which is our

LwCCM implementation) that is used directly by the D&C tooling. This API accepts as

arguments the string identifiers of two component endpointsas well as port names, and is

able to use these to obtain references to the local Executor objects directly and create a

connection without needing to marshal any local referencesover standard interfaces.

In order to make use of this new API, however, the D&C tooling needs an annotation

on the connection meta-data so that it can be made aware that it should not attempt to use

the standard Navigation API to make the connection. The datastructure in the deployment

plan that contains connection information encodes the typeof connection (e.g., Facet vs.

Receptacle) as an enumerated value. While this enumeration could be extended to identify

a new connection type (i.e., LocalFacet), the changes to specification-defined types were

minimized. The connection data structure does contain a section where requirements for

deployments can be described using name/value pairs. This section would ordinarily be

used to enumerate hardware capabilities or resources required by the connection. In this

case, it is required that any local facet connected be annotated with a requirement on the

container, namely that it provide support for local facets —when the D&C tooling encoun-

ters this annotation it assumes the connection to be local.
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V.2.5 Ensuring Portability of DDS4CIAO Implementation

As described inChallenge 5from SectionV.1.3, it is important to ensure that the de-

sign of the infrastructure is maximally portable in order toeasily support implementations

from multiple DDS vendors. This goal is complicated by the fact that despite the presence

of a standard C++ language mapping, there are subtle and pernicious differences between

the actual implementations of these mappings. Moreover, there exist also subtle behav-

ioral differences between implementations that complicate source-level compatibility,i.e.,

generated type-specific constructs such asDataWriters andDataReaders may have

different namespaces and naming conventions, and indeed the same may be true of the

entire API.

These challenges were addressed by using three approaches.The first approach targets

the API that is implemented in the DDS4CCM basic ports against.The DDS specification,

in addition to the widely supported C/C++ language binding, also has a language binding

that maps the API into IDL interface definitions. This language binding is not widely

implemented, but provides a promising vehicle for implementing portable DDS business

logic in the context of the DDS4CCM basic ports. Since the same IDL code generator is

used as with the rest of the CIAO infrastructure, that the APIsused to implement these

ports are consistent.

Much of the work for supporting different DDS implementations then can be accom-

plished by providing an implementation of this IDL languagebinding. At first glance, this

may seem a daunting proposition — however, this binding consists of only about 36 in-

terfaces, many of whose functions may be directly delegatedto the native implementation.

The remaining problem with using this IDL-based approach isreconciling the differences

between the CORBA types that are part of the IDL language mapping and the data types

used natively by the DDS implementation. While this conversion could be handled inside

the vendor-specific implementation of the IDL language binding, this approach would in-

cur potentially expensive data copies. Fortunately, many DDS implementations provide a
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CORBA compatibility layer that allows them to directly use types generated by the IDL

compiler.

V.2.6 Connector Code Generation

Generating code for user-defined connectors is the focus ofChallenge 6 from Sec-

tion V.1.3. Our experience developing code generators for our CORBA and LwCCM im-

plementations has shown us that it is eminently undesirableto embed large amounts of

business logic in generated code. This is largely due to the difficulty of maintaining and

extending the code generators themselves. If there is a bug,modification, or extension to

be made, this effort often involves at least two engineers — one who is familiar with the

middleware or problem at hand, and another who is familiar with the process of extending

and modifying the code generator. In addition to the extra personnel requirements, it often

substantially increases the amount of time to test these changes, as not only does the ini-

tial proposed modification needs to be be tested (typically supplied to the code generation

engineer as a handcrafted generated file), but also the final changes to the code generator

and resulting modified output. For the same reason, this accidental complexity of the code

generation process impedes the ability of users to create their own DDS4CCM connectors.

In order to avoid these accidental complexities, the designof the code generation in-

frastructure from the outset to contain zero DDS4CCM businesslogic and to be extensible

without the need to modify the code generator to add new connector implementations.

The first, and most obvious step given the presence of parameterized modules from Sec-

tionV.1.2, was to leverage C++ templates for the implementations of thebasic and extended

DDS4CCM port types. Using C++ templates in this case allowed us to make generic two

very important parts of the implementation — first, the core DDS4CCM business logic

contained in the basic and extended DDS4CCM ports, but also theIDL wrapper (described
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in SectionV.2.5) around our target DDS implementation. These IDL wrappers require ac-

cess to type-specific DDS entities (e.g. DataWriters andData Readers ) that are

created by the code generation infrastructure that is part of the DDS implementation itself.

Connector implementations, then, are really a collection oftemplate instantiations for

the various basic and extended ports that are contained in their interface definition along

with some configuration glue code. While source code for theseconnector implementations

could be genreated, that would still represent an obstacle to novel connector creation. Con-

nectors themselves may contain a nontrivial amount of configuration business logic that

interprets the values of attributes on the connector interface. As a result, if a user were to

define a new connector with new configuration attributes, they would be required to modify

the code generator to be able to use their new connector.

To address this concern, the connector implementations template was made into classes

as well. This allows the code generator for DDS4CCM to be extremely simple. In effect,

the result of the code generation process is a header file thatcontains a set of C++ traits [44]

which specify the properties necessary to use a particular IDL data type. These properties

largely consist of the names of type-specific entities that are generated from the DDS in-

frastructure. These traits are then used to create concretetemplate instantiations of any

required connector implementations. By default, instantiations of the standard DDS4CCM

connectors are generated — the State and Event connectors described in SectionV.1.3. If a

user defines their own connector in IDL, the code generator emits an include of a header file

whose name derives from the name of the connector in IDL, and aconcrete instantiation of

a template class whose name is similarly derived. While the user must then provide an im-

plementation of this template class, this is substantiallyless effort than would be required

to modify the code generator.
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V.3 Experimental Results

This section outlines two key empirical observations of theDDS4CIAO implementation

described in SectionV.2 which cover two important goals outlined in SectionV. First,

in SectionV.3.2, the impact that the code generation capabilities of DDS4CIAO have on

the development and maintenance of DDS-enabled applications is quantified. Second, in

SectionV.3.3, we characterize the overhead that DDS-enabled applications must pay in

terms of latency when using the DDS4CIAO abstraction versus using the DDS API directly.

V.3.1 Experimental Scenario

All results described below were obtained using a simple “ping-pong” application. A

simple example was chosen since the business logic of the application is not important

to evaluate the qualities of DDS4CIAO. Rather, understandingthe overhead associated is

interesting, if any, of the integration of LwCCM with DDS. In this application, an instance

struct containing an octet sequence of a configured length and a sequence number would

be written to the DDS data space by a “Sender”. The instance would arrive at a “Receiver”

entity, after which a new instance of the struct would be published on a separate topic with

an identical sequence number but a zero length octet sequence. The “Sender”, upon receipt

of the second message, repeats the process with a new sequence number up to a specified

number of iterations.

Two versions of this application were produced. The first uses the native C++ DDS

API, with all customary error checking included. In the second version, the “Sender” and

“Receiver” were each implemented as CIAO components and used DDS4CIAO to interface

with the DDS middleware.

V.3.2 Evaluation of Code Generation

To evaluate the effectiveness of the code generation techniques described in SectionV.2.6,

the implementation source files from the experimental scenario outlined in SectionV.3.1
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were analyzed with the SLOCCount [81] tool. This is a program which counts physical

Source Lines of Code (SLOC), and uses a number of heuristics to discard any whitespace

and commenting present. For the purposes of this evaluation, only implementation source

files were counted, discarding header files containing only class definitions. The reason for

this is that header files for the DDS4CIAO implementation are largely generated automati-

cally based on the class interfaces.

The results from this tool are summarized in TableV.1. If only the total SLOC for the

native programs and the component implementations are compared, DDS4CIAO shows

only a nominal improvement over that of the native implementation. It is important to con-

sider, however, that the DDS4CIAO implementation contains alarge amount of generated

class skeletons which are created from the IDL interface descriptions from the component

automatically (SLOC for which is shown in the “DDS4CIAO Generated” column of the

table). When these lines of code are subtracted from the totalfor the DDS4CIAO im-

plementation, the improvement becomes substantially moredramatic. In the case of the

Sender component, the improvement is on the order of 50%, andfor the receiver the dif-

ference is an order of magnitude. The reason for this discrepancy is the Sender programs

— both native and DDS4CIAO — contains a substantial amount of code in common to

measure latencies and calculate/display results.

Table V.1: Comparison of Source Lines of Code

Component Native Lines DDS4CIAO Total DDS4CIAO Generated DDS4CIAO Actual

Sender 643 560 211 349
Receiver 293 128 118 10

V.3.3 Evaluation of the Overhead of DDS4CIAO

To evaluate the overhead due to abstraction over the native DDS API introduced by the

DDS4CIAO implementation, the experimental scenario described earlier in SectionV.3.1
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was used to evaluate the latency performance using a recent commercial DDS implementa-

tion and DDS4CIAO 0.8.3. Each configuration was executed for 1,000 iterations each with

payload sizes along powers 2, from 16 to 8192 bytes. Each experimental run was executed

in two transport configurations: once using UDP and again using Shared Memory trans-

port. The experimental testbed consisted of Dell Optiplex 755 computers, with an Intel

E4400 CPU, 2GB of RAM, and gigabit network connections.

The results for the experimental runs with the UDP transportprotocol are shown in

Figure V.2, which compares the average latency for each payload size, and FigureV.3,

which compares the minimum latency results for each payloadsize. These results show

that for this transport protocol, the average latencies arenearly identical. FigureV.4 shows

the results from the experimental runs configured with the shared memory transport. This

average latency result shows that the DDS4CIAO abstraction introduces approximately a

four percent overhead over the native implementation for the shared memory transport. The

best case results for the shared memory experiment are shownin FigureV.5.

Figure V.2: Ping Latency Average with UDP
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Figure V.3: Ping Latency Minimum with UDP

TableV.2 summarizes the standard deviation of the experimental runsfor both UDP

and shared memory. These results show that the DDS4CIAO abstraction does not introduce

additional jitter over the native implementation.

Table V.2: Standard Deviation For All Experiments

Size UDP CIAO UDP Shared CIAO Shared

16 11.3 12.4 17.7 18.4
32 12.4 9.4 15 14.2
64 12.5 12.6 15.5 9.9
128 13.3 9.3 16 10.4
256 6.2 13.1 15.9 12.6
512 12.3 11.2 11.6 8.8
1024 14.7 8.1 15.7 12.1
2048 12.7 4.3 15.5 14.8
4096 7.1 13.7 15.3 10.8
8192 12.1 17.7 15.1 14.4
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Figure V.4: Ping Latency Average with Shared Memory

Figure V.5: Ping Latency Minimum with Shared Memory
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V.4 Related Work

This section compares our research on component-based DDS with related work.

PocoCapsule[33] is an Inversion of Control container based on the DependencyInjec-

tion (DI) design pattern. This component framework allows developers to use “Plain Old

C++ Objects” (POCO) that have been decorated with PocoCapsule macros that allow the

loading of these C++ classes into a PocoCapsule container. DDS4CCM and DDS4CIAO

differ in several important aspects from PocoCapsule. First, DDS4CCM—and LwCCM

in general—are industry standards that have language bindings defined for many program-

ming languages. Second, PocoCapsule still requires some amount of low-level glue code in

the component business logic. Third, the DDS for PocoCapsuleimplementation currently

only uses CORBA local interfaces to simulate small parts of theDDS API, and hence is

not operable with standard-compliant DDS implementations.

Simple API for DDS (SimD) [4] uses C++ templates and template meta-programming

to provide a simpler API for DDS that reduces the amount of infrastructure-related code

required for DDS applications by an order of magnitude. Using SimD, a simple DDS

application can be written in only 4 source hand-written lines of code, instead of dozens

lines of code using the native API. While SimD reduces the complexity of the boilerplate

code required for DDS applications, it differs substantially from DDS4CIAO in that it does

not address runtime deployment and configuration capabilities provided by DDS4CIAO.

Moreover, it has not yet been proposed as a standard.

Researchers at Real-Time Innovations, Inc [2] propose extensions to the DDS API to al-

low declarative configuration of DDS entities via an XML file that is interpreted at runtime.

The application then queries the DDS middleware to obtain a particularDataReader or

DataWriter that has been configured already with a domain and topic binding and QoS

settings. While their work improves the state-of-the-practice in standards-based DDS ap-

plication configuration, its capabilities are not as extensive as DDS4CCM and DDS4CIAO.
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First, our existing D&C tooling provides coordinated installation of application implemen-

tations and startup across multiple nodes. Second, the connector infrastructure developed

for DDS4CIAO allows integration with other distribution middleware, such as CORBA,

TENA, JMS, or even socket based network programs. Third, thedecoupling provided by

the DDS4CIAO implementation enables the selection of DDS implementation at deploy-

ment time.

SOFA [9, 10] is a component model with an integrated D&C framework that provides

remote communication capabilities via a connector infrastructure similar in spirit to that

which is part of the DDS4CCM specification. SOFA, however, onlyprovides connectors

for CORBA and RMI distribution middleware. Our approach differs from that taken by

SOFA in that the connectors implemented by DDS4CIAO are themselves lightweight com-

ponents. The advantage of our approach is that any improvements to the QoS capabilities

of the CIAO container can be automatically applied not only toall components deployed,

but also connectors as well.

V.5 Summary and Lessons Learned

The experience developing applications with DDS4CIAO provided the basis for the

following lessons learned:

1. Substantially reduced DDS application complexity. Tests and example applica-

tions developed with DDS4CIAO have shown that the simplified interface to the

underlying DDS middleware, provided by the DDS4CCM specification, provides a

platform that easier to write and develop DDS applications.

2. Automatic configuration of DDS middleware. By providing a strict separation

of concerns between configuration-based aspects of DDS application development
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and configuration aspects, users can automatically configure the underlying middle-

ware at deployment time using standards-based deployment plan descriptors already

available with LwCCM.

3. Deployment-time binding of DDS implementation may ease application bench-

marking. It is also possible that the DDS implementation used by the component

application could be chosen at deployment time, rather thancompile time. This

enhancement will allow developers to evaluate the merits and performance charac-

teristics of different DDS implementations rapidly.

4. Increased reliance on tooling.A consequence of developing with DDS4CIAO is

the increased reliance on tooling, especially modeling tools. While writing the IDL

and business logic for DDS4CIAO components is straightforward, writing the de-

ployment descriptors by hand is a difficult task that requires expert knowledge of

the D&C specification. While the use of modeling tools — such asour CoSMIC

toolsuite [40] or commercial tools that have emerged — can substantially ameliorate

this concern, their use may not always be practical (CoSMIC, for example requires

Windows while the commercial tools may be costly). A domain specific language

(DSL) for describing deployments, configuration, and component packaging would

substantially reduce the modeling requirement.

5. Applying connectors to the CCM CORBA infrastructure . The connector-based

approach to integrating the DDS distribution middleware into CIAO has shown sub-

stantial promise. Unfortunately, however, the CORBA infrastructure that underlies

CIAO/CCM still remains tightly integrated into the container implementation. There

are many users and applications who find this situation undesirable for political, se-

curity, and runtime footprint of the middleware.
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A similar connector based approach could be used to convert LwCCM into a “Com-

mon Component Model”, which is completely agnostic to the underlying commu-

nications middleware, by moving all of the extant CORBA communications func-

tions to connectors themselves. This approach has the advantage of not only being

able to remove the CORBA infrastructure currently used for synchronous two-way

communication, but also makes it possible to, for example, swap in an alternative

non-CORBA based connector implementation, if desired.
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CHAPTER VI

FUTURE RESEARCH DIRECTIONS

VI.1 Deployment and Configuration of Cloud-based Applications

Cloud computing, a paradigm whereby computing resources (CPU, RAM, disk space)

are provisioned on-the-fly and on-demand, and in a potentially elastic manner, is an increas-

ingly popular deployment environment for large-scale applications [11, 45]. An attractive

feature of cloud computing is that it both increases flexibility by allowing the virtualiza-

tion of the hardware resources and enabling on-demand scaling of application performance

while at the same time relieving the administrative overhead associated with managing and

administering the associated physical hardware and software resources that are required

for an application. These qualities provide a compelling way to expand the capabilities of

DRE systems and applications where it may be practically or cost prohibitive to provision

physical resources for intermittently needed resource-intensive computing.

Deployment and configuration solutions for the Cloud environment are an active area

of research and development, however, many existing solutions are inappropriate for DRE

systems. Commercial cloud providers such as Amazon Web Services (AWS) [3] and

Rackspace Cloud Hosting [68] provide one of three options for deploying applications

into cloud environments. The first option, such as the AWS Elastic Beanstalk, require ap-

plications to use either special APIs or application containers provided by the service to

achieve automatic deployment. Moreover, these APIs and application containers tend to

be specialized for web services and not DRE-type applications. Finally, the second option

is to use purpose built grid/cloud computing APIs such as MPI[5] or Map-Reduce [12],

which are not appropriate for all applications and require that the applications themselves

be written specifically to be used in cloud environments.

99



The final option provided for application configuration is toprovision a virtual ma-

chine instance with the application software required and transfer that image to the cloud

provider. The application then, is required to perform any configuration on its own, poten-

tially relying on a proprietary, ad-hoc mechanism. This canbe a problematic approach for

two important reasons. First, provisioning a virtual machine can be problematic, at the mo-

ment often requiring some level of human intervention and large amounts of data transfer

to the cloud provider. Second, proprietary ad-hoc deployment and configuration systems

must constantly re-invent the wheel and are not easily useable for other applications.

VI.1.1 Unresolved Challenges

This section will outline two unresolved challenges that arise when applying a generic

deployment and configuration toolchain to a Cloud-based environment.

VI.1.1.1 Hierarchical Domains

In the context of deployment and configuration systems, a critical element of the frame-

work is the characterization of the “domain” in which it operates. “Domain” in this case

refers to the collection of hardware resources in which applications are deployed — this

includes especially the physical hardware on which applications run, but also includes el-

ements such as interconnects and bridges that make up the connectivity resources used by

applications. Many D&C toolchains, including the OMG Deployment and Configuration

specification, the SOFA component model [10], and deployment solutions for the Enter-

prise Java Beans [1] maintain only a flat representation in which the global infrastructure

not only has full knowledge of all nodes in the domain, but is responsible for coordinating

all deployment activity amongst them.

This flattened representation causes two significant problems when these D&C frame-

works are applied to Cloud domains. First, due to the nature ofCloud infrastructure, the
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requested hardware resources will not be collocated with the pieces of the global infras-

tructure used to initiate deployment, and such requests mayhave to traverse a wide area

network such as the commodity Internet. This can cause problematic spikes in deployment

latency due to communications latency and bandwidth limitations that may be present over

a WAN. Second, since it may be difficult to ascertaina priori the hardware resources that

are required or even available to the application, it may be impossible to properly configure

the global infrastructure to discover these resources.

VI.1.1.2 Deployment Toolchain Installation

As discussed in SectionVI.1, the current best practice for managing deployment of

software into Cloud environments is to create a virtual machine image with all required

software. This virtual machine is then transferred to the Cloud provider which uses this

image to provision all allocated nodes. Managing such virtual machine images can be

a challenging task, not only from the standpoint of ensuringthat all required component

implementations are available in the image, but also ensuring that the required version of

the deployment infrastructure is present, along with any needed plugin functionality (e.g.,

Installation Handlers and Deployment Portable Interceptors).

While LE-DAnCE currently has functionality that allows it to download implementa-

tion artifacts (i.e., shared libraries that implement components) that are required at deploy-

ment time, it is currently not possible to use LE-DAnCE to bootstrap itself by copying its

binaries and invoking the appropriate daemon processes.

VI.1.2 Solution Approach

The LocalityManager framework provides a different architectural way to visualize the

deployment process from the one outlined in SectionIII.1.1. Instead of viewing the pro-

cess of application deployment as the concrete establishment of component instances on
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individual nodes as the primary goal for application deployment, we can view the deploy-

ment process as the establishment of variouslocalities in different contexts. This view

of deployment, shown in FigureVI.1, represents a novel way of viewing the deployment

process.

Global Locality

Node Locality Node Locality

Process Locality

Process Locality

Process Locality

Process Locality

Figure VI.1: Locality-Based View of Deployment

While the architecture illustrated by this figure appears to be similar to the current LE-

DAnCE architecture, it contains an important distinction. Instead of viewing the ultimate

object of deployment action as a “component instance,” at each level we view the estab-

lishment of the next level of localities in the hierarchy. Toput it another way, under the

current methodology the only instances that appear in the plan are concrete component

instances. Under the proposed view of the deployment process, everything is represented

as an instance. Instead of having only eight instances in the plan for Figure VI.1 for each

of the four yellow boxes that represent components, we wouldhave instead 14 described

instances in the plan.

Eight of the instances, as before, would represent components. These component in-

stances would then be grouped (based on meta-data tagging) with an appropriate instance
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representing theprocess locality, which could have its own configuration directives to load

appropriate installation handlers or QoS configuration. Each of theseprocess localityin-

stances would be grouped with one of twonode localityinstances, which again could be

individually configured. This approach allows more flexibility in how domains are assem-

bled by allowing to not have any knowledge of how the remainder of the application is

deployed (or how the domain is structured) beyond how the next locality level needs to be

established.

A natural implementation approach for this new domain view would be to use the

LocalityManager at all levels of the deployment hierarchy.Rather than have purpose built

daemons that implement the roles ofExecutionManagerandNodeManager, a Locality-

Managerinstance could be configured with an appropriate Installation Handler implemen-

tation that provided the appropriate knowledge of how to establish the next level of the

domain hierarchy. In the case of theExecutionManager, this would include knowledge

of how to contact aLocalityManagerdaemon running on a particular node to pass off the

appropriate locality-constrained plan. In the case of theNodeManager, this would include

the process of spawning newLocalityManagerinstances that would manage the process

localities.

Global Locality

Node Locality

Cloud 
Locality

Process Locality

Process Locality

Node Locality

Node Locality

Cloud Locality

Figure VI.2: Locality-Based View of a Cloud Deployment
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FigureVI.2 shows how this new domain hierarchy might be used in the context of a

mixed standard/cloud deployment. In this case, there wouldbe two localities considered

by the global deployment infrastructure: (1) a standard node locality instance, and (2) a

cloud locality with the configuration information necessary to dynamically request Cloud

infrastructure be provisioned. An installation handler could then be loaded that would be

able to use this configuration meta-data along with web service APIs exposed by many

commercial cloud providers to automatically provision thenecessary infrastructure.

Moreover, this approach can also be used in concert with the Instance Installation Han-

dlers (IIH) and the LocalityManager architecture described in SectionIII.3.1 to address the

challenge outlined in SectionVI.1.1.2. By treating individual nodes required for a deploy-

ment as instances in the deployment plan, we are then able to use an IIH to perform any

installation measures required. For example, an IIH could be created that would first check

to see if any DAnCE infrastructure was present on the target node. If no infrastructure is

detected, it would be able to then use readily available and mature remote management

interfaces,e.g.SSH, to transfer the appropriate binary implementation of DAnCE and start

up the necessary infrastructure.

VI.2 Real-Time Extension for CCM

Developing complex component applications for the domainsdescribed in the intro-

duction is a very complex task due to the stringent Quality ofService requirements found

in Open DRE environments. Prior work conducted by our research group [78, 79, 80] has

demonstrated the need for configurable QoS properties to be integrated into both the com-

ponent middleware used to implement the applications and the deployment infrastructure

used to deploy and configure the application. Ideally, such configurable QoS properties

should be configured in such a way that (1) systemic aspects ofusing these QoS properties
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are explicitly separated from application business logic,and (2) such properties are explic-

itly configurable outside the application at runtime in order to allow tuning and adaptation

of the application.

Prior implementations of RT-CCM produced in the context of CIAOand DAnCE were

very tightly integrated into both the DAnCE tooling and the instantiation and installation

process of CIAO containers and components. This approach is problematic for three rea-

sons. First, such tight integration in the critical path complicates the implementation of the

D&C toolchain, markedly increasing the difficulty of maintaining the functionality —e.g.,

due to this tight integration and complex maintenance, RT-CCMfunctionality was unable

to be transitioned to the LE-DAnCE infrastructure. This integration also increases the diffi-

culty of applying the paralellization optimizations discussed earlier in this chapter. Second,

this approach makes it markedly more difficult to integrate configurability for other mid-

dleware services into the D&C toolchain,i.e., infrastructure level load balancing or fault

tolerance services. Finally, its presence in the critical path makes it impossible to remove

this functionality during deploy applications for which RTfunctionality is neither required

nor appropriate,i.e.,deployments of non-CCM based applications.

Ideally, such QoS configuration should be accomplished using a pluggable architecture

that uses standard interfaces to extend the functionality of both the component middleware

implementation and the deployment infrastructure to support QoS configuration. While the

Quality of Service for CCM specification [54] (QoS4CCM) has emerged to provide some

extensibility to the CCM container in order to support some level of QoS configuration

and could be used to also implement other extensions such as security controls and fault

tolerance, the specification falls short in at least one important area. The pluggable in-

frastructure provided by the QoS4CCM specification is entirely focused on modifying the

behavior of the container and components at runtime,i.e.,after the application has been ac-

tivated, and makes no provision for influencing the initial configuration during installation

and configuration by the D&C framework.
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CHAPTER VII

CONCLUDING REMARKS

This dissertation has presented deployment and configuration research challenges in

three areas: 1) resource constrained sensor webs, 2) adaptive and heterogeneous deploy-

ment in distributed real-time and embedded systems, 3) deterministic and efficient deploy-

ment and configuration of large-scale systems, and 4) simplified integration of distribution

middleware into component middleware.

The challenges in the area of resource constrained sensor webs revolved around the

deployment and configuration of theMulti-agent Architecture for Coordinated Responsive

Observations(MACRO), an agent-based middleware platform implemented with compo-

nent middleware. In particular, these challenges involvedthe ability of the MACRO frame-

work to 1) be able to execute low-level hardware dependent tasks, and 2) be provisioned

with the necessary business logic to be able to effect these actions at runtime. The solution

to these two challenges, the Action/Effector framework, was described. Moreover, the se-

vere resource limitations in this domain — especially CPU, memory, and power — caused

challenges in the context of DAnCE, particularly the abilityof DAnCE to deal with power

saving measures that involved completely shutting down hardware and the ability to cor-

rectly recover a correct deployment upon reboot. Finally, the effort to resolve the CPU and

memory constraints in this domain in part motivated the creation of the LocalityManager

framework in an effort to address footprint and deployment latency challenges.

The LocalityManager framework is part of an improved version of the DAnCE frame-

work called Locality-Enhanced DAnCE (LE-DAnCE). LE-DAnCE contains a number of

compelling contributions to the state of the art for deployment and configuration toolchains

for DRE systems. First, it allows for deployment of heterogeneous applications via the

Instance Installation Handler (IIH) facility,i.e., allowing for multiple component models
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to be part of a single deployment. Second, it allows user customization of the deploy-

ment toolchain through a well-defined interface via the Deployment Portable Interceptor

(DPI) facility. Third, it allows for these extensions (IIH and DPI implementations) to be

loaded dynamically at runtime as needed. Finally, due to thestrict separation of concerns

enabled by the IIH and DPI infrastructure, it contains a Deployment Scheduler that allows

for maintainable and extensible parallel scheduling of deployment events. The strict sepa-

ration of concerns provided by the LocalityManager also allows for a number of important

performance optimizations that allow it to scale to very large-scale deployments.

Finally, DDS4CIAO is a novel generative approach for developing DDS-based comp-

onent-oriented DRE systems. This approach combines key advantages of the DDS mid-

dleware, such as low latency communication and extensive QoS policy support, with the

strengths of a mature component model, such as simplified application composition and

automatic deployment and configuration. The approach has been prototyped and evaluated

via the DDS4CIAO middleware platform, which implements the Lightweight CCM (DDS-

4CCM) specification, while addressing a number of inherent andaccidental complexities

in integrating the DDS and LwCCM technologies. In particular,extensive use of variants

of the extensible interface pattern have been made to extendthe existing standard-defined

LwCCM interface and deployment meta-data to overcome incompatibilities between DDS

and LwCCM and overcome oversights in the DDS4CCM specification. Additionally, a

template driven code generation technique has been described that maximizes portability

amongst DDS implementations while allowing users to extendDDS4CCM by defining

their own connector types without having to modify the code generator.

CIAO, LE-DAnCE, and DDS4CIAO are all open source software and are available

from download.dre.vanderbilt.edu
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APPENDIX B

IDL LISTINGS

B.1 LocalityManager IDL

1 module DAnCE

2 {

3 /* *

4 * @ i n t e r f a c e Ins tanceDep loymen tHand le r

5 * @br ie f I n t e r f a c e used t o manage t h e l i f e c y c l eof i n s t a n c e s .

6 *

7 * Th is i n t e r f a c e i s used by t h e Loca l i t yManager t o manage t h e li f e c y c l e

8 * of v a r i o u s i n s t a n c e t y p e s . Each i n s t a n c e t ype r e q u i r e s a s e p e ra t e IDH .

9 * /

10 l o c a l i n t e r f a c e Ins tanceDep loymen tHand le r

11 {

12 r e a d o n l y a t t r i b u t e s t r i n g i n s t a n c e _ t y p e;

13

14 r e a d o n l y a t t r i b u t e : : CORBA : : S t r i n g S e q d e p e n d e n c i e s;

15

16 vo id c o n f i g u r e ( i n : : Deployment : : P r o p e r t i e s c o n f i g );

17

18 vo id i n s t a l l _ i n s t a n c e ( i n : : Deployment : : DeploymentPlan plan ,

19 i n uns igned long i n s t a n c e R e f ,

20 ou t any i n s t a n c e _ r e f e r e n c e )

21 r a i s e s ( Deployment : : S t a r t E r r o r ,

22 Deployment : : I n v a l i d P r o p e r t y ,

23 Deployment : : I nva l i dNodeExecParamete r ,

24 Deployment : : Inva l i dComponen tExecParamete r );

25

26 vo id p r o v i d e _ e n d p o i n t _ r e f e r e n c e ( i n : : Deployment : : DeploymentPlan plan ,

27 i n uns igned long connec t i onRe f ,

28 ou t any e n d p o i n t _ r e f e r e n c e )

29 r a i s e s ( Deployment : : S t a r t E r r o r ,

30 Deployment : : I n v a l i d P r o p e r t y );

31

32 vo id c o n n e c t _ i n s t a n c e ( i n : : Deployment : : DeploymentPlan plan ,

33 i n uns igned long connec t i onRe f ,

34 i n any p r o v i d e d _ r e f e r e n c e )

35 r a i s e s ( Deployment : : S t a r t E r r o r ,

36 Deployment : : I n v a l i d C o n n e c t i o n );

37

38 vo id d i s c o n n e c t _ i n s t a n c e ( i n : : Deployment : : DeploymentPlan plan ,

39 i n uns igned long c o n n e c t i o n R e f )

40 r a i s e s ( : : Deployment : : S t o p E r r o r );

41

42 vo id i n s t a n c e _ c o n f i g u r e d ( i n : : Deployment : : DeploymentPlan plan ,

43 i n uns igned long i n s t a n c e R e f )

44 r a i s e s ( Deployment : : S t a r t E r r o r );

45
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46 vo id a c t i v a t e _ i n s t a n c e ( i n : : Deployment : : DeploymentPlan plan ,

47 i n uns igned long i n s t a n c e R e f ,

48 i n any i n s t a n c e _ r e f e r e n c e )

49 r a i s e s ( Deployment : : S t a r t E r r o r );

50

51 vo id p a s s i v a t e _ i n s t a n c e ( i n : : Deployment : : DeploymentPlan plan ,

52 i n uns igned long i n s t a n c e R e f ,

53 i n any i n s t a n c e _ r e f e r e n c e )

54 r a i s e s ( Deployment : : S t o p E r r o r );

55

56 vo id remove_ i ns t ance ( i n : : Deployment : : DeploymentPlan plan ,

57 i n uns igned long i n s t a n c e R e f ,

58 i n any i n s t a n c e _ r e f e r e n c e )

59 r a i s e s ( : : Deployment : : S t o p E r r o r );

60

61 / / / I n s t r u c t t h e h a n d l e r t o r e l e a s e any r e s o u r c e s p r i o r t od e a l l o c a t i o n .

62 vo id c l o s e ( );

63 } ;

64

65 i n t e r f a c e Loca l i t yManager :

66 Deployment : : A p p l i c a t i o n ,

67 Deployment : : App l i ca t i onManager

68 {

69 r e a d o n l y a t t r i b u t e : : Deployment : : P r o p e r t i e s c o n f i g u ra t i o n ;

70

71 Deployment : : App l i ca t i onManager

72 p r e p a r e P l a n ( i n Deployment : : DeploymentPlan plan ,

73 i n Deployment : : ResourceCommitmentManager resourceCommitment )

74 r a i s e s ( Deployment : : S t a r t E r r o r ,

75 Deployment : : P l a n E r r o r );

76

77 vo id des t royManager ( i n : : Deployment : : App l i ca t i onManager manager )

78 r a i s e s ( Deployment : : S t o p E r r o r );

79

80 oneway vo id shutdown ( );

81 } ;

82

83 l o c a l i n t e r f a c e L o c a l i t y C o n f i g u r a t i o n

84 {

85 r e a d o n l y a t t r i b u t e s t r i n g t ype;

86

87 vo id c o n f i g u r e ( i n : : Deployment : : P r o p e r t y prop );

88 } ;

89

90 i n t e r f a c e L o c a l i t y M a n a g e r A c t i v a t o r

91 {

92 vo id l o c a l i t y _ m a n a g e r _ c a l l b a c k ( i n Loca l i t yManager ref ,

93 i n s t r i n g uuid ,

94 ou t Deployment : : P r o p e r t i e s c o n f i g );

95

96 vo id c o n f i g u r a t i o n _ c o m p l e t e ( i n s t r i n g uu id );

97 } ;
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