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SUMMARY 

 

The overall focus of this dissertation was to create a robust scoring function 

within the Rosetta software suite that accurately described and scored partial covalent 

interactions (PCIs) such as hydrogen bonds, salt bridges, cation-π, and π-π interactions 

found in macromolecular structures and complexes. 

Chapter I introduces the importance of the Rosetta software suite and the 

impact that it has had on the field of macromolecular modeling. The introduction 

describes the most commonly used algorithms in Rosetta, comparative modeling, 

protein, ligand interface, and enzyme design, rotamer recovery analysis, loop building, 

all atom refinement, and finally the features reporter. In addition to commonly used 

applications, analysis methods for models output by Rosetta protocols are discussed. 

Finally, the Rosetta score function is described in detail and compared to molecular 

mechanics force fields. Portions of Chapter I came from a protocols article titled “Small-

molecule ligand docking into comparative models with Rosetta” by Steven Combs, 

Samuel Deluca, Stephanie Deluca, Gordon Lemmon, David Nannemann, Elizabeth 

Nguyen, Jordan Willis, Jonathon Sheehan, and Jens Meiler and a journal article titled 

“Partial Covalent Interactions in Rosetta” by Steven Combs and Jens Meiler. The author 

of this dissertation contributed to all portions of the articles through writing, performing 

experiments, or editing. 
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Chapter II introduces advances in docking small-molecule antidepressants into 

comparative models of the human serotonin transporter (hSERT) and the drosophila 

serotonin transporter (dSERT). Through this work, the apparent deficiencies in the 

Rosetta score function are noted. The work is largely based on the publication entitled 

“E444 Interaction Required for High-Affinity S-Citalopram Binding in the Human 

Serotonin Transporter” by Steven Combs, Kristian Kaufmann, Julie R. Field, Randy D. 

Blakely, and Jens Meiler. While the work on this project was highly collaborative, the 

computational experiments, data analysis, and results were work of the author of this 

dissertation. The chapter concludes with a set of experiments used to determine 

suitable ligands and alkyl spacer lengths to conjugate quantum dots for tracking of the 

hSERT within a cell membrane. Methods and procedures described in the beginning of 

the chapter are used to guide the study; however, because of deficiencies in the Rosetta 

score function, a separate computational approach is used. The work is based on a 

manuscript in preparation: “Guided Design of Conjugated Ligand Quantum Dots for the 

Human Serotonin Transporter” by Steven Combs, Emily Jones, Zack Glazer, Ian 

Tomlinson, Sandra Rosenthal and Jens Meiler. Significant portions of the computational 

experiments, analysis of results, and writing were done by the author of this 

dissertation. 

As a direct result of the deficiencies in the Rosetta score function described in 

chapter II, Chapter III focuses on the computational methods used to improve the 

Rosetta score function. First, a brief summary of interactions intended to model are 

summarized followed by a discussion on errors in the original Rosetta score function. 



vi 
 

Approaches used to model partial covalent interactions, assumptions made in scoring 

interactions, and computational procedures to implement a new score function are 

discussed. The chapter ends with a comparison of the versions for the score function. 

The work presented in this chapter is over an unpublished manuscript by Steven Combs 

and Jens Meier entitled “Partial Covalent Interactions in Rosetta”. All work done was by 

the author of this dissertation. 

Chapter IV implements the new score function into common Rosetta 

applications that were discussed in Chapter I of this dissertation. Improvements and 

deficiencies in all applications are detailed along with the protocol used to run the 

applications. A summary of the results are presented at the end of the chapter which 

shows larges improvements in scoring and identification of partial covalent interactions 

in Rosetta applications. 

Chapter V provides the major conclusions of this dissertation and how they 

relate to the current field of research. Additionally, future directions on improving 

scoring and better programming practices are included. 
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CHAPTER I 

 

INTRODUCTION 

 

Part of the work presented in this chapter was published in (Combs, DeLuca et al. 2013) 

Molecular Modeling in Rosetta 

Molecular modeling is a broad term used to describe computational approaches 

to determine properties and behaviors of molecules, macromolecules, and large 

macromolecule complexes. While substantial progress has been made in X-ray 

crystallography and nuclear magnetic resonance (NMR) spectroscopy, the availability of 

high-resolution structures is limited due to the frequent inability to crystallize or obtain 

sufficient NMR restraints for large or flexible proteins. Computational methods can be 

used to both predict unknown protein structures and model ligand interactions when 

experimental data is unavailable in a process known as small-molecule docking into 

comparative models. 

Small-molecule docking into comparative models allows for structure-based drug 

design and hypothesis generation for protein/ligand systems for which there is no high-

resolution structure. Often, a homologous structure has been structurally characterized 

at sufficient resolution for ligand docking into a constructed comparative model. Many 

software packages exist for the specific task of comparative modeling and ligand 

docking. The Rosetta software suite includes algorithms for both of these tasks and is 
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developed for computational modeling and analysis of protein structures; further, it is 

free for non-commercial users. It has enabled notable scientific advances in 

computational biology, including de novo protein design, enzyme design, ligand docking, 

and structure prediction of biological macromolecules and macromolecular 

complexes(Kuhlman, Dantas et al. 2003; Rohl, Strauss et al. 2004; Misura, Chivian et al. 

2006; Das and Baker 2008; Davis and Baker 2009; Davis, Raha et al. 2009; Siegel, 

Zanghellini et al. 2010). The broad spectrum of applications available through Rosetta 

allows for multiple computational problems to be addressed in one software 

framework. A series of algorithms important to this thesis are summarized below. 

Comparative modeling with Rosetta 

One of the most commonly used applications of Rosetta is protein structure 

prediction via de novo folding and comparative modeling(Rohl, Strauss et al. 2004; 

Kaufmann, Lemmon et al. 2010). When only the primary sequence of a protein is 

known, de novo folding can be used to predict the protein’s tertiary structure. However, 

to date, Rosetta has been shown to successfully fold only small, soluble proteins (fewer 

than 150 amino acids) and performs best if the proteins are mainly composed of 

secondary structural elements (alpha-helices and beta-strands)(Meiler and Baker 2003). 

Structures of helical membrane proteins between 51-145 residues were predicted to 

within 4 Å of the native structure,(Yarov-Yarovoy, Schonbrun et al. 2006) but only very 

small proteins (up to 80 residues) have been predicted to atomic-detail 

accuracy(Bradley, Malmström et al. 2005; Bradley, Misura et al. 2005; Das, Qian et al. 

2007). Accurate prediction of larger and/or more complex proteins can be achieved with 
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the addition of experimental data, such as NMR chemical shifts and distance data(Rohl 

2005; Lange and Baker 2012; Lange, Rossi et al. 2012). Given these limitations, 

whenever an experimental structure of a related protein is available, comparative 

modeling is preferred to de novo folding. 

Comparative modeling refers to the elucidation of the tertiary fold of a protein, 

guided by a known structure of another, often homologous, protein. The unknown 

structure is commonly called the “target,” while the protein of known structure, upon 

which the primary sequence of the target is threaded, is termed the “template.” The 

known template structure reduces the conformational search space by providing a 

protein backbone scaffold; areas where the template and target sequences diverge 

significantly are typically remodeled and refined via the loop building application. The 

application is known as “loop building” because it is most commonly applied to flexible 

loop regions between secondary structure elements. However, a “loop” is defined here 

as any area where the backbone needs to be rebuilt de novo, which most often occurs in 

flexible regions but can also include secondary structural elements in cases of 

insertions/deletions or low sequence identity. Comparative models have played a major 

role in aiding experimental design and the interpretation of experimental results. They 

can be employed to help predict structure-function relationships(Kaufmann, Dawson et 

al. 2009), predict binding pockets for ligands during structure-based drug design(Lees-

Miller, Subbotina et al. 2009), and aid in the determination of target residues for site-

directed mutagenesis(Keeble, Joachimiak et al. 2008; Fortenberry, Bowman et al. 2011). 



4 
 

Ligand docking with RosettaLigand  

Small-molecule ligand docking applications attempt to predict the protein/small-

molecule binding free-energy, as well as critical binding interactions(Perola, Walters et 

al. 2004; Mooers and Matthews 2006; Mobley, Graves et al. 2007). These predictions 

can provide structural information of a ligand binding site(Davis, Raha et al. 2009), filter 

high-throughput screening libraries for likely hits(Ballester, Westwood et al. 2010; 

Carlsson, Coleman et al. 2011), or guide de novo drug design(Schneider and Fechner 

2005; Schneider, Hartenfeller et al. 2009).  

RosettaLigand requires input structures of a receptor (protein) and a ligand 

(small molecule)(Davis and Baker 2009; Davis, Raha et al. 2009). Because it does not 

perform binding pocket detection, the user must have prior knowledge of the location 

of the binding site. Other programs, such as SURFNET(Laskowski 1995), LIGSITE(Huang 

and Schroeder 2006), and PocketDepth(Kalidas and Chandra 2008), can be used to 

identify the ligand binding site before using RosettaLigand for small-molecule docking. 

Ligand and receptor side chain conformations are explored through Monte Carlo 

sampling of rotamers(Dunbrack and Karplus 1993). Predicted protein-ligand interactions 

are deemed favorable and are accepted if they improve the Rosetta energy score (see 

subsection Rosetta Score Function)(Davis and Baker 2009). Backbone flexibility of the 

protein is modeled via a gradient-based minimization of phi and psi torsion angles(Li and 

Scheraga 1987). Performing ligand docking on an ensemble of ligand conformations and 

protein backbones can be used to increase the conformational space sampled if the 



5 
 

protein-ligand interaction does not fit the simple lock-and-key paradigm(Siegel, 

Zanghellini et al. 2010). 

The accuracy of RosettaLigand was assessed by Davis, et al. via both 

retrospective and prospective benchmark studies(Davis and Baker 2009). In 54 of 85 

cases (64%), RosettaLigand’s top scoring model was within 2.0 Å root mean square 

deviation (RMSD) from the experimentally determined structure. These results were 

achieved by including backbone and side chain flexibility, as well as ligand flexibility 

through conformer selection and torsion angle adjustments. 

Ligand docking algorithms can be categorized based on their scoring function 

and search methodology. RosettaLigand uses a knowledge-based scoring function 

derived from statistical analysis of the Protein Data Bank (PDB)(Simons, Kooperberg et 

al. 1997). The conformational search of the binding site is accomplished using a 

Metropolis Monte Carlo algorithm (Metropolis, Rosenbluth et al. 1953; Kuhlman, Dantas 

et al. 2003; Rohl, Strauss et al. 2004; Misura, Chivian et al. 2006; Das and Baker 2008; 

Davis and Baker 2009; Davis, Raha et al. 2009; Siegel, Zanghellini et al. 2010). Other 

search strategies include geometric hashing (FlexX)(Rarey, Kramer et al. 1996), genetic 

algorithms (GOLD)(Verdonk, Cole et al. 2003), and systematic sampling (Glide)(Friesner, 

Banks et al. 2004). Different scoring functions include physics-based force fields 

(Dock)(Ewing, Makino et al. 2001), chemical descriptor models (FlexX(Rarey, Kramer et 

al. 1996)), and knowledge-based potentials (RosettaLigand(Meiler and Baker 2006), 

DrugScore(Gohlke, Hendlich et al. 2000)). 
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A 2009 study compared the performance of the RosettaLigand docking method 

to nine other commonly used ligand docking programs (Dock, Dockit, FlexX, Flo, Fred, 

Glide, GOLD, LigandFit, MOE, and MVP). Ligand docking algorithm performance was 

compared using a benchmark set of 136 ligands and eight target receptors provided by 

Glaxo-Smith-Kline. This study demonstrated that RosettaLigand performance was 

comparable or better than the other ligand docking algorithms considered. The study 

used crystallographic protein structures as input rather than comparative models. 

Kaufmann, et. al. demonstrated the predictive power of Rosetta ligand docking into 

Rosetta-built comparative models(Kaufmann, Dawson et al. 2009). In another study, 

RosettaLigand and AutoDock were used to dock twenty protein-ligand complexes(Davis 

and Baker 2009). In ten cases, RosettaLigand’s flexible backbone docking protocol found 

top-scoring models under 2.0 Å RMSD. In contrast, AutoDock identified only four such 

structures. However, the authors note that RosettaLigand consumed significantly more 

computational resources (40-80 CPU hours per input) than AutoDock (5-22 CPU Fhours 

per input). 

Protein, Ligand Interface, and Enzyme Design in Rosetta 

Protein design maximizes the total free energy of a tertiary structure through 

optimization of the primary sequence(Kuhlman and Baker 2000; Kuhlman and Baker 

2004). On a fixed backbone, amino acid side chain identities and conformations are 

stochastically swapped and scored with the Rosetta all-atom scoring function. The 

sequence with the lowest free energy is chosen as the optimal sequence for the given 

backbone. Because design is done on a rigid backbone from experimental structures, 
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small local frustrations/clashes exist that – when designing the protein – are relived 

through replacing a large amino acid with a smaller one thereby producing an artificially 

low energy(Kuhlman, Dantas et al. 2003). This is in particular true for the larger proteins. 

In order to relieve small clashes, an all-atom refinement of experimental structures is 

suggested.  

Similar to protein design, ligand interface design attempts to optimize the local 

sequence around a specific ligand in order to maximize affinity to the small molecule. 

The small-molecule is allowed to sample conformational space through small 

perturbations around the binding pocket in a series of small translational (0.1 Å – 0.5 Å) 

and rotational (5-10°) steps while the side chain conformations are allowed to 

accommodate the ligand through side chain repacking. At the end of the ligand 

movement, side chain identities are optimized to create binding contacts with the ligand 

using the algorithm described in the fixed backbone application. 

Theozymes are theoretical enzymes that have an ideal arrangement of the 

transition state structure surrounded by catalytic functional groups(Tantillo, Chen et al. 

1998). In general, a theozyme is created computationally via quantum mechanical 

studies. In this process, a transition state is modeled and geometrically optimized. Once 

the transition state is geometrically optimized, catalytic functional groups are added to 

stabilize the transition state. Instead of using a full atom protein, the amino acid side 

chain functional group is used: ammonium for lysine, acetamide for aspargine, etc. 

Placement of functional groups is done through approximation of ideal 
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distances/angles. Then, quantum mechanical studies are used to find the optimal 

geometric constraints. Once a set of geometrical constraints are derived, they are input 

into Rosetta Matcher(Zanghellini, Jiang et al. 2006), which searches a set of proteins 

that can accommodate the ligand and geometric constraints for the side chains. Once a 

set of proteins are identified, the algorithm Rosetta EnzDes is used to optimize binding 

ligand interface contacts through the same algorithm used for interface design. 

Rotamer Recovery 

 Conformational sampling for proteins side chains is a combinatorial problem that 

produces a large search space. Experimentally determined structures contain side chains 

in an energetically favorable conformation. Unlike protein design, rotamer recovery 

attempts to recover the correct conformation of a protein side chain in context of all 

other side chains in a protein. A stringent test for the score function is to see if the 

energetic minimum for side chain conformations can be recovered through sampling 

multiple rotamers (conformations) for each side chain(Petrella, Lazaridis et al. 1998; 

Liang and Grishin 2002). Side chain rotamer recovery is measured by systematically 

swapping out each amino acid rotamer with rotamers from the dunbrack 

library(Shapovalov and Dunbrack 2011) while keeping the conformations of all other 

side chains fixed. After a rotamer is picked, the side chain is allowed to minimize. The 

lowest scoring rotamer/minimization is compared by chi angles to the original side chain 

conformation. If chi angles are equal, then the residue is considered recovered. 

Residues with a neighbor count of 16 or less were considered surface residues while 

residues with more than 16 neighbors were considered to be in the core of the protein. 
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Neighbor counts are measured by the amount of residues with a CB (CA for GLY) 

distance within 10Å of the residue being repacked. 

Loop Building in Rosetta 

Rosetta includes two loop-building algorithms. Cyclic coordinate descent (CCD), 

inspired by inverse kinematic applications in robotics, adjusts residue dihedral angles to 

minimize the sum of the squared distances between three backbone atoms of the 

moving N-terminal anchor and the three backbone atoms of the fixed C-terminal 

anchor(Canutescu and Dunbrack 2003). The advantages of CCD are its speed and its 

ability to close a loop over 99% of the time. Conversely, kinematic loop closure (KIC) 

analytically determines all mechanically accessible conformations for torsion angles of a 

peptide chain using polynomial resultants(Coutsias, Seok et al. 2004; Mandell, Coutsias 

et al. 2009). While KIC has been shown to recover loops from experimentally 

determined structures more accurately, it relies heavily on the location of the N- and C-

terminal anchors and may not be an ideal choice for comparative modeling. 

Rosetta loop building by CCD uses fragment libraries for generating loop 

coordinates for missing density in the threaded model. The fragment file is comprised of 

the target sequence divided into 3- and 9-amino acid overlapping sequence windows. 

There are 200 peptide fragments for each sequence window. After dividing the target 

primary sequence into 3- and 9-amino acid sequence windows, both Robetta and the 

fragment picker(Gront, Kulp et al. 2011) application query a structural database of non-

redundant proteins(Wang and Dunbrack 2003) for each peptide sequence and store the 
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corresponding Cartesian coordinates and secondary structure information in fragment 

files. For more detailed background and information on this application, see Gront, et 

al.(Gront, Kulp et al. 2011) or go to 

www.rosettacommons.org/manuals/archive/rosetta3.4_user_guide/dc/d10/app_fragm

ent_p icker.html. Fragments can also be generated using NMR data using 

RosettaNMR(Rohl 2005). For details on the procedure, please visit 

spin.niddk.nih.gov/bax/software/CSROSETTA/. 

Loop building takes place in two stages. In the first stage, a fast, low-resolution 

remodeling step with CCD consisting of broad sampling of backbone conformations is 

performed. In the second stage, the model is represented in all-atom detail and 

evaluated by Rosetta's all-atom scoring function. It has been suggested by Kaufmann et. 

al.(Kaufmann and Meiler 2012) and others that ligands in the binding site of the 

template structure be carried into the comparative modeling process. Although not 

done here, it is anticipated that using such an approach would pre-arrange and maintain 

the pocket shape for small-molecule binding and result in higher quality homology 

models.  

All Atom Refinement in Rosetta 

The protocol used for structural refinement in Rosetta, visually described in 

Figure 1, is often referred to as “relax.” The goal of the relax protocol is to explore the 

local conformational space and to energetically minimize the protein. During this 

process, local interactions are improved by iterative side chain repacking, in which new 
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side chain conformations, or “rotamers,” are selected from the Dunbrack library(Leaver-

Fay, Kuhlman et al. 2005), and gradient-based minimization of the entire model, where 

the energy of the model is minimized as a function of the score. These small structural 

changes are evaluated according to the all-atom scoring function and are sampled in a 

Metropolis Monte Carlo(Metropolis, Rosenbluth et al. 1953) method. The relax protocol 

has been shown to dramatically lower the overall energy of the Rosetta model and is 

essential to achieving atomic detail accuracy(Rohl, Strauss et al. 2004; Bradley, Misura 

et al. 2005). 
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Figure 1: Overview of Rosetta energetic minimization and all-atom refinement via relax 
protocol. 
(a) Simplified energy landscape of a protein structure. The relax protocol combines small 
backbone perturbations with side-chain repacking. The coupling of Monte Carlo sampling with 
the Metropolis selection criterion allows for sampling of diverse conformations on the energy 
landscape. The final step is a gradient-based minimization of all torsion angles to move the 
model into the closest local energy minimum. (b) Comparison of structural perturbations 
introduced by the repack and minimization steps. During repacking, the backbone of the input 
model is fixed, whereas side-chain conformations from the rotamer library are sampled. 
Comparison of the initial (transparent yellow) and final (light blue) models reveals conservation 
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of the R135 rotamer but changes to the R11 and E15 rotamers. Minimization affects all angles 
and changes the backbone conformation. 

Rosetta Features Framework 

RosettaFeatures(Leaver-Fay, O'Meara et al. 2013) measures a series of 

properties from a dataset of protein structures and stores the properties in a relational 

database (SQL, MYSQL, POSTGRES). Data stored in the database can be extracted and 

summarized through a set of Analyses scripts written in the functional language R. 

Specifically, geometric parameters used to define specific score function terms such as 

hydrogen bond distances and angles (Figure 2A) and orbital distances and angles (Figure 

2C) can be analyzed and summarized in a graphical format. A powerful tool of the 

analysis scripts and the RosettaFeatures framework is the direct comparison of crystal 

structure features compared to models generated from a Rosetta protocol. In addition 

to storing score function data, metadata used in generating the models which allows for 

reproducibility of the protocol, generated models, and protein metrics (SASA, packing 

density, number of buried unsatisfied hydrogen bond acceptors, etc) are stored. 

 

Figure 2: Geometric parameters for partial covalent interactions in the Rosetta score function. 
Schematic representation of geometric definitions for derivation of KBP for (a) hydrogen bonds, 
(b) pair potential, and (c) orbitals. A) δHA distance between the acceptor and hydrogen atom, χ 
torsion angle between the base acceptor-acceptor-hydorgen-donor atom, Ψ angle between the 
base acceptor-acceptor-hydrogen, and Θ angle between the acceptor – hydrogen –donor. B) 
δAC distance between the action center for two polar residues. C) δHOrb, distance between the 
orbital and hydrogen atom, Ψ angle between the acceptor – orbital – hydrogen, and Θ the angle 
between the donor – hydrogen – orbital. 
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Analysis of Protein Structures in Rosetta 

 After each Rosetta protocol, several models are produced; however, score alone 

does not always predict biochemically relevant models. It is important, therefor, to 

analyze models based on several metrics. In the following section, model evaluation 

methods are described.  

Sequence recovery is calculated by (n_recovered)/(n_designed), where 

n_recovered were the number of residues that where designed and matched native 

residues for the given position and n_designed is the total number of residues designed. 

The average is taken for all proteins in a design benchmark dataset. Surface and core 

residue designation is determined by the number of residues with c-beta (c-alpha for 

gly) atoms within 10.0 Å of the designed residue c-beta where counts of residues fewer 

than 16 residues are considered to be on the surface and counts larger than 16 to be in 

the core.  

Position Specific Scoring Matrix (PSSM) recovery measures the fraction of amino 

acids that is converted to an identity that has been seen in evolution in this position. 

The measure seeks to circumvent one limitation of the sequence recovery measure: 

often multiple amino acids will be acceptable in a certain position; therefore, failure to 

recover the native amino acid is not indicative of a poor energy function. PSSM recovery 

addresses this limitation in part as it accepts all amino acid sampled by evolution in a 

given position as acceptable. Computing PSSM recovery requires i) creating a PSSM for 

each individual protein using PSI-BLAST and ii) calculating percent recovery counting all 
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amino acid types as correctly recovered that have a positive value in the log-odds PSSM 

(n_pssm_recovered/n_designed). 

An aspect of highly stable proteins, proteins resistant to heat denaturation and 

enzymatic degradation is how well the protein core excludes water. An indirect 

measurement of this feature is packing density, a measure of how well a protein is 

packed(Sheffler and Baker 2009). To determine the packing density, empty spaces 

(cavities) within the core of a protein are determined through determining the surface 

of the protein. All cavities not directly open to the surface of the protein are considered 

cavities. Contact surface area around each cavity ball is then calculated with a probe 

radii between 0.1Å and 3.0Å with 0.1 Å steps. A support vector machine (SVM) is used 

to create a summary statistic of the contact surface areas for the cavities and is reported 

in an interval between 0 and 1 which can be interpreted roughly as probabilities of how 

well the protein is packed. 

Predicted structures generated by comparative modeling, de novo folding, and 

ligand docking are often clustered to help identify structurally similar models. Clustering 

is performed with the assumption that the deepest energy well, and hence the global 

energy minimum, will also be the widest(Shortle, Simons et al. 1998) Figure 3.  
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Figure 3: Clustering within Rosetta identifies energetic minimum.  
Clustering models with similar topology through pairwise root mean square deviation (RMSD) 
distances identifies set of clusters that correspond to energy minima. Because the Rosetta 
energy function is coarse, the width of the energy well, or cluster centers with large number of 
models, correspond to the depth of an energy well. In both ligand docking and ab initio folding, 
the largest cluster center is accepted as a representation of the experimental model. 

As a result, it is expected that the largest clusters will potentially contain the 

predicted model that is closest to the native structure. Rosetta includes a tool for 

clustering protein models. The cluster application avoids the memory requirements 

associated with computing a complete distance matrix for large numbers of models. The 

Rosetta clustering method starts by computing a distance matrix for the first 400 input 

models. Each model in the distance matrix is assigned to the cluster to which it is 

nearest (typically in terms of RMSD). If the model is not within a specified radius of any 

cluster, it is assigned to a new cluster. 

 



17 
 

 

Because the Rosetta clustering application outputs most of its statistical 

information in its log file, a script can be used on the data to produce a clear summary 

of the results. Given a set of PDB or Rosetta silent files and a Rosetta options file, 

clustering.py will produce a set of clustered PDBs, a histogram file showing the 

distribution of pairwise RMSDs between models, and a summary file showing which 

models are in which clusters. The Rosetta options file can contain a number of options 

that control the behavior of the cluster application. 

Force Fields in Molecular Modeling 

Free energy calculations are used for model discrimination in molecular 

modeling. During model generation, free energy calculations are used to drive the 

simulation towards an energy minimum or equilibrium; however, final free energy 

calculations on completed simulations are used to discriminate and rank native-like 

models. In context of molecular modeling, several methods exist to calculate the energy 

of the system: molecular mechanics force fields and knowledge-based force fields. 

Molecular Mechanics Force Fields 

The underlying functional forms for free energy calculation in molecular 

mechanics force fields is                           where           is the energy 

associated between bonded atoms and              is the energy between non-bonded 

atoms.           attempts to capture vibration of bonds, bending of valence angles, and 

rotation of dihedrals. Therefore,           is further separated through: 
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Equation 1: 

           ∑         
  

     

  ∑         
  

      

  ∑   [           ]

         

 

The first term in Equation 1 sums over all bonded pairs of atoms where b is the 

bond length (interatom distance),    and    are parameters that describe the stiffness 

and the equilibrium length of the bond, respectively. Bending of angles is described 

through the connections of triplet atoms forming an angle, A, B, and C where A is 

bonded to B and B is bonded to C.   is the angle formed by the two bond vectors and 

similar to the bonds,    and    describe the stiffness and equilibrium geometry of the 

angle. Finally, the third term describes the energy associated with dihedral angles for A, 

B, C, and D where A is bonded to B and B is bonded to C and C is bonded to D.   is the 

value of the dihedral,    is the energetic parameter that determines barrier heights,   is 

the periodicity, and   is the phase. Because rotation is periodic in nature, the cos of the 

terms are taken. 

             is an energetic evaluation for all non-bonded atoms with a distance 

separation of at least three bonds. The expanded form is: 

Equation 2: 

             ∑     [ 
       

   
       

       

   
  ]

          
     

  
    

   
  

The set of terms encompassed in the brackets is the formulation of the Lennard-

Jones equation and models attractive dispersion and repulsive Pauli-exclusion 

interactions over atoms i and j with a prefactor     which is a parameter based on the 
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type of interacting atoms.         describes the minimum of the LJ energy and is based 

on the type of interacting atoms and     is the interatomic distance. The second portion 

of the equation is the formulation of Coulomb’s Law where    is the interatomic 

distance and      is the charges on the two interacting atoms.   

Knowledge Based Force Fields 

In contrast to molecular mechanics, KBPs are based upon the assumption that 

frequently observed molecular geometries correspond to low energy states(Sippl 1995). 

They require availability of a large databank of experimentally determined structures – a 

prerequisite fulfilled for proteins through the protein databank (PDB)(Berman, 

Westbrook et al. 2000) and small molecules through the Cambridge Structural 

Database(Allen 2002). A set of measurable geometric variables can be extracted from 

the PDB and compiled into a statistical distribution. According to Boltzmann’s principle, 

energies and probability densities are related quantities and can be used to rapidly 

assess protein models. The general definition for the energy of a KBP is expressed via 

           [ ∫    ] where r is a measured quantity between two atoms, E(r) is the 

energy associated from the measured quantity, k is Boltzmann’s constant, T is the 

absolute temperature, and ∫    is the probability density.  

The Rosetta Energy Function 

 Specific to this dissertation is the Rosetta score function. The energy, or scoring, 

function in Rosetta is derived empirically through analysis of observed geometries of a 

subset of proteins in the PDB. The measurements include, but are not limited to: radius 
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of gyration, packing density, distance/angle between hydrogen bonds, and distance 

between two polar atoms. The measurements are converted into an energy function 

through Bayesian statistics(Simons, Kooperberg et al. 1997).  

 The scoring function in Rosetta can be separated into two main categories: 

centroid-based scoring and all-atom scoring. The former is used for de novo folding and 

initial rounds of loop building(Simons, Kooperberg et al. 1997; Simons, Ruczinski et al. 

1999; Rohl, Strauss et al. 2004). The side chains are represented as “super-atoms,” or 

“centroids,” which limit the degrees of freedom to be sampled while preserving some of 

the chemical and physical properties of the side chain. This centroid-based scoring 

function is important for de novo folding and not all-atom modeling. 

The all-atom scoring function represents side chains in atomic detail. Like the 

centroid-based scoring function, the all-atom scoring function is comprised of weighted 

individual terms that are summed to create a total energy for a protein. Most of the 

scoring terms are derived from knowledge-based potentials. The scoring function 

contains Newtonian physics-based terms, including a 6-12 Lennard-Jones potential and 

an implicit solvation potential(Lazaridis and Karplus 1999). The 6-12 Lennard-Jones 

potential is split into two terms, an attractive term (fa_atr) and a repulsive term 

(fa_rep) for all van der Waals interactions(Neria, Fischer et al. 1996; Kuhlman and 

Baker 2000). The solvation potential (fa_sol) models water implicitly and penalizes 

the burial of polar atoms(Lazaridis and Karplus 1999). Inter-atomic electrostatic 

interactions are captured through a pair potential (fa_pair)(Simons, Ruczinski et al. 
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1999), and an orientation-dependent hydrogen bond potential for long range and short 

range hydrogen bonding (hbond_sc, hbond_lr_bb, hbond_sr_bb, 

hbond_bb_sc, respectively)(Gordon, Marshall et al. 1999; Wedemeyer and Baker 

2003). In addition to the electrostatic terms, the Rosetta all-atom scoring function 

contains terms that dictate frequently observed side chain conformations in the PDB 

through the Dunbrack rotamer library (fa_dun)(Dunbrack and Karplus 1993; Dunbrack 

and Cohen 1997), preference for a specific amino acid given a pair of phi/psi angles 

(p_aa_pp), and preference for the phi/psi angles in a Ramachandran plot 

(rama)(RAMACHANDRAN, RAMAKRISHNAN et al. 1963; Wedemeyer and Baker 2003; 

Rohl, Strauss et al. 2004). Finally, specific for design, the reference term (ref) attempts 

to correlate the free energy of an amino acid in the unfolded state. The total energy of a 

protein or residue is the summation of all weighted terms: 

Equation 3: 
 

E = WatrEatr + WrepErep + Wintra_repEintra_rep + WsolEsol + Whbond_scEhbond_sc + 

Whbond_sr_bbEhbond_sr_bb + Whbond_lr_bbEhbond_lr_bb + Whbond_bb_scEhbond_bb_sc + WdunEdun 

+ Wp_aa_ppEp_aa_pp + WpairEpair + WrefEref 
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CHAPTER II 

 

SMALL MOLECULE DOCKING INTO THE HUMAN SEROTONIN TRANSPORTER 

 

Depression affects close to 20 million (6.5% of the total population) Americans 

each year(Kessler, Chiu et al. 2005) and an estimated 4.5% of the world 

population(Organization 2009). The monoamine theory postulates that disruption or 

malfunction of CNS serotonergic and noradrenergic systems drives risk and/or 

symptoms of depression(Hirschfeld 2000). The human 5-HT transporter (hSERT, SLC6A4) 

is an integral membrane protein localized to serotonergic terminals. SERT is responsible 

for the uptake of 5-HT, Na+ ions, and Cl- ions across the presynaptic cell membrane, 

thereby limiting 5-HT actions in space and time(Barker, Burris et al. 1991). A variety of 

brain disorders, including depression, autism, attention deficit hyperactivity disorder 

(ADHD), obsessive-compulsive disorder (OCD), and addiction(Hirschfeld 2000; Prasad, 

Steiner et al. 2009), are linked to alterations in uptake of 5-HT from the presynaptic cell 

membrane via hSERT(Blakely, Berson et al. 1991). For treatment of these diseases, 

selective 5-HT reuptake inhibitors (SSRIs) were developed that elevate 5-HT levels at the 

synapse. One such SSRI, citalopram, alleviates the symptoms of depression and is the 

focus of our current study(Hyttel 1994). 

Importance and Binding Determinants of Citalopram in hSERT 

 The stereochemistry of citalopram determines its activity. The active S- 

configuration binds with high-affinity to hSERT, whereas the R- configuration exhibits 
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reduced binding affinity at hSERT but may also modulate interactions of the S- isomer 

with the transporter(Henry, Field et al. 2006). Although the effects of citalopram are 

well studied, the structural determinants of interactions of S- and R-citalopram with 

hSERT remain a focus of current investigations. We have shown that S- and R-citalopram 

exhibit potency differences between hSERT and dSERT that largely derive from 

interactions with two residues (Y95 and I172 in hSERT)(Henry, Field et al. 2006). These 

differences provide an important, suitable test of small molecule docking methods to 

homology models of SERT proteins, an approach we have recently used for docking of 5-

HT(Kaufmann, Dawson et al. 2009). Here, we dock both stereoisomers of citalopram 

computationally into models of human and fly SERT. The predictive power of the models 

is tested by introducing known mutations that disrupt S- and R-citalopram interactions 

with hSERT. Our models recapitulate the species-selective binding affinity differences 

between hSERT and Drosphila SERT (dSERT), as well as the distinct binding affinities of S- 

and R-citalopram isomers to wildtype transporters. 

Construction of hSERT homology model and SAR of Citalopram 

SERT homology models were constructed based on multiple sequence 

alignments(Beuming, Shi et al. 2006) of SLC6 family members with the crystal structure 

of LeuTAa as a template(Singh, Yamashita et al. 2007). A series of structure-activity 

relationships (SAR) and mutational studies guide analysis of structural determinants of  
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Figure 4: S-citalopram and heatmap of S-citalopram contacts with backbone side chains. 
A) S-citalopram functional groups involved in binding are labeled [a]-[f]. B) Contacts within the 
S-citalopram/hSERT high-affinity binding mode are displayed as a heatmap. Given is the fraction 
of models that display a contact within the largest cluster of models. Residues known to affect S-
citalopram binding are shown within the black box. 

S-citalopram binding (Figure 4a). The cyano group [a], the dimethyl-amine [c], 

and the fluorine of the flouro-phenyl substituted ring [b] of S-citalopram were 

determined as key functional groups for inhibitor potency through substitution with 

hydrogen(Eildal, Andersen et al. 2008). Through mutational studies, several amino acids 

have been identified as dictating high affinity binding for S-citalopram. D98 is known as 

a conserved residue found in all monoamine transporters and has been shown to 

stabilize a protein-ligand salt bridge(Barker, Moore et al. 1999). Henry (Henry, Field et 

al. 2006) et al. produced point mutations to convert two residues in hSERT to the 
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corresponding dSERT residues (Y95F and I172M), resulting together in a ~6,000 fold loss 

of potency for S-citalopram(Henry, Field et al. 2006). The single mutations of Y95F and 

I172M resulted in a 19 and 344 fold loss, respectively. In contrast, R-citalopram displays 

a 79 and 5 fold loss of potency for the same mutations and only a 117 fold loss if the 

mutations are combined. In this study we propose that the dimethyl-amine group [c] of 

S-citalopram interacts with Y95 while the cyanophthalane ring [e] and the flouro-phenyl 

ring [f] interacts with I172(Henry, Field et al. 2006). More recently, Andersen(Andersen, 

Taboureau et al. 2009) et al. has demonstrated the importance of S438 in binding the 

dimethyl-amine group through a mutation S438T that results in a 300 fold loss of 

potency for S-citalopram; however, the S438T mutant only results in a loss of potency of 

15-20 fold for R-citalopram (personal communication with Andersen).  

Experimental Procedure for Mutants Proposed from Computational Methods  

Site-directed mutagenesis of hSERT and dSERT in pcDNA3.1 was performed using 

the QuikChange mutagenesis kit and protocol (Stratagene). Sense and antisense 

oligonucleotides, purchased from Invitrogen, were designed to generate the single 

amino acid substitutions. Oligonucleotide sequences used for mutagenesis are available 

upon request. Sequencing of all mutants was performed at the DNA Sequencing Facility 

of the Division of Genetic Medicine at Vanderbilt University Medical Center. Successful 

mutants were transformed into DH5α Escherichia coli cells for amplification and purified 

using the Qiafilter Maxiprep kit (Qiagen). HEK-293 cells, maintained at 37 °C in a 5% CO2 

humidified incubator, were grown in complete medium (Dulbecco's modified Eagle's 

medium, 10% fetal bovine serum, 2 mm l-glutamine, 100 units/ml penicillin, and 100 
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μg/ml streptomycin). For initial evaluation of mutant transporter activity, cells were 

plated at a density of 50,000 cells per well in 24-well culture plates. Cells were 

transfected with hSERT or dSERT constructs using TransIT transfection reagent (Mirus 

Inc., 6 μl per μg of DNA), in Opti-MEM medium. Following transfection (24–48 h), cells 

were washed with KRH assay buffer (120 mm NaCl, 4.7 mm KCl, 2.2 mm CaCl2, 1.2 mm 

MgSO4, 1.2 mm KH2PO4, 10 mm HEPES, pH 7.4) and incubated for 10 minutes with 

increasing concentrations of nonradiolabeled competitor, followed by the addition of a 

constant concentration of [3H]5-HT (5-hydroxy[3H]tryptamine-trifluoroacetate (100-110 

Ci/mmol); Amersham Biosciences) for 15 minutes. Transport assays were terminated by 

washing two times with assay buffer, and cells were dissolved in MicroScint 20 

(PerkinElmer Life Sciences) scintillation fluid. The extent of [3H]5-HT accumulation was 

determined by liquid scintillation counting on a TopCount System (PerkinElmer Life 

Sciences). Uptake in mock-transfected cells was subtracted from transporter-

transfected cells to determine specific uptake. Specific uptake was normalized to 

percent uptake of control wells that lacked competitor and plotted versus the log of the 

molar concentration of competitor. The data were fit to a nonlinear one-site 

competition curve and apparent KI values were derived using the Cheng-Prusoff 

equation in Prism 4 for Mac (Graphpad Software). All experiments were performed in 

triplicate and repeated in three or more separate assays.  

Computational Method to Dock Citalopram into hSERT/dSERT Models 

RosettaLigand(Davis and Baker 2009) was used to dock S- and R-citalopram 

separately into the hSERT homology models while accounting for full protein and ligand 
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flexibility. Specifically, the protein backbone conformation underwent repeated energy 

minimization from the initial homology model which resulted in a large conformational 

ensemble of backbones. An ensemble of the top ten energy minimized backbones was 

used in the docking steps. Amino acid side chain conformations were chosen from a 

rotamer library(Dunbrack 2002) and further optimized through gradient minimization. 

Ligand flexibility was modeled through knowledge-based torsion angle potentials 

derived from the chemical Cambridge Structural Database (CSD)(Kaufmann 2008) 

yielding a total of 1,000 S- and R-citalopram conformations. The generation of 1,000 

conformations for S- and R-citalopram allows for thorough sampling of non-clashing 

conformations for the five rotatable bonds. The 1,000 conformations cluster into 238 

rotamers. The molecule has five rotatable bonds. A total of 238 non-clashing 

conformations allows an average of three states for each of the bonds to be 

independently sampled. This number is reasonable to ensure thorough sampling of 

conformational space. The protocol for construction of these homology models, the 

creation of conformational ensembles, and docking are described in detail 

elsewhere(Kaufmann, Dawson et al. 2009). A total of 23,500 models for the S-

citalopram/hSERT and R-citalopram/hSERT complex were created.  

Our models were first filtered according to their RosettaLigand binding energy 

selecting the top 10%. The resulting 2,350 models were clustered into separate binding 

modes based upon a 3Å RMSD threshold. This resulted in multiple clusters of varying 

size. The models presented here are the lowest energy models from the largest clusters, 

respectively. After a binding mode had been established for S-citalopram/hSERT and R-
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citalopram/hSERT complex, mutations were introduced into the hSERT backbone while 

maintaining the putative binding mode of the S-citalopram/hSERT and R-

citalopram/hSERT complex. The mutations analyzed were Y95F, I172M, S438T, and the 

double mutant Y95F/I172M. After introduction of the mutations each model was 

refined through Monte Carlo moves of up to 2Å and 10° for the ligand while the protein 

backbone and side-chains were minimized. For each mutant the models with the lowest 

RosettaLigand binding energy were analyzed. To explore the proposed conformation of 

S-citalopram in relation to dSERT, the putative binding mode of S-citalopram/hSERT 

complex was placed into nine different backbones of dSERT(Kaufmann 2008). The 

binding mode underwent Monte Carlo refinement and optimization. The lowest energy 

was chosen for analysis. 
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Figure 5: Binding energies, experimental inhibitory constants, and models of S- and R- 
Citalopram in the human serotonin transporter. 
 S- and R-citalopram in complex with mutants of hSERT. The extracellular side of the protein is 
shown on the top of all images whereas the cytoplasm is at the bottom of all images. S-
citalopram/hSERT complex is shown on top, R-citalopram/hSERT complex is shown below. 
Experimental binding affinities, Ki, and computationally predicted binding energies are given 
below each image. A and E) WT hSERT in complex with S- and R-citalopram. Experimentally 
verified residues involved in binding are shown as sticks and highlighted in red and labeled. B 
and F) S- and R-citalopram putative wild type binding mode docked into I172M mutant of hSERT 
(green). The original wild type binding mode is displayed in yellow and blue (S-citalopram and R-
citalopram respectively). The mutation I172M is shown in green and stick format with the 
experimentally verified residues shown in cartoon and highlighted with red. C and G) S- and R-
citalopram docked into Y95F mutant. The putative wild type binding is colored cyan with the 
mutant Y95F colored in cyan and shown as a stick. D and H) S- and R-citalopram docked into 
S438T. The putative wild type binding is colored in orange with the mutant S438T shown in 
sticks and colored orange. 

Binding Determinants of Citalopram 

A single cluster of interactions for the S-citalopram /hSERT complex stood out by 

both its size (400 members out of a total of 2,350 models) and RosettaLigand binding 

energy of -8.1 Rosetta Energy Unit (REU) (Figure 5a). This model preserves the 

hypothesized D9812 dimethyl-amine [c] contact along with a hydrogen bond between 
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the dimethyl-amine group [c] and the backbone carbonyl group of Y95(Henry, Field et al. 

2006). Additionally, the dimethyl-amine group [c] is in contact with S438. The model is 

further characterized by a hydrophobic clamp that is formed by the flouro-phenyl ring 

[f] and the cyanophthalane ring [e] around I172(Henry, Field et al. 2006).  

S-citalopram/hSERT contacts were compiled as a heat map to illustrate amino 

acid residues in and around the S-citalopram binding pocket of our model (Figure 4b). 

Novel contacts proposed by the present model include the methylene groups of the 3-

(dimethylamino)propyl tail [d] which form VDW contacts with residues S336, L337, G338 

in TM 6 and A441 in TM 8. The cyano group [a] is pointed towards the extracellular 

space, out of the membrane and binding pocket, and towards residue R104 in TM 1 and 

E494 in TM 10 and has VDW contacts with G100 in TM 1, F335 in TM 6, and Y175 and 

Y176 in TM 3. Additionally, the flouro-phenyl ring [f] sits in a hydrophobic pocket 

created by residue A169(Larsen, Elfving et al. 2004) in TM 1 and A441 and G442 in TM 8.  

Docking of R-citalopram results in two clusters of similar size and energy. The 

largest cluster (124 members out of 2,350) has an energy of -6.5 REU and is in a 

different conformation found in the S-citalopram/hSERT complex. Interestingly, the 

second largest cluster has R-citalopram in the similar conformation as the S-

citalopram/hSERT complex; however, the dimethyl-amine tail is distant from S438 and 

pointed in the direction between TM 1 and TM 6. To remain consistent with the analysis 

of S-citalopram, analysis of the largest cluster was performed for R-citalopram. 
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Our model indicates that the R-citalopram/hSERT complex has a significantly 

different binding conformation than S-citalopram/hSERT complex. The cyanopthalane 

ring [e] and dimethyl-amine [c] of R-citalopram is shifted out of the binding pocket and 

positioned towards the extracellular face of the transporter. In particular, R104 in TM 1 

and E493 in TM 10 form hydrogen bonds with the dimethyl-amine group [c], whereas 

the cyano group [a] is directed towards W103 in TM 1. The flouro-phenyl ring [f] sits in 

the binding pocket and is pointed downward towards Y95 and D98 in TM 1. Additionally, 

Y175 in TM 3 is π -stacked against the flouro-phenyl fing [f]. 

In silico Mutational Analysis Supports Citalopram Binding Mode 

To test our models, the putative binding modes for S- and R-citalopram were 

examined via in silico mutations that have been previously studied experimentally: 

I172M, Y95F, S438T, and an I172M/Y95F double mutant(Henry, Field et al. 2006; 

Andersen, Taboureau et al. 2009). Experimentally, the I172M mutation results in a 344 

fold loss of potency for S-citalopram(Henry, Field et al. 2006). Accordingly, docking into 

the I172M mutant results in a reduced binding energy of -6.2 REU (Figure 5). The 

conformation of S-citalopram within the binding pocket is shifted away from the site of 

mutation I172M. The reduction in score is attributed to compromised hydrophobic 

packing at site 172 and loss of a π-stacking interaction with F355.  

Experimentally, S-citalopram interaction with a Y95F mutant of hSERT results in a 

19 fold loss of potency(Henry, Field et al. 2006). This experimental finding as well as 

studies with 5-HT suggest that Y95 is directly involved in hSERT interaction with  
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Figure 6: Proposed binding mode of Y95 and E444 gate in the human serotonin transporter. 
A) Binding mode of S-citalopram/hSERT complex with depiction of the Y95 (grey) in a downward 
position. Mutation of E444D (not shown) results in Y95 populated in two positions, a downward 
position (grey) and an upward position (pink). B) Mutation of E444D results in a 10 fold loss of 
potency for S-citalopram suggesting that the Y95 switches between two different 
conformations, an upward (pink) and downward conformation (grey). Wild Type is shown in by 
black squares and line and E44D is shown in circles and spheres. 

ligands(Henry, Field et al. 2006). However, our comparative model has Y95 pointing 

away from the binding pocket and engaged in a hydrogen bond with E444. A 

conformational change of Y95 into an upward pointing conformation requires 

substantial rearrangement of the protein backbone from the template structure LeuTAa 

and breaking of the Y95-E444 hydrogen bond. To experimentally test the effects of 

breaking the hypothesized Y95-E444 hydrogen bond with minimal impact on other areas 
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of the transporter a hSERT E444D mutant was created. We found that this mutant 

displays a modest, 10 fold loss of potency for S-citalopram (Figure 6a,b). This 

observation supports the contention that E444 is indirectly involved in citalopram 

binding. Our data does not conclusively prove that E444 locks Y95 into a downward 

orientation required for high-affinity binding of citalopram. We speculate that an 

upward pointing conformation of Y95 may be engaged in earlier stages of S-citalopram 

binding (e.g. an outward facing, open conformation of hSERT) followed by the 

downward pointing conformation by binding of S-citalopram thereby explaining the 

experimental findings (Fig 3). Regardless, docking studies of S-citalopram/Y95F hSERT 

resulted in a slightly reduced binding energy of -8.0 REU coupled with a shift of S-

citalopram away from the extracellular face of hSERT to deeper inside the binding 

pocket towards F95.  

Similar to the I172M mutation, our model of the Y95F/I172M double mutant 

predicts a movement of S-citalopram away from I172M and a reduced binding energy of 

-7.6 REU. The loss in binding affinity is largely attributed to the I172M mutation.  

Recently, Andersen(Andersen, Taboureau et al. 2009) and colleagues mutated 

S438T and tested the mutant against binding of dimethylated inhibitors. A mutation of 

S438T resulted in a loss of potency for dimethylated inhibitors, however, a 300 fold loss 

for S-citalopram potency was reported. In our model the S-citalopram complex with the 

S438T mutant results in a significant reduction of energy to -6.0 REU. The dimethyl-

amine group shifts away from T438 which results in repulsive interaction with residues 
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on TM 1. The influence of Na+ ions on the S438T mutant was also tested. However, no 

significant change in the model and energy was observed (see supplementary data). 

For R-citalopram introduction of bulk via the I172M mutation results in a slight 

loss of binding energy to -6.1 REU, in agreement with experimental findings(Henry, Field 

et al. 2006). The flouro-phenyl ring [f] is shifted away from the mutation and towards 

TM 1 and TM 6. The Y95F hSERT mutation results in a slightly lower binding energy than 

wild type (-6.2 REU). The double mutant I172M/Y95F (-6.1 REU) displays an additional 

shift of the flouro-phenyl ring [f] away from M172, consistent with the contention that 

I172 is a critical contact site for the SSRI(Henry, Field et al. 2006). Andersen reported 

that a mutation of S438T resulted in a 15 fold loss of potency for R-citalopram/hSERT 

complex (personal communication). In agreement with his findings, the R-

citalopram/S438T hSERT complex displays a reduced binding energy of -6.1 REU coupled 

with a shift away from the site of mutation. 

Validation of Citalopram Models through Comparative Docking into dSERT 

To further validate the S-citalopram/hSERT model, dSERT homology models were 

used to dock the putative binding mode of S-citalopram. dSERT differs in selectivity for 

racemic citalopram compared to hSERT. Racemic citalopram exhibits a Ki value of 400 

nM in dSERT, however, a point mutation of M167I (I172 hSERT) results in an increase of 

binding affinity to 4 nm(Henry, Field et al. 2006). To determine if our docking paradigm 

could reproduce the experimental finding, S-citalopram/dSERT models were 

constructed. The S-citalopram/dSERT binding energy for the lowest-energy pose (Figure 



35 
 

7) was significantly worse when compared to the S-citalopram/hSERT complex (-6.6 REU 

and -8.1 REU respectively). This loss is attributed to two energy contributions when 

comparing the two models, the hydrogen bonding term and the solvation term (+0.8 

REU and +0.7 REU respectively). Specifically, a network of hydrogen bonding 

interactions between sidechains and the cyano group [a] in S-citalopram/hSERT are 

absent in the S-citalopram/dSERT model. The hSERT residues that are hydrogen bonded 

to the cyano group [a] are R104 and E493. Although R104 is preserved in dSERT, E493 is 

substituted to N, which is predicted to alter the hydrogen bond network. To test the 

significance of the hydrogen bond network, reciprocal mutants of hSERT E493N and 

dSERT N481E were constructed and tested for S-citalopram potency. We observed a ~3 

fold average loss of potency in the hSERT E493N mutant that did not reach statistical 

significance (data not shown). The reciprocal mutation dSERT N481E was without effect. 

We had hypothesized that the E493-R104 salt-bridge in hSERT positions R104 for a 

constructive interaction with the cyano group [a]. Therefore a N481E mutation in dSERT 

was expected to increase S-citalopram affinity. However, the interaction between R99 

(residue R104 in hSERT) and the cyano group [a] in WT dSERT is not strengthened 

through the N481E mutation. A possible explanation is that the positive charge of R104 

is compensated through E481 weakening the interaction with the partial negative 

charge of the cyano group [a]. Additional experiments are needed to verify this 

hypothesis.  
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Figure 7: Binding site of S-citalopram/dSERT. 
The putative binding mode of S-citalopram/dSERT complex. S-citalopram is shown in white. 
Residues that contribute to lowering the energy of the complex are highlighted in red. 
Substitution of A169 to D164 dSERT results in a higher solvation score for the complex. 
Additionally, M167 dSERT results in an increase in the VDW potential. 

The change of solvation energy of S-citalopram in our models can be attributed 

to the burial of the flouro-phenyl ring [f] in a hydrophobic environment. hSERT and 

dSERT residues are homologous in this region, with the exception of hSERT residues 

A169 and I172 which corresponds to dSERT residues D164 and M167. Of these two 

residues, the solvation energy for hSERT A169 and dSERT D164 are drastically different 

(+1.1 REU in dSERT). This finding matches experimental studies that affiliate the A169D 

point mutation with a loss of S-citalopram potency in hSERT(Larsen, Elfving et al. 2004). 

Further, the I172M mutation in hSERT causes a binding energy increase in the VDW 

potential of S-citalopram/hSERT complex by +2.8 REU. As discussed above, the hSERT 

I172M mutant has been tested experimentally and displayed a significant loss of S-
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citalopram potency. However, when the reverse mutant is expressed, dSERT M167I, 

dSERT regains hSERT-like potency for S-citalopram(Henry, Field et al. 2006). When the 

computational mutant is tested, a similar energy to S-citalopram/hSERT is observed. S-

citalopram/dSERT M167I results in an energy of -8.1 REU and recapitulates the docked 

S-citalopram/hSERT pose. 

Comparison of Presented Models to Previous Publications and Conclusions 

Recently, Andersen1, et al published an independent computational model for S-

citalopram in hSERT. The authors created 64 point mutants to validate their binding 

mode. The proposed model by Andersen places the cyano group [a] sandwiched 

between TM 6 and 8 whereas our model positions the cyano group [a] outward towards 

the extracellular face of the protein. This results in an RMSD of ~5.1Å difference to our 

model. The ligand occupies the same binding pocket but experiences a ~30° rotation. A 

qualitative and quantitative comparison of mutation data presented by Andersen 

displays a similar level of agreement between the two models suggesting that further 

experiments are needed to more precisely define the position of S-citalopram (see 

supplementary data). One noticeable difference between the models and reason for the 

slight shift and rotation in the S-citalopram is a manual positioning of the Y95 residue in 

an upward configuration, providing new contacts with S-citalopram. Experiments are 

needed to validate this positioning of Y95 during the transport cycle and antagonist 

binding. They also identify unexpected interactions between TM1 and 8 that may 

contribute to critical conformational transitions in the dynamic organization of other 

SLC6 transporters. 
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In addition to Andersen’s model, Koldsø19 et al created models of S-citalopram 

and R-citalopram complexed in hSERT. Unfortunately the coordinates of these models 

are not available to us for quantitative comparison. Qualitatively, the S-

citalopram/hSERT complex proposed compares to the model presented here. In 

Koldsø’s model, the flouro-phenyl ring [f] is in the hydrophilic pocket lined by A169, A13, 

N177, S438, T439, and L443. Our model positions the flouro-phenyl ring [f] in this pocket 

as well. The cyano group [a] in Koldsø’s model is positioned next to T497, F335, F341, 

and V501. In contrast, our model positions the cyano group [a] pointed outside of the 

binding pocket and is next to F335, R104, and E493. 

The R-citalopram conformations are noticeably different. Koldsø’s R-

citalopram/hSERT complex differs from the S-citalopram/hSERT complex by the reverse 

placement of the cyanophthalane ring [e] and flouro-phenyl ring [f]. In contrast, the 

presented R-citalopram/hSERT in this paper is bound higher in the binding pocket in a 

completely different conformation. The contrasting results might suggest multiple low 

affinity binding sites for R-citalopram and require further experimental investigation. 

  In summary, our study confirms aspects of the S-citalopram binding mode using 

orthogonal computational techniques, providing a detailed analysis of the impact of 

citalopram isomerization and further elucidates the species selectivity for SSRI 

recognition.  



39 
 

Quantum Dot Docking into hSERT Models   

The human serotonin transporter (hSERT) has been implicated in depression, 

autism, attention deficit hyperactivity disorder (ADHD), obsessive-compulsive disorder 

(OCD), and addiction(Hirschfeld 2000; Prasad, Steiner et al. 2009). A large emphasis has 

been placed to optimize selective serotonin reuptake inhibitors (SSRI) to block the 

reuptake of the substrate, serotonin, and alleviate the symptoms of the 

diseases/syndromes(Gether, Andersen et al. 2006; Apparsundaram, Stockdale et al. 

2008); however, a major challenge associated with the discovery of new, more 

efficacious antidepressants is the lack of a resolved crystal structure of the serotonin 

transporter and efficient screening protocols.  

To investigate hSERT activity, protocols include conventional biochemical and 

radiolabeling approaches such as phosphorylation assays, electrophysiology, or radio-

isotope substrate uptake assays(Ramsey and DeFelice 2002). However, these 

approaches include time-consuming, labor-intensive experimental work, poor 

spatiotemporal resolution, and safety concerns associated with isotope handling. 

Alternatively, the rapid and high resolution method of fluorescent probes can be used 

for targeted selective drug screening of hSERT. Typically, an antibody-based labeling 

approach is utilized to detect single membrane proteins(Dahan, Levi et al. 2003; Fichter, 

Flajolet et al. 2010); however, many proteins lack suitable extracellular domains that can 

be targeted by antibodies without functional disruption. Furthermore, the use of 

popular fusion tags to label membrane proteins, usually consisting of a short peptide 

sequence with a recognition epitope for a complementary binding partner, such as 
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hemaglutinin (HA), requires genetic perturbation of the protein target(Kovtun, Ross et 

al. 2012) and thus does not allow direct visualization of endogenous protein of interest.  

Organic ligands conjugated to quantum dots can achieve specific targeting of 

transporter proteins, which allows visualization of endogenous protein without the 

functional disruption. Quantum dots (QDs), nanometer-sized semiconductor 

nanocrystals, exhibit excellent photo stability and brightness enabling long-term imaging 

of biological systems(Rosenthal, Chang et al. 2011). Their broad absorption spectra and 

size-dependent, narrow, symmetric emission spectra of QDs considerably simplify 

multiplexed, molecular imaging experiments. Based on the molecular determinants for 

binding and distance within a membrane protein from the cell surface, the organic 

ligand can be tailored with a saturated linker arm to optimize QD conjugate binding to 

the target protein(Kovtun, Ross et al. 2012). Traditional approaches for optimizing 

binding of conjugated ligands to QDs require time consuming synthesis with all 

iterations of linker size. A rapid approach to find the structural requirements for optimal 

binding activity can be achieved through a series of guided synthesis approaches from 

molecular modeling.  

Here, we present a method for modeling, identification, and synthesis of small-

molecules to target the hSERT with QD conjugated ligands. RosettaLigand(Lemmon and 

Meiler 2012) is used to identify small-molecules that bind hSERT and are easily used to 

attach a linker for quantum dot conjugation. After a small molecule is identified, 

RosettaLigand is used to identify the number of carbons needed to build an alkyl spacer 
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from the small-molecule to the outer membrane. Finally, we show that using 

RosettaLigand along with experimental techniques can rapidly identify the correct ligand 

and spacer length without too much experimental work. The approach is widely 

applicable to any membrane protein and eliminates problems seen in traditional 

docking methods with scoring and ranking models by using a distance to the outer 

membrane as criteria to determine which ligands to synthesize.  

Computational Methods for Quantum Dot Labeling 

Rapid conformational sampling for the ligand is done through pregenerated 

rotamers created with the Molecular Operating Environment (MOE) 2009 application 

using the LowModeMD approach(Boyd 2005). For the parent drugs without any alkyl 

spacer length, 3-(1,2,3,6-tetrahydropyrindin-4-yl)-1H-indole and 3-(1,2,3,6-

tetrahydropyridin-4-yl)-1H-indole-5-carbonitrile, a root mean square distance (RMSD) 

cutoff of 0.5 Å to each reoccurring conformation was used as a filter to remove similar  

Figure 8: Base structures for conjugation of quantum dots in the human serotonin transporter. 
A) 3-(1,2,3,6-tetrahydropyridin-4-yl)-1H-indole-5-carbonitrile and B) 3-(1,2,3,6-
tetrahydropyrindin-4-yl)-1H-indole ligands. 

conformations. The resulting sets of conformations were filtered based on energy and 

the top 10 lowest scored conformers were kept as rotamers for ligand docking in 

RosettaLigand.  

A B 
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A separate method was used to generate rotamers for the parent drug with the 

varying alkyl spacer lengths. For alkyl spacer length one to three, the linker arm 

attached to the parent drug was allowed to fully sample conformational space while the 

lowest scored conformation resultant from initial docking studies of the parent drug was 

kept static. For alkyl spacer lengths of three to twelve, the resultant conformation from 

the previous docking study was kept constant, including linker arm, while the last three 

carbons of the linker arm were allowed to sample conformational space. The same 

protocol for ligand conformation generation of the parent drug was used to sample the 

alkly spacer conformations. 

RosettaLigand within the RosettaScripts(Lemmon and Meiler 2012) framework 

was used in all docking steps. An initial docking step was performed on the small-

molecules IDTX and IDTY into an experimentally verified homology model of 

hSERT(Kaufmann, Dawson et al. 2009) to ensure that the substituent pyrrole group was 

positioned towards the extracellular face for conjugation with the alkyl spacer. After 

initial placement within the binding site of hSERT, the ligands were allowed to translate 

with a Gaussian distribution 5.0 Å and rotate 360.0°. A total of 5,000 models were 

generated for each compound and the top ten lowest scoring models by Rosetta Energy 

Units (REU) were examined for three-dimensional orientation of substituent pyrrole 

group positioned towards the extracellular matrix. The lowest scoring model with 

substituent pyrrole group pointed towards the extracellular matrix was chosen as the 

starting structure for building the alkyl chain. 
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A separate method was used to dock the parent drug with alkyl spacers. In an 

iterative process, the previously best scoring complexes were used as the initial position 

docking. For example, the starting position for a six carbon spacer length ligand was the 

ending position for the five carbon spacer length ligand. At each step, the ligand was 

allowed to rotate 5.0o and translate 1.5 Å allowing for induced fit.  

Experimental Methods  

The synthesis of the conformationally restricted homotryptamine derivatives (10a) and 

(10b) used in this study is outlined in scheme 1. These were obtained by refluxing 4-

piperidone mono hydrate monochloride with the appropriate indole in a methanolic 

solution of potassium hydroxide as previously described,(Tomlinson, Mason et al. 2005) 

giving 3-(1,2,3,6-tetrahydropyridin-4-yl )-1H-indole-5-carbonitrile (10a) in a 22.8% yield 

and 3-(1,2,3,6-tetrahydropyridin-4-yl)-1H-indole (10b) in a 72.5% yield.  

 

 

 

Scheme 1. (i) (a) KOH, Methanol, reflux 18 hours; (b) H2O, ambient temperature, 72 hours. 
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Once the parent drug had been synthesized the protected alkyl spacer was 

attached to the nitrogen atom of the tetrahydropyridyl ring. A phthalimide protected 

alkyl bromide was selected as our reagent of choice. The 2 carbon alkyl spacer 

intermediate 2-(2-bromethyl)-1H-isoindole-1,3-(2H)-dione (13a) was commercially 

available and purchased from Sigma Aldrich (Milwake, WI). The other phthalimide 

protected alkyl spacers were synthesized by converting the phthalimide protected 

amino acid derivatives to the phthalimide protected bromo alkane as outlined in 

scheme 2.  

Initially the amino acids were protected by reacting the appropriate amino acid 

with N-carbethoxy phthalimide in an aqueous solution of potassium 

carbonate(Gademann, Kimmerlin et al. 2001) to give (11a)-(11d). After which the 

carboxylic acids were reduced to an alcohol by treatment with ethyl chloroformate in 

dry THF to form the mixed anhydride which was subsequently reduced to the alcohols 

(12a)-(12d) by treatment with sodium borohydride and methanol in one pot(Tomlinson, 

Warnerment et al. 2007). Finally the alcohol was converted to a bromide using a 

variation of the Appel reaction by treatment of the alcohols (12a)-(12d) with N-bromo 

succinimide and triphenyl phosphine in methylene chloride at ambient temperature to 

give (13b)-(13e). When the amino acid reagent was not commercially available or 

prohibitively expensive (i.e. n = 6 and 7) they were synthesized using the method 

described by Bell et. al.(Bell, Faggiani et al. 1992) and characterized by nmr which was 

consistent with previously reported nmr data(Bell, Faggiani et al. 1992). 
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Scheme 2 
(i) N-carbethoxyphthalimide, Na2CO3 (aq); (ii) (a) Ethyl chloroformate, Et3N, THF; (b) NaBH4, 
MeOH, 0°C; (iii) NBS, PPh3, CH2Cl2, ambient temperature, 18 hours. 

The phthalimide protected alkyl spacers (13a)-(13e) were attached to the 

homotryptamine derivatives (10a) and (10b) by refluxing the appropriate length spacer 

with the homotryptamine derivatives in the presence of triethylamine as outlined in 

scheme 3 to give the intermediates (14a)-(14i). Then the phthalimide protecting group 

was removed by treatment with hydrazine hydrate in ethanol to give the intermediate 

amines (15a)-(15i) and the amino terminated intermediates were attached to the end of 

the biotinylated polyethylene glycol chain. This was achieved by stirring the appropriate 

amine with Biotin-PEG5000-SCM in methylene chloride at ambient temperature for 18 

hours to give the crude ligands (1)-(9) and these were purified by chromatography on a 



46 
 

sephadex G10 column followed by preparative HPLC. All of the ligands (1)-(9) were 

characterized by LC-MS and MALDI-TOF mass spectroscopy to determine their purity 

and average molecular weights. Since (1)-(9) contain a poly dispersed PEG the average 

molecular weight of the ligands had to be calculated. This was done by integrating the 

peak areas for each signal in the MALDI spectrum and then normalizing the peak area to 

the total area as a percentage. The normalized areas were then multiplied by the m/z 

value for that peak and these values were summed to obtain the average molecular 

weight.  
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Scheme 3. (i) acetonitrile, triethylamine, reflux 18 hours; (ii) (a) ethanol, hydrazine mono 
hydrate, ambient temperature, 1 hour. (b) CH2Cl2, ambient temperature, 18 hours; (iii) CH2Cl2, 
ambient temperature, 18 hours. 
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5-cyanoindole, indole, piperidine-4-one hydrochloride hydrate, 11-aminoundecanioic 

acid, 6-amino hexanoic acid, cycloheptanone, cyclooctanone, N-carbethoxyphthalimide, 

ethyl chloroformate, sodium borohydride, N-Bromosuccinimide, triphenylphosphine, 

hydroxylamine hydrochloride, 2-(2-bromethyl)-1H-isoindole-1,3-(2H)-dione (13a), 

methylamine (2M in THF), deuterated dimethyl sulfoxide, deuturated methanol and 

deuterated chloroform were obtained from the Sigma Aldrich (Milwake, WI). Biotin-

PEG5000-SCM was obtained from Laysan Bio. Inc. (Arab, Al) this was a poly dispersed 

PEG derivative with an average molecular weight of 5000 Daltons (determined by nmr). 

Sodium carbonate, magnesium sulfate, hydrochloric acid, and sulfuric acid were 

obtained from EMD Millipore (Darmstadt, Germany). Hydrazine solution in water (85%, 

w/w) was obtained from VWR (West Chester, PA). All reagents were used as supplied 

without further purification. Proton and 13C studies were carried out using a Brucker 

300 MHz nmr spectrophotometer. MALDI-TOF mass spectroscopy was performed on a 

Voyager DE-STR MALDI-TOF instrument.  

The hSERT stably transfected HEK293T host cell line was provided by Dr. Randy 

Blakely’s lab (Vanderbilt University) and was grown in complete DMEM, supplemented 

with 10% dialyzed FBS and incubated in humidified atmosphere with 5% CO2 at 37°C. 

The SERT-expressing HEK293T cells were selected in the presence of 400 μg/mL G418. 

The SERT protein activity in living HEK293T cells was examined before each 

experiment by using IDT307, a fluorescent neurotransmitter substrate.15 IDT307 

compound is nonfluorescent in solution but fluoresces as the substrate is accumulated 
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into the nucleus membrane, affording real-time evaluation of SERT uptake activity.15 

The assay to verify successful SERT expression in HEK293T cells involves the addition of 

IDT307 directly to the culture media at a final concentration of 5 μM and incubating at 

37°C for 10 minutes. Fluorescent images were then acquired immediately after IDT307 

addition, and successful transporter expression was evident by an observable increase 

in intracellular fluorescence (see Figure 3).  

The stably transfected hSERT-expressing HEK293T cells were treated using a two-

step quantum dot, Qdot® 655 streptavidin conjugate (InvitrogenTM), labeling protocol. 

Previously before flow cytometry experiments, SERT-expressing HEK293T cells were 

seeded MatTek (MetTek Corporation) polylysine-coated plates and were allowed to 

grow for approximately 48hours at 37oC and 5%CO2.Adherent SERT-expressing (1) 

competition control cells were pre-blocked by exposure to 10 μM of Paroxetine and 

incubated for 10 minutes at 5% CO2 / 37°C, (2) competition control, wild type, and 

positive cells were incubated with 0.5μM SERT ligands with inhibitor mixture for 10 min 

for all sample types, (3) washed several times with DMEM free media and incubated 

with 1 nM SavQD655/1% BSA (bovine serum albumin) mixture, (4) After the SavQD655 

labeling step, HEK cells were washed with DMEM free media to remove any unbound 

SavQD655 and cells images were acquired on the Zeiss Laser Scannin Microscope 510 

inverted confocal microscope. Representative images of hSERT-HEK293T or HEK293T 

cells exposed to two-step QD labeling protocol using the ligand, IDT357 can be seen in 

Figure 10. 
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Figure 9: Images of hSERT-HEK293T or HEK293T cells exposed to flourscent compound, IDT307. 
 Represenative images are shown for the stably transfected hSERT-HEK293T cells (A1, A2) and 
HEK293T (wildtype) Cells (B1, B2). Al samples were treated with 5 ɥM IDT307, a fluorescent 
neurotransmitter substrate, and incubated at 37° for 10 minutes. Flourscent (top and DIC 
(bottom) images are shown. Calibration Bar = 40um. 
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Figure 10: Representative images of hSERT-HEK293T or HEK293T cells. 
Representative images of hSERT-HEK293T or HEK293T cells exposed to two-step QD labeling 
protocol using the ligand, IDT357, SavQD655 labeling of hSERT stably expressed in HEK293T cells 
(A1-D2) and HEK293T (Wildtype) cells (C1, C2). Compared to QD only control (A1, A2), 
Paroxetine pre-block competition (B1, B2), and wild type cells (C1, C2), the fluorescent intensity 
increased with hSERT-HEK294T IDT357 positively labeld cells. Flourescent (top) and DIC (bottom) 
images are shown. Calibration Bar = 40 um. 
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The stably transfected hSERT-expressing HEK293T cells were treated using a two-

step quantum dot, Qdot® 655 streptavidin conjugate (InvitrogenTM), labeling protocol. 

Previously before flow cytometry experiments, SERT-expressing HEK293T cells were 

seeded in 24-well polylysine-coated plates (BD Bioscience®) and were allowed to grow 

for approximately 48hours at 5% CO2 / 37°C. 

Next, a flow cytometry-based probe screening protocol was established that 

would allow multi-well plate screening of both adherent and suspension cell cultures 

using our ligand-conjugated SavQDs. The screening platform is depicted in Figure 11. 

Adherent SERT-expressing (1) competition control cells were pre-blocked by exposure to 

10 μM of Paroxetine, a potent and selective serotonin reuptake inhibitor (SSRI), and 

incubated for 10 minutes at 5% CO2 / 37°C, (2) competition control, wildtype, and 

positive cells were incubated with 0.5μM SERT ligands with inhibitor mixture for 10 min 

for all sample types, (3) washed several times with DMEM free media and incubated 

with 1 nM SavQD655/1% BSA (bovine serum albumin) mixture, (4) nonenzymatically 

dissociated (Cellstripper™), and (5) assayed by flow cytometry. Before each fluorescence 

measurement are obtained, the voltage of the 5-laser BD LSRII cytometer are adjusted 

by using Attune™ Performance tracking or calibration beads (Applied Biosystems®).  
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Figure 11: Schematic of a QD-based assay 
Schematic of a QD-based assay that investigates the length of alkyl spacer in the linker arm of 
the organic ligands, using 2, 6, 7, 8, or 11 alkyl spacer lengths, and the effect of binding in 
ligand models. Adherent SERT-expressing (1) competition control cells were exposed to 10 
μM of Paroxetine, a potent and selective serotonin reuptake inhibitor (SSRI), and incubated 
for 10 minutes at 5% CO2 / 37°C, (2) competition control, wildtype, and positive cells were 
incubated with 0.5μM SERT probes with inhibitor mixture for 10 min for all sample types, (3) 
washed several times with DMEM free media and incubated with 1 nM SavQD655/1% BSA 
(bovine serum albumin) mixture, (4) nonenzymatically  dissociated (Cellstripper™), and (5) 
assayed by flow cytometry.  

. 
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Results 

The stably transfected hSERT-expressing HEK293T cell line was used as a model 

system to investigate the effect of the length of alkyl spacer in the linker arm on binding, 

using 2, 6, 7, 8, or 11 alkyl spacer lengths. The effect length of alkyl spacer in the linker 

arm on ligand binding were compared in both ligand models containing the 3-(1,2,3,6-

tetrahydropyrindin-4-yl)-1H-indole drug end and its cyano derivative ligand, 3-(1,2,3,6-

tetrahydropyridin-4-yl)-1H-indole-5-carbonitrile. 

The serotonin transporter expression level in living HEK293T cells was examined 

before each flow cytometry experiment by using IDT307, a fluorescent monoamine 

neurotransmitter transporter substrate. Representative images of hSERT-HEK293T or 

HEK293T cells after exposure to IDT307 are shown in Figure 10. Intracellular 

accumulation of IDT307 by functional membrane SERTs (Figure 10:A1, A2) resulted in a 

characteristic mitochondria- and nucleoli-associated fluorescence. In contrast, the 

HEK293T (Wildtype) cells (Figure 10:B1, B2) demonstrated no such fluorescence.  

Both hSERT-expressing HEK293T and wildtype cells were subjected to a two-step QD 

labeling protocol and SERT QD labeling was demonstrated by techniques microscopy 

and flow cytometry. The representative histogram plots and heat map of the effects of 

increasing the alkyl spacer length on QD conjugate binding are shown in Figure 6. 

Comparison of control samples (QD only treated cells, Paroxetine pre-block and 

wildtype cells); the increase of average percent fluorescent intensity is closely 

correlated with the alkyl spacer length. 
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Figure 12: Screening of stably transfected hSERT-expressing HEK293T cell line. 
Screening of stably transfected hSERT-expressing HEK293T cell line to investigate the effect of length of alkyl spacer in the linker arm, using 2, 6, 
7, 8, or 11 alkyl spacers.  The heat map and representative histogram plots of the effects of increasing the alkyl spacer length on QD conjugate 
binding are shown. The heat map and representative histogram plots were generated using average percent fluorescent intensity values pooled 
from five independent experiments with triplicate samples of each ligand subty
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Cyano Group Ligands

Average
Standard Error of the Mean 

(SEM)

SERT Cells 0.147 ± 0.026

SERT Cells + QD 3.086 ± 0.657

WildType + Cells 0.165 ± 0.060

WildType + QD 1.096 ± 0.314

 

SERT Cells + 

IDT596
7.384 ± 2.207

Paroxetine Preblock 

+ IDT596
3.060 ± 0.565

WildType                 

+ IDT596
12.061 ± 2.702

 

SERT Cells + 

IDT590
48.538 ± 8.610

Paroxetine Preblock 

+ IDT590
22.557 ± 11.487

WildType                 

+ IDT590
32.887 ± 6.449

 

SERT Cells + 

IDT531
42.866 ± 8.487

Paroxetine Preblock 

+ IDT531
22.386 ± 8.508

WildType                 

+ IDT531
37.810 ± 7.645

 

SERT Cells + 

IDT361
75.090 ± 3.783

Paroxetine Preblock 

+ IDT361
26.035 ± 10.383

WildType                 

+ IDT361
40.731 ± 7.888

Hydrogen Group Ligands

Average
Standard Error of the Mean 

(SEM)

SERT Cells 0.147 ± 0.026

SERT Cells + QD 3.086 ± 0.657

WildType + Cells 0.165 ± 0.060

WildType + QD 1.096 ± 0.314

 

SERT Cells + 

IDT591
6.230 ± 0.790

Paroxetine Preblock 

+ IDT591
4.295 ± 0.375

WildType                 

+ IDT591
20.750 ± 0.563

 

SERT Cells + 

IDT366
34.100 ± 5.000

Paroxetine Preblock 

+ IDT366
5.015 ± 0.455

WildType                 

+ IDT366
21.825 ± 0.891

 

SERT Cells + 

IDT579
30.150 ± 4.050

Paroxetine Preblock 

+ IDT579
6.960 ± 0.330

WildType                 

+ IDT579
29.100 ± 1.578

 

SERT Cells + 

IDT532
53.750 ± 4.846

Paroxetine Preblock 

+ IDT532
11.555 ± 4.272

WildType                 

+ IDT532
32.671 ± 9.156

 

SERT Cells + 

IDT357
73.625 ± 5.951

Paroxetine Preblock 

+ IDT357
10.898 ± 3.165

WildType                 

+ IDT357
37.936 ± 9.778

Figure 13: Percent fluorescent intensity values for screened ligands. 
The figure details all of the average percent fluorescent intensity values of each of 
the ligands screened. SavQD655 labeling of hSERT stably expressed in HEK293T 
cells and HEK293T (Wildtype) cells.  

3-(1,2,3,6-tetrahydropyrindin-4-yl)-1H-

indole Ligands 

3-(1,2,3,6-tetrahydropyridin-4-yl)-1H-

indole-5-carbonitrile Ligands 

 



57 
 

This correlation can also been seen in the presence of membrane-associated QD 

fluorescent labeling on the acquired microscopy images (Figure104). SavQD655 labeling 

of hSERT is demonstrated in stably expressing HEK293T cells (Figure 10:A1 – D2) and 

HEK293T (Wildtype) cells (Figure 10:C1, C2). Compared to QD only control (Figure 10:A1, 

A2), Paroxetine pre-block competition (Figure 10:B1, B2), and Wild Type cells (Figure 

4:C1, C2), the fluorescent intensity increased with hSERT-HEK293T IDT357 positively 

labeled cells. A detailed depiction of all of the average percent fluorescent intensity 

values can be seen in Table and in Figure 14. These data demonstrate that our QD-based 

approach can be used to investigate the length of alkyl spacer in the linker arm in a 

living cell assay. 

Visualization of the trend between the average percent fluorescent intensity 

values and the carbon alkyl spacer length can be seen in Figure 8. As the carbon alkyl 

spacer length increased in both ligand models containing the 3-(1,2,3,6-

tetrahydropyrindin-4-yl)-1H-indole drug end and its cyano derivative ligand, 3-(1,2,3,6-

tetrahydropyridin-4-yl)-1H-indole-5-carbonitrile, the average percent fluorescent 

intensities increased. The ideal binding length from RosettaLigand modeling predicted 

that an alkyl spacer greater than six would provide sufficient labeling. 

Conclusions and future directions 

These flow cytometry fluorescent intensity results are in good agreement with 

the trend obtained by the predictions with RosettaLigand and the RosettaScore 

software. According to the RosettaLigand calculations, as the alkyl spacer length 



58 
 

increased in both ligand models, the binding affinity for the SERT protein increased, with 

the 6-carbon alkyl spacer being the minimum length to maximize binding affinity of the 

SERT ligand. Based on these findings, one can combine molecular modeling and 

fluorescence-based assays to improve ligand design and development.  
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CHAPTER III 

 

IMPLEMENTATION OF PARTIAL COVALENT INTERACTIONS SCORING IN ROSETTA 

 

Partial covalent interactions (PCIs) such as hydrogen bonds(Rose and Wolfenden 

1993) (Figure 15a), salt bridges (Figure 15a)(Kumar and Nussinov 2002), cation-π (Figure 

15b,d)(Dougherty 1996) and π-π (Figure 15c,e)(McGaughey, Gagne et al. 1998) 

interactions are abundant in proteins and contribute to their stability (Jeffrey and Huang 

1991; Nations, Eaton et al. 1991; Kumar, Tsai et al. 2000). PCIs can be defined as an 

electron deficient hydrogen with an anti-bonding σ* orbital that interacts with the p- 

and π-orbitals of an electron rich atom. Because of their abundance and contribution to 

protein stability, computational algorithms have included PCIs in their energy 

calculations(Mayo, Olafson et al. 1990; Cornell, Cieplak et al. 1995; Kortemme, Morozov 

et al. 2003; Brooks, Brooks et al. 2009). However, typically to reduce complexity the 

interacting orbitals are not explicitly modeled but interactions are approximated using 

atom coordinates. Further, while almost all algorithms include hydrogen bonding 

interactions, many disregard salt bridges, cation-π, or π-π interactions. In result, PCIs are 

treated inconsistently in many force fields.  
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Figure 14: Schematic representations for partial covalent interactions. 
 A) (left) schematic representation of a salt bridge interaction and (right) a salt bridge interaction between R98 and E131 in crystal structure 

1wr8. B) (left) schematic of T-stacked cation-π interaction and (right) T-stacked cation-π interaction between W289 and R298 in crystal structure 

2oiz. C) (left) schematic of an offset parallel cation-π interaction and (right) an offset parallel cation-π interaction between Y177 and R183 in 

crystal structure 2bo4. D) (left) schematic of T-stacked π-π interaction and (right) a T-stacked π-π interaction between F71 and F95 in crystal 

structure 1vph. E) (left) schematic of offset parallel π-π interaction and (right) a π-π interaction between F285 and F348 in crystal structure 

1pam.  
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 In order to provide a rapid approximation of PCIs, molecular mechanics or 

knowledge-based potentials can be utilized. Common applications that contain 

molecular mechanics potentials are CHARMM(Brooks, III et al. 2009), AMBER(Case, 

Cheatham et al. 2005), and GROMACS(Hess, Kutzner et al. 2008). These applications 

utilize physical based laws which describe the motion of atoms under a given force. The 

force field (energy potential) for molecular mechanics is calculated through    

                       where           is the energy associated between bonded 

atoms and              is the energy between non-bonded atoms. A major component 

of             ,               , determines the energy contribution for PCIs.  

Robust physical based methods for calculating               , such as the 

Generalized Born (GB)(Still, Tempczyk et al. 1990) and the Tanford-Kirkwood(Havranek 

and Harbury 1999) models, approximate PCIs by treating the protein as a low dielectric 

charged solute embedded in a high dielectric medium. Free energy calculations are 

performed using a set of analytical series solutions to the Poisson–Boltzmann equation. 

Although approximations to the Poisson–Boltzmann equation are robust and have been 

made pair-wise decomposable(Marshall, Vizcarra et al. 2005), they are still 

computationally expensive to calculate making application difficult for protein design, 

protein-protein and protein-ligand docking. 

In contrast to molecular mechanics, KBPs are based upon the assumption that 

frequently observed molecular geometries correspond to low energy states(Sippl 1995). 

They require availability of a large databank of experimentally determined structures – a 
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prerequisite fulfilled for proteins through the protein databank (PDB)(Berman, 

Westbrook et al. 2000). A set of measurable geometric variables can be extracted from 

the PDB and compiled into a statistical distribution. According to Boltzmann’s principle, 

energies and probability densities are related quantities and can be used to rapidly 

assess protein models. The general definition for the energy of a KBP is expressed via 

           [ ∫    ] where r is a measured quantity between two atoms, E(r) is the 

energy associated from the measured quantity, k is Boltzmann’s constant, T is the 

absolute temperature, and ∫    is the probability density.  

The Rosetta scoring function utilizes a series of score terms derived from 

KBP(Rohl, Strauss et al. 2004). The diverse nature of the Rosetta Software Suite spans 

many biological applications and includes RosettaLigand(Lemmon and Meiler 2012), 

RosettaDesign(Kuhlman, Dantas et al. 2003), RosettaFolding(Simons, Kooperberg et al. 

1997), RosettaRNA(Das and Baker 2007), and RosettaDNA(Morozov, Havranek et al. 

2005). The success of Rosetta is contributed to a robust conformational sampling 

algorithm and to the common shared scoring function between applications. PCIs are 

determined in Rosetta through a hydrogen bond KBP and a ‘pair potential’. 

Kortemme(Kortemme, Morozov et al. 2003) et al., created a hydrogen bond KBP 

based upon frequently observed geometries between a polar hydrogen and an acceptor 

atom. Geometric parameters measured were a distance between the hydrogen of the 

donor atom and the acceptor atom (δHA), an angle at the acceptor atom (ψ), an angle at 

the hydrogen atom (ϴ), and a dihedral angle between the acceptor-acceptor base bond 
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(X) (Figure 16A). The energy potential was then incorporated into the Rosetta Software 

Suite. With addition of the hydrogen bond KBP, protein design, protein-protein docking, 

and protein interface design showed significant improvements.  

Figure 15: Geometric parameters for partial covalent interactions in the Rosetta score 
function. 
 Schematic representation of geometric definitions for derivation of KBP for (a) hydrogen bonds, 
(b) pair potential, and (c) orbitals. A) δHA distance between the acceptor and hydrogen atom, χ 
torsion angle between the base acceptor-acceptor-hydorgen-donor atom, Ψ angle between the 
base acceptor-acceptor-hydrogen, and Θ angle between the acceptor – hydrogen –donor. B) 
δAC distance between the action center for two polar residues. C) δHOrb, distance between the 
orbital and hydrogen atom, Ψ angle between the acceptor – orbital – hydrogen, and Θ the angle 
between the donor – hydrogen – orbital. 

To better capture non-hydrogen bond PCIs in the Rosetta score function, 

Kuhlman(Kuhlman, Dantas et al. 2003) et al. introduced a score term which aims to 

capture the interaction between a pair of polar residues. The ‘pair potential’ measures 

the distance between the center of charge for two polar residues (Figure 16B). Unlike 

the hydrogen bond KBP, the pair potential is not environment dependent. Taken 

together the pair potential and hydrogen bond KBP are the primary components of the 

standard Rosetta score function for scoring PCIs. These terms do not, however, describe 

π-π or cation-π PCIS, although attempts within Rosetta have been developed(Havranek, 

Duarte et al. 2004; Misura, Morozov et al. 2004). 

We argue that the current implementation of PCIs in Rosetta is 1) incomplete as 

important interactions such as cation- π and π-π interactions are currently excluded 
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from the score function, 2) inconsistent as the level of detail between the pair and 

hydrogen bond KBP is vastly different (simple distance of charged-atoms for the first, 

complex geometrical arrangements of four atoms for the second), and 3) convoluted as 

salt bridges are evaluated by a combination of the pair and hydrogen bond KBP.  

We propose a holistic, orbital-centric, extendable KBP that captures all PCIs. We 

demonstrate that this new scoring function replaces the current model of hydrogen 

bonds and the pair potential in Rosetta without a reduction in performance. In fact, the 

new scoring function recapitulates more accurate geometries for hydrogen bonds, salt 

bridges, cation-π and π-π interactions and improves performance of several basic 

modeling tasks within Rosetta such as energy minimization and protein design. 

Orbital Placement on Rosetta Atom Types Results in Five Orbital Classes 

For generation of the KBP, explicit placement of orbitals is needed. Molecular 

orbital theory provides a robust approach for modeling orbitals on atoms. However, 

calculation of molecular orbitals is computationally expensive as each molecular orbital 

is influenced by the geometry of the overall molecule. Further, geometric constraints 

required to derive a knowledge based potential from molecular orbitals are difficult to 

define as there is not a single point to measure angles and distances. A rapid 

approximation of orbital geometry is available using the Valence Shell Electron Pair 

Repulsion (VSEPR) theory(Gillespi.Rj 1970). VSEPR theory states that valence shell 

electron pairs around an atom repel each other and adopt a geometrical arrangement 

that minimizes this repulsion. Arrangement of orbitals and bonds are determined 
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through the steric number of an atom. The steric number for each atom is identified by 

the number of bonded atoms and lone pair electrons to that atom. VSEPR theory is 

leveraged for placement of orbitals in Rosetta by constraining the possible arrangement 

of orbitals on an atom through the atom’s steric number. 

Because the distance between the nuclei of an atom and its accompanying 

electron is computationally expensive to calculate, the most probable distance of an 

electron to the nucleus of an atom was used for placement of the orbital, the Bohr 

radius. The geometric angle of the orbital in regards to the surrounding bonded atoms is 

determined through VSEPR theory in accordance to the steric number. For this purpose, 

each atom type in Rosetta that is capable of containing a π- or a lone pair p-orbital was 

assigned a steric number. A total of five orbital classes were created based on the 

element, C, N, O, the occupancy of electrons, and the hybridization state of the atom, 

bonded atoms, and orbitals: tetrahedral (Te), Triganol (Tr) (Table 1). Through creation of 

orbital classes, a precise definition of the atom and occupying orbitals is defined, thus 

allowing for ease of extendibility to non-standard atom types seen in small-molecules, 

DNA/RNA nucleotides, and non-canonical amino acids. Specific to hydrogen atoms 

orbital placement, the Bohr radius is negligible, therefor, the anti-bonding σ* orbital 

from a hydrogen was not modeled. Instead, the nuclease atomic coordinates of the 

hydrogen atom was used as the σ* orbital location. 
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Table 1: List of orbital classes. 
List of orbital classes, the driving interaction, interaction type, and score term associated with 
the PCI score function. 

 

Geometric Parameters for PCIs Include One Distance and Two Angles 

In selecting the geometrical parameters for describing PCIs we assumed that 1) 

there is an optimal, short orbital-hydrogen or orbital-orbital distance that drives the 

interaction and 2) that a straight line acceptor – orbital – hydrogen – donor is formed. 

Figure 2C illustrates the three geometric measurements used in creating the energy 

function. 1) a distance (δHOrb) between the orbital and hydrogen, 2) the angle Ψ 
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between the acceptor – orbital – hydrogen (AOH), and Θ angle between the donor – 

hydrogen – orbital (DHO) angle. When the distance between two π-orbitals were 

shorter than an orbital-hydrogen pair (specific for weight sets pci_cation_pi, pci_pi_pi), 

a distance (δOrbOrb) along with two angles, Ψ, the acceptor-orbital-orbital (AOO) and Θ, 

the donor-orbital-orbital (DOO) were measured (Figure 16D). Inclusion of a direct 

measurement between angles AOH, AOO, DHO, and DOO involving the orbital removes 

the need to indirectly calculate the relationship between the acceptor, hydrogen, and 

donor using torsion angles between four atoms as seen with the hydrogen bond 

potential(Kortemme, Morozov et al. 2003). 

Derivation of Knowledge-Based Potential 

For derivation of the knowledge-based potential, the RosettaFeatures 

reporter(Leaver-Fay, O&apos;Meara et al. 2013) was used to obtain distances and 

angles representative of PCIs in the top8000 dataset (see supplemental for command 

lines). The inverse Boltzmann relation was used to convert the propensity of δHOrb, 

cos(Ψ) and δHOrb, cos(Θ) into an energy: E(X) = -RTln(Pobserved(X)/Pbackground(X)) where E(X) 

is the energy for X, the feature observed, R the gas constant, T the temperature and 

Pobserved(X) the probability of the feature observed and Pbackground(X) is the probability of 

the given observation seen by chance. The total energy for a given PCI is determined by 

the summation of E(PCI|δHOrb, cos(Ψ)) and E(PCI | δHOrb, cos(Θ)) where PCI is the partial 

covalent interaction being modeled, δHOrb, cos(Ψ) is the distance and acceptor – orbital 

– hydrogen (AOH) angle and δHOrb, cos(Θ)) is the distance and donor – hydrogen – 

orbital (DHO) angle. For interactions between two π-orbitals, the summation of 
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E(PCI|δOrbOrb, cos(Ψ)) and E(PCI | δOrbOrb, cos(Θ)) where E is the energy for the partial 

covalent interaction (PCI) for cation-π or π-π interactions modeled and δOrbOrb, cos(Ψ) is 

the distance between two π-orbitals and cos(Ψ) is the acceptor – orbital – orbital angle 

and cos(Θ) is the donor – orbital – orbital angle.  

PCI distributions were determined by the shortest distance (δHOrb or δOrbOrb) 

between two separate participating residues’ hydrogen atom or orbital and orbital pairs. 

Once the shortest distance was determined, the cosine of both Ψ and Θ were 

determined. By taking the cosine Ψ and Θ, a normalization is applied to each angle to 

account for bias in observing a given angle by chance. Because the strength of PCIs is 

reliant upon both angle and distance geometric parameters, two-dimensional 

histograms were created for all pairs of interactions (δHOrb, cos(Ψ) and δHOrb, cos(Θ) and 

δOrbOrb, cos(Ψ) and δOrbOrb, cos(Θ))) with bin fractions set to 0.1 Å for distances δHOrb and 

δOrbOrb 0.05 for cos(Ψ) and cos(Θ) with the exception of δHOrb, cos(Ψ) and δHOrb, cos(Θ) 

for aromatic hydrogens (haro) where the bin fractions for cos(Ψ) and cos(Θ) was set to 

0.025. The expected background probabilities for δHOrb and δOrbOrb were determined by 

dividing each bin fraction by the squared distance (r^2) for each observed bin fraction. 

Further, pseudo counts were added to each bin fraction to ensure that all non-observed 

geometries are given an equally high penalty.  

Although the shortest distance for PCIs was used to determine bin fractions, a 

bicubic interpolation of all distance/angle pairs for every PCI was used to determine the 

energy associated with a PCI between two residues. This has two direct effects, i) the 
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energy function becomes a continuous, differentiable function and ii) bicubic 

interpolation ensures that δHOrb, cos(Ψ) and δHOrb, cos(Θ) remain tightly coupled during 

minimization.  

Optimization of the Orbital Score Function 

The overall energy score E computed by Rosetta is a linear combination of 

weighted scoring terms. The base score function in Rosetta is composed of van der 

Waals interactions (fa_atr), an inter side chain (fa_rep) and intra side chain repulsive 

term (fa_intra_rep), an implicit solvation model (fa_sol), a hydrogen bond term for side 

chain – side chain (hbond_sc), backbone – backbone (hbond_sr_bb, hbond_lr_bb) and 

backbone – side chain (hbond_bb_sc), a backbone – dependent rotamer probability 

(fa_dun), the probability of an amino acid given phi and psi angles (p_aa_pp), the 

probability of two polar residues being within a certain distance of each other (fa_pair), 

and reference energies to resemble the quantity of residues seen in any given protein 

(ref): 

Equation 4: 
 

E = WatrEatr + WrepErep + Wintra_repEintra_rep + WsolEsol + Whbond_scEhbond_sc + 

Whbond_sr_bbEhbond_sr_bb + Whbond_lr_bbEhbond_lr_bb + Whbond_bb_scEhbond_bb_sc + WdunEdun + 

Wp_aa_ppEp_aa_pp + WpairEpair + WrefEref 

 

The relative weights for all scoring terms were optimized by redesigning proteins 

in a dataset of high resolution experimental structures to maximize the probability of 
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recovering the native amino acid at each position in the protein(Kuhlman and Baker 

2000; Kortemme, Morozov et al. 2003). Modification, addition, or removal of scoring 

terms therefore requires adjustment of the individual weights.  

To allow different weights for different PCIs, the orbital score function was split 

into four distinct score terms for weight optimization (see previous sections). An 

advantage of KBP is the ability to implicitly capture interactions that are difficult to 

model. A danger is to double-count certain interactions – for example the pair potential 

and the hydrogen bond potential in the traditional energy function collectively apply to 

salt bridges. Consequently, with the introduction of the PCI score terms we removed all 

side chain hydrogen bonding interactions and the pair potential: 

Equation 5 
 

E = WatrEatr + WrepErep + Wintra_repEintra_rep + WsolEsol + Whbond_sr_bbEhbond_sr_bb + 

Whbond_lr_bbEhbond_lr_bb + WdunEdun + Wp_aa_ppEp_aa_pp + + WrefEref + Wpci_pi_piEpci_pi_pi + 

Wpci_salt_bridgeEpci_salt_bridge + Wpci_hbondEpci_hbond + Wpci_cation_piEpci_cation_pi + 

Worbitals_hpol_bbEorbitals_hpol_bb 

An iterative approach was used to optimize weights for the new PCI score 

function. Because PCIs counter-balance the cost of de-solvating polar residues, the 

weight for the solvation potential needed to be adjusted. The particle swarm 

optimization algorithm, OptE, was used to optimize the weight for all orbital score 

terms, the solvation term, and the reference energies. Initial weights for the optimized 

terms were then varied by 0.05 to 0.3 while the reference energies were allowed to be 
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optimized by OptE. Resulting weight sets were benchmark on a series of tasks described 

below to arrive at a single weight set with optimal results. 

C++ class structure 

An important aspect of all computational projects is use of an object oriented 

programming language to perform a given task. To this extent, C++ was used within the 

Rosetta Software Suite framework to generate statistics for the partial covalent 

interactions KBP, creation of properties and placement of orbitals, and scoring of 

residues with the new partial covalent interactions score function. In the next sections, 

the data structures and general layout of the written code is described. 

OrbitalType Class Data Structure 

Initially, to reduce the amount of code added to Rosetta, orbitals were placed 

onto residues as virtual atoms. By doing so, orbitals were devoid of properties and were 

updated whenever the residue conformation changed; however, the overall speed of 

Rosetta drastically slowed, regardless of which score function used, standard or the 

partial covalent interactions score function. In order to keep the standard Rosetta score 

function from experiencing a decrease in speed and allow for extendibility of orbitals by 

inclusion of orbital properties, a separate class modeled after the AtomType and 

MMAtomType classes for orbitals were created. 

The OrbitalType class contains the "chemical" information for orbitals and not 

the xyz coordinates which are managed and updated by conformation/Residue.hh. This 

does not contain the actual. Orbital properties are assigned by a separate class, 



72 
 

OrbitalTypeSet, which reads in a flat text file located in rosetta database 

(chemical/orbital_type_sets/fa_standard/orbital_properties.txt) which contains the 

properties and types of orbitals. The orbital type properties include the steric number, 

the hybridization state of the atom the orbital is attached to, the distance between the 

orbital and the base atom (Bohr radius), and the orbital class type name. Because the 

properties are read in through a flat text file, addition, removal, and changing orbital 

properties requires no programming.  

Orbital Initial Placement and Update during Conformational Changes 

Placement of orbitals onto residues is done through the AssignOrbitals class. At 

initialization of Rosetta, the OrbitalType class is initiated which creates the orbital 

properties that are used for placement of orbitals onto residues. After all residue types, 

atom types, and orbital types are created, the AssignOrbitals class is initialized if the 

option –add_orbitals is present. This ensures that all residues with atoms that contain 

orbitals created through the ResidueType class will be assigned orbitals. A set of logic 

based upon the orbital type, distance from atom, hybridization state of atom, and 

bonded atoms to the base atom are used to place orbitals onto each atom that requires 

an orbital. Atom types which contain orbitals are predetermined through the atom type 

property, which is assigned through a flat text file 

(chemical/atom_type_set/fa_standard/atom_properties.txt). This allows for addition 

and removal of orbitals to atoms based upon the atom type. Once orbital placement 

onto atoms is determined, the ResidueType class is modified, updated, and finalized to 

contain a set of internal coordinates for orbitals. In addition, a separate class, 
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conformation/Orbitals.cc is initialized which contains the Cartesian coordinates of the 

orbitals. 

After orbitals have been added, any change to the conformation of a residue or 

atom results in a change of the Cartesian coordinates of the orbitals. First an observer 

design pattern is triggered within the class core/conformation/Conformation.cc 

notifying the conformation/Orbitals.cc class that a change in conformation has 

occurred. The class is then responsible for updating the Cartesian coordinates for 

orbitals by retrieving information from the internal coordinates class for Orbitals. 

Coupling orbital conformation update through the observer design pattern results in 

updating orbitals whenever a change in conformation is observed.  

Scoring Function Structure 

Partial covalent interactions can be defined by an anti-bonding σ* orbital from a 

hydrogen that engages p- and π-orbitals: hydrogen bonds (n→σ*), salt bridges (n→σ*) 

and cation-π (π→σ*) interactions. Further, PCIs can be classified as two π-orbitals that 

interact with each other to form a quadropole moment: parallel cation-π and π-π 

interactions. Both cation-π and π-π interactions can occur in three separate 

conformations, parallel, offset parallel, and T-stacked(McGaughey, Gagne et al. 1998; 

Gallivan and Dougherty 1999). For parallel interactions, two π- orbitals interact together 

while in T-stacked and offset parallel interactions, the σ* orbital interacts with the π-

orbital.  
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Given the above definitions for PCIs, PCIs were separated into four common 

weight terms based on the driving interactions of the orbitals (Table 1). 1) For PCIs that 

occur between the σ* orbital of a polar hydrogen (Rosetta atom type ‘hpol’) and a p- 

and π-orbital (hydrogen bonds, salt bridges, and cation-π), the weight term pci_hbond, 

pci_salt_bridge, and pci_cation_pi (both offset parallel and T-stacked cation-π 

interactions) were assigned. 2) Interactions between the polar hydrogen of the 

polypeptide backbone and a side chain orbital were assigned orbitals_hpol_bb. 3) 

pci_pi_pi includes the interaction between the σ* orbital of an aromatic hydrogen 

(Rosetta atom type ‘haro’) and a π – orbital (offset parallel and T-stacked π-π). 4) Finally, 

for interactions between two π- orbitals, the score terms pci_cation_pi (parallel cation – 

π) and pci_pi_pi(parallel π – π) were assigned. Because cation-π and π-π interactions 

can occur between both a σ* orbital and two π orbitals, scores were divided by the total 

set of orbital interactions, thus keeping geometries between residues balanced (parallel, 

offset parallel, and T-stacked ). Separation of PCI interactions into types of participating 

interactions allows for explicit control over the strength of the interaction through 

adjustment of the weight. 

 Two C++ object oriented classes are responsible for scoring residues that contain 

orbitals: OrbitalsLookup.cc and OrbitalsScore.cc. When Rosetta is initialized, 

OrbitalsLookup.cc loads all the KBP data from the folder 

“database/scoring/score_funcitons/orbitals” and creates a bicubic spline over the data 

which is stored in a two-dimensional array. When a residue is scored, the 

OrbitalsScore.cc class is called. Scoring is done on a pair of residue basis. The class first 
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checks that each residue’s orbitals Cartesian coordinates are updated. Then, all polar 

hydrogen-orbital pair, backbone polar hydrogen-orbital pair, aromatic hydrogen-orbital 

pair, and orbital-orbital pair are identified. To reduce calculation time, only pairs that 

are within 4.0 Å to each other are evaluated. The cosine of the pairs of angles is 

evaluated along with the distance of the pairs. The distance and angle are then passed 

onto the OrbitalsLookup.cc class to identify the energy associated with the pair. The 

energy for all interacting pairs is then summed for the total energy of that residue. 

Minimization for each interacting hydrogen-orbital and orbital-orbital pair is done in a 

similar fashion as described above; however, with one caveat. Because orbitals are 

represented as virtual anchor points, derivatives obtained for orbitals are placed on the 

atom bonded to the orbitals. This ensures that the forces dictated by orbitals are still 

measured. 

Versions of the Partial Covalent Interactions Score Function 

As with all code development, several iterations of the Partial Covalent 

Interactions score function were created. As time progressed, the code base expanded 

and became more object oriented in nature. In the following sections, changes to the 

score function are explained.  

Version 1 

In the first version of the PCI score function, orbital location was calculated on 

the fly as virtual points in space next to an atom which contained orbitals. A total of six 

classes for orbitals were created for elements carbon, sulfur, nitrogen, and oxygen. Each 

class was named through a non-descriptive classification: Class I-VI (Table 2). 
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Table 2: Old version of orbital classes. 
Old version of orbital classes with hybridization of atom, rosetta atom type, and residue 
associated with each orbital class. 
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Figure 16: Distances tested for the orbital - atom bond 

A set of distances measured between the bonded atom and orbital were tested. 

As seen in Figure17, the distance between the bonded atom to orbital of 0.70 Å showed 

the most features and was used for all orbital-atom bonded distances. Interactions were 

measured between a polar hydrogen, an aromatic hydrogen, and an orbital to an orbital 

with the shortest distance within each group of interactions was used to derive 

potentials. A dataset from the protein databank (PDB) was used to generate a set of 

three statistics based solely on a distance measurement between interacting pairs: all 

polar hydrogen – orbital interactions, all aromatic hydrogen – orbital interactions, and 

all orbital – orbital interactions regardless of the type of orbital class interacting. Bin 

fractions for each count were set at 0.10 Å. To account for noise in the dataset, counts 

were normalized in each bin fraction by dividing each bin fraction by the squared 

distance. A summary of the statistics are found(Figure 18) and individual peaks are 

described. Because the counts from each class were summed together before 

normalization, several inconsistencies occurred. First, specifically for orbitals-hpol 

interactions (figure of the breakdown of counts, hydrogen bond minimum occurs at 2.8 

Å while a salt bridge minimum is longer in distance, ~3.0 Å. Further, cation-π 

interactions occur at an even longer distance of ~3.5 Å. Summing all counts together 



78 
 

followed by normalization results in an imprecise score function that removes important 

details. 
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Figure 17: Normalized counts for orbital-hydrogen and orbital-orbital interactions (top) and energy contributions from score terms (bottom) 
The first two peaks in the orbital-hpol graph, 1.1 Å, are attributed to hydrogen bonds and salt bridges. The second peak at 2.5 Å are cation-π 
interactions between a polar hydrogen (arg/lys) and the Class I orbital (Table 2).  For aromatic hydrogens and orbital interactions, the peak at  
2.2 Å corresponds to t-stack and offset stack π-π interactions. For orbital-orbital interactions, the biomodal distribution is attributed to both π-π 
and cation-π interactions. 
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Version 2 

To increase the speed of the score function, each residue parameter file was 

edited to include information that orbitals should be present on the residue. Further, to 

account for the improper creation of the KBP, all orbitals were added at once to a 

residue followed by taking the shortest distance between the orbital and hydrogen 

atom. The same procedure to normalize counts were used as discussed in Version 1.The 

resultant KBP is shown in Figure 19. By adding all orbitals at once and taking the shortest 

distance between an orbital and hydrogen atom, the second peak. 

Figure 18: Renormalization of orbital-hpol and orbital-haro knowledge based potentials. 
Removing double counts results in a smoothing of the orbital-hpol knowledge based potential, 
removing the second peak seen in the first version of the score function (Figure 18) 

Version 3 

Version 3 of the score function contained the most radical change in both how 

the orbitals were calculated and generation of the KBP statistics. Orbital distance to the 

bonded atom switched from a constant 0.70 Å to the Bohr radius, the most probable 

distance of an electron to an atom, of the bonded atom. Further, to reduce time for 

calculating orbital placement, code was written to store orbitals in an internal 

coordinate system. For each canonical residue params file, internal coordinates were 

added for orbitals along with a specific function in core/chemical/residue_io.cc to parse 



81 
 

the internal coordinates. Orbitals were defined as virtual atoms and were updated when 

the atom tree was changed. 

 Scoring of residues along with generation of the KBP underwent drastic changes. 

In addition to a distance, the acceptor – orbital – hydrogen angle were also used to 

derive the KBP making the potential two-dimensional. Additionally, instead of summing 

all classes into one potential, each individual class was used, thus making a total of six 

new KBPs (five for orbitals-hpol and one for orbitals-haro). A summary of Version 3’s 

KBPs are shown in Figure20.  

 Version 3.1 further changed the way orbitals were added and modified for the 

score function. Because orbital placement onto residue required modification of params 

file, non-canonical amino acids and small-molecules used in Rosetta did not have 

orbitals. A class specifically designed to add orbitals onto all residues was created. From 

the previous section in this chapter, Orbital Initial Placement and Update during 

Conformational Changes: After all residue types, atom types, and orbital types are 

created, the AssignOrbitals class is initialized if the option –add_orbitals is present. 

This ensures that all residues with atoms that contain orbitals created through the 

ResidueType class will be assigned orbitals. A set of logic based upon the orbital type, 

distance from atom, hybridization state of atom, and bonded atoms to the base atom 

are used to place orbitals onto each atom that requires an orbital. 
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Figure 19: Knowledge Based potentials with angle and distance component for orbital-hydrogen interactions. 
A) C_TrTrTrPi – hpol B) N_Tr2TrTrPi – hpol C) O_Tr2Tr2TrPi – hpol D) )_Te2Te2TeT – hpol and D) C_TrTrTrPi – hpol. Each minimum 
occurs at a perfect 180.0 ° angle with varying distances based on orbital type. 
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Version 4 

Version 4 of the score function changes the angles considered during scoring. 

Initially, only the acceptor – orbital – hydrogen angle was considered for derivation; 

however, during scoring and minimization, incorrect geometries for sp3 donors to sp2 

acceptors were observed in Lambert-Azimuthal equal area projection maps (Figure 21A-

E). Minimization occurred at off angle points because the donor – hydrogen – orbital 

angle was not constrained during minimization. By removing the acceptor – orbital – 

hydrogen angle and only minimizing with consideration to the donor – hydrogen – 

orbital angle (Figure 21E), resultant relaxed geometries were similar to the crystal 

structures. Inclusion of both the acceptor – orbital – hydrogen and the donor – 

hydrogen – orbital angle during scoring and minimization recapitulated closely the 

geometries seen in crystal structures (Figure 21F); however, bandings throughout the 

plot were observed. 

 As seen in figure 21F, banding located at 30.0° occurred during minimization. 

This was a direct result from including a degenerative orbital for sp3 and sp2 hybridized 

atoms Table 2. Removal of the degenerative orbital during minimization creates 

minimized structures with geometries close to crystal structures; however, banding 

around the angle of 90.0° remained. Removal of the π-orbital located on the carboxylic 

acids (OOC atom types) resulted in figure 21E, which is even better recapitulation of 

crystal structure geometry. 
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 Finally, corrections to the spline removed improper minimization to 180.0° seen 

in Figure 22F. Once the spline was corrected, the score function properly minimized to 

180.0°. 
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Figure 20: Geometric parameters used to create the Lambert-Azithumul plot for Version 4 of 
the PCI score function and resulting plots. 
A) Schematic representation of parameters used to create the equal area plot. Χ, the torsion 
angle between the base acceptor- acceptor-hydrogen-donor atoms and Ψ the base acceptor – 
acceptor – hydrogen angle. B) Newman projection depicting the Χ angle and the Ψ angle used to 
create Lambert-Azimuthal plots. In an ideal hydrogen bond structure, the hydrogen placement 
will be directly located at the orbital. C) Lambert-Azimuthal projection of an sp2 acceptor and a 
hydroxyl donor for crystal structures. High density is located directly where the orbital of an sp2 
acceptor would be present. D) Lambert-Azimuthal projection of an sp2 acceptor and a hydroxyl 
donor for relax models using Version 3 of the PCI score function. Density distribution is located 
near the degenerative orbital of the sp2 oxygen and the π-orbital on the oxygen. E) Lambert-
Azimuthal projection of an sp2 acceptor and a hydroxyl donor for relax models using only the 
donor-hydrogen-orbital angle as constraints. F) Lambert-Azimuthal projection of an sp2 
acceptor and a hydroxyl donor for relax models using both the acceptor-orbital-hydrogen and 
donor-hyrogen-orbital angles as constraints.  
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Figure 21: Further corrections for Version 4 of the PCI score function with geometric 
parameters used to create the Lambert-Azithumul plot and resulting plots. 
A) Schematic representation of parameters used to create the equal area plot. Χ, the torsion 
angle between the base acceptor- acceptor-hydrogen-donor atoms and Ψ the base acceptor – 
acceptor – hydrogen angle. B) Newman projection depicting the Χ angle and the Ψ angle used to 
create Lambert-Azimuthal plots. In an ideal hydrogen bond structure, the hydrogen placement 
will be directly located at the orbital. C) Lambert-Azimuthal projection of an sp2 acceptor and a 
hydroxyl donor for crystal structures. High density is located directly where the orbital of an sp2 
acceptor would be present. D) Lambert-Azimuthal projection of an sp2 acceptor and a hydroxyl 
donor for relax models using both AOH and DHO constraints and removal of the degenerative 
orbital for sp2 and sp3 atoms. Removal of the degenerative orbital removes off angle 
minimization seen at 30.0° angles. E) Lambert-Azimuthal projection of an sp2 acceptor and a 
hydroxyl donor for relax models using both AOH and DHO constraints. Removal of the π-orbital 
on the sp2 oxygens results in close recapitulation of crystal structures. F) Lambert-Azimuthal 
projection of an sp2 acceptor and a hydroxyl donor for relax models using both AOH and DHO 
constraints and fixed bicubic spline interpolation. Crystal like geometries were obtained.  
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Version 4.1 includes better normalization of the KBP and correcting orbital 

placement during minimization of the protein. Initially, KBP were constructed without 

pseudo counts; however, this resulted in an inconsistent distance minimum between 

the acceptor – orbital – hydrogen and donor – hydrogen – orbital angles for each orbital 

class (Figure 23A). Adding pseudo counts to each bin fraction resulted in the same 

distance minimum between the acceptor – orbital –hydrogen and donor – hydrogen – 

orbital angle for each orbital class Figure 23B.  

Figure 22: Version 4.1 of the PCI score function fixes incorrect normalization. 
A) Incorrect normalization without pseudo counts. The red box indicates a deviation in the 
distance between the acceptor – orbital – hydrogen (AOH) and donor – hydrogen – orbital 
(DHO) angle. B) Correct implementation for normalizing with pseudo counts. The distance 
minimum for both AOH and DHO knowledge based potentials match. 
 During minimization, orbital locations must be updated after derivative 

calculations. Previous implementations of the code did not update orbital coordinates 

correctly Figure 24; inclusion of a set of logic placed in the virtual function, 

setup_for_scoring() corrected the problem. 
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Figure 23: Incorrect placement of orbitals after minimization. 
During minimization, the conformation of both the orbitals and atoms must be updated. 
Previous implementations of the partial covalent interactions score function incorrectly setup 
the residues for minimization. Functionality placed into the setup_for_scoring() function 
correctly updates orbital placement during minimization. 

Version 5 

Version 5 fixes errors for scoring and minimizing aromatic residues. Initially, an 

orbital was positioned at the center of aromatic residues (Version 1); however, because 

there was no chemical relevance for this orbital, it was removed in Version 3. 

Examination of crystal structure Lambert-Azimuthal equal area projection graphs for π-π 

interactions for hydrogen placement relative to the orbital show that placement of the 

hydrogen is approximately 30.0° off the plane of the orbital (Figure 25). It is apparent in 

examining crystal structures that the aromatic hydrogen in π-π interactions is often 

placed above the center of the participating residue. Further, when structures are 

minimized, the resultant models reproduce structures at differing minimum than seen in 
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crystal structures. To correct for errors during minimization, a separate orbital to the 

center of aromatic rings was added. Minimization of π-π interactions results in 

structures with two defined minimum (Figure 26). This is because the bin width for the 

KBP for π-π interactions is too large and can find a minimum between two orbitals, thus 

receiving double the energy. Decreasing the bin width size for the angle component of 

π-π interactions and including the center orbital results in recapitulation of crystal 

structures geometries for π-π interactions. 
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Figure 24: Geometric parameters used to create the Lambert-Azithumul plot and Lambert-
Azithmul equal area projection plots for side chain π-π interactions between an aromatic ring 
with an aromatic Hydrogen side chain group.  
A) Schematic representation of parameters used to create the equal area plot. Χ, the torsion 
angle between the base acceptor- acceptor-orbital-hydrogen atoms. The action center (ac) was 
used as the base acceptor so that the Χ angle remained consistent between all interactions. Ψ is 
the acceptor – orbital – hydrogen angle. B) Newman projection depicting the Χ angle and the Ψ 
angle used to create Lambert-Azimuthal plots. In an ideal π-π interaction, the hydrogen 
placement will be directly located at the orbital. The Newman projection plot depicts an offset 
of the hydrogen for clarification of the plot. C) Lambert-Azimuthal projection of an orbital to an 
aromatic Hydrogen for crystal structures. High density is located at 30.0° indicative that wrong 
geometric parameters were used to create the plots. D) Lambert-Azimuthal projection of an sp2 
acceptor and an aromatic hydrogen for relax models using the partial covalent scoring function. 
Specific minimum of each orbital placement above each carbon is observed. 
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Figure 25: Geometric parameters used to create the Lambert-Azithumul plot and Lambert-Azithmul equal area projection plots for side chain 
π-π interactions between an aromatic ring with an aromatic Hydrogen side chain group with middle orbital in the aromatic ring.  
A) Schematic representation of parameters used to create the equal area plot. Χ, the torsion angle between the base acceptor- acceptor-orbital-
hydrogen atoms. The action center (ac) was used as the base acceptor so that the Χ angle remained consistent between all interactions. Ψ is the 
acceptor – orbital – hydrogen angle. B) Newman projection depicting the Χ angle and the Ψ angle used to create Lambert-Azimuthal plots. In an 
ideal π-π interaction, the hydrogen placement will be directly located at the orbital. The Newman projection plot depicts an offset of the 
hydrogen for clarification of the plot. C) Lambert-Azimuthal projection of an orbital to an aromatic hydrogen for crystal structures. High density 
is located at 0.0° indicative that correct parameters were used to generate the plots and score functions.  D) Relaxed structures using the partial 
covalent score function. A biomodal distribution is shown due to the large binning used to create the knowledge based potential. E) Relaxed 
structures using the partial covalent score function. Biomodal distrubition is removed by including smaller angle bins in creation of the KBP
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CHAPTER IV 
 

BENCHMARK RESULTS FOR THE PARTIAL COVALENT INTERACTIONS SCORE 
FUNCTION 

 

Datasets of High Resolution Crystal Structures Used to Benchmark Rosetta 

Protocols 

To derive the probability distribution for geometrical features describing PCIs, 

the top8000 dataset of crystal structures was used. The top8000 dataset(Keedy 2012) 

contains monomeric proteins with at least 25% of side chains present, greater than 38 

residues, and has a MolProbity score of < 2.0 (Chen, Arendall et al. 2010). Missing 

hydrogen atoms were added to all crystal structures using Reduce(Word, Lovell et al. 

1999) and then converted to Rosetta hydrogen atom types via a python script. 

The dataset of proteins used for the protein design benchmark was created 

through the protein sequence culling server PISCES(Wang and Dunbrack 2003). X-ray 

structures with a sequence identity limit of 25%, resolutions better than 1.5 Å, and 

sequence lengths between 175 and 250 residues were created. A total of 415 of crystal 

structures were obtained given this criteria. For the first time we benchmark protein 

design on a dataset of large proteins – typically smaller protein domains with even 

higher resolution are used to accelerate the calculation and emphasize quality of the 

structures. However, as focus is shifting towards designing large proteins(Fortenberry, 

Bowman et al. 2011), it is critical to adjust benchmarks accordingly. 
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Accurate analysis of rotamer recovery requires that all side chain atoms be present in 

the dataset. A set of 29 proteins with all side chain atoms present and a resolution of 

1.8Å or better was obtained(Liang and Grishin 2002). The dataset ensures accurate 

rotamer recovery analysis by being diverse (all α,all β, and α/β mix) and high resolution 

with all side chain atoms present. 

Analysis of Orbitals in Experimentally Determined Crystal Structures 

 Knowledge-based potentials (KBP) were created for each orbital class and driving 

interaction (see methods) (Figure 27). For all side chain – side chain PCIs, the most 

energetically favorable angle bin occurred at a straight line angle between the acceptor 

– orbital – hydrogen angle (Ψ) and donor – hydrogen – orbital (Θ) angle (Figure 3, 

27cos(Ψ) and cos(Θ)). The assumption that the orbital is a single distance equal to the 

Bohr radius of an atom is reflected by the distance component’s, δHOrb, energetic 

minimum, which varies between each orbital class. For the most energetically favorable 

angle/distance bin, an example from each PCI interaction depicted is shown in 

experimentally validated models (Figure 27). Orbitals are displayed as a single grey 

sphere while hydrogen atoms are depicted as a white sphere. For brevity, only side 

chain – side chain PCIs KBPs are shown while side chain – backbone interactions are 

summarized in the supplementary information. 
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Figure 26: The energy potential for each side chain side chain PCI and a cartoon representation of the energetic minimum for both cos(Ψ) and 
cos(Θ) favorable. 
 A) Energy potential for orbital class C.pi.sp2 interacting with polar hydrogen (hpol). Left, E(δHOrb, cos(Ψ)), middle E(δHOrb,cos(Θ)), 
right, a cartoon representation for the energetic minimum of cos(Ψ) and cos(Θ). B) Energy potential for orbital class N.p.sp2 
interacting with polar hydrogen (hpol). Left, E(δHOrb, cos(Ψ)), middle E(δHOrb,cos(Θ)), right, a cartoon representation for the energetic 
minimum of cos(Ψ) and cos(Θ). C) Energy potential for orbital class O.p.sp2 interacting with polar hydrogen (hpol). Left, E(δHOrb, 
cos(Ψ)), middle E(δHOrb,cos(Θ)), right, a cartoon representation for the energetic minimum of cos(Ψ) and cos(Θ). D) Energy potential 
for orbital class O.p.sp3 interacting with polar hydrogen (hpol). Left, E(δHOrb, cos(Ψ)), middle E(δHOrb,cos(Θ)), right, a cartoon 
representation for the energetic minimum of cos(Ψ) and cos(Θ). E) Energy potential for orbital class C.pi.sp2 interacting with an 
aromatic hydrogen (haro). Left, E(δHOrb, cos(Ψ)), middle E(δHOrb,cos(Θ)), right, a cartoon representation for the energetic minimum of 
cos(Ψ) and cos(Θ).  



95 
 

A vigorous test of the Rosetta score function is recapitulation of crystal structure 

features after a Rosetta protocol has modified the input structure. We utilize a series of 

benchmarks designed to test the new PCI score function against original crystal 

structure features. The standard Rosetta score function, score12’(Leaver-Fay, 

O&apos;Meara et al.), that had been previously optimized with OptE was also tested. 

The first two tests exam recapitulation of crystal structure geometric parameters for 

cation-π, π - π, salt bridges, and hydrogen bond interactions that were used to derive 

the knowledge-based potential after perturbation of side chains and backbone atoms. 

The third test measures how well the score function recovers conformations of side 

chains through rotamer recovery. Finally, the fourth test is based on the assumption 

that native protein sequences are close to optimal for their fold (Kuhlman and Baker) 

and measure the score functions ability to recover native and evolutionary observed 

amino acid identities.  

The relax protocol in Rosetta is used to obtain low energy and native-like 

conformations of macromolecular models(Tyka, Keedy et al. 2011). During the relax 

protocol, models undergo a series of Monte Carlo perturbations to the backbone 

followed by rotamer optimization and a gradient based minimization. At each step in 

the relax protocol, the energy function is engaged to drive the simulation to an 

energetic minimum. A first test of the newly introduced energy function is therefore 

whether after relaxation PCIs are maintained in native-like conformations. As a control, 

the standard Rosetta score function is also tested. Two analysis of the resultant models 

were used to examine if PCIs were reproduced: comparison of geometric features 
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through probability distributions and comparison of hydrogen population around an 

orbital in equal area projection plots. 

Recapitulation of geometric parameters of PCIs 

To assess quantitatively the score functions ability to recapitulate angles and 

distances seen in PCIs, the probability distributions for PCIs were derived for the relaxed 

models for each score function, PCI and standard Rosetta (score12’), and compared to 

the ones used for creation of the PCI KBP in the first place. The top8000 dataset was 

relaxed using the resultant weight set from OptE (see previous section). The Root Mean 

Square Deviation (RMSD) in each bin fraction for each PCI driving interaction between 

relaxed structures and native crystal structures was measured. The RMSD for both score 

functions remained low confirming that there is no bias towards the destruction or 

creation of PCIs. Further, A PCI probability distribution was created for each orbital class 

and driving interaction. Each probability distribution created was normalized by dividing 

each bin fraction by the sum of all counts and subtracted from the normalized 

probability distributions found in crystal structures (Figure 28). Therefore, a positive 

number indicates that more counts for a given bin fraction occurred in the relax model 

than the crystal structures. Further, to facilitate comparison, the probabilities were also 

converted into a pseudo (Figure 28). The expected result for each resultant probability 

distribution and pseudo KBP should be a convergence towards the minimum of the 

input KBP. Only significant changes in geometric parameters between the standard and 

PCI score function with respect to experimental structures are described below and are 

shown in the figures.  
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Overall, the PCI geometries from the relax models for both δHOrb, cos(Ψ) and 

δHOrb, cos(Θ) in the PCI score function match closely the distribution derived from crystal 

structures. For offset parallel, T-stacked cation-π and π-π interactions and hydrogen 

bonds, negligible differences between δHOrb, cos(Ψ) and δHOrb, cos(Θ) probability 

distributions and pseudo KBP were observed for both the standard Rosetta score 

function and PCI score function. However, significant differences for salt bridges 

between the orbital class N.p.sp2 and O.p.sp2 were observed for the standard Rosetta 

score function (Figure 28) for δHOrb, cos(Ψ). 

Salt bridges between the orbital class N.p.sp2 and polar hydrogen atoms in the 

standard Rosetta score function when minimized converged to an off angle bin fraction 

for cos(Ψ) of 0.875 or 151°. Further, counts in each bin fraction were reduced for the 

straight angle of 180° for Ψ by the normalized count of 0.02 to 0.06. Additionally, the 

distance distribution became bimodal with normalized count increases of 0.02 in bin 

fractions 1.45Å and 1.85Å. For δHOrb, cos(Θ), little difference between angle and distance 

distributions were observed. Conversely, the PCI score function for salt bridges involved 

with the orbital class N.p.sp2 and polar hydrogen atoms converged to a straight angle of 

180° for Ψ and did not diverge in the distance distributions (Figure 28A,C). 

 For salt bridges that involve the orbital class O.p.sp2 and a polar hydrogen, 

significant difference were observed for density distributions of δHOrb, cos(Ψ) for the 

standard Rosetta score function when compared to the PCI score function. An increase 

in off angle distributions for cos(Ψ) was observed for the standard Rosetta score 

function. Angle distributions did not converge upon a straight acceptor – orbital – 
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hydrogen angle, instead, an increase in normalized counts for a wide range of angles 

was observed over 90° to 180°. Further, the converged minimum occurred at an 

incorrect distance of 1.35Å as opposed to experimentally determined structures at 

1.05Å. In contrast to the standard Rosetta score function, the PCI score function 

resultant distributions converged upon the bin fractions seen in experimental 

structures. An increase in normalized counts for a bin fraction of 0.975Å and 1.05Å was 

observed indicating that the PCI score function converged upon the energy minimum 

seen in crystal structures (Figure 28B,D).  

Interestingly, similar difference for salt bridges between the orbital class N.p.sp2 

and O.p.sp2 and polar hydrogen atoms are observed in the standard Rosetta score 

function. The resultant density distributions indicate that the distance and angle 

component of the hydrogen bond potential for salt bridges have difficulty controlling 

the acceptor – orbital – hydrogen angle as compared to the donor – hydrogen – orbital 

angle which showed little to no difference. In both instances, the PCI score function 

outperformed the standard Rosetta score function by converging to experimental 

determined geometries. 
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Figure 27: Probability densities from relaxed structures measured against the native 
probability densities (top) and pseudo KBPs created from relaxed structures. 
 A) Probability densities (top) and pseudo KBP (bottom) for orbital class N.p.sp2 for experimental 
structures relaxed in the PCI score function.  B) Probability densities (top) and pseudo KBP 
(bottom) for orbital class O.p.sp2 for experimental structures relaxed in the PCI score function. 
C) Probability densities (top) and pseudo KBP (bottom) for orbital class N.p.sp2 for experimental 
structures relaxed in the standard Rosetta score function. D) Probability densities (top) and 
pseudo KBP (bottom) for orbital class O.p.sp2 for experimental structures relaxed in the 
standard Rosetta score function.  
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Lambert-Azimuthal Equal Area Projection Plots from Relax Models  

The previous analysis determines if the KBPs recover the geometric features in 

terms of distance and angles to orbitals that were input. However, we also wanted to 

confirm that the PCI KBPs recover native-like geometries for angles and torsion angles 

between sets of atoms similar to the ones used to derive the original hydrogen-bonding 

potential. Although torsion angles were not used in derivation of the PCI potential, 

examination of torsion angles involved in PCI ensures that the PCI potential does not 

induce non-native geometries for surrounding atoms. To examine the area occupied, a 

commonly used cartography tool, the Lambert-Azimuthal equal area projection plots, 

can be used to plot the distribution of hydrogen atoms around an acceptor orbital or 

atom. The distribution should remain consistent between the relaxed models and the 

original crystal structures. The RosettaFeatures reporter (Leaver-Fay, O&apos;Meara et 

al.) in conjunction with R scripts was used to create Lambert-Azimuthal plots for each 

major partial covalent interaction, cation-π, π- π, salt bridges, and hydrogen bonds. 

Multiple plots for all geometric parameters were created; however, only a 

representative subset of the plots are discussed below. The overall distribution of 

hydrogen atoms to orbitals changed little between relaxed models and crystal 

structures for the PCI potential, indicating that the weights and energy function are 

correctly recapitulating PCI geometries. However, there were significant changes in the 

distributions of relaxed models with the standard Rosetta score function.   

To compare the torsion angles measured by the hydrogen bond potential in the 

standard Rosetta score function, the area occupied by hydrogen atoms in relationship 
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between the base – acceptor – hydrogen – donor (Figure 1a, χ) and the acceptor – 

hydrogen – donor (Figure 1a, ϴ) in crystal structures for hydrogen bonds between 

charged acidic residues with a hydroxyl donor are plotted via a Lambert-Azimuthal equal 

area plot (Figure 29C). Hydrogen bond distributions correspond to the measurements 

reported by Kortemme (Kortemme, Morozov et al. 2003) et al. of 120° and 180° for the 

ϴ and χ angle respectively which results in high density at (-1,0) and (1,0) in the 

Lambert-Azimuthal plots (Figure 29C). The hydrogen atom distributions coincide with 

the orbitals for the sp2 acceptor atoms.  

After performing a relax protocol with the standard Rosetta score function, a 

new Lambert-Azimuthal plot was created (Figure 29D,E). In contrast to the crystal 

structure plots, the standard score function inaccurately minimizes the torsion (X) and ϴ 

angle. The hydrogen atoms are dispersed around the acceptor atom uniformly with a ϴ 

angle of 120° and a varying X angle. In contrast to the standard Rosetta score function, 

the PCI score function results in models’ distribution of hydrogen atoms focused into an 

ideal hydrogen bond structure of 120° and 180° for the ϴ and χ angle respectively. 

Because the straight line geometry for the acceptor – orbital – hydrogen – donor is 

controlled by the PCI score function via the Ψ and Θ angles (Figure 28), a tight 

distribution of hydrogen atoms around the orbital results from the relax protocol. The 

equal area plots are indicative that the weight set for pci_hbond are correctly weighted 

and the geometrical parameters used to define the PCI score function result in native 

like conformations. 
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In contrast to measuring χ and ϴ angles in terms of atoms, a direct test of the PCI 

score function is to define the geometric parameters with orbitals. Salt bridge 

geometries specific to the PCI function were measured through definition of the χ angle 

as the acceptor – orbital – hydrogen – donor and ϴ angle as acceptor – orbital – 

hydrogen. In crystal structures (Figure 30C), ideal salt bridges occur with an undefined χ 

(at (0,0) in the Lambert-Azimuthal plots) angle and a ϴ angle at 180° (0,0)(Kortemme, 

Morozov et al. 2003). As the ϴ angle moves from 180° to 120° and 60°, the density shifts 

from (0,0) to (0,0.5) off straight line angle between the acceptor – orbital – hydrogen. 

After the relax protocol with the standard Rosetta score function, hydrogen atom 

distributions were dispersed around the orbital at non-native angles, when compared to 

crystal structures (Figure 30D). Conversely, a clear preference for optimal salt bridge 

geometries with an undefined χ angle and an 180° ϴ angle (0,0) is recapitulated with the 

PCI score function. The distribution of hydrogen atoms around the orbitals are more 

focused when compared to the experimentally determined structures, indicating 

convergence in the relax protocol. However, bifurcation of the hydrogen atom between 

the two carboxylic acid p-orbitals becomes pronounced after the relax protocol ( (-0.5,0) 

in the Lambert-Azimuthal plots) with the PCI score function. 

T-stacked and offset parallel cation-π interactions are defined in equal area plots 

with a χ angle as the acceptor – orbital – hydrogen – donor and ϴ angle as acceptor – 

orbital – hydrogen (Figure 31). The acceptor atom is defined as an atom in an aromatic 

ring whereas the orbital is the π-orbital belonging to the acceptor atom (Figure 31). The 

distribution for hydrogen atoms are centered around the π-orbital of the aromatic ring 
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with a χ that is undefined and ϴ angle of 180°. In a report on energetically favorable 

cation-π interactions, Gallivan(Gallivan and Dougherty 1999) et al., described the 

majority of favorable cation-π interactions occur with the N-atom above the π-orbital. 

With the orientation of the N-atom above the π-orbital, the acceptor – orbital – 

hydrogen angle is 180° as seen in the crystal structure Lambert-Azimuthal plots. The 

standard Rosetta score function does not account for cation-π interactions, therefore, 

after relax with the standard score function hydrogen atom distributions are dispersed 

in a wide area around the orbital (Figure 31E). However, with the PCI score function, the 

hydrogen atom distribution converges to the orbital (Figure 31D).  
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Figure 28: Geometric parameters used to create the Lambert-Azithumul plot (A,B) and Lambert-Azithmul equal area projection plots (C,D)  for 
side chain hydrogen bonds with an sp2 acceptor and a hydroxyl donor. 
 A) Schematic representation of parameters used to create the equal area plot. Χ, the torsion angle between the base acceptor- acceptor-
hydrogen-donor atoms and Ψ the base acceptor – acceptor – hydrogen angle. B) Newman projection depicting the Χ angle and the Ψ angle used 
to create Lambert-Azimuthal plots. In an ideal hydrogen bond structure, the hydrogen placement will be directly located at the orbital. C) 
Lambert-Azimuthal projection of an sp2 acceptor and a hydroxyl donor for crystal structures. High density is located directly where the orbital of 
an sp2 acceptor would be present. D) Lambert-Azimuthal projection of an sp2 acceptor and a hydroxyl donor for relax models using the orbital 
score function. Density distribution is consistent between the crystal structure plot (C). E) Lambert-Azimuthal projection of an sp2 acceptor and a 
hydroxyl donor for relax models using Rosetta’s standard score function. The density distribution is not centered where the orbitals are located 
on the acceptor atom. 
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Figure 29: Geometric parameters used to create the Lambert-Azithumul plot (A,B) and Lambert-Azithmul equal area projection plots (C,D) for 
side chain salt bridge interactions between an acidic residue with an amine or guanidine Hydrogen side chain group. 
 A) Schematic representation of parameters used to create the equal area plot. Χ, the torsion angle between the base acceptor- acceptor-orbital-
hydrogen atoms. Ψ is the acceptor – orbital – hydrogen angle. B) Newman projection depicting the Χ angle and the Ψ angle used to create 
Lambert-Azimuthal plots. In an ideal salt bridge interaction, the hydrogen placement will be directly located at the orbital. The Newman 
projection plot depicts an offset of the hydrogen-orbital for clarification of the plot. C) Lambert-Azimuthal projection of an O.p.sp2 orbital to a 
polar Hydrogen for crystal structures. High density is located directly where the orbital of an sp2 acceptor would be present. D) Lambert-
Azimuthal projection of an sp2 acceptor and a polar Hydrogen  for relax models using the orbital score function. Density distribution is consistent 
between the crystal structure plot (C). E) Lambert-Azimuthal projection of an sp2 acceptor and a polar Hydrogen  for relax models using the 
Rosetta standard score function. Density distribution broadened and not as focused around the orbital as seen with the orbital score function (D) 
and crystal structures (C).  
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Figure 30: Geometric parameters used to create the Lambert-Azithumul plot (A,B) and Lambert-Azithmul equal area projection plots (C,D) for 
side chain cation-π interactions between an aromatic ring with an amine or guanidine side chain group.  
A) Schematic representation of parameters used to create the equal area plot. Χ, the torsion angle between the base acceptor- acceptor-orbital-
hydrogen atoms. The action center (ac) was used as the base acceptor so that the Χ angle remained consistent between all interactions. Ψ is the 
acceptor – orbital – hydrogen angle. B) Newman projection depicting the Χ angle and the Ψ angle used to create Lambert-Azimuthal plots. In an 
ideal cation-π interaction, the hydrogen placement will be directly located at the orbital. The Newman projection plot depicts an offset of the 
hydrogen for clarification of the plot. C) Lambert-Azimuthal projection of an C.pi.sp2 orbital to a amine or guanidine Hydrogen for crystal 
structures. High density is located directly where the orbital of an sp2 acceptor would be present. D) Lambert-Azimuthal projection of an sp2 
acceptor and an amine or guanidine Hydrogen for relax models using the orbital score function. Density distribution is consistent between the 
crystal structure plot (C). E) Lambert-Azimuthal projection of an sp2 acceptor and an amine or guanidine Hydrogen for relax models using the 
Rosetta standard score function. Density distribution is off center and more widely distributed around the orbital in contrast to the crystal 
structures and orbital score function.  
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Figure 31: Geometric parameters used to create the Lambert-Azithumul plot (A,B) and Lambert-Azithmul equal area projection plots (C,D) for 
side chain π-π interactions between an aromatic ring with an aromatic Hydrogen side chain group.  
A) Schematic representation of parameters used to create the equal area plot. Χ, the torsion angle between the base acceptor- acceptor-orbital-
hydrogen atoms. The action center (ac) was used as the base acceptor so that the Χ angle remained consistent between all interactions. Ψ is the 
acceptor – orbital – hydrogen angle. B) Newman projection depicting the Χ angle and the Ψ angle used to create Lambert-Azimuthal plots. In an 
ideal π-π interaction, the hydrogen placement will be directly located at the orbital. The Newman projection plot depicts an offset of the 
hydrogen for clarification of the plot. C) Lambert-Azimuthal projection of an C.pi.sp2 orbital to an aromatic Hydrogen for crystal structures. High 
density is located directly where the orbital of an sp2 acceptor would be present. D) Lambert-Azimuthal projection of an sp2 acceptor and an 
aromatic Hydrogen  for relax models using the orbital score function. Density distribution is consistent between the crystal structure plot (C). D) 
Lambert-Azimuthal projection of an sp2 acceptor and an aromatic Hydrogen  for relax models using the Rosetta standard score function. Density 
distribution is consistent between the crystal structure plot (C), but is slightly less focused. 
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Rotamer recovery  

 Conformational sampling for proteins side chains is a combinatorial problem that 

produces a large search space. Experimentally determined structures contain side chains 

in an energetically favorable conformation. Unlike protein design, rotamer recovery 

attempts to recover the correct conformation of a protein side chain in context of all 

other side chains in a protein. A stringent test for the score function is to see if the 

energetic minimum for side chain conformations can be recovered through sampling 

multiple rotamers (conformations) for each side chain(Petrella, Lazaridis et al. 1998; 

Liang and Grishin 2002). To this end, rotamer recovery was measured for all twenty 

natural occurring amino acids on a dataset of residues that contained all side chain 

atoms (Figure 33). Overall, rotamer recovery improved when using the PCI score 

function (74.4%) as compared to the standard score12’ score function (73.1%) (Figure 

9). Residues involved in hydrogen bonds, salt bridges, and π-interactions showed the 

most improvement in rotamer recovery; however, both His and Phe showed a slight loss 

for rotamer recovery. Interestingly, a large improvement(3.0%-10.0%) in rotamer 

recovery for both Asn and Gln was seen. This improvement is a direct result from 

correctly parameterizing the sp2 hyrbidization of the carbonyl functional group. A 

similar improvement is seen in both Asp and Glu residues. Rotamer recovery improved 

greater overall for surface residues (2.0% improvement) as compared to a slight 

increase in overall core residue rotamer recovery (0.5% improvement). It is unclear if 

the improvement in surface residues is a result from differing weights for the solvation 

potential or improved parameterization of residues containing orbitals.  
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Figure 32: Percent rotamer recovery for each amino acid.  
Blue, PCI score function, Red, standard rosetta score function. 

Side Chain Identity Recovery and PSSM Recovery 

In silico protein design is benchmarked typically on recovering side chain identity 

in crystal structures assuming that native sequences of proteins are close to 

optimal(Kuhlman and Baker 2000). Here we measure sequence recovery to the native 

amino acid as well as recovery to evolutionary sampled amino acid identities (PSSM 

recovery, see methods). Further we analyze amino acid identity distribution in designed 

proteins and substitution profiles from designed models to the original crystal 

structures. The number and geometry of PCIs after design is evaluated as well as the 

packing density for the core of the protein.  

A large dataset of 414 monomeric proteins (see methods) were designed using 

two different methods. The first method is design on a fixed backbone while the second 
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method is design on an energy minimized fixed backbone. RosettaScripts was used for 

both methods. After complete design of the protein, the recovery of the naturally 

occurring amino acid was measured (Table 3). For proteins that were designed before 

relax, the overall sequence recovery was 37% while sequence recovery for standard 

Rosetta was 36%. For both score functions, the sequence recovery for the core of the 

protein was higher than the surface of the protein. This is in part contributed to the 

restriction in the degrees of freedom in the core of the protein compared to the surface 

of the protein. The core of the protein has an increase chance for clashes between 

residues whereas the surface conformational sampling can result in little to no clashes 

between residues. In a second test of design, potential crystallographic errors were 

accounted for through relax of the protein dataset with both score functions. Sequence 

recovery was 51% and 48% for the PCI and standard score function, respectively. 

Interestingly, the PCI score function outperforms the standard score function by 3% 

whereas with no-relax design, the PCI score function only recovers 1% more of residues. 

We hypothesize that a significant increase in recovery is due to the PCI score function 

correctly recapitulating side chain geometries (see Results,Recapitulation of PCIs in 

energy-minimized models) whereas the standard score function incorrectly minimizes 

PCI. 
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Table 3: Summary of statistics from design and rotamer recovery runs. 

 

Sequence Recovery 
PSSM 

Recovery 
Rotamer Recovery 

Partial Covalent 

Interactions 
Packing 

 

Overall Buried Surface Overall Overall Buried Surface 

Salt 

Bridges Cation-π π-π Overall 

Native NA NA NA NA NA NA NA 12.6 4.5 7.8 0.72 

Score12’ 0.36 0.44 0.26 0.66 73 82 58 21.1 2.8 6.3 0.5 

Score12’ relaxed 0.49 0.58 0.37 0.72 NA NA NA 21.6 3.6 8.6 0.6 

PCI 0.35 0.42 0.35 0.68 74 83 61 

    PCI relaxed 0.48 0.68 0.51 0.73 NA NA NA 12.8 4.6 9.3 0.7 
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A test of whether the optimization algorithm OptE recovers native amino acid 

composition can be measured through the ratio of naturally occurring residues in the 

dataset compared to residues designed. Native occurring amino acids were divided by 

the number of residues designed for both scoring functions. Overall, amino acid 

composition remained consistent. For the PCI score function, a slight increase in the 

design of GLU was observed while for the standard score function, CYS was slightly over 

designed. For the PCI score function, an increase in recovery for residues involved in 

hydrogen bonds, cation-π and π-π interactions was observed when compared to the 

standard Rosetta score function. However, charged negative residues involved in salt 

bridges had poor sequence recovery. To examine this observation substitution profiles 

for the designed proteins were created. For both the non-relaxed and pre-relaxed 

datasets, the native amino acid was favored over any other designed residue with the 

exception of glutamine which was equally substituted for glutamic acid. Substitution of 

amino acid remained consistent for the amino acid biochemical profile; basic residues 

were substituted for other basic residues. This general trend is indicative that the 

original interactions the residues were creating (van der Waals packing, PCIs) were 

further optimized after design. Specifically, residues that comprise salt bridge 

interactions (K,R,D,E) were substituted from smaller residues (D,K) to larger residues 

(E,R) or vice versa. Overall, the polar (N,Q,S,T) and charged residues (R,K,D,E) were 

substituted more frequently than the aromatic residues and apolar residues. This could 

be because the polar residues and charged residues can participate in more diverse 

interactions such as hydrogen bonds, salt bridges, and cation-pi interactions.  
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PSSM Recovery 

As a final test, the percent recovery for a position specific scoring matrix (PSSM) 

can be measured (see methods). Sequence recovery for a PSSM addresses the limitation 

that sequence recovery and substitution profiles assume that the lowest free energy 

amino acid is the native residue. This is not necessarily true as multiple residues may 

have evolved for functionality. Both the standard score function and the PCI performed 

similar (Table 3). The overall PSSM recovery for unrelaxed structures was 0.68 and 0.66 

for the PCI and standard score function, respectively. Although a 2% difference is seen 

between the unrelaxed designed structures, the difference for relaxed designed 

structures between the two scoring functions is negligible (1%).  

PCI type recovery  

One limitation of substitution analysis is the inability to identify the type of 

interactions created. To this end, PCIs were measured between the native crystal 

structure dataset and the designed models (Table 3). For the PCI score function, the 

number of salt bridges were reduced by half, post relax/design, while cation-π and π-π 

content remained consistent with the native structures. In contrast, nearly twice as 

many salt bridges were designed with the standard score function while cation-π and π-

π interactions were designed out. The over evaluation of salt bridges in the standard 

score function is attributed to two score terms that double count sat bridge 

interactions, fa_pair and hbond_sc. Both terms within the PCI score function are 

removed and replaced with a single term to evaluate salt bridges pci_salt_bridge (see 

methods).  
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Packing Metrics 

Sheffler(Sheffler and Baker 2009) et al. demonstrated that packing metrics could be 

used to identify Rosetta designed models and native structures. Native structures where 

packed densely when compared to the designed models. To this end, packing metrics 

were measured for the designed dataset. The overall packing density of pre-relax 

designed proteins were 0.56 and 0.53 for the PCI and standard score function, 

respectively, while for relaxed designed proteins were 0.64 and 0.59 (Table 3A). 

Although packing within the core of the protein is directly related to hydrophobic 

residues’, the PCI score function after design packs the core better than the standard 

score function. A possible explanation is that arrangement of outer core residues, which 

are typically amphipatic residues, are better geometrically arranged into PCI interactions 

which influences core packing.   
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CHAPTER V 
 

CONCLUSIONS 
 

Recent advances in hardware and algorithm development have increased the speed at 

which programs run; however, robust and rapid algorithms for sampling and scoring 

macromolecular complexes are still needed. Rosetta attempts to provide rapid sampling 

through Monte Carlo moves and scoring through knowledge-based potentials. Although Rosetta 

has enjoyed many successes, improvements in the scoring function are needed (Chapter II and 

Chapter III).  

 Specifically, the second chapter focused on using Rosetta to dock ligands into a 

comparative model. Through both computational and experimental analysis, a putative binding 

mode for citalopram was proposed. Additionally, a lower gate through which serotonin and ions 

can transfer was identified; however, deficiencies in the Rosetta score function resulted in a 

poor correlation between all point mutations and the corresponding Rosetta scores. Because of 

this poor correlation, a second approach was used to identify spacer lengths that span between 

the binding pocket and the outer membrane in the human serotonin transporter for conjugation 

to quantum dots. This approach utilized a simple distance metric to the outer membrane to 

identify which small molecules to be synthesized. Once the small molecules had been 

synthesized, they were tested experimentally for binding and fluorescence in HEK cells. 

 In the third and fourth chapters, improvements to the scoring function in 

Rosetta were introduced through an orbital centric knowledge based potential. By including 

orbitals in the energy calculation, important interactions which were ignored in the Rosetta 

score function such as cation-π and π- π interactions are now evaluated. Orbital placement on 
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atoms was done as a virtual point at a distance equivalent to the Bohr radius of the atom. The 

geometric angles of the orbital placement were based on the valence shell electron pair 

repulsion (VSEPR) theory. Geometric parameters for scoring paired residues was based upon a 

distance between the orbitals and hydrogen/orbitals, the acceptor – orbital – hydrogen, and the 

donor – hydrogen - orbital angles. Several iterations to the partial covalent interactions scoring 

function were created with a final version that closely recapitulates crystal structure geometries 

and metrics (Chapter III and Chapter IV). The improvements were made publically available to 

the Rosetta community and continue to be tested. 

Future Directions 

 The biogenic monoamine neurotransmitters, serotonin transporter (SERT), 

norepinephrine transporter (NET), and to a lesser extent the dopamine transporter (DAT), are 

targets for antidepressant drugs. Selective serotonin reuptake inhibitors (SSRI), serotonin 

norepinephrine reuptake inhibitors (SNRI), and norepinephrine reuptake inhibitors (NRI), 

contain structurally similar scaffolds that target SERT with high potency (SSRI), SERT and NET 

with similar potency (SNRI), or exclusively NET (NRI). Extensive structure activity relationship 

(SAR) studies have identified important ligand fragments that selectively inhibit NET or SERT; 

however, little is known about the antidepressant complex with SERT/NET. Crystal structures of 

SERT/NET have not been resolved but a crystal structure homolog from Aquifex aeolicus LeuT 

provides a template for comparative modeling of SERT/NET. An interesting avenue of research 

would be to identify important residues of SERT/NET in binding of antidepressants using a 

comparative model. Because SERT and NET transporters share an evolutionary background, 

these studies can help trace the evolutionary path in addition to identifying important resideus 

for binding antidepressants. A protocol has been established with RosettaLigand making the 

computational experiments easy to perform. Evaluation of docked poses can be guided by 
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known Ki’s of antidepressant/transporters complex. SAR studies provide an added layer of 

evaluation.  

Scoring functions evolve throughout the time of a software package. New parameters 

for atoms, changing solvation models, and new paradigms to scoring proteins are implemented. 

Recently, an unpublished set of improvements, coined Talaris2013, to the Rosetta score 

function were set as the default score function. The set of improvements included corrected 

atomic coordinates for amino acids, an analytical evaluation of Lennard-Jones and solvation 

terms, a new rotamer library, bicubic interpolation of knowledge-based terms, improved 

recognition of sp2 hydrogen bonds, expanded hydroxyl-chi sampling, an explicit Columbic 

electrostatics term, removal of the fa_pair term, improved disulfide geometries, and a new set 

of reference energies. These improvements were implemented into the partial covalent 

interactions score function; however, they have yet to be fully tested against an extensive set of 

benchmarks such as ligand docking, protein docking, loop remodeling, RNA/DNA folding, ab 

initio folding, and enzyme design.  

Although the partial covalent interactions score function replaces the hydrogen bonding 

scoring terms in the current Rosetta score function, the Rosetta score function was updated to 

included improved hydrogen bonds with the Talaris2013 update; however, calculations for 

cation-π and π-π interactions are still not implemented. The partial covalent interactions score 

function is separated into individual terms, pci_cation_pi, pci_pi_pi, pci_salt_bridge, pci_hbond 

which allows for testing combinations of the partial covalent interactions score functions with 

the improved hydrogen bond potential. It would be beneficial to include the cation-π and π-π 

score terms with the Talaris2013 improvements. In order to accomplish this, several options 

need to be added to split the functionality of the score function.  
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In addition to combing Talaris2013 with the partial covalent interactions cation-π and π-

π term, minimization of the orbitals needs to be improved. Currently, derivative calculations 

during minimization for orbitals are placed onto the bonded atom or the hydrogen atom instead 

of the orbital. This causes “Inaccurate G steps!” when minimizing because the force vectors f1() 

and f2() are incorrectly assigned to atoms, not orbitals. In order to completely minimize the 

structure, orbitals should be represented as virtual atoms and inserted into the atom trei. This 

will allow for f1() and f2() to be correctly calculated and minimize the structure. Through this 

implementation, code responsible for updating orbital coordinates (Chapter III Version 3) can be 

removed. Further, scoring of proteins will be more memory efficient as additional vectors 

needed to hold orbital conformational data will be removed and faster as additional function 

calls are no longer needed.  
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APPENDIX 
 

Appendix I – Protein Docking 

 

command line:  

docking_protocol.static.linuxgccrelease @flags.txt  -
score:weights <weight> -out:prefix <prefix> -in:file:native 
<native> -s <structure> -ignore_unrecognized_res   

flags.txt: 

-database <database> 
-use_input_sc 
-ex1 
-ex2 
-ex2aro 
-extrachi_cutoff 0 
-nstruct 100 
-dock_pert 3 8 
-spin 
-multiple_processes_writing_to_one_directory 
-out:path:score outputs 

Appendix II – Enzyme Design 

 
command line:  

EnzdesFixBB.linuxgccrelease -database <database> @flags.txt 
 

flags.txt: 

-l ./inputs/pdb.list 
-enzdes::detect_design_interface 
-enzdes::cut1 6.0 
-enzdes::cut2 8.0 
-enzdes::cut3 10.0 
-enzdes::cut4 12.0 
-enzdes::cst_design 
-enzdes::design_min_cycles 2 



120 
 

-enzdes::cst_min 
-enzdes::chi_min 
-out::file::o ./outputs/enz_score.out 
-out::path::pdb ./outputs/ 
-ex1 
-ex2 
-ex1aro 
-ex2aro 
-extrachi_cutoff 1 
-soft_rep_design 
-flip_HNQ 
-nstruct 1 
-enzdes::no_unconstrained_repack 
-enzdes::lig_packer_weight 1.8 
-docking::ligand::old_estat 
-linmem_ig 10 
-extra_res_fa inputs/2b3b.params inputs/2ifb.params 
inputs/1sw1.params inputs/2FQX.params inputs/2p0d.params 
inputs/2DRI.params inputs/1fby.params inputs/1ZHX.params 
inputs/2RDE.params inputs/1db1.params inputs/2h6b.params 
inputs/1z17.params inputs/2FME.params inputs/1y3n.params 
inputs/1urg.params inputs/1FZQ.params inputs/1y52.params 
inputs/1POT.params inputs/1XT8.params inputs/2FR3.params 
inputs/2UYI.params inputs/1USK.params inputs/1n4h.params 
inputs/2qo4.params inputs/2GM1.params inputs/2rct.params 
inputs/2HZQ.params inputs/1hsl.params inputs/1A99.params 
inputs/1uw1.params inputs/1l8b.params inputs/3B50.params 
inputs/1H6H.params inputs/2Q2Y.params inputs/1hmr.params 
inputs/1OPB.params inputs/1x7r.params inputs/2Q89.params 
inputs/1nl5.params inputs/1TYR.params inputs/2e2r.params 
inputs/1LKE.params inputs/2PFY.params inputs/1wdn.params 
inputs/1nq7.params inputs/1y2u.params inputs/2ioy.params 
inputs/1J6Z.params inputs/1RBP.params inputs/1XZX.params 
inputs/2f5t.params 

Appendix III – Features Reporter 

 
command line:  

rosetta_scripts.linuxgccrelease @flags.txt -l <list>  -
parser:script_vars output_db=<output_db> source_sample=<source> 
id=<id> struct_id=<struct>  weight=<weight> -database <database>  
 

flags.txt: 
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-ignore_unrecognized_res 
-add_orbitals 
-output_orbitals 
-out:file:renumber_pdb 
-jd2  
 -delete_old_poses 
-parser 
 -protocol relax_features.xml 
-mute protocols.jd2 
-mute core.io.pdb.file_data 
-mute core.scoring.etable 
-mute core.io.database 
-mute core.scoring.ScoreFunctionFactory 
-mute core.pack.task 
-mute protocols.ProteinInterfaceDesign.DockDesign 
 

relax_features.xml 

<ROSETTASCRIPTS> 
 <SCOREFXNS> 
  <s weights="%%weight%%"/> 
 </SCOREFXNS>   
 <TASKOPERATIONS> 
  <ReadResfileFromDB name=relevant_chain 
database_name="rosetta_inputs.db3" table="resfiles"/> 
 </TASKOPERATIONS> 
 <MOVERS> 
  <SavePoseMover name=init_struct 
reference_name=init_struct/> 
  <FastRelax name=fast_relax scorefxn=s/> 
  <ReportToDB name=features_reporter 
database_name="%%output_db%%" sample_source=%%source_sample%% 
protocol_id=%%id%% task_operations=relevant_chain> 
   <feature name=ResidueFeatures/> 
   <feature name=HBondFeatures scorefxn=s/> 
   <feature name=HBondParameterFeatures scorefxn=s/> 
   <feature name=PairFeatures/> 
   <feature name=PdbDataFeatures/> 
   <feature name=PoseCommentsFeatures/> 
   <feature name=PoseConformationFeatures/> 
   <feature 
name=ProteinBackboneAtomAtomPairFeatures/> 
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   <feature 
name=ProteinBackboneTorsionAngleFeatures/> 
   <feature 
name=ProteinResidueConformationFeatures/> 
   <feature name=ProteinRMSDFeatures 
reference_name=init_struct/> 
   <feature name=RadiusOfGyrationFeatures/> 
   <feature name=ResidueBurialFeatures/> 
   <feature name=ResidueSecondaryStructureFeatures/> 
   <feature name=ResidueTypesFeatures/> 
   <feature name=SaltBridgeFeatures/> 
   <feature name=OrbitalsFeatures/> 
  </ReportToDB> 
 </MOVERS> 
 <PROTOCOLS> 
  <Add mover_name=init_struct/> 
  <Add mover_name=fast_relax/> 
  <Add mover_name=features_reporter/> 
 </PROTOCOLS> 
</ROSETTASCRIPTS> 
 

Appendix IV – Interface Design 

 
command line:  

rosetta_scripts.linuxgccrelease -database <database> @flags.txt -
s "'<structure ligand>'" -ex1 -ex2 -ex1aro -ex2aro -linmem_ig 10 
-extra_res_fa <params> -parser:script_vars weight=<weight> 
soft_rep=<soft_weight> 
 
flags.txt: 

-add_orbitals 
-parser 
 -protocol mv_design_scfxn.xml 
-mute protocols.jd2 
-mute core.io.pdb.file_data 
-mute core.scoring.etable 
-mute core.io.database 
-mute core.scoring.ScoreFunctionFactory 
-mute core.pack.task 
-mute protocols.ProteinInterfaceDesign.DockDesign 
 
mv_design_scfxn.xml: 
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<ROSETTASCRIPTS> 
 <SCOREFXNS> 
  <ligand_soft_rep weights="%%soft_rep%%"/> 
  <hard_rep weights="%%weight%%"/> 
 </SCOREFXNS> 
 <TASKOPERATIONS> 
  <DetectProteinLigandInterface name=design_interface 
cut1=6.0 cut2=8.0 cut3=10.0 cut4=12.0 design=1 
resfile="/blue/meilerlab/home/combss/orbitals/new_work/interface_
design/options/Resfile"/> 
  <ExtraRotamersGeneric name=extra_chi ex1=1 ex2=1 
extrachi_cutoff=0/> 
 </TASKOPERATIONS> 
 <LIGAND_AREAS> 
  <docking_sidechain chain=X cutoff=6.0 
add_nbr_radius=true all_atom_mode=true minimize_ligand=10/> 
  <final_sidechain chain=X cutoff=6.0 
add_nbr_radius=true all_atom_mode=true/> 
  <final_backbone chain=X cutoff=7.0 
add_nbr_radius=false all_atom_mode=true Calpha_restraints=0.3/> 
 </LIGAND_AREAS> 
 <INTERFACE_BUILDERS> 
  <side_chain_for_docking 
ligand_areas=docking_sidechain/> 
  <side_chain_for_final ligand_areas=final_sidechain/> 
  <backbone ligand_areas=final_backbone 
extension_window=3/> 
 </INTERFACE_BUILDERS> 
 <MOVEMAP_BUILDERS> 
  <docking sc_interface=side_chain_for_docking 
minimize_water=true/> 
  <final sc_interface=side_chain_for_final 
bb_interface=backbone minimize_water=true/> 
 </MOVEMAP_BUILDERS> 
 <MOVERS> 
 single movers 
  <ddG name=calculateDDG jump=1 per_residue_ddg=1 
repack=0 scorefxn=hard_rep/> 
  StartFrom chain=X> 
   Coordinates x=5 y=7 z=-2> 
   Coordinates x=-4 y=10 z=-6> 
  /StartFrom> 
  <Translate name=translate chain=X distribution=uniform 
angstroms=.0001 cycles=50/> 
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  <Rotate name=rotate chain=X distribution=uniform 
degrees=360 cycles=1000/> 
  <SlideTogether name=slide_together chains=X/> 
  <HighResDocker name=high_res_docker cycles=6 
repack_every_Nth=3 scorefxn=ligand_soft_rep 
movemap_builder=docking/> 
  <PackRotamersMover name=designinterface 
scorefxn=hard_rep task_operations=design_interface,extra_chi/> 
  <FinalMinimizer name=final scorefxn=hard_rep 
movemap_builder=final/> 
  <InterfaceScoreCalculator name=add_scores chains=X 
scorefxn=hard_rep/> 
 compound movers 
  <ParsedProtocol name=low_res_dock> 
   <Add mover_name=translate/> 
   <Add mover_name=rotate/> 
   <Add mover_name=slide_together/> 
  </ParsedProtocol> 
  <ParsedProtocol name=high_res_dock> 
   <Add mover_name=high_res_docker/> 
   <Add mover_name=final/> 
  </ParsedProtocol> 
 </MOVERS> 
 <PROTOCOLS> 
  <Add mover_name=low_res_dock/> 
  <Add mover_name=designinterface/> 
  <Add mover_name=high_res_dock/> 
  <Add mover_name=calculateDDG/> 
  <Add mover_name=add_scores/> 
 </PROTOCOLS> 
</ROSETTASCRIPTS> 
 
resfile.txt: 

ALLAA              # allow all amino acids 
AUTO 
#EX 1 EX 2       # allow extra chi rotameters at chi-id 1 and 
#USE_INPUT_SC    # allow the use of the input side chain 
conformation   ( see below for more detailed description of 
commands) 
start 
 

Appendix V – Relax/Design 

command line:  
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rosetta_scripts.linuxgccrelease -database <database> @flags.txt -
s <structure>  -parser:script_vars -ex1 -ex2 -ex1aro -linmem_ig 
10 -packing:extrachi_cutoff 0 
 

flags.txt: 

-ignore_unrecognized_res 
-add_orbitals 
-parser 
 -protocol relax_design_features.xml 
 
relax_design_features.xml: 

<ROSETTASCRIPTS> 
 <SCOREFXNS> 
  <s weights="%%weight%%"/> 
 </SCOREFXNS>   
 <TASKOPERATIONS> 
  <InitializeFromCommandline name=ifcl/> 
 </TASKOPERATIONS> 
 <MOVERS> 
  <SavePoseMover name=init_struct 
reference_name=init_struct/> 
  <FastRelax name=fast_relax scorefxn=s 
task_operations=ifcl/> 
  <PackRotamersMover name=design scorefxn=s 
task_operations=ifcl/> 
 </MOVERS> 
 <PROTOCOLS> 
  <Add mover_name=init_struct/> 
  <Add mover_name=fast_relax/> 
  <Add mover_name=design/> 
 </PROTOCOLS> 
</ROSETTASCRIPTS> 

Appendix VI – Ligand Docking 

command line:  

rosetta_scripts.linuxgccrelease -database <database> @flags.txt -
s "'<structure ligand>'" -ex1 -ex2 -ex1aro -ex2aro -linmem_ig 10 
-extra_res_fa <params> -parser:script_vars hard_rep=<hard_scfxn> 
soft_rep=<soft_scfxn> -add_orbitals -out:pdb_gz -nstruct 500 -
in:file:native <native>  
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flags.txt: 

-add_orbitals 
-parser 
 -protocol full_sample.xml 
-mute protocols.jd2 
-mute core.io.pdb.file_data 
-mute core.scoring.etable 
-mute core.io.database 
-mute core.scoring.ScoreFunctionFactory 
-mute core.pack.task 
-mute protocols.ProteinInterfaceDesign.DockDesign 
 

full_sample.xml: 

<ROSETTASCRIPTS> 
 <SCOREFXNS> 
  <ligand_soft_rep weights="%%soft_rep%%"/> 
  <hard_rep weights="%%hard_rep%%"/> 
 </SCOREFXNS> 
 <TASKOPERATIONS> 
  <ExtraRotamersGeneric name=extra_chi ex1=1 ex2=1 
extrachi_cutoff=0/> 
 </TASKOPERATIONS> 
 <LIGAND_AREAS> 
  <docking_sidechain chain=X cutoff=6.0 
add_nbr_radius=true all_atom_mode=true minimize_ligand=10/> 
  <final_sidechain chain=X cutoff=6.0 
add_nbr_radius=true all_atom_mode=true/> 
  <final_backbone chain=X cutoff=7.0 
add_nbr_radius=false all_atom_mode=true Calpha_restraints=0.3/> 
 </LIGAND_AREAS> 
 <INTERFACE_BUILDERS> 
  <side_chain_for_docking 
ligand_areas=docking_sidechain/> 
  <side_chain_for_final ligand_areas=final_sidechain/> 
  <backbone ligand_areas=final_backbone 
extension_window=3/> 
 </INTERFACE_BUILDERS> 
 <MOVEMAP_BUILDERS> 
  <docking sc_interface=side_chain_for_docking 
minimize_water=true/> 
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  <final sc_interface=side_chain_for_final 
bb_interface=backbone minimize_water=true/> 
 </MOVEMAP_BUILDERS> 
 <MOVERS> 
  <ddG name=calculateDDG jump=1 per_residue_ddg=1 
repack=0 scorefxn=hard_rep/> 
  <Translate name=translate chain=X distribution=uniform 
angstroms=2.5 cycles=50/> 
  <Rotate name=rotate chain=X distribution=uniform 
degrees=360 cycles=1000/> 
  <SlideTogether name=slide_together chains=X/> 
  <HighResDocker name=high_res_docker cycles=6 
repack_every_Nth=3 scorefxn=ligand_soft_rep 
movemap_builder=docking/> 
  <FinalMinimizer name=final scorefxn=hard_rep 
movemap_builder=final/> 
  <InterfaceScoreCalculator name=add_scores chains=X 
scorefxn=hard_rep/> 
  <ParsedProtocol name=low_res_dock> 
   <Add mover_name=translate/> 
   <Add mover_name=rotate/> 
   <Add mover_name=slide_together/> 
  </ParsedProtocol> 
  <ParsedProtocol name=high_res_dock> 
   <Add mover_name=high_res_docker/> 
   <Add mover_name=final/> 
  </ParsedProtocol> 
 </MOVERS> 
 <PROTOCOLS> 
  <Add mover_name=low_res_dock/> 
  <Add mover_name=high_res_dock/> 
  Add mover_name=calculateDDG/> 
  <Add mover_name=add_scores/> 
 </PROTOCOLS> 
</ROSETTASCRIPTS> 
 

Appendix VII – Loop Remodeling 

command line:  

loopmodel.linuxgccrelease @flags.txt  -score:weights <weight> -

database <database> -out:prefix <prefix>-in:file:native <native>  
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-s <structure> -loops:loop_file <loop> -add_orbitals -mute all 

flags.txt: 

-in:file:fullatom  
-loops:remodel perturb_kic 
-loops:refine refine_kic 
-loops:outer_cycles 5 
-nstruct 20 
-ex1  
-ex2  
-extrachi_cutoff 0 
 

Appendix VIII – OptE 

command line:  

mpiexec optE_parallel.mpistatic.linuxgccrelease -database 
<database> @flags.txt -s <list> -add_orbitals -
ignore_unrecognized_res  
 
flags.txt: 

 
-mute all 
-optE 
 -fixed fixed.txt 
 -free free.txt 
 -optimize_nat_aa 
 -n_design_cycles 30 
 -optimize_starting_free_weights true 
 -mpi_weight_minimization 
 -fit_reference_energies_to_aa_profile_recovery true 
-skip_set_reasonable_fold_tree 
-no_his_his_pairE 
-no_optH true 
-packing 
 -ex1 
 -ex2 
 -ex1aro 
 -linmem_ig 10 
 -multi_cool_annealer 10 
-add_orbitals 
 
fixed.txt: 
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empty 
fixed: 
fa_atr 0.8 
fa_rep 0.4 
fa_sol 0.7 
fa_intra_rep 0.004 
hack_elec 0.6 
pro_close 1 
orbitals_hpol_bb 0.1 
pci_cation_pi 0.5 
pci_pi_pi 0.065 
pci_salt_bridge 0.1 
pci_hbond 0.15 
hbond_sr_bb 0.585 
hbond_lr_bb 1.17 
dslf_fa13 1.0 
rama 0.2 
omega 0.5 
fa_dun 0.56 
p_aa_pp 0.32 

Appendix IX – RNA 

command line:  

rna_denovo.linuxgccrelease -database <database> -nstruct 2500  -
vall_torsions 1jj2_exciseSRL_exciseKT.torsions -minimize_rna -
cycles 5000 -mute all -filter_lores_base_pairs -vary_geometry  -
score:weights <weight> -native <native> -fasta <fasta> -
params_file <params> -add_orbitals 

Appendix X – Rotamer Recovery 

 
 
command line:  

rosetta_scripts.linuxgccrelease -database <database> -l 
<pdb.list> @flags.txt  
 
flags.txt: 
 
-ignore_unrecognized_res 
-no_optH 
-out:nooutput 
-jd2:delete_old_poses 



130 
 

-add_orbitals 
-parser:protocol rr_RTMin_ChiDiff.xml 
 

rr_RTMin_ChiDiff.xml: 
 
<ROSETTASCRIPTS> 
 <SCOREFXNS> 
  <s weights="%%weight%%"/> 
 </SCOREFXNS>   
 <TASKOPERATIONS> 
  <ExtraRotamersGeneric name=extra_chi ex1=1 ex2=1 
extrachi_cutoff=0/> 
 </TASKOPERATIONS> 
        <MOVERS> 
  <ReportToDB name=features_reporter database_mode="sqlite3" 
database_name="%%db_name%%" batch_description="t"> batch_description 
   <feature name=ResidueFeatures/> 
   <feature name=ResidueBurialFeatures/>  
   <feature name=ResidueSecondaryStructureFeatures/> 
   <feature name=OrbitalsFeatures/> 
   <feature name=RotamerRecoveryFeatures scorefxn=s 
protocol=RRProtocolRTMin comparer=RRComparerChiDiff 
task_operations=extra_chi/> 
        </ReportToDB> 
        </MOVERS> 
        <PROTOCOLS> 
   <Add mover_name=features_reporter/> 
        </PROTOCOLS> 
</ROSETTASCRIPTS> 
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