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CHAPTER I 

 

INTRODUCTION 

 

1.1 Overview 

With the advent of new technologies in the field of life sciences, there has been an 

increasing emphasis on applying quantitative and mathematical approaches to biology 

and medicine in order to comprehend the vast amount of data generated. A successful 

solution to a problem relies upon a synergistic feedback between experimental and 

modeling approaches. Modeling cancer invasion is one example where the influence of 

several factors (such as cell phenotype (mutation, cell cycle stage), cell-cell adhesion, 

etc) in different manners needs to be considered.  A particularly relevant example in 

relation to this thesis, in the realm of basic biology, is the phenomenon of cell migration. 

Cell motility (particularly, directed motility, such as, chemotaxis) is thought to be an 

essential element of metastasis, which is the prime cause of mortality and morbidity 

associated with cancer.  

Cell migration research has evolved into a well-developed subject area with a steadily 

growing number of papers being published over years (Fig. 1.1), that include 

measurement of cell motility parameters for different cell lines, as well as mathematical 

modeling at scales ranging from sub-cellular motility (signaling networks); cellular and 

population levels. In this work, we have developed a cellular scale approach to study 

eukaryotic cell migration by performing a model-based analysis of single cell migration 

experimental data, which can then be used to predict population properties. The focus 
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will be on cellular-level migration with no particular emphasis on any sub-cellular or 

molecular detail. We have applied this analysis technique for both random and directed 

single cell migration in amoeba and in the process have tried to connect the two forms of 

motility that have often been studied separately. The phenotype-specific migration 

parameters of mammary epithelial cells were used to perform cellular dynamics 

simulations of these cells in order to predict population properties. Also, the search 

strategy of these cells in random motility conditions was explored to arrive at a bimodal-

correlated random walk model. Lastly, the possibility of a temporal gradient sensing in 

mammary epithelial cells was briefly examined. 

1.2 Biological background 

1.2.1 Cell migration 

1.2.1.1 Background 

Cell migration is an essential phenomenon for both unicellular and multi-cellular 

organisms. Unicellular organisms [1, 2] such as E.coli or Paramecium frequently migrate 

by swimming through a fluid using flagella or cilia respectively or by crawling along 

surfaces using structures such as pseudopods as is the case in amoeba. The objective of 

migration for unicellular organisms could be simply survival by migrating towards some 

food source or away from harmful conditions or to escape from predators. In 

multicellular organisms, however, cell migration is a key element in complex behaviors 

depending on cell type, such as inflammation (migration of neutrophils), tumor 

metastasis (migration of tumor cells) and wound healing (migration of fibroblasts). This 

is illustrated pictorially in Fig. 1.2. The importance of cell migration in human body is 
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amply illustrated by Table 1.1 reproduced from [2] where the role of different cell types 

in specific physiological processes is listed. Of particular note is the process of 

embryogenesis where migrating embryonic cells lead to the development of structures 

within an embryo.  

 

 

Figure 1.1 Number of publications with keyword, ‘cell migration’ or ‘cell motility’ from 
web of science indicating a steady increase in cell migration literature. 
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Figure 1.2 Role of cell migration in different physiological processes in eukaryotic cells 
[2]. Migration of a) neutrophils during immune response; b) tumor cells during metastasis 
and c) fibroblasts during wound healing. 
 
Table 1.1: Importance of cell migration in human physiology[2]. 
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1.2.1.2 Salient Features of eukaryotic cell migration 

Eukaryotic cell migration is believed to be a “physically integrated molecular process”, 

which is characterized by distinct features such as morphological polarization, membrane 

extension, formation and subsequent release of cell-substrate attachments and contractile 

and traction forces [3]. Much of this information comes from in vitro studies; however, it 

is thought to be useful in understanding in vivo characteristics. All of motile eukaryotic 

cells such amoeba, neutrophils, fibroblasts and epithelial cells share several general 

features (as mentioned above) with differences in cell-type specific motility (such as 

speed) arising as a result of differences in physico-chemical properties of the cell type. 

Nonetheless, cell migration can be broadly thought of as a cyclic process that 

starts with polarization in the direction of migration by extension of membrane 

protrusions such as a broad lamellipodia or spike-like filopodia. Polarization results with 

a break in the cellular symmetry leading to a distinct cellular front and rear and this can 

happen even in homogeneous stimulus concentrations [4]. The membrane extensions 

have been associated with pronounced local actin polymerization and F-actin has been 

found to be distributed asymmetrically in a polarized cell [5] among other molecular 

asymmetries between back and front. The protrusions at the front are stabilized by 

attaching to the substrate underneath using receptors called integrins that facilitate 

adhesion to the extra-cellular matrix (ECM) by linking via adapters with actin filaments 

inside the cell [6]. Adhesions are formed at the rear too but preferentially located at the 

leading edge. Rapid migration requires efficient mechanisms to release the rear of the cell 

and could play an important role in the overall migration rate.  
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Apart from the protrusive forces provided by actin-polymerization at the front, the 

cell needs a contractile force to move the cell body forward that is believed to be 

provided by myosin-based motors. An illustration of various forces involved in a motile 

cell is shown in Fig. 1.3 adapted from the review by Lauffenburger et. al. [3]. The 

magnitude of traction is greater than the rearward contractive pull during translocation 

while during detachment of the rear, the magnitude of the traction is less than the 

contraction force. 

Depending on the composition of the local environment, cells respond by 

modulating their migration pattern, exhibiting either directed or non-directed (i.e., 

random) migration. This is achieved via cell surface receptors that can bind to the soluble 

factors such as hormones, growth factors and nutrients or surface bound factors in ECM. 

Non-directed or random migration occurs if the composition of local vicinity is uniform. 

However, in the presence of any gradients (spatial or temporal) in the soluble or insoluble 

factors, cells move in response to the gradients by a process called taxis (i.e., the directed 

cell migration). A well-known example of directed migration is chemotaxis, which is the 

biased migration of cells in response to gradients of soluble attractants. 

1.2.1.3 Experimental techniques  

The importance of cell migration (as illustrated in Table 1.1) has led to many 

experimental studies. Various imaging techniques have been used to study cell migration 

in vitro as well as in vivo with newer microscopy techniques. Time-lapse microscopy of 

cells on 2-D substrates has been a popular method that permits the observation of cells 

over a long period of time (days). Unlike the end-point cell migration assays such as 

Boyden chambers [7] or filter assays, time-lapse videomicroscopy permits quantitative 
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analysis of individual cell movements. Newer imaging techniques such as 2-photon 

microscopy enables imaging of cells within thick specimens. MRI techniques have been 

used to track cells during embryogenesis [2]. Techniques such as confocal microscopy, 

FRAP (fluorescence recovery after photobleaching) and TIRF (total internal reflection 

microscopy) have been used to study the sub-cellular, cytoskeletal features of a cell [8]. 

1.2.2 Motivation 

Apart from the normal physiological functions, studying cell migration is important to 

understand pathological conditions such as cancer. Cancer can be defined as a group of 

diseases that involve uncontrolled growth and spread of abnormal cells which if not 

controlled can lead to death. According to American Cancer society statistics [9], cancer 

is the second most common cause of death in the US after heart disease and about 1.43 

million new cancer cases were expected to be diagnosed in 2008. One in two men and 

one in three women will get cancer in their lifetime and the overall cost burden for cancer 

in 2007 was estimated by the National Institutes of Health to be $219.2 billion. 

Cancer metastasis (spread and eventual growth of cancer cells from primary 

tumors to secondary sites) resulting in secondary tumors is the main cause of morbidity 

and mortality associated with human cancer. The ability of invasive motility and 

metastasis is one of the hallmarks of cancerous cells [10]. The various steps involved in 

the metastatic process are: angiogenesis (formation of blood vessels) of the primary 

tumor; intravasation of tumor cells into the circulatory blood system directly (see Fig. 

1.4) using the blood vessels or indirectly through the lymphatic system; arrest of these 

cells into a new organ and finally extravasation into the new tissue [11, 12].  
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Mathematical modeling is imperative for understanding the complex cancer 

invasion process that involves the impact of several factors often in competing ways. Cell 

migration is an essential aspect of cancer metastasis; cancer invasion has been found to 

be enhanced by chemotaxis (the directed movement of cells in response to a spatial 

gradient of a chemokine/growth factor) [13]. Highly metastatic cells are found to possess 

chemotactic properties in the presence of factors such as epidermal growth factor and 

certain chemokines such as the CXCL12 [14-16] ligand, which has the CXCR4 receptor. 

Hence, the inclusion of cell motility and the effect of chemotaxis are very essential in any 

model for cancer. 

Individual cell migration has been found to play a crucial role in organ 

morphogenesis [17]. Tumor cells are also thought to frequently down-regulate their cell-

cell adhesions via epithelial-mesenchymal transition and migrate as individual cells 

during tumor metastasis [18]. In addition, understanding how cells behave on an 

individual level is also an essential element in predicting their population-level behavior. 

For example, the transport properties from the individual cellular level have been 

correlated to those at the population level [19-21] for both random and biased cell 

migration of bacteria and leukocytes.  The knowledge of single cell level parameters in 

the presence and absence of chemo-attractants thus could be useful in quantifying the 

subtle differences in cell motility arising due to different genetic makeup such as 

comparing the invasive abilities of malignant cells compared to normal cells. The 

individual chemotactic parameters can then be included in existing mathematical models 

of cancer invasion such as the hybrid-discrete-continuous Anderson model [22, 23] to 

develop more realistic models of cancer invasion.  
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Figure 1.3: The different forces involved during cell migration that result in the 
protrusion, translocation and detachment cycle for a motile cell [3]. 
 

 

 

 

 

Figure 1.4: The metastatic process via blood circulation where cells from the primary 
tumor get arrested by size restriction in small capillaries of new organ [11].  
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1.3  Physical background 

Random walk theories have been applied to model migration of cells because of 

resemblance to the random paths of particles in Brownian motion. Diffusion is the 

inherent random migration of particles due to thermal energy. Einstein showed that for a 

particle moving in one direction at an absolute temperature of 

! 

T , the associated kinetic 

energy is 

! 

kT /2, where 

! 

k  is the Boltzmann constant. We know that average kinetic 

energy associated with a particle of mass 

! 

m  and velocity 

! 

v  is 

! 

mv
2
/2 , hence 

! 

kT = m v
2  in one dimension. In 

! 

N dimensions, the relationship is 

! 

NkT = m v
2 . 

Non-directed cell migration is often described as a persistent random walk motion 

(PRW) [24] which is emergent from the Langevin equation [2, 25]: 

( )
( ) ( )tftv

dt

tvd
m

rr
r

+!= " ,       (1.1) 

where m is the mass of a single cell, ( )tvr  is the cell velocity, !  is an effective friction 

coefficient, and ( )tf
r

 is random force acting on the cell. The first term on the right-hand 

side denotes the friction force, which the cell experiences due to the motion in a given 

medium. The second term denotes the random stochastic force which has two 

characteristic properties: ( i ) a mean of zero ( ) 0=tf
r

; and ( ii ) ! -function correlations, 

  

! 

r 
f t( ) "

r 
f # t ( ) = 2N$kT% t & # t ( ) [25], where 

! 

k  is the Boltzmann constant, T  is the absolute 

temperature, and 

! 

N  is the dimensionality.  

Uhlenbeck and Ornstein [26] showed that mean-squared displacement (MSD), 

! 

d t( )
2 , can be obtained by integrating the simplified stochastic differential equation 

(1.1) to yield the following equation in one dimension (

! 

N=1): 
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! 

d t( )
2

=
2mkT

" 2
"

m
t #1+ exp #"t m( )

$ 

% 
& 

' 

( 
) .     (1.2) 

Using the equipartition theorem, 

! 

kT = m v
2  for 

! 

N=1, and redefining !m  as P , we 

obtain a following equation:  

! 

d t( )
2

= 2 v 2 P t " P + P exp " t P( )( ),     (1.3) 

Where P  is the persistence time.  

1.3.1 Diffusive motion 

A pure random walk with diffusive motion is characterized by MSD increasing linearly 

with time. This relationship can be derived in the asymptotic limit as 

! 

t"#  in equation 

1.3, giving 

! 

d t( )
2

= 2 v 2 Pt = 2Dt  where 

! 

D =
v
2
P

N(=1)
; is the diffusion coefficient in 1-D 

and 

! 

N  is the number of system dimensions. This relation can also be derived as follows 

[1, 27]:  A one-dimensional random walk can be assumed for simplicity as illustrated in 

Fig. 1.5. Let a population of particles/cells diffuse out along a linear path from a same 

point, 

! 

c . At each time point, 

! 

" , each particle moves either to left or right with equal 

probability by a distance 

! 

" . Let 

! 

d
n
 be the distance of the particle from its starting point 

! 

c  

after 

! 

n  steps, then 

! 

d
n

= d
n"1 ± # . Squaring both sides gives, 

! 

d
n

2

= d
n"1

2

+ 2d
n"1# + # 2  and 

! 

d
n

2

= d
n"1

2

" 2d
n"1# + # 2  

Averaging, the two values of 

! 

d
n

2 over a large population of similar particles, the terms of 

the form 

! 

± 2d
n"1#  would cancel out as the steps taking on both sides have equal 

probability. Hence the MSD after 

! 

n  steps is given by, 
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! 

d
n

2

= d
n"1

2

+ # 2  

If the cells start at 

! 

c = 0 , 

! 

d
0

2
= 0; d

1

2
= " 2; d

2

2
= 2" 2; d

3

2
= 3" 2

d
n

2
= n" 2

 

Since, 

! 

t = n" , for any time 

! 

t , 

! 

d
t

2
= (t /")# 2 = (# 2 /" )t          (1.4) 

Substituting, 

! 

D = " 2 /2# , where 

! 

D is the diffusion coefficient of the particle in equation 

1.4,  

 

! 

d
t

2

= 2Dt            (1.5) 

From equation 1.5, we can see that for a purely diffusive system the MSD is proportional 

to time. Hence, on a log-log scale, on plot of MSD versus time, a slope of 1 would 

indicate a diffusive regime. This linear regime can be used to estimate the diffusion 

coefficient, 

! 

D. For a two and three-dimensional system, equation 1.5 can be written as, 

! 

d
t

2

= 4Dt  and 

! 

d
t

2

= 6Dt  respectively.  

The MSD in equation 1.5 can also be derived by using the second moment of a 

Gaussian distribution, 

! 

p(x) , 

! 

dt
2

= x
2
p(x)dx

"#

#

$ . The scatter probability of particles in 1-

D diffusive random walk starting from origin, is given by a Gaussian distribution with 

mean zero given by the following equation: 

! 

p(x) =
1

" 2#
exp $

(x)
2

2" 2

% 

& 
' 

( 

) 
* ;  

where the standard deviation 

! 

" = 2Dt is root MSD that increases as the square root of 

time. 
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Figure 1.5: A one-dimensional random walk in which a particle starts from 

! 

c  and moves 
a distance of +

! 

"  or -

! 

"  at each step. 
 

1.3.1 Ballistic motion 

A ballistic motion is a case of anomalous diffusion that arises in the short-time regime 

where MSD increases as square of time and there is significant correlation in successive 

steps taken by a particle. On a log-log scale, a plot of MSD versus time would give a 

signature slope of 2. This relation can be derived from equation 1.3 for times much less 

than the persistence time (

! 

t << P ).  

Equation 1.3 can be written as 

! 

d t( )
2

= 2 v 2 P t " P + P(1" t /P + t 2 /2P 2
)( )  by 

considering the first three terms of exponential series expansion as the higher terms can 

be ignored for 

! 

t << P . The above equation then reduces to: 

! 

d t( )
2

= v
2
t
2          (1.6) 

Equation 1.6 is true for the short-time ballistic regime for any dimensionality with the 

square of the speed as the proportionality constant. 
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1.4 Research outline 

1.4.1 Focus 

The focus of this work is to model single cell migration of eukaryotic cells. Other 

phenomenon such as cell adhesion and cell division are excluded from the experimental 

data considered here.  The dissertation research reported here has three main aspects. The 

first is the development of a simple model-based analysis method (bimodal analysis) for 

characterization of single cell migration data (presented in Chapter II).  

The second aspect is to model mammary epithelial single cell migration (using the 

results from Chapter II) using the cellular dynamics simulation methodology (discussed 

in Chapter III) and also using a bimodal-correlated random walk model (Chapter IV). In 

Chapter IV, the search strategy of individual epithelial cells is also discussed. 

The third aspect deals with application of bimodal analysis tool to various cell 

types in different motility assays/treatments to provide a common framework for 

studying eukaryotic single cell motility (application in Chapters V, VI and VII). A simple 

experimental setup for creating temporal gradients for epithelial cells is discussed in 

Chapter VI and the possibility of temporal gradient sensing by epithelial cells is 

investigated. The main conclusions and future directions are discussed in Chapter VIII. 

1.4.2 Objectives  

1. To develop a ‘bimodal analysis’ framework for mammalian cells inspired from 

bacterial migration and extract single cell dynamics of mammalian cells from the 

experimental cell tracking data of cells migrating in random motility conditions. 

(Covered in Chapter II). 
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2. To model mammary epithelial single cell migration using: 

a) The ‘cellular dynamics’ simulations for the motion of MCF-10A cells 

using the parameters extracted by bimodal analysis. The initial step was to 

develop simulations with negligible re-orientation time (same as the 

bacterial scenario) and then incorporate finite re-orientation time, i.e., a re-

orientation phase corresponding to directional changes in the mammary 

epithelial cell path. The goal is to characterize random motility of the 

MCF-10A, Her-2 transformed cell lines on 2-D substrates. The outcomes 

from such an analysis would help differentiate between the benign and 

invasive cells. (Covered in Chapter III). 

b) The ‘bimodal correlated random walk’ model parameterized by the results 

obtained from bimodal analysis. The search strategy of migratory 

epithelial cells was examined using survival frequency plots, logarithmic 

binning with normalization and maximum likelihood estimates. A 

comparison with persistent random walk model is also made. (Covered in 

Chapter IV). 

3. Application of bimodal analysis to different cell types in various treatments 

(directed migration) and assays. 

a) Application to wild type and several Dictyostelium mutants in vegetative, 

developed and chemotaxis (micropipette and microfluidic chambers) 

assays. The common framework of bimodal analysis was used to study 

motility in eclectic range of eukaryotic cells (Dictyostelium, neutrophils, 

fibrosarcoma and human mammary epithelial cells). This was done in 
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collaboration with Scott Gruver (Chung lab, Department of 

Pharmocology). (Covered in Chapter V). 

b) Application to migration of MCF-10A cells (pBabe, neuN and neuT) in 

temporal gradients of EGF (Covered in Chapter VI). 

c) Application to wild type and mutant prostrate cancer cells (low matriptase-

expressing LNCaP cells and matriptase-overexpressing LNCaP cells) 

migrating on laminin-332. This was done in collaboration with Manisha 

Tripathi (Quaranta lab, Department of Cancer Biology). (Covered in 

Chapter VII). 
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CHAPTER II 

 

BIMODAL ANALYSIS OF MAMMARY EPITHELIAL CELL MIGRATION 

  

2.1 Abstract 

Cell migration paths of mammary epithelial cells (expressing different versions of the 

promigratory tyrosine kinase receptor Her2/Neu) were analyzed within a bimodal 

framework that is a generalization of the run-and-tumble description applicable to 

bacterial migration. The mammalian cell trajectories were segregated into two types of 

alternating modes, namely, the “directional-mode” (mode I, the more persistent mode, 

analogous to the bacterial run phase) and the “re-orientation-mode” (mode II, the less 

persistent mode, analogous to the bacterial tumble phase). Higher resolution (more pixel 

information, relative to cell size) and smaller sampling intervals (time between images) 

were found to give a better estimate of the deduced single cell dynamics (such as 

directional-mode time and turn angle distribution) of the various cell types from the 

bimodal analysis. The bimodal analysis tool permits the deduction of short-time 

dynamics of cell motion such as the turn angle distributions and turn frequencies during 

the course of cell migration compared to standard methods of cell migration analysis. We 

find that the two-hour mammalian cell tracking data do not fall into the diffusive regime 

implying that the often-used random motility expressions for mammalian cell motion 

(based on assuming diffusive motion) are invalid over the time steps (fraction of minute) 

typically used in modeling mammalian cell migration. 
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2.2 Background 

Cell migration is of crucial importance in cells ranging from simple bacteria to complex 

mammalian cells. Bacteria migrate towards a food source or move away from 

unfavorable environments [1] while eukaryotic cell migration forms the basis of many 

normal physiological processes such as embryogenesis [28] as well as pathogenic 

conditions like tumor metastasis [11, 12]. Individual cell migration has been found to 

play a crucial role in organ morphogenesis [17]. Tumor cells are also thought to 

frequently down regulate their cell-cell adhesions and migrate as individual cells during 

tumor metastasis [18]. In addition, understanding how cells behave on an individual level 

is an essential element in predicting their population-level behavior. The information of 

single cell level parameters can be useful in quantifying the subtle differences in cell 

motility arising due to different genetic makeup such as comparing the invasive abilities 

of malignant cells compared to normal cells. 

The motion of an individual bacterium has been well described by a run-followed 

by-tumble framework [1, 29, 30]. The runs last for several seconds while tumbles last for 

a fraction of a second (~ 0.1s). The tumbling phase involves the reversal of the bacterial 

flagella from anticlockwise to clockwise, at which point forward motion of the cell comes 

to an end.  After re-orientation, the flagella again revert to anticlockwise rotation, and the 

bacterium starts to move in a new direction.  Berg’s tracking microscope [29] has been 

used to follow bacteria rigorously as they migrate and ‘run and tumble’ parameters have 

been determined for E. coli both in the presence and absence of a chemoattractant [29].  

A clear criterion was developed to identify the ‘runs and tumbles’ in bacterial motion and 

used to develop run time, tumble time and turn angle distributions for the bacteria from 
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the tracking data [29, 31]. This framework was extended for tracking migration of E. coli 

near solid planar surfaces [32] and study migration of other bacteria such as 

Pseudomonas putida [33, 34].  

 The incorporation of single-cell dynamics into a model for cell populations has 

been successfully done in the past for bacteria using the ‘cellular dynamics’ simulation 

methodology [35, 36] which will be discussed in the following Chapter.  In order to 

extend this scheme to eukaryotic cells, similar parameters need to be extracted from the 

mammalian cell tracking data; the first step in doing so is to characterize the cell motion 

in the absence of a chemoattractant. 

The bimodal model for mammalian cell motility, presented for the first time in the 

literature [37], contrasts with the persistent random walk (PRW) model that is based on a 

continuum version of Ornstein-Uhlenbeck process used to describe Brownian dynamics.  

The PRW model has been often used to study the motility of individual mammalian cells 

[38]. In the PRW model, a non-linear equation-involving mean squared displacement of 

the cell as a fit of two parameters namely, the mean speed and persistence time, is used to 

model the migration of mammalian cells [39]. The persistence time is described as a 

characteristic run-time incorporating the persistence displayed by a cell [40]. Several 

investigators have used this model to fit the time-lapse video-microscopy cell migration 

data and extract cell-specific parameters such as persistence time [24, 38, 41-51].  

However, information regarding the short-time dynamics such as the turn angle 

distribution and turn frequency as the cell migrates cannot be deduced from the PRW 

model. 
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The availability of excellent data for the migration of individual bacteria over 

frequent sampling time intervals as well as the relatively faster time scale over which 

bacteria migrate have facilitated good characterization of bacterial motion in terms of run 

time (Poisson) and turn angle distributions.  The tracking data of mammalian cell 

migration has been largely confined to taking frequent snapshots of a fixed field of view 

over several time points. The migrating cell must remain in this field of view for this 

purpose, unlike the three-dimensional tracking of bacteria where a given individual 

bacterium was tracked automatically so that it always remained in the center of the field 

of view. Some attempts have been made at modifying the tracking software to keep a 

given mammalian cell within the field of view [52] but fixed time-lapse video-

microscopy still remains the most popular method to track mammalian cells on 2-D 

substrates in order to get cellular parameters [53, 54]. The 3-D tracking of mammalian 

cells (15-20 µm) is difficult to assess compared to the 3-D visualization of smaller-in- 

size bacterial cells (1 µm). Our experimental capabilities restrict us to collecting fixed 

time-lapse microscopy data of mammalian cells on 2-D tissue culture plastic substrates 

and we developed an analysis tool based on this data. 

In this work, we have approached the problem of analyzing cell migration of 

individual mammalian cells, specifically MCF-10A cells (human mammary epithelial 

cells), within a bimodal (directional and re-orientation modes) framework similar in spirit 

to that used in the analysis of bacterial motility [29, 31].  We interpret the re-orientation 

phase in a mammalian cell migration as the time during which the actin polymerization 

machinery in the cell preferentially polymerizes actin at a new leading edge and the cell 

is propelled in the new direction [1, 55]. The cellular activity of proteins like Rac has 
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been found to regulate the random versus directionally persistent mode of migration in a 

cell [56]. The role of phosphoinositide (PI)-3 kinase signaling in actin motility in various 

chemotactic systems from Dictyostelium discoideum to fibroblasts has been discussed 

where directional bias in eukaryotic cells is said to arise due their spatial sensing of 

chemo-attractant gradients leading to heterogeneous distribution of this signaling [6, 57]. 

An attempt is made here to separately locate the directional-mode (mode I, the more 

persistent mode) analogous to a bacterial run and the re-orientation-mode (mode II, 

random or the less persistent mode) analogous to a bacterial tumble in a mammalian cell 

migration path by performing simple video-microscopy experiments.  

A criterion for locating runs and tumbles in a cellular trajectory based on work by 

Berg and coworkers with bacterial migration was applied to MCF-10A cellular 

trajectories. Using this criterion, the turn angle distributions of control MCF-10A-pBabe, 

pre-malignant neuN and invasive neuT were generated. The single cell dynamics such as 

the mean directional-mode time, re-orientation-mode time and turn angle distributions 

were extracted for the MCF-10A cells from the tracking data. We have further discussed 

the effect of the sampling time interval of experimental data collection and also the 

resolution at which the data is collected.  

2.3 Materials and methods 

2.3.1 Cell culture 

The cell lines used in the motility experiments were a kind gift of Dr. Joan Brugge and 

were derived from the MCF-10A human mammary epithelial cells to express the pBabe 

vector alone (pBabe), or the normal (neuN) or transforming (neuT) versions of the rat 
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Her 2/Neu oncogene [58, 59]. All the cells were cultured in DMEM/F-12 50/50 media 

(Mediatech, Herndon, VA) supplemented with horse serum (2%, GIBCO/Invitrogen, 

Carlsbad, CA), cholera toxin (0.1µg/mL, Calbiochem, La Jolla, CA), insulin (10µg/mL, 

GIBCO/Invitrogen, Carlsbad, CA), hydrocortisone (0.5µg/mL, Sigma, St. Louis, MO) 

and EGF (20ng/mL, GIBCO/Invitrogen, Carlsbad, CA) as described by protocol in work 

by Debnath and coworkers [60]. The cells were maintained in a humidified atmosphere 

supplemented with 5% CO2 and were split every 3 to 4 days. 

2.3.2 Cell motility assay 

The migration of cells was followed under random motility conditions without the 

presence of any externally added chemo-attractant gradients. All the three cell types were 

plated overnight at a low density of approximately 5000 cells per cm2 of growth area on 

tissue-culture plastic. The media was changed to Leibovitz’s L-15 (GIBCO/Invitrogen, 

Carlsbad, CA) medium (because of an absence of CO2 buffering in the microscope 

chamber) supplemented with horse serum (2%), cholera toxin (0.1µg/mL), insulin 

(10µg/mL), hydrocortisone (0.5µg/mL) and EGF (20ng/mL). 

The cells were monitored using the phase-contrast optics in a Nikon Eclipse 

TE2000-E microscope equipped with temperature-controlled, humidified chamber and a 

motorized x-y stage for several samples. Cellular images were captured on a Hamamatsu 

Orca-ER camera using MetaMorph (Molecular Devices Corporation, Sunnyvale, CA) for 

data acquisition and analysis. The cells were followed with a magnification of 40x (1 

pixel ≡ 0.163 

! 

µm) and a sampling time interval of 0.5 minutes. Figure 2.1 shows a frame 

of MCF-10A-neuT cells viewed at different resolutions of 10x (1 pixel ≡ 0.647 

! 

µm) and 

40x (1 pixel ≡ 0.163 

! 

µm). All the cells were equilibrated in the humidified, temperature 
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controlled (37 0C) microscope chamber for an hour before data collection. The cells were 

followed for at least two hours in all the experiments. At least five sets of experiments 

were performed and on an average four movies were taken per well. We used a shorter 

time period of 2 hours for a smaller sampling time interval of 0.5 minutes because of 

constraints imposed by the available experimental set-up for data storage. We reduced the 

total time of the video-microscopy to 2 hours to opt for the more frequent sampling of 

data.  Experiments have also been performed using this apparatus over longer periods 

with less frequent sampling; however, we do not use this experimental data for analysis 

in this work. 

2.3.3 Trajectory data 

Each cell was manually tracked by following the cell nucleus. Only single cells that never 

interacted with other cells were considered for the analysis. The cells were plated at low 

density to avoid interacting cell populations.  Cells that remained stationary, or moved 

outside the viewing area, or that underwent cell division during the course of the 

experiment were excluded from the tracking procedure. A heuristic rule was used to 

further screen the data to be used for the analysis. A cell that did not cover considerable 

distance (at least 30 

! 

µm  along one axis) was considered atypical, and thus not included in 

our analysis. Approximately, 50% of total tracked cells for each cell type fit this heuristic 

criterion. To address the impact of sampling frequency, the 0.5 minute data obtained 

using 40x was re-analyzed as 2.5 minute data by considering every fifth data point. This 

means that each trajectory at 0.5 minutes generates 5 trajectories at 2.5 minutes: one 

trajectory using the 1st, 6th, 11th, … positions, one using the 2nd, 7th, 12th,… positions, etc.  

In order to address the impact of resolution, we extracted 10x data from 40x data, which 
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we refer to as‘10x extracted data’. For this, the pixels at 40x are converted to the values 

they would have at 10x followed by computing the co-ordinates of the cell at 10x (by 

using the calibration at 10x (1pixel ≡ 0.647 µm)). That is, 16 pixels at 40x collapse to a 

single pixel at 10x. 

2.3.4 Bimodal analysis 

The individual cell paths from the motility assay were first plotted as wind rose (the 

origins of the trajectories are shifted to (0,0)) [50] plots on a constant plot area (200 

! 

µm  

X 200 

! 

µm). Example cell trajectories used in the analysis are shown in Figs. 2.2 a, b and 

c. The cell paths with repeated circular tracks were ignored as these cells were found to 

undergo division.  

The method employed to determine the direction change (

! 

" ) at each frame (time 

point) required for the ‘bimodal analysis’ is illustrated in Fig. 2.2d. The direction change 

at each frame is defined as the difference in forward direction and the backward 

direction. At each frame, the change in direction of motion was determined by finding the 

forward direction and backward direction. The forward direction is determined from the 

slope of a vector formed from the current frame to the successive frame while the 

backward direction is given by the slope of a vector from the prior frame to the current 

frame. A two-point linear regression was used to determine each slope. A negative 

direction change represents a clockwise motion and vice-versa. The analysis of the two-

dimensional (x-y) data gives a direction change (! ) range from –

! 

"  to +

! 

" .  

Since the time between observations is fixed, the change of !  between one frame 

and the next is essentially the same as the angular speed (the time-rate of change in 

direction of motion) that was computed by Berg and co-workers in the run-tumble 
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analysis of bacterial migration [29]. The rules for scoring the start and an end of a 

directional phase were similar to the ones used in the run-and-tumble analysis of bacterial 

paths and have been elaborately stated for the analysis of the three-dimensional tracking 

data for E. coli [31]. The following algorithm was used to locate the directional and re-

orientation modes in a cellular trajectory. Specifically, the start of the directional mode 

was scored at any frame J if the quantity !  was less than an empirical cut off value, say, 

!
cut

, for frames J, J+1 and J+2 each.  The end of the directional mode (start of the re-

orientation mode) was scored at any frame J under two circumstances: a) if ! > !
cut

 for 

both frames J and J+1 or b) if ! > !
cut

 for frame J only, provided that the value of ! for 

vectors formed by data points J, J+2 in forward direction and J, J-2 in the backward 

direction is greater than !
cut

. We call this as r3 criterion since the !  value at three 

successive frames determine a directional mode. Analogously, we can also define an r2 

criterion, in which the !  value at two successive frames determine the start of a 

directional mode, and an r1 criterion in which the !  value at a single frame was 

examined to score the start of a directional mode.  

A cut-off value of !
cut
= 35°was used in the run-tumble analysis of bacteria [31]. 

A visual inspection of several cellular trajectories of the three MCF-10A cell types 

revealed that a cut-off value of !
cut
= 45°  for !  was appropriate for locating the 

transition between two mode types in the epithelial cellular trajectories. A value less than 

this cut-off (such as !
cut
= 35° ) would pick up fluctuations in the cell path as the start of a 

directional mode as indicated (by the square inset) in an example trajectory (Fig. 2.3a). 

The same trajectory (a neuT cell path) with !
cut
= 45°  is shown in Fig. 2.3b. This cut-off 

value is heuristic in nature and may or may not be applicable for other cell types.  A good 
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starting point to empirically determine the value of !
cut

is 350 as this is the value by which 

bacteria would change its direction due to Brownian motion [31]. 

The turn angle in a cell trajectory is the angle change between successive 

directional modes. A procedure similar to the one described above to calculate !  was 

used to determine the turn angle with the exception that, instead of performing two-point 

linear regression to determine the slope (and hence direction) along a directional mode, a 

multi-point linear regression was performed utilizing all the data points constituting a 

directional mode. 

2.3.5 Statistical Analysis 

The statistical significance was verified using SPSS, version 16 (SPSS, Inc., Chicago, 

IL).  The Shapiro-Wilks test for normality (α = 0.05) was applied to all data sets for 

distribution analysis. The Kolmogorov-Smirnov two-sample non-parametric test was 

subsequently applied to data to check for significant differences (α = 0.05) across means 

of various groups (i.e., by pixel size, sampling interval) for all measurements. While 

reporting the mean values (speed, directional-mode times and re-orientation-mode times), 

the mean of each cell was weighted equally [29], and the standard deviation (error bars in 

all Figs. and Tables) is the standard deviation in the mean. At least 5 independent 

experiments were carried out for each cell type. The persistence index 

! 

"  value does not 

have any error bars as this value was calculated using equation 2.1 

(

! 

" = 2 h(#)cos(#)d#
0

$

% ) where 

! 

h(") is the turn angle distribution for a population of 

specific cell type computed from data from all independent experiments. The value of 

! 

"  

was one value representing a population type hence it does not have a p-value.  
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2.4 Results 

The 

! 

d / t  ratios for the two modes of MCF-10A cell migration were calculated to verify 

the presence of the directionally persistent (mode I) and re-orientation (mode II) phases. 

These ratios have been referred to as the directionality ratios in literature [56]. The 

quantity ‘

! 

d’ is the shortest linear distance from start to the end of a particular mode I or 

mode II, while ‘

! 

t ’ is the total distance traversed by the cell from start to the end of that 

particular mode I or II (Fig. 2.4). The mean 

! 

d / t  ratio obtained during the mode I phase 

(analogous to runs) was found to be higher (p <0.001 for all cell types, pBabe (

! 

n=214), 

neuN (

! 

n=187) and neuT (

! 

n=169)) than the mean 

! 

d / t  ratio during the mode II phase 

(analogous to tumbles) confirming the existence of two alternating modes in eukaryotic 

cell migration. 

A point of difference between the proposed bimodal framework for a mammalian 

cell versus the run-tumble framework for a bacterium is the timescale of the re-

orientation-mode (mode II), which is analogous to the tumble mode of a bacterium. The 

time spent in the tumble phase in a bacterial trajectory is on the order of 0.1 seconds, 

compared to a run that lasts for seconds or longer, i.e., the timescales differ by at least 

one order of magnitude.  On the other hand, we find that the re-orientation-mode in a 

mammalian cell trajectory can last for several minutes. A bacterial tumble could be 

considered essentially instantaneous unlike the re-orientation phase in a cellular trajectory 

where the re-orientation-mode can last as long as directional-mode.  The turn frequency 

for bacteria is simply the number of tumbles made by the bacteria divided by the total 

time. The turn frequency for a mammalian cell is defined as the total number of re-
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orientation-modes divided by the total time spent in the directional-modes. For a single 

cell, this definition is the reciprocal of the mean directional-mode time for the cell. 

!
=

=
N

i

run

i

run
t

N
t

1

1  and 

! 

f
turn

=
1

N

1

ti
run

i=1

N

" =
1

N
fi
turn

i=1

N

" #
1

t
run

 where run

i
t  and turn

if  are 

the mean directional-mode time and mean turn frequency of the ith cell, respectively, N 

total number of cells in a cell type and the brackets denote average value of quantities for 

a given cell type. 

 A representative distribution of direction change at each sampling point, that is, !  

values obtained using the bimodal analysis (described in the methods section) is shown in 

Fig. 2.5. For the two-dimensional system under consideration, the range of !  lies 

between 

! 

"#  to 

! 

+"  as mentioned earlier. For a 3-D tracking data, this range would be 

between 0 to 

! 

"  [29]; however, in 3D the direction at each time point would be 

characterized by two types of angles. In a 3-D in vivo setup, the influence of the ECM 

(extra-cellular matrix) overlaid on the cells would come into picture. It can be expected 

that the frequency of re-orientations may be altered in 3-D. The algorithm described in 

the methods section was used to locate the two modes along a cell path in multiple cell 

trajectories. Using the cut-off of !
cut
= 45° , and applying the ‘r3 criteria’ described in 

methods section, the start and end of a mode I for each of the directional-modes in a cell 

trajectory can be located. We find that there was approximately equal occurrence of a 

cell-entering mode II via any of the two described mode II criteria. 

 After locating the direction along each mode I using multi-point regression, the 

“mode I to mode I” turn angle distribution for each cell type can be determined by 

making a histogram of turn angles for a given cell type. One such turn angle distribution 
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(neuT cells), which essentially represents the change in direction between successive 

directional modes in a mammalian cell trajectory, is shown in Fig. 2.5. Representative 

directional-mode time and re-orientation-mode time distributions (pBabe cells) are 

displayed in Fig. 2.6.  It can be seen that the smallest directional-mode time is of the 

order of 1.5 minutes as constrained by the criterion for location of this mode while the re-

orientation-mode lasts at least for 0.5 minutes in accordance with the second re-

orientation criterion listed in the methods section. The highest probability of directional-

mode and re-orientation-mode times for the pBabe cells was around 2 minutes. 

All the distributions are discrete probability distributions determined from the 

frequency distribution of the variables. The cell trajectory data at a sampling time interval 

(!texp ) of 0.5 minutes and 40x magnification were used to construct the distributions 

shown in Figs. 2.5, 2.6 and 2.7. All the results shown here were obtained using r3 criteria 

and a !
cut
= 45° . The location of the two alternating modes using bimodal analysis and 

hence directional-mode time, re-orientation-mode time and turn angle distributions are 

weakly sensitive to the criterion and the value of !
cut

 used for the bimodal analysis. 

Figure 2.7a compares the turn angle distributions for the three different cell types 

while the directional-mode time and re-orientation-mode time distributions are plotted in 

Fig. 2.7b and 2.7c respectively. The cumulative distribution functions of these turn angle 

distributions can be fitted and used to perform cellular dynamics simulations of the 

different cell types and elucidate the differences in the cell lines. 

The turn angle distribution h(! ), of a bacterium could be used to calculate 

(equation 2.1) the persistence index (

! 

" ) (defined as the mean of cosine of deviation in a 

cell path which is same as the mean cosine of the turn angle distribution [40]) since the 
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bacterial tumbles are instantaneous and bacterial motion can be generalized as a velocity-

jump process with no relaxation time [40]. A value of 

! 

"  close to 1 indicates high 

persistence while a value close to 0 indicates random behavior. The PRW model 

(equation 2.2) occasionally used to fit mean squared displacement (

! 

d
2
(t) ) of mammalian 

cells using the parameters of persistence time (

! 

P ) and random motility coefficient (

! 

µ), 

for a system with 

! 

n  dimensions, is based on negligible re-orientation/tumbling time 

which may not be true in the migration of mammalian cells such as the MCF-10A cells as 

has been shown in the results. Equation 2.3 connects the random motility coefficient 

! 

µ, 

to P and mean speed S. The persistence time is related to the persistence index, 

! 

"  in this 

model by equation 2.4 where 

! 

< " >  is the mean directional-mode time. We have used 

equation 2.1 to calculate 

! 

"  just to elucidate the effect of various conditions such as the 

sampling interval and resolution and we recognize that MCF-10A random migration is a 

velocity jump process with a finite resting phase [40].  

! 

" = 2 h(#)cos(#)d#
0

$

%         (2.1) 

! 

d(t)
2 = 2nµ t " P(1" e

" t /P
)[ ]       (2.2) 

! 

µ = S2P /n          (2.3) 

! 

P =< " > /(1#$)        (2.4) 

Using the r3 criteria and a !
cut
= 45° , the total number of mode Is and mode IIs, the mean 

directional-mode time and re-orientation-mode time was determined for each cell in a 

given cell type. The results of the bimodal analysis of cell path data obtained using an 

experimental time-step of 0.5 minutes and 40x magnification are shown in Table 2.1.  

The various parameters such as the mean directional-mode time, re-orientation-mode 
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time, mean speed and persistence index, were calculated.  The parameters obtained for 

the control pBabe, pre-malignant neuN and invasive neuT cells are listed together.  

This analysis was repeated by extracting data with !texp= 2.5 minute from the 0.5 

minute data. The number of data trajectories available with the 2.5 minute data extracted 

from the 0.5 minute data would be five times more but the number of frames (data points) 

in each trajectory would reduce by 5 times. For instance, for the tracking time of 2 hours, 

the 0.5 minute data with 15 data trajectories from 15 cells and 240 frames each would 

convert to 2.5 minute data with 75 data trajectories from 15 cells and 48 frames each. 

Similarly, 1 minute !texp data can be extracted from 0.5 minute data by considering every 

other data point.  The various parameters obtained from 2.5 minute data analysis are 

listed in Table 2.1. Figure 2.8 shows an example cell trajectory of the same data with 

different !texp  such as 0.5, 1 and 2.5 minute. 

 The effect of the resolution at which the images of migrating cells are recorded 

was studied by comparing data at two different magnifications, namely, 40x (1 

pixel≡0.163 

! 

µm) and 10x (1 pixel≡0.647 

! 

µm) where 10x data was extracted from the 

acquired 40x data. The φ distribution, turn angle distribution, directional-mode time and 

re-orientation-mode time distributions for pBabe cell type determined at different 

resolutions or pixel sizes and at a constant !texp= 0.5 minute are shown in Figs. 2.9 a, b, 

c and d. The same effect at a !texp= 2.5 minute is illustrated in Figs 2.9 e, f, g and h. The 

influence of pixel size on various parameters obtained from ‘bimodal analysis’ was 

studied by comparing the results from data analysis at different magnifications (Table 

2.1). The statistical significance of such comparisons for the different cell types is shown 

in Table 2.2.  
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The influence of sampling interval of data collection on the distributions keeping 

the pixel size constant is studied in Fig. 2.10. The parameters calculated at different !texp  

but same pixel sizes are compared (Table 2.1). The results obtained from 0.5 minute data 

are compared with that of 2.5 minute data at constant magnification of 40x for statistical 

significance (Table 2.2). This comparison becomes especially important when extracting 

short time dynamics such as directional-mode time and re-orientation-mode time 

dynamics. One can realize that the sampling interval of data collection should be small 

enough (at least smaller than the mean time for the directional and the less persistent 

modes) to capture the bimodal framework of the mammalian cells. 

2.5 Discussion 

2.5.1 Empirical factors for ‘bimodal’ analysis 

The two empirical factors in the bimodal analysis are the criterion (example r3, r2, r1 as 

described in methods section) and the cut-off value of !  used (!
cut

) to locate the two 

alternating modes in the cell path. The values of these two empirical factors (criterion and 

cut-off) need to be chosen by visualizing several trajectories of the cells under 

consideration. One can realize that a less stringent criterion defining a directional-mode 

such as the r1 criterion (Fig. 2.11) compared to a more stringent r3 criterion would 

decrease the observed mean directional-mode time. The less-stringent r1 criterion 

(directional-mode characterized by only one frame) reduces the duration of the re-

orientation-mode and picks up more directional and re-orientation modes. The mean 

directional-mode time and re-orientation-mode times are reduced with r1 criterion. The 

same is found experimentally: for example for neuT cells with r1 criterion, the 
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directional-mode time is 2.42±0.63 minutes and re-orientation-mode time is 1.86±0.50 

minutes, compared with 3.5±0.7 and 4.3±1.2 minutes respectively using the r3 criterion. 

The !
cut
= 45° , was chosen empirically as a cut-off value that best succeeded in 

flagging the re-orientation phase on the nucleus track of the cells. The bright-field images 

of cells that we collected are likely to be insufficient to relate the cut-off value to any 

molecular mechanism. However, it could be speculated that this cut-off may relate to 

actin-myosin pathway. This cut-off might represent a turn made by the cell due to 

pronounced actin activity in a specific direction in the leading lamellipodium. A value 

less than this cut-off may pick up fluctuations in the cell path arising from more minor 

cytoskeletal re-arrangements, such as smaller lamellopodia. The r3 criterion used here to 

locate the beginning and end of a re-orientation phase is similar to the one used to flag 

the bacterial tumbles [29]. The data acquisition conditions used to determine the cut-off, 

!
cut
= 45° , was most frequent sampling (0.5 minutes) and spatial resolution of 40x. We 

have tested the applicability of the criteria established to locate bacterial runs and tumbles 

to the mammalian cells. We find that the same framework works for mammalian cells 

provided that the cells are tracked frequently using a small sampling interval (0.5 

minute). The application of this criterion to a different temporal resolution (say, 10 

minute) might still identify the cellular turns recorded at this large sampling interval, but 

details of cellular turns during the 10 minutes will be lost. 
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2.5.2 Influence of pixel size 

a) Distributions: 

The net observed position of a cell (by manually tracking the nucleus of a cell) as it 

moves, is affected by the pixel information available. When a cell moves from one 

position to another in time, it moves from one grid point to another in a 2-dimensional 

space formed by several small square grids. The length of the square grid depends on the 

pixel size calibration of the image. Under these circumstances, the value of direction 

change would be biased at certain angles (0, 45, -45, 90, -90, 180, -180, 135) because of 

division of space into square grids of the length of 1 pixel. This would be applicable 

under the circumstance that the cell moves by 1 pixel in each frame. This limitation of 

available pixel size leads to the increased probability of certain angles in the !  

distribution. We call this as the ‘pixelation effect’ that leads to spikes at certain positions. 

It was seen that, collecting the data at higher resolution (lower pixel size in 

! 

µm) could 

minimize this effect and relatively smoothen the ! distribution (Figs. 2.9a and e). The 

pixelation effect is more pronounced at !texp= 0.5 minute as the cell moves by 1 pixel 

unlike at !texp= 2.5 minutes. 

A comparison of directional and re-orientation time distributions obtained from 

data at different resolutions at a given !texp , such as 0.5 minute or 2.5 minutes revealed 

that there was negligible influence of resolution (Figs. 2.9c, d, g and h). The distributions 

obtained from extracted 10x data have similar trend as the 40x distributions. The turn 

angle distribution from 40x is expected to have more pixel information compared to 10x 

because of pixelation effect in the !  distribution at lower resolution.  Hence, the spatial 

resolution has a subtle influence on the turn angle distribution obtained (Figs 2.9b and f). 
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b) Parameters: 

There was no statistically significant effect of pixel size on mean directional time and re-

orientation times for all cell types (Table 2.2, p>0.05). The mean speed for all the cell 

types was found to be similar at both resolutions. The p-values from Kolmogorov-

Smirnov test for comparison of mean speed at different resolutions were < 0.001 

(significant) for all cell types even though the mean values are very similar. So, we ran 

Mann-Whitney test to confirm this and compared speed at different resolutions which 

gave p-values > 0.05 (not significant). Overall, there was negligible impact of resolution 

on the various parameters and distributions obtained.  

2.5.3 Influence of sampling interval, !texp    

a) Distributions: 

The turn angle distribution obtained with 0.5 minute data appears less noisy and more 

spread out compared with the distribution from 2.5 minute data (Fig. 2.10a). This can be 

explained because of more directional modes being located on a given cell trajectory with 

sampling time interval of 0.5 minute compared with a cell trajectory with 2.5 minute 

sampling time interval. For instance, the average number of directional modes in a 0.5 

minute data path is 10 compared to 3 in a 2.5 minute data. Thus, the availability of more 

data points to average over in the case of turn angle distribution from 0.5 minute data. 

The same logic holds true for the directional time and re-orientation time distributions 

(Figs 2.10b and c). Using the more frequently sampled data (0.5 minute), the detailed 

cellular turns at this smaller time scale can be detected whereas they would not be with 

sparsely sampled 2.5 minute data. Because more turns are flagged, this results in smaller 

mean directional-mode and re-orientation-mode times with a 0.5 minute sampling 
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interval. This shows the impact of using smaller sampling interval while collecting 

migration data for applying bimodal analysis. 

b) Parameters: 

The influence of sampling interval !texp  used for the data collection on cell parameters 

such as mean speed has been previously investigated [61].  The net displacement of a cell 

over a time interval, t , would be larger if the sampling time interval at which the cell 

position is recorded during the course of experiment becomes smaller. The mean speed 

variation with !texp  for pBabe cells is illustrated in Fig. 2.12. The squared difference in 

the measured speed at 0.5 minute sampling interval and speed at any higher sampling 

interval (!texp>0.5 minute) reduces as !texp  approaches 0.5 minutes.  The measured 

speed would increase as the sampling time interval is decreased. This experimental 

observation was confirmed using simulations  (Fig. 2.13).  

 The squared difference in the speed at !tsampling = 0.5  minute sampling interval 

and speed at any higher sampling interval (!tsampling > 0.5  minute) reduces as !tsampling  

approaches 0.5 minutes. The measured speed is found to increase as the sampling time 

interval is decreased. A simple random walk simulation illustrates this observation. We 

performed a simulation with time step 

! 

"t
sim

= 0.5 minute.  The lattice spacing is 

 
l = 0.5µm , and in the random walk we move one lattice spacing per step, so the actual 

speed is   

! 

v
actual

= l /"t
sim

= 0.5µm /0.5minute, or

! 

v
actual

=1 µm/minute.  We know from the 

theory of random walks that the displacement of the random walker after 

! 

n  steps will be 

  

! 

r = A(n"t
sim
)
#
l , where at short enough times ! = 1 (corresponding to ballistic motion) 

and at long times ! = 0.5  (corresponding to diffusive motion) and 

! 

A  is a pre-factor to 
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match the units, which at long time is simply related to the diffusion coefficient.  Let the 

measurement interval is !tsample = m!tsim . For example, a sampling time of 2.5 minutes 

corresponds to m = 5 . We expect that the measured speed will be: 

 
  

! 

vm
measured

=
rm

tsample
=
A(m"tsim )

#
l

m"tsim
= Am

#$1
("tsim )

# l

"tsim
= Am

#$1
("tsim )

#
vactual  (2.5) 

If m = 1 , we can assume we are in the ballistic regime, so equation 2.5 gives 

v
1

measured
= v

actual
. And, indeed, we see from Fig. 2.13 that the sampled speed is in fact the 

actual speed. However, for m > 1 (which in the experiment corresponds to sampling 

times greater than 0.5 minute, such as 2.5, 5 and 15 minutes), equation (2.5) predicts that 

the sampled speed will be less than the actual speed. In fact, the curve in Fig. 2.13 has the 

same characteristics as the experimental curve (Fig. 2.12). Thus we see from Fig. 2.13 

that although the sampled speed does not appear to asymptote to a value at short 

sampling times, in fact it is becoming the exact result.  This gives us some confidence 

that our measured speed at the 0.5 minute interval is a reasonable estimate of actual cell 

speed.   

For the bimodal analysis of the cell trajectory data, the rate at which the data was 

collected can play a very critical role. This is evident from the comparisons of mean 

directional-mode times calculated from 0.5 and 2.5 minute data (Table 2.1). One can see 

that by using the same empirical factors for locating both mode I and mode II, the mean 

directional-mode time for pBabe cells was found to be ~3 minutes (using 0.5 minute 

data) and ~18 minutes (using 2.5 minute data) at 40x. Frequently sampled data can 

capture the re-orientations made by a mammalian cell on a smaller time scale, which may 

not involve locomotion of a cell body length. This information might be lost with 
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sparsely sampled data. We speculate that the description obtained from smaller sampling 

interval could be useful in getting some insight in the cytoskeletal re-arrangement arising 

due to more pronounced actin machinery in a specific direction. We find a statistically 

significant effect of sampling interval used on the values of directional-mode time, re-

orientation-mode time and cell speed obtained (p<<0.05). Thus, we find that the impact 

of sampling time interval is more significant compared to the resolution (Table 2.2). 

The single cell dynamics extracted here for the random migration of these 

epithelial cells will form the basis of performing cellular level simulations of these cells. 

The accuracy of the bimodal analysis technique can be assessed by identifying the re-

orientation phase from a known artificially created cell trajectory using cellular dynamics 

simulation ([35], Chapter III) based on the bimodal model and parameters extracted from 

bimodal analysis (Fig. 2.14). The cellular dynamics simulation scheme used here has the 

same basic algorithm that was used to simulate bacterial migration [35], modified to have 

a bimodal motion with experimentally determined turn angle, directional-mode and re-

orientation-mode distributions.  We can see that all the turns (known independently from 

simulation) in the artificial trajectory are picked up by the r3 analysis technique. 

A greater insight into the migration of cancer cells both in the absence and 

presence of attractant gradients will clarify the sensing mechanism (to be discussed in 

Chapter VI) and the effect on turn angle distributions of these eukaryotic cells, and 

provide the basis for incorporating individual eukaryotic cell motion into cell-based 

models for tissue, such as the Anderson model for tumor growth [62]. 
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2.5.4 Random motility coefficient, persistence and invasiveness 

Figure 2.15 shows the experimental mean squared displacement of the three cell types 

versus time on a log-log scale. We can see that the displacement lies between the slope 2 

(the ‘ballistic regime’) and slope 1 (the ‘diffusive regime’). This indicates that the two-

hour experimental tracking time is not long enough for the cell motion to enter the 

diffusive regime, so that the random motility coefficient cannot be estimated for the 

relatively slow-moving MCF-10A cells and warrants the tracking of these cells for 

several hours to days in not so conducive conditions for cells. This problem can be 

circumvented by performing ‘cellular-dynamics’ simulations long enough to reach the 

diffusive regime, and will be discussed in details in Chapter III.  

We have estimated the value of persistence indices for the various MCF-10A cell 

types using equation (2.1) just for the sake of getting some insight of the effect of 

increasing level of Her-2 expression that is, increasing invasiveness. We find that our 

highest resolution data (smallest sampling interval and highest spatial resolution) show an 

increasing persistence with increasing level of Her-2 expression from pBabe, neuN and 

neuT cells. This is consistent with the hallmark of cell migration in invasive tumors [63] 

and in cells with over expressed levels of Her-2 receptor which showed higher directional 

persistence in wound closure kind of assay [47]. 

2.6 Conclusions 

The bimodal analysis of mammalian cell migration paths reveals that cellular re-

orientation modes could last longer than directional modes. The scenario in bacterial 

migration is different where the tumbles are almost instantaneous. It is also clear that the 

sampling interval !texp of observation during time-lapse microscopy should be chosen to 
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be small enough (< 1 minute for the cell/substrate combination studied here) to capture 

the directional and re-orientation framework in a mammalian cell migration path using 

bimodal analysis. Note, however, that some properties (such as the random motility 

coefficient) do not depend on the sampling frequency while others, such as the cell speed 

and turn angle distribution, are impacted by the sampling time interval of observation.  

This bimodal cell migration scheme can be incorporated into the existing tumor 

models of cancer invasion to develop more realistic mathematical models of tumor that 

can help in accurate prognosis and treatment of cancer[22, 62, 64]. However, the 

important conclusion from this work is that the often-used random motility expressions 

for mammalian cell motion (based on assuming diffusive motion) are invalid over the 

time steps (order of few minutes[22]) typically used in modeling mammalian cell 

motility. The bimodal model correctly takes into account the time spent and the motion 

involved between directional runs, and so will lead to more appropriate quantification of 

the random motility of the cells, more accurately relating single-cell motion to 

macroscopic, population-level properties.  Thus, it provides the basis for improved 

simulations of single-cell motion required in cell-based models of cancer growth. 
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Table 2.1: Parameters obtained from bimodal analysis of pBabe, neuN and neuT cell migration tracks at different !texp  
and resolution for tracking time of 2 hours.  
 
 

 Time interval1 !texp= 0.5 !texp= 2.5 

 Cell type pBabe neuN neuT pBabe neuN neuT 
 No. of cells 15 15 12 15 15 12 
 No. of trajectories 15 15 12 75 75 60 

Mean speed2 1.05±0.28 1.09±0.38 1.20±0.43 0.81±0.22 0.79±0.24 0.94±0.35 
Mean directional-mode 
time1 3.1±0.8 3.7±1.3 3.5±0.7 18.4±12.9 16.9±10.2 14.2±5.6 

Mean re-orientation- 
mode time1 4.5±1.0 5.0±2.2 4.3±1.2 20.6±13.8 20.3±13.9 18.0±13.2 

40x 

Persistence index, !  0.38 0.39 0.49 0.42 0.64 0.25 
Mean speed2 1.05±0.28 1.09±0.39 1.21±0.43 0.8±0.22 0.78±0.23 0.93±0.35 
Mean directional-mode 
time1 3±0.4 3.29±1.08 3.84±1.13 18.5±12.3 13.7±6.8 13.9±7.4 

Mean re-orientation- 
mode time1 5.7±1.4 6.4±2.0 5.72±1.58 19.9±12.9 24.9±19.1 20.1±14.2 

10x3 

Persistence index, !  0.28 0.34 0.29 0.37 0.59 0.29 
 

1 minute 
2 µm /minute 

3 Extracted 10x from 40x 
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Table 2.2: Statistical significance for effect of pixel size and sampling interval, !texp  on various parameters using Kolmogorov-
Smirnov nonparametric test. A p-value <0.05 indicates significant difference. 
 

p-values (n13,n24) 
Condition Parameter 

pBabe neuN neuT 

Mean directional-mode time1 0.943 (102,106) 0.548 (68,78) 0.990 (108,106) 

Mean re-orientation-mode time1 1 (102,106) 0.741(68,78) 0.989 (108,106) 
Constant !texp  (2.5 minute), 

compare 40x and extracted 10x 
Mean speed2 < 0.001 (3525,3525) <0.001(3525,3525) < 0.001 (2820,2820) 

Mean directional-mode time1 < 0.001 (214,102) < 0.001 (187,68) < 0.001 (169,108) 

Mean re-orientation-mode time1 < 0.001 (214,102) < 0.001 (187,68) < 0.001 (169,108) 
Constant pixel (40x), compare 

0.5 and 2.5 minute, !texp  
Mean speed2 < 0.001 (3585,3585) < 0.001 (3585,3585) < 0.001 (2868,2868) 

 

1 minute 
2 µm /minute 
3 sample size at 40x (constant !texp ) or sample size at 0.5 minute (constant pixel) 

4 sample size at extracted 10x (constant !texp ) or sample size at 2.5 minutes (constant pixel)  
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Figure 2.1: MCF-10A-neuT cells a) 10x resolution (1pixel≡0.647µm) and b) 40x 
resolution (1 pixel≡0.163µm). 
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Figure 2.2: Example cell paths of MCF-10A-pBabe (a), neuN (b) and neuT (c) cells used 
for bimodal analysis re-plotted as wind rose plots. The data was collected with 40x 
magnification every 0.5 minutes. d) The direction change (! ) calculated at each frame in 
a cell path. The direction was determined by fitting slope using two-point linear 
regression. 
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Figure 2.3: The directional-mode (mode I) and re-orientation-mode (mode II) located in a 
neuT cell trajectory using a) !

cut
= 35° , b) !

cut
= 45° . The ‘r3 criteria’ was used for 

locating the directional-modes in each case. 
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Figure 2.4: The mean 

! 

d / t  ratios for the cells located during the two phases indicating the 
presence of the mode I and mode II phases in a cell path (pBabe (p <0.001, 

! 

n=214), 
neuN (p<0.001, 

! 

n=187) and neuT (p<0.001, 

! 

n=169) using Kolmogorov-Smirnov 
nonparametric test). 
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Figure 2.5: The discrete probability distribution of direction changes at each time step 
(distribution of ! values) and direction changes from end of one directional phase to the 
start of another (turn angle distribution) obtained using a bin size of 10 degrees for neuT 
cells tracked using !texp= 0.5 minutes and 40x magnification for 2 hours.  
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Figure 2.6: The discrete probability distributions of directional-mode times and re-
orientation-mode times obtained using a bin size of 0.5 minutes for pBabe cells tracked 
using !texp= 0.5 minutes and 40x magnification for 2 hours.  
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Figure 2.7: The discrete a) turn angle probability distributions for pBabe, neuN and neuT 
cells obtained using a bin size of 10 degrees for cells b) directional-mode time probability 
distributions of pBabe, neuN and neuT cells using bin size of 0.5 minute and c) re-
orientation-mode time probability distributions of pBabe, neuN and neuT cells using bin 
size of 0.5 minute tracked using !texp= 0.5 minutes and 40x magnification for 2 hours. 
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Figure 2.8: An example cell trajectory if the data were collected at 0.5, 1 and 2.5 minute 
of !texp . 
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Figure 2.9 (a, b): Effect of pixel size at !texp  = 0.5 minutes on a) ! distribution, b) turn 
angle distribution. 
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Figure 2.9 (c, d): Effect of pixel size at !texp  = 0.5 minutes on c) directional-mode time 
distribution and d) re-orientation-mode time distribution. 
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Figure 2.9 (e, f): Effect of pixel size at !texp  = 0.5 minutes on e) ! distribution, f) turn 
angle distribution. 
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Figure 2.9 (g, h): Effect of pixel size at !texp  = 0.5 minutes on g) directional-mode time 
distribution and h) re-orientation-mode time distribution. 
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Figure 2.10: Effect of different !texp on a) turn angle distribution b) directional-mode 
time distribution c) re-orientation-mode time distribution at 40x resolution. 
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Figure 2.11: The directional-mode (mode I) and re-orientation-mode (mode II) located in 
a neuT cell trajectory using !

cut
= 45° and ‘r1 criteria’. The change with respect to r3 

criteria (Fig. 3b) has been highlighted in the square inset. 
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Figure 2.12: Influence of sampling time interval of observation on mean cell speed in 
pBabe cells. 
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Figure 2.13: Mean speed versus time trend for a random walk simulation. 
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Figure 2.14: a) An artificial trajectory of a cell created using cellular dynamics simulation 
with the known directional and re-orientation modes indicated. b) Analyzed artificial 
trajectory with (r3 criterion and !

cut
= 45° cut-off) with the two modes indicated.  
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Figure 2.15: Experimental mean squared displacement versus time for the three cell 
types. 
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CHAPTER III 

 

CELLULAR DYNAMICS SIMULATIONS OF MCF-10A CELL RANDOM 

MIGRATION 

 

3.1 Abstract 

We have implemented the cellular dynamics simulation methodology [35] (originally 

developed for bacterial migration) to describe the random migration of MCF-10A pBabe, 

neuN and neuT cells (expressing different versions of the pro-migratory tyrosine kinase 

receptor Her2/Neu). This simulation technique enables prediction of random motility 

coefficient of a given cell type by simulating large number of cells for a relatively long 

time using known single-cell dynamics. The experimental parameters extracted for each 

cell type, by the application of bimodal analysis technique developed by us, were used to 

perform these simulations. The bimodal framework inspired from the bacterial run-

tumble scheme segregates mammalian cell tracks into alternating directional and re-

orientation modes. The mean squared displacement of these epithelial cells reaches the 

diffusive regime after approximately 2 hours according to simulations. We find from 

simulations that the Her-2 transformed neuT cells have higher random motility 

coefficient compared to the control pBabe. 

3.2 Background 

Studying cell migration is a challenging problem that warrants a synergistic feedback 

between experimental and modeling approaches. We know that cells from all domains 
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such as prokaryotic bacteria to eukaryotic mammalian cells exhibit migration, for 

survival (moving towards a food source or migrating away from unfavorable scenarios) 

[65] to performing normal physiological functions (such as embryogenesis, tissue repair) 

respectively. Understanding how cells behave on an individual level is an essential 

element in predicting their population-level behavior.  For example, the transport 

properties from the individual cellular level have been correlated to those at the 

population level [19, 21, 66] for both random and biased cell migration of bacteria and 

leukocytes.  

The single cell level studies are typically done at lower densities of cells and may 

not necessarily encompass all the high-density features. Nonetheless, the knowledge of 

single cell level parameters can provide a good starting point to model and predict 

population level behavior. This information can be useful in quantifying the subtle 

differences in cell motility arising due to different genetic makeup such as predicting the 

phenotypic behavior due to an over-expressed gene via population level simulations.  

Experimental single cell level dynamics have been successfully incorporated into 

a model for cell populations in the case of bacteria via cellular dynamics simulations [32, 

35, 36]. Such an effort needs to be replicated for eukaryotic cells and is the premise of 

this work for the specific case of mammary epithelial cell random migration. We 

extracted the single cell level parameters of MCF-10A, human mammary epithelial cells, 

expressing different versions of pro-migratory tyrosine kinase receptor Her2/Neu using 

bimodal analysis [37]. We use the experimental parameters extracted from this analysis 

to perform cellular dynamics simulations of these epithelial cells. 
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3.2.1 Modeling cell migration 

Computational model of any cellular process could range over a diverse spectrum from 

low-detail Bayesian networks (used to model interactions between different molecules in 

a given cellular pathway using conditional probabilities) to more-detailed differential 

equations incorporating different details at various levels [67]. Mathematical models of 

single-cell migration have been developed to represent either a macroscopic population 

level or microscopic individual level. Population models describe cell density via 

convective diffusion equations on a continuous level such as the Keller and Segel model 

[68] while the microscopic level models are based on individual cell dynamics on a 

discrete level and are described by stochastic equations of motion. There are also hybrid 

models where individual cells move on lattice while the extra-cellular matrix 

encompassing the cells is continuous [64]. The migration of individual mammalian cells 

has been often modeled using persistent random walk (PRW) model [41, 43, 45, 48-50]. 

However, a simple computational model for cell populations using experimental single 

cell dynamics needs to be described for mammalian cell migration. 

3.2.2 Cellular dynamics simulations: Prior work-bacterial chemotaxis 

The incorporation of single-cell dynamics into a model for cell populations has been 

successfully done in the past for bacteria [32, 35, 36].  Using the tumbling frequency and 

turn angle distributions from the ‘run and tumble’ analysis of the data collected from 

bacterial tracking experiments [29], as well as a quantitative relationship between 

chemoattractant concentration gradient and run-time extension, the ‘cellular dynamics’ 

simulation methodology [35, 36] was developed to predict the population level dynamics 

based on known individual bacterial information.  Cellular dynamics was found to predict 
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cell motion through porous media [33, 69, 70].  In these simulations, a large number of 

bacteria are simulated based on known experimental single cell dynamics. To simulate 

bacterial motion within a porous media, the mathematical characterization of 

experimentally determined cell-surface dynamics [32] is also required.  In order to extend 

this scheme to eukaryotic cells, similar parameters were extracted from the mammalian 

cell tracking data in our prior work [37]. 

The cellular dynamics simulation for bacteria starts with defining the initial 

position and direction for each bacterium. At each time step, it is determined if each 

bacterium tumbles or not. If it does tumble, its new direction of motion is chosen from 

the known turn angle distribution. If the bacterium does not tumble, it continues to move 

in the same direction. The new position of the bacterium is then determined based on its 

swimming speed, direction vector and the time step. This simulation scheme for bacteria 

is illustrated in the flowchart in Fig. 3.1 [35]. 

The simulation parameters required to do simulations of bacteria are: the turn 

probability which is related to the tumbling frequency of the bacteria and determines 

whether a bacteria tumbles or not at a given time step; the run-to-run turn angle 

distribution which gives the new direction of a run once the bacteria undergoes a tumble 

and finally, the mean speed of bacteria. These data were obtained using the 3-D tracking 

microscope developed by Berg [27, 29] and now in the Ford group at the University of 

Virginia [20, 32-34, 66, 70-74]. 
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3.3 Model overview 

3.3.1 Bimodal Analysis 

Bimodal analysis (which segregates cell track into alternating directional and 

reorientation modes) is described in details in [37]. Briefly, the directional and 

reorientation modes were flagged by first computing instantaneous direction change (

! 

" ) 

at each frame (time point) and then applying a cut-off (!
cut

) to flag the modes. A cut-off 

value of !
cut
= 45°   and ‘r3 criterion’ (! value at three successive frames determines a 

directional mode) was used for all the data analysis. The turn angle, 

! 

"  (the angle change 

between successive directional modes) was computed using multi-point linear regression 

of all the data points constituting a directional mode. The details of all the rules used to 

locate the modes can be found elsewhere [37] and were discussed in depth in the previous 

Chapter. 

3.3.2 Mammalian cell migration scheme 

The bimodal framework of cell motility of a mammalian cell involving the directional 

phase (mode I) and the re-orientation phase (mode II) is analogous to the run-tumble 

sequence exercised by a bacterium. Essentially, both the processes (bacterial and 

mammalian cell migration) are velocity-jump processes [40], the bacterial motility 

incorporating instantaneous tumbling while the mammalian cell migration can be defined 

as a process with a finite tumbling/re-orientation/relaxation time during which the 

cellular cytoskeleton is re-organized to polarize the actin-polymerization machinery in a 

new direction. Hence, the cellular dynamics methodology can be easily adapted to 

mammalian cell migration with minor modifications concerning the re-orientation time. 
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The modified simulation scheme proposed for mammalian cell migration is depicted in 

Fig. 3.2. 

 The simulation scheme for mammalian cells differs from the bacterial scheme in 

the following manner: 1) the re-orientation time is not instantaneous and an exponential 

distribution was used to pre-determine this time using experimentally determined mean 

re-orientation time; 2) The cell position is updated during re-orientations using overall 

mean cell speed (found similar to mean speed during re-orientations) and an empirical 

angle change distribution (see parameters); 3) the directional mode was assumed to be 

fairly straight and the minimum time spent in this phase was matched with the criterion 

used in bimodal analysis to at least three simulation time steps. 
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Figure 3.1: Logic diagram for cellular dynamics simulation of bacteria [35]. 
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Figure 3.2: Modified logic diagram for cellular dynamics simulation of a mammalian 
cell. 
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3.3.3 Parameters 

A simulation time step of 0.5 minute was used in all simulations which was also the time-

resolution used to collect the cell migration data using video-microscopy. Each 

simulation was carried with at least 100 cells and 20000 simulation time steps. The 

simulation scheme was implemented in FORTRAN 95 and the “random_number” 

generator routine was used to generate random numbers between 0 and 1. The cellular 

dynamics simulations of MCF-10A cell random migration were performed based on 

experimental single cell dynamics using the scheme illustrated in Fig. 3.2. The 

parameters utilized to perform these simulations are defined below. 

3.3.3.1 Re-orientation probability 

The re-orientation probability (

! 

pd"r ) is defined as the frequency of changing from 

directional to re-orientation mode (turn frequency,

! 

fd"r) times the simulation time step 

(

! 

"t
sim

). The frequency of changing from directional to re-orientation mode for a 

mammalian cell is defined as the total number of re-orientation modes (

! 

n
d"r

) divided by 

the total time spent in the directional modes (

! 

T
directional

). A modified turn frequency (

! 

fsim) 

was used in simulations in order to match the experimental frequency (see Results 

section). 

! 

fd"r =
nd"r

Tdirectional

pd"r = fd"r #$tsim

 

3.3.3.2 Re-orientation time (

! 

t
reorient

) 

The time spent for re-orientation (

! 

t
reorient

) once the cell decides to re-orient is found from 

the re-orientation time distribution (modeled as an exponential distribution) of the 
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particular cell type.  For an exponential re-orientation time distribution, 

! 

P(t
reorient

) = "e#"treorient , the cumulative distribution from 0 to a value of 

! 

t
reorient

, is given by, 

! 

P(t
reorient

)
0

t
reorient" dt

reorient
. 

Integrating, 

! 

F(t
reorient

) =1" e
"#t

reorient  

Taking logarithm of both sides, we get 

! 

t
reorient

=
ln(1" F(t

reorient
))

("1/ t 
reorient

)
 

where, 

! 

F(t
reorient

) is the cumulative distribution function of the re-orientation times of the 

particular cell type; 

! 

t 
reorient

 is the mean re-orientation time. During the simulation, a 

random number picked between 0 and 1 is inserted in place of 

! 

F(t
reorient

)  in the above 

equation. 

3.3.3.3 Turn angle distribution (between runs) 

The cumulative distribution function (

! 

cdf ) values (from 0 to 1) are computed by 

summing the known probability density function (

! 

pdf ) values of the turn angles ranging 

from 

! 

"#  to 

! 

+" .  A third-order polynomial was found to give a good fit of the 

! 

cdf of the 

turn angle 

! 

pdf  given as follows: 

! 

" = a # F(")3 + b # F(")2 + c # F(") + d  

where, 

! 

a,b,c,d  are the fitting coefficients for the particular cell type; 

! 

F(") is the 

! 

cdf of 

the turn angle (

! 

" )

! 

pdf  and is equal to a random number between 0 and 1 during 

simulation. An example fit for the turn angle 

! 

cdf is depicted in Fig. 3.3. The cumulative 

distribution function fit of the turn angle distribution for pBabe cell type used in the 

simulation is shown. The black filled circles is the experimental data and solid line is the 

polynomial curve-fit. 
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3.3.3.4 Angle change within the re-orientation phase 

In order to update the position of a cell during a re-orientation phase, direction change at 

each time step during this phase is computed using the technique similar to the one used 

to find direction changes between directional modes. A sixth- order polynomial was a 

good fit of the 

! 

cdf of the angle change

! 

pdf during the re-orientation phase. 

! 

"t = at # F("t )
6

+ bt # F("t )
5

+ ct # F("t )
4

+ dt # F("t )
3

+ et # F("t )
2

+ ft # F("t ) + gt  

Where, 

! 

at ,bt ,ct ,dt ,et , ft ,gt  are the fitting coefficients for the particular cell type; 

! 

F("
t
)  is 

the 

! 

cdf of the angle change during tumbles and is equal to a random number between 0 

and 1 during simulation. 

3.3.3.5 Cell speed 

Using mean speed during re-orientation mode: The mean speed is simply defined as the 

total distance traversed by the cell divided by the time taken. The various parameters 

extracted from the bimodal analysis and used to perform random motility cellular 

dynamics simulations of different cell types are listed in Table 3.1. 

Using speed versus directional mode time correlation during directional mode: We found 

a lot of variation in the experimental instantaneous cell speed. In order to incorporate this 

observed variability we used an empirical correlation table between cell speed and the 

given directional mode time. The correlation for the three cell types is shown in Fig. 3.4. 

One can see that smaller directional mode times are associated with a cell speed slightly 

higher than the overall mean cell speed. Since the directional mode time distribution was 

found to be exponentially distributed [37], the probability of smaller directional mode 

times is higher. Hence we found that the experimental mean squared displacement was 
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better matched by simulations when using a speed versus directional mode time 

correlation during directional mode rather than just using a mean overall cell speed.  The 

use of a single mean overall speed underestimated the mean squared displacement (MSD) 

obtained from simulations when compared to experiments. The use of a single overall 

mean cell speed compared to using a speed versus re-orientation time correlation for re-

orientation mode did not make any significant difference to the MSD trend. 

 

Table 3.1: The parameter values used to perform the simulations of specific cell type. 
 

 

 

 

 

 

Cell type  
Parameter pBabe neuN neuT 

Turn frequency, 

! 

fd"r  0.33  0.30  0.29 

! 

t 
reorient

 (min)  4.55  5.07  4.34 
Mean speed (

! 

µm /min ) 1.05 1.08 1.20 
 

! 

a,b,c,d  15.03, -21.99, 13.08, 
-3.03 

17.69, -27.66, 
16.41, -3.42 

 17.34, -25.96,  
114.40, -2.86 

 

! 

at ,bt ,ct ,dt ,et , ft ,gt  -35.63, 242.36, 
 -462.83, 372.92,  
-134.93, 24.81, -3.39 

-33.33,181.84,  
-324.58, 262.39,  
-103.11, 23.67,  
-3.62 

 -36.86, 229.08,  
-419.68, 332.62,  
-122.61, 23.83,  
-3.24 
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Figure 3.3: Cumulative distribution function fit of the turn angle distribution for pBabe 
cell type for use in the simulation. The black filled circles are the experimental data and 
solid line is the polynomial curve-fit. 
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Figure 3.4: Speed versus directional time correlation for the three cell types. The 
variability in cell speed associated with different directional mode times is evident. 
Smaller directional mode times (bin of 1.75 minute and which are correlated with slightly 
higher cell speed (1.5 

! 

µm /min ) than the mean cell speed (~1 

! 

µm /min )) are more 
probable since the mode times are exponentially distributed.  
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3.4 Simulations 

The cellular dynamics simulation scheme presented here is based on a simple model for 

single cell migration (which involves alternating directional and re-orientation modes). 

We have not taken into account cell-cell adhesion or other types of interactions between 

cells; however this is consistent with the experimental data in which adhering and 

dividing cells were filtered.  Furthermore, we only consider random migration of 

epithelial cells on 2-D substrates and incorporate the experimentally extracted parameters 

of random migration experiments of the concerned epithelial cells. The migration tracks 

of several single cells were recreated using the simulations for a timescale much greater 

than the 2 hours for which cells were tracked in experiments.  

 The main aim of these simulations was to investigate the diffusive properties of 

single epithelial cells (in the absence of any exogenous addition of a biasing component) 

by following the cells until the cells reach diffusive regime. We know that normal 

diffusion arises when mean squared displacement (MSD), 
  

! 

<
r 
r (t) "

r 
r (0)( )

2
> scales as 

! 

t
"  

where, 

! 

" =1) where   

! 

r 
r (t)  is the position of the cell at time 

! 

t . Anomalous diffusion arises 

when 

! 

" #1, with 

! 

" <1 corresponding to sub-diffusive motion, 

! 

" >1 to super-diffusive 

motion and ‘ballistic motion’ for the case of 

! 

" = 2 . 

 We compared the MSD of the simulated cells (for the three cell types, expressing 

different versions of Her-2 receptor) and performed simulations till a diffusive regime 

was reached. From the linear diffusive regime, the random motility coefficient for each 

cell type was estimated. Scatter plots were also used to qualitatively determine which cell 

type had faster diffusion characteristics. 
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3.5 Results and Discussion 

3.5.1 Simulated trajectory  

An example 2 hour simulated cell trajectory of a neuN cell is shown in Fig 3.5 (left 

figure). The re-orientations are indicated by triangles. A cell is assumed to remain 

stationary during these re-orientations, which would be the case for bacterial tumbles. 

The directional modes are approximated as straight lines. The simulation was modified to 

incorporate cell motion during the re-orientation phases. The procedure described in 

section 3.3.3 was used to compute the direction change during re-orientation phases and 

the cell is updated using a mean overall cell speed during re-orientation mode. A 

simulated neuN cell trajectory from such a simulation is depicted in Fig 3.5 (right figure) 

and represents a mammalian cell track better than that on the left. 

3.5.2 Matching the bimodal analysis scheme 

The trajectories from the simulations were used as input for the bimodal analysis scheme 

described in Chapter II (i.e., the simulation results were treated as pseudo-experimental 

data) to see if the computational trajectories would yield directional and re-orientation 

data the same as was input to the simulation. To correctly match the turn angle 

distribution from simulated data to that from experimental, the simulation was modified 

to replicate the bimodal analysis scheme correctly, namely; the directional mode lasted 

for at least three simulation time steps (3 frames characterized a directional mode in 

bimodal analysis) and the transition between the directional and re-orientation mode was 

such that the absolute angle change was greater than or equal to 45o.  
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Subsequently, it was found that in order to obtain a final turn frequency in a 

simulation close to that found in experiments for a given cell type, an input turn 

frequency higher than that found in experiment was required. The following relation was 

used to calculate the input frequency for the simulations: 

! 

fsim =
nd"r

(Tdirectional # nd"r $ 2 $%tsim )
, where the denominator represents the corrected total 

directional mode time in simulations. 

3.5.3 Random motility coefficient 

We found earlier that the experimental MSD of the three cell types versus time on a log-

log scale lies between the slope 2 (the ‘ballistic regime’) and slope 1 (the ‘diffusive 

regime’). Hence, the two-hour experimental tracking time is not long enough for the cell 

motion to enter the diffusive regime, so that the random motility coefficient cannot be 

estimated for the relatively slow-moving MCF-10A cells and warrants the tracking of 

these cells for several hours to days. This problem can be circumvented by performing 

‘cellular-dynamics’ simulations long enough to reach the diffusive regime. This may also 

give us some insight into the differences in the diffusive characteristics between the 

control (pBabe) and the Her-2 over-expressing cell line (neuT).  Fig. 3.6 shows the 

scattering of 100 cells of each cell type (green: pBabe, blue: neuN and red: neuT) starting 

from origin over a course of 12 hours (close to one proliferation time). The position of a 

cell after every 5 minutes has been shown. One can see that the neuT (red) cell type 

scatters farther compared to the pBabe (green) and neuN (blue) implying that Her-2 over-

expressing cells have a higher random motiltiy coefficient.  The MSD of the three cell 

types from the simulations are compared to those from experiments on log-log scale in 
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Fig. 3.7. We can see that the MSD enters the diffusive regime (slope 1) eventually (~2 

hours). We used the data from >1000 minutes to estimate the diffusion/random motility 

coefficient (

! 

µ) of the cells. For the 2-D data under consideration, 
  

! 

<
r 
r (t) "

r 
r (0)( )

2
>= 4µt  

in the diffusive regime and hence the slope of MSD versus time would give an estimate 

of 

! 

µ (Table 2). 

We had also estimated the value of persistence indices for the various MCF-10A 

cell types using the turn angle distribution information and found increasing persistence 

with increasing level of Her-2 expression from pBabe, neuN and neuT cells consistent 

with the hallmark of cell migration in invasive tumors [63] and in cells with over 

expressed levels of Her-2 receptor which showed higher directional persistence in an in 

vitro wound closure assay [47]. We find through our simulations that the random motility 

coefficient of the neuT cell type (over expressing Her-2) to be twice as high compared to 

the control pBabe. The 2-hour experimental data is not enough for estimation of random 

motility coefficients and cells need to be tracked for longer times. Since the overall cell 

speed for the three cell types are not overwhelmingly different from each other (~ 1 

! 

µm /min ), it is the turn angle distribution (directional persistence), which contributes to 

the higher random motility of the neuT cell type. 
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Figure 3.5: A simulated neuN cell using a simulation time step of 0.5 minute. The cell 
remains stationary during the re-orientation phase (left) and a cell is in motion during re-
orientation (right). 
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Figure 3.6:  Evolution of 100 simulated cells of different cell types over 12 hours starting 
from origin. All the pBabe cells are denoted by green filled circles while neuN by blue 
and neuT cell types is denoted in red.  The position of cell every 5 minutes has been 
plotted.  
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Figure 3.7: Comparison of mean squared displacement from experiment to that from 
simulations for the three cell types expressing different versions of Her-2 receptor.  
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Table 3.2: Random motility coefficient values of the three cell type as determined from 
the simulations. 
 

Cell type Random motility coefficient (

! 

µm2
/min ) 

 pBabe  2.31 
 neuN  2.28 
 neuT  4.60 

 

We simulated the population level behavior of mammary epithelial cells expressing 

different versions of Her-2 using experimentally extracted parameters for each cell type. 

Although, the current model is based on single cell random migration, which excludes 

other phenomena such as cell-cell adhesion and chemotaxis, it provides a basic 

framework to which more complexities could be added. We estimated the random 

motility coefficient using cellular dynamics simulations (without making any prior model 

assumptions) incorporating more realistic experimental cell dynamics and looked into the 

effect of Her-2 over-expression on single cell motility. We find that the neuT cell type 

have higher random motility compared to the control, pBabe. 

The experimental tracking data of MCF-10A cells chemotaxing in the presence of 

a chemokine such as EGF could be analyzed with the bimodal analysis to get individual 

cellular parameters of chemotaxis. We can then hope to extend the ‘cellular dynamics’ 

simulation strategy developed for bacterial migration for both the random migration and 

chemotaxis of the mammary epithelial cells using the individual cellular parameters 

developed from the bimodal analysis. This simulation strategy can also be modified to 

incorporate cell-cell adhesion, haptotaxis and other cell migration strategies to simulate 
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cell migration more accurately. These simulations can be performed in diffusive regime 

to get an estimate of the cancer cell parameters such as the random motility coefficient 

and then chemotaxis coefficient, which can then be fed, into an existing tissue scale 

model of tumor invasion [22, 62]. 

3.6 Conclusions 

In summary, cellular dynamics simulation scheme (originally developed to simulate 

bacterial chemotaxis) was used to simulation random migration of mammary epithelial 

cells expressing different versions of Her-2 receptor and the neuT cell type (expressing 

oncogenic version of Her-2 receptor) was found to have higher random motility 

coefficient. 
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CHAPTER IV 

 

HUMAN MAMMARY EPITHELIAL CELLS EXHIBIT A BIMODAL 

CORRELATED RANDOM WALK PATTERN 

 

4.1 Abstract 

Organisms, at scales ranging from unicellular to mammals, have been shown to exhibit 

foraging behavior by demonstrating that their migration can be described by random 

walks whose segments confirm to Lévy or exponential distributions. For the first time, 

we present evidence that single cells from multi-cellular organisms follow a similar 

foraging pattern. Cellular tracks of MCF-10A pBabe, neuN and neuT random migration 

on 2-D plastic substrates, analyzed using the bimodal analysis described in Chapter II, 

were found to reveal a bimodal correlated random walk (BCRW). We find two types of 

exponentially distributed correlated flights (corresponding to what we refer to as the 

directional and re-orientation phases). These flights each have a specific form of turn 

angle distribution representing the correlation between move step-lengths within flights. 

We analyzed these flights using different methods (logarithmic binning with 

normalization, survival frequency plots and maximum likelihood method) to determine 

the presence of any Lévy modulation in the flights versus exponential model. We did not 

find any evidence of a power-law behavior in the flight lengths, in agreement with the 

survival frequency distributions. Since the presence of non-uniform turn angle 
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distribution of move step-lengths within a flight and two different types of flights, we 

propose that the epithelial random walk is a BCRW comprising of two alternating modes 

with varying degree of correlations, rather than a simple persistent random walk. A 

BCRW model correctly matches the super-diffusivity in the cell migration paths in the 

absence of any biasing cues (haptotaxis or chemotaxis) as indicated by simulations based 

on the BCRW model.  

4.2 Background 

Cell migration is an important process for a wide range of domains from bacteria to 

mammals. For prokaryotes (e.g., bacteria), migration is important to locate food sources 

[1]. Similar goals may apply to unicellular eukaryotes (e.g., Dictyostelium). In contrast, in 

“higher” multi-cellular eukaryotes (e.g., mammals) cell migration is involved in 

physiological processes as well as pathogenic conditions such as cancer metastasis [11]. 

Mammalian cell migration is generally thought of as having a “purpose” (such as 

embryogenesis [28] and immune response [75]) other than locating nutrients and it is 

believed that these cells follow orders from a higher “programming center”. When these 

orders are misinterpreted or disregarded, cancer may occur. This work, instead, is 

informed by a different premise: namely, that individual cell migration in random 

motility conditions can be interpreted as a problem of how to efficiently perform a search 

to locate randomly distributed “target items” (such as nutrients and growth factors) which 

could only be detected in limited vicinity. This is analogous to animal foraging problem 

where animals come to adopt an optimal search strategy to locate food.  

Random walk (RW) theories have been used to model animal displacements to 

explain optimal foraging, predator-prey relationships, etc. For long-times, animal 



 86 

movements can be modeled as uncorrelated RWs with normal diffusion (mean squared 

displacement (MSD), 
  

! 

<
r 
r (t) "

r 
r (0)( )

2
> scaling as 

! 

t
"  where, 

! 

" =1) [27, 76], where   

! 

r 
r (t)  

is the position of the animal at time 

! 

t  and the average (< >) is over all the members of the 

population. Anomalous diffusion arises when 

! 

" #1, with 

! 

" <1 corresponding to sub-

diffusive motion, 

! 

" >1 to super-diffusive motion and ‘ballistic motion’ for the case of 

! 

" = 2 . These relationships were derived in Chapter I.  

The directional persistence in animal movements has been modeled using 

correlated random walks (CRWs) or Lévy Walks (LWs) [77]. CRWs have an 

exponentially decreasing distribution of move step-lengths (distance traveled in one 

sampling time) [78] and the shape of the turn angle distribution between these move step-

lengths controls the directional memory. LWs or flights [79-81] are RWs wherein long 

flights can be separated by shorter jumps. These walks are described by the power-law 

probability distribution function for the flight step-length 

! 

l, given by 

! 

P(l) " l
#µ , 

! 

1< µ < 3 

where 

! 

µ is the ‘Lévy index’. The MSD in LWs always scales as 

! 

t
"  where 

! 

" >1 while a 

CRW eventually loses super-diffusivity reaching normal diffusion once the correlation is 

lost. Lévy motion converges to Brownian motion for 

! 

µ " 3.  

LWs have been frequently used to model animal displacements in ecology. It has 

been shown that the efficiency of animal searches incorporating LWs is higher than those 

using CRWs [77] since the chance of returning to the same place with Lévy flights is less 

[82], optimizing the predator-prey encounter [83]. Simulations also revealed that for 

animal foragers feeding on randomly distributed target sites an inverse square power-law 

distribution of flight lengths in Lévy motion is an optimal solution [82]. Subsequently, 

experimental studies also reported that organisms ranging from birds [84] to mammals 
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[78] adopt Lévy motions with 

! 

µ " 2. LWs have been reported in diverse species from 

marine predators [78], spider monkeys [85], micro-zooplankton [86], soil amoebas [87], 

freshwater Hydra cells [88] and humans [89]; initially, albatrosses were thought to 

exhibit Lévy behavior [84]. 

Recently, however, the biological existence of Lévy flights has been questioned 

and it has been suggested that not all the reported experimental studies follow Lévy 

behavior [90-93]. It has also been shown that combination RWs such as composite 

Brownian walks (CBWs) may have a higher search efficiency than LWs and these 

composite, two-search–mode walks can generate patterns that look similar to LWs [90, 

94]. Of particular note is the recent work showing albatross motion is inconsistent with 

LW behavior [92]. The survival distributions (cumulative frequency of lengths greater 

than a given length) can correctly identify true Lévy behavior. Also, methods where 

weights of two competing models (Lévy versus exponential) are calculated (maximum 

likelihood estimates along with Akaike weight calculations [91, 92] could be useful to 

identify the true model to describe the observed search patterns. 

The persistent random walk model (PRW) [49] (a form of CRW) has often been 

used to model mammalian cell migration. We are not aware of any reported attempt to 

decipher the search pattern of individual mammary epithelial cells in low-cell density 

conditions in the absence of any biasing cues. Does the random motility of eukaryotic, 

mammary epithelial cells follow Lévy statistics or not? Recent studies have indicated that 

the search strategy of Dictyostelium (eukaryotic cell) in the absence of external cues is a 

persistent cell motion [95, 96]. Van Haastert and coworkers also reported that starved 

amoeboid cells exhibit correlated random walk food search strategy by extending their 
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run lengths [97]. The method of bimodal analysis [98] developed as part of this 

dissertation work (Chapter II), segregates the motion of cells into directional or re-

orientation phases based on nucleus tracks of epithelial cells analogous to the segregation 

of amoeboid tracks into runs (based on splitting pseudopods) and turns (based on de novo 

pseudopods) in the recent work by Van Haastert and coworkers [96, 97, 99]. We report 

here that the epithelial cell migration paths on 2-D plastic substrates in the absence of any 

chemo-attractant gradients follow general features of a bimodal correlated random walk 

model (BCRW).  

The BCRW could be thought of as a modified CRW comprising of two 

alternating modes with varying degree of correlations. This is analogous to an 

intermittent search strategy having a fast phase oblivious to the presence of any target and 

a slow responsive search phase to locate the target [94]. Some of the salient 

characteristics of this proposed BCRW are: i) flights follow an exponential distribution; 

ii) move step-lengths comprising the flight are correlated through turn angles randomly 

drawn from a distribution such as a Gaussian distribution and iii) move step-lengths 

within the flight are randomly drawn from an exponential distribution.  

4.3 Materials and methods 

4.3.1Bimodal analysis ([98], Chapter II) to identify directional and re-orientation 

flights 

We use the results of the bimodal analysis [98] method developed by us to analyze the 

random migration data of three cell types derived from the MCF-10A human mammary 

epithelial cells, expressing the pBabe vector alone (pBabe), or the normal (neuN) or 
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transforming (neuT) versions of the rat Her 2/Neu oncogene. The migration of cells was 

followed under random motility conditions without the presence of any externally added 

chemo-attractant gradients, using time-lapse video-microscopy. The details of the cell 

culture routine used, cell motility experiments performed and the bimodal analysis 

technique are elaborated in Chapter II and reference [98]. Briefly, the cells were followed 

for at least two hours in all the experiments and at least five sets of experiments were 

performed. We use the bimodal analysis results of data collected with a resolution of 40x 

(1 pixel ≡ 0.163 µm) and a video-microscopy sampling interval of 0.5 minutes. 

Trajectories of cells that were immotile (less than two cell diameters), adherent to other 

cells, or undergoing mitosis were not considered for the analysis. 

 The bimodal analysis [98] segregates the cellular trajectories of individual 

mammalian cells, specifically MCF-10A cells (human mammary epithelial cells), into 

two alternating modes (directional and re-orientation phases) based on a framework 

similar in spirit to that used in the analysis of bacterial motility [29, 31]. An example 

neuT trajectory with the directional and re-orientation flights is depicted in Fig. 4.1 (top 

panel). A directional flight length is the summation of all the consecutive move step-

lengths during the directional phase and similarly, a re-orientation flight length is the 

summation of a series of all the move step-lengths during the re-orientation phase [77]. 

We define net flight length as the displacement during the given flight. 

4.3.2 Survival frequency distributions 

The survival frequency of flight lengths is defined as the cumulative frequency of flight 

lengths greater than any given threshold. For an exponential distribution 

! 

P(x) = Ae
"#x
,x $ [a,b]; the cumulative distribution function (cdf) (between the bounds 
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! 

a,b) for flight lengths less than any 

! 

x  is given by, 

! 

1" cdf = (A /#)e"#x .  The bounds in 

our data were 

! 

a = 0 and 

! 

b " 20µm . Taking logarithm on both sides, we get, 

! 

ln(1" cdf ) = ln(A /#) " #x         (4.1) 

Equation (4.1) is of the form 

! 

y = mx + c , and hence a plot of 

! 

1" cdf  versus 

! 

x  on log-

linear scale yields a straight line for an exponential distribution. The slope 

! 

m = "# , is the 

inverse of the average value of 

! 

x . A bin size of 1

! 

µm  was used to bin the flights. 

4.3.3 Logarithmic binning of flights 

The presence of Lévy behavior was investigated using the logarithmic binning with 

normalization method (LBN method) described in the Sims et. al. paper [93]. 

Logarithmic binning involves increasing the bin sizes in a geometric sequence so that the 

size of the 

! 

k
th  bin is 

! 

2
k where 

! 

k  was varied from -2,-1,0,1,2,3,... The normalized 

frequency was calculated as the ratio of observed frequency to the product of bin width 

(for a given bin) and number of data points. 

4.3.4 Statistical analysis 

All statistical analysis was done in MATLAB software package (MathWorks, Natick, 

MA). The Lilliefors test (lillietest.m) revealed that the data were non-paramteric. A two-

sample Kolmogorov-Smirnov test (kstest2.m in MATLAB) was used to determine 

statistical significance between the mean net displacements in the directional (

! 

d
d
) and re-

orientation (

! 

d
r
) phases for a given cell type. A p-value <0.05 indicates significant 

difference. Statistical analysis for estimating the fitting parameter for exponential 

distribution (

! 

" ) from the survival frequency distributions along with associated 

! 

r
2  

(correlation coefficient) was performed using regstats.m in MATLAB, which also gives 
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the p-values associated with the slopes using t-test. The mean value reported in Tables 

4.1 and 4.2 for a given cell type is the mean of mean value for each cell (pBabe (

! 

n=15), 

neuN (

! 

n=15), neuT (

! 

n=12)) in the population while error bars are standard deviations in 

the means. 

The PRW model-fit of the experimental data was performed by fitting the 

experimental MSD using the following equation: 

! 

d(t)
2 = 2nµ t " P(1" e

" t /P
)[ ], where 

! 

d(t)
2  is the MSD, 

! 

P  is the persistence time and 

! 

µ the random motility coefficient, for 

a system with 

! 

n  dimensions. The squared relative difference error (RDE) for a given 

model 

! 

i  is defined as, 

! 

(RDE(t))
i

2
= [(MSDexp(t) "MSDi

(t)) /(MSDexp(t))]
2 , where model 

! 

i = PRW ,BCRW and 

! 

MSDexp(t) is the experimental MSD at a given time 

! 

t . 

4.3.5 Maximum likelihood estimates (MLE) and Akaike weights 

We used likelihood estimates and Akaike weights [91, 92] to determine which of the two 

models (exponential or power law) fit our experimental data. The probability density 

functions for the two models and the corresponding maximum likelihood estimate of the 

model parameter are as follows [92, 100]: 

Power law model 

! 

f
1
(x) = Cx"µ

,x # a         (4.2) 

! 

µ =1" n n loga " log x j
j=1

n

#$ 
% 
& ' 

( 
)        (4.3) 

Exponential model: 

! 

f
2
(x) = "e#"(x#a ),x $ a         (4.4) 

! 

" =1 x j n # a
j=1

n

$% & ' 
( 
) 
*          (4.5) 
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One parameter was estimated for each of the two models considered (exponential 

(

! 

" ) and power law (

! 

µ)) using equations 4.3 and 4.5. The equations used for calculating 

Akaike weights are same as the ones detailed in box1 in [92]. Table 4.3 shows the MLE 

of parameters for both models along with the Akaike weights for the flight lengths of the 

three cell types. The exponential model is highly favored in all cases. 

4.3.6 BCRW model and simulations  

The BCRW could be thought of as a modified CRW comprising of two alternating modes 

with varying degree of correlations. This is analogous to an intermittent search strategy 

having a fast phase oblivious of the presence of any target and a slow responsive, search 

phase to locate the target [94]. Some of the salient characteristics of this proposed BCRW 

are: i) flights follow an exponential distribution; ii) move step-lengths comprising the 

flight are correlated through turn angles randomly drawn from a distribution such as a 

Gaussian distribution and iii) move step-lengths within the flight are randomly drawn 

from an exponential distribution.  

4.3.6.1 BCRW simulations 

The PRW fit gives a persistence time of around 10 minutes indicating early loss of super-

diffusivity unlike the experimental mean squared displacement. Hence, we performed 

simulations of the epithelial cell migration based on the proposed BCRW framework to 

investigate the nature of diffusive properties of such a system in a long time limit. In our 

simulations for the BCRW exhibited by epithelial cells, exponential flights were 

generated by sampling an exponential distribution 

! 

P(l) = e
"l /#( ) /#  where l  is flight 

length and 

! 

"  is the mean flight length. In order to generate the flight lengths from the 
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exponential distribution, the inversion method was used, i.e., flight length was generated 

from the exponential distribution by inserting a uniform random number, 10 !! r , into 

the inverse of the cumulative distribution of the exponential function, 

! 

l = "# ln r( ) . In the 

BCRW, the 

! 

"  in the directional (

! 

"
1
) and reorientation (

! 

"
2
) phases can be different. 

Moreover, because the flight length is of finite size, the maximum flight length, 

! 

l
max

, can 

be defined according to the particular cell type and the occurrence of an undesirably long 

flight length can be avoided. We also had a minimum cut-off for the flight length, 

! 

l
1min

and 

! 

l
2min

, for directional and re-orientation flight, respectively. 

The step-lengths in a flight are not straight-line move step-lengths but are 

correlated through a series of turning angles from a distribution such as the Gaussian 

distribution ( ) ( )( ) !""### 22exp
22

0$$=P  where !  is the turning angle (i.e., 

deviation from the previous direction), 
0

!  the mean turning angle (in our BCRW 

simulation 0
0
=! ), and !  the standard deviation of the distribution. Standard deviation, 

! , in the Gaussian distribution function determines directionality or persistence of step 

movement, i.e., smaller !  makes the Gaussian distribution narrow and the path more 

persistent. In the BCRW, two standard deviation values, 
1

!  and 
2

! , were used in 

directional and re-orientation flights, respectively. In addition, a correlation between two 

neighboring directional phases is described by using the Gaussian distribution of turning 

angles between two directional flights with a standard deviation, 
3

! . 

The step-lengths, x , within the flights are randomly drawn from an exponential 

distribution 

! 

P(x) = e
"x /#( ) /#  where !  is the mean move step-length in flights.  In order to 

generate the move step-lengths from the exponential distribution, the inversion method 
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was used as before. To test the validity of the BCRW model, the experimental mean 

squared displacement of the cells is compared with that obtained from the simulation. We 

find that all the individual step lengths as well as flight lengths in the cellular tracks are 

exponentially distributed and we use this information to perform a simulation based on 

proposed BCRW framework. 

 The turn angles between the individual steps in each flight type is associated with 

certain degree of persistence or ‘

! 

" ’ parameter associated with a wrapped Cauchy 

distribution [77]. The turn angle distribution within the directional flights is narrow 

compared to the spread out re-orientation flight angle distributions as illustrated later on 

in the Chapter. This implies a higher value of 

! 

"  (more persistence) associated with 

directional flights. We find that a Gaussian distribution provided a better fit to the angle 

distributions compared to a wrapped Cauchy distribution. A Gaussian distribution has 

been used earlier to fit the turning angles [101, 102]. We related the standard deviation of 

the Gaussian distribution to degree of persistence, a higher value indicating lesser 

persistence. The neuT cell type was found to be more persistent as the turn angle 

distribution between the directional flights has the least standard deviation compared to 

pBabes and neuNs.  The standard deviation of turn angle distribution in a directional 

flight is smaller than that of a re-orientation flight. This was incorporated in the BCRW 

simulations. 

4.3.6.2 Simulation parameters 

In order to obtain mean squared displacement of cells from a BCRW simulation, we 

generated 100 independent trajectories during simulated 2500 minutes in length, which is 

not feasible in an experimental situation, however this gives an important insight into the 
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characteristics of cell motility. Parameter values used in the BCRW simulation of neuN 

cell type are as follows:

! 

"
1

= 4.39µm , 

! 

"
2

= 4.58µm , 

! 

l
max

=16µm , 

! 

l
1min

= 2µm , 

ml µ5.0
min2

=  08.0
1
=! , 75.2

2
=! , 5.0

3
=! , and mµ! 53.0= . 

4.4 Results and discussions 

We segregated epithelial cell migration tracks into alternating directional and re-

orientation modes using our bimodal analysis method [98]. Some example trajectories 

with the directional and re-orientation flights flagged are depicted in Fig. 4.1 (top: neuT 

and bottom: pBabe cell type). The direction changes between consecutive directional 

flights in epithelial cell random migration was found to be non-instantaneous and the cell 

was found to spend considerable time in the re-orientation phase. The fundamental idea 

of a BCRW is applicable for epithelial cell migration, as we have two types of alternating 

flights (directional and re-orientation flights) with a Gaussian distribution for the turn 

angles within each flight type and an additional one between two neighboring directional 

flights. We analyzed the random migration data of MCF-10A pBabe, neuN and neuT 

human mammary epithelial cells with respect to the distribution of flight lengths (both 

total distances, ‘flight’ and net displacement, ‘net flights’), within the above-described 

general framework of a BCRW to test its applicability to mammalian cell migration.  

We had earlier reported that the mean 

! 

d / t  ratios (ratio of displacement to distance 

for a given flight) in directional phases are higher than those of re-orientation phases 

[98]. Specifically, we find that the mean displacements (net flight length) during the 

directional phases (

! 

d
d
) are higher than those during re-orientation phases (

! 

d
r
) (Table 1) 

while the mean total distance covered in directional phase (

! 

t
d
) is not statistically different 

from that during re-orientation phase (

! 

t
r
) (Table 4.2). The trends in the net displacements 
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are also implicated in the box plot of the displacements during the different flights for the 

three cell types (pBabe (

! 

n=15), neuN (

! 

n=15), neuT (

! 

n=12)) (Fig. 4.2). 

In order to test the presence of any Lévy statistics in the flight lengths, we used 

three different methods to analyze the distribution of flights. The first method uses the 

cumulative distribution/rank frequency plots (flight lengths greater than a given 

threshold) also referred to as survival distribution [90, 100]. We use the information that 

the survival distribution would be a straight line on a log-linear scale (probability versus 

flight length) for an exponential distribution while a true power-law distributed data 

would be revealed as a straight line on a log-log scale. Likewise, we tested the survival 

distributions of directional and re-orientation flight distances (referred to as ‘flight 

length’) and displacements (referred to as ‘net flight length’) for the three cell types.  

Intriguingly, we found that the flight length survival distributions (both directional and 

re-orientation) (Fig. 4.3a, left panel) for all cell types on a log-linear scale fitted well with 

a straight line  (statistics, Table 4.4). Similarly, the net flight lengths (Fig. 4.3b, right 

panel) also exhibited similar trends (statistics, Table 4.4). This revealed that the flight 

lengths/net flight lengths of individual human mammary epithelial cells in random 

motility assays deprived of any directional bias follow exponential probability. This is in 

contrast to the recent report of foraging behavior of large animals such as sharks as a 

whole organism [78] which showed Lévy behavior. Our result is, however, consistent 

with the search strategy in Dictyostelium that was reported to be lacking any Lévy 

statistics [95, 97] and with the revised results on motion of albatrosses [92]. This may 

indicate the differences in movement patterns of individual eukaryotic cells from those of 

the organism (as a whole) that comprise these cells. Motile flagellated prokaryotic 
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bacterial cells have Poisson distributed runtimes [29] and, given the essentially constant 

speed with which the bacterial cells move, the run length distribution of bacteria can also 

be expected to be exponentially distributed. 

The slope, 

! 

"  of the straight-line fits (Table 4.4) on the log-linear survival 

distributions represents the inverse of the mean flight length. A higher 

! 

"  would indicate 

a smaller mean flight length. The 

! 

"  value was found to be higher for the re-orientation 

net flight compared to the directional net flight consistent with the results in Table 4.1, 

giving confidence in the straight-line fits. 

We also used logarithmic binning with normalization method (LBN [93]) to 

analyze 1140 flights (directional and re-orientation, identified using bimodal analysis 

[98]) from a total of 42 cells of 3 cell types. The LBN method minimizes errors in 

identifying Lévy flight behavior, as simple non-normalized frequency linear binning can 

give erroneous results wrongly identifying Brownian RWs as LWs [90, 93].  As expected 

from the results from survival distributions, we do not see the signature power-law linear 

relationship on log-log scale for both flights (Fig. 4.4) and net flights (Fig. 4.5). An 

exponential distribution fitted to the 

! 

"  (obtained from survival distributions in Figs. 4.3a 

and b), is indicated by the bold, black curve in Figs. 4.4 and 4.5. One can see that the 

experimental data (filled circles) clearly fit the exponential distribution much better than 

a LW model. We also used likelihood estimates and Akaike weights [91, 92] to determine 

which of the two models (exponential or power law) fit our experimental data (Table 

4.3). The exponential model was favored having higher Akaike weights. 

The BCRW model for the epithelial cells differs from a simple CRW such as the 

often-used PRW model for mammalian cell migration. The PRW model equation (see 
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methods) is based on a velocity-jump process with instantaneous relaxation period [40] 

which would be true for bacterial migration. Instead in the BCRW, the re-orientation 

phase acts as a relaxation period with finite time and has a correlation much smaller than 

that present in the directional phase. The re-orientation phase is not completely diffusive 

and the angle changes during this phase are non-uniform. A cell is not stationary during 

the re-orientation phase and the total distance traveled during this phase is similar to that 

traveled during directional phase (Table 4.2). But the net displacement (Table 4.1) is 

higher in the directional phase compared to the re-orientation phase giving rise to higher 

directionality ratio in this phase [98]. We performed a simulation based on the proposed 

BCRW to predict the diffusive properties of such a RW and compare with the 

experimental cellular tracks and also a simple CRW using the PRW model-fit of the 

experimental data. 

By comparison to the PRW model, the BCRW model can pinpoint the factor 

controlling the directional persistence, either the mean flight lengths (

! 

1/"
mean

) or 

correlations in the turn angle distribution [77]. The migratory differences in the cell types 

may exist in differences in the correlations within the different flight types and between 

the directional flights. The neuT cell type was found to be more persistent and pBabe less 

[98]. The angle change distributions within the directional and re-orientation flights (Fig. 

4.6) for the three cell types confirm a high degree of correlation within directional flights. 

As the three cell types have similar value of the exponent 

! 

" , for both the flight types and 

similar within-flight turn angle distribution; it is the turn angle distribution between the 

directional flights that seems to control the persistence behavior in a cell type. 
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The 2-hour experimental MSD plot of these cells has a slope greater than 1 

indicating prolonged super-diffusive motion (Fig. 2.15 in Chapter II and Fig. 12 in 

reference [98]). This further indicates that the probabilistic migration strategy adopted by 

the cells has super-diffusive properties that cannot be attributed to a simple CRW. A fit of 

the experimental MSD with a PRW model gives a persistence time of around 10 minutes 

by creating an early transition to diffusive regime (Fig. 4.7). We find through simulations 

parameterized by our experiments (neuN cell type), that the BCRW model has super-

diffusive properties around experimental time-scale but converges to normal diffusive 

regime in long-time limit. A simulated composite bimodal CRW incorporating 

directional and re-orientation phases through the BCRW framework recreates the 

experimental MSD trend where super-diffusive behavior is maintained over the observed 

experimental time-scale. We compared the squared relative difference error (see 

statistical methods) from the PRW model-fit and our BCRW model fit (see inset Fig. 

4.7). The BCRW model does a better job in fitting the experimental MSD in the 

transition regime (10 to 60 minutes) compared to the PRW. We also computed the 

random motility coefficients of the MCF-10A panel of cell lines from the diffusive 

regime of the MSD trends. Similar to the results from cellular dynamics simulations 

(discussed in previous Chapter), we find that the neuT cells have higher random motility 

coefficient (14.5 

! 

µm2
/min ) compared to the pBabe cells (8.7 

! 

µm2
/min ) along with the 

neuN cells having a value of 12 

! 

µm2
/min . 

4.5 Conclusions 

The search strategy of epithelial cells in random migration conditions is found to be an 

intermittent search process (ballistic motile regions (directional) followed by less-
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persistent search periods (re-orientation)). We find no indication of power law behavior 

in the flight lengths in these regions for the single cell random migration data. The 

BCRW model provides a new conceptual framework for improved modeling of epithelial 

cell migration. Our results show that mammary epithelial cells exhibit a bimodal CRW. 

The BCRW framework model was found to fit the experimental data better compared to a 

simple CRW modeled using the PRW model. This model could predict the observed 

prolonged super-diffusivity in experimental trajectories, and will form the basis for more 

realistic simulations of mammalian cell motility with no prior assumptions regarding the 

diffusive properties of these cells.  
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Table 4.1: Statistical significance to compare between the net distances traveled in the directional (

! 

d
d
) and re-orientation (

! 

d
r
) phases 

using the nonparametric, two-sample Kolmogorov-Smirnov test in MATLAB (kstest2.m). A p-value <0.05 indicates significant 
difference. A similar analysis was repeated for total distances traveled during the directional flights (

! 

t
d
) and re-orientation flights (

! 

t
r
) 

and is shown in Table 2. 
 

Cell type  
pBabe neuN neuT 

! 

d
d

1,3 (micron) 3.09±1.08 3.3±1.33 3.92±1.9 

! 

d
r

2,3 (micron) 2.79±1.22 2.43±0.97 2.85±0.77 
p-values (

! 

n
4) 0.026 (214) 0.001 (187) 0.0326 (169) 

 

1 Mean net distance traveled during directional phase 

2 Mean net distance traveled during re-orientation phase 

3 Mean value reported is the mean of mean values for each cell (pBabe (

! 

n=15), neuN (

! 

n=15), neuT (

! 

n=12)) while error bars are 

standard deviation in the means 

4 Sample size for the two groups, which is the number of directional or re-orientation phases 
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Table 4.2: Statistical significance to compare between the average total distances traveled in the directional (

! 

t
d
) and re-orientation (

! 

t
r
) 

phases using the nonparametric, two-sample Kolmogorov-Smirnov test in MATLAB (kstest2.m). A p-value <0.05 indicates 
significant difference. 
 

Cell type  
pBabe neuN neuT 

! 

t
d

1,3 (micron) 3.43±1.24 3.78±1.52 4.37±1.99 

! 

t
r

2,3 (micron) 4.62±1.73 5.76±4.07 4.86±1.73 
p-values (

! 

n
4) 0.158 (214) 0.027 (187) 0.417 (169) 

 

1 Mean total distance traveled during directional phase 

2 Mean total distance traveled during re-orientation phase 

3 Mean value reported is the mean of mean values for each cell (pBabe (

! 

n=15), neuN (

! 

n=15), neuT (

! 

n=12)) while error bars are 

standard deviation in the means 

4 Sample size for the two groups, which is the number of directional or re-orientation phases 
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Table 4.3: Maximum likelihood estimates (MLE) of 

! 

"  (parameter for exponential model) and 

! 

µ (parameter for power-law model) 
using maximum likelihood method and Akaike weights for each model for the flight lengths data of the three cell types. The 
exponential model is highly favored in all cases as indicated by higher Akaike weights. 
 
 

MLE for model parameter Akaike weights Cell type (mode) 

! 

"  

! 

µ 

! 

n  Power law Exponential 

pBabe (Directional) 0.322 1.5 214 0 1 

pBabe (Re-orientation) 0.237 1.468 214 0 1 
neuN (Directional) 0.289 1.485 187 0 1 
neuN (Re-orientation) 0.198 1.453 187 0 1 
neuT (Directional) 0.237 1.455 169 0 1 
neuT (Re-orientation) 0.219 1.452 169 0 1 
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Table 4.4: Statistical analysis for estimating the fitting parameter for exponential distribution (

! 

" ) from the survival frequency 
distributions (regstats.m in MATLAB) with

! 

r
2  (correlation coefficient) and p-value associated with the slope using t-test indicated.  

 
 

Flights Net flights 
Cell type (mode) 

Slope (-

! 

" ) 

! 

r
2  

! 

p  value 

! 

n  Slope (-

! 

" ) 

! 

r
2  

! 

p  value 

! 

n  
pBabe (Directional) -0.327 0.993 3.37e-13 214 -0.372 0.978 8.13e-09 214 

pBabe (Re-orientation) -0.221 0.980 5.53e-16 214 -0.387 0.996 1.67e-12 214 
neuN (Directional) -0.255 0.984 3.70e-12 187 -0.293 0.979 1.17e-10 187 

neuN (Re-orientation) -0.187 0.989 3.49e-17 187 -0.437 0.991 1.75e-09 187 
neuT (Directional) -0.249 0.996 1.29e-17 169 -0.239 0.990 1.03e-16 169 

neuT (Re-orientation) -0.208 0.997 3.35e-19 169 -0.372 0.956 3.83e-08 169 
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Figure 4.1: Flagging directional and re-orientation flights using bimodal analysis [98].An 
experimental 2-hour neuT (top) and pBabe (bottom) cell trajectory with the directional 
and re-orientation flights flagged using bimodal analysis. The cell track starts at origin 
(0,0) with the start of a directional flight indicated by an open circle and the start of re-
orientation denoted by a filled triangle. A directional flight length is the summation of all 
the consecutive move step-lengths during the directional phase and similarly, a re-
orientation flight length is the summation of a series of all the move step-lengths during 
the re-orientation phase. The net flight length (directional/re-orientation) refers to the net 
displacement from start to end during the flight. 
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Figure 4.2: Net flight length during the directional and re-orientation phases for the three 
cell types. Box plots of the mean net flight lengths during the directional (

! 

d
d
) and re-

orientation (

! 

d
r
) phases for the three cell types (pBabe (

! 

n=15), neuN (

! 

n=15), neuT 
(

! 

n=12)). The distance traversed in directional flights is more than during re-orientation 
flights (statistical analysis in Table 4.1). 
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Figure 4.3: Survival frequency (log-linear) plots for the three cell types in different 
modes. 4.3a (left panel), the flight length survival frequency plots, filled circles 
(directional mode) and open circles (re-orientation mode). 4.3b (right panel), the net 
flight length survival frequency plots, filled circles (directional mode) and open circles 
(re-orientation mode). The straight-line behavior on the log-linear plots (survival 
frequency on log scale versus the lengths (flight/net flight) on linear scale) is indicative of 
exponential distribution of the lengths. The slopes (

! 

"#  for exponential distribution) along 
with statistical analysis are shown in Table 4.4. 
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Figure 4.4: Log-log frequency plots using the logarithmic binning with normalization 
method along with a fitted exponential function. The logarithmically binned flight length 
distributions on log-log scale for the three cell types. The directional flight lengths are 
shown in the left panel while re-orientation flight lengths are on the right. An exponential 
distribution fitted to the 

! 

"  (obtained from corresponding survival distribution) is shown 
in bold curve in black. The fitted exponential distribution is in good agreement with the 
experimental data points. 
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Figure 4.5: Log-log frequency plots using the logarithmic binning with normalization 
method along with a fitted exponential function. The logarithmically binned net flight 
length distributions on log-log scale for the three cell types. Directional net flights lengths 
are shown in the left panel while re-orientation net flight lengths are on the right. An 
exponential distribution fitted to the 

! 

"  (obtained from corresponding survival 
distribution) is shown in bold curve in black. The fitted exponential distribution is in 
good agreement with the experimental data points. 
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Figure 4.6: Probability distributions of the turn angles within the directional and re-
orientation flights. Top, pBabe, middle, neuN and bottom, neuT cells. The solid line 
shows the turn angle distribution during directional flights while the broken lines during 
re-orientation flight. The directional flights display higher persistence compared to the re-
orientation flights that have a more flatter turn angle distribution. 
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Figure 4.7: Super-diffusive behavior in mean squared displacement trends. Simulated 
mean squared displacement versus time from a simulation based on BCRW model (blue) 
compared to the experimental neuN data (red). The bimodal correlation contributes to 
prolonged super-diffusivity (high persistence) observed in epithelial cells under 
consideration (neuN cell type). The “*” indicates transition to the diffusive regime in the 
BCRW model. A fit of the experimental data using a PRW model (green) has been 
overlaid. Inset: Comparison of BCRW and PRW model predictions with the experimental 
mean squared displacement. The squared relative difference error (difference normalized 
using the experimental mean squared displacement at a given time) for predictions from 
BCRW and PRW model. The BCRW model predictions are in good agreement with the 
experiments. 
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CHAPTER V 

 

A GENERAL SCALING LAW GOVERNING NON-DIRECTED AND 

CHEMOTACTIC CELL MOTILITY 

 

5.1 Abstract 

A general scaling law describing the eukaryotic cell motility in eclectic range of cell lines 

namely, Dictyostelium, human mammary epithelial, fibrosarcoma and neutrophils is 

shown here. We used our bimodal analysis technique to analyze non-directed and 

chemotactic motility of four different cell lines from two species.  A scaling relationship 

was found between the mean directional mode time and the mean re-orientation mode 

time for all the different types of cells tested under different experimental conditions and 

these mean mode times were revealed to be inversely related. The emergence of this 

general relationship indicates the possibility of unifying the different multi-scale 

processes giving rise to the entire range of eukaryotic cell motility by a general, cellular-

scale framework. 

5.2 Background 

The importance of eukaryotic cell motility, both in normal physiological functions such 

as embryogenesis as well as pathological conditions, was illustrated in the introductory 

Chapter I. It was discussed how, in spite of obvious cell-level differences amongst motile 

eukaryotic cells reflected in cell morphology, persistence, and cell speed, several 

similarities exist in sub-cellular processes giving rise to motility.  At the sub-cellular 
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level, cell motility is initiated by F-actin based protrusions resulting in structures such as 

pseudopodia or lamellipodia in cells.  Even at the cellular level, all the different types of 

cells share similarities. They might be moving in fairly straight persistent paths for 

sometimes followed by moving in random fashion at other times. This behavior of 

persistent motion interspersed with cellular turns prompted us to develop the bimodal 

analysis methodology described in detail in Chapter II. We also know that cells continue 

to be motile with or without the presence of any external gradients and the directional and 

re-orientation modes exist in both non-directed (random migration, absence of any 

external gradient) and during directed (chemotactic, presence of external gradients) 

migration. Hence, there is a possibility of the existence of a unifying principle explaining 

this diversity in eukaryotic cell motility leading to the conservation of directional 

persistence and re-orientations in different cell types. The two forms of motility (non-

directed[49] and chemotaxis [55]) have been often studied separately; however, we use 

bimodal analysis in this work to provide a common framework to study different forms of 

motility simultaneously and determine some shared parameters that modulate the 

emergent form of motility. Unlike the persistent random walk model (PRW), in bimodal 

analysis the directional and re-orientation modes are defined as separate processes and 

the time spent in these modes can be estimated individually. 

 In order to arrive at any conserved principle describing the full range of 

Dictyostelium motility patterns in different stages, the data from non-directed (so called 

‘vegetative’ and ‘developed’ states, see methods) and chemotactic motility (in pipette and 

microfluidic systems) of wt (wild type) cells migrating on untreated glass surfaces was 

analyzed using bimodal analysis. Additionally, we also applied bimodal analysis to 17 
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different experimental conditions for Dictyostelium comprising of either a genetic mutant 

(cells lacking a signal transduction molecule considered to be important for chemotaxis) 

or an established regulator of cellular cytoskeleton (see Table 5.1). To compare between 

different cell types from a different species, we further compared the Dictyostelium 

results from bimodal analysis to that of human mammary epithelial cells, neutrophils and 

fibrosarcoma cells.   The work presented in this Chapter was a collaborative effort with 

Scott Gruver (Chung lab, Department of Pharmacology). All the Dictyostelium data 

presented here came from Chung lab (Department of Pharmacology). The mammary 

epithelial data is the same as that described previously in Chapter II. The fibrosarcoma 

data was collected in Webb lab (Department of Biological Sciences).  The neutrophils 

were a kind gift from Richmond lab (Department of Cancer Biology). The author 

performed all the bimodal analysis. 

5.3 Materials and methods 

5.3.1 Cell culture 

HL5 medium supplemented with glucose and antibiotics was used to culture 

Dictyostelium cells, axenically. Cells grown on Petri dishes were resuspended and grown 

in suspension culture for all the assays with these cells. Particularly, for ‘vegetative’ non-

directed motility, cells in an overnight suspension culture were transferred   to 

microfluidic channels or glass bottom dishes for further time-lapse imaging. For 

developed non-directed and directed assays, cells were cultured in suspension for three 

days. 1.5 x 108 cells were washed three times and re-suspended in 30mL of Na/K 

phosphate buffer. cAMP (cyclic adenosine monophosphate) (either 12.5 nM or 125 nM)   
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was then delivered to the cells every 6 minutes for 5 hours . Mutant Dictyostelium cells 

were obtained from the Dictyostelium stock center and are listed in Table 5.1. The culture 

of MCF-10A (mammary epithelial) cells and HL-60 (neutrophils) cells is described in 

Chapter II or [98]  and [103],  respectively. HT-1080 (fibrosarcoma) cells were cultured 

in Dulbecco's Modified Eagle’s Medium supplemented with 10% FBS. 

5.3.2 Cell motility assays and cell tracking 

The imaging of Dictyostelium cells and the details of the pipette and microfluidic assays 

are described in the work by Gruver et al., in [104]. All the assays in the microfluidic 

device used the same flow rate as in [104]. Except for gα2- and aca- mutants (allowed to 

develop for longer periods), for all wt cells and all other mutants, developed non-directed 

and micropipette assays were performed after five hours of pulsing with cAMP. All time-

lapse images for Dictyostelium were obtained every three seconds using 20x DIC optics 

and MetaMorph. The cell displacements were obtained using the “track objects” function 

in MetaMorph. Cells were tracked for a minimum of 10 minutes but were often tracked 

for up to one hour. Blebbistatin (BLEBB) was used at a concentration of 6μM and 

nocodazole (NOCO) at a concentration of 15μM. 

For neutrophils (HL-60) substrates were pre-treated with 100μg/mL fibronectin 

for one hour. All experiments used 20x DIC optics and were imaged every 5 seconds for 

at least 20 minutes. Cell centroids were tracked with MetaMorph “track objects” 

function. The motility assays for MCF-10A cells has been previously described in 

Chapter II and [98]. Briefly, cells were imaged every 0.5 minutes using 40x phase 

contrast optics and cells were manually tracked using “track points” MetaMorph option. 

Fibrosarcoma cells (HT-1080) in suspension were plated on culture dishes pre-treated 
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with 2.5μg/mL fibronectin. Images were obtained using a 10x phase contrast objective 

every 2 minutes. Cell centroids were manually tracked using the “Measure XYZ 

distance” function in MetaMorph. Cells were tracked for a period of 4 to 6 hours. 

5.3.3 Bimodal analysis 

Bimodal analysis, which segregates a cell path into alternating persistent and re-

orientation modes, is fully described in Chapter II and [98]. Briefly, the first step in 

isolating directional and re-orientation modes requires the determination of the 

instantaneous direction change, φ, for every time point, t. The values of φ(t) are then 

compared to an empirically defined cut-off angle,  φcut, with time points with values of 

φ(t) < φcut comprising directional mode. A second criteria was then applied, requiring at 

least three successive time points with φ(t) < φcut before defining a directional mode. For 

re-orientation modes, a criteria of φ(t) > φcut for two successive modes was used. In the 

present work, the value for φcut was set to 45˚. The turn angle, θ, is computed as the angle 

between two successive directional modes. The overall direction of a directional mode 

was determined using a multi-point linear regression of all the data points in that 

particular mode. 

5.3.4 Statistical analysis 

All statistical analysis was done in MATLAB software package (MathWorks, Natick, 

MA). The Lilliefors test (lillietest.m) was used to test if the data were parametric or non-

parametric. A two-sample Kolmogorov-Smirnov test (kstest2.m in MATLAB) was used 

to compare between the two cell-types if the data were non-parametric; otherwise the t-

test (ttest2.m in MATLAB) was used. A p-value <0.05 indicates significant differences. 
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Slopes (scaling exponents ! ) were compared by ANCOVA (function aoctool.m in 

MATLAB). The comparison p-value (shown in Table 5.1, estimated by ANCOVA) was 

computed by the pair-wise comparisons of slope for each mutant/treatment compared to 

the estimate for wt. These comparisons were done via a two-tailed test and hence at a 5% 

significance level, values in the range 0.025 < p < 0.975 were considered significant. 

5.4 Results and discussions 

A conceptual model of eukaryotic single cell bimodal motility illustrating the switching 

between the directional and re-orientation modes is shown in Fig. 5.1. The ‘polarity 

tendencies’ in the cell could arise due to the different lamellae on the cell circumference 

for an epithelial cell (pseudopods for a Dictyostelium). The directional mode would then 

correspond to a mode with a prominent leading edge resulting in a highly polarized 

morphology while in the re-orientation mode, a cell could be speculated to possess 

several competing polarities leading to a net reduction in resulting polarity.  

 An example wt Dictyostelium cell track (in the absence of any external bias) with 

the directional and re-orientation modes flagged using bimodal analysis is shown in Fig. 

5.2. The beginning of the re-orientation mode is indicated by a red triangle while its end 

by a green circle. Using bimodal analysis, we estimated the mean mode times (spent in 

the directional and re-orientation modes) by wt Dictyostelium in six different motility 

assays (vegetative, developed (three different cAMP concentrations), pipette chemotaxis 

and microfluidic chemotaxis). A plot of mean directional mode time, 

! 

t
d

, of the wt cells 

(

! 

n=446) versus the mean re-orientation mode time, 

! 

t
r

, of the cells revealed that the two 

are inversely correlated as illustrated in Fig. 5.3. This suggests that an increase in the 

directional mode time is achieved by decreasing the time spent in re-orientation modes, 
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indicating that the molecular processes governing the two modes are linked. A log-log 

plot of the data shown in Fig. 5.3 linearizes this non-linear relationship, revealing the 

scaling relationship shown in Fig. 5.3 inset. As discussed in Chapter II, the criteria for 

locating directional modes constraints the smallest directional mode time possible to 

three successive frames. This bias results in a slight non-linearity (Fig. 5.3, inset) for 

smaller values of 

! 

t
d

 for which corresponding 

! 

t
r

 tends to be overestimated by the 

analysis. Nonetheless, this inverse scaling relationship evident on the log-log scale 

enables us to conveniently describe the non-directed to chemotactic Dictyostelium 

motility as well as describing the cell-to-cell variability by means of a common scaling 

exponent of 

! 

" # $1.11± 0.09  (estimate 

! 

±  standard error) (Fig. 5.3, inset). The inverse 

scaling relationship obtained here is exactly opposite to the positive scaling relationship 

between search and motion phases (analogous to our re-orientation and directional 

modes, respectively) reported in animal foraging [105] which is an example of other 

scaling relationships possible.  We compared the mean mode times for non-directed 

(vegetative and developed assays) to chemotactic (pipette and microfluidic assays) 

motility of wt Dictyostelium cells in Fig. 5.4 on a log-log scale and fitted a line with slope 

given by 

! 

" # $1.11 (estimated from the entire wt Dictyostelium cell population). It can be 

seen that scaling exponent of 

! 

" # $1.11 could describe the entire range of wt 

Dictyostelium motility in different assays (Fig. 5.4). As the directional persistence in the 

cells increases going from non-directed to chemotactic motility, the position on the line in 

Fig. 5.4 slides towards the right, indicating decrease in 

! 

t
r

 for an increase in 

! 

t
d

. This is 

consistent with previous findings where developed Dictyostelium have been reported to 

move in more coordinated fashion compared to those in vegetative state [106] and also, 
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that wt cells performed efficient chemotaxis in microfluidic chambers compared to that in 

pipette assay [104]. 

 In Figs. 5.5a, b, and c, we compared the directional mode time, re-orientation 

mode time and turn angle distributions for the wt Dictyostelium cell population in four 

different assays, namely, vegetative non-directed, developed non-directed, pipette 

chemotaxis and microfluidic chemotaxis. We find that the directional and re-orientation 

mode time distributions for the different assays are qualitatively the same and are 

exponentially distributed indicative of a Poisson process with a constant rate of re-

orientation. However, there are quantitative differences between different assays; for 

directional mode time (Fig. 5.5a), there is an increase in the mean mode time from the 

non-directed vegetative system to chemotaxis microfluidic system. The trend is reversed 

for re-orientation mode time (Fig. 5.5b), with a decrease in mean mode time from the 

non-directed to chemotaxis systems. This suggests that the inherent mechanism that lets 

the cells switch between the directional and re-orientation modes is same for both non-

directed and chemotaxis, the differences being in the quantitative balance between these 

two modes. A comparison of the turn angle (angle change between successive directional 

modes) distribution for the Dictyostelium cells in different assays reveals that the cells are 

inherently persistent with all cells having a peak around zero degrees. Nonetheless, the 

high level of persistence in chemotaxis compared to non-directed motility is reflected in 

the spread (standard deviation) of the turn angle distributions. It can be seen that the non-

directed motility has more broadly dispersed distributions with smaller peaks compared 

to chemotaxis assays. 
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In an attempt to study the effect of different mutations or pharmacological 

treatment on the emergent scaling relationship, we looked into the relationship between 

the mean mode times for 17 different Dictyostelium genetic mutants (cells lacking signal 

transductions molecules or established cell cytoskeletal regulators) or cells with 

pharmacological inhibitors in vegetative non-directed, developed non-directed and the 

pipette chemotaxis assays. We found that all the 17 perturbations retained the scaling 

relationship between the mean modes times suggesting that the two alternating modes are 

a robust cellular property. Table 5.1 shows the sample sizes (n) for each perturbation 

along with the emergent scaling exponent, 

! 

"  

! 

±  standard error. A comparison of the 

! 

"  

obtained for a particular mutation/treatment value to that of wt cells was made using 

ANCOVA to test for significant difference in the scaling exponent. The associated p-

values of such a comparison are indicated in Table 5.1. Out of 17, we could identify only 

four perturbations (p>0.975, namely loss of gsk3, pten or wasp and treatment with 

blebbistatin) where the scaling exponent was found to be statistically different from the 

wt cells. 

 We also looked into the existence of similar scaling relationship in the non-

directed motility of three other cell types, namely, human mammary epithelial cells 

expressing two forms of Her-2 oncogene, human neutrophils and human fibrosracoma 

cells. We found the similar inverse scaling relationship between 

! 

t
r

 and 

! 

t
d

 as found in 

Dictyostelium (Fig. 5.6). The differences in the cell types in terms of the time scales of 

the molecular processes responsible for producing motility and mean cell speeds is 

reflected in the different mean mode times obtained. In spite of these differences, all 

these three cell lines were found to possess a scaling exponent, 

! 

" , similar to that found 
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for Dictyostelium (ANCOVA was used for statistical comparison and no significant 

differences were found in the slopes of the three human cell lines). A common scaling 

exponent of 

! 

" # $0.94 ± 0.11was found to describe the four eclectic eukaryotic cell lines; 

implying a common scaling law of 

! 

tr ~ t p
"0.94

 to describe these eukaryotic cells. 

5.5 Conclusions 

In summary, a general scaling law describing the relationship between directional and re-

orientation modes in diverse cell lines and genetic mutations was shown indicating the 

presence of a common mechanism that regulates persistence in eukaryotic cells. Since the 

same scaling relationship could describe both non-directed and chemotactic motility, it 

can be speculated that the two forms of motility evolve from similar molecular processes, 

chemotaxis being a more specialized form of non-directed motility resulting from the 

formation of more directional protrusions triggered by chemottractant induced signal 

transduction. 
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Figure 5.1: A conceptual model for bimodal motility in a eukaryotic cell (courtesy Scott 
Gruver, Department of Pharmacology). This figure illustrates the switching of cell 
between re-orientation and directional modes with time (t1, t2 and so on).  
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Figure 5.2: Application of bimodal analysis to a wt Dictyostelium cell exhibiting non-
directed motility, i.e., the absence of any external bias. The circle indicates start of a 
directional mode and the end of this mode (beginning of re-orientation mode) is indicated 
by a triangle. The cell was imaged every 3 second. 
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Figure 5.3: The existence of a scaling law between the mean directional mode (

! 

t
d

) and 
mean reorientation mode (

! 

t
r

) times for wt Dictyostelium cells tracks from six different 
motility assays covering the random (non-directed) and chemotactic (directed) 
Dictyostelium cell motility. The non-linear relationship between the mean mode times is 
represented in the figure while the inset plot linearizes this into a scaling law with an 
exponent, 

! 

" # $1.11± 0.09 . 
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Figure 5.4: The emergent scaling law to describe the entire range of Dictyostelium 
motility, from non-directed to chemotactic cell motility. Each data point represents the 
average over the entire population in the given motility assay. The scaling exponent 
derived in Fig. 5.3 (inset) was used to fit the data with a line, shown in black. 
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Figure 5.5: The probability distributions of the time spent in directional modes, 

! 

t
d
 (top), 

re-orientation modes, 

! 

t
r
 (middle) and turn angle, 

! 

"  between the directional modes. 
 



 127 

-1

-0.5

0

0.5

1

1.5

2

-1 -0.5 0 0.5 1 1.5

 

Mammary epithelial
Neutrophil
Fibrosarcoma
Dictyostelium

 

Figure 5.6: A general scaling mechanism (obtained from bimodal analysis) describing the 
motility of four different cell types, namely, dictyostelium, human mammary epithelial, 
fibrosarcoma and neutrophils. The solid black lines indicate linear fits for each data set. A 
common scaling equation of 

! 

tr ~ t p
"0.94

was found to describe the motility of these cell 
lines. 
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Table 5.1: The scaling exponent, 

! 

" , for different cell lines (

! 

n= cell number) and genetic 
mutations or pharmacological treatments. The p-values indicate comparison between 
scaling exponent for wt Dictyostelium cells and a perturbation via ANCOVA. 
 
Cell line  n  β  s.e.1 p  
Dictyostelium      
wt  446  -1.11  0.09  - 
aca −  40  -1.20  0.40  0.590  
erk−  34  -1.25  0.41  0.630  
gα2−  39  -1.22  0.39  0.614  
gca/sga−  37  -1.65  0.28  0.973  
gsk3−  34  -1.80  0.23  0.998  
ins6pk−  41  -1.12  0.33  0.515  
pi3k1/2−  286  -1.10  0.10  0.483  
pka − cat−  26  -1.22  0.36  0.618  
pldA/C−  16  -1.61  0.37  0.910  
pldB−  48  -1.17  0.33  0.580  
pten−  249  -1.85  0.12  0.999  
wt+BLEBB2  38  -1.92  0.36  0.988  
wt+NOCO3 54  -0.82  0.20  0.067  
racC−  54  -0.91  0.17  0.124  
scar −  38  -1.31  0.36  0.710  
vasp −  60  -1.16  0.24  0.581  
waspTK  35  -2.14  0.34  0.999  
Human Cells      
Neutrophils (HL-60)  39  -0.82  0.19  NA4  
Mammary epithelial (MCF-10A)  42  -0.60  0.20  NA  
fibrosarcoma (HT-1080) 19  -1.22  0.24  NA  
 

1 not applicable 
2 standard error in the estimation of scaling exponent 

! 

"  
3 concentration of 6 

! 

µM  
4 concentration of 15 

! 

µM  
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CHAPTER VI 

 

MAMMARY EPITHELIAL CELLS IN TEMPORAL GRADIENTS OF EGF 

  

6.1 Abstract 

Single cell migration tracks of human mammary epithelial cells (expressing different 

versions of promigratory tyrosine kinase receptor Her-2) exposed to a time-increasing 

concentration of epidermal growth factor (EGF) were analyzed to study the effect of 

temporal gradients of EGF. The temporal gradient was quantified experimentally (using 

FITC-dextran of molecular weight similar to EGF) and using simulations. A time-

increasing concentration of EGF was found in the vicinity of cells tracked for the 

experimental time scale under consideration (~6 hours). We found that the EGF 

stimulation led to a chemo-kinesis effect with an increase in speed for MCF-10A neuN 

while a decrease for MCF-10A neuT along with no change for the control MCF-10A 

pBabe. We did not find any significant chemotactic effect due to the temporal EGF 

gradients suggesting that mammary epithelial cells  (in the vitro conditions under 

consideration) may not be using temporal sensing. There was no difference in the mean 

squared displacement trends of cells in starvation medium (no exogenous EGF or serum 

addition) and those in temporal gradient of EGF suggesting similar random motility 

coefficients for both the conditions. 
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6.2 Background 

A cell (prokaryotic or eukaryotic) has the ability to sense the gradient of a 

chemoattractant and perform directed migration called as chemotaxis. The sensing of this 

gradient can occur either temporally or spatially. This is illustrated in Fig. 6.1. In spatial 

sensing (top, Fig. 6.1), the cell senses a chemoattractant gradient spatially across its body 

by measuring the back and front concentration at a given time, thereby responding to this 

difference, i.e., the spatial gradient, 

! 

"c

"x
, where; 

! 

c is the concentration and 

! 

x is the spatial 

scale across the cell; more generally, in more than one dimension, the spatial gradient is 

given by 

! 

"c . In temporal sensing (Fig. 6.1, bottom), the cell keeps track of the 

concentration of a molecule such as a chemokine or a growth factor at different times and 

uses the consecutive-time, concentration difference to sense the gradient. In this 

mechanism, the cell is measuring what it called as substantial derivative of concentration, 

i.e., 

! 

Dc

Dt
, where 

! 

t  is time. The substantial derivative is given by 
  

! 

Dc

Dt
=
"c

"t
+

r 
v #c ; where 

  

! 

r 
v  is the mean cellular velocity. Hence, cells that sense 

! 

Dc

Dt
, can appear to respond to a 

spatial gradient when 
  

! 

r 
v "c >>

#c

#t
, when in fact they are sensing temporally (i.e., through 

change in the concentration as they move). 

 In order to find the sensing mechanism in bacteria, Macnab and Koshland [107]  

rapidly mixed suspensions of bacterial cells (Salmonella typhimurium) and attractants and 

observed that cells exposed to positive gradients swam without tumbling for 5 minutes 

and those exposed to negative gradients tumbled continuously for about 12 seconds 

showing that Salmonella bacteria sense temporal gradients.  Berg and Brown [108] later 
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showed that E. coli also sense temporal gradients by subjecting E.coli to time increasing 

or decreasing(

! 

"c

"t
# 0), spatially homogenous (

! 

"c = 0 ), concentration of L-glutamate by 

the reversible enzymatic action of alanine amino-transferase on L-alanine. 

A key finding in bacterial chemotaxis is that the turn angle distribution is 

unaffected by the presence of a chemoattractant, while the run time distribution is 

modulated (bacteria extend their run times when moving in directions of increasing 

chemoattractant concentration) [29], thus resulting in biased movement towards 

increasing chemoattractant concentration.  Moreover, by demonstrating that the same run 

time increases were induced by a spatially homogeneous but time-varying 

chemoattractant concentration, Berg [108, 109] showed that E. coli were responding to 

the substantial derivative of the chemoattractant concentration, so that the chemosensing 

mechanism in bacteria is related to the time rate of change in bound receptors on the cell 

surface.  This rules out the possibility that in E. coli the chemosensory mechanism is 

based on the differences in the number of bound receptors over the cell surface (i.e., a 

direct sensing of the chemoattractant gradient by spatial comparison).  A mathematical 

analysis of chemosensing by Berg and Purcell [110] shows that despite the small cell size 

(~ 1 µm) spatial sensing of a chemoattractant gradient is possible for E. coli; specifically, 

taking into account fluctuations in chemoattractant concentration on the spatial scale of a 

cell, Berg and Purcell derived expressions for the minimum time required for temporal 

sensing, Tsensing
temporal , and for spatial sensing, Tsensing

spatial , given by  

 Tsensing
temporal

>
1

2
!aD

Ns

Ns + !a

"
#$

%
&'

cc1 2

c + c1 2

"

#
$

%

&
'
1

c

(c

(t

"
#$

%
&'

2)

*
+
+

,

-
.
.

/1/3

 (6.1) 
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 Tsensing
spatial
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1

2
!a3D

Ns

Ns + !a

"
#$

%
&'

cc1 2

c + c1 2

"

#
$

%

&
'
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(c
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"
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%
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*
+
+

,

-
.
.

/1

 (6.2) 

where a  is the radius of the cell, D  is the self-diffusion coefficient of the 

chemoattractant, N  is the number of receptors on the cell surface, s  is the cell-receptor 

radius, c  is the equilibrium concentration of the chemoattractant, c
1 2

 is the dissociation 

constant for the receptor-chemoattractant binding and x  is the direction in which the 

chemoattractant gradient exists.  For temporal gradients created by the movement of the 

cell, 1 c( ) !c !t( ) = v c( ) !c !x( ) , where v  is the cell speed.  For typical values of these 

parameters for E. coli responding to an aspartate gradient, Berg and Purcell found 

Tsensing

temporal
> 0.4 !1.4 s  (depending on magnitude of chemoattractant gradient) and for 

spatial sensing, Tsensing

spatial
> 1.7 s .  Since the run lengths of flagellated bacteria are typically 

of the order of 1 s and longer, this analysis suggests that a bacterium could use either 

temporal or spatial sensing; however, because the swimming motion of a bacterium 

causes the cell body to rotate, the resulting disturbance to the surrounding liquid medium 

would create fluctuations in the chemoattractant gradient much larger than the gradient 

itself, thus ruling out the spatial sensing mechanism.   

To perform a similar analysis for eukaryotic cells, we use the experimental 

conditions of Sai et al. [111] for the study of chemotaxis of HL-60 cells stably expressing 

CXCR2 receptor in a microfluidic-device-generated-gradients of CXCL8 chemokine.  

For these cells in this chemotaxis assay, 

! 

a = 7.5µm,

! 

D =10
"6
cm

2
/s,

! 

c =1.25nM,

! 

c
1/ 2

=1.5nM,

! 

(1/c )("c /"t) = (# /c )("c /"x) = 2 $10
%4

s
%1

.    
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      Taking 

! 

Ns /(Ns+ "a) = 0.5 (a typical value), and using these values in equations (6.1) 

and (6.2), we find that Tsensing

temporal
> 1 min  and Tsensing

spatial
> 18 s .  We note that the larger size of 

these cells (compared to bacteria) results in the time threshold for spatial sensing being 

less that that for temporal sensing; this is the reverse of the situation for bacteria, in 

which the time threshold for spatial sensing is greater than that for temporal sensing.  

From the bimodal analysis of the MCF-10A cells reported in Chapter II, we find that the 

mean directional-mode time duration of these epithelial cells ranges in several minutes 

compared to bacterial run times of seconds. Hence both temporal and spatial sensing 

mechanisms remain feasible for these eukaryotic cells. 

It is generally believed that mammalian cells (particularly epithelial cells) that are 

spatially much larger (~15-20 

! 

µm) compared to bacterial cells (1 

! 

µm), can sense 

chemotactic gradients via spatial sensing mechanism and hence they have been subjected 

to steady (via microfluidic chambers, [112-114]) spatial gradients to observe chemotaxis. 

However, so far the possibility of temporal sensing in epithelial cells has not been ruled 

out and to our knowledge not been measured. Metastatic epithelial cells such MDA-MB-

231 have been shown to perform chemotaxis towards non-linear spatial gradients of 

epidermal growth factor (EGF) created via micro-fluidic chambers [112-115]. In this 

work, we asked the question: “Can mammary epithelial cells sense a temporal gradient of 

EGF?” We used the same panel of cell lines (as mentioned in Chapter II) expressing the 

different versions of Her-2 receptor. EGF has been known to promote migration in 

epithelial cell lines before [116, 117] and hence we chose this molecule as a ligand for 

our experiments with MCF-10A mammary epithelial cell lines. As mentioned earlier, 

EGF has been used previously to study chemotaxis in metastatic breast cancer cell line, 
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MDA-MB-231 cells in microfluidic chambers [112]. In this work, we describe an 

experimental arrangement to subject MCF-10A cells to time increasing concentration of 

EGF. We also show that the concentration of EGF in the immediate vicinity of the cells 

observed is more or less spatially uniform within an hour of starting the EGF injection. 

6.3 Materials and methods 

6.3.1 Cell culture 

The cell lines used in the motility experiments were a kind gift of Dr. Joan Brugge and 

were derived from the MCF-10A human mammary epithelial cells to express the pBabe 

vector alone (pBabe), or the normal (neuN) or transforming (neuT) versions of the rat 

Her-2/Neu oncogene [58, 59]. All the cells were cultured in DMEM/F-12 50/50 media 

(Mediatech, Herndon, VA) supplemented with horse serum (2%, GIBCO/Invitrogen, 

Carlsbad, CA), cholera toxin (0.1µg/mL, Calbiochem, La Jolla, CA), insulin (10µg/mL, 

GIBCO/Invitrogen, Carlsbad, CA), hydrocortisone (0.5µg/mL, Sigma, St. Louis, MO) 

and EGF (20ng/mL, GIBCO/Invitrogen, Carlsbad, CA) as described by protocol in work 

by Debnath and coworkers [60]. The cells were maintained in a humidified atmosphere 

supplemented with 5% CO2 and were split every 3 to 4 days.  

6.3.2 Cell motility assay 

The migration of cells was followed under different conditions: with and without the 

presence of any externally injected EGF (Invitrogen, Carlsbad, CA) at 50 

! 

ng /ml  using a 

Harvard apparatus pump 11 pico plus syringe pump (Harvard Apparatus, Holliston, MA) 

at a flow rate of 0.1 

! 

µl /min . All the three cell types (MCF-10A pBabe, neuN and neuT) 

were plated overnight at a low density of 10,000 cells on 60 mm tissue culture dishes in 
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full growth medium to avoid interacting cell populations. The cells were thoroughly 

washed with starvation medium (SM, which is defined as the full growth medium minus 

horse serum and EGF) and the media replaced with SM, a couple of hours before the start 

of the experiment. 

The cells were monitored using the phase-contrast optics in a Zeiss Axiovert 

200M inverted microscope with a monochrome, cooled CCD camera (CoolSNAP HQ, 

Roper Scientific, Trenton, NJ) equipped with temperature-controlled, humidified 

chamber. Cellular images were captured using MetaMorph (Molecular Devices 

Corporation, Sunnyvale, CA) for data acquisition and analysis. The time-lapse images 

were collected at a magnification of 10x (1 pixel 

! 

"0.98 

! 

µm) and using a sampling time 

interval of 0.5 minute. All the cells were equilibrated in the humidified, temperature 

controlled (37 0C) microscope chamber for half an hour before data collection. In all 

experiments, the cells were followed for at least seven hours and the cells at the center of 

the dish were monitored. The control consisted of following the cells for the first two 

hours with SM continuously injected at 0.1 

! 

µl /min . This was followed by monitoring 

cells with continuous injection of EGF containing medium (SM + 50 

! 

ng /ml  of EGF) for 

at least 5 hours.  

6.3.3 Temporal gradient experimental setup 

The experimental setup to create a temporal gradient for epithelial cells is illustrated in 

Fig. 6.2. The cells were plated on a 60 mm cell culture dish overnight, media changed to 

SM and transferred to the humidified chamber of the CO2 microscope. A slot was made 

at the corner of the tissue culture dish lid to house the tubing connected to a syringe filled 

with appropriate medium on a Harvard pump. Since the diffusion coefficient of EGF 
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molecule (

! 

10
"7
cm

2
/sec) is much greater than the random motility of the cells 

(

! 

10
"9
cm

2
/sec), it can be expected that there is not much spatial inhomogeneity in the 

immediate vicinity of the cells observed (at the center of the dish), so that 

! 

Dc

Dt
"
#c

#t
. 

6.3.2.1 Gradient quantification via experiment 

We quantified the EGF (Mol. Wt: 6.6 kDa) concentration profile across the tissue culture 

dish using a dummy molecule, FITC-dextran (Mol. Wt. 10kDa, Sigma Aldrich, St. Louis, 

MO). The same experimental setup as shown in Fig. 6.2 was used but without any cells 

and FITC-dextran was used instead of EGF. A stock solution of 0.1 

! 

mg /ml  was used to 

make a standard curve. Sample triplicates in a 96-well plate were used to measure the 

FITC fluorescence (excitation 488 nm, emission 530 nm) using a Perkin-Elmer 96-well, 

Wallac1420 plate reader. Samples were taken every 30 minutes for at least 3 hours from 

two positions (Fig. 6.3) on the cell culture dish, namely, the cell monitoring position 

(center, c) and a position at the top (t), in the vicinity of the center. The concentration of 

FITC-dextran measured with increasing time is shown in Fig. 6.3 and we can see that the 

gradient is not very different in the two positions and the concentration is increasing with 

time. It can be seen from Fig. 6.3 that 

! 

"c

"t
# 60

ng

ml.hr
 and referring to the top view of the 

dish shown in Fig. 6.3, 

! 

"c

"x
, between points c and t after 3 hours, can be calculated as 

follows:  

! 

"c

"x
#
ct $ cc

xt $ xc
#
10ng /ml

20mm
# 0.5 %10

$3 ng

ml.µm
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! 

v " 60µm /hr  ; 

! 

v"c = 0.03
ng

ml.hr
 ; 

! 

v"c
#c

#t
$ 0.0005 

Therefore, the spatial inhomogenity in the vicinity of the cells tracked is negligible and a 

time varying concentration of EGF is formed. 

6.3.2.1 Gradient quantification via simulation 

The gradient profile was simulated using ‘pdepe’ funtion in MATALB (MathWorks, 

Natick, MA). There is symmetry in radial direction, (1-D problem) with a source term 

present as EGF is being added continuously at a fixed molar flow rate.  

The parabolic partial differential equation to be solved in rectangular coordinates is: 

! 

"c

"t
= D

" 2c

"x 2
+ S              (6.3) 

where, 

! 

c  is the concentration of EGF, 

! 

x  is the length scale and 

! 

S  is the source term. The 

dish has 3 ml of initial volume. 

! 

S  is the molar flow rate of EGF that is given by, 

! 

S=Pump speed (

! 

vpump ) (

! 

ml /min)*source concentration (

! 

S
c
) 

! 

pg /ml     

! 

S = 0.0001ml /min"16666pg /ml =1.66pg /min  

Non-dimensionalization: 

! 

c = c /(0.01* S
c
)  

! 

x = x /L  , where 

! 

L  is the diameter of the cell culture dish (6 cm) 

! 

t = t /" , where 

! 

"  is the simulation time step, which is 1 min. 

Equation (6.3) can be re-written as: 

! 

"c 

"t 
= (D*# /L2)

" 2c 

"x 
2

+ vpump *#                       (6.4) 

Equation (6.4) was solved using the partial differential solver ‘pdepe’, in MATLAB using 

following initial and boundary conditions: 
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I.C.:     

! 

c (x ,t = 0) = 2* heaviside(x "1) , 

where ‘heaviside’ function in MATLAB  was used so that for any variable x, 

heaviside(x) has the value 0 for x < 0, 1 for x > 0, and 0.5 for x = 0. 

B.C: 

! 

"c 

"x 
(x = 0,1,t) = 0 

The concentration profiles after 1 min, 1 hour, 3 hour and 6 hours are shown in Figs. 6.4 

a, b, c and d respectively, (concentration 

! 

"  

! 

c  and distance 

! 

"

! 

x , time 

! 

"  

! 

t ). We can see 

that the concentration at the center of the dish (

! 

x = 0.5) increases with time as we move 

from Figs 6.4 a, b, c to d. This is consistent with experimentally measured time 

increasing concentration of FITC-dextran as shown in Fig. 6.3. 

6.3.4 Cell tracking 

Each cell was tracked by following the cell nucleus using the “track points” function in 

MetaMorph (i.e., the manual tracking option). Only single cells were considered for the 

analysis. Cells that remained stationary, or moved outside the viewing area, underwent 

cell division during the course of the experiment, did not migrate over a distance of at 

least 2 cell bodies (<30 

! 

µm) or that adhered to other cells were excluded from the 

tracking procedure. Applying this criterion, ~60% of the cells were retained. 

6.3.5 Bimodal analysis 

Bimodal analysis (which segregates a cell track into alternating directional and 

reorientation modes) is described in detail elsewhere (see Chapter II and ref. [98]). 

Briefly, the directional and re-orientation modes were flagged by first computing 

instantaneous direction change (

! 

" ) at each frame (time point) and then applying a cut-off 

(!
cut

) to flag the modes. A cut-off value of !
cut
= 45°   and ‘r3 criterion’ (!  value at three 
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successive frames determines a directional mode) was used for all the data analysis. The 

choice of !
cut
= 45°  (cut-off value) is heuristic in nature and is discussed elsewhere [98]. 

This cut-off value best succeeded in flagging the re-orientation mode for the different cell 

types under consideration. The turn angle, 

! 

"  (the angle change between successive 

directional modes) was computed using multi-point linear regression of all the data points 

constituting a directional mode. The details of all the rules used to locate the modes can 

be found in ref. [98] and Chapter II. 

6.3.6 Statistical Analysis 

All statistical analysis was done in MATLAB software package (MathWorks, Natick, 

MA). The Lilliefors test (lillietest.m) was used to test if the data were parametric or non-

parametric. A two-sample Kolmogorov-Smirnov test (kstest2.m in MATLAB) was used 

to compare between the two cell-types if the data were non-parametric; otherwise the t-

test (ttest2.m in MATLAB) was used. A p-value <0.05 indicates significant differences.  

6.4 Results and discussions 

Wind rose plots of some of the cells selected for analysis is shown in Fig. 6.5. A few 

trajectories for pBabe and neuT cells (5 each) are illustrated. The left panel shows the 

control tracks in the presence of SM while the right panel shows trajectories with EGF 

stimulations. All the cell tracks shown here correspond to experimental time of 2 hours. 

We can see that under both conditions (with and without temporal EGF gradient), both 

the cell types display the same degree of persistence behavior qualitatively. As expected 

and reported in Chapter II, we do see that the neuT cells are more persistent compared to 

pBabes. We further looked at the effect on the mean cell speed for the three cell types. 
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The mean cell speeds represented in the form of a box plot are shown in Fig. 6.6. The 

light shaded columns represents the control while filled column indicates cells in 4 to 5 

hours of EGF temporal gradient. Applying a two-sample Kolmogorov-Smirnov test at 5% 

significance level, we found that there was no significant difference in the mean cell 

speed for pBabe cells in both control and EGF treatment (p=0.1224, 

! 

n=10 (control) and 

! 

n=13 (EGF)). However, for neuT cell type, there was a slight decrease in the mean cell 

speed with the exposure to EGF temporal gradient (p=0.0283, 

! 

n=21 (control) and 

! 

n=29 

(EGF)). Conversely, for neuN cell type, there was an increase in the mean cell speed with 

EGF stimulation (p=0.0083, 

! 

n=32 (control) and 

! 

n=25 (EGF)). Hence, we find that the 

temporal gradient of EGF has a chemokinetic effect in the two different versions of Her-2 

cell lines (namely, neuN and neuT). But, no chemotactic effect was found from the visual 

inspection from the wind rose plots.  

We performed bimodal analysis (Chapter II, [98]) of the filtered cells (according 

to criteria described in the cell tracking section in materials and methods) to reveal any 

differences in the amount of time the cells spend in directional and re-orientation modes 

with and without EGF temporal gradient. Our motivation for application of bimodal 

analysis was driven by the hypothesis that the cells would be expected to spend more 

time in directional mode (in comparison to cells in control condition) in the situation 

where they were actually sensing the time-increasing concentration of EGF. A decrease 

in time spent during re-orientation mode with exposure of temporal gradient of EGF 

would also imply a temporal sensing component to chemotaxis. Fig. 6.7 depicts the mean 

mode times for both directional and re-orientation modes for the three cell types (pBabe 

(top), neuN (middle) and neuT (bottom)). We did not find any significant differences in 
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the mean mode times between the control and EGF treatment conditions, indicating no 

temporal sensing component in chemotaxis due to EGF. The amount of EGF being added 

via the temporal gradient setup was confirmed to be enough to saturate 45% of cellular 

surface receptors after 5 hours of EGF injection, using the formula: 

! 

N
b

=
N

t
" S

K
d

+ S
 

derived by Rivero and coworkers [19] where 

! 

N
b
is the number of bound cell-surface 

receptors, 

! 

N
t
 is the total number of receptors, 

! 

S  is the substrate concentration 

(

! 

S =100pg /ml  after 1 hour of EGF injection in our experimental setup) and 

! 

K
d
is the 

receptor-ligand dissociation equilibrium constant (we assume 

! 

Kd = 0.1nM = 600pg /ml [118], for EGF with molecular weight of 6kDa). Thus, for the 

values of 

! 

S  and 

! 

K
d
 after 5 hours of EGF injection, 

! 

Nb

Nt

=
500pg /ml

600pg /ml + 500pg /ml
= 0.45  

The mean squared displacement trends also indicated that there was no influence 

on the directional persistence (i.e., any temporal sensing chemotactic effect) in cells. Fig.  

6.8 show the mean squared displacement trends for the three cell types (a: pBabe, b: 

neuN and c: neuT). The control trends (indicated in green) last for 2 hours while the 

trends for EGF treatments last approximately for 3.33 hours (shown in brown). We can 

see that both the trends have the same persistence, and there does not seem to be any 

chemotactic effect due EGF temporal gradient on the persistence in the cells. 

EGF stimulation has been found to increase or decrease cell speed and directional 

persistence depending on the extra cellular matrix conditions. In our case, we just found a 

chemokinetic effect and no chemotactic effect due to the temporal gradient of EGF.  It 
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has been found that in Chinese hamster ovary cells transfected with EGF receptor 

(EGFR), EGF stimulation led to a slight decrease in cell speed in the presence of 

fibronectin coating on 2D substrates [45]. In Fibroblasts as well, it was reported that EGF 

could increase or decrease cell speed depending on the underlying substrate composition 

[119]. The same authors (Maheshwari and coworkers, [48]) showed that in human 

mammary epithelial cells expressing EGFR, the mode of presentation of soluble factors 

such as EGF ligand could decide the resulting cell speed and directional persistence after 

EGF stimulation. It was found that the exogenous addition of EGF to EGFR expressing 

cells led to a decrease in the cell speed explaining our results with the MCF-10A neuT 

cell line. On the other hand, the increase in cell speed for neuN cell line could be 

speculated to be due to the presence of some form of autocrine EGF growth factor 

signaling [48].  

It has been reported that EGFR receptor stimulation by EGF can lead to increased 

actin polymerization rate in the leading edge[120, 121]. It can be speculated that spatial 

sensing might be playing crucial role in the degree of actin polymerization, which in turn 

could be directly proportional to the number and distribution of bound receptors. The 

actin polymerization rate and its spatial localization would determine the polarity of the 

cell, depending on which directional or re-orientation modes are flagged, thus, making 

spatial sensing important for establishing cellular polarity via actin cytoskeletal re-

arrangement. During chemotaxis, the bound EGF receptors could be localized to a 

preferential leading edge contributing to extension of directional mode and/or early 

termination of a re-orientation mode. This could fit into the scaling relationship discussed 

in Chapter V by increasing the directional mode time and or decreasing the re-orientation 
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mode time via spatial sensing of EGF.  Hence, there is a possibility of connecting non-

directed and chemotactic epithelial cell motility (induced by EGF via spatial sensing) by 

a general scaling mechanism as was shown for Dictyostelium.  

6.5 Conclusions 

We did not find any significant chemotactic effect of a temporal gradient of EGF on 

mammary epithelial cells in the in vitro conditions we studied. This suggests that these 

cells may not be employing temporal sensing in the in vitro conditions under 

consideration. However, this does not rule out the possibility of temporal sensing in the in 

vivo conditions or a differently modulated in vitro condition. Recently, it was reported 

that EGF induced strong increase in directional persistence in conjunction with optimum 

matrix density in 3D matrices while in 2D, EGF stimulation led to a decrease in 

directional persistence [122].   
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Figure 6.1: The different mechanisms employed by a cell to sense a chemoattractant 
gradient. The spatial sensing is illustrated at the top while temporal sensing (used during 
bacterial chemotaxis) is depicted at the bottom. 
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Figure 6.2: Experimental setup to subject epithelial cells to time-increasing concentration 
of EGF. 
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Figure 6.3: Gradient quantification experimentally using FITC-dextran (10kDa) 
molecule. The top view of the cell culture dish with points of measurement, t, top and c, 
center located. The microscope visualization area was located in the location indicated by 
c. 
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Figure 6.4a: Gradient quantification using simulations. Simulated concentration profiles 
across the cell culture dish as a function of non-dimensionalized concentration (

! 

c ) and 
distance (

! 

x ) after 1minute of EGF injection. 
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Figure 6.4b: Gradient quantification using simulations. Simulated concentration profiles 
across the cell culture dish as a function of non-dimensionalized concentration (

! 

c ) and 
distance (

! 

x ) after 1 hour of EGF injection. 
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Figure 6.4c: Gradient quantification using simulations. Simulated concentration profiles 
across the cell culture dish as a function of non-dimensionalized concentration (

! 

c ) and 
distance (

! 

x ) after 3 hours of EGF injection. 
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Figure 6.4d: Gradient quantification using simulations. Simulated concentration profiles 
across the cell culture dish as a function of non-dimensionalized concentration (

! 

c ) and 
distance (

! 

x ) after 6 hours of EGF injection. 
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Figure 6.5: Wind rose plots of pBabe and neuT trajectories without EGF gradient, i.e., in 
SM (shown in left panel) and with EGF temporal gradient (shown in right panel). All the 
trajectories correspond to an experimental time of 2 hours.  
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Figure 6.6: Mean cell speed for the three cell types with and without EGF stimulation. 
The light-shaded columns indicate the control cell speeds while filled columns indicate 
the cells speeds after EGF treatment. A two-sample Kolmogorov-Smirnov test at 5% 
significance level indicated an increase in cell speed for neuN while a decrease for neuT 
in comparison with respective controls. 
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Figure 6.7: Mean directional mode and re-orientation mode times for the three cell types 
with (EGF) and without EGF stimulation (control). No significant differences were found 
in the mode times with and without EGF stimulation. 
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Figure 6.8: Mean squared displacement trends for the three cells types with and without 
EGF stimulation. The control trend is for 2 hours while the EGF stimulation one is for 
approximately 3.33 hours. The number of cells for each case has been indicated in the 
plot. 
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CHAPTER VII 

 

BIMODAL ANALYSIS OF PROSTATE CANCER CELL RANDOM 

MIGRATION ON LAMININ-332 SUBSTRATE 

 

7.1 Abstract 

The bimodal analysis technique we developed (and described in Chapter II) was used to 

quantify the differences between single cell migration of wild type and mutant prostate 

cancer cells (low matriptase-expressing LNCaP cells and matriptase-overexpressing 

LNCaP cells, respectively). The single cell migration experiments were performed on 

substrates coated with laminin-332. Matriptase overexpression in the prostate cancer cells 

leads to a more persistent and faster phenotype. It was found that matriptase 

overexpression resulted in increased persistence as indicated by the wind rose plots and 

mean squared displacement trends.  This can be attributed to the shorter time duration of 

re-orientation modes (which serves as a phase to randomize the cell trajectory) in 

matriptase cells (compared to the wild type cells), thus, contributing to the increased 

overall persistence in this phenotype. The directionality ratio of the displacement to the 

distance traversed (

! 

d / t  ratio) in the re-orientation mode was found to be higher in the 

matriptase cell type resulting in a “more persistent” re-orientation mode confirming the 

increased persistence in this cell type.  The matriptase mutation also contributed to a 

slightly faster phenotype as indicated by the increase in the mean cell speed. Again, this 
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could be explained by the fact that these cells spend less time in re-orientations and hence 

can travel further via the directional modes.  

7.2 Background  

Prostate cancer is the second leading cause of cancer death in men in USA [123] and the 

metastasis of the primary tumor to remote sites such as bone is the main cause of 

mortality [124].  An important step in metastasis is the break down of basement 

membrane and the remodeling of the extra-cellular matrix (ECM) [125]. The role of cell 

surface matrix proteinases in degradation of ECM molecules (such as laminin) leading to 

subsequent increase in cell migration has been reported in literature [126]. Laminin-332 

(Ln-332), which was previously known as laminin-5, is known to be an important 

component of ECM [127]. It was recently reported to be a substrate for type II 

transmembrane serine protease, hepsin [128]. It was found that hepsin-overexpressing 

prostate cancer cells exhibited increased migration on Ln-332 substrates due to efficient 

proteolytic cleavage of the Ln-332 substrate. The overexpression of the type II 

transmembrane serine proteases such as hepsin and matriptase have been associated with 

progression of prostate cancer [129, 130].  

In this work, we have quantified the difference in single cell motility between 

low-matriptase expressing prostate cancer cells and matriptase overexpressing cells using 

bimodal analysis. Bimodal analysis (Chapter II) was used to decipher the cause of 

phenotypic difference due to matriptase overexpression in terms of directional and re-

orientation modes in an effort to pinpoint any crucial parameter contributing to increased 

migration associated with protease overexpression. Also, the single cell parameters 

obtained from the analysis will be useful in the development of more realistic 
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computational models of prostate cancer progression. This work was done in 

collaboration with Manisha Tripathi (Quaranta lab).  

7.3 Materials and methods 

7.3.1 Cell culture 

LnCaP (low matriptase expressing, wt) and matriptase-overexpressing (mt) prostate 

cancer cells were created by Dr. Daniel Kirchhofer at Genentech and were cultured in 

RPMI 1640 medium supplemented with 10% fetal bovine serum, 500 

! 

µg /ml  Geneticin 

(Invitrogen), 0.5 

! 

µg /ml  puromycin (Sigma), and 1% glutamine/penicillin/streptomycin 

and incubated with 5% CO2 and 37OC. 

7.3.2 Cell motility assay 

The migration of cells was followed under random motility conditions without the 

presence of any externally added chemo-attractant gradients. All the three cell types were 

plated overnight at a low density of 20,000 cells on 60 mm dishes coated with Ln-332 (10 

! 

µg /ml ) to avoid interacting cell populations.  

The cells were monitored using the phase-contrast optics in a Zeiss Axiovert 

200M inverted microscope with a monochrome, cooled CCD camera (CoolSNAP HQ, 

Roper Scientific, Trenton, NJ) equipped with temperature-controlled, humidified 

chamber. Cellular images were captured using MetaMorph (Molecular Devices 

Corporation, Sunnyvale, CA) for data acquisition and analysis. The time-lapse images 

were collected at a magnification of 10x (1 pixel 

! 

"0.98 

! 

µm) and using a sampling time 

interval of 1 minute. All the cells were equilibrated in the humidified, temperature 

controlled (37 0C) microscope chamber for half an hour and media was replaced with 
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fresh growth media before data collection. The cells were followed for at least twelve 

hours in all the three sets of experiments.  

7.3.3 Cell tracking 

Each cell was tracked by following the cell nucleus using the “track objects” function in 

MetaMorph. Only single cells were considered for the analysis. Cells that remained 

stationary, or moved outside the viewing area, underwent cell division during the course 

of the experiment, did not migrate over a distance of at least 2 cell bodies (<20 

! 

µm) or 

that adhered to other cells were excluded from the tracking procedure. Applying this 

criterion, ~60% cells were retained. 

7.3.4 Bimodal analysis 

Bimodal analysis (which segregates a cell track into alternating directional and re-

orientation modes) is described in detail elsewhere (see Chapter II and ref. [98]). Briefly, 

the directional and re-orientation modes were flagged by first computing instantaneous 

direction change (

! 

" ) at each frame (time point) and then applying a cut-off (!
cut

) to flag 

the modes. A cut-off value of !
cut
= 45°   and ‘r3 criterion’ (!  value at three successive 

frames determines a directional mode) was used for all the data analysis. The choice of 

!
cut
= 45°  (cut-off value) is heuristic in nature and is discussed elsewhere [98]. This cut-

off value best succeeded in flagging the re-orientation mode for the different cell types 

under consideration. The turn angle, 

! 

"  (the angle change between successive directional 

modes) was computed using multi-point linear regression of all the data points 

constituting a directional mode. The details of all the rules used to locate the modes can 

be found in ref. [98] or Chapter II. 
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7.3.4 Statistical Analysis 

All statistical analysis was done in MATLAB software package (MathWorks, Natick, 

MA). The Lilliefors test (lillietest.m) was used to test if the data were parametric or non-

parametric. A two-sample Kolmogorov-Smirnov test (kstest2.m in MATLAB) was used 

to compare between the two cell-types if the data were non-parametric; otherwise the t-

test (ttest2.m in MATLAB) was used. A p-value <0.05 indicates significant differences. 

7.4 Results and discussions 

After filtering the cells to be used in the analysis (according to the constraints mentioned 

in the ‘cell tracking’ section above), wind rose plots were made to examine the 

persistence in the cell types qualitatively. Some example 12-hour trajectories of wt and mt 

cells (8 cells, each in different color) are shown in Fig. 7.1. These wind rose plots 

(200

! 

µm  X 200

! 

µm) indicate that the mt cells (Fig. 7.1, bottom) are more persistent and 

travel farther compared to the wt cells (Fig. 7.1, top). The black dotted circle on the wind 

rose plots indicates the root mean squared dispersal. The mean cell speed (total distance 

traveled divided by time averaged over all cells) for mt cell type was found to be higher 

when compared to wt cells ((p=0.0034), 

! 

n=32 (wt), 

! 

n=35 (mt)). This is shown in the box 

plot in Fig. 7.2. Lilliefors test (lillietest.m function in MATLAB) was initially applied 

and the mean cell speed data for the cells were found to be distributed parametrically. 

 Bimodal analysis was applied to the cells tracks and mean directionality (

! 

d / t) 

ratios (ratio of direct displacement (

! 

d) to total distance (

! 

t ) for a given mode) were 

computed.  For correctly segregated directional and re-orientation modes (as discussed in 

Chapter II), the average ratio for directional modes for a given cell type (

! 

d
wt

 or 

! 

d
mt

) can 

be expected to be closer to 1 (highest possible directionality indicating greater 
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persistence) while for re-orientation modes (

! 

r
wt

 or 

! 

r
mt

) the values are expected to be 

smaller than those for directional modes. Figure 7.3 displays the mean 

! 

d / t  ratios for the 

two cell types and it can be seen that the ratio is higher in directional mode compared to 

re-orientation mode for both cell types [wt (p= 8.2554e-158, 

! 

n=490), mt (p= 7.0964e-

241, 

! 

n=816)] confirming the existence of two distinct modes in the cell paths. The re-

orientation mode ratio of mt cell type was found to higher [(p=6.0854e-10), 

! 

n=490 (wt), 

! 

n=816) (mt)] compared to that for wt cells indicating that the mt cells are more persistent 

than wt cells during this mode. This is also reflected in the mean mode time values for the 

cells as shown in Fig. 7.4. The error bars are the standard deviations in the mean values. 

The mean re-orientation time for mt cell type was found to be less than that of the wt 

cells, indicating that the re-orientations in the mt cells last for lesser duration compared to 

wt cells (that is, mt cells spend more time in directional modes compared to wt cells), 

contributing to the increased persistence in the mt cells [(p=0.6618e-05), 

! 

n=490 (wt), 

! 

n=816) (mt)]. There was no significant difference in the mean directional mode times for 

the two cell types. Hence, the re-orientation modes of mt cells are more persistent 

contributing to the overall increased persistence in these cells. 

 The directional and re-orientation mode time distributions for the prostate cancer 

cells are found to be exponentially distributed (Fig. 7.5). Hence, the fitting parameter 

! 

" , 

for the mode time (

! 

x ) distribution (

! 

P(t) = "e#"x ), is the inverse of the mean value of the 

mode time, 

! 

x . One can see that the smallest directional mode time possible is around 3 

minutes and 1 minute for re-orientation mode (as constrained by the criteria used to 

perform the analysis (see Chapter II and ref. [98]) since the sampling interval used to 

collect the time lapse images was 1 minute. It can be seen from Fig. 7.5, bottom, that the 
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re-orientation mode time distribution for mt cells has higher fitting parameter 

! 

"  and the 

distribution decays faster compared to wt cells, again indicating that mean re-orientation 

mode time for mt cells is smaller than wt cells. On the other hand, the difference in the 

fitting parameters for the directional mode times (Fig. 7.5, top) is not significant as was 

implicated by the 

! 

d / t  ratios. The turn angle distribution (direction changes between 

successive directional modes) for the two cell types is shown in Fig. 7.6. We can see that 

there is no significant difference and inherently both cell types have certain degree of 

persistence characteristic of mammalian cells. This is also evident from the mean squared 

displacement trends (Fig. 7.7a) for the two cell types and we can see that on the log-log 

plot, both the cell types have slopes greater than the diffusive regime (slope 1 line) and 

less than the ballistic (slope 2 line) indicating super-diffusive behavior in both cells over 

the experimental time scale considered. However, one can see that the mt cells are more 

persistent and disperse farther compared to wt cells (clear from the wind rose plots in Fig. 

7.1) which could be due to both higher mean cell speed as well as greater directionality 

during the re-orientations for the mt cells. The mt cells have higher super-diffusivity 

(implicating more persistence) compared to wt cells. This is evident in Fig. 7.7b where 

we can see that the linear–fit of logarithm of mean squared displacements  (versus 

logarithm of time) gives a slope of 1.54 for mt cells and a lesser slope of 1.15 for wt cells. 

Hence, the mt cells retain more persistence compared to wt cells that are only slightly 

super-diffusive (diffusive regime corresponds to slope=1). 

We also examined the scaling law relationship between the mean mode times 

(established in Chapter V for Dictyostelium, mammary epithelial, fibroblasts and 

leukocytes). It is found that even the prostate cancer cells follow the non-linear 
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relationship between the directional and re-orientation modes (Fig. 7.8, top). The mean 

mode times (on a log-log scale) moving from wt to mt cells display a trend (Fig. 7.8, 

bottom) similar to that found in the transition from non-directed to directed Dictyostelium 

motility in Chapter V indicating the presence of some general mechanisms of increasing 

persistence in eukaryotic cells.  The more persistent mt cells are on the bottom right, 

meaning that their re-orientation mode times are smaller. 

The turn frequency (which could be approximated as the reciprocal of average 

directional mode time) for both the cell types was found to be same in spite of the mt 

cells being more persistent. This can be explained by noting that even though the number 

of re-orientations in the mt cell type is more than those of wt cells, the mean directional 

mode time remains the same for both the cells.  Longer re-orientations (lasting for more 

time) imply more randomization of the cell trajectory while shorter re-orientations do not 

allow total loss of previous memory and the persistence in maintained for the cell. Hence, 

even though mt cells have a greater number of shorter re-orientations compared to wt 

cells (with small number of longer re-orientations), their persistence is maintained in 

comparison to the wt cells. 

 Hence, bimodal analysis permits the determination of the factor contributing to 

the increased persistence in cells due to matriptase overexpression.  We find that the re-

orientations mode durations are shortened due to the protease overexpression. One can 

speculate that the enhanced proteolytic activity in cells permits them to continue moving 

in the same direction with ease since the cells wander less. 
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7.5 Conclusions 

Bimodal analysis was applied to cell-migration tracks of prostate cancer cells (with and 

without matriptase overexpression) on Ln-332 substrate. We find that mt cells (compared 

to wt cells) exhibit greater persistence and travel farther during the experimental time-

scale of 12 hours. This can be attributed to increased speed and greater directionality in 

re-orientation modes, in the mt cell type. Bimodal analysis identified the shortening of re-

orientation modes in mt cells as a main contributor to the enhanced directionality in mt 

cells.  
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Figure 7.1: Wind rose plots (cell tracks starting from (0,0)) for eight 12-hour trajectories  
(represented by different color) of wt and mt cell types each. The plot indicates that mt 
tracks (bottom) display greater persistence and travel farther compared to wt tracks (top). 
The black dotted circle in both plots shows the root mean square dispersal after 12 hours 
averaged over all cells for each cell type. 
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Figure 7.2: Box plots of the mean cell speed for the wt (

! 

n=32) and mt (

! 

n=35) cell types. 
The average cell speed for the mt cells was found to be higher between the two cell types 
(p=0.0034) using two-sample t -test (ttest2.m function in MATLAB) at 5% significance.  
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Figure 7.3 Box plots of mean 

! 

d / t  ratios for the two cell types during the directional 
(

! 

d
wt

or 

! 

d
mt

) and re-orientation (

! 

r
wt

or 

! 

r
mt

) modes indicating the segregation of the cellular 
paths into distinct alternating directional and re-orientation modes [wt (p= 8.2554e-158, 

! 

n=490), mt (p= 7.0964e-241, 

! 

n=816)] using two-sample Kolmogorov-Smirnov 
nonparametric test. The mean 

! 

d / t  ratios during the re-orientation phase for mt cell type 
was found to be greater than that of wt cells (p=6.0854e-10) indicating that the re-
orientations are more directional i.e., persistent for a mt cell type compared to a wt cell. 
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Figure 7.4: Mean directional and re-orientation mode times for the two cell types. Error 
bars represent the standard deviations in the mean mode times. The mean re-orientation 
time for mt cell type was found to be less than that of the wt type, contributing to the 
increased persistence in the mt cells (using nonparametric, two-sample Kolmogorov-
Smirnov test, [(p= 0.6618e-05), 

! 

n=490 (wt), 

! 

n=816) (mt)].  
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Figure 7.5: (Top) Directional mode time and (bottom) re-orientation mode time 
distributions for the two cell types. The mode time distributions are exponentially 
distributed and hence the inverse of the fitting parameter for the distribution is equivalent 
to the average mode time.  
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Figure 7.6: The turn angle distribution (between the directional modes) for the two cell 
types was found to be similar indicating that it is the directionality within the re-
orientation modes that seems to control the overall persistence of the cell type. 
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Figure 7.7a: Mean squared displacement trends for the two cell types over the course of 
12 hours. Both the wt and mt cells display super-diffusive (close to ballistic line) motion 
at the end of 12 hours. The greater mean squared dispersal after 12 hours in the mt cells 
could be the result of both higher mean cell speed as well as greater directionality during 
the re-orientations. 
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Figure 7.7b: Linear fit of the logarithm of mean squared displacement trends for the two 
cell types over the course of 12 hours. The wt cells are less super-diffusive (slope =1.15) 
compared to mt cells (slope=1.54) at the end of 12 hours.  
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Figure 7.8: Top) Scaling law relationship between the mode times for prostate cancer 
cells; bottom) the mean mode times on a log-log plot for the two cell types, indicating 
that the more persistent mt cells are on the bottom right, meaning that their re-orientation 
mode times are smaller. 
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CHAPTER VIII 

 

SUMMARY AND FUTURE WORK 

 

8.1 Summary 

In summary, bimodal analysis, a cellular-scale approach to characterize eukaryotic single 

cell migration by performing a model-based analysis of single cell video-microscopy data 

was developed and applied to several eukaryotic cell types. In Chapter II, bimodal 

analysis framework was initially developed for the MCF-10A cells based on the random 

motility migration data for these cells. The directional and re-orientation phases were 

identified and quantified. The single cell dynamics of these cells such as the turn 

probability and turn angle distribution were computed. This work of application of 

bimodal analysis to MCF-10A, mammary epithelial cells was published beginning of this 

year in Annals of Biomedical Engineering [98]. 

 Simulations of mammary epithelial cell random migration using the parameters 

obtained from bimodal analysis of the MCF-10A panel of cell lines were performed using 

cellular dynamics (CD) scheme, originally developed for bacterial chemotaxis [35] and 

the neuT version (oncogenic expression of Her-2) was found to have higher random 

motility coefficient (described in Chapter III). A bimodal correlated random walk 

(BCRW) model was developed in an attempt to describe the foraging strategy of single 

mammary epithelial cells from multi-cellular organisms and a comparison between our 

BCRW model and persistent random walk model with experiments was made in Chapter 

IV.  
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 In Chapter V, application of bimodal analysis to other eukaryotic cell types from 

Dictyostelium, neutrophils to fibrosarcoma apart from mammary epithelial cells was 

illustrated to arrive at a general scaling principle to describe non-directed and 

chemotactic cell motility. An experimental setup to subject MCF-10A cells to time 

increasing concentration of chemoattractant was described in Chapter VI and it was 

found that the temporal gradient did not induce any chemotactic effect on mammalian 

cells. The quantitative analysis of migration prostate cancer cells expressing different 

versions of matriptase protease on laminin-5 substrate was performed in Chapter VII and 

matriptase overexpressing cells were found to be more persistent.  

8.2 Potential future work 

Bimodal analysis could be modified to characterize single cell migration in three-

dimensions, possibly in the in vivo environment, upon availability of such a data. One of 

the challenges will be to sample the cell migration process frequently and at a high 

resolution for application of bimodal analysis in 3-D. Application in 3-D could help in 

improved quantification of cell migration through intricate extra-cellular matrix pattern 

and reveal the effect of a particular cell type specific factor such as the over-expression of 

a protease on parameters such as turn angle distribution. This would also serve to 

quantify the differences between the 2-D and 3-D environments. 

There is also the possibility of application of bimodal analysis to quantify cell 

migration in other cell types such as keratinocytes, lymphocytes, etc. Bimodal analysis 

could also be modified in future to accommodate an additional criterion that would 

explicitly take into account the cellular morphology, which would help in correlation to 

spatial distribution of a specific motility related protein such as actin. This could assist in 
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making a better connection between the observed overall cellular-level behaviors such as 

change in mean cell speed to the specific molecular process responsible for this outcome. 

Bimodal analysis could also be used to connect non-directed and chemotactic motility in 

epithelial cells by a scaling law as was shown for Dictyostelium. 

The BCRW framework described in this work could be used in a more realistic 

description of mammalian cell motility for the development of potentially advanced 

models of tumor progression. 
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