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Abstract

The density profile of an elastic fiber like DNA will change in space and

time as ligands associate with it. This observation affords a new direction

in single molecule studies provided that density profiles can be measured in

space and time. In fact, this is precisely the objective of seismology, where

the mathematics of inverse problems have been employed with success.

We argue that inverse problems in elastic media can be directly applied

to biophysical problems of fiber-ligand association, and demonstrate that

robust algorithms exist to perform density reconstruction in the condensed

phase.
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1 Introduction

In many situations and applications it is of interest to understand the dynamics

of interaction between a biopolymer fiber and a ligand. For instance it is of great
interest to understand how proteins move along and around DNA fibers and in-
teract with the various sequence elements in space and time. Crystal structures
of proteins bound to DNA have shown how certain classes of transcription fac-
tors physically recognize specific DNA sequences, but these data contain very
few if any clues about the dynamical processes that led to the observed static
associations. The suggestion has been made that DNA binding proteins do not
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undergo three dimensional diffusion in the nucleus, but rather that they en-
gage in essentially one dimensional diffusion by hoping or crawling on, along
or between the fibers, possibly biased toward the DNA by a potential (Gowers
et al., 2005; Graneli et al., 2006; Halford & Marko, 2004; von Hippel & Berg,
1989; Wang et al., 2006). How does a DNA binding protein acquire a target
site? Do DNA binding proteins home in on their cis regulatory elements (CRE)
like a docking space shuttle guided by a potential? Is it possible for a DNA
binding protein to collide with a fiber and then corkscrew along the double he-
lix like a monorail, riding either the major or the minor groove? When two or
more transcription factors compete for binding sites at a promoter, how do the
microscopic dynamics evolve, and what are the dynamical attractors?

The beauty and power of single molecule studies is that they hold the po-
tential to answer questions at the level at which biofolks (scientists of any flavor
working on bioproblems) imagine and conceive molecular models. In fact, sin-
gle molecule studies live in that magical space that lies below the imprecision
of ensemble averages and at the same time remains above the uncertainty of
quantum effects.

At present there is no equation for genetic signal transduction that is analo-
gous to the Hodgkin–Huxley model that has been so foundational and ubiquitous
in understanding neural or ionic signal transduction. The development of such
a model is central to ongoing efforts in systems biology to interpret and ulti-
mately predict metabolic, genomic and proteomic data. Such a model cannot
be fully developed without a sound physical, mathematical theory of fiber-ligand

interaction, because the control of genetic signal transduction involves dynamic
fiber-ligand interactions along virtually every pathway. The first aim of this
manuscript is to describe a novel paradigm with which it may be possible to
study the dynamics of fiber ligand association at the single molecule level.

1.1 Inverse Problems

At the core of the approach that we are proposing lies an inverse problem.
Many problems in experimental science are inverse problems of one sort or
another (Sondhi & Gopinath, 1971), since it is often easy to measure the output
of a system as a whole. If the output is uniquely determined by some internal
property then it becomes possible to invert the known output to determine the
internal property. The following example lies close to the heart of this report and
has a long mathematical history (Kirsch, 1996). Consider a taut string of unit
length, whose fixed ends correspond with the end points of the unit interval, with
a variable mass density ρ(x) along its length. It is well known that, if plucked,
the string will vibrate with frequency ω and with a standing wave profile w(x)
if and only if the differential equation w′′(x) +ω2ρ(x)w(x) = 0 is satisfied. The
direct problem is to compute the frequencies ω and their corresponding profiles,
given a density function. The inverse problem, in this case, is to determine the
density function from a recording of the vibrational frequencies.

The string in this problem is an example of an elastic medium, and the
density is an example of one of its material properties. Very often in nature we



Molecular Seismology 3

are able to record the behavior of a system, or develop devices to do so. The
ability to use these recordings to infer material properties is clearly useful. The
classic example of this is seismology, where the elastic medium is the ground,
and how it vibrates in response to a sound wave, is used to determine its material
properties and perhaps the presence of low density pockets of oil. Consequently,
there is a large literature and huge interest in inverse problems involving elastic
media.

Waves and vibrations have tremendous discriminatory power. This power
has been exploited in many disciplines and applications, but surprisingly not in
biophysical assays involving polymer association. This omission seems purely
historical and not technical. In this manuscript we outline an inverse problem to
detect molecular association of single molecules, and describe an algorithm that
could conceivably be used for what we shall refer to as molecular seismology.

1.2 Application to Biophysics

It is currently of great interest to measure how proteins are binding to an indi-
vidual DNA fiber in space and time. For this application the DNA can usefully
and practically be conceptualized as an elastic fiber along whose length there
exists a well defined density profile ρ. As a ligand interacts and becomes as-
sociated with a fiber, the density profile will change, in space along the fiber
and in time if the ligand moves along the fiber or disassociates. Knowledge of
the function ρ(x, t) informs us about the dynamics of the association process
between the ligand and the fiber, see Figure 1.

The central idea of molecular seismology is to subject single, solvated fibers
to oscillation. How the induced waves propagate and scatter can depend sensi-
tively and robustly on the material properties of the elastic fiber. Conversely, it
is possible to determine the material properties of an elastic fiber from a mea-
sured trace of its vibration in response to a known impulse, see Figure 2. If
one can induce and measure vibrations along a single DNA molecule, incubated
with proteins, the dynamics of the density profile will reveal the associated
motion of the proteins along the fiber. In principle, elastic deformations that
produce compression, shear, or rotational waves could be used reconstruct time
and space dependent material properties, any of which could directly report on
the dynamics of molecular associations. We focus here on transverse oscillations
and the density profile for clarity.

There is strong theoretical and practical evidence to suggest that dsDNA
fibers can be accurately modeled as elastic fibers that will support elastic wave
propagation. Measurements of such quantities as the persistence length, the
length scale beyond which the elastic cost of bending is totally negligible, ob-
tained from experiment are in good agreement with theoretical calculations of
50nm, with a small sequence dependent variation. The gross elastic parameters
of DNA have been measured over the last two decades, see for instance the re-
views (Benham & Mielke, 2005; Hagerman, 1988) and many of the most relevant
quantities are collected and discussed in the modeling work of (Bishop et al.,
2004). The data and modeling support the hypothesis that DNA fibers are
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akin to soft materials like polyethylene or rubber. More recently, through single
molecule force–extension measurements, it is well established that for tension
below roughly 65 pN, dsDNA fibers are perfectly elastic. Many studies (Pant
et al., 2004; Sischka et al., 2005; Smith et al., 1992), to name only a few, have
used single molecule techniques and the longitudinal overstretching transition to
detect and monitor the binding of ligands to DNA. Further, the early landmark
experiments of (Hatfield & Quake, 1999; Quake et al., 1997) and (Crut et al.,
2003) definitively demonstrated that moderately stretched dsDNA fibers prop-
agate transverse elastic waves. In fact both experiments directly measured the
normal modes of individual, solvated, dsDNA fibers. Finally, all atom molecular
dynamics simulations have shown that dsDNA fibers support elastic waves (Mat-
sumoto & Olson, 2002) and that all atom molecular dynamics simulations agree
with continuum PDE models of elastic rods (Bishop et al., 2004). Thus, many
lines of experimental and theoretical evidence strongly support the notion that
dsDNA fibers support elastic waves and that these can be accurately modeled
with continuum models.

1.3 Experimental Foundations

As we endeavor to investigate the feasibility of the molecular seismology ap-
proach and the considerations involved in building a device to measure the
dynamics of protein-DNA interactions using this technique, we must investigate
and answer at least the following four extended questions.

Which measurements lead to well posed inverse problems?

Well posed problems posses unique solutions that change continuously as
a function of the input. From an experimental point of view this is the most
crucial question. Which device designs will produce measurements that can
robustly be inverted? Setting our initial expectations short of full inversion we
might consider experimental designs that lend themselves to simple statistical
signal detection schemes that could discriminate between unladen and laden
fibers, or that can pattern match pre–recorded control signals.

In seismology, much consideration has been given to reflection problems:
the source of vibrations and the detector are placed at the same boundary
point (the surface of the earth). While, for finite elastic fibers, transmission
problems would appear to be more natural. In a transmission problem vibrations
are actuated from one end of the fiber and measured at the other. We have
investigated a number of experimentally plausible configurations for molecular
seismology.

What theorems are known concerning density reconstruction?

For deterministic, semi–infinite strings as well as finite strings, the recon-
struction of material profiles from data have been shown to be well posed under
mild smoothness assumptions on the profile of the material property.

Are there algorithms capable of density reconstruction?

Several algorithms have been proposed in the literature. We have extended
one of these and use it to examine a set of feasible problems.
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What are the effects of stochasticity?

As DNA–protein interactions take place in the condensed phase, thermal
fluctuations and viscosity become important and can confound and degrade the
ability to measure vibrations. Very little is known theoretically. A contribution
of this paper is to examine these effects.

The remainder of this paper is addressed towards answering these questions.

2 Model, Notation and Known Results

The experimental work described in (Crut et al., 2003; Quake et al., 1997)
justify the consideration of simple elastic models to describe and investigate
the transverse vibrational motion of DNA fibers over length scales that exceed
its persistence length. Correspondingly, we consider here perhaps the simplest
mathematical description of an elastic fiber. We consider the one dimensional
non homogeneous wave equation with damping as a model for the transverse
oscillation of the centerline of a dsDNA fiber immersed in an aqueous heat bath,

%(x)utt(x, t) + νut(x, t) −Euxx(x, t) = F (x, t). (1)

The variable x represents the distance along the centerline of a finite elastic fiber
and correspondingly takes values in a finite interval [0, `]. Here u represents the
transverse displacement of the centerline. The mass density, % > 0, is assumed
to be sufficiently smooth, say twice differentiable (Symes, 1986). The optimal,
or weakest, conditions under which inversion theorems can be proven appear
to be unresolved. Most of the published algorithms can reconstruct piecewise
constant material profiles. The friction coefficient ν and the tension E are
assumed to be positive, known constants. Two related quantities are the wave
speed c :=

√

E/% and the impedance η :=
√
E%. The external force F can be

either deterministic, stochastic or some combination of both. A large part of
this investigation is devoted to demonstrating that density inversion is possible
for signals from elastic fibers immersed in a frictive heat bath.

Throughout the remainder of this paper, the function ϕ(t) will denote a
boundary source. The function ψ(t) will represent additional information corre-
sponding to a measured response at a boundary point. The boundary data con-
sidered here are either of Dirichlet u(0, t) := ϕ(t), or Neumann ux(0, t) := ϕ(t)
type. The function ϕ is usually chosen to be an approximation of the Dirac δ–
function, although it can be chosen quite arbitrarily, since any particular choice
determines the response to an impulse δ(t), and this in turn determines the com-
plete Neumann–to–Dirichlet map (Isakov, V., 1998, section 8.1). Given initial
and boundary conditions and a density profile it is possible to solve the wave
equation (1) and determine the function ψ. The goal is to study the inversion
of this parameter–to–solution map % 7→ ψ.

The dynamics of the wave equation can be considered with a variety of
different initial and boundary conditions. Historically, in exploration geology,
shear waves are induced into a quiescent elastic medium at a boundary and
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the reflected response is measured at the same boundary, the surface of the
earth. It is very surprising that this setup, born of necessity, is in fact extremely
powerful and robust. Consider a reflection problem in which the fiber is initially
undisturbed and motion is excited through the boundary contact force ϕ(t)

u(x, 0) = ut(x, 0) = 0,

ux(0, t) = ϕ(t),

u(`, t) = 0,

ψ(t) = u(0, t).

Theoretical results concerning the identifiability of material properties are
generally formulated for wave equations that have been transformed into travel
time coordinates using the transformation

T%(s) =

∫ s

0

%
1

2 (x) dx. (2)

Since the density is assumed to be strictly positive, the travel time transfor-
mation (2) is injective. This transformation is extremely useful because it
“straightens out” the characteristic curves, see for instance (Burridge, 1980;
Pivovarchik & van der Mee, 2001; Symes, 1986), and makes it possible to define
the parameter–to–solution map as a map between suitable function spaces. As
the density % is unknown in the inverse problem, it is not possible in a reflection
problem to determine the minimal time T := T (`) from which the knowledge of
ψ allows the unique determination of %.

An important observation in the reflection problem is that the boundary con-
dition at the far end, `, is immaterial, at least up to twice the travel time, T (`),
indeed, the string could continue past `. This observation implies that results
for the reflection problem while technically proven for semi–infinite strings, ap-
ply directly to finite strings in contrast to some existing results for transmission
problems.

For the case ϕ = δ, Symes proved that ψ on [0, 2T ] determines the impedance
η(z), provided log η ∈ H1[0, T ] (the Sobolev space consisting of those square in-
tegrable functions that possess a weak derivative that is also square integrable).
In addition he characterized the range of the map η 7→ ψ and provided a local
Lipschitz estimate of the type

||η1 − η2||H1 [0,T ] ≤ C||ψ1(0, ·) − ψ2(0, ·)||H1[0,2T ] (3)

where the ψi are the responses corresponding to the impedances ηi. An estimate
of the type (3) is important with regard to the numerical stability of inversion
algorithms as well as any statistical signal detection technique that might be
considered to detect deviations from uniform density or impedance.

It has been shown in (Rakesh & Sacks, 1996) and further by (Alekseev & Be-
lonosov, 1999) that for a semi–infinite string whose impedance is constant after
a certain point, that the transmission and reflection problems are equivalent for
the case of the Neumann–to–Dirichlet map. Further, (Rakesh, 1998) has shown
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that impedance inversion from the Dirichlet–to–Neumann map is well posed for
a transmission problem. However, the proof of this result depends on the fact
that the string is semi–infinite and continues past the point of measurement.

There have been many results concerning density reconstruction for explic-
itly finite strings, see (Pivovarchik & van der Mee, 2001; Rundell & Sacks, 1992;
Rundell, W. & Sacks, 1992) and references therein. Theorems involving finite
strings with fixed or freely damped ends are most directly relevant to the phys-
ical problem we are interested in solving. In general, existing studies of finite
strings have approached the inverse Cauchy problem in the frequency domain.
Some recent developments are pointing the way toward developing time domain
analysis and algorithms for finite strings (Browning, B. L., 2000).

3 Algorithms

Many algorithms have been proposed to solve inverse problems stemming from
one dimensional wave equations similar to equation (1). Roughly speaking they
can be divided into three classes. The earliest approaches, whose roots lie in
quantum scattering theory, involve solving the classical Sturm–Liouville prob-
lem in the frequency domain. Excellent descriptions can be found in (Alekseev
& Belonosov, 1999; Rundell, W. & Sacks, 1992) and in the references therein.
A second set of algorithms follow from wave theoretic approaches that reformu-
late the inverse problem as a boundary value problem (Rakesh & Sacks, 1996;
Rundell, W. & Sacks, 1992; Symes, 1983; Weston, 1972), and finite difference
schemes have been published to solve reflection problems (Bube & Burridge,
1983; Claerbout, 1976; Santosa & Schwetlick, 1982) and references therein. A
conceptually third set of methods are based on optimizing a suitably regular-
ized objective cost functional that directly compares the measurement and the
model (Symes, 1986; Tadi, 1997).

We have extended and implemented a variational method proposed in (Tadi,
1997). We have chosen this approach because it is flexible with respect to the
model, flexible with respect to the boundary data, works directly with signals
measured in real time (as opposed to travel time), and is robust with respect
to noise. The robustness in the face of noise is not limited simply to additive
noise in the measurement, but the method is robust with respect to natural
noise arising from a frictive heat bath and modeled directly in the equations
governing the elastic media.

Given a measurement ψ, we follow (Tadi, 1997) in defining a regularized,
least squares type, cost functional for a pair (u, %) to be

J(u, %) =
1

2

∫ T

0

(ψ(t) − u(0, t))2 dt+
α

2

∫ T

0

∫ `

0

%2
t (x, t) dx dt. (4)

The constant α > 0 is a regularization parameter (Engl et al., 1996; Kirsch,
1996). The derivation and implementation of an optimization algorithm and
its modification for alternative boundary conditions are described in detail in
the appendices. The principal idea is to write the density profile as a separable
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function of space and time, with a fixed spatial basis and time varying coefficient
functions. The time dependent coefficient functions are allowed to evolve from
an arbitrary initial state to some final equilibrium that presumably fits the true
density. Notice that the regularization term goes to zero when the density profile
becomes stationary in time. The Euler–Lagrange equations that result from
the cost functional (4) describe the equations of motion for the time dependent
coefficient functions and these equations form the basis for an iterative numerical
algorithm that is described in the appendix.

The algorithm is of the steepest descent type, and often with non-convex
variational problems, multiple local minima confound convergence to a global
minimum from an arbitrary initial condition. For the problems that we are
considering, a constant density profile is the most natural initial condition.
Several algorithms have been proposed to deal with the existence of local min-
ima (Klibanov & Timonov, 2004; Santosa & Schwetlick, 1982; Symes, 1986),
prominent among them is the layer stripping technique. However, while it
has been possible to describe layer stripping or downward continuation tech-
niques for reflection problems, no such formulation has appeared for transmis-
sion problems, apart from the general convexification procedure described by
Klibanov (Klibanov & Timonov, 2004). This stems from the important obser-
vation that reflections are time ordered according to distance traveled into the
fiber, while even the earliest signals from transmission have sensed the entire
fiber.

4 Frictive Heat Bath

One of the principle differences between the inverse problem in seismology and
biology, apart from the scale, is the addition of a frictive heat bath. Intra-
cellular biology happens in the condensed phase and the DNA fibers we wish
to investigate are suspended in aqueous solution. The effects of a heat bath
are traditionally and elegantly incorporated into molecular models through the
combination of viscous dissipation and random forcing.

The Langevin equation has a long history in physics and mathematics and
was developed to model the influence of a frictive heat bath, see for instance (Bu-
dini & Caceres, 2004; Chandler, 1987; Kubo, 1966; Zwanzig, 2001). The fluctua-
tion dissipation theorem provides the insight required to relate the fluctuations
of the random force to the viscous dissipation with or without memory (Bu-
dini & Caceres, 2004; Kubo, 1966). For spatially extended elastic systems like
polymers, a widely adopted approach has been to consider the system as a
discrete collection of beads, whose motion is described by a coupled system
of Langevin equations (Crut et al., 2003; Lamm & Szabo, 1986; Marciano &
Brochard-Wyart, 1995). Alternatively, continuum models and algorithms have
been developed to explore fluid-structure interactions (Peskin, 2002).

It is possible to analytically solve for the hydrodynamic force exerted on an
oscillating but rigid cylinder (Rosenhead, 1963, VII 12). This result has been
used recently with the beam equation, motivated by goals similar to ours, to
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model the dynamics of cantilevers in solution using the fluctuation dissipation
theorem (Clarke et al., 2006; Paul & Cross, 2004; Sader, 1998). An analytical
theory akin to that for the Langevin equation does not appear to exists for the
wave equation and thus for soft elastic materials oscillating in solution. Of the
few analytic results available for the wave equation, Caithamer and Belinskiy
have shown that under suitable conditions on the spatial correlation of the
noise, f(x, y), the energy of a fiber in frictive heat bath converges exponentially
to an equilibrium value that depends on a ratio of the noise to the damping
coefficient (Belinskiy, B. P. & Caithamer, 2001b, Theorem 2).

In the absence of a broader theory for the wave equation, we model vis-
cous dissipation by adding νut(x, t) on the left hand side, and a random force
F (x, t) := Ġ(x, t) on the right hand side of equation (1). More complex mod-
els of dissipation involving memory kernels have been considered in the wave
equation literature to model damping along a wave guide (Kroller & Probst,
1999) and can be incorporated into the model (1) if and when measurements
or evidence support this extension. Typically, G is an (L2-valued) Brownian
motion, whose derivative is informally a stochastic process with expectations:

E[F (x, t)] = 0, (5)

E[F (x, t)F (y, s)] = σ2δ(t− s)f(x, y), (6)

where f is called a spatial correlation function, see (Belinskiy, B. P. & Caithamer,
2001a,b).

As described in the previous section, and further in the appendix, the cost
functional J can be utilized with equations that model a heat bath. We have uti-
lized this approach to study density reconstruction from various boundary and
initial conditions corresponding to potential experimental designs for manipu-
lating dsDNA fibers in solution. We have identified two distinct and natural nu-
merical approaches. In an approach denoted as average over realizations (AOR),
a signal is recorded from the model with a realization of the random force F .
The Euler-Lagrange equations (23) directly model this force, but while we have
measured the system response ψ(t), we do not have access to the particular
realization of the random force. Thus, we perform the numerical reconstruction
to convergence, with a random realization. The reconstruction procedure is per-
formed m-times, each reconstruction, %i, from a realization Fi of the random
force. It is natural to consider the pointwise average of these %̄ := 1

m

∑m

i %i.
In a second approach denoted as average over signals (AOS) we take advan-

tage of the fact that the average of the random force is zero. In this approach
we average several recorded signals to produce E(ψ) := ψ̄, and apply the recon-
struction algorithm with mean force equal to zero.

5 Results

Computations were performed with matlab, and the routines are available upon
request. A standard finite–difference leapfrog scheme was used for the numerical
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integration of all occurring wave equations (Quarteroni, A. et al., 2000). Spatial
discretization was accomplished using piecewise constant functions. The tension
parameter was chosen E = 1. The random force was implemented using the
function randn. In this study we do not explore spatially correlated noise and
take f(x, y) = δ(x − y).

We anticipate, at least initially that a single protein will be bombarding a
DNA fiber. For this reason, and because it is imagined that signal to noise issues
will pose the dominant experimental challenge, it is sufficient for us to confine
ourselves to the consideration of a simple density profile. The behavior of the
cost functional for a reflection problem, without intrinsic noise and damping,
was thoroughly explored on a large variety of density profiles in (Tadi, 1997).
Our focus is on alternative boundary conditions and reconstructibility from the
condensed phase and in order to meaningfully compare the performance as a
function of noise strength it is important to have a gold standard density profile.
Therefore, we confine our attention to the reconstructibility of the following
smooth density profile:

%(x) := 1 + exp

(

− (x− 1/2)2

(1/5)2

)

(7)

The natural starting density profile for the iterative algorithm is a constant
density. In the AOR procedure it may be desirable to converge solutions from
a variety of independent initial conditions, although we do not focus on this
possibility in this paper.

A finite width, smooth approximation of a delta pulse was used as excitation
in the Neumann–to–Dirichlet transmission and reflection problems. As with
most iterative algorithms, one must choose a heuristic stopping criterion. A
reasonable criterion for terminating the iteration procedure is to consider the
improvement of the cost functional S(n) := J(%n)/J(%1).

The root mean square deviation or ||%−%∗||2 :=
√

∫ 1

0
(%− %∗)2 dx norm was

used to quantitate the error of the reconstructions from the true density.
Through preliminary reconstructions it was observed that the presence of

damping did not prevent convergence but rather only slowed the rate of con-
vergence. Values of S as a function of damping strength are reported in table
1.

Given the data in table 1 and the theory described in (Belinskiy, B. P. &
Caithamer, 2001a,b) it is reasonable to fix the damping parameter ν = 1 in
subsequent reconstructions and explore a range of noise strength.

5.1 Reconstruction from Reflection

Suppose the source ϕ(t) and the measurement ψ(t) are placed at the same
boundary point, 0, of the interval [0, `]. There are 4 choices of boundary condi-
tions that give rise to a well–posed direct problem. Since the boundary condition
at the far end does not influence the response up to the two–way travel time
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only two choices are relevant.

ux(0, t) = ϕ(t), u(`, t) = 0, ψ(t) = u(0, t), and (8)

u(0, t) = ϕ(t), u(`, t) = 0, ψ(t) = ux(0, t). (9)

The canonical Neumann–to–Dirichlet boundary setup (8) proved to be the
most robust in the sense that it produced the highest quality reconstructions
with the fewest iterations, and the algorithm showed excellent convergence to-
ward the true density, under all conditions of noise for both reconstruction
strategies and with all density profiles. Reconstructions from signals with damp-
ing but without random forcing converge rapidly to the true density, as can be
seen in Figure 3. Forty reconstructions from a noisy, damped string, each using
a different realization of the random force together with their AOR reconstruc-
tion is shown in Figure 5. An AOS reconstruction is shown in Figure 4 in
comparison with the true density.

Using a set of 600 independent reconstructions we applied a standard boot-
strap algorithm (Efron, B. & Tibshirani, 1986) to estimate confidence intervals
about the the true density for the AOR procedure as a function of the number
of reconstructions, m, used to compute the average, see Figure 6. The results of
this calculation show a

√
m envelope that is expected from the Chebyshev in-

equality and the properties of the sample mean, and the derivative of this curve
is estimated to be within 17% of stationary when n is 40. Using the results of
this analysis we investigated the behavior of the AOS and AOR procedures as
a function of increasing noise strength, see Figure 7. The data indicate that
the error in the AOR reconstruction increases roughly linearly with the noise
strength from approximately 3.5% error and appears to level off below 10% error
(percentages are based on L2 norm of the true density). In contrast the AOS
reconstruction remained below 3% error and are seen to be relatively insensative
to noise. Because the AOS procedure tacitly assumes that the noise averages
out in the signal, this insensitivity is the expected behavior. This behavior is
observed with n = 5, and the variance becomes small and stable for n ≥ 15.

In contrast, the Dirichlet–to–Neumann reflection problem (9) was more sub-
tle and we were not able to converge reconstructions through the cost functional
optimization using simple Heaviside forcing. This generic forcing was not able
to adequately induce discrimination between the constant and true density re-
sponses, while in the Neumann–to–Dirichlet problems the induced differences
in signal were of the order of the signals themselves, see Figure 8. The failure of
the cost functional optimization algorithm in this situation is purely numerical
in the sense that theorems exists, as described in the previous sections, that
guarantee that the inverse problem has a unique solution. Furthermore, the
algorithm of (Santosa & Schwetlick, 1982), that is completely symmetric with
respect to ϕ and ψ and consequently with respect to the two distinct boundary
conditions, was able to exactly reconstruct the true density profile from impulse
forcing for an undamped, unforced inhomogeneous wave equation in impedance
form. However, the algorithm of (Santosa & Schwetlick, 1982) completely failed
when even the slightest damping and/or noise were introduced. It is important
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to observe that the two algorithms are founded on completely different logic
and that the algorithm of (Santosa & Schwetlick, 1982) determines the density
directly from a single response through its behavior along a special charac-
teristic, while the cost functional optimization must be able to discriminate
between the signals generated from the densities along the path determined by
the Euler-Lagrange equations. Given these observations, we were able to con-
verge reconstructions for problem (9) with cost functional optimization using
sinusoidal forcing, see Figure 8. The obvious drawback is that in contrast to
the generic impulse or Heaviside forcing, sinusoidal forcing requires a choice of
frequency. Given that we know the true density in our theoretical experiments,
it is straightforward to find such a frequency, but in an actual experiment this
will be more difficult unless we can discover a systematic and natural solution
to this problem. We are currently exploring this technical issue.

5.2 Reconstruction from Transmission

If the source and receiver are placed at opposite ends of the fiber then four
distinct well–posed problems result.

ux(0, t) = ϕ(t), u(`, t) = 0, ψ(t) = ux(`, t), (10)

ux(0, t) = ϕ(t), ux(`, t) = 0, ψ(t) = u(`, t), (11)

u(0, t) = ϕ(t), u(`, t) = 0, ψ(t) = ux(`, t), and (12)

u(0, t) = ϕ(t), ux(`, t) = 0, ψ(t) = u(`, t). (13)

In contrast to reflection problems, because of (17), ψ(t) = 0 for 0 ≤ t ≤ T%(`),
the travel time can be determined. It is also important to observe that given any
approximation to the true density provides an approximation the the travel time
transformation, this fact could be utilized to impose an additional constraint in
the cost functional.

The AOS procedure was relatively insensitivity to noise in the transmission
problem (11), just as in the reflection problem. In contrast, however, the AOR
procedure produced not only more accurate results than the AOS procedure,
but the accuracy improved with increasing noise strength, in sharp contrast to
the behavior observed in the reflection problem. A partial understanding of
this phenomena is provided by observing and contrasting the individual recon-
structions used to compute the AOR average. In the reflection problem it was
observed that independent of the starting value of the constant density profile,
the iterations generally approached the true density from below. While, in the
transmission problem, the individual reconstructions, that differ in the particu-
lar realization of the random force, were far more uniformly distributed about
the true density. In this way the noise appears to have allowed the iterations to
approach the global minimizer from different directions on the cost surface.

Figure 6 illustrates the increase in precision of the AOR procedure as the
number of reconstructions m, is increased. In general, the accuracy of an
AOR reconstruction increases as the number of iterations, n, per realization–
reconstruction is increased, as can be seen in Figure 10. The precision and
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accuracy of the AOS procedure was seen to be completely analogous, where m
is the number of signals averaged over and n the number of iterations in the
zero–force reconstruction.

As described for the reflection problem the Dirichlet–to–Neumann transmis-
sion problem 12, the Dirichlet–to–Dirichlet problem 13 and the Neumann–to–
Neumann problem 10 were less robust and required a careful consideration of
the forcing function. Of these the Dirichlet–to–Dirichlet problem is perhaps the
most interesting because it is by far the most natural experimental design. This
is discussed in greater detail in the conclusions.

5.3 Homogeneous Boundary Conditions

In both the transmission and reflection problems described above, the motion
of the fiber was actuated at a boundary point. In this and the following section
we consider two problems in which data are collected at the boundaries but the
vibrations are induced through initial data.

u(x, 0) = u0(x), ut(x, 0) = v0(x). (14)

The problems are homogeneous in the sense that the boundary conditions are the
same at both ends of the fiber. Two measurements are taken, the complementary
data at both ends. Thus in the Dirichlet case we have

u(0, t) = 0, u(`, t) = 0,

ψ1(t) = ux(0, t), ψ2(t) = ux(`, t).
(15)

The homogeneous Neumann case

ux(0, t) = 0, ux(`, t) = 0,

ψ1(t) = u(0, t), ψ2(t) = u(`, t).
(16)

behaved in a qualitative and quantitatively similar way and we omit these re-
sults.

6 Conclusion

We have demonstrated that robust density reconstruction from synthetic signals
of an elastic fiber in a viscous heat bath is possible from at least four different
boundary conditions. From each of four experimentally relevant conditions, see
Figure 12, we have found that not only can a density profile be reconstructed
qualitatively, but quantitatively with errors that are less than 10% of the total,
and more typically less than 3% of the total with both the AOR and AOS pro-
cedures. The AOS procedure was shown to be generally insensitive to strength
of the noise. In at least one case we have shown that the presence of noise
actually improves the reconstruction process. These data indicate that the pro-
cess can succeed with measured experimental signals, provided that the model
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for the elastic behavior is reasonably accurate. We are currently working on
reconstruction from experimental signals.

We have found that Dirichlet–to–Neumann maps in reflection or transmis-
sion problems are more subtle and require the selection of nongeneric forcing for
the cost functional optimization algorithm to converge to the true density. We
are currently exploring this technical issue, however the larger point is that ini-
tial experiments should focus on either Neumann–to–Dirichlet or homogeneous
problems. We complete the discussion with a physical illustration of the four
boundary value problems that we have found to be robustly reconstructible and
provide plausible experimental designs for each.

It is possible to design actuators and detectors that induce or measure
changes in the position of a microparticle and more recently nanoparticles (Son-
nichsen et al., 2005). These changes correspond to Dirichlet conditions. It is
not so straightforward to induce or measure Neumann conditions. Designing a
method that alters ux(0, t) but not u(0, t) on the nanoscale is challenging. One
possibility is to apply a torque to the center of mass of a magnetic nanopar-
ticle, or a nanoparticle with a non vanishing dipole moment or a birefringent
nanoparticle (Friese, M. E. J. et al., 1998a,b). Progress in organic chemistry and
nanofabrication now provides the tools to chemically and mechanically manipu-
lated DNA fibers to construct devices of the kind required to perform molecular
seismology (Holzel et al., 2003). Armed with these tools we describe hypothet-
ical device designs corresponding to each of the four numerical problems that
yield robust reconstructions.

Figure 12 contains four drawings corresponding to dsDNA fibers, decorated
with nanoparticles and meant to be imagined as suspended in a fluidic chamber.
The top setup corresponds to the Neumann–to–Dirichlet transmission problem.
In this and other setups we imagine that the tension along the fiber is main-
tained by the hydrophobic force through a two phase separation. For instance
the nanoparticles could be decorated with alkane chains and suspended in hex-
adecane, while the polar dsDNA fiber lies suspended in an aqueous channel.
Two phase separations are among the most robust self organizing systems found
in nature. The arrows indicate that the Neumann condition at the left end is
actuated through a torque applied to the left nanoparticle while the Dirich-
let measurement at the right end is accomplished by monitoring the displace-
ment of the right bead. It has been shown that this could be accomplished by
monitoring the plasmon resonance of a gold or silver nanoparticle by darkfield
microscopy (Sonnichsen et al., 2005).

The canonical reflection problem is depicted second from the top. The right
end of the fiber is covalently attached to a support, the nanoparticle on the
left and the fiber are freely floating in solution. Perhaps as a manifestation
of Murphy’s inviolable law, this setup that displays the most mathematical
robustness appears physically to be the most challenging. The bottom two
figures depict the homogeneous problems whose motion is not actuated by a
boundary force. In the homogeneous Neumann problem, shown at the bottom,
the motion of the fiber could be passively agitated by the bath, or the fibers
motion could be induced by a short pulse from a laser tweezer. The vibrations
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at both ends could be sensed as described above. In the homogeneous Dirichlet
setup, both ends of the fiber are fixed and the torque on the beads is used to
measure a derivative.

Based on the premise that some material profile along a single molecule
of DNA will change as ligands associate with it, we have proposed an inverse
problem to image this change in space and time. We have shown that both
theoretically and numerically it is possible to invert density profiles from simple
elastic models. Moreover we have shown that it is possible to do so from fibers
immersed in a frictive heat bath in a natural way. Informed by known math-
ematical theorems, our numerical results, and the key technical developments
in the field of nanofabrication and single molecule detection, we have proposed
an experimental strategy with which it may be possible to record the signals
required by our theory of molecular seismology.

While we have focused our development around transverse displacements of
an elastic fiber, there is nothing intrinsic to inverse problems that would limit
them to this case. The molecular seismology approach could be implemented
mutatis-mutandis using instead longitudinal compression or rotational waves.
The focus in this discussion has been on density profiles, but it is especially im-
portant to note that in solution it may well be that the more informative and/or
tractable material property is ν(x). The larger, more important, abstract issue
that should not get lost in the details is simply that some material property will
change upon association and that a suitable inverse problem at the molecular
level can be solved to determine it and track the dynamics of the process. Fi-
nally, we note that there is nothing special about DNA fibers or the particular
elastic model, in fact the cost functional can accommodate beam equations that
model the motion of immersed cantilevers where the theory could be applied to
determine the mass distribution of DNA molecules adhered to it in space and
time. We are currently exploring many of these alternatives.
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A Formulation of the variational problem

In this appendix we discuss the cost functional, its modification for alternative
boundary conditions and the system of Euler-Lagrange equations that result
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from its optimization.
We begin by considering the canonical reflection problem, for which the cost

functional (4) and equations

u(x, 0) = ut(x, 0) = 0, (17)

ux(0, t) = ϕ(t), (18)

u(`, t) = 0 (19)

define the set of admissible functions, together with the requirement that % > 0.
The cost functional is constrained to consider a particular model through the
following standard construction.

G(x, t, u, %) = %(x, t)utt(x, t) + νut(x, t) −Euxx(x, t) − F (x, t) = 0.

This same device can be used to consider other models, linear or nonlinear,
implicit or explicit, for elastic fibers or cantilevers. The augmented Lagrangian
becomes

J∗(u, %, λ) =
1

2

∫ T

0

(ψ(t) − u(0, t))2 dt (20)

+

∫ T

0

∫ `

0

[α

2
%2

t + λG(x, t, u, %)
]

dx dt,

where λ(x, t) is the Lagrange multiplier. If (ũ, %̃, λ̃) is an admissible variation
then the variation of the augmented cost functional in this direction is

δJ∗(u, %, λ; ũ, %̃, λ̃) =

∫ T

0

−(ψ(t) − u(0, t))ũ(0, t) dt

+

∫ T

0

∫ `

0

[

α%t%̃t + (%utt + νut −Euxx − F ) λ̃+ λ(utt%̃+ %ũtt + νũt −Eũxx)
]

dx dt.

Performing integration by parts on all terms that contain %̃t, ũtt, and ũxx gives

δJ∗(u, %, λ; ũ, %̃, λ̃)

=

∫ T

0

−(ψ(t) − u(0, t))ũ(0, t) dt+ α

∫ `

0

[

[%t%̃ ]T0 −
∫ T

0

%tt%̃ dt

]

dx

+

∫ T

0

∫ `

0

[(%utt + νut −Euxx − F )λ̃+ λutt%̃ ] dx dt

+

∫ `

0

[

[λ%ũt]
T

0 − [(λ%)tũ]
T

0 + ν [λũ]
T

0 +

∫ T

0

[(λ%)tt − νλt ]ũ dt

]

dx

−E

∫ T

0

[

[λũx]
`

0 − [λxũ]
`

0 +

∫ `

0

λxxũdx

]

dt.
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The boundary conditions on u require that we add variations which respect
these, i.e.

ũ(x, 0) = 0, ũt(x, 0) = 0,

ũx(0, t) = 0, ũ(`, t) = 0.

This renders some of the boundary terms zero. We impose final conditions

λ(x, T ) = 0, (21)

∂

∂t
(λ(x, t)%(x, t))

∣

∣

∣

t=T
= λt(x, T )%(x, T ) + λ(x, T )%t(x, T ) = 0. (22)

Because of condition (21), condition (22) only implies that

λt(x, T ) = 0

is necessary. In addition the Lagrange multiplier must satisfy the spatial bound-
ary condition

λ(`, t) = 0.

The boundary term containing % must vanish,

%t(x, 0)%̃(x, 0) = %t(x, T )%̃(x, T ) = 0.

This can only be achieved by requiring

%t(x, 0) = %t(x, T ) = 0,

since the alternative, imposing an initial respectively a final condition on % itself
is not sensible. We obtain the following necessary condition for a critical point
of the augmented cost functional

∫ T

0

∫ `

0

{[

(−α%tt + λutt) %̃+ (%utt + νut −Euxx − F ) λ̃+ ((λ%)tt − νλt −Eλxx) ũ
]

dx

+ (−(ψ(t) − u(0, t)) −Eλx(0, t)) ũ(0, t)
}

dt = 0,

for all admissible variations. With the help of the Lagrange lemma (Trout-
man, 1983) we obtain the following partial differential equations as necessary
conditions to a minimizer

%utt + νut −Euxx = F, (23)

(λ%)tt − νλt −Eλxx = 0, (24)

−α%tt + λutt = 0. (25)

together with the boundary condition

−(ψ(t) − u(0, t)) −Eλx(0, t) = 0. (26)

These equations are supplemented by the initial, final and boundary conditions.
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A.1 Transmission Problem

To adapt the above strategy to the transmission problem (11) it is necessary to
modify the cost functional to take into account the boundary conditions

J(u, %) =
1

2

∫ T

0

(ψ(t) − u(`, t))2 dt+
α

2

∫ T

0

∫ `

0

%2
t (x, t) dx dt.

The same partial differential equations (23)–(25) are obtained. The backward
adjoint equation has to be supplied with the boundary condition

λx(0, t) = 0, Eλx(`, t) − (ψ(t) − u(`, t)) = 0.

A.2 Homogeneous Boundary Conditions

For the problem with homogeneous Dirichlet boundary conditions (14)–(15) the
cost functional J becomes

J(u, %) =
1

2

∫ T

0

(

(ψ1(t) − ux(0, t))2 + (ψ2(t) − ux(`, t))
)2

dt

+
α

2

∫ T

0

∫ `

0

%2
t (x, t) dx dt.

The boundary conditions to the backward adjoint equation are derived

Eλ(0, t) − (ψ1(t) − ux(0, t)) = 0, −Eλ(`, t) − (ψ2(t) − ux(`, t)) = 0.

For the inverse problem with homogeneous Neumann boundary conditions, the
cost functional J becomes

J(u, %) =
1

2

∫ T

0

(

(ψ1(t) − u(0, t))2 + (ψ2(t) − u(`, t))2
)

dt

+
α

2

∫ T

0

∫ `

0

%2
t (x, t) dx dt.

The boundary conditions to the backward adjoint equation are derived

−Eλx(0, t) − (ψ1(t) − u(0, t)) = 0, Eλx(`, t) − (ψ2(t) − u(`, t)) = 0.

B The iterative algorithm

For completeness we describe the iterative algorithm used to solve the Euler–
Lagrange system that results for the inversion problem from reflection data for
the case of the Neumann–to–Dirichlet map. The method of solution for the
other cases is completely analogous.

First we argue that there exists a unique optimal solution. Let the true
density %∗ = %∗(x) be given. Let u∗ be the corresponding solution of the wave
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equation (1)–(19) with boundary conditions (8). Then clearly the boundary
condition (26) implies that the Lagrange multiplier vanishes identically. This in
turn implies that %tt = 0, and with %t(0, x) = 0 it follows that % is independent
of time. In summary, the triple (u∗, %∗, λ∗ ≡ 0) is the unique solution of the
system of partial differential equations (23)–(25). This implies that the pair
(u∗, %∗) is a critical point of the regularized cost functional J from equation (4)
constrained to the level set {G(u, %) = 0}, with J(u∗, %∗) = 0 as the critical
value. Of course, since α > 0, this is the global minimal value of J .

Suppose that an approximate density %n = %n(x), n ≥ 1 has already been
calculated. During an iteration step this time–independent density is used to
determine the solution un of the forward wave equation and the solution λn of
the backward adjoint equation

%n(x)un
tt(x, t) + νun

t (x, t) −Eun
xx(x, t) = F,

%n(x)λn
tt(x, t) − νλn

t (x, t) −Eλn
xx(x, t) = 0,

subject to the boundary condition

−(ψ(t) − un(`, t)) +Eλn
x(`, t) = 0.

Using un and λn, the equation

%tt(x, t) = − 1

α
λn(x, t)un

tt(x, t) (27)

is integrated forward in time, with initial conditions %(0, x) = %n(x), %t(0, x) =
0. To ensure that the value of the cost functional is decreased, we have to switch
the “direction” along which %(x, t) evolves, hence the minus sign in equation
(27), (Zhdanov, 2002). The density is updated according to

%n+1(x) = %n(x) − 1

α

∫ T

0

∫ τ

0

λn(s, x)un
tt(s, x) ds dτ.
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C Figures and Tables

ν SR(200) SR(400) ST (200) ST (400)
0 1.23 · 10−5 1.47 · 10−6 1.53 · 10−4 2.24 · 10−5

1 2.2 · 10−3 1.18 · 10−4 2.96 · 10−2 9.11 · 10−3

2 3.23 · 10−2 1.08 · 10−2 5.7 · 10−2 3.9 · 10−2

Table 1: Normalized improvement of the cost functional S after 200 and 400
iterations for a reflection (R) and a transmission (T) problem.
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Figure 1: A density profile encodes dynamic temporal and spatial events. Two
of the typical DNA association modes discussed in the literature are hopping

and crawling. The top panel depicts a density profile corresponding to hopping,
the lower panel describes crawling. During crawling the protein remains in
constant contact with the fiber. The shape of the humps encode important
kinetic parameters related to the rates of association, residence times, and rates
of dissociation. An important point is that the density profiles for these two
events are not only distinguishable from each other but their space–time profiles
directly encode molecular association dynamics.
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Figure 2: This figure illustrates the density reconstruction procedure that un-
derlies the molecular seismology paradigm.The upper left panel shows the oscil-
lations of an unladen single DNA fiber. The vibrations of a bead at the end of
the fiber are recorded as a function of time (center panels). The density recon-
struction procedure takes recorded oscillations as input and solves an inverse
problem to produce a density profile in space along the fiber. For the unladen
fiber this profile is nearly flat. The crosses in the figure represent the actual
density, while the solid line shows a reconstruction. In contrast, the lower pan-
els show the process for a fiber that has a protein associated at its center. The
oscillations are different. The inversion procedure produces a density profile
that describes where along the fiber the protein is bound. Through repeated
measurements a time and space dependent density profile can be assembled to
reveal the molecular dynamics.
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Figure 3: A comparison of the true (as defined in Equation 7) and reconstructed
densities profiles after 400 iterations of algorithm described in Appendix B
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Figure 4: A comparison of the true density profile with that of an AOS re-
construction from an signal averaged over forty independent realizations with
parameters ν = 1 and σ2 = 4.
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Figure 5: The left panel shows 40 independent reconstructions for the canonical
reflection problem 8, each from the same recorded signal, but with different
realizations of the random force. The right panel shows their AOR pointwise
average density profile in comparison with the true density profile.
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Figure 6: Bootstrapped confidence intervals about the true density for the AOR
procedure applied to the canonical reflection problem (8) as a function of m, the
number of iid reconstructions used in the average. The data exhibit the behavior
expected from the Chebyshev inequality, see (DeGroot, 1986)[Sect 4.8].
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Figure 7: L2 error in reconstruction as a function of noise strength σ2 for
the reflection problem (8). The data are the results from five independent
reconstructions at each of five different noise strengths. Each cross (x) represents
an error in an AOR average over a total of 40 independent reconstructions.
Each plus (+) represents an analogous result for an AOS reconstruction from
40 independent signals. The open circle corresponds to a reconstruction from a
signal generated in the absence of noise.
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Figure 8: A comparison of the responses of a fiber with uniform impedance pro-
file (shown in blue) with that of the inhomogeneous profile (Equation 7). The
leftmost panel shows the difference in the impulse responses for the Neumann–
to–Dirichlet problem. The differences in the signal are clearly seen and of the
order of the signals themselves. The middle panel shows the differences in the
Heaviside responses for the Dirichlet–to–Neumann problem. The differences
in the responses are not of the same order as the signals. The direct algo-
rithm of (Santosa & Schwetlick, 1982) is able to reconstruct the true impedance
from this signal while the iterative algorithm described in this paper could
not. The right panel shows the differences in response to the sinusoidal forcing
u(0, t) = 8 sin(2πt) for the Dirichlet–to–Neumann problem. These responses
are sufficiently different that our iterative algorithm can reconstruct the true
impedance or density.
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Figure 9: L2 error in reconstruction as a function of noise strength σ2 for
the transmission problem (11). The data are the results from five independent
reconstructions at each of five different noise strengths. Each cross (x) represents
an error in an AOR average over a total of 40 independent reconstructions.
Each plus (+) represents an analogous result for an AOS reconstruction from
40 independent signals. The open circle corresponds to a reconstruction from a
signal generated in the absence of noise.
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Figure 10: L2 error of an AOR reconstruction for the transmission problem (11)
as a function of the number of iterations per reconstruction. Each data point
represents an average overm = 40 independent realization–reconstructions. The
individual reconstruction were iterated for various lengths, n.
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Figure 11: L2 error in reconstruction as a function of noise strength σ2 for
the reflection problem (15). The data are the results from five independent
reconstructions at each of five different noise strengths. Each cross (x) represents
an error in an AOR average over a total of 40 independent reconstructions.
Each plus (+) represents an analogous result for an AOS reconstruction from
40 independent signals. The open circle corresponds to a reconstruction from a
signal generated in the absence of noise.
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Figure 12: Schematic representation of four experimental designs correspond-
ing to each of the four boundary conditions that produced robust numerical
reconstructions. In each figure, the blue fiber represents dsDNA, the spheres
represent covalently attached nanoparticles, the vertical arrows imply displace-
ment and the curved arrows imply torque. The design (T) corresponds to the
transmission problem (11). (R) diagrams the canonical reflection problem (8).
The homogeneous Dirichlet problem (15) is labeled (HD), and the bottom figure
corresponds to the homogeneous Neumann problem (16). Actuators and sensors
are described in the text.


