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CHAPTER 1 

 

GROUNDING MATHEMATICS IN LEARNERS’ AESTHETICS TO BROADEN 

ACCESS 

 

Abstract 

Mathematics is a polarizing discipline: it is often either loved or hated. Unfortunately, 

many learners fall into the latter category. This paper proposes that attending to the 

aesthetic nature of mathematical experiences might help mitigate such negative 

dispositions, and indeed, may even create new entry-points to participation in ways that 

support disciplinary enjoyment. Through synthesizing literature about mathematical 

aesthetics in the work of mathematicians, teachers, and learners, this paper offers design 

principles for creating learning environments that foster (a) learning authentic to the 

discipline and (b) positive relationships between learners and mathematics. While learners’ 

aesthetics may be quite different from the aesthetics of mathematicians (people who are 

well indoctrinated into the world and social norms of mathematics), failing to intentionally 

leverage and support learners’ aesthetics for mathematics teaching and learning is a 

mistake if the goal of mathematics education reform is to develop more authentic and 

humane learning environments. 

 

Keywords. mathematics learning; informal learning; mathematical aesthetics; problem-

posing; disciplinary dispositions; learning environment design principles 
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Introduction 

 Almost thirty years ago, Jean Lave declared, “All is not well with math learning in 

our system of school education” (1992,  p. 76). Unfortunately, these words still ring true. 

Even after years of reform efforts in the intervening decades seeking to make mathematics 

learning more authentic to disciplinary ways of knowing (National Council of Teachers of 

Mathematics [NCTM], 1989), most students are still taught mathematics more or less the 

way their parents were taught (Jacobs et al., 2006; Litke, 2015), what Stigler and Hiebert 

(1999) described as learning definitions and practicing procedures. Mostly, this kind of 

ritualized experience –– frequently devoid of personal meaning or connection to students’ 

other interests –– leads learners to feel like mathematics is “not for them,” even into 

adulthood (Boaler & Greeno, 2000; Boaler & Selling, 2017).  

In reform-oriented communities of mathematics teaching and learning, we 

commonly argue that mathematics can be learned more meaningfully –– in ways that 

support the development of positive disciplinary dispositions –– when learning includes the 

disciplinary practices of those who make mathematics (Lampert, 1990; Silver, 1994): 

professional mathematicians. Unlike most students, mathematicians feel intimately 

connected to the mathematics that they study (Sinclair, 2004). They describe their 

experiences of doing mathematics as fundamentally about seeking beauty and elegance. In 

their essence, the words mathematicians use to describe their mathematical experiences 

show us that they have developed an aesthetic for mathematical work. Their aesthetic 

preferences guide what work they do and why, not just how they write it up for public 

display and critique (Silver & Metzger, 1989; Sinclair, 2004; Wells, 1990). While beauty 

and elegance are fundamental drivers of mathematical practice, many teachers and students 
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find aesthetics for mathematics a mystifying concept. 

Understanding how mathematicians’ aesthetics drive and guide their work may help 

us make mathematics learning more meaningful and enjoyable for children. Of course, as 

Lave reminds us, “Most children going through public school curricula will not become 

[…] mathematicians” (1992, p. 74, 75). For that reason, mathematical practices transform 

in different contexts to serve different purposes. For example, mathematicians are charged 

with the creative task of creating new mathematics, but that is rarely the task of engineers. 

Although both disciplines are mathematics based, the purposes and practices of these two 

disciplines differ in important ways. I do not argue that we should use only mathematicians 

as a model for authentic disciplinary practices to reflect in classrooms. But in this paper, I 

privilege mathematicians’ practices because of the creativity in their production of new 

mathematics (which requires a kind of learning of mathematics) and because of their love 

for the discipline for its own sake. 

Following a host of prior work (e.g., Dreyfus & Eisenberg, 1986; Silver & Metzger, 

1989; Sinclair, 2006a; Wells, 1990), I contend that centering aesthetic experiences in our 

conceptualization of what it means to know and do mathematics is paramount for creating 

learning environments that (a) make mathematics learning more authentic to the discipline 

and (b) foster positive relationships between learners and mathematics. Based on a review 

of literature on mathematicians’ aesthetics and on developing and leveraging aesthetics for 

mathematics learning, I offer a provisional set of design principles to ground mathematics 

education in learners’ aesthetic sensemaking. If we can create opportunities for students to 

use personal aesthetics to guide the math they do — as they are learning it — we might end 

up with more people who actually enjoy and feel competent in mathematics.  
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Background 

Because the word aesthetic can seem like a surprising description for mathematical 

activity to many people, I want to clarify my use of the word. To do so, I use the Merriam 

Webster dictionary’s examples of aesthetic (Aesthetic, 2018) and connect them to the three 

roles of mathematical aesthetics described by Sinclair (2004). Specifically, Sinclair 

describes mathematical aesthetics as serving evaluative, motivational, and generative roles 

for mathematicians. 

Consider the following three sentences that operationalize the word aesthetic in 

non-mathematics contexts (emphasis added): 

1. My generation has an annoying penchant for treating luxuries as necessities 

and turning guilty pleasures into aesthetic and even moral touchstones. —

Terrence Rafferty, GQ, October 1997 

2. I suppose that jazz listening and prizefight watching are my two most 

passionate avocations, and this is largely so because the origins of my aesthetic 

urges are in the black working class. —Gerald Early, "The Passing of Jazz's Old 

Guard: … ," in The Best American Essays 1986, Elizabeth Hardwick & Robert 

Atwan, editors,  1986 

3. Whereas the essence of Proust's aesthetic position was contained in the 

deceptively simple yet momentous assertion that "a picture's beauty does not 

depend on the things portrayed in it." —Alain de Botton, How Proust Can 

Change Your Life,  1997 

These examples use aesthetic in more complex ways than simply as a synonym for 

beauty and visual appeal. Here, aesthetics function as values or sensibilities in the form of 
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touchstones, urges, and positions. As a touchstone, our aesthetics are the source of our 

ability to make comparisons and evaluate worth and thus serve an evaluative function in 

our activity. As an urge, our aesthetics drive us to pursue activities or objects in enduring 

and meaningful ways and thus serve a motivational role in our activity. As a position, our 

aesthetics orient us to what matters — structuring how we engage and what we produce — 

and thus serve a generative (or innovative) role in our activity. In this way, aesthetics are 

the framework for how we experience the world — for how we judge what counts as good 

and for why and how we choose to engage or disengage.   

 

Research Questions 

In the remainder of this paper, I explore how the evaluative, motivational, and 

generative roles of mathematical aesthetics have been operationalized in educational 

research and conclude with synthesized design principles. Specifically, I ask the following 

questions:  

1. What is mathematical aesthetics, and what is its role in the work of 

mathematicians? 

2. How can we leverage learners’ aesthetics in service of meaningful mathematics 

learning? 

Importantly, the cultural activities of aesthetically-driven mathematics and school math are 

dramatically different in scale and motivation. Aesthetically-driven mathematics is 

engaged by a tiny percentage of the population, largely by professionals who have 

voluntarily decided to participate in such mathematics. School mathematics, on the other 

hand, is engaged by nearly the entire population; it is mostly a compulsory activity by 
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conscripted students. A reasonable reader might ask, how can better understanding the few 

(i.e., mathematicians) help us improve learning experiences for the masses (i.e., students in 

schools)? Likewise, if aesthetically-driven mathematics is an inconceivable activity for 

many teachers (as I have claimed), who else is in a position to open opportunities for 

leveraging aesthetics for mathematics learning?  

I argue that if we leverage aesthetics in our design of learning materials and 

instruction –– and foreground them in our educational goals –– then we might be able to 

broaden access for adolescents whose identities are otherwise repelled by school 

mathematics. In other words, although the path into academic math is historically one of 

extreme winnowing, attending to the authentic nature of mathematical work, which is 

inherently aesthetic, can help combat the macro-culture-of-exclusion in mathematics 

education (Louie, 2017) that allows only the few to be successful. Aesthetics also provide a 

way to humanize mathematical activity (Buenrostro, 2016) by making it personal. By 

reshaping the cultural and material tools for mathematics learning both locally in 

classrooms and at scale across the nation, we may be able to transform an educational 

system that routinely leads too many students to dis-identify with the discipline (Funk & 

Parker, 2018; Jacobs, Lanza, Osgood, Eccles, & Wigfield, 2002). 

 

Methods: Literature Synthesis 

To derive design principles for learning environments that broaden access to 

mathematics by grounding learning in aesthetics, I reviewed literature on the role of 

aesthetics in the production of the mathematical canon and in the production of 

mathematics learning. To do so, I first turned first to the work of a leading scholar in the 
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field of mathematical aesthetics in education, Nathalie Sinclair –– and her seminal piece 

from 2004, The roles of the aesthetic in mathematical inquiry. Through her work, I view 

mathematical aesthetics to be a personal and disciplined taste for what counts as interesting 

and worthwhile throughout the process of problem finding, solving, and evaluating. In this 

way, mathematical aesthetics are both a preference and a value system.  

 In order to understand how mathematical aesthetics have been operationalized in 

educational research, I searched educational databases (ERIC ProQuest and PsychInfo) for 

literature on mathematical aesthetics. After sorting out1 articles that were not about 

mathematicians’ practices, mathematics teachers, students of mathematics, or mathematics 

curriculum, I was left with 44 articles to review. As I examined these 44 articles, I began to 

see that they that fell into categories such as (a) historical analyses of mathematicians’ 

work, (b) empirical and conceptual work that takes an aesthetic lens to understanding 

mathematical activity, (c) empirical work comparing the aesthetics of students and 

mathematicians, (d) empirical and conceptual work about developing mathematical 

aesthetics in teachers and students, and (e) a few outlier studies that uniquely 

operationalized aesthetics. These categories structure the way findings of this paper are 

organized within each role of mathematical aesthetics, with (b) and (c) combined and (e) 

interwoven where appropriate. In addition to these papers, I also include  studies frequently 

cited within my literature search and studies recommended by colleagues engaged with me 

                                                 

1 For example, I excluded articles that explored why mathematics is such a powerful tool for explaining the 

natural world (e.g., Gelfert, 2014) as well as studies that examined human aesthetic preferences in nature and 

in art in relation to mathematical constructs such as the golden ratio (e.g., Green, 1995). 
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in the early writing process. 

Again, Sinclair’s (2004) analysis of the evaluative, motivational and generative 

roles of mathematical aesthetics provided an especially compelling framework for my 

inquiry. Based on my theoretical framework, I selected empirical research that I concluded 

best demonstrated these three roles of mathematical aesthetics in education. This method 

for engaging the literature allowed me to identify gaps in the field’s understanding of how 

aesthetics support and hinder mathematics learning, and to synthesize design principles that 

help us operationalize what we do know. Synthesizing design principles from the literature 

allows us to see how attention to specific features of learning environments can be 

leveraged in different ways across contexts (Ito et al., 2013), and thus is the beginning of 

an iterative process of reforming approaches to curriculum and its enactment in ways that 

are theoretically grounded yet responsive to local realities.  

 

Theoretical Framework: Aesthetics and Learning 

By examining both the role of mathematical aesthetics in mathematicians’ work and 

how we can leverage learners’ aesthetics in service of meaningful mathematics learning, I 

seek to understand how young people can engage in mathematics in rich and meaningful 

ways that support enjoyment in mathematics learning. Both students who already identify 

as “math people” and those who do not should be able to participate in the cultural activity 

of mathematics in ways that bolster their competence and motivation.  

To frame my review of research on mathematical aesthetics and learning, I draw on 

situated perspectives to understand what it means to engage in doing mathematics, 

specifically to understand the role of aesthetics in mathematics learning. In a situative 
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perspective (Lave & Wenger, 1991), knowledge –– the what in learning –– is inextricably 

linked to learners’ context and activity — the where, who, why and how in learning. In this 

way, knowledge is always tentative, partial, and linked to context. Because mathematical 

aesthetics are means of knowing and doing — as they are touchstones, urges, and positions 

— mathematical aesthetics are also tentative, partial, and linked in relation to the where, 

who, why, and how of learning. Taking this perspective of knowledge as inextricable from 

context and activity, mathematical aesthetics are disciplined (Stevens & Hall, 1998) and 

negotiated within mathematical communities (Lakatos, 1976; Lave & Wenger, 1991), but 

are also individual and emergent from the way our everyday worlds shape our personal 

interests (Nolen, Horn, & Ward, 2015).  

 Following Stevens and Hall (1998), I consider mathematical aesthetics to be socially 

constructed through a process of disciplining perception. Disciplining perception has 

value-driven and disciplinary dimensions: When an individual’s actions are invalidated and 

corrected, that individual’s activity becomes disciplined to conform to what counts as 

authentic participation. In this way, mathematical aesthetics come to exist because 

communities of individuals negotiate them during participation in a particular context for a 

particular purpose (Lave & Wenger, 1991; see also Lakatos, 1976).  

 In particular, I link learners’ everyday aesthetics to mathematicians’ mathematical 

aesthetics. Following Jean Lave (1992), who distinguishes between everydaying 

mathematics and mathematizing the everyday, I consider learners’ everyday aesthetics to be 

transformed as they move through various contexts for various (and sometimes multiple) 

purposes. Because school is an everyday activity for K-12 children –– “not a privileged site 

where universal knowledge is transmitted” (p. 81) –– we know that learners likely already 
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have everyday mathematical aesthetics from school mathematics. It seems reasonable to 

argue that, for many students, these everyday mathematical aesthetics lead them to prefer 

quick-and-correct solutions and thus to negatively evaluate mathematics as a whole.  

 This makes sense if we consider aesthetics to emerge through a process of disciplined 

perception, as the logics of participation (John, Torralba, & Hall, 1999) of school math are 

too often logics of credit. Many consider this type of engagement to be a game of “doing 

school” rather than of participating in meaningful learning, meaning that learners are 

oriented to achieving grades rather than to intellectual curiosity, insight, or mathematical 

beauty. By leveraging learners’ aesthetic, we might be able to flip the script of what it 

means to learn math. 

 When I promote leveraging everyday aesthetics for mathematics learning and 

grounding mathematics learning in children’s everyday aesthetics, I refer to the process of 

mathematizing the aesthetics that emerge in the context of mathematics activity. This is in 

addition to a funds of knowledge approach (Gonzalez, González, Moll, & Amanti, 2005) 

that might promote recruiting aesthetics from non-mathematical activities such as art (e.g., 

by hybridizing a mathematical task with an art task). In sum, I promote mathematizing by 

explicitly eliciting, attuning to, and valuing learners’ aesthetics as resources for 

mathematical ways of knowing. I describe means for doing so in the design principles 

section of this paper.  

 The design principles, in accordance with situative perspectives, assume that 

aesthetics co-develop with mathematics learning, as what is (de)valued in particular 

communities comes to shape what it means to know and do (e.g., sociomathematical 

norms; Yackel & Cobb, 1996). In the contexts of mathematics communities (e.g., 
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mathematicians who subscribe to a particular academic journal; a mathematics classroom), 

aesthetics become shared as they are passed down, (re)negotiated, and transformed through 

disciplining perception during participation in local cultural practices (Lave & Wenger, 

1991). In addition, personal interests shape why and how individuals take-up or reject 

particular practices, such as practices that shape how individuals evaluate (touchstones), 

why individuals are motivated (urges), and what individuals generate (shaped by 

positions). These intrinsic personal interests emerge from identities developed through 

participation in everyday worlds, including but not limited to the world of mathematics 

(Nolen, Horn, & Ward, 2015).  

 In relation to Lave’s (1992) notion of mathematizing the everyday, I take this to 

mean that learners’ identities and interests from outside-of-school contexts can also be 

mathematized. In this way, learners’ histories of participation across multiple communities 

of practice can come to have implications how they perceive themselves (identity) and how 

they want to be perceived (values) in relation to mathematics (Nolen, Horn, & Ward, 

2015), and thus aesthetics are somewhat personal as well as shared within a community.  

This means that aesthetics are something that everyone possesses as an identity resource in 

relation to the three roles of mathematical aesthetics (touchstones/evaluation, 

urges/motivation, and positions/generation).  

 Because all students come to the table with mathematical aesthetics, these aesthetics 

can be developed through instruction and out-of-school experiences in productive and 

unproductive ways. By explicitly attending to the aesthetic nature of learners’ experiences, 

we can begin to leverage aesthetics towards positive disciplinary dispositions and 

expansive mathematical competence. In sum, developing mathematical aesthetics can be 
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better understood through attending to the organization and assembly of (a) individuals’ 

socialization to mathematics through the process of disciplining perception and (b) 

individuals’ personal interests as shaped by their histories of participation.  

 Attuning to aesthetics, and in particular, to the cultural and personal dimensions of 

aesthetics, can help us begin to make mathematics more meaningful and enjoyable for 

mathematics learners. Throughout this paper, I use this dual lens to interrogate research 

findings on the evaluative, motivational, and generative roles of aesthetics in the work of 

mathematical experts and novices with an eye towards how activity is or could be 

organized to support the development of mathematical aesthetics that support meaning 

making. I conclude with a synthesis in the form of design principles and implications for 

theory and practice.  

 

Evaluative Role of Mathematical Aesthetics: Aesthetic Preferences Guide Judgement 

Earlier, I described the evaluative role of mathematical aesthetics is akin to a 

touchstone. In this section, I build-up a richer understanding of the evaluative role of 

aesthetics by connecting it directly to mathematics. To do so, I first summarize the 

evaluative role of aesthetics in mathematician’s work. I then examine the similarities and 

differences between mathematicians’ evaluative aesthetics and students’ evaluative 

aesthetics, as described by prior research. Finally, I review key ways researchers have 

attempted to understand and support the role of aesthetics in learning mathematics.  

 

The Evaluative Role of Aesthetics in Mathematician’s Work 

Mathematicians’ aesthetic evaluations determine what mathematics gets produced, 
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retained, and verified (Sinclair, 2004). Although aesthetic evaluations vary by subfields of 

mathematics (Wells, 1990), mathematicians tend to prefer write-ups that make solutions 

seem obvious or simple, spur surprise, or make novel connections between concepts (Pimm 

& Sinclair, 2009; Sinclair, 2004). For example, mathematician Philip Davis (1997) prefers 

his mathematical write ups to make the conclusion appear “as plain as the nose on your 

face” (p. 17, as cited in Sinclair, 2006b, p. 92), while mathematicians Henderson and 

Taimina (2006) prefer write ups that support inquiry and meaning making. Creating proofs 

is typically an iterative process: The first proof a mathematician creates, even if correct, is 

rarely the proof that gets published (e.g., Gauss, 1863).  

The Pythagorean Theorem is a well-known example of this phenomenon. A 

ubiquitous part of school curricula all over the world, the Pythagorean Theorem states that 

the sum of the areas of the squares on the legs of a right triangle (call these legs  and , 

respectively) equals the area of the square on the hypotenuse (call this leg ). Symbolically, 

then, . 

To illustrate different tastes in mathematical proofs, I provide two examples of 

Pythagorean Theorem proofs to contrast Davis’ (1997) preference for self-evident proofs 

and Henderson and Taimina’s (2006) preference for provocative proofs. I propose that this 

first proof, from ancient China, aligns with a self-evident proof aesthetic (Bogomolny, n.d.; 

see Table 1-1), while the second was a proof, written by Albert Einstein in his boyhood, 

aligns with the provocative proof aesthetic (Strogatz, 2015; see Table 2-1).    
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Table 2-1 Ancient Chinese proof of the Pythagorean Theorem  

Proof 1 of the Pythagorean Theorem 

 
Now we start with four copies of the same triangle. Three of these have been rotated 90 degrees, 180 degrees, 

and 270 degrees, respectively. Each has an area of  . Put them together without additional rotations so that 

they form a square with side . 

 
The square has a square hole with the side . Summing the area of this square and the area 

of the four triangles  we get: 

 

 

 

 

Table 2-2 Albert Einstein’s boyhood proof of the Pythagorean Theorem  

Proof 2 of the Pythagorean Theorem 

Step 1: Draw a perpendicular line from the hypotenuse to the right angle. This partitions the original right 

triangle into two smaller right triangles. 

 
Step 2: Note that the area of the little triangle plus the area of the medium triangle equals the area of the big 

triangle. 

 
Step 3: The big, medium, and little triangles are similar in the technical sense: their corresponding angles are 

equal and their corresponding sides are in proportion. Their similarity becomes clear if you imagine picking 

them up, rotating them, and arranging them like so, with their hypotenuses on the top and their right angles 

on the lower left: 

 
Step 4: Because the triangles are similar, each occupies the same fraction  of the area of the square on its 

hypotenuse. Restated symbolically, this observation says that the triangles have areas , , and , 

as indicated in the diagram. 
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Step 5: Remember, from Step 2, that the little and medium triangles add up to the original big one. Hence, 

from Step 4, . 

Step 6: Divide both sides of the equation above by . You will obtain , which says that the 

areas of the squares add up. That’s the Pythagorean Theorem. 

 

 These two proofs appeal to different aesthetic preferences. The first proof aligns 

with the self-evident proof aesthetic, since the combination of geometry and algebra leaves 

the knowledgeable reader with no doubt the theorem is veritable with very little effort. The 

second proof, in contrast, aligns with the provocative proof aesthetic. The explanation is a 

little longer, although more intuitive in relation the theorem’s statement: it has clear links to 

the theorem’s “areas of the squares” on the legs of a triangle, while the first does not. 

However, the second proof also requires a bit of inquiry on the part of the reader. It makes 

the reader ask, why are the two smaller triangles congruent to the larger triangle and to 

each other? (Steps 1 and 3; Strogatz, 2015) and why do the smaller squares add up to the 

larger square? (Step 6; Strogatz, 2015). These contrasting examples illustrate how the 

evaluative role of mathematical aesthetics can lead mathematicians to very different 

preferences in proving the same mathematical theorem. As evident in both Proof 1 and 

Proof 2 (Table 1-1), mathematicians’ aesthetics often lead to solutions that omit many 

details necessary for understanding: They both assume an audience with particular prior 

knowledge.  
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 This, of course, foreshadows that mathematical novices will likely have quite 

different aesthetics than expert mathematicians. However, from a situative stance, the 

potential for developing a mathematical aesthetic is accessible to all participants in the 

cultural activity of mathematics –– not only the few who manage to persist in mathematics 

as a career –– if they are provided the appropriate socialization experiences. To explore this 

further, I next discuss how the role of aesthetics has been operationalized in learning 

mathematics.  

 

The Relationship between Students’ Aesthetics and Mathematicians’ Aesthetics 

Based on what we know about mathematicians’ evaluative aesthetics, what would it 

look like for students to have aesthetic values that allow them to perceive some solutions as 

more beautiful than others? While students’ mathematical aesthetics likely are and should 

be different than those of mathematical experts, students who develop a sophisticated 

mathematical aesthetic might value creative solutions appealing to big ideas in 

mathematics beyond computation. They might also distinguish between more and less 

interesting (personally meaningful) justifications of mathematical claims. Such students 

would have personal tastes and be able to defend them. In classrooms that intentionally 

cultivate such mathematical aesthetics, we would expect students to have heterogenous 

tastes for mathematical problems and solutions and to be able to explain their preferences 

in meaningful ways while understanding the tastes of others. They might explore problems 

beyond arriving at an answer to find appealing ways to communicate the meaningfulness 

they find in the problem and solution. Such a classroom would provide an inroad for affect: 

students could be passionate about their mathematical work and experience feelings of 
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surprise, curiosity, and pride in their work. But what does research tell us about students’ 

aesthetic evaluations in mathematics?  

Taste is perceptual in nature. Perception is based on both personal histories of 

experience as well as on participation in communities engaged in a common endeavor with 

shared norms –– think of what counts as “sweet” in different cultures, from red bean ice 

cream in Japan to milk chocolate candy bars in the U.S. Similarly, because of their social 

origins, evaluative aesthetics can be considered both personal and shared. The socialization 

into a mathematical aesthetic may very well be part of what it means to become a 

mathematician. For example, in a study of children’s mathematical aesthetics in relation to 

tessellations and tilings, Eberle (2014) found that children and mathematicians tended to 

describe the visual aesthetic appeal of tessellations very differently from each other: 

Mathematicians’ evaluations were more like their peers’ evaluations than the students’ 

evaluations, and children’s evaluations were more like their peers’ evaluations than the 

mathematicians’ evaluations.  

However, even within these similarity clusters, there was much individual variation 

on what counted as aesthetically pleasing. Interestingly, while there was significant 

variation between how mathematicians and students described their aesthetic evaluations, 

both mathematicians and students preferred complexity in tessellations that was neither too 

simple (boring, trivial) nor too complex (confusing). However, their criteria for what 

counted as too simple and too complex differed between the two groups, likely due to 

differing levels of mathematical expertise and socialization that partially shape what was 

interpreted as boring or novel.  

In another study of students’ evaluative aesthetics, Tjoe (2015) found that “gifted 
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students”2 and mathematicians had nearly opposite aesthetic preferences for the write-up of 

solutions. The mathematicians interviewed for the study preferred write-ups that showed 

connections between multiple branches of mathematics, write-ups that made the solution 

seem simple or obvious, or write-ups that communicated a novel means of solving the 

problem. In contrast, the students preferred “brute force” computational solutions to the 

same problems. Contrary to Eberle’s (2014) study, these students were informed of 

mathematician’s aesthetic evaluations of the same problem solutions. When confronted 

with mathematicians’ judgements about solutions, the students responded that the 

mathematicians were “trying too hard to be unique and clever, when they are totally 

unnecessary” (p. 172). This study reconfirmed the findings of Dreyfus and Eisenberg’s 

(1989) pioneer study of college mathematics students’ and mathematicians’ aesthetic tastes 

towards problem solutions. While Tjoe (2015) seemed to have the goal to prove that gifted 

students had sophisticated aesthetics that mirrored mathematicians, from a situative 

perspective, this study largely demonstrated that students who are taught to prioritize 

finding quick-and-correct answers are socialized to prefer brute-force, computational 

solutions.   

These dissimilarities between students’ and mathematicians’ mathematical 

aesthetics are not only a product of expertise (prior knowledge), but also of disciplined 

perception (Dreyfus & Eisenberg, 1986; Stevens & Hall, 1998). The shared values within 

                                                 

2 I use quotes around the term “gifted students” to signal that this term is problematic, as the social function 

of labelling students as more or less gifted actually creates socially constructed categories such as gifted and 

disabled, and thus privileges some and oppresses others. For more detail, see McDermott and Varenne’s 

(1995) paper on culture as disability.  
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school math communities and academic math communities –– not between them –– 

discipline participants to see their worlds similarly enough that they can, by and large, 

communicate within it unproblematically. However, individual differences in perception 

are always present. Because pupils engage in different communities (school math 

community) than do mathematicians (academic math community), we can assume that 

children’s and mathematicians’ evaluative aesthetics about mathematics will be different. 

In fact, some scholars argue that mathematical aesthetics of school-age children and youth 

should be different than the aesthetics of mathematicians: Children’s aesthetics may be 

uniquely suited for children learning mathematics, just as mathematicians’ aesthetics are 

uniquely suited to them and their endeavor (Sinclair, 2006a). 

 

Developing Mathematical Aesthetics 

One way that researchers and teachers have attempted to help students develop 

mathematical aesthetics that allow them to perceive some solutions as beautiful and others 

as not is by following the lead of Harré (1958, as cited in Sinclair & Pimm, 2006) and 

providing students with access to multiple solutions to the same mathematical problem so 

that they can begin to compare. This approach has endured across generations. In 1968, 

Edwin Rosenberg published an article in The Arithmetic Teacher about providing students 

with rich problems that can be solved in a multitude of ways with increasing sophistication. 

In many ways, this resonates with today’s reform mathematics that encourages students to 

engage with multiple strategies and solutions by making their ideas public and open for 

debate (Horn, 2008, 2017; Lampert, 1990).  

For example, Deborah Ball’s (1993) well known episode of classroom discourse 



 

 20 

that led to the emergence of “Sean Numbers” involves students excitedly debating about 

whether the number six is even or odd. In the video data, there is evidence that Sean and 

his classmates are negotiating their taste for what counts as mathematically correct, and 

perhaps even mathematically significant. While Sean Numbers are not included in the 

Common Core Standards (Common Core State Standards Initiative [CCSSI], 2010), they 

are part of the mathematical canon dating back to Euclid’s Elements, where they were 

specifically described as special subset of even times odd numbers: two times an odd 

number (Mathematics Teaching and Learning to Teach, 2010). More importantly for this 

argument, the students created and communicated about Sean Numbers using big 

mathematical ideas of grouping and classification. Most importantly, Sean Numbers were 

mathematically meaningful for the students’ learning in that classroom at that time. While 

there is not much research about whether students taught with ambitious teaching methods 

develop aesthetic judgements about what counts as a beautiful mathematical solution or a 

worthwhile mathematical problem, it is clear from this well-known example that even 

elementary students express evaluative aesthetic responses such as surprise and disgust 

when engaged in meaningful mathematics learning. 

The particulars of students’ mathematical contexts seem to shape their 

mathematical aesthetics. In an experimental study on stimulating evaluative aesthetics, 

Koichu, Katz, and Berman (2017) found that most participants labeled some problems and 

solutions as more beautiful and surprising than others, depending on different conditions. 

The researchers exposed two groups of ninth-grade students to a sequence of two 

mathematical problems and solutions, with each group encountering the two problems in 

opposite orders. The problems were designed such that the problems looked similar, but the 
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solutions were deceptively different. In both groups, the problems encountered last were 

considered more beautiful and their solutions more surprising. In other words, both 

problems in the study were evaluated as aesthetically appealing, but each of them was 

considered best when it was presented last. This suggests that the affective experiences of 

unexpectedness and surprise can lead students to evaluate some mathematical solutions as 

more appealing than others. While the design of the mathematical problems to be 

unexpectedly dissimilar facilitated this surprise, it was the affective experience of surprise 

— rather than anything intrinsic to either problem individually — that facilitated students’ 

aesthetic evaluations.  

In contrast to Tjoe’s (2015) and Dreyfus and Eisenberg’s (1989) experimental 

designs that required learners to evaluate “beautiful” solutions compared to their own 

solutions, Koichu, Katz, and Berman (2017) did not have students solve the problems 

themselves. They concluded that both their design of problem sequence as well as the 

emotionally safe nature of the study facilitated students’ positive aesthetic evaluation of 

mathematical problems and solutions. Thus, emotional safety — the mitigation of social 

and academic risk (Horn, 2008) — along with socialization into what counts as 

mathematics can impact students’ evaluative aesthetics. Importantly, studies of ambitious 

instruction have identified means of reducing social and academic risk while supporting 

students’ mathematical competence (Horn, 2008). Still, Koichu, Katz, and Berman’s (2017) 

study contributes an existence proof that students — as well as mathematicians — can 

experience problems as more or less aesthetically appealing.  

But how does the evaluative role of mathematical aesthetics develop in relation to 

the motivational and generative roles? In a study of college mathematics majors’ ability to 
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extend their understanding to unconventional uses of mathematical tools, Mamolo and 

Zazkis (2012) theorized that the evaluative role of mathematical aesthetics was the gateway 

into motivational and generative roles. Specifically, they designed a teaching experiment in 

which they first introduced students to the unique ability of the derivative function to 

transform the formula for the area of a circle into the formula for the perimeter of a circle. 

They then sought to create surprise and pleasure for students by asking them whether or 

not this could generalize to other regular shapes such as a square — an unconventional use 

of the derivative. However, when they showed students that the derivative could indeed 

transform the area of a square into its perimeter, students were not motivated to pursue this 

pattern in a more general context. The researchers postulated that students’ histories of 

participation in traditional mathematics courses led them to lack the particular evaluative 

aesthetics they sought to evoke. While this is likely, the study design did little to disrupt 

these histories of participation, giving students no opportunities to agentically explore 

problem spaces and develop a personal familiarity and a disciplined perception of what 

might be interesting (non-trivial) and doable (not too open-ended).  

Of course, for learners to develop aesthetic preferences for meaningful solutions, 

they have to be interested in the mathematical question itself. Otherwise, they will likely 

prefer solution write-ups that show quick and correct answers rather than solutions that 

communicate understanding. In the next section, I discuss interest and persistence in 

mathematical inquiry by appealing to the motivational role of mathematical aesthetics.  
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Motivational Role of Mathematical Aesthetics: Aesthetic Preferences Support 

Voluntary Sustained Engagement 

My first description of the motivational role of mathematical aesthetics appealed to 

the non-academic language of “urges” to describe how aesthetics drive mathematical 

inquiry. In this section, I build on this description by attending explicitly to the role of 

aesthetics in doing mathematics. I first summarize the motivational role of aesthetics in 

mathematician’s work. I then extrapolate what it might look like for students to be 

motivated by aesthetics in their learning of mathematics. Finally, I review key ways we 

have attempted to understand and support the role of aesthetics in learning mathematics.  

 

The Motivational Role of Aesthetics in Mathematicians’ Work 

Mathematical activity is driven by making connections to gain insight. In other 

words, doing mathematics requires taking one’s current understanding of a mathematical 

object and looking for fruitful (mutually illuminating) relationships between that 

mathematical object and other mathematical objects in a way that produces a bigger picture 

understanding of particular mathematical phenomena (Sinclair, 2004). Thus, this notion of 

meaningful connections is disciplinarily specific: Mathematicians see some connections in 

mathematics as trivial and thus uninteresting, but others as important, surprising, and 

exciting. Often, this relates to issues of generalization, suggesting that making connections 

makes a group of things easier to understand by putting them in conversation with each 

other, either by shedding light on prior work or by opening up new possibilities for future 

inquiry (Silver & Metzger, 1989 p. 70).  

This relates back to the evaluative role of mathematical aesthetics. Mathematicians 
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are motivated to pursue certain problems because they seek insight, and they evaluate the 

work of others based on the insight their proofs provide. For example, geometer David 

Henderson published a research paper (1973) that contained a concise and simple half-page 

proof that provoked more questions than any of his other papers. While his peer 

mathematicians accepted that the proof was logically correct, they asked why is this true? 

where did it come from? and how did you see it? (Henderson & Taimina, 2006, p. 67). 

Questions such as these make some mathematicians hesitant to use computers for proofs. 

For example, some mathematicians dislike the Apple-Haken proof of the Four-Color 

Theorem because it relies on computer computation that obscures why the theorem is true 

(Hersh, 1997). In other words, although the result was irrefutable from the brute-force 

proof that generated all possible cases, it did not satisfy the aesthetic criteria of insight. 

Hence, mathematicians are motivated not only to find out whether or not something is true, 

but also (and perhaps more importantly), they are motivated to understand why things are 

true. In sum, mathematicians’ aesthetic preferences for certain problems are motivated by 

their personal histories of interest and by a desire to create fruitful understandings that 

connect the mathematical objects (or systems) they are interested in to more global 

mathematical phenomena. In fact, if the mathematical problem at hand does not seem 

fruitful for making connections (i.e., it is not interesting), mathematicians will often cease 

their pursuit of the problem once they feel they know how to achieve the solution (Dreyfus 

& Eisenberg, 1986). 

When we consider designing for classrooms, the motivational ground shifts 

drastically. For most children, their motivation to learn math comes from extrinsic factors 

— grades, parent or teacher approval, future academic aspirations, or even social status. In 
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the next section, I extrapolate what it might look like for students the to experience the 

motivational role of aesthetics in their learning of mathematics. 

 

The Relationship Between Students’ Aesthetics and Mathematicians’ Aesthetics 

 What would it look like for students to have a mathematical aesthetic that directs 

them to select and pursue mathematically interesting questions? While holding that 

mathematicians’ aesthetics likely are (and should be) different than students’ (since they are 

engaged in different endeavors in different contexts), I build on the previous section by 

suggesting several learning goals for mathematical aesthetics. I posit that students who 

have developed a sophisticated mathematical aesthetic would constantly be asking 

themselves why something is true rather than just whether something is true. They would 

seek connections to things they already know about, linking not only shapes and symbols 

but also other big ideas, such as equivalence or symmetry. Students would prefer some 

mathematical problems over others, and would want to pursue their mathematical questions 

for more than just the span of a lesson.  

 

Developing Mathematical Aesthetics  

Mathematics educators have attempted to get students intrinsically interested in 

mathematics by making instruction interdisciplinary — by, for example, linking 

mathematics to domains like music and art. Such interventions seek to make mathematics 

less intimidating for students (Van der Veen, 2012), to illustrate mathematics’ utility (Bush, 

Karp, Nadler, & Gibbons, 2016; Wilders & VanOyen, 2011), or to provide concrete 

experiences to make symbolization more meaningful (Bush, Karp, Bennett, Popelka, & 
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Nadler, 2013; Cipoletti, B., & Wilson, 2004). For example, Cipoletti and Wilson (2004) 

describe a task in which students use origami directions — modified to use geometric 

language — to produce an aesthetically pleasing object while also learning to use that 

language to communicate in concrete ways before using it symbolically. Such approaches 

to motivating students through aesthetics in art are most commonly found in teacher 

journals rather than research journals. Clearly, teachers are sharing resources for 

mathematical motivation that other teachers are surely searching for. Some might critique 

these interdisciplinary methods as locating the source of interest outside of mathematics, 

thus bolstering the belief that mathematics itself is aesthetically sterile (Sinclair, 2001). 

While this may be true, making mathematics more tangible and connected to other 

disciplines can also create new opportunities for mathematical engagement, offering ways 

for students to productively engage their aesthetics for mathematics learning.  

Of course, motivation to pursue mathematical problems cannot be achieved without 

foregrounding meaning making, which requires starting with what students already know. 

Educators have sought to do this through project-based mathematics. In well-designed 

project-based mathematics, students focus on a broad question and learn new methods in a 

just-in-time approach (Boaler, 1998; Schwartz & Bransford, 1998; Gutstein, 2003). This 

learning arrangement allows students to orient towards the big picture and thus develop a 

heuristic understanding of content.  

However, project-based mathematics does not address the motivational role of 

mathematical aesthetics in driving the selection and pursuit of mathematical problems 

based on personal interest (e.g., Sinclair & Watson, 2001). To incite students’ intrinsic 

interest in particular mathematical problems –– to make them excited to pursue that 
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problem and want to persist in the face of trouble and frustration –– requires creating 

instructional activities that intentionally elicit and leverage students’ emotions. For 

example, Dietiker (2015) outlined a convincing argument that curriculum should be 

designed to tell a mathematical story, where “plot twists” challenge what students expect to 

happen in a mathematical activity. She gives an example of a mathematical game where 

students expect that the “fairness” of the game results from mathematical mechanisms such 

as equal area, equal distance, or averages, but the actual underlying mechanism is one of 

probability. In her experiences with students, this disruption to students’ expectations 

evokes emotions such as surprise and curiosity, prompting students to generate questions 

such as how is that possible? and why does that happen? (p. 8). Questions such as these 

indicate intrinsic interest in the mathematics itself. Importantly, the enactment of the 

instruction, not only the design of the mathematical task, has implications for whether or 

not students will ask and pursue such questions (Ball & Cohen, 1996).  

However, many teachers themselves have never experienced feelings of curiosity or 

surprise in mathematics, creating a significant barrier for them to design these kinds of 

experiences for students. In a study of preservice teachers’ ability to pose and select 

mathematically interesting problems, Crespo and Sinclair (2008) found that teachers were 

better able to select mathematically interesting problems when they focused on problems 

that made them curious rather than on pedagogy. In order to help the preservice teachers 

grasp the notion of a mathematically interesting problem, they used the metaphors of tasty 

and nutritious as descriptors for mathematical problems. This food analogy was meant to 

highlight how their future students might not pursue nutritious problems if they were not 

also tasty, just as how people in general will not regularly seek out and consume foods that 



 

 28 

are good for them if they do not also enjoy their flavor and texture. In learning to pose 

problems that were both nutritious and tasty, these teachers considered the ways 

mathematical constraints in problems affected the problem’s aesthetic value. The 

researchers found that when the preservice elementary teachers were given time to explore 

materials before posing problems, they were not only able to pose richer problems but were 

also able select problems that were mathematically interesting. 

Just as Crespo and Sinclair’s (2008) study of preservice teachers focused on 

teachers’ selection of mathematically interesting problems resulting from the exploration of 

mathematical objects, my review of the literature did not unearth any empirical studies in 

which children developed a taste for interesting mathematical problems without first 

having opportunities to explore problem spaces. It appears that developing an interest that 

motivates selection and sustained pursuit of mathematical problems requires that students 

gain familiarity with a problem space and develop a taste for what is trivial (uninteresting) 

or unsolvable (too open-ended). Thus, rather than delving into the myriad ways 

mathematics researchers and educators have attempted to foster student interest and 

engagement in mathematics meaning making, I next explore how mathematicians develop 

the tastes that shape what they count as mathematically interesting — how they come to 

want to pursue and create new mathematics.   

 

The Generative Role of Mathematical Aesthetics: Aesthetic Preferences Support 

Innovation 

Thus far, I have discussed how mathematicians’ aesthetic preferences shape the 

value judgments they make on finished work and motivate them to pursue particular 
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problems. However, I have not yet discussed how mathematicians’ aesthetic preferences 

shape how they actually do mathematics — how aesthetic preferences shape their inquiry, 

their process of innovatively solving mathematical problems, and finding new ones. In this 

section, I elaborate the description of the generative role as a “position” or orientation 

towards mathematical inquiry by attending explicitly to aesthetics in mathematics. I first 

summarize the generative role of aesthetics in mathematicians’ work. I then extrapolate 

what it might look like for students to experience the generative role of aesthetics in their 

learning of mathematics. As with the motivational role of mathematical aesthetics, my 

description of aesthetics as generative for students’ learning is based on my reading of the 

mathematical literature, because comparative studies between students and mathematicians 

do not exist for the generative role of the aesthetic. Finally, I review an important study on 

how researchers have attempted to understand and support the role of aesthetics in learning 

mathematics.  

 

The Generative Role of Aesthetics in Mathematicians’ Work 

Mathematicians engage the generative role of their mathematical aesthetics in three 

ways. First, mathematicians engross themselves in a state of mind where they can playfully 

explore a problem space (Sinclair, 2004). For example, many geometers use visualization 

software like Geometer’s Sketchpad® to playfully explore mathematical objects in both 

concrete and abstract ways; it gives them a sense of pleasure and insight to see their 

theoretical mathematical objects come to life. For example, Hofstadter (1997) gives a 

powerful account of his playful exploratory activity in the software: 

One further key factor that mustn’t be overlooked is the fortuitous existence and 
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tremendous power of Geometer’s Sketchpad. Somehow, this program precisely 

filled an inner need, a craving, that I had, to be able to see my beloved special 

points doing their intricate, complex dances inside and outside the triangle as it 

changed. (p. 13, as cited in Sinclair, 2004) 

This playful exploration is not goal oriented in the sense of wanting to produce particular 

problem solutions; rather, it is playful exploration with the purpose of getting familiar, of 

seeing what exists, what is possible, and what stands out. In this way, playful exploration 

supports a conceptualization of mathematical insights as much or more than deductive 

reasoning. In today’s technologically rich social-scape, examples of rich, playful 

mathematical exploration can be found in even informal contexts (see, for example, the 

Twitter thread https://twitter.com/j_lanier/status/1042889005220732929). Yet, this kind of 

mathematical engagement is often absent from classrooms. 

Second, mathematicians experience the generative role of mathematical aesthetics 

by developing a sense of intimacy with mathematical objects (Sinclair, 2004). This 

intimacy is a personal connection with, and interest in, a mathematical object that makes 

them look far and wide for connections. Mathematicians do this to understand their 

mathematical objects better, but also to extend their interaction and connection with that 

particular mathematical object. In Hofstader’s quote above, he expressed his intimate 

connection with his work in the way he described his mathematical objects as his “beloved 

special points.”  

Finally, mathematicians also experience the generative role of mathematical 

aesthetics when they appeal to their intuition in problem solving, with no initial deductive 

reasoning, just a feeling guiding them (Sinclair, 2004). According to Reuben Hersh (1997), 

https://twitter.com/j_lanier/status/1042889005220732929
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“a realistic analysis of mathematical intuition should be a central goal of the philosophy of 

mathematics” (p. 62). In a pioneer study of mathematicians’ aesthetics, Silver and Metzger 

(1989) described aesthetic intuition as the link between metacognition and emotion in 

mathematical work: Mathematicians develop affective responses to mathematics that allow 

them to use intuition to generate interesting questions and ideas for solutions. Indeed, 

intuition is a primary generator of mathematics. For example, mathematicians worked for 

centuries to understand the shape of the hyperbolic plane. While multiple symbolic 

descriptions of the plane existed, mathematicians wanted a tangible way to explore the 

space, a way that would let them use their intuitions. Around 1880, Henri Poincaré 

developed the first planar model of hyperbolic space to accurately represent angles, and 

although accurate, this model did not fully support the exploration that mathematicians 

sought (Henderson & Taimina, 2006). Then, in 1997, Daina Taimina crocheted a 

hyperbolic plane that allowed mathematicians to garner a deeper understanding for how the 

hyperbolic plane is shaped, allowing for a link between intrinsic (local) and extrinsic 

(global) explorations of the space, thus allowing mathematicians to develop intuitive 

insights into the nature of lines and shapes in the hyperbolic plane (Henderson & Taimina, 

2006).  

In sum, mathematicians’ aesthetic preferences lead to the generation of new 

mathematics: They pose new mathematical questions and pursue insight through their 

playful explorations, personal connection and commitment to certain mathematical objects, 

and reliance on intuition. Next, I extrapolate what it might look like for students to 

experience the generative role of aesthetics in their learning of mathematics.  
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The Relationship between Students’ Aesthetics and Mathematicians’ Aesthetics 

What would it look like for students to playfully explore mathematics, to have 

intimate personal connections with mathematical objects, and to evoke intuition in their 

learning of mathematics? Extrapolating from the prior section, I posit that students engaged 

in the generative role of mathematical aesthetics would continuously be developing and 

refining opinions about what mathematics is interesting and meaningful. While the 

motivational role of the aesthetic involves selecting and pursuing interesting mathematical 

problems, the generative role of the aesthetic involves developing tastes for what is 

interesting. Because what counts as interesting changes as familiarity with the 

mathematical object changes (Wells, 1990), students would engage with mathematics 

through noticing, wondering, and posing new-to-them mathematical questions. They would 

seek out concrete encounters with resources such as mathematical software for 

visualization and computation, the internet, and physical objects to build on their existing 

visual, spatial, and physical sensitivities and holistically pursue their mathematical 

questions (Sinclair, 2001).  

 

Developing Mathematical Aesthetics 

We can help students form opinions about what mathematics is interesting and 

meaningful in ways that leads them to wonder about and pose new-to-them mathematical 

questions by giving them rich mathematical problem spaces, rather than pre-determined 

mathematical problems. These problems spaces should be open-ended and yet structured in 

a way allows them to explore and develop mathematical tastes and questions. This puts the 

emphasis of their mathematical activity on making meaning, making connections, and 
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developing interest, rather than on primarily knowing how to find answers to particular 

types of problems.  

While there is research on how to get students to pose mathematical problems, the 

strategies most researchers have used are prescriptive — for example, by getting students 

to change some of the constraints in a math problem by asking what if-not? questions 

(Brown & Walter, 1983). While such prescriptive strategies are productive for expanding 

students’ mathematical sensemaking, they do not necessarily address the key issue of 

concern here –– developing a taste for what counts as an interesting or worthwhile problem 

(Crespo & Sinclair, 2008). I suggest we need to make space both inside and outside of 

school for learners to engage in playful exploration of rich mathematical problem spaces so 

that they can have the opportunity to notice, wonder, and explore questions that arise.  

While these kinds of spaces are rare, Fiori and Selling (2016) created a summer 

school course where they supported students in posing their own mathematical questions 

based on their interactions with physical objects. Each of these objects was located at a 

different station in the classroom, and students could go to any table they pleased, stay as 

long as they were interested, and leave whenever they lost interest. Throughout the summer 

school class, the students developed their own mathematical questions. 

In fact, through playful exploration, the development of personal connections to 

mathematical objects, and reliance on intuition, these students developed a taste for 

mathematically interesting questions. As the students explored the objects at the stations, 

they began to develop personal connections with their in-progress ideas. For example, one 

student, Marco, became very interested in creating different mazes with square tiles, 

eventually posing the mathematical question of, “Given a number of tiles, how many 
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different mazes can be made with them?” and defended to his classmates what he counted 

as (or defined as) a maze (p. 223). Two other students became interested in discerning 

between configurations of snap cubes that could not “wiggle.” While the physical snap 

cubes could always wiggle in some way, the two students developed a more abstract 

understanding of their structure, treating them as idealized objects (as mathematical 

models) as they intuitively investigated their mathematical definition of wiggling, which 

did not include physically possible motions such as twisting and stretching (p. 224). 

Throughout the course, students posed problems that balanced simplicity and complexity: 

they iteratively modified the constraints of their problems to make solutions possible 

(solvable) but also interesting (non-trivial). In this study, students’ exploration of physical 

objects — rich with mathematical potential — led them to generate not only new-to-them 

mathematical problems, but also generated personal interest in some problems over others. 

While Fiori and Selling’s (2016) study provides an existence proof that students can 

generate rigorous (nutritious) and interesting (tasty) mathematical questions, they provide 

little insight into the mechanisms by which exploration shaped the aesthetic value systems 

that guided the students’ activity. In fact, the instructors’ facilitation moves are absent from 

the study’s write-up, and it is not certain that the materials alone would generate such a 

range of interesting questions. While studies of students’ evaluative aesthetics show us how 

schools’ value systems shape what students count as good mathematical solutions, we 

know little about how students’ aesthetic value systems might come into play during 

mathematical exploration, problem posing, and problem selection.  

 However, a study by Lehrer, Kobiela, and Weinberg (2013) offers some insight 

about how to facilitate mathematics learning to support students’ mathematical problem 
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generation in ways that are personally interesting and mathematically significant (non-

trivial). Drawing on multiple veins of mathematics education research, they enacted 

facilitation moves including (a) labelling or mathematizing students’ language during re-

voicing moves (O’Connor & Michaels, 1993), (b) supporting student authorship of ideas 

(e.g., by labelling a mathematical guess as “Vern’s conjecture”), (c) modelling and eliciting 

acts of noticing and wondering with statements such as  

‘‘What kinds of questions could we now ask, having made this thing? Cause in 

math, we don’t make things unless we want to ask questions about them. So what 

kinds of questions could we ask about this thing that we’ve just made? … What 

else might we want to know? About this or anything related to it.’’ (p. 372),  

(d) drawing on and mathematizing bodily experiences (e.g., walking and turning as 

resources for understanding shapes and angles), and (e) providing new tangible experiences 

(e.g., a dynamic quadrilateral made of four strips of paper and brad fasteners). They found 

that when students participated in learning that was driven by students’ own “investigate-

able” questions (i.e., questions that are rich enough to support inquiry), students’ 

reflections on their mathematical experiences featured discussion about agency, positive 

attitudes, practices for generating knowledge, and peer collaboration. These outcomes are 

considered highly desirable but are notoriously difficult to achieve. Even more, they also 

found that students had mathematically rigorous aesthetics for what counts as an interesting 

mathematical question (Table 1-3).  
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Table 2-3. Student-generated criteria for qualities of good questions/conjectures from 

Lehrer et al. (2013, p. 372). 

 
Student generated criteria for qualities of good questions/conjectures 

1.  Help you learn something that you do not already know. 

2.  Something you are eager to know. 

3.  Shows good curiosity and thinking. 

4.  Has something you know about and something you want to find. 

5.  Has questions for what we know. 

6.  Topic of the discussion is inside the question. The question helps you keep thinking about the topic. 

7.  Good conjecture follows from the question. It links to what you know. 

8.  Questions are posed with good evidence. You can see why the question is relevant. 

9.  Leads to other conjectures. 

10.  Clear in wording and makes sense. 

11.  Good detail, specific focus 

12.  Good math wording—good math vocabulary helps you know what the question (or conjecture) is about 

13.  Question helps you understand what people are saying and why 

 

 This study (Lehrer, Kobiela, Weinberg; 2013) exemplifies how aesthetically 

grounded mathematical learning –– learning that begins with asking personally meaningful 

questions –– can support the development of mathematical competence and positive 

disciplinary dispositions. Importantly, this aesthetically grounded learning was possible 

because of the epistemic culture (Knorr Centina, 1999) of the classroom (fostered through 

the design decisions above) that led students to prefer and thus generate questions that shed 

light on mathematical ideas they had worked on in the past and that opened up directions 

for future inquiry. Aesthetically grounded mathematics activity leads to more authentic, 

meaningful learning and also supports students to develop positive disciplinary 

dispositions. 

In sum, if we wish to create mathematics learning environments that foster genuine 

interest in mathematics, we need to ground mathematics learners’ aesthetics. In the next 

section, I synthesize the previous three sections on the evaluative, motivational, and 
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generative roles of aesthetics in mathematical inquiry by presenting design principles. 

These design principles are meant to direct the readers’ attention to aspects of learning 

environments that can support the emergence of mathematical problems as well as their 

meaningful pursuit and evaluation.   

 

Design Principles: Grounding Mathematics Learning in Children’s Aesthetic 

Sensemaking 

 Across the three roles of mathematical aesthetics, my synthesis of research suggests 

design principles for leveraging mathematical aesthetics. In this section, I discuss those 

design principles and implications for mathematics learning.  

 My synthesis of research suggests that we can support students in developing 

evaluative mathematical aesthetics through design principles such as (a) emphasize 

insightful solutions over quick and correct solutions by supporting multiple modes of 

communicating findings (Dreyfus & Eisenberg, 1986; Tjoe, 2015), (b) create emotional 

safety and mitigate academic risk (Koichu, Katz, & Berman, 2017), and (c) disrupt 

conventional tool use (Mamolo & Zazkis, 2012). Of course, in order to achieve any of 

these design principles, we must identify conditions under which leaners and their teachers 

can escape the didactical contract (Brousseau, 2006) of schooling, where logics of 

participation (John, Torralba, & Hall, 1999) can too often add up to doing school rather 

than engaging in inquiry. This is especially challenging with the school subject of 

mathematics, as mathematics beyond simple computation is (too often) only considered to 

exist within the walls of classrooms, universities, and professional STEM careers –– not in 

life outside of these more formal spaces. Indeed, many readers understand how difficult it 
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can be to help even their own children pursue mathematics out of intellectual curiosity. 

Notably, ambitious teaching literature has been addressing all three of these design 

principles for decades, as facilitating students to make their ideas public and engage each 

other’s ideas through kind debate (see Horn, 2008 for a description of such a participation 

structure) inherently foregrounds insight, emotional safety, and disrupts traditional means 

of learning mathematics by replacing direct instruction with student-to-student discourse.  

 My synthesis of research also suggests that we can support mathematical aesthetics 

as a resource for student engagement and motivation through design principles such as (d) 

provide just-in-time instruction in personally meaningful contexts (Boaler, Munson, & 

Williams, N.D.) (e) make tasks untidy (Dietiker, 2015) and tangible (e.g., Cipoletti & 

Wilson, 2004), (f) support exploration (Mamolo & Zazkis, 2012) that leads to problem 

posing (Fiori & Selling, 2016; Lehrer et al., 2013), and (g) mathematize concrete 

experiences (Lehrer et al., 2013). Of course, the phrase “personally meaningful” in Design 

Principle D connotes, at first blush, a different design for each child. However, research in 

the learning sciences has theorized that designing “disruptive” environments –– by 

removing standard tools for problem solving –– can facilitate students to recruit their own 

knowledge and practices (Ma, 2016), thereby bypassing the sometimes individualistic 

problems of funds of knowledge (Gonzalez et al., 2005) approaches. Designs such as these 

typically also account for the second and third design principles as well, as designing for 

disruptions often involves untidy and tangible tasks that can only be resolved by beginning 

with exploration.  

 Importantly, all of the design principles synthesized from this literature review have 

been contemplated in detail by literatures that centralize other phenomena. However, few 
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research designs closely attend to all principles. From this review, the Lehrer et al. (2013) 

study is an exception, as this study incorporates all design principles, and adds nuance to 

them. For example, Lehrer and colleagues (2013) add nuance to Principle E (create untidy 

and tangible experiences) by distinguishing between experiences at the scale of gesture and 

object manipulation from the scale of whole bodies in motion. Their study also adds clarity 

to Principle F (supporting exploration that leads to problem-posing) by describing how to 

facilitate acts of noticing and wondering, as well as by providing descriptions of students’ 

understandings of what constitutes a meaningful mathematical question. Thus, 

acknowledging that there are always tradeoffs in design, I argue that designing 

environments that encapsulate these principles is quite possible. Nonetheless, high-risk 

standardized measures of mathematics learning often result in research that is geared 

towards producing student learning that satisfies those measures (for an exception, see 

Sengupta-Irving and Enyedy’s (2015) study on designing for disciplinary enjoyment by 

creating open means of participating in mathematical practices). Of course, this is due to a 

widespread cultural understanding of mathematics as learning definitions and practicing 

procedures (Stigler and Hiebert, 1999) rather than as fundamentally defined and driven by 

a value system. Regardless of this cultural conception, mathematics is driven by a value 

system –– a value system that is aesthetic in nature.  

 

Future Directions: Examining the Role of Aesthetics for Mathematics Sensemaking in 

Designed Spaces 

 The idea that mathematics is a value driven discipline is radical yet not new. Back 

in 1996, Yackel and Cobb wrote about value systems for mathematics learning. They 
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described these value systems by pointing to their manifestations in classrooms: 

sociomathematical norms.3 This construct changed the way researchers and many 

educators understood what it means to participate in mathematics learning. In this paper, I 

have presented mathematicians’ aesthetics in ways that support viewing them as a kind of 

value system for sociomathematical norms that centralize beauty in both mathematics and 

in the mathematical experience.  

 In fact, Yackel and Cobb’s first publication on the construct of sociomathematical 

norms explicitly identified the notion of mathematical elegance as driven by such norms (p. 

461). Yet value systems around mathematical beauty have not been strongly taken in up in 

subsequent research in the same ways that values around mathematical justification and 

other mathematical practices have been. This paper is built around the notion that this 

neglect of aesthetics is due to problematic cultural scripts that position mathematics as an 

emotionally and aesthetically “cold” discipline. This has limited our vision of what is 

possible, and thus have constrained our ability to design in ways that explicitly centralize 

goals of positive dispositions and competence. I have argued that mathematics can be 

taught in a way that allows learners to seek-out and experience mathematical aesthetics in 

relation to their prior knowledge just as mathematicians’ aesthetically pose, choose to 

                                                 

3 Sociomathematical norms are reflexively related to a community’s values and goals, and they can be 

inferred from attending to a community’s mathematical practices (Yackely & Cobb, 1996, p. 460). In 

particular, sociomathematical norms are constrained by both taken-as-shared classroom values and 

individuals’ values, yet those values are also influenced by what is already normative (legitimized as 

acceptable activity). Sociomathematical norms and the values that constitute (and are constituted by) them 

are reflected in local practices, and thus can be inferred by attending to patterns of social interaction. 
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pursue, and evaluate based on their expertise. The design principles in the prior section are 

a promising start to support students in engaging in such meaningful –– and potentially 

enjoyable –– aesthetically driven mathematics learning. 

 Still, although mathematical aesthetics are core to disciplinary engagement for 

mathematicians, we know almost nothing about what the role of productive (both positive 

and negative) aesthetic values might be for learners. We know that as mathematicians are 

inducted into the discipline of mathematics, their perception of what counts as beautiful or 

elegant, both in problems and solutions, becomes disciplined to conform to what counts as 

valuable mathematics in particular communities of expertise (e.g., Dreyfus & Eisenberg, 

1989). This disciplining of perception is how the discipline of mathematics remains a 

human practice (else mathematics would cease to exist, Stevens & Hall, 1998) –– and it is 

akin to becoming attuned to sociomathematical norms. Importantly, the sociomathematical 

norms that shape the way mathematicians innovate –– through playful exploration, 

developing intimacy, and leveraging intuition –– is driven by their aesthetics. This 

contrasts sharply with how school versions of mathematical innovation (problem solving 

rather than problem posing) are conceptualized and operationalized in schools throughout 

the world.  

What would a learning environment that did support playful exploration, 

developing intimacy, and leveraging intuition in mathematics look like? What kinds of 

spaces could support learners to explore rich mathematical problem spaces and begin to 

pose their own mathematical questions? Such a space would need to provide alternative 

logics of participation (John, Torralba, & Hall, 1999) to what is typically available in 

mathematics classrooms. What if we created aesthetically appealing mathematical objects 
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(visual and tactile aesthetics), such as irregular tiling pentagons (e.g., see Figure 1-1), and 

allowed learners to playfully explore them (open opportunities for aesthetic touchstones, 

urges, and positions to emerge)? What kinds of mathematical content and practices do we 

think they would be engaging with? What kinds of questions might they ask?  In order to 

answer these questions, we will need to find or design such spaces. If the spaces are 

designed, they will likely need to be improved over iterative studies of use, much like 

mathematics instruction. If they are found, we will need rich ethnographic work that 

describes what it means to participate in those spaces.  

 

 

Figure 2-1. Mathematicians’ irregular tiling pentagons (left, Gailiunas, 2000, p. 136), and 

playful aesthetic irregular tiling pentagons (right, Math On-A-Stick, Minnesota State Fair, 

2016). 

When mathematicians playfully explore problem spaces, they ask questions such as  

What if we could divide by 0, what if we were to throw away the parallel postulate, 

what if the irrational numbers were our counting blocks, what if we really could 

have staircases like those drawn by Escher, what if we could redefine 

differentiability to cope with some kinds of discontinuity? (Sinclair & Watson, 2001, 

p. 40).  
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It is not far-fetched that our students might ask similar types of questions. Just as Penrose 

(1974) began much of his work because of a personal affection for the beauty of irregular 

tilings, we can expect that some students will notice and wonder about important 

mathematical questions as they explore rich problem spaces. For professional 

mathematicians, a what if? question might be, what if there is another kind of tiling 

pentagon? (Lord, 2016). For an eighth grader, it might be, what if some shapes tile and 

some shapes do not tile? (Civil, 2002). For an eight-year-old child on a mathematical 

playground, it might be, what if these pentagons fit together in a way that covers the whole 

table or in a way that never ends? or what if I try to make this other kind of pentagon tile? 

In this scenario, the child at play might be engaging with mathematical concepts of space-

filling, tiling, and infinite planes.  

Until we know how students engage in sensemaking in high-agency mathematical 

problem spaces in ways that productively exercise their aesthetics, we will not know what 

to change in mathematics classrooms. Even more, children today often do not have 

opportunities to playfully explore mathematical problem spaces in order to pose 

mathematical questions — either inside or outside of school — and so their personal 

connection to mathematical objects and their intuition are not adequately fostered. In 

relation to developing interest and positive disciplinary identities, learners need access to 

mathematical contexts with conditions of practice (Azevedo, 2011) that support multiple 

modes of aesthetic engagement with the discipline. Azevedo (2011) argues that developing 

and sustaining persistent engagement in an interest-based practice is supported by many 

interweaving threads of multiple practices (lines of practice). In this vein, I argue that 

providing learners with agentic play spaces designed for mathematical affordances can 



 

 44 

provide conditions of practice that make a wide array of learners’ personal interests and 

aesthetics relevant. Studying engagement in such contexts can give us insight into how 

aesthetics are recruited as resources for interest driven engagement in mathematics. 

In future studies, we need to follow holistic ethnographic approaches to examining 

how learners’ aesthetics shape what they notice as problematic (generative role of 

mathematical aesthetics, positions), whether or not and how they decide to pursue the 

problem (motivational role of mathematical aesthetics, urges), and what counts as a good 

solution (evaluative roles of mathematical aesthetics, touchstones), as well as the 

relationship between these aspects of mathematical sesnsemaking. In addition to 

ethnographic studies that ask what happens here?, we also need microgentic studies that 

ask how and why does activity change here? in spaces designed for playful, aesthetic 

mathematical sensemaking. By designing and studying spaces for open participation 

through playful exploration with mathematically rich materials, we may learn how to better 

support the engagement of individuals with varying histories of participation in 

mathematics and other communities. Again, I contrast this approach to the “everydaying of 

mathematics” approaches (e.g., make word problems “reflect” real world scenarios), and 

instead propose creating contexts for mathematizing what we often think of as “everyday” 

experiences (Lave, 1992, p. 87).  

Notably, because all forms of participation involve mind and body,4 future research 

                                                 

4 According to Hutchins (2010), even “offline” cognition involves the body: “the premise that the particular 

bodies we have influence how we think... cognition is situated in the interaction of body and world, dynamic 

bodily processes such as motor activity can be part of reasoning processes, and offline cognition is body-
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into learners’ aesthetics should attempt to more fully describe the embodied practices that 

encompass physical, material, and discursive resources for shared meaning-making. In 

truth, mathematical aesthetics can be more fully theoretically described as an embodied 

performance genre of developing and exercising a morally implicated disciplined 

perception (Stevens & Hall, 1998). However, due to the backgrounding of the embodied 

nature of knowing in the literature on mathematical aesthetics, I have omitted this 

theoretical framework to make my analysis more concise.  

 

Conclusion 

At the beginning of this article, I conjectured that centering aesthetic experiences as 

foundational to mathematics learning may facilitate the development of learning 

environments that (a) make mathematics learning more authentic to the discipline and (b) 

foster positive relationships between students and mathematics. To investigate this 

conjecture, I have connected the roles of mathematical aesthetics in mathematicians’ 

inquiry with what we know as a field about the role of aesthetics in mathematics learning. 

This process led me to develop design principles for supporting authentic engagement and 

positive dispositions by grounding mathematics in learners’ aesthetics. In addition, I 

proposed inquiry into new kinds of supplemental spaces for engaging with mathematics.  

At this time, our understanding of how aesthetics can be leveraged to make 

mathematics more meaningful and enjoyable are limited. In fact, research that connects 

                                                                                                                                                    

based too... cognition evolved for action [and thus] perception and action are not separate systems, but are 

inextricably linked to each other and cognition” (p. 428). 
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aesthetics in mathematics learning to other areas of education research, such as the role of 

discourse and scaffolding in learning, are scarce. This is a significant problem, as 

classroom discourse is a primary source for learners’ socialization into mathematics 

(Yackel & Cobb, 1996). I have argued that mathematics learners would benefit from 

opportunities to exercise their aesthetics as a valued resource for mathematics learning. 

Importantly, children’s’ aesthetics in their mathematics classes may be quite different from 

mathematicians’ aesthetics, although children’s aesthetics may be more appropriate for 

mathematics learning (Sinclair, 2006a). By mathematizing “everyday” aesthetics (in 

designed, out-of-school, high-agency, mathematics contexts) towards developing new 

everyday mathematical aesthetics in schools, mathematics can be experienced as a 

connected set of big ideas, where intrinsic interest and meaning making are foregrounded.  

Another significant gap in the literature is on the generative role of mathematical 

aesthetics — the role of the aesthetic that facilitates mathematical insight and innovation 

— in relation to mathematics learning. Because insight and innovation are the stuff of 

collective learning, it is pivotal that this gap narrows. Mathematicians leverage their 

mathematical aesthetic for insight and innovation by playfully exploring mathematical 

systems, developing intimacy with mathematical objects, and leveraging their intuition 

(Sinclair, 2004). However, many students and teachers have little opportunity to engage in 

this kind of activity (Jacobs et al., 2006; Litke, 2015). This forecloses opportunities to 

engage in one of the most important mathematical practices for participation in the 

discipline: the practice of posing interesting (non-trivial), meaningful (personally 

appealing), and valuable (significant to the community) mathematical problems. While 

studies have shown that teachers (Crespo & Sinclair, 2008) and students (Fiori & Selling, 
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2016) can come to have tastes for and pose mathematically interesting problems, our 

knowledge about the mechanisms for posing these questions authentically (not 

prescriptively) are limited. 

Finally, this paper has provided a provisional outline to design principles for 

supporting students in developing sophisticated mathematical aesthetics. These design 

principles were linked not only to research on aesthetics but to multiple branches of 

research on mathematics teaching and learning. Namely, research in the veins of ambitious 

instruction (e.g., Lampert, 1990) and novel teaching experiments (e.g., Ma, 2016) have 

theoretical commitments that lead them to design for learning in ways purported by 

aesthetics literature. However, these literatures do not attend to learners’ aesthetics, which I 

have argued is a residue of the history of mathematics education. Nonetheless, analyses of 

learners’ aesthetics in these two veins of research might open new ways to conceptualize 

and thus support meaningful mathematics learning.  

Importantly, no matter the theoretical commitment, such studies must overcome the 

“doing school” logics of participation (John, Torralba, & Hall, 1999) that can emerge in 

classrooms, which no doubt influence learners’ emergent aesthetic values. For this reason, I 

have further suggested that studies that examine how learners’ aesthetics shape what they 

notice as problematic (generative role of mathematical aesthetics), whether or not and how 

they decide to pursue the problem (motivational role of mathematical aesthetics), and what 

counts as a good solution (evaluative roles of mathematical aesthetics) would be best 

carried out where children can agentically explore in mathematically rich spaces.  

This leaves us with many unanswered questions. What would it look like for 

children to engage their aesthetics while playfully exploring mathematically rich problem 
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spaces? What might we learn about supporting engagement Common Core mathematics 

practices (CCSSI, 2010) — such as making sense of problems, persevering in solving 

them, making use of structure, and using appropriate tools strategically — by centering 

aesthetics in both our analyses and our learning environment designs? What new 

mathematical practices might we see, and to what ends? How might we need to reorganize 

mathematics learning to support the development of mathematical aesthetics, specifically 

with an eye towards the motivational and generative roles, which are understudied in 

education literature?  

While children’s aesthetics may be quite different from the aesthetics of 

mathematicians (people who are well indoctrinated into the world and social norms of 

mathematics), failing to intentionally leverage and support learners’ aesthetics for the 

learning of mathematics is a mistake if the goal of mathematics education reform is to 

develop more authentic and more humane learning environments. We need to better 

understand how learners’ aesthetic preferences can be leveraged for mathematical 

sensemaking, in relation to developing interest and intuition. I believe we will find that 

centering aesthetics in both our designs for and analyses of mathematics learning will 

allow us to better support learners in developing a more perfect relationship with and 

understanding of mathematics.  
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FIXING THE CROOKED HEART: CHILDREN’S AESTHETIC AND 

MATHEMATICAL PRACTICES IN PLAY 

 

Lara Jasien & Ilana Horn 

 

Abstract 

Supporting learners’ meaningful engagement in mathematical practices is often 

challenging. To understand how learners’ might engage in this way, we draw on 

mathematicians’ descriptions of their work and conceptualize doing mathematics as an 

aesthetic endeavor. To help see learners’ mathematical practices as aesthetic, we situate our 

study in an informal context that features design-centered play with mathematical objects. 

Drawing from video data that supports inferences on children’s perspectives, we present a 

case-study of one child’s aesthetic judgements about her designs, highlighting the 

emergence of aesthetic problems whose resolution required engagement in mathematical 

practices. As mathematics educators seek to expand participation, our findings have 

implications for how we view children’s mathematical competencies and, relatedly, 

instructional design that supports their emergence and development. 
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Introduction 

In educational contexts, mathematical practices are often named as things people do 

–– such as making sense of structure, attending to precision, and using appropriate tools 

strategically (Common Core State Standards Initiative [CCSSI], 2010). Indeed, lists of 

such practices can be found on many classroom walls to support teachers and students in 

using them. Certainly, these lists represent one way of thinking about developing practices: 

name them, then do them. We refer to this use as the everyday meaning of practice. 

From an anthropological view, however, descriptions of activities do not quite 

suffice. To count as a practice, we must account not only for what people do, but also the 

underlying cultural logics of why they do it –– the meanings they derive from their activity 

in context (Bourdieu, 1977). With this in mind, we argue here that, to make mathematical 

practices more authentically connected to learning and sensemaking, mathematics 

educators need to attend not only to supporting children in the doing of mathematical 

practices, but also to the meanings they derive while engaging with them. We refer to this 

use as the anthropological meaning of practice. 

To make mathematical practices anchored in meaningful sensemaking, then, we 

must understand their meanings in the broader mathematical enterprise. Looking at 

professional mathematicians, we ask: Why do they make use of structure, attend to 

precision, and use appropriate tools strategically? What meaning do they derive from these 

activities? When we pursue these questions, we find frequent references to mathematical 

beauty. That is, mathematical aesthetics underlie much of their engagement (see Sinclair, 

Pimm, & Higginson, 2006). Aesthetic practices, according to contemporary theory 

(Rancière, 2004; Sinclair, 2018), involve a double meaning of sensemaking: Aesthetic 
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practices exist as a relation between sensory ways of knowing (e.g., embodied5  ways of 

knowing; what is perceived by the eyes, ears, nose, skin, emotions, etc.) and making sense 

(e.g., what is taken as sensible and desirable versus insensible and undesirable). Invoking 

the anthropological meaning of practice, mathematical aesthetic practices shape human 

sensemaking of and appreciation (or distaste) for particular manifestations of mathematics. 

Mathematical practices support sensemaking and engagement. 

Using this insight, we wonder: How can we leverage aesthetics to support 

children’s engagement in mathematical practices, such as those valued by the US’s 

Common Core Standards? How would aesthetic designs reorient them to mathematical 

practices in ways that are personally meaningful? As Sinclair (2004, 2006) has described, 

learners’ aesthetic practices can help both learners and mathematicians construct meaning 

as they generate, pursue, and evaluate new-to-them mathematical questions.  

If aesthetic practices are a promising way to make mathematical practices 

meaningful, it is worth understanding how children might use them. This question is 

significant: Although awareness of the importance of mathematical aesthetics in 

mathematicians’ work and in students’ learning is increasing, we have yet to empirically 

examine the relationship between children’s aesthetic practices, mathematical practices, 

and mathematical sensemaking. To this end, we found a naturalistic environment to 

examine this phenomenon, at an out-of-school mathematics playground called Math On-A-

                                                 

5 In this study, we do not take up the post-humanist and new materialist ontologies associated with this 

definition of aesthetic practices that conceptualize the body as inclusive of human and more-than-human 

elements. As will be discussed in the theory section, we examine interaction between people and their social 

and material environment, including mathematical tools. 
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Stick (MOAS). MOAS was a space designed for learners to playfully engage with 

mathematical objects. We illustrate how playing with mathematical objects brought out 

aesthetic practices and facilitated meaningful engagement in mathematical practices, such 

as those valued by the Common Core. This study deepens the field’s understanding of 

meaningful engagement in mathematical practices, both inside and outside of the 

classroom. Furthermore, our aesthetic lens on engagement in mathematical practices 

contributes towards a holistic understanding of what it means for children to do 

mathematics, offering one avenue for broadening participation in the field.  

 

Research Questions 

In this exploratory study, we use a case study of a child in a mathematical 

playground to ask: How can learners’ aesthetic practices support meaningful engagement 

in mathematical practices?  Situating our study at MOAS provided ample opportunities to 

see children making choices about their mathematical activities. These, of course, given the 

nature of the materials, often included aesthetic choices about designs, games, and patterns. 

By delving into one illustrative case, we provide a rich description of how mathematical 

practices emerge in a learner’s playful exploration of mathematical objects, and how the 

child’s use of aesthetic practices –– along with the objects’ affordances –– influence 

meanings behind those mathematical practices.  
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Prior Work: Mathematical Sensemaking and Aesthetic Practices 

 

Mathematical Sensemaking 

For almost a century, calls have come from many corners to foreground meaning in 

mathematics learning, what might be called mathematical sensemaking. From 

mathematician Alfred North Whitehead’s (1929/1961) plea to “resc[ue] the subject from 

[...] being a mechanical discipline” (p. 89) to William Brownell’s (1946) exhortation to 

teach arithmetic in meaningful ways, educators have long sought to help children make 

sense of the mathematics they are asked to learn. Indeed, current efforts to shift 

mathematics education towards mathematical practices rather than procedures stem from 

the insight that children learn better when they have sensemaking opportunities (National 

Council of Teachers of Mathematics [NCTM], 1989; Carpenter, Fennema, 1992; 

Carpenter, Fennema, Peterson, Chiang, & Loef, 1989; Erlwanger, 1973; Schoenfeld, 1985, 

1992). This perspective continues to be echoed by mathematicians (Cheng, 2015) and 

education researchers (Boaler, 2002; Doyle, 1988; NCTM, 2014; Schoenfeld, 1988; Stigler 

& Hiebert, 1999) who are invested in redressing typical U.S. mathematics instruction’s 

tendency to bypass sensemaking and its related consequences for students’ learning, 

instead focusing on memorization and procedures. 

 

Aesthetic Practices in Mathematics Engagement 

One way to invite children’s mathematical sensemaking is through mathematical 

aesthetics, a foundational influence in in shaping the discipline of mathematics (Sinclair, 

2004). According to Sinclair (2004), mathematical aesthetics involve aesthetic practices 
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that fulfill three roles in driving mathematical work: an evaluative role, a motivational role, 

and a generative role. As the labels suggest, these respectively refer to: how we determine 

what counts as quality or “good enough” mathematical work; why and how we choose to 

engage or disengage in particular problem spaces; and how we gain insight into 

mathematical problems. As we describe more fully in the methods section, we 

operationalize these roles in our analysis by looking for tacit questions that indicate each 

role of the aesthetic (Table 2-1). We explain each role in more detail in the following 

subsections, with an interest in how they might emerge in children’s mathematical play.  

 

Table 2-1. Operationalizing questions for each role of mathematical aesthetics 

Role of Aesthetic Practices Indicating Questions 

Generative Role:  

The emergence of mathematical problems 

1. What is possible here?  

2. What stands out as interesting? 

Motivational Role: 

The selection and pursuit of problems 

1. Is this worth pursuing?  

2. What action-steps should I take? 

Evaluative Role: 

The judgement of inquiry 

1. Am I on the right track?  

2. Is this finished problem good enough, or the best 

that I can make it? 

 

The generative role of aesthetic practices 

The generative role of aesthetic practices in mathematics emerges when 

mathematicians experiment and play with the elements of a mathematical situation 

(Sinclair, 2004). Sinclair and Watson (2001) argue that mathematicians engage in 

exploration ways that spark feelings of wonder and curiosity, which we consider to be 

quite playful. These feelings of wonder and curiosity signal to mathematicians that they 

have discovered a personally interesting or culturally significant mathematical problem or 

idea (Sinclair, 2004). Thus, we see the generative role of mathematical aesthetics to have a 
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clear connection to the mathematical practices of problem-posing and problem-solving, or 

perhaps more appropriately, mathematical inquiry. By mathematical inquiry, we refer the 

back-and-forth process by which mathematical problems and solution strategies can co-

evolve throughout problem-solving activity: In the words of mathematician Philip Davis, 

"problem formulation and problem solution go hand in hand, each eliciting the other as the 

investigation progresses" (Davis, 1985, p. 23). While mathematical inquiry in classrooms 

often begins with problems posed by teachers and textbooks, the mathematical inquiry of 

mathematicians often begins with wonder and curiosity. The problems of mathematicians 

are not always well defined at their first emergence, but rather are elicited and refined as 

mathematicians explore the problem and potential solutions.  

Children are also capable of having pleasant and powerful intellectual experiences 

with emergent mathematical inquiry. Dewey (1938) articulated inquiry –– which begins 

with problem-finding, or what he calls snags in activity –– as the process of bringing 

structure to an ambiguous situation. He described such child-driven inquiry as the kind of 

activity that is both satisfying and satisfactory, and thus also enjoyable (Dewey, 1929, p. 

259). Likewise, Duckworth (1972) described children’s acts of noticing and wondering as 

“the having of wonderful ideas,” and argued that such ideas are the essence of intellectual 

development (p. 218). In this way, mathematical inquiry can be conceptualized as a 

practice that arises out of exploration when children begin to notice, wonder, and 

agentically re-structure their environment to pursue their own curiosities.  

Mathematical engagement that begins with children identifying their own problems 

to solve can be quite playful. While a growing body of research examines how to engage 

students in mathematical problem-posing (Singer, Ellerton, & Cai, 2013), the strategies 
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most researchers have used are prescriptive (for an exception, see Fiori & Selling, 2016) — 

for example, by getting students to change constraints in a math problem by asking what if-

not? questions (Brown & Walter, 1983). These prescriptive strategies are productive for 

expanding students’ engagement in mathematical sensemaking, yet they do not address the 

key issue of developing a personal taste for what counts as an interesting or worthwhile 

problem (Crespo & Sinclair, 2008). 

Consider the following mathematical questions (Sinclair & Watson, 2001, p. 40): 

What if we could divide by 0? 

What if we were to throw away the parallel postulate?  

What if the irrational numbers were our counting blocks? 

What if we really could have staircases like those drawn by Escher?  

What if we could redefine differentiability to cope with some kinds of discontinuity? 

Historically, mathematicians have considered these questions to be interesting and 

worthwhile. We also consider these questions to be quite playful, and we conjecture that 

learners can ask similarly playful mathematical questions. For professional 

mathematicians, a what if? question might be, What if there is another kind of tiling 

pentagon? (e.g., Lord, 2016). For an eighth grader, it might be, What if some shapes tile 

and some shapes do not tile? (e.g., Civil, 2002). For an 8-year-old child on a mathematical 

playground, it might be, What if these pentagons fit together in a way that never ends? or 

What if I try to make another kind of pentagon tile?  

Keifert and Stevens (2018) describe such insight-driving questions as the pillars of 

inquiry from a member’s perspective. In their longitudinal ethnographic study of young 

children across home and school contexts, they articulated and illustrated the beginnings, 
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middles, and ends of inquiry as being defined by when people jointly orient to an unknown 

situation, make progress on understanding the situation by drawing on sense making 

resources, and then orient to a satisfactory end to inquiry. In this sense, a mathematical 

problem is not necessarily the result of a dilemma (as in the sense of Lampert, 1990; Hall, 

1996; Hiebert et al., 1996; Lave, Murtaugh, de la Rocha, 1984; Pea & Martin, 2010) but 

can also emerge from a sense of puzzlement or curiosity. This felt sense of puzzlement then 

also partially constitutes the task to be done. 

 Thus, the generative role of mathematical aesthetics helps mathematicians answer 

tacit questions such as, What is possible here? and What stands out as interesting? In our 

analysis of children’s activity, we look for these tacit questions as indicators of aesthetic 

practices playing a generative role. 

The motivational role of aesthetic practices  

In addition to the generative role, aesthetic practices play a motivational role in 

both problem selection (a selective function, Sinclair, 2004, p. 277) and strategy selection 

(a heuristic function, Sinclair, 2004, p. 289). Thus, the motivational role of mathematical 

aesthetic practices involves the development of personal interests that support motivation 

to engage in mathematics in particular ways. For example, Penrose (1974) suggested visual 

appeal attracted him to inquire into the strange symmetries in irregular tilings, a problem 

he pursued for the majority of his career. Unfortunately, students rarely have the 

opportunity to select their own problems to solve, and, even after decades of reform-

efforts, are often still provided with rote means of solving assigned problems (Stigler & 

Hiebert, 1999; Jacobs, Hiebert, Givvin, Hollingsworth, Garnier, & Wearne, 2006; Litke, 

2015). This forecloses opportunities for students to develop a taste for problems they enjoy 



 

 71 

pursuing and strategies they prefer for problem-solving.   

One way mathematics educators have attempted to get students interested in 

mathematics is through interdisciplinary instruction — by, for example, linking 

mathematics to domains like music and art, as evidenced by STEAM initiatives that have 

gained popularity. Such interventions seek to make mathematics less intimidating for 

students (Van der Veen, 2012), to illustrate mathematics’ utility (Bush, Karp, Nadler, & 

Gibbons, 2016; Wilders & Van Oyen, 2011), or to provide concrete experiences to make 

symbolization more meaningful (Bush, Karp, Bennett, Popelka, & Nadler, 2013; Cipoletti 

& Wilson, 2004). For example, Cipoletti and Wilson (2004) describe a task in which 

students use origami directions — modified to feature geometric language — to produce an 

aesthetically pleasing object while also learning to use mathematical vocabulary to 

communicate concretely before using it symbolically. These approaches to motivating 

students through aesthetics in art are most commonly found in teacher journals rather than 

research journals. Clearly, within classrooms, teachers find aesthetics motivate forms of 

mathematics enough to write and share about them.  

Some critique these interdisciplinary methods as moving away from mathematics to 

foster student motivation, thus bolstering the belief that mathematics is aesthetically sterile 

(Sinclair, 2001). Although this is a legitimate concern, research has shown that disrupting 

longstanding mathematics education norms and practices while simultaneously opening up 

opportunities for students to bring in unconventional sensemaking resources can create 

expanded opportunities for mathematical engagement (de Freitas & Sinclair, 2014; Ma, 

2016), especially when multimodal ways of engaging are leveraged (Kelton & Ma, 2018; 

Nemirovsky, Kelton, & Rhodehamel, 2013). While connections between such kinesthetic 
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engagement and aesthetic practices are not often made, we argue that kinesthetics may 

provide their own aesthetic avenue for some learners. The general claim is that multimodal 

ways of knowing offer access for students to productively engage aesthetic practices for 

mathematics sensemaking.  

In sum, the motivational role of mathematical aesthetics helps mathematicians 

engage tacit questions such as, Is this worth pursuing? and, What action-steps should I 

take? Aesthetic responses (such as wonder, curiosity, and surprise) help mathematicians 

answer these questions.  To pursue our analysis of children’s playful activity, we look for 

these tacit questions as indicators of aesthetic practices motivating activity.  

The evaluative role of aesthetic practices 

Finally, the evaluative role of mathematical aesthetics guides mathematicians both 

as they engage in formative assessment during inquiry and as they assess what 

mathematics counts as good enough to be produced, retained, and verified (Sinclair, 2004). 

For example, mathematicians evaluate of the meaningfulness of their current strategies in 

relationship to the ideas they personally value, which can lead to strategy shifting (Silver & 

Metzger, 1989). In fact, mathematicians tend to prefer solutions that make them feel 

something, such as surprise, wonder, or pleasure in simplicity (Wells, 1990). A 

mathematicians’ work is often not deemed finished until they have achieved aesthetic 

appeal in their solution. 

Following the lead of Harré (1958, as cited in Sinclair & Pimm, 2006), some 

researchers and teachers have attempted to help students develop mathematical aesthetics 

by providing them with access to multiple solutions to the same problem for comparison. 

This approach has endured across generations. In 1968, Rosenberg published an article in 
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The Arithmetic Teacher about providing students with rich problems that can be solved in a 

multitude of ways with increasing sophistication. This resonates with today’s reform-

oriented mathematics instruction that encourages students to engage with multiple 

strategies and solutions by making their ideas public and open for debate (e.g., Horn, 2008, 

2017; Lampert, 1990; Smith & Stein; 2011).  

However, much prior work has backgrounded affective feelings such as surprise 

that are key to the mathematical aesthetics of evaluation. Such affective feelings are shaped 

by the situations in which solutions are encountered. For instance, in an experimental study 

on stimulating evaluative aesthetics, Koichu, Katz, and Berman (2017) found that most 

participants labeled some problems and solutions as more beautiful and surprising than 

others, depending on different conditions. In fact, while students evaluated both problems 

in their study as aesthetically appealing, only the problem presented second was identified 

as the most appealing. This suggests that aesthetic appeal may not be inherent to the 

solutions themselves, but rather that affective experiences of unexpectedness and surprise 

can lead students to evaluate some mathematical solutions as more appealing than others. It 

is likely that other situational conditions –– including prior knowledge, culture, histories, 

and mathematical encounters ––also shape people’s affective experiences and thus their 

aesthetic evaluations.  

To summarize, mathematical aesthetic practices help mathematicians answer the 

evaluative questions: Am I on the right track? or Is this finished problem good enough? or 

Is this argument the best that I can make it? They often feel the answers to these questions, 

appealing to intuition and affective responses. In our analysis, we look for these tacit 

questions and affective responses as indicators of aesthetic practices playing an evaluative 
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role in activity. 

 

Children’s Engagement with Mathematical Aesthetic Practices 

 Despite its central role in mathematicians’ activity, most students never get to 

engage in formulating, exploring, and answering what if? questions that support 

aesthetically driven mathematical inquiry. Instead of asking children why only some 

shapes tile, direct instruction tells students which shapes tile, sometimes (but not always) 

why they tile, and then requires them to store these facts as part of their accumulated math 

knowledge. In inquiry-oriented classrooms, we might ask students if all shapes tile and 

then structure their investigation into which do and do not by directing them to use angle 

measurements in their quest for a correct answer (e.g., Civil, 2002). In typical classrooms, 

children get few opportunities to experience the emergence of inquiry from exploration. 

Beginning to understand the role of aesthetic practices in both noticing and resolving these 

curiosity-sparking experiences, and connecting aesthetic practices to mathematical 

practices, motivates the present study. 

 

Theoretical Framework: Aesthetic Practices Support of Children’s Mathematical 

Sensemaking 

To examine how engagement in aesthetic practices can support meaningful 

engagement in mathematical practices, we take a situative and interactionist perspective on 

learning in activity (Jordan & Henderson, 1995; Lave & Wenger, 1991; Schön, 1992; 

Wertsch, 1998). From a situative perspective, engagement in aesthetic practices involves 

participating in practices around particular “‘ways of doing and making’ that have been 
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chosen among many others” (Sinclair, 2018, p.4). Although these “ways of doing and 

making” are a product of participating in a community engaged in a particular endeavor for 

a particular purpose, they also function to produce particular forms of visibility and 

sensibility. Relatedly, they also obscure some things as invisible and insensible.   

For instance, aesthetic practices can influence sensibilities around what it means to 

be mathematically competent and how it is acceptable to express or communicate 

mathematical competence. Notably, displaying mathematical competence in school math 

looks very different than displaying it in an engineering firm (Stevens & Hall, 1998). Since 

MOAS engages learners in ways of doing and making that are quite different than those of 

school math, it is reasonable to expect that the aesthetic practices that emerge at MOAS 

will transform what mathematics looks like.  

Our tight theoretical link between ways of doing and making, aesthetic and 

mathematical practices, and sensemaking follows Dewey’s problematization of dualisms 

between thought and action, science and common sense, and the academy and out-of-

school life (Dewey, 1938). In this vein, we look for moments of uncertainty that trigger 

learners to restructure their environment in ways that remove ambiguity and create 

determinacy. Schön (1992) described this process as reflective conversation with the 

situation, a term meant to emphasize the activity mode of designing as a primary means of 

engaging in inquiry through “getting in touch with the understandings we form 

spontaneously in the midst of action” (p. 126).  

From an interactionist perspective (e.g., Wertsch, 1998), this points us to look 

closely at trouble and repair episodes (Jordan & Henderson, 1995), where participants 

encounter uncertainties (previously described as problematic experiences, snags, or 
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dilemmas; e.g., Lave, Murtaugh, de la Rocha, 1984) in their activity and seek ways of 

moving activity forward. This process inherently involves sensemaking, as learners revise 

activities and develop new sensitivities and ways of moving forward. As mentioned in the 

conceptual framework, the source of inquiry –– the trouble –– is often experienced not 

only as a felt problem, but also as a sense of puzzlement or curiosity (Keifert & Stevens, 

2018). 

  In addition, the mathematical objects at MOAS were designed to facilitate 

encounters with mathematical concepts. We take the perspective that body movements are 

part of mathematical thinking, not just actions that give rise to it. In more theoretical terms, 

this is an embodied, non-dualist approach to approach to understanding tool use, meaning 

that we take all mathematical sensemaking to be multimodal, both overtly and covertly 

constituted and expressed in bodily activity (Kelton & Ma, 2018; Nemirovsky, Kelton, and 

Rhodehamel, 2013). In this way, although the mathematical concepts were not always 

explicitly named as they are in typical school instruction, they were afforded in the objects, 

supporting an analysis of children’s emergent mathematical sensemaking. For this reason, 

we conceptualize the mathematical objects at MOAS as cultural tools (Wertsch, 1998), 

with an eye toward their role in mediating activity and sensemaking. To understand 

participants’ meanings, and the mathematics participants encountered in their play, we 

examine the designed affordances of materials as well as the realized affordances of tools-

in-use –– alongside the more ephemeral tools of language and interaction (Ahearn, 2011; 

Goodwin, 2006). However, while we analyze our participants’ activity for mathematical 

sensemaking, we do not imply that participants view their activity as mathematics.  

Across the data from MOAS, we see many instances where children’s goals have 
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aesthetic dimensions –– ones that invite representation, pattern making, or design. Like 

professional mathematicians, these aesthetic goals made mathematical practices 

meaningful. When children pursued aesthetic goals and encountered uncertainty, we often 

saw that the pursuit of aesthetic goals supported persistence in ways that supported 

mathematical sensemaking. These moments gave us a window on the unique role of 

aesthetic practices in children’s mathematical sensemaking. 

 

Research Design 

 

Setting and Participants 

Our study took place at a mathematical playground called Math On-A-Stick at the 

Minnesota State Fair in 2016. In the US, state fairs are pop-up leisure gatherings that 

happen once a year, typically around harvest time; they often feature carnival rides, fried 

food, games, and other forms of entertainment, appealing to families and people from all 

walks of life. We collected data over the 10 days of the fair. We noted that families 

frequently used MOAS as a retreat from other crowded and busy attractions. A white 

picket fence set the space of the mathematical playground apart, providing a boundary to 

let children roam, as well as nine exhibits –– picnic tables with colorful umbrellas, decked 

out with an array of mathematical tools for children to use and explore as they pleased. 

Volunteers in orange aprons staffed the tables, facilitating children’s play or simply 

organizing and securing the materials. MOAS is described on the fair’s website as: 

 …a welcoming space where kids and grown-ups can explore fun math concepts at 

the fair. Play with geometric and reptile-shaped tiles to create designs and patterns. 
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Sort, count and look for what's the same and what's different in groups of colored 

eggs on captivating cards. Take a break from the hustle and bustle of the fair to 

enjoy a shapes or numbers book. (Minnesota State Fair, n.d.) 

We consider MOAS to be a mathematical playground within the setting of the fair 

because of the open, playful participation structure supported by the organization of the 

space and the mathematical nature of the materials within its exhibits. The nine exhibit 

tables were labeled with the following signs: Cones & Spheres, Eggs & Crates, Lizards & 

Turtles, Pattern Machine, Pentagons, Spiral Machine, Stepping Stones, and Tiles & 

Patterns. In addition, the ninth table, marked as the Visiting Mathematician, changed daily 

with a specific activity supervised by a volunteer mathematician who invited children to 

investigate a topic. In exploring the materials at the different tables, children had 

opportunities to encounter many mathematical ideas, including symmetry, tessellations, 

arrays, angles, along with many types of patterns. Children’s voluntary participation, their 

freedom in how (and how long) to engage with the exhibits, and the mathematical richness 

of the designed materials support our investigation of how children’s aesthetic practices 

might support their engagement in mathematical practices. 

Over the 10 days of data collection, we recruited 345 children between the ages of 4 

and 17 to participate, with their age distribution represented in Figure 2-1.  
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Figure 2-1. Distribution of participants’ age in years. 

 

Data Collection 

 Our primary interest in this study was to understand how learners’ aesthetic practices 

might support meaningful engagement in mathematical practices. Thus, our data speak to 

what happens during play rather than on participants’ recollections of their play. Following 

sociocultural studies of families’ interaction in naturalistic settings (Goodwin, 2006), our 

primary data source is the 345 video recordings of children at MOAS. To offer insight into 

participants’ social locations and experiences, we also collected intake and exit surveys, 

and an exit interview, but these sources are not used in this analysis.  

After completing the intake survey, participants roamed the playground. 

Researchers mounted cameras on hats for the children to wear so they aimed downwards 

and slightly forward to capture the children’s and adults’ talk, gestures, and object 

manipulation (Figure 2-2). The head-mounted cameras aimed to capture children’s 

perspectives and activities in the MOAS exhibits. This view captures the locus of the 

children’s attention when they are playing with objects: When the child looks up, the 
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camera shows what they are looking at. Even slight glances at other children playing are 

captured. This video record supports inferences about children’s attention and interest. In 

the end, we collected a total of 127 hours of video, with the average visit lasting 27 

minutes (sd = 16.46 min). 

 

 

Figure 2-2. Child with video capturing device. 

 

Data Analysis 

Case selection  

 Our focal case was purposively selected (Yin, 2017) from the data corpus for 

several analytical reasons. Olivia, an 8 year-old-girl, played at the Eggs and Crate exhibit 

for over 12 minutes, much longer than the average stay time at an exhibit that primarily 

held the attention of children younger than our age band. The table featured a plentiful 

supply of colored plastic eggs along with cardboard egg-crates with slots arranged in a 6 x 

5 array. During her stay at the exhibit, Olivia engaged in three episodes of goal-based 
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activities. We focus on Olivia’s last one, where she worked to make a heart design using 

pink plastic eggs in the egg crate over approximately seven minutes. This single design 

took her longer than most participants remained at this exhibit (mdn = 2.79 min), making 

her an atypical case, but one that offered a rich record of children’s engagement in 

aesthetic practices in support of mathematical practices. 

We devote our analysis to her based on multimodal richness in mathematical 

sensemaking during persistent, aesthetic, goal-driven play. Furthermore, because Olivia’s 

mother was attentive during this case of play, their interaction was analytically useful, 

since their dialogue gave us increased access to Olivia’s thinking. In this way, our goal is 

not representativeness but enriching the reader’s understanding of aesthetic and 

mathematical practices through thick description (Geertz, 1973) of complex episodes. By 

immersing the reader in the details of Olivia’s activity, we aim to show how her goal-

driven engagement with the Eggs and Crate exhibit created opportunities for her to 

develop thicker understandings of mathematical ideas such as symmetry.  

Mathematical affordances of the exhibit 

The materiality of the Eggs and Crate exhibit is significant in this analysis. The 

exhibit’s design included:  

• Multi-colored (rather than monotone) eggs to encourage design 

• A plethora of eggs, making it rare to run out of any particular color 

• Eggs in a size graspable by children with varying degrees of sensorimotor 

coordination 

• Rectangular dimensions of the crate, including the even and odd number of slots on 

the two orthogonal dimensions (a 6 x 5 crate), making different conditions for 
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symmetry 

• The overall scale of the crate to be approximately the width of a child’s body 

• The overall tactile and visual aesthetic appeal of the materials.  

These features all worked together in children’s designs and, in turn, in their mathematical 

sensemaking. For example, the multi-colored eggs afforded children the opportunity to 

pattern in ways that attended to and made use of color, and the grid-like nature of the crate 

afforded children the opportunity to pattern in ways that utilized the crate as an array of 

slots where eggs could be placed as points. Thus, the exhibit afforded engagement with 

mathematical concepts involving structure, patterning, and spatial reasoning ––  concepts 

that we know are very important to students’ success in mathematics, but that are often 

downplayed in mathematics curriculums (Sinclair & Bruce, 2014).  Similarly, the odd- and 

even- crate dimensions offered different kinds of symmetry as children build patterns, 

depending on the rotation of the crate and children’s goals, while the crate’s scale –– 

approximately the width of children’s torsos ––  allowed for easy bilateral coordination 

(i.e., mirroring gestures in both hands) in the pursuit of symmetry. Notably, even the 

aesthetic appeal of the exhibit is significant for mathematical sensemaking, as this feature 

invites both initial exploration and sustained engagement across multiple episodes of 

making. 

Unit of analysis: Episodes trouble-and-repair  

Using interaction analysis (Jordan & Henderson, 1995) –– a method centered on 

foregrounding participants’ meaning-making in activity –– we identified when Olivia 

experienced trouble and worked to repair it. Because trouble occurs when participants’ 

expectations are broken (Jordan & Henderson, 1995, p. 69), this method allows us to 
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distinguish between play that produces mathematical ideas that participants might have 

noticed and play that produces mathematical ideas that we can empirically argue that they 

noticed. In other words, while we can certainly infer mathematical ideas from children’s 

play activities, we seek to identify the mathematics that participants attend to as they work 

to achieve their aesthetic goals, even if the mathematics is not formally named. Because 

common goals at MOAS involved making things, trouble occurred when children’s 

patterns and designs did not emerge as they intended.  

This analytic approach allowed us to attend to both verbal and nonverbal features of 

interaction. Verbal indicators of trouble include when children explicitly asked for help 

(“How do you make a circle?”), sought formative feedback (“Dad, can you tell what I’m 

making?”), expressed frustration (“Ughhhh”). Nonverbal cues included inquisitive 

gestures, pauses accompanied by gazing at the trouble spots, or trial-and-error revisions 

(moving pieces to make a pattern “look right”). We transcribed the focal case for a close 

analysis of discourse and interaction, using transcript conventions to capture some of the 

rhythms and intonations of participants’ speech. The extra punctuation denotes speech 

characteristics like breaks -, elo::::ngation, and intensity. 

This emic approach (Harris, 1976) allows us to centralize Olivia’s perspective as 

she experienced (a) the emergence of problems (generative role of aesthetic practices), (b) 

the selection and pursuit of those problems (motivational role of aesthetic practices), and 

(c) judgement during and after inquiry (evaluative role of aesthetic practices). To identify 

when Olivia’s aesthetic practices surface, we look for the tacit questions that signal each 

role of the aesthetic practices, as identified in the conceptual framework (see Table 2-1). In 

our analysis, the generative role was signaled by the emergence of a mathematical problem 
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–– or in interaction analysis terms, trouble. Specifically, we look for Olivia’s articulation of 

(and thus insight into) what is possible or interesting in relation to resolving the trouble. 

The motivational role was signaled as she repaired the trouble that she had identified, as 

well as by her interactional moves to extend her goal-oriented activity. Finally, the 

evaluative role came up when Olivia described the extent to which her design was “on the 

right track” or “good enough” –– in other words, the extent to which repair had been 

achieved. Consistent with our conceptualization of the roles of aesthetic practices in 

children’s mathematical activity, when children persist in resolving trouble by 

(re)formulating their understanding of the trouble and restructuring their attempts to repair 

it, we view this as indication of sensemaking supported by their goals and the mathematical 

tools. 

 

Findings 

 In this section, we illustrate how aesthetic practices can support engagement in 

mathematical practices by narrating cycles of trouble-and-repair as aesthetic cycles that 

encompass the three roles of mathematical aesthetic practices: Throughout Olivia’s play, 

the generative, motivational, and evaluative roles of her aesthetic practices mutually elicit 

and inform each other to facilitate her mathematical sensemaking. By attending to Olivia’s 

sensemaking, we identify mathematical practices in her play. To do so, we focus primarily 

on the last episode of trouble-and-repair, a long instance of goal-based play where Olivia 

attempted to build a pink heart in the egg crate. We start with an analytic description of 

Olivia and her mother’s activities at the Egg and Crate exhibit, then we interpret this in 

light of our question about how learners’ aesthetic practices support meaningful 



 

 85 

engagement in mathematical practices.  

 

Prior to Focal Case of Goal-Based Play: Orientation and Preliminary Designs 

Upon arriving at the Egg and Crate exhibit, Olivia asked the volunteer, “How do 

you do it?” The volunteer told Olivia that she could make her own designs, and Olivia’s 

mother agreed, telling Olivia, “You can do anything you want.” This invitation underscores 

a widespread norm at MOAS, inculcated by the designer in the volunteers’ training 

materials: Children can make whatever they want, which differs not only from school 

activity but also from more structured mathematics exhibits at science museums that often 

come with models or directions. In other words, MOAS’s material and social design 

deliberately invited exploration and presented children with freedom in their activity.  

In her first two EOMs, Olivia made what she described as a “flower” and a 

“rainbow.” In the flower design, Olivia struggled with the symmetry of her design. She 

made several attempts to repair the problem, intermittently asking aloud evaluative 

aesthetic questions such as, “Or, would it look better this way?” Eventually, Olivia settled 

on the first way she had made her flower as “good enough,” leaving the symmetry 

unresolved, proudly showing it to her mother (Figure 2-3a).  

In the rainbow design, Olivia attended to both the color and shape of rainbows 

(Figure 2-3b). Most children who made rainbows at the Egg and Crate exhibit did so by 

striping the columns of the crate with solid colors in a way that attended to color but not 

shape (e.g., one row or column all blue, the next all green, etc.). Olivia’s fidelity to 

archetypes (the color and the arch of the rainbow) was characteristic of her later work –– 

and became a source of trouble in her next design. 
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(a)                            (b) 

Figure 2-3.  (a) Olivia’s flower. (b) Olivia’s rainbow. 

 

Focal Episode of Goal-Based Play: Making a Heart 

After showing her rainbow to her mother, Olivia deconstructed it and asked aloud, 

“What else can I do?” We take this as evidence that Olivia was attempting to create a 

design that was interesting to her –– and perhaps more challenging. This demonstrates the 

generative role of Olivia’s aesthetic practices, as she attempted to understand what was 

possible and interesting at the Egg and Crate exhibit. She then excitedly exclaimed, “Oh! I 

can do a hea:::rt!”, generating her next goal. While Olivia was talking, her mother stood up 

and asked if she wanted to go to the nearby Pattern Machine exhibit. Olivia declined with 

a determined, “Noooo. I want to keep doing thi::s.” Her mother acquiesced, and Olivia 

began building her heart. 
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First cycle of aesthetic practices: Emergence of trouble 

Olivia’s first attempt at making a heart lasted approximately two and half minutes 

and included several revisions: Olivia hesitantly and repeatedly placed eggs in the crate, 

picked them back up, and moved them to other slots in the crate (Figure 2-4a). During this 

two and a half minutes, her mother offered suggestions, saying, “Make it the same on 

either side” (Figure 2-4b).  

 

  (a)                                  (b)                                 (c) 

Figure 2-4. (a) Olivia struggling to make her heart. (b) Mother attempting scaffold Olivia 

(c) Olivia maintaining control of her heart by asserting aesthetic evaluations. 

 

Trouble 

Once the heart was constructed (Figure 2-4c), Olivia verbalized an aesthetic 

evaluation of the heart, saying, “I feel like there’s something not right.” This aesthetic 

evaluation was the first time Olivia generated a description of trouble, although this 
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formulation of the trouble did not include any direction for repair. Her mother responded, 

asking Olivia, “Can I try?” (Figure 2-4c). Olivia agreed, and her mother started to 

manipulate the eggs. However, as soon her mother moved an egg, Olivia changed her 

mind. In an urgent voice, she said, “I want to do it thou::gh, that doesn't look right,” 

pushing her mother’s hand away and returning the egg to its prior position (Figur e2- 4c). 

In this move, Olivia asserted both her aesthetic judgement and agency, maintaining 

ownership of her play and the design of her heart. We argue that this authoritative assertion 

of aesthetic judgement reflected Olivia's motivation to create a heart that was meaningful 

to her. 

Summary of first cycle 

 In this episode of trouble-and-repair, Olivia’s aesthetic practices allowed her to 

pursue new-to-her challenges of creating a heart with symmetry (Table 2-2). Although she 

had not yet made a symmetric heart, her aesthetic practices supported her persistence in 

resolving a problematic situation: Olivia generated a goal of creating a heart, she was 

motivated to pursue that goal, and she evaluated the heart as not yet good enough. When 

her mother tried to take over, Olivia maintained ownership of the heart’s construction 

(“No, I want to do it”), again demonstrating the motivational role of aesthetic practices. 

Thus, in this first episode of trouble-and-repair, Olivia’s aesthetic practices played 

generative, motivational, and evaluative roles.  
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Table 2-2. Summary of the first cycle of aesthetic practices. 

Roles of 

the 

Aesthetic* 

Analytic 

Indicating 

Questions Observed Evidence Nature of Practices 

G What is possible 

here? 

 

Generated Goal  

M Is this worth 

pursuing? 

 

Pursues symmetric 

heart 

 

E  Am I on the right 

track? 

Critiques the heart 

(“I feel like there’s 

something not 

right”) 

 

Aesthetic practice supports attending to precision 

M Is this worth 

pursuing? 

Olivia maintains 

ownership of repair 

(“No, I want to do it 

though”) 

 

Aesthetic practice supports making sense of problems 

and persevering in solving them 

 

*The abbreviations G, M, and E respectively stand for the generative role, motivational role, and evaluative 

role. 

 

Although we do not claim Olivia had yet engaged in mathematical sensemaking, 

we do argue that her aesthetic practices facilitated her engagement in activities that 

resemble mathematical practices. For example, her evaluative aesthetic practices led her to 

attend to precision and her motivational aesthetic practices led her to make sense of 

problems and persevere in solving them. Furthermore, we conceptualize Olivia’s goal-

setting of making a heart to be the aesthetic generation of an out-of-school problem, as she 

did not yet know how she would make a heart. In this sense, her goal-setting was an out-of-

school version of mathematical problem-posing, which, as we will see, does in fact create 

opportunities for her to engage in mathematical practices that facilitate mathematical 

sensemaking.  
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Second cycle of aesthetic practices: Repairing trouble 

After a little conversation with her mother about where eggs should and should not 

be placed (Mother: “I think you need to have one there” Olivia: “Or take that one away”), 

Olivia rearticulated the trouble of what was wrong with the heart. While her initial 

evaluation was, “I feel like there’s something not right,” Olivia refined her formulation of 

the trouble, saying, “Ohhh, this is cr-crooked” (Figure 2-5a). This fine tuning of the 

problem supported Olivia’s mathematical sensemaking, as she homed in on the central 

mathematical issue –– namely, symmetry. In other words, Olivia’s aesthetic exploration of 

the problem space became mathematically generative in this reformulation of the trouble 

(“It’s crooked”), pointing her towards a resolution –– make the heart symmetrical. This 

aesthetic goal supported her motivation to pursue repair. 

While Olivia’s statement of “it’s crooked” could be analytically interpreted as 

evaluative, we take the surrounding utterances to point to another interpretation. In 

particular, her intonation and her exclamation (“Ohhh”) before stating “it’s crooked” 

indicated that Olivia was not asking herself whether or not she was on the right track or 

whether the heart was good enough –– in fact she already expressed that something was 

not right. Instead, her identification of the heart’s crookedness was a tacit answer to the 

question, What is possible here? Although she may have apprehended that something was 

amiss prior to stating the issue, identifying crookedness as the source of her trouble guided 

her work going forward.  

Over the next minute and a half, Olivia created a heart with midline symmetry 

(Figure 2-5b). Although her mother interacted with Olivia throughout this time, Olivia still 

called for her mother’s attention to show her the heart (“Mommy!”). We take this an 
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indication that Olivia had evaluated the heart as good enough to share. In response, her 

mother praised Olivia and attempted to take a picture of the heart –– a commonplace signal 

that a making activity had ended at the MOAS playground –– but Olivia interjected that 

she was not yet finished because she wanted to “fill up” the heart (Figure 2-5c). Just as 

mathematicians are motivated to pursue mathematical problems because of their personal 

intimacy with ideas, Olivia was motivated to continue work on her heart because it was 

meaningful to her. Here, we see Olivia’s aesthetic practices as motivating her continued 

activity.   

 

 

(a)                                           (b)    (c) 

Figure 2-5. Olivia reformulates her understanding of trouble. (b) Olivia achieves a 

symmetric heart. (c) Olivia extends her activity by filling up the heart. 
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Once the heart was filled up, Olivia backed away from the table to get a better view 

of it, positioning her body for evaluation, asking, “Does that look like a heart?” (Figure 2-

6a). She then exclaimed in a frustrated tone, “It still doesn’t look like a heart!” (Figure 2-

6b). Here, Olivia’s aesthetic practices led her to re-evaluate the heart, and she found it 

wanting. She then began removing the pink eggs that filled up the heart, starting in the 

middle and removing two eggs at a time by using both her hands (Figure 2-6c), using her 

body’s bilateral symmetry to operate on the symmetry of the heart. Once again, rather than 

giving up, Olivia’s personal identification with creating a heart suiting her archetype 

motivated her to persist. 

 

 

(a)                (b)                             (c) 

Figure 2-6. (a) Olivia aesthetically evaluating and asking for her mother’s aesthetic 

evaluation. (b) Olivia negatively evaluating after filling in the heart’s background. (c) 

Olivia begins to deconstruct the heart using bilateral symmetry of her body. 
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Summary of second cycle  

In this episode of trouble-and-repair, Olivia’s aesthetic practices continued to 

support her engagement and facilitated her emergent mathematical sensemaking (Table 2-

3). First, Olivia generated a productive articulation of trouble (“It’s crooked”), leading her 

to pursue a solution oriented towards the mathematical property of symmetry. This 

mathematical sensemaking emerged as Olivia’s aesthetic practices facilitated her to look 

for and making use of structure in relation to the symmetry of the crate. Thus, her attention 

to the structure of the heart (and also the beginning of her attention to the structure of the 

crate as a grid) connects to mathematical sensemaking around the properties of 

crookedness and symmetry.  
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Table 2-3. Summary of the second cycle of aesthetic practices. 

Roles of 

the 

Aesthetic 

Analytic 

Indicating 

Questions Observed Evidence Nature of Practices 

G What is possible 

here? 

Articulated trouble 

(“It’s crooked”) 

 

Increasingly mathematical practice of looking for and 

making use of structure as she attends to symmetry; 

beginning to treat crate as a grid 

 

M What action-steps 

should I take? 

 

Pursues symmetric 

heart 

Increasingly mathematical practice of make sense of 

problems and persevere in solving them 

 

E Is this finished 

problem good 

enough, or the best 

that I can make it? 

 

Shows pride in 

work (calls for her 

mother’s attention, 

“mommy!”) 

 

M Is this worth 

pursuing? 

Extends work by 

filling up the heart 

 

 

E Is this finished 

problem good 

enough, or the best 

that I can make it? 

Evaluates the heart 

(Does that still look 

like a heart?) 

Aesthetic practice supports attending to precision 

M What action-steps 

should I take? 

Pursues heart by 

filling in a blue 

background 

Aesthetic practice supports making sense of problems 

and persevering in solving them 

E Is this finished 

problem good 

enough, or the best 

that I can make it? 

 

Critiques the heart 

(“It still doesn’t 

look like a heart”) 

Increasingly mathematical practice of attending to 

precision as she treats the crate as grid as she works 

towards a heart with a point 

 

M What action-steps 

should I take? Is 

this worth 

pursuing? 

 

Begins to retry to 

repair the heart as 

she removes eggs 

using bilateral 

coordination 

Increasingly mathematical practice of make sense of 

problems and persevere in solving them 

 

At first, when she made a symmetric heart, Olivia evaluated it as good enough, 

proudly showing it to her mother. However, Olivia’s aesthetic practices then motivated her 

to fill up the heart, putting a pink interior into the heart and blue background of the crate. 

This altered the look of the heart, leading Olivia to re-evaluate its design as unsatisfactory, 

perhaps because the blue background highlighted the heart’s lack of a single point (the 

heart ended with two eggs comprising its vertex, instead of just one). We take this to be 
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another instance of attending to precision –– this time with a stronger mathematical 

orientation. Rather than give up on making a heart that matched her archetype, Olivia 

persisted in further attempts to create a heart with a point, with her aesthetic goals once 

again motivating her continued play. We consider her pursuit of precision and her 

persistence in making sense of problems and persevering in solving them to be increasingly 

reflective of desired mathematical practices: She treated the crate as a grid when she began 

to investigate its symmetry more systematically by removing eggs bilaterally.  

Third cycle of aesthetic practices: Reformulation of trouble 

After Olivia removed a few eggs using her body’s bilateral symmetry, she took one 

egg and hesitantly moved it back and forth between the two middle slots in the egg crate, 

eventually touching an egg to the high ridge on the egg crate’s midline of symmetry and 

asked aloud, “Where’s the middle?” (Figure 2-7a). This question ––  “Where’s the 

middle?” ––  is Olivia’s third reformulation of her trouble. Her understanding of the 

problem shifted from not looking like a heart (first cycle), to being crooked (second cycle), 

to missing a middle (third cycle). In the end, this reformulation structured Olivia’s 

investigation in a way that allowed her to eventually resolve the trouble. 
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               (a)                          (b)                          (c) 

 

Figure 2-7. (a) Olivia reformulates the problem for a third time. (b) Mother affirms 

Olivia’s evaluation. (c) Olivia uses her whole body to explore the egg crate. 

 

Importantly, when Olivia asked, “Where’s the middle,” she moved the egg to slots 

on either side of the actual middle in the egg crate (midline of symmetry) and then rested 

the egg on the actual middle (Figure 2-7a). While doing this, Olivia and her mother looked 

at the egg crate together. We take this joint attention and Olivia’s placement of the egg on 

the actual middle while asking “Where’s the middle?” to mean that Olivia was explicitly 

asking her mother for help finding the practical middle in a 6 x 5 egg crate (Figure 2-8). 

We distinguish between actual and practical middles because, by moving the egg, Olivia 

drew her mother’s attention to the absence of a practical midline –– a slot for the egg in her 

hand –– in her current use of the crate. In other words, with the six slots parallel to her 
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body, the egg could not rest in the center. 

 

                    

   (a)                                    (b) 

Figure 2-8. (a) No practical midline symmetry and (b) a schematic diagram of Olivia’s 

heart centered on practical middle from Figure 5b. 

 

Her mother then pointed out the missing midline symmetry for the entire carton, 

saying, “Well that’s the problem, there's- there's really no middle because this is the 

middle” while running her fingers along the same midline ridge her daughter had just 

rested the egg on (Figure 2-7b). Her mother then broke their joint attention to the egg crate 

by turning away to talk with another adult, providing Olivia with the opportunity to 

investigate more on her own. Olivia, motivated by her aesthetic desire to create the heart 

she envisioned, continued exploring the problem.  

Summary of third cycle 

In this episode of trouble-and-repair, Olivia generated a new articulation of trouble 

(“Where’s the middle”) and pursued her quest to make the heart more aesthetically 

pleasing with the help of her mother’s scaffolding (Table 2-4). By taking the eggs out two 

at a time, moving one egg back and forth across the actual midline of symmetry and 

eventually resting the egg (or point) on it, and then inquiring about a middle, Olivia used 

multimodal resources to make sense of the egg crate as a grid. We take this as evidence of 
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meaningful engagement in mathematical practices –– such as attending to precision, 

looking for and making use of structure, and using appropriate tools strategically –– that 

facilitated her sensemaking around a concrete mathematical problem of finding the 

practical middle of six.  

 

Table 2-4. Summary of the third cycle of aesthetic practices. 

Roles of 

the 

Aesthetic 

Analytic 

Indicating 

Questions Observed Evidence Nature of Practices 

G What is possible 

here? 

Articulated trouble 

(“Where’s the 

middle”) 

 

Mathematical practices of attending to precision, 

looking for and making use of structure, and using 

appropriate tools strategically as she uses the egg crate 

as a grid to investigate the relationship between actual 

and practical middles of six 

 

M What action-

steps should I 

take? Is this 

worth pursuing? 

Her mother 

scaffolded and 

Olivia continued to 

pursue repair 

 

 

 

Fourth cycle of aesthetic practices: Final articulation of trouble 

After her mother’s scaffolding, Olivia began to investigate the crate, eventually 

moving her body to align with the side of the egg crate with five slots, grabbing the crate 

with both hands, and then rotating her body back to its original position, thus rotating the 

crate 90 degrees. Now, with the five slots parallel to her body, the egg could rest in the 

center. This rotation resulted in the crate being oriented such that its midline of symmetry 

and the practical middle for making a heart with a point became aligned.     

Olivia made an urgent bid for her mother’s attention, saying “Oh maybe if we // 

Mommy::” while grabbing her mother’s arm to pull her body back into a position of joint 

attention (Figure 2-9a). While doing this, Olivia simultaneously rotated the crate back to its 
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original position (six slots parallel to her body) so that her mother could witness the 

rotation and thus the change in the problem space (five slots parallel to her body, finding 

the practical middle of five instead of six). Once she had her mother’s attention, Olivia 

demonstrated her discovery to her mother by re-enacting the rotation of the crate, saying 

“Maybe if we tu::rn it” (Figure 2- 9b). We count this as Olivia’s final articulation of 

trouble, and we take her demonstration of the crate rotation to her mother as evidence that 

she now knew how to resolve her trouble: by aligning the actual and practical middles 

(Figure 2-10). While her previous articulations of trouble were expressed in the form of a 

statement (“It’s crooked”) and a question (“Where’s the middle”), this articulation of 

trouble was in the form of a suggestion for action (“Maybe if we turn it”). The progression 

of Olivia’s narration of trouble indicates a narrowing between what Olivia identified as 

problematic and her strategies for repair.  
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  (a)                          (b)                       (c) 

Figure 2-9. (a) Olivia works to regain her mother’s attention. (b) Olivia shows her mother 

her discovery. (c) Olivia states that she no knows how to repair the trouble and make a 

symmetric heart with a point. 

 

  

(a)   (b) 

Figure 2-10. (a) Practical midline symmetry and (b) ) a schematic diagram of Olivia’s 

heart centered on both the actual and practical middles upcoming in Figure 11b. 
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Her mother then excitedly praised Olivia’s ingenuity with a term of endearment 

while also recognizing Olivia’s solution to the problem of a missing midline, saying “Oh 

yeah, good idea. Good thinking, honey!” (Figure 2-9b). Olivia articulated that the trouble 

had been repaired, saying “Oh::::, no::w I can do:: it!” as she took all of the eggs out of the 

carton, clearing the crate (Figure 2-9c). Here, before she had put even a single egg in the 

crate, Olivia again demonstrated that she knew she had generated a solution that would 

repair her trouble with the heart. In this moment, we see Olivia’s aesthetic practices 

playing evaluative, motivational, and generative roles: She generated an articulation of 

trouble that points her to a solution worth pursuing and that would result in a satisfying and 

satisfactory heart with-a-point. Olivia proceeded to create her heart with a point 

unproblematically (Figure 2-11). 

 

 

         (a)                             (b)                           (c) 

Figure 2-11. (a) Olivia places the point of her heart on the practical and actual midline of 

symmetry of the egg crate. (b) Olivia creates a symmetric heart with a point. (c) Olivia’s 

finished heart. 
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Summary of fourth cycle 

In this last episode of trouble-and-repair, Olivia fixed her crooked heart (Table 2-5). 

Through exploring what was possible with the crate, Olivia generated her final articulation 

of trouble (“Maybe if we turn it”). Upon receiving praise from her mother, Olivia was 

aesthetically motivated to make her heart with a point. Importantly, her statement of 

“Oh::::, no::w I can do:: it” before ever placing an egg in the crate indicates that Olivia 

was engaged in the mathematical practice of reasoning abstractly and quantitatively: Her 

multimodal interaction with the crate constituted an emergence of “simple” mathematical 

ideas in novel contexts, offering a deeper understanding about the relationship between the 

symmetry of her heart and the slots in the grid.  

 

Table 2-5. Summary of the fourth cycle of aesthetic practices. 

Roles of 

the 

Aesthetic 

Analytic 

Indicating 

Questions Observed Evidence Nature of Practices 

G What is possible 

here? What 

stands out as 

interesting? 

Articulated trouble 

(“Maybe if we turn 

it”) 

 

Mathematical practices of attending to precision, 

looking for and making use of structure, and using 

appropriate tools strategically as she uses the egg crate 

as a grid to investigate the relationship between actual 

and practical middles of six 

 

M What action-

steps should I 

take? Is this 

worth pursuing? 

 

Olivia pursues 

remake of heart 

with a middle 

(“Ohhh, now I can 

do it!) 

Mathematical practice of reasoning abstractly and 

quantitatively as her multimodal interaction with the 

create facilitated a strong intuition about the relationship 

between slots of the grid and the symmetry of her heart 

 

E Is this finished 

problem good 

enough, or the 

best that I can 

make it? 

Evaluates the heart 

as good enough 

(“Done, mommy”) 

 

 

Upon completing her heart, Olivia proudly showed it to her mother. In fact, when 

her mother asked to take a picture of her with the heart, Olivia asked for another picture 
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with only the heart. We find this request especially compelling, as we see it as evidence 

that she wanted to preserve the heart on its own, much like mathematicians remove their 

own voices from proofs to give their work an aesthetic of permanence and import.   

 

Summary: The Role of Aesthetic Practices in Olivia’s Mathematical Engagement 

Across these four cycles, Olivia engaged not only in making a heart during play at a 

mathematical playground but also meaningfully engaged in mathematical practices. These 

practices became personally meaningful to Olivia in relationship to her aesthetic practices. 

Specifically, Olivia’s aesthetic practices (1) supported the generation of problem spaces 

and insights into the source of troubles, which, in turn, led her to engage in mathematical 

sense-making, (2) motivated her to pursue the problem and persist in investigating repair 

strategies informed by her articulations of trouble, and (3) grounded the way she evaluated 

the trouble and what counted as a good enough heart (see Tables 2-2 through 2-5).  

Olivia’s aesthetic, goal-centered play was mediated by the mathematics afforded by 

the egg crate. The crate’s 6 x 5 design created trouble for Olivia as she attempted to make a 

heart with a point, which would be represented with a single egg. As she worked to repair 

this trouble, Olivia engaged in mathematical practices that facilitated sensemaking around 

relationships between symmetry and the middles of even and odd sides of the crate. 

 

Aesthetic Practices Support Engagement in Mathematical Practices 

Olivia’s aesthetic practices supported increasingly authentic engagement in 

mathematical practices. For example, in the second cycle, Olivia looked for and made use 

of structure, resulting in the generation of her first trouble-and-repair statement (“it’s 
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crooked”). In that same cycle, Olivia attended to precision as she evaluated her symmetric 

heart to be not precise enough and made sense of problems and persevered in solving them 

as she pursued her heart through further exploration of the egg crate. Throughout the four 

cycles, Olivia’s aesthetic practices recruited these practices in increasingly mathematical 

(and not decreasingly aesthetic) ways, as indicated by her repair strategies and the 

mathematical sensemaking they evidence (see Tables 2-2 through 2-5).  

Importantly, the generative role of Olivia’s aesthetic practices emerged as she 

engaged in the mutually informative aesthetic and mathematical practices of exploration 

and articulation of trouble as she tacitly asked herself, What if? Her aesthetic practices 

guided each of her (re)formulations of the trouble in ways that generated increasingly 

productive potential solution paths. As indicated in Tables 2-2 through 2-5, the generative 

role of Olivia’s aesthetic practices was pivotal for continued activity, as the exploration and 

insight that define the generative role served as the entry point for further cycles of her 

aesthetic practices. Indeed, with each reformulation of the trouble, Olivia’s personal 

investment and interest in the aesthetics of the heart motivated her to pursue the solution 

paths suggested by her articulation of trouble, making mathematics sensemaking possible. 

Tables 2-2 through 2-5 indicate that as Olivia pursued repair, she also generated new 

articulations of trouble: She noticed new things about her heart (it’s crooked), wondered 

how to fix them (where’s the middle), and experimented (what if I turn the crate). We take 

this as an indication that opportunities to “try out” repair strategies that emerge from 

articulations of trouble during exploration in the generative role are pivotal to making 

sense of activity in a way that leads to motivation, evaluation, and then again to generating 

new ideas. 
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Engagement in Mathematical Practices Facilitates Mathematical Sensemaking 

Conceptually, Olivia’s aesthetic provided a heuristic that facilitated her attention to 

mathematical properties of the egg crate –– such as the presence or absence of a true 

middle –– and relations between them. In other words, Olivia structured a new problem 

with new affordances for symmetry through her visible attention to aligning actual middles 

(i.e., midline symmetry is at the middle of six, Figure 2-8) with practical middles (i.e., 

midline symmetry is at the middle of five, Figure 2-10).   

 

Social and Material Scaffolding 

Because Olivia persisted in solving her problem of making a heart, we were able to 

see how both her mother and the design of the exhibit supported Olivia’s solution. The 

strategic choice of a 6 x 5 egg crate as a mathematical tool at MOAS provided both the 

opportunity for Olivia to notice the mathematical affordances and resolve her problem as 

she continued to explore the egg crate. After creating a symmetric heart that did not have 

one egg as a point, she eventually jointly rotated the crate and her body such that the odd 

side of the crate was parallel to her torso when standing in her original position. This 

rotation allowed her to align the actual midline of the crate as a grid with the practical 

midline of the crate as an array of slots for eggs. Olivia’s gestures and other body 

movements were not just actions that gave rise to mathematical sensemaking; rather, her 

corporeal engagement constituted an important dimension of her mathematical 

sensemaking. Thus, the design of the materials –– in conjunction with Olivia’s aesthetic 

goal to create a heart that closely matched her prototype of a symmetric heart with a point 

–– was a key element to the richness of this episode of making. 



 

 106 

Furthermore, we note that her mother effectively scaffolded Olivia, taking up her 

questions while also allowing Olivia to maintain control of the decision-making process, 

including what counted as an aesthetically acceptable heart (“Done, Mommy!”). We posit 

that Olivia’s agency in decision-making allowed her aesthetic practices to drive her 

engagement, creating opportunities for mathematical sensemaking through increasingly 

mathematical practices.  

While we do not claim that Olivia’s aesthetic understanding of the relationship 

between symmetry and the grid of the crate will transfer to other contexts, her sustained 

play at the Egg and Crate exhibit demonstrates how playful experiences with such 

mathematical tools can support meaningful engagement in mathematical practices and 

afford embodied experiences of core mathematical ideas.  

 

Conclusion 

This study contributes to our understanding of how aesthetic practices can support 

children’s meaningful engagement in mathematical practices during play. We illustrated 

how one child, Olivia, satisfied an aesthetic goal through the use of mathematical practices. 

In this way, Olivia’s case offers an example of aesthetic practices driving mathematical 

inquiry. Specifically, as she worked to find the practical middle of her heart, Olivia 

persevered, made use of structure, attended to precision, and reasoned abstractly (CCSSI, 

2010). Olivia’s aesthetic practices were pivotal in this process as they influenced what she 

noticed as problematic (generative role), motivated her to pursue and persist in the problem 

(motivational role), and organized how she evaluated what counted as a satisfying and 

satisfactory heart (evaluative role). 
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By operationalizing the roles of mathematical aesthetics in this way, we have 

provided an illustration of how child-driven mathematical inquiry can emerge organically 

from activity. More specifically, our study adds to literature on both mathematical 

aesthetics and problem-posing by providing thick description of how exploration can lead 

to the posing of and persistence in increasingly sophisticated problems based on and driven 

by children’s own interests and tastes. Building off of synthetic analyses of the aesthetic 

practices of mathematicians (Sinclair, 2004), research on children’s mathematical 

aesthetics (Koichu, Katz, & Berman, 2017; Cipoletti & Wilson, 2004), ethnographic 

studies of children’s inquiry across formal and informal contexts (Keifert & Stevens, 

2018), and teaching experiments that support new modalities for mathematical 

sensemaking (Fiori & Selling, 2016; Ma, 2016), we argue that Olivia’s activity provided 

her with experiences that could be leveraged for future mathematical learning 

opportunities, as evidenced by her sustained effort to repair the symmetry trouble she 

encountered in her design. 

A key motivation for this study was to better understand the role of aesthetic 

practices in noticing and resolving inquiry-sparking experiences. We selected Olivia’s case 

for close analysis as it offered a sustained and clear instance of aesthetic practices guiding 

sensemaking. While existing research has documented the richness of out-of-school 

inquiry (e.g., Keifert & Stevens, 2018; Kelton & Ma, 2018; Nemirovsky, Kelton, & 

Rhodehamel, 2013), our findings suggest that aesthetic practices are key in sparking and 

sustaining engagement in mathematical practices. In particular, our study suggests that 

informal mathematical environments that support design activity may provide meaningful 

contexts for children’s mathematical practices to emerge in personally meaningful ways. 
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Even more, it suggests that creating opportunities for learners to engage in exploration may 

lead to the emergence of trouble in activity, and thus to the generation of mathematical 

dilemmas and sensemaking: As children make judgements about their own aesthetic goals, 

problems arise that require engaging in mathematical inquiry to resolve. In this way, 

aesthetic practices in play led to engagement in a mathematical practice in ways reflective 

of the anthropological meaning of practice –– particularly the practice of problem-finding 

that spurs mathematical inquiry.  

Notably, we do not claim that all aesthetic engagement or all trouble led to 

mathematical sensemaking. Indeed, in the larger corpus, we have examples that look more 

and less like Olivia’s. A question arises, then, about how to design and foster the episodes 

that lead to mathematical sensemaking. Through our thick description of how aesthetic 

practices in children’s play can lead to the emergence of mathematical practices during 

pursuit of aesthetic goals during trouble-and-repair sequences, we invite other investigators 

to explore these issues. By tracing the particulars of Olivia’s activity and the particular role 

of aesthetic practices within it, we sought to advance the field’s understanding of what it 

means for learners to engage their aesthetic practices for mathematical sensemaking and 

how this might provide a means to make mathematical practices personally meaningful. 

This analysis also highlights how children’s mathematical competencies might look 

in an out-of-school settings. By identifying the mathematical practices that emerged from 

in activity, we saw how critical Olivia’s mathematical competencies –– such as trying new 

approaches and reasoning systematically ––  were to her design problem and its resolution. 

Although our research did not allow us to follow up with Olivia or the other children at 

MOAS, we suspect that their informal mathematical encounters could support future 



 

 109 

formal concept development, perhaps giving them different experiential intuitions about 

issues such as symmetry and spatial reasoning.  

From an instructional design perspective, Olivia’s spontaneous and meaningful use 

of mathematical practices, like making use of structure and persevering in solving 

problems, is decidedly non-trivial: These are practices many educators hope to inculcate in 

their students. It is the hope behind the lists of practices posted on classroom walls. The 

emergence of mathematical practices in children’s play at MOAS suggests that carefully 

designed mathematical playgrounds offer organic opportunities for mathematical practices 

to emerge. The challenge of formal instruction, of course, is figuring out how to support 

multiple children to identify and engage in these practices. But perhaps instead of 

incorporating play solely to serve curricular goals, play can contribute to students’ positive 

mathematical identities and help teachers see broader forms of mathematical competence. 

Indeed, some teachers, inspired by MOAS, have incorporated Play Tables in their math 

classrooms. For example, Van Der Werf (2017) found that she “noticed brilliance in 

students that was hidden under fear of being wrong and/or lack of quick fact fluency. I 

noticed students working together I had no idea ever talked to one another.”  

Future research can help us better understand the relationship between informal 

child-driven mathematical play and formal learning. Certainly, as a field, we have a lot of 

work to do just to legitimize aesthetic engagement and the mathematical practices it 

supports as authentically mathematical. Indeed, at the end of her daughter’s remarkable 

work on fixing the crooked heart, Olivia’s mother asked a nearby MOAS volunteer if he 

could “give [Olivia] a math problem to do,” suggesting that she had not viewed Olivia’s 

design work as “real” mathematics. While our perspective pushes against deeply ingrained 
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cultural scripts of what it means to learn and do mathematics (Stigler & Hiebert, 1999), our 

analysis illustrates the rich resources learners bring with them into the classroom that too 

often rendered invisible, because commonplace lenses on mathematics learning obscure 

people’s ability to see them. 
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PLAYING WITH MATH: HYBRIDITY BETWEEN IN- AND OUT-OF-SCHOOL 

ACTIVITIES 

 

Lara Jasien & Melissa Gresalfi 

 

Abstract 

This study examines how children hybridize out-of-school mathematics activities with 

school-mathematics. By situating our study at an out-of-school mathematics space 

designed to support children’s playful engagement in patterning, we illustrate how children 

can invoke school mathematics frames in ways that allow traditional school-mathematics 

norms and practices to hybridize with open play. Specifically, taking a phenomenological 

lens on children’s activity frames, we offer a multilayered analysis of participants’ 

orientations to (a) authority during task determination and (b) emergent evaluations of their 

activity. We closely attend to two purposively sampled cases with multiple features that 

both overlap and contrast along the two lines of analysis. We share two cases of 12-year-

old girls, Dia and Aimee, during mathematics play. Dia’s case illustrates how a traditional 

school mathematics frame, with its norms and practices around authority and evaluation, 

hybridized with play, leading her to express uncertainty about and dissatisfaction with her 

activity. In contrast, Aimee’s case illustrates how a play frame led to engagement in 

expansive exploration, feeling pleasure in activity, and satisfaction with what was 

produced. We suggest implications for designs of out-of-school mathematics 
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environments, offering conjectures for future research into how children’s different 

mathematical identities might influence engagement in such spaces. 
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Introduction 

Over the last 20 years, research in education –– and in STEM education in 

particular –– has increasingly tried to foster meaningful engagement for all students by 

creating opportunities for learners to bring knowledge and practices from outside of school 

into school learning activities (e.g., Banks et al., 2007). Such designs for learning have 

been posited as important for supporting children to see school mathematics as relevant to 

their lives (Abreu & Cline, 2003) and to see their out-of-school practices and identities as 

relevant to their school learning (Gutiérrez, Baquedano‐López & Tejeda, 1999). Thus, out-

of-school experiences are potentially rich resources for supporting interest and learning in 

schools. However, while we know that out-of-school experiences can be valuable for in-

school learning, we know much less about the role of in-school learning for out-of-school 

activities.  

In this study, we are interested in understanding how the expectations children 

develop through experiences with school mathematics might influence their experiences in 

out-of-school mathematics. For example, do negative experiences with school mathematics 

lead children to engage in out-of-school mathematics activities differently than those who 

have positive experiences with mathematics? This connection is important to understand as 

there are significant current efforts towards creating opportunities for students to have non-

school, informal, experiences with mathematics –– for example in museums, through the 

Maker Movement, and through intentionally designed play activities like the National 

Math Festival. Although there are many possible justifications for the development of 

these, one dominant argument is that these informal, experiential, and enjoyable activities 

could potentially transform students’ relationship with mathematics in enduring ways 
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(Banks et al., 2007; Petrich, Wilkinson, & Bevan, 2013; Quinn, & Bell, 2013). Indeed, 

there is reason to invest in out-of-school activities, as there is evidence that such 

experiences strongly influence self-selection into STEM fields. A retrospective study 

surveying STEM professionals found that 94 percent of their sample reported out-of-school 

experiences as important for their decisions to pursue a STEM career (Jones, Taylor, & 

Forrester, 2011).  

However, we know little about the experiences people have in those spaces, 

especially in relation to their experiences in school. The causal direction is unclear: In the 

survey, did those who had positive experiences in out-of-school activities also enjoy school 

mathematics? Were those out-of-school experiences transformative, or simply broadening? 

Phenomenologically, we assume experiences connect across contexts in important and 

significant ways. For example, one study demonstrated that when children invoke school-

based expectations of learning in museums, they often do not see their activity as 

meaningful for learning –– unless they are given a worksheet to fill out during the museum 

visit (Griffin, 1994, 2004). This suggests not only that the practices of schooling are easily 

invoked in out-of-school spaces, but also, that those practices can be offered as a 

benchmark to make sense of content, engagement, and learning.  

This research highlights the need to better understand how participants connect 

experiences across contexts. This paper contributes by building on the idea of hybridizing 

(Bakhtin, 1981), the process in which people integrate two or more cultural activities in a 

way that is more than the sum of their parts, resulting in the creation of new activities 

(Gutiérrez , Baquedano‐López, & Tejeda, 1999). Research in schools has shown how 

hybridizing with out-of-school activities can be a mechanism for opening up learning 
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activities (e.g., Calabrese-Barton & Tan, 2009; Ma, 2016), drawing on ways that children’s 

lives are rich with meaning in ways that school often lacks (Taylor, 2009; Walkerdine, 

1990). Such hybridizing fundamentally transforms the mathematics activity of a classroom, 

resulting in the creation of activity that is neither children’s typical school mathematics 

activity nor their out-of-school mathematics activity, but rather is a new activity in service 

of mathematics learning (Ma, 2016). While we know that creating hybridity with out-of-

school can support meaningful engagement in school mathematics, we know quite little 

about how children’s activity in out-of-school spaces might benefit or suffer from 

hybridization with school mathematics.  

We can imagine hybridization with school mathematics in out-of-school activities 

being either productive or unproductive based on children’s prior experiences with 

mathematics. For example, if a child integrates school-mathematics expectations around 

looking for and making use of structure (Common Core State Standards Initiative [CCSSI], 

2010) into their patterning work at a math exhibit outside of school, this could enrich the 

child’s experience at the exhibit (e.g., Jasien & Horn, under review). In contrast, if a child 

integrates school-based mathematics expectations around producing quick-and-correct 

answers, this could lead to shallow engagement or even lead the child to struggle to enjoy 

participating in activities designed for open engagement. Decades of research demonstrate 

how such expectations are shaped through participation in the norms and practices of 

school mathematics (Boaler, 1999; Schoenfeld, 1988; Stigler, Hiebert, & Manaster, 1999). 

With this in mind, this paper considers the following question: How do children hybridize 

out-of-school mathematics activities with school-mathematics norms and practices? 
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Conceptual Framework: Norms and Practices across In- and Out-of-School 

Mathematics Activities 
Because we are interested in how children hybridize out-of-school mathematics 

activities with school-mathematics norms and practices, we aim to uncover relationships 

between typical mathematics experiences inside and outside of school. More specifically, 

we explore how the norms and practices of school might shape children’s expectations for 

and engagement in out-of-school mathematics when children make school mathematics 

relevant to their activity. In this section, we first articulate how norms and practices 

organize expectations for activity. We then discuss what we know about the norms and 

practices of school mathematics and out-of-school mathematics.   

 

Norms and Practices Organize Expectations Within and Across Cultural Activities 

Mathematics education research has documented the wide range of norms that can 

organize classroom mathematics and their consequences for student engagement. Some of 

that scholarship has distinguished between “reform” versus “traditional” mathematics 

practices, with the former emphasizing collaboration and communication –– for example, 

through normalizing mistakes or investigating different approaches to solving problems –– 

and the latter emphasizing attentive listening and rote practice of known procedures. 

Reform mathematics aims to disrupt the authoritative discourse of traditional school 

mathematics by endowing students with the authority to make sense of intellectual 

problems (Boaler & Staples, 2008). What is more, scholarship on learning and identity 

argues that these differences in norms shape the relationships students are likely to develop 

with school mathematics (Boaler & Greeno, 2000; Boaler & Staples, 2008; Cobb, Gresalfi, 
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& Hodge, 2009). For example, students in traditional mathematics classrooms frequently 

view mathematics as steps and procedures to follow and often disaffiliate with 

mathematics; students in reform classrooms tend to view mathematics as an endeavor of 

creative sensemaking and often affiliate with mathematics (Boaler & Greeno, 2000), thus 

developing more positive and agentic mathematical identities. 

Research has also argued that mathematical practices are locally constituted and, 

indeed, can dramatically transform the nature of mathematical activity (Yackel & Cobb, 

1996). Building on early ethnographic work conducted by anthropologists and cultural 

psychologists (Saxe, 1988; Lave, Murtaugh, & de la Rocha, 1984), we understand 

mathematical activity as a socially mediated process shaped by history, tools, and 

participation. This view implies that school mathematics is a fairly peculiar enterprise 

reflecting the norms and organizational needs of school as an institution (e.g., crowded 

classrooms, graded work, decisions for promotion and retention; see Schoenfeld, 1988). 

Nonetheless, this organization influences what people ultimately think about mathematics 

(Boaler & Greeno, 2000; Nasir, 2002; Schoenfeld, 1989), a human endeavor much older 

than the institution of schooling. If mathematical practices are locally constituted, then it 

follows that out-of-school mathematics practices may also influence the nature of students’ 

mathematical knowing. Yet because schools, as institutions, have the power to certify and 

sanction certain forms of knowledge, people can demonstrate knowing in one context but 

be evaluated as not knowing in another (Nasir, 2002; Noss, Hoyles, & Pozzi, 2002; Saxe, 

1988). Typically, schools’ judgments are what is taken up in people’s mathematical 

identities (Abreu & Cline, 2003; Gargoetzi, Horn, Chavez & Byun, under review). 

This situation stems, in part, from the different social value put on in-school versus 
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out-of-school learning. Additionally, productive connections are not always made between 

the two social contexts. For example, Carraher, Carraher, and Schliemann (1985) 

demonstrated how child street vendors could flawlessly carry out arithmetic computations 

during street vending but could not do so on schoolish written assessments. The children’s 

enculturation into the norms and practices of school mathematics led them to (incorrectly) 

use school mathematics algorithms rather than their street vending arithmetic practices, 

likely cued by its mediating form, suggesting that the children expected their street vending 

arithmetic practices to be irrelevant in the context of the school mathematics problem. To 

date, we know little about the converse of this ethnographic research, namely how in-

school mathematics practices –– such as those around authority and evaluation –– 

influence engagement in out-of-school mathematics activities. 

However, prior work from museum studies offers insight into how the norms and 

practices of school can shape engagement in other contexts. First, designers of these 

learning environments often borrow school-structures to cue participants to the learning 

goals. Museum-based designs for organized learning can end up looking a lot like 

traditional classrooms, with learners primarily sitting in rows and listening to more 

knowledgeable others (Russell, Knutson, & Crowley 2013). This arrangement encourages 

children to function within traditional school-based norms of authority and evaluation. 

Second, participants’ expectations often carry over school expectations to out-of-school 

settings. To expand on an earlier example, Griffin (1994, 2004) found that both teachers 

and students on science museum fieldtrips claimed that, to learn from a museum, students 

needed to fill out worksheets while there. Students claimed that the worksheets made the 

fieldtrip less fun because it constrained what they were able to look at, but they also stated 
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that “just looking around” would not count as learning. In other words, students did not 

evaluate their activity as learning when there was not an authoritative tool guiding their 

engagement.  

We have evidence, however, that these judgments about learning may be heavily 

cued by worksheets as an artifact. When Falk and Dierking (1992) asked students on a 

fieldtrip what they remembered, rather than what they learned, students responded about 

specific exhibits and displays in the museum that had interested them, even when they did 

not use a worksheet. Thus, as common sense would suggest, open engagement often leads 

to learning, but students’ school-based expectations around evaluation and authority 

preclude them from viewing their activity as such.  

 

Key Norms and Practices that Travel Across Contexts: Authority and Evaluation 

A theme across the research presented here is that school mathematics norms and 

practices around authority and evaluation are especially key for understanding how 

expectations rooted in school mathematics might influence children’s engagement in other, 

non-school mathematics contexts. Although we discussed norms and practices of both 

reform and traditional mathematics, most children are still taught the way their parents 

were taught (Jacobs, Lanza, Osgood, Eccles, & Wigfield, 2002; Litke, 2015), by learning 

definitions and practicing procedures. We focus our investigation into how the norms and 

practices of school mathematics can be hybridized in out-of-school mathematics activities 

by narrowing our attention to the norms and practices of traditional school mathematics, 

particularly those around authority and evaluation. Thus, we present a refinement of our 

research question: How do children hybridize out-of-school mathematics activities with 
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traditional school-mathematics norms and practices around authority to determine 

mathematical tasks and evaluating correctness?  

As previously discussed, traditional school mathematics norms and practices are 

organized around an authoritative discourse. As a cultural activity, traditional classrooms 

have a familiar organization that supports (and is supported by) these norms and practices. 

Teachers stand at the front of the room, asking known-answer questions (Mehan, 1979) to 

funnel students towards learning definitions and practicing procedures (Stigler & Hiebert, 

1999). This discourse pattern values student compliance over sensemaking (Cazden, 2001), 

partially constituting a hidden curriculum (Jackson, 1968) that teaches children that they do 

not have the authority to pose or make sense of mathematical problems independently but 

must instead rely on the authority of teachers and textbooks (Lampert, 1990; Herbel-

Eisenmann, 2007). Traditional school mathematics’ organization also teaches children that 

demonstrating mathematical competence involves producing correct answers quickly and 

that evaluation of correctness is the primary goal of mathematics learning (Boaler, 1997). 

In the rest of this section, we present how authority and evaluation are constituted in school 

mathematics, comparing it with their constitution in out-of-school mathematics. 

 

Authority and Evaluation in Schools: Predetermined Tasks and Correctness 

First, to examine authority, we follow Engle and Conant (2002), who define student 

authority as the idea that 

tasks, teachers, and other members of the learning community generally 

encourage students to be authors and producers of knowledge, with 

ownership over it, rather than mere consumers of it (p. 405).  
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Notably, traditional mathematics classrooms grant students little authority to determine 

how to engage and determine what is right. Instead, authority is often distributed between 

school and teacher policies that prescribe what must be learned, restrict how to learn it, and 

constrain student behavior and bodies (Jackson, 1968; Louie, 2017). In other words, 

students are positioned as receivers and consumers of knowledge rather than as authors 

with ownership. Such over-ritualized, authority-lacking experience of mathematics can 

leave students feeling unsure of what to do when faced with a legitimate problem to solve 

(Schoenfeld, 1988). Even more, this issue is amplified when it comes to students’ ability to 

pose their own mathematical problems, as school mathematics largely involves solving 

problems predetermined by the distant authorial voices of textbooks (Herbel-Eisenmann, 

2007). 

This version of authority contrasts starkly with authority in professional 

mathematics, as professional mathematics involves exploration, problem-posing, and 

constructing aesthetically appealing solution strategies (Lakatos, 1978; Pickering, 1995; 

Sinclair, 2003; Sinclair, Pimm, & Higginson, 2006). Indeed, part of Engle and Conant’s 

(2002) call is to redistribute authority to students; this is a critical mode of facilitating 

productive disciplinary engagement, as well as disciplinary enjoyment (Sengupta-Irving & 

Enyedy, 2015).  

We know that efforts to redistribute mathematical authority in line with this vision 

are non-trivial. After nearly thirty years of reform efforts (NCTM, 1989), the continued 

ubiquity of traditional norms of mathematical authority (Jacobs, Lanza, Osgood, Eccles, & 

Wigfield, 2002; Litke, 2015; Louie, 2017) has strengthened widespread narratives that 

more open learning formats are unfeasible (Stigler & Hiebert, 1998). Even teachers 
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outwardly committed to equitable teaching sometimes inadvertently frame mathematics as 

a fixed body of knowledge and position students as deficient (Louie, 2017), invoking 

traditional norms of mathematical authority. This framing unintentionally precludes 

students’ meaningful engagement with mathematics and their development of positive 

mathematical identities.  

Second, to examine evaluation in schools, we look at positive and negative 

labelling of what students produce as well as interactional positioning of students as either 

failing or succeeding. This kind of labelling, which is a subset of but not limited to 

assessment practices, includes informal labels that students integrate into their own 

identities (Anderson, 2009; Gargoetzi et al, under review; Horn, 2007; Horn 2008) as well 

as more formal, institutionalized labels that lead others to view them as particular kinds of 

people (McDermott, 2001). For many students –– including high achieving students –– 

traditional evaluation practices can lead to cheating or even to disaffiliation with 

mathematics (Boaler & Greeno, 2000; Pope, 2001). If people make the evaluation norms 

and practices of traditional school mathematics relevant in out-of-school mathematics 

environments, engagement may become less productive than if norms and practices around 

open exploration are invoked, especially for those who already dislike mathematics. 

 

Authority and Evaluation in Out-of-School Mathematics: Open Engagement and 

Expansive Outcomes 

Most prior research on engagement in out-of-school in STEM emphasizes science, 

technology, and engineering rather than explicitly mathematics engagement. The lack of 

research on out-of-school mathematics is likely due to the scarcity of such spaces. We find 
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this problematic: Because school mathematics is a widely disliked and a gatekeeping 

subject, providing students opportunities to engage in mathematics in ways that are 

personally meaningful seems like a potentially useful way to broaden field-level 

participation. While this study does not involve designing such spaces, our investigation 

into children’s mathematical activity therein and its relationship to school mathematics 

seems an important first step toward this goal. 

From prior work on out-of-school STEM spaces, we see that norms and practices 

around authority and evaluation differ from those in schools and, in many ways, support 

meaningful engagement. Such spaces are largely designed to be self-directed, engaging, 

and fun. Indeed, out-of-school STEM spaces such as interactive museums are commonly 

referred to as free-choice learning environments (e.g., Ballantyne, & Packer, 2005; 

Bamberger & Tal, 2007; Falk, 2004; Falk & Dierking, 2002; Falk, Storksdieck, & 

Dierking, 2007), a label that starkly contrasts the presumed norms and practices for 

learning in school.  

In relation to authority, free-choice environments, as their name suggests, often 

involve participants’ open-engagement where they determine the goals of their activity and 

how to pursue them. Some out-of-school STEM learning research has attempted to deepen 

inquiry by semi-structuring participants’ goals, but this can lead to “killing the playfulness” 

that is thought to be one of the primary learning benefits of these spaces (Honey & Hilton, 

2011; Falk & Dierking, 1992, 2013; Little, Wimer & Weiss, 2008; National Research 

Council [NRC], 2009). For example, Gutwill and Allen (2012) designed a “juicy question” 

participation structure in which students on a fieldtrip first explored museum exhibits, 

individually posed questions about the exhibit, and then collaboratively selected a question 
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to jointly pursue. However, they found that students had difficulty posing questions 

because, from the teacher’s perspective, students’ desire to play was an obstacle to 

question posing. While Gutwill and Allen’s interventions succeeded in supporting a 

number of desirable learning behaviors –– students posed more questions, interpreted the 

results of their inquiry, and produced more collaborative explanations –– some students 

and chaperones complained that the interventions killed the interest-driven nature of 

activity that trips to the museum usually supported. Thus, limiting children’s authority, 

even in ways that only partially structure activity to be more like school, can dramatically 

shape their experiences. 

In relation to norms and practices around evaluation, free-choice environments 

support many learning outcomes, like enjoyment of and aesthetic appreciation for the 

discipline (Schauble, Gleason, Lehrer, Bartlett, Petrosino, Allen, & Street, 2002). Activity 

in these spaces does not involve any kind of external evaluations: Visitors self-evaluate 

based on whether or not they are satisfied with their activity and whether or not they met 

their own goals. This can lead visitors to engage shallowly with the museum without 

exploring the full potential of any exhibits. This very phenomenon prompted Gutwill and 

Allen’s (2012) study on deepening inquiry in museums. However, as stated in the 

introduction, out-of-school experiences can support long-term interest and the pursuit of 

STEM careers (Jones, Taylor, & Forrester, 2011). Thus, evaluation norms and practices in 

free-choice environments partially support the interest development that fodders the pursuit 

of STEM careers.  

Implied in the above descriptions of authority and evaluation in free-choice 

environments is a description of engagement in such places as quite playful. In play, 
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children tacitly orient to the questions “What does this object do?” and “What can I do with 

this object” (Hutt, 1966; Pelligrini, 2009). Scholarship on play points to the importance of 

exploration (indicated by an orientation to what materials can do) as a precursor to play 

(indicated by an orientation to what they can do with materials). Within the diverse 

literature on play, generally accepted features include active rather than passive 

engagement, intrinsic motivation, self-selection and choice in process, enjoyment, intense 

focus or a state of flow (e.g., Nakamura, J., & Csikszentmihalyi, 2014), self-perpetuation in 

activity, and empowerment (Jerret, 2015, citing Klugman & Fasoli, 1995).  

A common theme in all these play descriptors is high-levels of child authority and a 

prioritization of process over product (i.e., little emphasis on evaluation). Indeed, first and 

foremost, play is a child-defined activity. Wing (1995) reported how a child described 

herself as playing with sand in her classroom when she was allowed to determine her own 

goals for interacting with the sand, but described herself as working when the teacher 

positioned her activity with the sand to be about estimating, even though her physical 

manipulation of the sand looked the same to an observer in both situations. Thus, the 

norms and practices of play are often quite the opposite from the norms and practices of 

traditional school math, in particular around lines of authority and evaluation.  

In sum, authority and evaluation norms and practices in free-choice environments 

are inherently more expansive than those of traditional school mathematics. It thus seems 

reasonable to conjecture that when participants in free-choice environments hybridize their 

play with traditional school mathematics norms around authority and evaluation, the 

outcomes may be less positive than when hybridity is created in the other direction.  
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Theoretical Framework: Hybridizing Activity through Framing 

Given the potential of out-of-school mathematics learning to sustain learners’ 

persistence in the subject, we seek to investigate the relationship between in- and out-of-

school mathematics learning more closely. Because norms and practices around authority 

and evaluation highlight the potential conflicts in these activities, we hone in on how 

children make sense of these in out-of-school spaces. In particular, to understand how 

children hybridize these norms and practices from in- and out-of-school, we draw on two 

separate but related ideas: sociocultural theories of hybridity, and frame theory. As we 

briefly explained in the introduction and will explain in more detail here, hybridizing is the 

act of individuals or groups integrating norms and practices (including language practices, 

etc.) from one cultural activity into another cultural activity, resulting in a new activity that 

is different from either (Bakhtin, 1981; Calabrese-Barton & Tan, 2009; Gutiérrez et al., 

1999; Ma, 2016). Framing is the way people make cultural activities relevant in local 

interactions (Goffman, 1974), and thus is a way to trace the construction of hybridity. 

When multiple frames are evoked in a way that leads to a changed, new activity, then 

hybridity has been created (Figure 3-1). In what follows, we review the concept of frames, 

and then use it to clarify the idea of hybridity as we use it in this piece.  
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Figure 3-1. Relationship between hybridizing and framing. 

 

Frames help people make sense of their activity by cuing the norms and practices of 

familiar cultural activities and thus help people organize activity in ways that make it 

recognizable to themselves and others (Goffman, 1974). In other words, frames help us 

understand when it is “desirable, appropriate, or at least socially acceptable” to make 

something from one cultural activity relevant in another (Engle, 2006, p. 455); it centers 

questions about what participants recognize themselves to be doing (Goffman, 1974) and 

has implications for what participants see as relevant to their activity. Importantly, framing 

is not necessarily a conscious activity, but rather is emergent in interaction between people 

and their social and material environment.  

Indeed, frames are almost never stated explicitly in interaction, but we can still see 

them analytically. Frames are most analytically visible when they are called into question 

Participants may frame one cultural 

activity as relevant to another because 

of environmental cues to broader 

cultural narratives or cultural tools 

 

Frames help people understand 

“what’s happening here” by drawing 

on norms and practices of familiar 

cultural activities 

 

 

Hybridization of Activity 
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or when participants’ expectations are broken. For example, Hammer, Elby, Scherr, and 

Redish (2005) describe a group of students questioning their joint endeavor by making bids 

for reasonable but opposing ways of engaging with a physics problem (kinesthetic 

sensemaking versus quantitative analysis). This example involves explicit questioning of 

the problem-solving frame: The statement “Do we even need to do all that calculation?” 

(emphasis added) indicates that the bid for quantitative analysis might be excessive and 

uncalled for (p. 12). Participants engaged in a joint endeavor can also need to re-negotiate 

frames when expectations are unexpectedly broken. For example, if two cohabiting adults 

go to the grocery store, with one of them thinking it is a quick trip to grab a few things for 

dinner and the other thinking it is a trip to spend quality time exploring new foods and 

finding good deals, they will likely realize at some point –– cued by differences in pace, 

path, and discussion –– that their frames are misaligned and need renegotiation. In this 

way, frame negotiation happens when participants’ intentionally or unintentionally 

challenge each other’s understanding of “what’s happening here.” In sum, although frames 

are rarely stated, they can be seen in interaction at points of renegotiation and confusion, 

which are particularly visible as “breaks” in the fairly stable interactions involved in 

widespread cultural activities.   

We propose analyzing frames helps us see how hybridization takes place, with the 

caveat that a multiplicity of frames does not necessarily result in hybridization. For 

example, when watching a film such as Waiting for Superman, people may be engaged in 

leisure frames while simultaneously drawing on frames about what happens in schools 

using the culture-of-poverty thesis (Bulman, 2002). In this example, multiple frames are 

evoked, but the film viewers are not making sense of their current movie watching activity 
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(their leisure frame) by drawing on other frames. Rather, the film viewers are drawing on 

frames about schooling as a cultural activity to make sense of the movie, not of their own 

leisure activity. Although multiple frames are invoked,6 they are not in conflict with each 

other. Thus, this is a non-example of hybridity, because the norms and practices of multiple 

cultural activities are not integrated in a way that leads to new activity.  

In contrast, hybridizing takes place when multiple frames of cultural activities are 

integrated in ways that lead to novel patterns of talk and interaction. For example, when 

children in Gutiérrez and colleagues’ study (1999) engaged in a lesson about human 

reproduction, they leveraged both their school-science discourse as well as their home 

discourse to make sense of new ideas, which expanded their patterns of talk in ways that 

include not just school discourse plus home discourse, but a merged discourse geared 

towards learning about teacher sanctioned content (Gutiérrez et al., 1999). This merged, 

hybrid discourse included informal anatomy terms as part of the official discourse of the 

classroom. Most adults do not expect to walk into a science classroom and hear informal 

language about human anatomy, especially from the teacher. Students’ initial anxious 

laughter and hesitancy in participation suggests that their expectations were also broken, 

indicating that new norms were being negotiated –– and thus a new activity was being 

created –– as the two discourses were integrated.  

The complexity of looking at multiple frames as indicators of hybridity continues. 

                                                 

6 We are using hybridize as a verb that children do, so we have chosen to use the verb “invoke” in relation to 

frames and norms and practices. However, it this is somewhat misleading, because framing it is often not 

conscious / intentional and is often cued by the environment. However, framing does not happen without 

people as the actors, and so we have chosen to use this term to put the emphasis on the role of people. 
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Just as multiple frames do not always yield hybridizing, not all hybridizing leads to 

productive new activity. For this reason, scholars have introduced terms such third space 

(Gutiérrez et al., 1999) and productive hybridity (Ma, 2016) to distinguish hybridity that 

supports desired learning from other hybridity. For example, using a worksheet to invite 

students to hybridize their activity in a museum with school science may not be desirable if 

it forecloses opportunities for students’ interest to be sparked. Because we are specifically 

interested in how children hybridize out-of-school activities with traditional school 

mathematics norms and practices around authority and evaluation, it is unlikely that we 

will analytically uncover such productive hybridization.  

Furthermore, it is easier to see hybridization of traditional school activities by out-

of-school activities than vice versa (i.e., it is easier to see hybridity in school than outside 

of school). This is because of the relative stability of classroom norms and practices. When 

these fairly stable norms and practices are disrupted, we can often see hybridity being 

constructed as teachers and students recruit resources from other contexts in an attempt to 

continue on with activity (Ma, 2016). However, out-of-school activities often have a 

broader norms and practices –– so broad in fact that it can be difficult to determine when 

they are disrupted. This is magnified in novel out-of-school activities.  

In relation to mathematics, novel activities that disrupt both typical processes of 

engaging with mathematics and broader cultural narratives around what counts as 

mathematics invite hybridity (Ma, 2016). This invitation for hybridity is caused by 

experiences of uncertainty as participants’ understanding of activity is disrupted. In 

considering how uncertainty functions in the invocation of framing, Goffman (1974) stated 

that: 
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It is perfectly possible for individuals, especially one at a time and briefly, 

to be in doubt about what it is that is going on […] And insofar as the 

individual is moved to engage in action of some kind –– a very usual 

possibility –– the ambiguity will be translated into felt uncertainty and 

hesitancy. Note, ambiguity as here defined is itself of two kinds: one, where 

there is question as to what could possibly be going on here; the other as to 

which one of two or more clearly possible things is going on (pp. 302, 303, 

emphasis added). 

In this way, novel activities that have less established –– and thus, more ambiguous –– 

norms and practices may facilitate hybridity since participants must recruit their resources 

from familiar cultural activities to resolve their uncertainty in how to engage. We refer to 

such activities as hybridity-inviting, and we consider this recruiting of resources to be a 

process framing.   

How do we see framing in hybridity-inviting activities –– activities in which 

participants may still be searching for what expectations are reasonable? In this case, we 

must look for evidence of frames that we think participants are likely to find relevant to 

their activity based on features of the social and material environment. As we are interested 

in framing around traditional school math, and particularly in norms and practices around 

authority and evaluation, we next describe how we might see these frames during playful 

activity in novel, non-school mathematics activities. 

 

Authority 

One way to see framing around traditional school mathematics’ norms of authority 
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in novel, non-school activities is through verbal orienting work. For example, participants’ 

explicit talk or questioning about what they are supposed to do can indicate a schoolish 

orientation towards tasks as necessarily (almost definitionally) determined by authoritative 

others. Lack of such questioning or answering such questions is an indication of self-

determining tasks and thus also indicates an internal locus of authority (an exercise of 

personal agency), which does not correspond with traditional school mathematics norms 

around authority. Orienting work can also be seen by attending to physical interaction with 

materials. For example, when participants explore materials before beginning to use them, 

this can be seen as an exercise of agency that does not well align with traditional school 

math authority norms, as those norms would suggest that participants should be able to 

quickly identify and solve problems. 

 

Evaluations 

 Participants’ verbal evaluations of their activity also support an analysis of 

framing, as evaluations provide clues as to what participants perceive themselves to be up 

to and how successful they viewed their engagement to be. In particular, attending to the 

nature of evaluations, such as whether they are positive or negative can give insight into 

whether participants have met their own expectations for activity. If participants repeatedly 

evaluate their work, especially negatively, this may indicate a schoolish emphasis on 

correctness. This, in conjunction with orienting to authority, may indicate that a participant 

is invoking a frame around traditional school mathematics.    
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Research Design 

 

Setting 

In the summer of 2016, we went to a mathematical playground called Math On-A-

Stick (MOAS), located at the Minnesota State Fair (Figure 3-2). In the United States, state 

fairs happen once a year in each state for approximately 1–2 weeks. They are places of 

leisure and entertainment, with thrilling roller coaster rides, indulgent foods, and games 

with prizes. The Minnesota State Fair is the second biggest fair in the United States, and it 

is a very busy place. MOAS was tucked away in a quiet corner of the fairgrounds near 

educational booths and buildings. The soundscape at MOAS contributed to its pleasant, 

child-friendly atmosphere: sounds of birds chirping and frogs croaking floated in the air 

from the nearby EcoExperience building (visible in Figure 3-2), and cheerful children’s 

songs punctuated the soundscape from shows performed at the nearby stage (visible in the 

same block as MOAS in Figure 3-2). Finally, MOAS offered a rare respite at the state fair: 

trees for shade and plentiful seating. Thus, MOAS was an oasis for families that needed a 

break from the hustle and bustle of the fairgrounds. 
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Figure 3-2. Minnesota State Fair Map (left) with a zoom in of the MOAS area via Google 

Maps. 

 

Despite its mathematical label, the materials at MOAS look quite different than 

typical, school-based mathematics materials (e.g., paper, pencil, ruler, calculator). Some 

examples of the exhibits included: 

● Tiles and Patterns exhibit (Figure 3-3 a, b) and Pentagons exhibit (Figure 3-3 c, d): 

shapes that tile the plane without necessarily requiring or producing symmetry and 

that tile plane in many ways, including ways that pattern. 
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● Pattern Machine exhibit (Figure 3-4 a, b) and Egg and Crate exhibit (Figure 3-4 c, 

d): grid-like materials that embody arrays (with different affordances for 

mathematical ideas based on whether the array is square or rectangle, with even or 

odd number of grid spaces).  

 

Figure 3-3.  (a) A “pleasing-to-the-eye” pattern (b) and mono-color pattern at the Tiles and 

Patterns exhibit. (c) A mosasaur representation (d) and a multi-color design with radial 

symmetry at the Pentagons exhibit. 

 

Figure 3-4. (a) Design with rotational symmetry or snowflake representation (b) and heart 

representation at the Pattern Machine exhibit. (c) A heart representation and (d) a 

diagonal-stripes at the Eggs and Crate exhibit. 
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MOAS offered visitors little structure in terms of instructions. Materials were out 

on tables, and volunteers were often (but not always) stationed to offer ideas. Sometimes 

visitors left their patterns or designs out when they departed, and thus sometimes when a 

new visitor approached an exhibit they would see a design that someone else made. Other 

times tools were scattered randomly or neatly stored in containers. Approaching a table, 

visitors usually decided for themselves what they wanted to do. Typically, visitors might 

spend their entire time at MOAS designing and playing as they wished; mostly, the 

volunteers helped if asked or offered suggestions if pressed. With such an open 

participation structure, visitors framed their activities in many different ways.  

 Notably, even though MOAS was designed to encourage play, not all fairgoers 

found it equally inviting. Our fieldnotes capture this poignantly. Sitting on the sidewalk of 

MOAS watching passersby, we heard them rejecting MOAS with statements like, 

“Mathematics at the fair! No thank you!” or “Math? Ugh, keep walking.” Of course, many 

fairgoers loved the idea and came in to explore. Despite this clear indication of some 

significant self-selection based on (dis)affiliation with mathematics, our study includes 

participants who claimed that mathematics was their least favorite school subject.  

Most importantly for our analysis, MOAS is a hybridity-inviting space. As its name 

suggests, it is a place to play with mathematics. Thus, it possible for multiple –– sometimes 

contradictory –– frames to be relevant. The openness of the exhibits, the availability of 

materials, and the dominance of child activity over adult activity all make it possible that a 

play frame will be invoked into a hanging-out-at-the-fair or leisure frame.  

Based on our description of free-choice environments in the conceptual framework, 

we would expect children at MOAS engaged in a play frame to rely on their own authority 



 

 146 

around what to do and how to do it, and we would expect them to focus on the process of 

making rather than on evaluating either their activity or their finished products. At the 

same time, the name of the space (Math On-A-Stick) makes it possible that a school 

mathematics frame will be invoked. Based on the description of traditional school math 

that we provided in the conceptual framework, we would expect children invoking a 

traditional school mathematics frame at MOAS to seek out the authority of others around 

what to do and how to do it, and we would expect them to struggle with self-evaluating the 

quality of their own work. 

Thus, it is not surprising that fairgoers often need some assistance to engage: 

Because the novelty of the activity at MOAS makes important norms and practices unclear 

and potentially unshared by participants, it is not always clear which frames (e.g., school 

mathematics or play) to invoke. Based on personal histories and local interactions, MOAS 

visitors have to decide what cultural activities –– and their associated norms and practices 

–– are and are not relevant.  

 

Data Collection 

For this analysis, our primary interest is to understand how traditional school-

mathematics norms and practices around authority and evaluation hybridize in free-choice 

mathematics environments. To recruit participants, we asked children and their parents if 

they would like to participate in a study of how children engage with mathematics through 

play. Because we are interested in participants’ perspectives, our primary data source is 

line-of-sight video. We also collected an intake survey to capture demographic 

information, an exit survey to capture experiences with school mathematics, and a brief 
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semi-structured exit interview to capture participants’ immediate reflection on their 

experiences at MOAS.  

Each participant was given a record locator number that identified the day of the 

month and the child’s place in our queue of participants. For example, 05-25 would 

indicate the child was our 25th participant on the fifth of the month. This preserved 

participants’ anonymity, but also allowed us to retrospectively identify children who 

participated with friends and siblings since their record locators were sequential and they 

often appeared in each other’s recordings.  

Video data 

For the line-of-sight video, we mounted GoPro™ cameras on baseball caps aimed 

downwards and slightly forward to capture their talk, gestures, and object manipulation 

(Figure 3-5). This view captures the locus of the children’s visual attention when they are 

playing with objects and supports inferences about their gaze and interest in relation to 

talk. In the end, we collected a total of 127 hours of video from 345 participants, with the 

average visit lasting 26 minutes per child (sd = 16.46 min).  
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Figure 3-5. A participant wearing the GoPro™ camera. 

 

Intake survey 

As one researcher finished the consent process and set the GoPro™ camera on the 

child’s head, another collected an “About me” survey on an iPad (see Appendix A), asking 

about their favorite and least favorite school subjects, how they like to spend their leisure 

time, along with basic demographic information. The majority of the children in our 

sample were between 7 and 12 years old (n = 274) and our analyses focus on this age band.  

Exit survey and interview 

As participants exited MOAS, we conducted and recorded brief exit interviews 

(Appendix B) before we removed the GoPro™ cameras from their heads. We asked about 

their experiences at MOAS, such as why they came to MOAS and which exhibits they 

liked most and why. They also completed a second brief iPad survey (Appendix C) with 

twelve statements about school and mathematics, with 5-point forced-choice Likert scale 

responses. 
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Analysis 

Phase 1: Coding the corpus 

To get a handle on our large data corpus, we viewed the entirety of all 345 videos and 

used StudiocodeTM software to code for when participants were at each exhibit. Of the 127 

hours of video we collected, 101 hours were of participants within our age band (n = 279 

children) and 21 hours were of participants outside of our age band (n = 66 children) at 

exhibits. The remaining 5 hours of video contained records of participants engaged in 

transitional activities, such as checking in with their parents or eating snacks. This initial 

viewing allowed us to gain familiarity with the data and garner a sense of typical activity at 

each exhibit.  

Phase 2: Data reduction 

Following Gutwill and Allen (2012) in their study of inquiry in museums, we initially 

characterized engagement by looking to the duration of stay times at each exhibit. We used 

the median length of stay time for the corpus as an indication of typical engagement (Table 

1), and we then compared the duration of each child’s stay time at each exhibit to typical 

stay time to categorize as a measure their engagement as more or less engaged. We chose 

the median rather than the mean as a measure of typical engagement because we had 

multiple occurrences of outliers with significantly longer times that skewed the data.  

Our initial viewing of the data suggested that analyzing children who stayed longer at 

exhibits would offer a richer understanding of the potential for mathematical engagement. 

Thus, we selected participants with long stay times, which resulted in re-watching 311 
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video clips (43 hours) of child level occurrences of play at particular exhibits (Table 3-1).7  

 

Table 3-1. Statistical summary comparing all 7–12 yr old participants in sample age band 

 

Stay times (in minutes) per 

station for 

all 7 to 12 year-old 

participants 

Stay times (in minutes) at 

selected exhibits of 

7-12 year-olds 

who stayed longer than typical 

Exhibit n M Sd Mdn n* Min Max Mdn 

Tiles and Patterns  180 3.49 3.82 2.15 69 3.01 22.67 4.91 

Pentagons  156 6.38 7.67 4.07 70 5.14 51.72 7.71 

Pattern Machine  237 5.35 4.58 4.32 104 5.01 34.77 7.63 

Eggs  156 3.38 3.19 2.76 68 3.00 26.61 4.58 

Lizards and 

Turtles  

183 5.89 4.45 4.95 –– –– –– –– 

Spiral Machine  90 4.16 3.78 3.26 –– –– –– –– 

 *Tiles and Patterns (rejected 34 participants whose duration was between 2.0 and 2.99 because mdn = 2.15); 

Pentagons (rejected 9 whose duration was between 4.0 and 4.99 because mdn= 4.07); Pattern Machine 

(rejected 24 whose duration was between 4.0 and 4.99 because mdn= 4.32); Eggs (rejected 37 whose duration 

was between 2.0 and 2.99 because mdn = 2.76) 

 

 

                                                 

7 We term these exhibit visits child level occurrences to distinguish that some participants attended stations 

more than once or stayed longer than typical at multiple exhibits, and thus are counted multiple times in our 

311 video clips (63 participants stayed longer than typical at more than one exhibit). In our parsing of the 

data, we have each separate occurrence of participants’ time at each exhibit counted as a unique occurrence. 

Thus, the count for “child level occurrences” does not reflect the number of children but rather the number of 

times the station was visited for longer than the roof of the median of exhibit stay time for 7-12 year olds. 
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Phase 3: Analyzing patterns in engagement 

Centering children’s perspectives in video records lends itself to interaction 

analysis methods, since this approach seeks to understand participants meaning in activity 

(Hall & Stevens, 2016; Jordan & Henderson, 1995). To analyze participants’ meaning 

making, interaction analysis methods begin by determining appropriate analytic chunks of 

the video. In this analysis, our analytic chunks, or units of analysis, are Episodes of Making 

(EOMs), which center participants’ interaction with the materials. An EOM, as we define 

it, is an instance of activity that is oriented towards a particular goal or end-state; the 

making of “something.” To emically define EOMs, we identified beginnings and endings 

of activity from participants’ perspectives. According to Jordan and Henderson (1995), 

these “starting up” and “winding down” segments of interaction tend to be the temporal 

location of significant events. Delineating the boundaries of EOMs can be difficult due to 

fuzzy boundaries of goal shifting in play, so ultimately, we specified the endpoint of each 

EOM by attending to when participants “erased” their prior work (i.e., making themselves 

a “blank slate” by destroying what they built) or made major revisions that resulted in a 

new object. We then rewound the video to determine when that activity had begun (often 

right after the end of the previous EOM). If the child made a blank slate and re-attempted 

their previous goal, we rewound the video and coded the entire instance as one goal. 

Phase 4: Selecting focal participants for contrasting engagement  

While coding for EOMs, we noticed that two of our participants were navigating 

MOAS together. Because their record locators were sequential (i.e., they were friends 

consented into the study at the same time), we coded their videos consecutively and 

noticed that while they were moving through MOAS together, they were also “doing it” 
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very differently. In other words, they seemed to engage different norms and practices ––

 particularly around authority and evaluation ––  in their activity even as their activity was 

constantly visible to each other. We call our two participants Aimee and Dia, 12-year-old 

girls who worked as friends. Looking into their cases more deeply, we found that they were 

our only two participants who stayed at all four selected exhibits for longer than was 

typical, making them our two “most engaged” participants (following Gutwill & Allen, 

2012). Although they were our two “most engaged” participants by this measure, by other 

measures their engagement was also fairly representative. For example, their stay times at 

each were longer than the median stay time for all 7-to-12 year-olds, yet their stay times 

were usually closer to the median of all 7-to-12 year-olds than to the median of 7-to-12 

year-olds who stayed longer than typical (Table 3-2). As a note, 62 participants between 

the ages of 7 and 12 stayed longer than typical at more than one exhibit, with 13 of those 

62 participants staying longer than typical at three exhibits, 45 participants staying longer 

than typical at 2 exhibits, and two participants staying longer than typical at only one 

exhibit. Their extended engagement, friendship, and co-navigation of MOAS offered a rich 

narrative record of their activity, fodder for interaction analysis.  
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Table 3-2. Aimee and Dia’s stay times at selected exhibits.  

 

Stay times (in minutes) 

per station for 

all 7 to 12 year-old 

participants 

Stay times (in minutes) 

at selected exhibits 

for 7-12 year-olds 

who stayed longer than 

typical 

Aimee and Dia’s 

stay times 

Exhibit n Mdn n* Mdn* Aimee Dia 

Tiles and 

Patterns 
180 2.15 69 4.91 6.54 6.45 

Pentagons 156 4.07 70 7.71 5.34 5.86 

Pattern 

Machine 
237 4.32 104 7.63 6.42 6.51 

Eggs 156 2.76 68 4.58 5.03 3.53 

Lizards and 

Turtles 
183 4.95 –– –– –– –– 

Spiral Machine 90 3.26 –– –– –– –– 

 

 Adding to our interest, Aimee and Dia professed contrasting experiences of 

mathematics in their entrance surveys, with Aimee claiming mathematics as her favorite 

subject, and Dia claiming mathematics as her least favorite subject. In fact, Dia seemed to 

think that her dislike of mathematics was either funny or awkward in the context of our 

study of mathematics activity at Math On-A-Stick, as she laughed uncomfortably when 

answering the intake survey question (asked aloud by a researcher) about her least favorite 

subject.  

 However, Dia and Aimee had somewhat similar opinions about mathematics as 

they experienced it in school, as indicated by our short Likert scale exit survey.8 They both 

                                                 

8 Notably, our video records cut off before the girls begin their exit surveys so it is possible that they copied 

one another’s answers, but we find this unlikely as other questions on the survey have non-matching 

responses, as well as because our presence collecting the data leads us to believe that such copying of 

responses was uncommon. 
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thought that mathematics is moderately challenging (sometimes), that it consists of steps 

(usually) and facts to remember (sometimes), and that they needed their teacher to tell them 

whether their answers are correct or not (sometimes). They both also responded that they 

had the agency to figure out whether or not their answers are correct on their own. 

Interestingly, Dia –– whose least favorite subject is mathematics –– provided a slightly 

higher agency response (strongly agree) than Aimee (agree).  

 Their survey responses differed in relation to whether they found mathematics 

interesting or boring, with Dia finding mathematics very boring (strongly agree) and 

Aimee finding it very interesting (strongly agree). In this way, we interpret Dia’s dislike 

for mathematics not to be related to her feelings of competence or agency, but rather to her 

feelings about whether or not mathematics is interesting. Yet, as we will show in the 

findings, Dia positioned herself as failing to produce interesting EOMs at MOAS –– that is, 

as failing to find interesting problems –– and thus also evaluated herself as not fully 

competent in this out-of-school context. Analyzing these two participants allows us to add 

nuance to what it means to be engaged in free-choice environments that invite hybridity. 

 

Phase 5: Frame analysis of hybridity between school mathematics and play 

Based on Aimee’s and Dia’s extended engagement, their contrasting behaviors at 

MOAS, and our curiosity about the girls’ expressed differences in their liking of 

mathematics, we drew on frame theory as a means of orienting our analysis into whether 

and how Aimee and Dia hybridized their activity in the math-play space of MOAS with 

school-mathematics norms and practices around authority and evaluation. Frames are 

almost never stated explicitly in interaction, and thus we began with conjectures about 
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aspects of interaction likely to give insight into Aimee’s and Dia’s notions of “what is 

happening here.”  
We primarily looked for indicators of the girls’ frames by attending to the content 

of their talk, the majority of which involved making comments about their work. We first 

stitched their independent GoPro™ videos together such so that we could see what each 

girl was doing at the same time as the other (Figure 3-6) and make sense of their 

engagement as a joint endeavor, as this gave us the ability to analyze points of 

renegotiation and confusion during activity framing. We then transcribed the entirety of 

their stay at MOAS using a joint transcript that attended to both girls’ talk and 

manipulation of exhibit materials. Next, we coded this transcript to identify talk and 

interaction around authority and evaluation.  

 

 

Figure 3-6. A screenshot of Aimee’s and Dia’s videos stitched together such that their 

activity was synced in time. Aimee’s arms can be seen reaching across Dia’s body to grab 

eggs in both Aimee’s video (right) and Dia’s video (left). 
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Authority in task determination 

We looked for authority by attending to whether or not the girls oriented to the 

exhibits in self-determined ways. For example, we coded statements such as “So I just play 

the games?”, “What are you supposed to do?”, and “So now we just make more designs?” 

as evidence for an external locus of authority (i.e., searching for what others determined 

the task to be). We coded the entire transcript for authority, finding nine such utterances in 

the first 13 minutes of activity and none thereafter. In our findings, we discuss the 

significance of this for framing, especially in relation to who initiated these orienting 

statements and questions. By attending to who asked orienting questions and who 

answered them, we are able to understand felt distributions of authority, with those asking 

orienting questions appealing to the authority of others rather than engaging in agentic, 

self-determined activity. We also carefully attended to the time lapse between when 

participants first began manipulating materials at each exhibit and when they began making 

their first EOMs at each exhibit. We consider this span of time to be exploratory activity, 

with exploratory activity as an indication that the girls expected to exercise personal 

authority to make sense of the materials. 

 Evaluation of correctness 

We looked for evaluation by attending to how the girls positioned the products of 

their EOMs and their work during EOMs. Following Allen’s (2003) study of learning 

through talk in museums, we coded our video data for metaperformance talk, or 

participants’ evaluations (or requests for evaluations) of their own performance, actions, or 

abilities. We then considered these comments in relation to Allen’s category of affective 

talk: Because comments such as “beautiful,” “cool,” “I like that,” “ugly,” “whoa!,” and 
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“ooooh” can be considered evaluations of the things produced by participants in the 

context of MOAS, we collapse both meta-performance talk codes and affective talk codes 

into an evaluation code. We then classified the girls’ evaluations as positive (expressing 

satisfaction), negative (expressing dissatisfaction), or neutral (expressing neither 

satisfaction nor dissatisfaction). We counted statements such as “I like it!” and “There!” as 

positive evaluations; statements such as “I can’t make it,” “No that’s ugly,” and 

sarcastically saying positive words like “Great” with a downward intonation as negative 

evaluations; and statements such as “I don’t know what I’m making” and “It’s hard to 

figure out” as neutral evaluations. Upon going back to the video data to validate our 

coding of the transcripts with our interpretations of the video, we added some gestures to 

our account of evaluations. The gestures we coded as evaluations were all coded as 

positive evaluations, for example, tracing designs or rubbing hands together with pleasure 

after completing designs. In the interest of not over-interpreting the data, we left uncoded 

any gestures that may have been neutral and negative evaluations as these were more 

difficult to interpret. For example, although we did notice that the quickness with which 

EOMs were destroyed after completion seemed to be somewhat indicative of negative 

evaluations, we did not include this in our count of negative evaluations as we felt that 

creating a boundary on what counts as a quick and negative evaluation would be somewhat 

arbitrary. As a consequence, it is possible that we may be underreporting negative 

evaluations.9  

                                                 

9 Our viewing of the data leads us to infer that, if we are under-reporting neutral and negative evaluations, we 

are primarily doing so for Dia which does not affect our findings. 
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We coded the entire transcript and found evidence for authority and evaluation 

throughout EOMs. Because we conjecture that frames of school mathematics and play are 

likely to be evoked at MOAS, we then engaged in interpretive work around evidence for 

school mathematics and play frames in the analyses of authority and evaluation described 

above. While we acknowledge that neither a school mathematics nor a play frame may be 

consistently invoked by either girl, we sought to understand whether a school-mathematics 

frame or a play frame could be considered the leading frame for each girl. 

School-mathematics frames 

To identify school-mathematics frames at MOAS, we looked for talk that explicitly 

aligned activity at MOAS with school mathematics, as well as talk that tacitly bid to match 

activity at MOAS to activity in school mathematics. We see such tacit bids when the girls 

engaged in activities that mimicked expectations of school, namely expectations of 

fulfilling tasks predetermined by higher authorities (e.g., a mathematics teacher; the 

designer of MOAS, see Authority Section above) and an orientation towards doing so 

correctly (see Evaluation Section above). To be specific, in our data, we see bids for 

predetermined tasks when the girls expressed hesitancy in self-determining their own goals 

–– for example, by appealing to the authority of others about what they are supposed to do 

–– and we see bids for correctness when the girls seek evaluations from others or self-

evaluate their own activity.  

We attend to both the quantity and quality of evaluations, as more evaluations in 

conjunction with many of those evaluations being negative has quite different connotations 

than if many of those evaluations were positive. While we do not equate frequent negative 

evaluations with school mathematics in general, in this context, frequent negative 
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evaluations indicate that participants frame their activity at MOAS as unsuccessful. If this 

co-occurs with explicit talk aligning MOAS with school mathematics and other talk that 

tacitly maps to school mathematics through the practice of looking to others to determine 

the task, then we take frequent negative evaluations as a further indication that participants 

were evoking a traditional school-mathematics frame.  

Play frames 

To identify play frames at MOAS, we looked for talk and gestures that explicitly 

conveyed comfort and confidence in establishing self-determined goals (authority), a 

prioritization of process over product (evaluation), and enjoyment. For example, when the 

girls engaged in self-determining their own EOMs (see Authority Section above), we 

inferred that they were taking an authoritative stance and interpreted that as an indicator 

that a play frame was leading activity. We also interpreted fewer evaluations (see 

Evaluation Section above) as an indication that the process of engaging was satisfying and 

satisfactory and so also considered this to be an indication of a play frame. Finally, we took 

the occurrence of more positive than negative evaluations, including affective expressions 

of pleasure (see Evaluation Section above) to be an indicator of a play frame. Significantly, 

the evidence we take as an indication of play frames is not incompatible with or mutually 

exclusive to school mathematics in general, but it is productive for us to look for them as 

separate frames in this analysis of how children hybridize their engagement in out-of-

school mathematics activities with traditional school mathematics norms and practices 

around authority and evaluation. 
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Limitations 

  While we did not conduct a negative case analysis to systematically look for 

disconfirming evidence in our entire corpus of data for how school-mathematics frames 

can influence activity, our extensive engagement with the video data of all 345 participants 

in multiple iterations of viewing and coding, purposive sampling of Aimee and Dia, and 

our systematic data analysis procedures lend trustworthiness to our findings. The 

generalizability of how traditional school-mathematics norms and practices can shape 

engagement in out-of-school mathematics activities remains an open question. In addition, 

we note our thin data on our participants’ prior histories with mathematics, relying 

primarily on a short, self-report, Likert-scale questionnaire. Follow-up studies should 

include denser child-level data, ideally with re-occurring qualitative observations of 

classroom and out-of-school experiences, as well as iterative in-depth interviews to achieve 

a nuanced understanding of salient experiences inside and outside of school mathematics.  

 

Findings 

Looking across Aimee and Dia’s videos from their visit to Math-On-A-Stick, the 

two girls framed their activity in this hybridity-inviting math-play space differently. How 

the girls determined how to engage at each exhibit (i.e., by appealing to external authority 

or to themselves) and how they evaluated their engagement serve as the primary evidence 

of this claim. More specifically, Dia framed her activity using a traditional version of 

school-mathematics norms and practices around authority and evaluation, while Aimee 

framed her activity as play. Dia’s hybridizing of MOAS with traditional school-

mathematics norms and practices lead to hesitancy and dissatisfaction, foreclosing 
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engagement in expansive exploration. Dia’s framing prompted her to attune to the 

ambiguity of the situation as troublesome and unpleasant rather than playful. In contrast, 

Aimee framed the activity as more like play, and so she experienced the same ambiguity 

and openness as unproblematic and even enjoyable opportunities for free exploration.  

To illustrate our central claim, we organize our findings by first presenting Dia’s 

framing, characterizing her activity as uncertain and dissatisfied. We then present Aimee’s 

framing activity and characterize it as expansive exploration and pleasure in making before 

interpreting both girls’ frames in relation to how they hybridized the cultural activities of 

school mathematics and play. 

 

Dia’s Framing: Uncertainty and Dissatisfaction 

As stated, the first approach to determining how the girls framed this activity was to 

look at the ways they oriented to new exhibits, with the assumption that they would be 

actively making sense of the purpose for their activity. Dia explicitly mapped the purpose 

of her activity onto school mathematics multiple times. For example, at minute seven when 

approaching the Pattern Machine (her second exhibit), she said, “This is the kind of 

mathematics I like,” suggesting that she was attuned to looking for school mathematics as 

she contrasted the mathematics at MOAS (“this kind” and “mathematics I like”) with other 

mathematics (mathematics she does not like: school math). Indeed, just a few minutes later, 

Dia asked if she was supposed to count at the Pattern Machine, providing more evidence 

that she was expecting school-like mathematics content and practices and thus was framing 

school-mathematics as relevant to her activity.   
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Uncertainty in self-determination 

Dia also explicitly questioned what she was supposed to be doing, suggesting that 

she was attempting to match the authority practices of schooling around completing 

predetermined tasks with her activity at MOAS. Within the first 13 minutes of her 35-

minute visit, Dia offered nine utterances that focused on the purpose or intention of her 

participation, saying things like, “So I just play the games?” or, “We have to do all of 

them, I think.” Thus, Dia was searching for instructions or rules, indicating that, for her, 

the openness of the activity and the lack of instructions was uncomfortable, a problem or 

ambiguity that needed to be resolved. 

Dia’s physical interaction with the materials at MOAS further indicated an 

orientation towards an expectation for predetermined, well-structured tasks rather than 

towards using the materials to explore the parameters of what was possible and interesting 

at each exhibit. In fact, Dia rarely explored the materials of the exhibits before using them 

in an EOM; her explorations generally lasted only 2–16 seconds. Instead, she almost 

always integrated the first materials she touched into her first EOM. This suggests that Dia 

was not exercising her personal agency to make sense of the materials, which corroborates 

our interpretation of her orientation to activity as searching for pre-defined rules and 

expectations. It seemed that, in the absence of finding such clear rules or expectations, Dia 

resorted to using materials as an act of compliance with the expectation that she do 

something, rather than an act of intentional design. This lack of exploration also aligns with 

traditional school-mathematics norms around authority, where tasks and appropriate 

solution strategies are often predetermined, and so exploration is unnecessary or even 

deviant.  
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Dia’s discursive moves of looking for tasks predetermined by external authorities is 

consistent with a traditional school-mathematics frame in which a new activity typically 

begins with instructions, and students are tasked with listening to explanations and then 

complying. Dia’s repeated search for predetermined tasks suggests that she was attempting 

to frame the activity in such a way as to match it with what she might otherwise expect 

mathematics to be, yet, because such tasks do not exist at MOAS, Dia experienced 

uncertainty in her activity.  

Dissatisfaction in evaluations 

We also looked for evidence of Dia’s frames in the ways that she evaluated her 

activity. Dia evaluated her activity quite frequently (Table 3): While working on her 

EOMs, Dia produced a total of 27 evaluations of her activity over 14 distinct EOMS (up to 

8 evaluations per EOM). These frequent evaluations tell us that Dia framed MOAS as a 

space in which some EOMs were more valuable or more correct than others.   
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Table 3-3. Summary of Dia’s evaluations during each EOM* 

Exhibit EOM Positive Neutral Negative Total 

Eggs (Exhibit 1) EOM 1.1 5 2 1 8 

Eggs (Exhibit 1) EOM 1.2 0 0 0 0 

Pattern Machine (Exhibit 2) EOM 2.1 0 1 1 2 

Pattern Machine (Exhibit 2) EOM 2.2 0 0 1 2 

Pattern Machine (Exhibit 2) EOM 2.3 0 0 0 0 

Pattern Machine (Exhibit 2) EOM 2.3 0 1 0 2 

Tiles and Patterns (Exhibit 3) EOM 3.1 0 0 1 2 

Tiles and Patterns (Exhibit 3) EOM 3.2 0 1 0 2 

Tiles and Patterns (Exhibit 3) EOM 3.3 0 2 1 3 

Tiles and Patterns (Exhibit 3) EOM 3.4 0 2 0 2 

Pentagons (Exhibit 8) EOM 8.1 0 0 3 3 

Pentagons (Exhibit 8) EOM 8.2 0 0 0 0 

Pentagons (Exhibit 8) EOM 8.3 0 0 0 0 

Lizards and Turtles (Exhibit 9) EOM 9.1 3 2 0 5 

Total  8 11 8 27 

*Exhibits 4 (Visiting Mathematician), 5 (Stepping Stones), 6 (return to Visiting Mathematician), and 7 (Book 

Table) are not included in this table because they did not involve EOMs. 

 

Notably, one might interpret Dia’s frequent self-evaluations as evidence of Dia 

positioning herself as the authority for determining what was right, but a closer look at the 

nature of her evaluations suggests something quite different. In her comments about her 

work, Dia appeared to demonstrate a concern for doing things correctly. When she paused 

to evaluate her own work, there was little evidence that she was considering whether it met 

with her own standards or goals. As Table 3 shows, Dia offered a negative self-assessment 

in six of 14 EOMs, and offered positive evaluations during only two EOMs. In addition, 
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she made neutral statements like “I don’t know what I’m making” in seven out of 14 

EOMs, and these statements functioned discursively to devalue her work. For example, at 

the Tiles and Patterns exhibit, she repeatedly made neutral comments about not knowing 

(“I don’t know what I’m making;” “What is this, nobody knows”) and negative comments 

about being unsuccessful (“Dang it I can’t do it;” “Great” in a sarcastic tone while 

destroying her design). Figure 3-7 provides a photograph of Dia’s EOMs at the Tiles and 

Patterns exhibit in order to visually illustrate how these evaluations played out in relation 

to the products of her EOMs. We note that the patterns she created do not look like the 

kinds of patterns with visually repeating units that we typically value in schools. 

 

 

Figure 3-7. The product of Dia’s four EOMs at the Tiles and Patterns exhibit. 

 

Thus, even as Dia appeared to eventually determine what her task was in each 

exhibit (although she initially sought predetermined tasks), she continued to check with 

herself and with others that she was on-track or doing the right thing. Her emphasis on 

evaluation is reminiscent of traditional school mathematics and is not indicative of an 

enjoyment of process over product (an indicator of a play frame). While it may be that Dia 

was simply a talkative 12-year-old girl, the frequency and content of her evaluations 

indicates that she was attuned to, and concerned with, correctness. While her evaluations in 
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themselves are not a strong indication of a school-mathematics frame, these evaluations in 

conjunction with her explicit references to school mathematics and explicit search for tasks 

predetermined by external authorities suggest that a school-mathematics frame was shaping 

her activity.  

Illustration of uncertainty and dissatisfaction 

We further illustrate the way Dia invoked authority and evaluation with the 

transcript in Table 4. In this transcript excerpt from the Pattern Machine, Dia repeatedly 

questioned what she was supposed to be doing (see times 06:37, 07:04, and 07:23) and 

negatively evaluated her work. Although Dia showed interest when suggesting the Pattern 

Machine as their next exhibit (“Let’s do this, this look interesting”), she immediately 

followed up her suggestion with a request for guidance in understanding the task. Aimee 

answered Dia, telling her that the point of the exhibit was to make patterns. Later, Dia 

asked if they were supposed to count at the Pattern Machine, to which Aimee firmly 

responded “No.” While noting that they had been doing a lot of pattern making at MOAS 

and that she liked pattern making (in contrast to other kinds of mathematics, as noted 

earlier), Dia also denigrated her pattern making twice, once while making her pattern, 

saying, “I don’t know what this is supposed to be” and once at the end of making her 

pattern, saying, “Tah-dah,” with a downward intonation that communicated the opposite of 

excitement or pride in work (i.e., sarcasm). Thus, this analysis of Dia’s activity suggests 

framing around authority and evaluation that lead to uncertainty in and dissatisfaction with 

her activity.  
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Table 3-4. An excerpt of transcript from the Pattern Machine exhibit*.  

Time Actor Talk Action 

06:34 Dia Let's do this, this looks 

interesting 

  

06:37   What are you supposed to 

do?  

((beginning to touch Pattern Machine)) 

06:41 Aimee You make a pattern  ((beginning to touch Pattern Machine)) 

06:43 Dia There's a lot of just making 

patterns 

  

06:44  

  

  This is the kind of 

mathematics I like 

  

06:57   I'm tired of standing  ((grabs Pattern Machine and moves to opposite side of table, 

such that she and Aimee are face-to-face across the table 

from each other)) 

07:04    I don't know what this is 

supposed to be 

((sits down)) 

07:23  Dia Ohhh are we supposed to 

count?  

((beginning to push down design)) 

07:26 Aimee No ((beginning to make heart from the bottom)) 

07:37     ((finishes up the last bit of a heart, and after clicking down 

the last buttons moves her hands away quickly as if to draw 

attention to the fact that she has finished)) 

07:56 Dia Tah-dah  ((dull tone, picks up her Pattern Machine to show what she 

has made)) 

  

07:59 Aimee Can I see!?   

08:00  Dia   ((turns her Pattern Machine so Aimee can see it)) 

08:13 Aimee Oh. I want to pop up-  ((begins popping all of the buttons up quickly, meanwhile Dia 

is pushing her design down)) 

 *This transcript has been modified to include talk that center’s Dia, and so talk between Aimee and their 

chaperone has been omitted for the sake of clarity and page limits.  

 

Summary 

Dia’s uncertainty as she repeatedly searched for pre-determined tasks and 
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dissatisfaction as she negatively evaluated her activity suggest that this mathematical space 

that offered very little structure with which to comply was confusing for Dia and did not 

match her expectations for what she anticipated she might be doing. In other words, Dia’s 

interactional self-positioning of “not knowing,” when taken with her evaluations of her in-

progress and finished work, suggest that she largely framed her activity as one in which she 

did not (a) have authority to determine what she should do or (b) feel confident in 

evaluating her activity as good or correct.  

Indeed, even when Dia did make positive evaluations, they often served as a 

transition into modifying her design rather than as accepting it as satisfying and 

satisfactory. For example, at the Eggs and Crate exhibit, Dia repeatedly evaluated her 

“cool dude” (i.e., a smiley face) positively as she worked to make her design more 

interesting (“Now it's even better, it's got a green face! No green lips and a pink face, no a 

blue face and pink eyes!”; “Aimee, do you like my smiley face?”). Thus, even her positive 

evaluations do not give a clear indication of satisfaction with her activity, although they 

might point to enjoyment of process over product, an indicator of a play frame. Overall, 

Dia’s explicit talk aligning MOAS with school mathematics, her explicit appeal to external 

authorities for task determination, and evaluation of her activity as incorrect or 

unsuccessful together indicate that Dia evoked a traditional school-mathematics frame, 

although not to the exclusion of any indicators of a play frame.  

Importantly, Dia also made comments indicating that, while her confusion about 

the goal of her activity was unclear, she was nevertheless enjoying herself (“I have no idea 

what I’m actually supposed to be doing, but I’m having fun doing it,” and, “This is the kind 

of mathematics I like.”). Thus, while Dia’s self-evaluations often found her work lacking, 
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she also appeared to sometimes or in some way also be playing. Although enjoyment is an 

indication of a play frame, school mathematics is the leading frame of Dia’s hybrid activity 

as her comments suggest a reliance on the familiar norms and practices of authority and 

evaluation in tractional school mathematics to make sense of her activity. Because Dia’s 

activity at MOAS involved an integration of play and traditional school mathematics norms 

and practices in a way that led both cultural activities to be only partially recognizable, we 

identify Dia’s activity as hybrid. 

 

Aimee’s Framing: Expansive Exploration and Pleasure in Making 

In contrast to Dia, Aimee did not explicitly talk about school mathematics at all 

during her time at MOAS. Instead, all of Aimee’s talk directly referred to the activity she 

was engaging in rather than the activity she “should” be engaging in. In general, Aimee’s 

frame was one of play as she engaged in self-determining her goals, actively displayed 

pleasure in the process of making her EOMs, and did not harshly evaluate her own activity. 

Expansive exploration towards self-determining tasks  

In contrast to Dia, Aimee did not ask a single orienting question or make any 

comments that indicated her confusion or uncertainty about her activity. Indeed, 

occasionally when Dia posed questions about their purpose, Aimee’s responses were 

expansive. For example, when Dia and Aimee approached the Pattern Machine, Dia asked 

“What are you supposed to do, just press things?”; Aimee answered by offering an 

alternative to Dia’s proposal, saying, “Or you make a pattern.” At the Tiles and Patterns 

exhibit, Dia again asked aloud what they were supposed to do, and Aimee again answered 

that they could make patterns. The Tiles and Patterns was their third exhibit (after Eggs 
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and Crates and Pattern Machine) and all previous exhibits also involved patterning. Dia 

noted this as unexpected, saying, “That’s all we’ve been doing lately. That’s cool I guess.” 

However, Aimee treated the open, unstructured exhibits as an invitation and did not 

struggle to consider whether her activity was aligned with any external goals.  

This is not to say that Aimee immediately knew what to do when she moved to a 

new exhibit. Whereas Dia approached the first three exhibits asking some form of “What 

am I supposed to do,” Aimee approached each of these exhibits by picking up the materials 

and exploring their properties, then leveraged the structure of the materials towards 

deliberate designs. For example, Aimee took almost twice as long as Dia to get started with 

her first EOMs at all exhibits (with generous coding on what counted as Dia’s exploration). 

While the first materials Dia touched often remained part of her first EOM, Aimee’s rarely 

did, with Aimee frequently taking 20 – 34 seconds to explore and Dia taking between 2 – 

16 seconds to explore. This suggests more intentionality in Aimee’s work than in Dia’s. 

For example, at the Tiles and Patterns exhibit, Dia used the first two tiles she put together 

in her first EOM in exactly the way she first put them together. Aimee, on the other hand, 

explored for approximately 33 seconds, which was enough time for her to select only green 

colored tiles and to notice that there were two kinds of green colored tiles. It took Dia until 

her third EOM at this exhibit to notice this design feature (as indicated by her surprise, 

selection and rejection of tiles, and talk). The products of their EOMs at this exhibit 

strongly reflect this difference (Figures3- 7 and 3-8). At the Pentagons exhibit, Dia 

explored for 14 seconds and then tried to make a pinwheel with red and dark brown 

pentagons but soon gave up, saying “Dang it I can’t do it.” She then went on to make a 

pinwheel without the red pentagons and evaluated it as a “boring circle.” Aimee, on the 
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other hand, explored for 22 seconds, much of which was spent examining the red 

pentagons (which required special attention to orientation due to being red on one side and 

light brown on the other), and then successfully completed a red and dark brown pinwheel 

(Figure 3-9).  

  

 

Figure 3-8. The product of Aimee’s four EOMs at the Tiles and Patterns exhibit. 

 

   

Figure 3-9. (a) Dia’s “boring” pinwheel and (b) Aimee’s red and brown pinwheel. 

 

Thus, Aimee’s discursive moves and interactions with the materials convey a play 

frame in which Aimee was confident in self-determining her tasks. At each exhibit, the she 

determined her tasks after initially exploring the materials. This exploration was followed 

by intentional pattern construction. In this way, Aimee was exercising her authority in a 

way that does not match or mimic the traditional norms and practices around authority in 

school mathematics, yet does match norms and practices of play.  
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Pleasure in making: Satisfying activity and satisfactory evaluations 

Aimee produced only one third the number of evaluations as Dia, with 15 

evaluations total –– less than one evaluation per EOM (Table 5). These evaluations took 

place at the end of her activity, when she stepped back to comment on what she had made. 

Most (six out of nine) of these evaluations were positive. However, Aimee did have one 

negative evaluation. At the Pattern Machine, she attempted to make an “A” for Aimee but 

was unable to make it the way she wanted to. Dia showed Aimee how to make an A, but 

Aimee discounted Dia’s suggestion by saying that she wanted to make her A fill-up the 

board and her A to have a point at the top (i.e., rather than an “A” with a flat top), which is 

indeed impossible on the nine-by-nine grid of the Pattern Machine. In this way, Aimee’s 

negative evaluation was quite different than Dia’s evaluations, as Aimee’s was related to 

the constraints of the tool in relation to her goals, whereas Dia’s were based on her 

affective orientation towards her own design work. This suggests Aimee felt capable and 

confident in activity at MOAS.  
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Table 3-5. Summary of Aimee’s evaluations during each EOM*  

Exhibit EOM Positive Neutral Negative Total 

Eggs and Crate (Exhibit 1) EOM 1.1 1 0 0 1 

Eggs and Crate (Exhibit 1) EOM 1.2 1 0 0 1 

Eggs and Crate (Exhibit 1) EOM 1.3 0 0 0 0 

Pattern Machine (Exhibit 2) EOM 2.1 0 0 0 0 

Pattern Machine (Exhibit 2) EOM 2.2 0 1 0 1 

Pattern Machine (Exhibit 2) EOM 2.3 1 0 0 1 

Pattern Machine (Exhibit 2) EOM 2.4 0 0 1 1 

Pattern Machine (Exhibit 2) EOM 2.5 1 0 0 1 

Pattern Machine (Exhibit 2) EOM 2.6 0 0 0 0 

Tiles and Patterns (Exhibit 3) EOM 3.1 0 0 0 0 

Tiles and Patterns (Exhibit 3) EOM 3.2 0 0 0 0 

Tiles and Patterns (Exhibit 3) EOM 3.3 1 0 0 1 

Tiles and Patterns (Exhibit 3) EOM 3.3 1 0 0 1 

Pentagons (Exhibit 8) EOM 8.1 0 0 0 0 

Lizards and Turtles (Exhibit 8) EOM 9.1 0 1 0 1 

Total  6 2 1 9 

 *Exhibits 4 (Visiting Mathematician), 5 (Stepping Stones), 6 (return to Visiting Mathematician), and 7 

(Book Table) are not included in this table because they did not involve EOMs. 

 

Aimee’s enjoyment of her work carried through all her EOMs. For example, at the 

Pattern Machine, Aimee talked about engaging with the materials as “strangely 

fascinating” and engaged in tracing of her final designs. At the Tiles and Patterns exhibit, 

she gleefully exclaimed “I made something!,” then rubbed her hands together with pleasure 

and continued to extend her design. Upon finishing this design, she again rubbed her hands 

together with pleasure and then traced units of her pattern (black and green diamonds) 
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before carefully disassembling it (Figure 3-10). Thus, Aimee felt capable and confident in 

her self-assessments, and she verbally assessed her own work much less frequently than 

Dia. 

 

 

Figure 3-10. Aimee’s TWO evaluations in her third EOM at the Tiles and Patterns exhibit. 

 

 Interestingly, when we compare the products of Aimee’s EOMs to the product of 

Dia’s EOMs, we notice that Aimee’s EOMs look much more like something we would 

value in school than Dia’s because Aimee’s make more visible use of the the structure and 

symmetry of the materials. Yet, Aimee does not invoke a mathematics frame as Dia does. 

Rather, Aimee engages in a play frame that supports exploration, self-determination, and 

enjoyment of process. This does not mean that Aimee did not ever invoke a mathematics 

frame, but rather that she did not invoke traditional norms and practices around authority 

and evaluation. 

Illustration of exploration and pleasure 

We further illustrate the way Aimee invoked a play frame with the transcript in 

Table 6. In this transcript excerpt, Aimee set a goal of making a heart at the Eggs and 

Crate exhibit. Before beginning, she attended to the midline of the crate, rotating the crate 

so that the side with five slots was parallel to her body and thus created a center row that 
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would allow her to make a heart with one egg at the upper and lower points. When she 

finished making her heart, she rescued it from Dia’s eager hands attempting to steal the 

blue eggs that provided a background for her heart (Figure 3-11). When Dia retreated and 

asked Aimee what she had made, Aimee raised the pitch of her voice so that it sounded 

quite sweet and said, “It’s a heart” while tracing the mirrored sides of the heart at the same 

time using two hands. This preservation, tone change, and tracing suggest that Aimee 

enjoyed and took pride in her activity.  

  

   

Figure 3-11. Aimee’s heart with blue background at the Eggs and Crate exhibit. 
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Table 3-6. Aimee’s third EOM at the Eggs and Crates exhibit.* 

Time Actor Talk Action 

03:25 Aimee Ohh wait, I know what I 

wanna do 

((dumps crate and grabs 2 pink eggs, rotates crate so that 

side with 5 slots is parallel to her body instead of side with 

six slots, then places egg in middle slot on the second row 

from the top and begins to make a pink heart)) 

04:54 Aimee Can I have more blues?  ((filling up background of heart in egg crate)) 

04:55 Dia Yeah   

04:55 Aimee   ((reaches over Dia’s egg crate to grab more blues)) 

05:09 Dia Wait no I want the 

bluuuue  

((grabs to take blues out of Aimee's crate, which is now 

completed with it's blue background)) 

05:10 Aimee NO NO! Wait wait, Wa-

wait wait wait  

((covers Dia's hands to prevent her from removing the blue 

eggs)) 

05:12 Dia What is it? ((removes hands from Aimee’s crate)) 

05:14 Aimee It's a heart ((traces the heart with her fingers using both hands in a 

coordinated motion)) 

05:15 Dia Oh! Well can I-  ((reaches to grab the blue eggs out of Aimee's crate again)) 

05:15 Aimee   ((dumps out all the eggs from her crate before Dia grabs 

any out, many of them landing on Dia's crate)) 

05:17 Dia Not on mine! ((removes the eggs that landed on her crate from Aimee 

dumping eggs)) 

05:26 Aimee   ((starts putting blue eggs back into her crate, then takes 

them out and replaces them with green eggs)) 

  

Summary 

Aimee’s confidence as she repeatedly engaged in exploration and expressed 

satisfaction with her EOMs suggest that this mathematical space that offered very little 

structure with which to comply was unproblematic and even inviting for Aimee. In other 

words, Aimee’s interactional self-positioning as knowing what she was up to and what was 

acceptable at MOAS (note that she often answered Dia’s questions about what they were 

supposed to do), when taken with her positive evaluations of her finished work, suggest 
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that she was largely framing her activity as one in which she (a) had authority to determine 

what she should do and (b) felt confident in evaluating her activity as good or correct (or 

even did not feel the need to evaluate at all). Overall, Aimee’s lack of explicit talk aligning 

MOAS with school mathematics, her explicit appeal to herself as an authority for task 

determination, and evaluation of her activity as meaningful and worthy of pride together 

indicate that Aimee evoked a play frame, although not to the exclusion of the possibility of 

a mathematics frame that was not captured by our coding for traditional norms and 

practices of authority and evaluation.  

 We have no data about whether Aimee or Dia attended traditional or reform-

oriented mathematics classrooms. Thus, Aimee’s playful approach to her design work at 

the exhibits does not preclude the possibility that she made connections to her activity in 

mathematics classrooms, especially if her prior experiences with school mathematics took 

place in reform-oriented classrooms. However, we do not see evidence of this 

interactionally. We characterize Aimee’s activity as led by a play frame as she explicitly 

conveyed comfort and confidence in establishing self-determined goals, a prioritization of 

process over product, and enjoyment. We do not characterize Aimee’s activity as 

hybridized with traditional school mathematics. 

 

The Hybridization of Play with Traditional School-Mathematics Frames 

Dia’s uncertainty and dissatisfaction are linked to her attempts to match activity at 

MOAS to school mathematics, while Aimee’s expansive, exploratory approach to these 

exhibits is linked to her framing of MOAS activity as one of play. Aimee was not 

concerned with others’ potential ideas about what she should do but was comfortable 
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immediately structuring her activity on her own. Likewise, the openness of the activities 

immediately invited exploration for her, and then unproblematic movement into plans and 

designs of her own. Whereas Dia approached the exhibits with an eye towards the external 

rules with which she was expected to comply, Aimee approached the table with an eye 

towards her own interest and enjoyment. 

We also found the quantity and nature of their evaluations to indicate a difference 

in the ways the two girls framed their activity. Overall, Dia engaged in significantly more 

evaluations of her work than Aimee, considering whether what she was doing was “right” 

or “made sense.” These comments, and their frequency, suggest that Dia was aware of, or 

concerned about, the audience for her work. This is consistent with a traditional school-

mathematics frame, which typically offers cycles of work that involve demonstration, 

practice, and evaluation. In MOAS, evaluations from “authorities” were rarely available, 

which contributed to Dia’s uncertainty about her activity. In contrast, Aimee was 

comfortable with the exploratory and unstructured nature of the environment, making 

changes to her design without comment, and then indicating her satisfaction with her work 

upon its completion. We think the sheer difference in quantity of evaluations provides 

additional meaningful evidence that the girls framed MOAS quite differently, with Aimee 

orienting to the activity with playfulness and high personal authority, and Dia invoking 

traditional school-mathematics norms and practices around authority and evaluation. This 

evidence –– in conjunction with Dia’s explicit comments matching and contrasting the 

activity with school mathematics –– suggest a contrast in the way the girls framed the 

math-play activity of MOAS, with Dia hybridizing her play with the norms and practices 

of school mathematics and Aimee not. 
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Discussion  

In this paper, we have explored how hybridity-inviting activities can be framed 

differently by different participants, and how that framing connects with their experience 

of the activity. In particular, we investigated the question: How do children hybridize out-

of-school mathematics activities with school-mathematics norms and practices? By 

attending to children’s framing of their activity, particularly around authority and 

evaluation norms and practices of traditional school mathematics, we found traditional 

school mathematics’ norms around authority and evaluation often negatively shaped Dia’s 

activity. Because Dia hybridized in- and out-of-school mathematics, Dia’s experience at 

MOAS was quite different that Aimee’s, even though they traveled through together. 

Notably, Aimee did not hybridize her play activity by invoking traditional school 

mathematics frames, instead engaging primarily in play frames. Thus, our description of 

Dia’s activity illustrates how challenging it can be to provide meaningful out-of-school 

mathematical experiences when children invoke their in-school mathematics frames while 

our description of Aimee’s activity illustrates that it is possible to facilitate out-of-school 

engagement that involves mathematical concepts and actions –– such as manipulating and 

exploring mathematical objects in order to pose questions or make things –– without 

necessarily invoking school mathematics norms and practices. 

Importantly, we do not claim that Aimee did not hybridize her play with school 

mathematics at all, but rather that she did not hybridize her play with traditional school 

mathematics. In contrast to traditional school mathematics, reform-oriented mathematics 

invites engagement in activities such as exploration, conjecturing, reflecting, and 

justification (NCTM 2000; CCSM 2010). Based on this, we would expect children 
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invoking reform mathematics frames to engage with a high level of authority and engage in 

self-evaluation geared towards conceptual understanding rather than only towards 

correctness. Thus, we expected that distinguishing between reform-oriented mathematics 

frames and play frames would be analytically blurry, and so we narrowed our inquiry to the 

invocation of traditional school mathematics frames. Thus again, Aimee may have invoked 

a mathematics frame that was not captured by our analysis. We discuss this more later in 

this section.  

Our study contributes to research on out-of-school STEM activities by providing a 

case study of how the norms and practices of traditional school mathematics can shape 

engagement out-of-school. This is a contribution for two reasons. First, most studies of out-

of-school STEM engagement neglect mathematics. Second, little is known about how 

school norms and practices shape engagement in out-of-school STEM activities. In our 

study, we explored how framing around school mathematics can hybridize out-of-school 

mathematics activities in ways that constrain opportunities to feel competent, even if such 

activities are designed for open, evaluation-free participation. In particular, we illustrated 

how Dia hybridized her activity at MOAS with traditional school-mathematics norms of 

authority and evaluation. Dia’s search for school mathematics at MOAS corresponded with 

a devaluing of her own play. In contrast, Aimee engaged in expansive exploration.  

Although we cannot know why the two girls framed their activity differently, it 

seems likely that their own conceptions of mathematics –– and themselves in relation to 

mathematics –– contributed to the way the they invoked different frames. In particular, we 

conjecture that something about the space, or participation in the Playful Mathematics 

Learning research project, seemed to make Dia’s not-a-mathematics person identity 
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relevant, such that she repeatedly engaged in negative evaluations of her own play, making 

comments like, “I can’t do it,” “[I made a] boring circle” (as opposed to the not-boring 

circle she originally tried to make), and “I don’t know what I’m making.” We conjecture 

the opposite is true for Aimee: Her self-identification as a mathematics person may have 

played out in her EOMs, as she repeatedly engaged in positive evaluations of her own play, 

making comments like “I made something!,” clapping and rubbing her hands together in 

pleasure during arrivals, and tracing the elements of her patterns or representations before 

carefully disassembling them.  

Indeed, when asked why they came to MOAS in their interviews, Aimee claimed 

they came because she loves mathematics whereas Dia claimed they just saw it as they 

were on their way to the nearby EcoExperience building and decided to stop by. The 

EcoExperience building is a science center –– Dia’s favorite subject. Because of this, we 

conjecture that the girls’ personal, affective histories with school mathematics may have 

been made relevant in their engagement at MOAS. This conjecture is supported by existing 

research on in school learning, which has shown that the disciplinary identities of 

individual students –– in addition to local practices –– affects the actual learning 

opportunities that are available to students more so than the design of the activity 

(Esmonde, 2009). It also supported by research on free-choice environments that 

documents how visitors’ motivations for engaging are a larger determinant of what they 

learn than the design itself (Falk, 2006).  

This conjecture and our findings are quite interesting in relation to each girls’ 

responses to exit interview questions that probed whether or not their activity at MOAS 

reminded them of school mathematics. Dia told her interviewer that MOAS was nothing 
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like school mathematics, while Aimee said it reminded her of school mathematics in some 

ways because, after finishing assigned mathematics work, she and her classmates were 

allowed to play with shapes and “try to make something out of them.” This is an indication 

that Aimee’s playful experiences in school mathematics, even though they came after 

“official” mathematics work, seemed to allow Aimee to connect MOAS to legitimate 

mathematical engagement unproblematically. Thus, as discussed earlier in this section, 

Aimee may have invoked a reform-oriented mathematics frame as she engaged in her play. 

While we cannot draw any firm conclusions about this, it also seems reasonable that Dia 

struggled to make sense of her activity at MOAS because she did not have prior 

experiences of mathematical play that allowed her to have an expansive understanding of 

mathematics.  

 Regardless of participants’ prior experiences with mathematics, we find it 

significant that traditional school-mathematics norms can shape engagement in free-choice 

environments in ways that lead participants to devalue their activity. We posit that this 

happened with Dia because of the ambiguity of the norms of MOAS. In the future, we hope 

to better understand how to design activities that invite norms of playful exploration and 

curiosity rather than hesitancy and self-critique. Such future research would add nuance to 

studies that attend to how participant motivations for engaging impact what is learned 

(Falk, 2006) by helping us better understand how creating norms around playfulness can 

(re)shape motivations and engagement. Our study adds to the existing literature by offering 

some evidence about the influence of hybridity with traditional school-mathematics norms 

and practices in free-choice mathematics environments. 

In addition, our research expands our knowledge about how engagement in free-
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choice learning environments can become structured to look much like school not only 

when the designers have a (personal or institutional) goal for all participants’ learning to be 

uniform (Russell, Knutson, & Crowley, 2013), but also when participants expectations for 

the activity draw on traditional school frames. Indeed, although we present two cases here, 

we note that traditional, school-based conceptions of mathematics are frequently brought 

into MOAS throughout our corpus, especially by parents. This phenomenon is so common 

in our data that we have informally come to call this kind of framing “schoolitizing,” 

meaning that parents attempt to turn patterning work into memorization of facts and 

procedures –– for example, by asking children to calculate how many eggs fit into the egg 

crate using skip counting or multiplication. We have not conducted an exhaustive analysis 

of this trend, but our sense is that schoolitizing tends to cut off play (not hybridize with it), 

with children often choosing to leave exhibits after play is subsumed by the authority of 

adults invoking traditional school mathematics. This is something we may wish to attend to 

in future designs by making the play norms of the space more visible to both parents and 

children.  

Our vision of out-of-school mathematics can best be described as a material-

cultural activity that entails high levels of child-agency in exploring mathematical objects, 

determining their own goals during exploration, and having opportunities to notice and 

wonder, and even to pose and pursue their own questions. In this way, we do not envision 

out-of-school mathematics as subordinate to school mathematics, but rather we emphasize 

what is gained by engagement in out-of-school mathematics. Of course, we do not 

recommend doing away with school mathematics, as the kinds of out-of-school 

environments we envision also lose some of the benefits of school mathematics, such as 
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the comfort of knowing when the official correct answer has been reached, a potential for 

generalization, and even certain instantiations of precision. Nor do we necessarily 

recommend a complete absence of adult intervention. Rather, we envision activity that is 

driven by children’s ideas and goals, with mathematical sensemaking scaffolded by the 

design of materials and adult guidance instead of the other way around.  

 Finally, we conjecture that MOAS may have provided Aimee with a rare 

opportunity to engage in playful, out-of-school mathematics experiences in ways that 

buttressed her self-identification and interests as a mathematics person. While such out-of-

school experiences are known to support interest development and the pursuit of STEM 

careers (Jones, Taylor, & Forrester, 2011), such activities designed explicitly for 

mathematics are quite rare. Even more, it seems unlikely that Dia benefited from her time 

at MOAS in the same way Aimee did, which prompts many questions for future research, 

discussed in the implications section below. 

 

Implications 

This study leaves many open questions. If negative school-mathematics experiences 

can transform MOAS to a place where some children can evaluate themselves as failing, 

how can we design for this not to occur? This also points to the need for in-school studies 

that examine how teaching and learning change when we centralize developing positive 

mathematical identities as a core goal of mathematics learning, while still pressing for 

rigor. It also illustrates how equitable interactions do not just happen, even in spaces 

designed to foster play. In addition, opening up opportunities for children to engage in 

creative and self-driven activity in school mathematics –– such as finding problems for 
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rather than only solving predetermined problems –– can help us begin to understand the 

complexities of producing positive mathematics experiences through interest-driven 

mathematics learning. Such opportunities and studies are also needed outside of school. In 

conclusion, while we do not claim that hybridity between school mathematics and play 

would play out identically in other contexts, we posit that examining how mathematical 

engagement emerges in relation (to personal histories with) norms and practices of school 

mathematics is a productive way to begin re-imagining engagement in the discipline. 

Future research will benefit from across context studies that can trace participants’ 

practices and engagement across school and free-choice mathematics contexts. 
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APPENDIX A: INTAKE SURVEY 

  

1. What is your favorite school subject? __________________________________ 

  

1. What is your least favorite school subject? ______________________________ 

  

1. What do you like to do in your free time? ________________________________ 

  

1. Did you come to Mathematics On-A-Stick last year? 

_____________________________ 

  

1. What language(s) do you speak at home? ______________________________ 

  

1. What is your gender? _______________________________________________ 

  

1. How old are you? __________________________________________________ 

  

1. With which race or ethnicity do you identify? _____________________________ 

  

1. What kind of of school do you attend? 

1. Public 

2. Private  
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3. Charter  

4. Homeschool 

5. Other ______________________________________________________ 
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APPENDIX B: EXIT INTERVIEW 

   

1. Did you have fun? 

○     (Probes: affect) 

  

1. Why did you decide to come into Mathematics On-a-Stick?  

○     (Probes: family disposition towards mathematics, child disposition toward math) 

  

  

1. What was your favorite activity you did in Mathematics On-a-Stick? Why?  

○     Why do you think that activity was at Mathematics On-a-Stick? 

○     (Probes: What each child finds most playful, hopefully what kind of interactions they 

found playful) 

  

1. Was anything frustrating? Why? If yes, did you do anything that helped you get 

less frustrated?  

○     (Probes: What students found challenging, whether children found frustration or 

confusion productive, whether children persisted) 

  

1. Did you think about something new during your time in Mathematics On-a-Stick?  

○     (Probes: What mathematics children think they learned, how excited children are 

about their efforts at Mathematics On-a-Stick) 
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1. Did you do anything here that feels like things you do at school?  

○     (Probes: Do children think this is it mathematics at all, what they think about school 

mathematics and Mathematics On-a-Stick mathematics, how the volunteers interacted with 

students vv) 
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APPENDIX C: EXIT SURVEY 

  

I need my teacher to tell me whether my mathematics work is right or wrong. 

Strongly Agree Agree Disagree Strongly Disagree 

        

  

  

School mathematics is challenging. 

Strongly Agree Agree Disagree Strongly Disagree 

        

  

  

I get to talk about mathematics with my classmates in mathematics class. 

Strongly Agree Agree Disagree Strongly Disagree 

        

  

  

School mathematics is interesting. 

Strongly Agree Agree Disagree Strongly Disagree 
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I do really well in mathematics without trying. 

Strongly Agree Agree Disagree Strongly Disagree 

        

  

  

  

School mathematics is a lot of steps that I have to remember. 

Strongly Agree Agree Disagree Strongly Disagree 

        

  

  

It is important that I stay quiet in class and listen to my teacher. 

Strongly Agree Agree Disagree Strongly Disagree 

        

  

  

School mathematics is a lot of facts that I have to remember. 

Strongly Agree Agree Disagree Strongly Disagree 
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I think school mathematics is boring. 

Strongly Agree Agree Disagree Strongly Disagree 

        

  

  

I can figure out whether or not school mathematics makes sense on my own. 

Strongly Agree Agree Disagree Strongly Disagree 

        

  

  

I get to talk about mathematics with my classmates in mathematics class. 

Strongly Agree Agree Disagree Strongly Disagree 

        

  

  

I can investigate things and use my own own ideas in school mathematics. 

Strongly Agree Agree Disagree Strongly Disagree 
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