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Abstract 

Cell division cycle 14 (Cdc14) is an evolutionarily conserved phosphatase originally 

identified in Saccharomyces cerevisiae as a cell cycle regulator. In Drosophila melanogaster, 

Cdc14 is encoded by a single gene, thus facilitating its study. I characterized a null mutation of 

cdc14 in D. melanogaster, and found that the animals were viable, with no obvious defects in 

the cell cycle or DNA damage repair. However, the cdc14 null mutants have defects in 

chemosensation, mechanosensation, lipid metabolism and resistance to starvation. 

Additionally, the cdc14 null males exhibit decreased sperm competitiveness, which was not the 

result of decreased mating behavior from motor defects or decreased fertility. This is the first 

characterization of Cdc14 in D. melanogaster and demonstrates several novel roles for Cdc14 in 

metazoans.  

N-acetyl-D-glucosamine kinase (NAGK) is a sugar kinase and first step in the UDP-GlcNAc 

salvage pathway of glycosylation. The UDP-GlcNAc salvage pathway is responsible for 

approximatly 80% of the free UDP-GlcNAc pool that is required for protein glycosylation. I 

demonstrate that overexpression of NAGK, the UDP-GlcNAc salvage pathway enzymes 

(Phosphoglucomutase 3 (PGM3) and UDP-N-acetyl-D-glucosamine Pyrophosphorylase 1 

(UAP1)), the first enzyme in the N-glycosylation pathway (Dolichyl-Phosphate (UDP-N-

Acetylglucosamine) N-Acetylglucosaminephosphotransferase 1 (DPAGT1)) or injection of the 

UDP-GlcNAc salvage pathway sugars (N-acetyl-D-glucosamine (GlcNAc), GlcNAc-1-Phosphate 

(GlcNAc-1-P), GlcNAc-6-Phosphate (GlcNAc-6-P), and Uridine diphosphate GlcNAc (UDP-

GlcNAc)) posteriorized Xenopus laevis embryos and inhibited eye formation in Danio rerio. 
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Conversely, inhibition of NAGK, PGM3, UAP1, and DPAGT1 anteriorized X. laevis embryos and 

resulted in cyclopia in D. rerio. Injection of N-glycanase 1 (NGLY1) mRNA, which removes N-

linked glycans from glycoproteins, anteriorized X. laevis embryos and resulted in cyclopia in D. 

rerio. qRT-PCR data suggests NAGK, PGM3, UAP1, and DPAGT1 specifically affect Wnt signaling 

in the early embryo, likely through the control of the Wnt ligand and/or the receptors Frizzled 

(Fz) and Low-density lipoprotein 6 (LRP6). This is the first work to link NAGK, PGM3, UAP1, and 

DPAGT1 to Wnt signaling. 
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Chapter 1: 

Introduction and overview 

 Five percent of the proteome comprises enzymes that perform more than two hundred 

different types of posttranslational modifications (Duan and Walther, 2015). Posttranslational 

modifications are essential for regulating activity, maturation, intracellular localization, stability, 

secretion, solubility, and preparation of substrates for additional modification. Modifications 

can be the addition or removal of chemical groups, such phosphate (phosphorylation), acetyl 

(acetylation), methyl (methylation), or hydroxyl (hydroxylation). They can also be polypeptides, 

such as ubiquitin (ubiquitylation), or complex molecules, such as carbohydrates (glycosylation), 

lipid (palmitylation), isoprenoid lipids (prenylation), adenosine diphosphate ribose (ADP-

ribosylation), or adenosine monophosphate (adenylylation). In this work I will focus on two 

posttranslational modifications. First, I will focus on the addition and removal of phosphate 

(phosphorylation and dephosphorylation). Second, I will discuss modification with 

carbohydrates (glycosylation; discussed in chapter 4) 

The human genome encodes about 147 protein phosphatases and 518 kinases (Alonso 

et al., 2004; Manning et al., 2002). Protein kinases and protein phosphatases have opposing 

catalytic activities (Fig. 1-1). Protein kinases catalyze the addition of phosphate to the hydroxyl 

group of Ser, Thr, or Tyr residues. Conversely, phosphatases catalyze the hydrolysis of 

phosphate from these residues. Other kinases and phosphatases catalyze the addition or 

removal of phosphates from sugars or lipids. 
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Protein kinases are derived from a single common ancestor (Tonks, 2006). The core of 

all known kinases share a large number of conserved sequence motifs (Hanks and Hunter, 1995; 

Taylor and Korney, 2010). In contrast to this, phosphatases evolved independently from several 

evolutionary progenitors and are considered to be promiscuous (Tonks, 2006). Therefore, the 

activity of these kinases and phosphatases needs to be precisely targeted to the appropriate 

substrates through temporal and spatial regulation, the use of alternative promoters to control 

their expression, the presence of multiple splicing variants, post-translational modifications, 

and formation of various holoenzyme complexes consisting of catalytic and regulatory 

subunit(s) (Andreassen et al., 1998; Davezac et al., 2000; Liu et al., 2010; Takizawa and Morgan, 

2000; Tonks, 2006; Trinkle-Mulcahy et al., 2003; Virshup  and Shenolikar, 2009).  

 In this work, I will describe my characterization of the protein phosphatase, Cell Division 

Cycle 14 (CDC14) during Drosophila melanogaster development. Specifically, I will describe the 

generation and analysis of the phenotype of a cdc14 null line in Drosophila. The cdc14 null flies 

are were both viable and fertile. However, I will show that Drosophila cdc14 plays a role in 

ciliated sperm competitiveness, chemosensory reception, mechanosensory reception, fat body 

metabolism, and longevity during starvation conditions.  

I will also describe my analysis of the sugar kinase, N-Acetylglucosamine Kinase (NAGK), 

which converts the amino sugar N-acetylglucosamine into N-acetylglucosamine-1-Phosphate. I 

will describe how we identified NAGK in a screen for novel kinases regulating development. I 

will also show the NAGK misregulation in Xenopus laevis leads to anteroposterior defects, and 

inhibition of eye formation or cyclopia in Danio rerio. I will show that the UDP-GlcNAc salvage 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Taylor%20SS%5BAuthor%5D&cauthor=true&cauthor_uid=20971646
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pathway and enzymes controlling N-glycosylation phenocopy this finding. Finally, I will show 

that these changes are the result of changes in Wnt signalling. 
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Figure 1 Figure 1-1 : Diagram of Ki nase a nd 

phosphatase a ctivity  Figure 1-1: Diagram of Kinase and phosphatase activity. 
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Chapter 2: 

Cdc14: a review of the known function and phenotypes1 

Cdc14 was first identified in a genetic screen in the budding yeast, Saccharomyces 

cerevisiae, to identify novel loci that control the cell cycle (Hartwell et al., 1974). Cdc14 is a 

protein phosphatase and a member of the dual specificity phosphatase family of phosphatases, 

a subgroup of the larger protein tyrosine phosphatase super family (Taylor et al., 1997). 

Therefore, Cdc14 is possess the catalytic ability to dephosphorylate both phosphotyrosine and 

phosphoserine/phosphothreonine. Cdc14 Is one of the best characterized and most studied 

dual specificity phosphatases because of its essential role in S. cerevisiae (Mocciaro and 

Schiebel, 2010).  

 

Structure of Cdc14 

All known orthologs of Cdc14 share a highly conserved N-terminal core of ~350 amino 

acids (Mocciaro and Schiebel, 2010). Analysis of Cdc14’s crystal structure suggests a conserved 

core that contains two domains (Gray et al., 2003). The first is the N-terminal A-domain which is 

proposed to contribute to substrate specificity and the second is the catalytic C-terminal B-

domain encompassing the signature Protein tyrosine phosphatase motif (Gray et al., 2003). The 

                                                           
1 Table 2-1, a summary of phenotypes is provided at the end of the chapter. 
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carboxyl-terminal region of Cdc14, which is variable in length and sequence, contains a nuclear 

export sequence and may be important for subcellular localization (Mocciaro and Schiebel, 

2010). Yeast orthologs have an additional nuclear localization sequence, while a unique the N-

terminal KKIR motif in vertebrate Cdc14B targets Cdc14 to the nucleolus (Berdougo et al., 2008; 

Cho et al., 2005; Kaiser et al., 2002; Mailand et al., 2002;  Mocciaro and Schiebel, 2010; Rosso et 

al., 2008).  

 

Cdc14 is essential in the cell cycle of the budding yeast, Saccharomyces cerevisiae, but not the 

fusion yeast, Saccharomyces pombe 

 Pioneering work in S. cerevisiae demonstrated that ScCdc14 is essential for opposing 

Cdk1 activity to promote mitotic exit and cytokinesis (Visintin et al., 1998). Subsequent studies 

in other organisms suggest this cell cycle function is specific to S. cerevisiae (Berdougo et al. 

2008; Mocciaro and Schiebel 2010). Studies on Cdc14 substrate specificity indicates that it only 

acts on a subset of Cdk substrates and plays a specialized role in antagonizing Cdk 

phosphorylation (Powers and Hall, 2017; Ubersax et al., 2003). Genetic and biochemical studies 

in S. cerevisiae suggest that ScCdc14 is involved in nearly all aspects of the cell cycle and is 

involved in the metaphase-to-anaphase transition, meiosis I to meiosis II transition, anaphase 

spindle stabilization, preventing anaphase bridges, resetting replication origins, mitotic spindle 

elongation, mitotic exit, septum formation, and cytokinesis (Bembenek and Yu, 2001; Chin et 

al., 2010; Fox et al., 2017; García-Luis et al., 2014; Higuchi and Uhlmann, 2005; Hatano et al., 

2016; Holt et al., 2008; Jaspersen and Morgan, 2000; Khmelinskii et al., 2007; Khmelinskii et al., 
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2009; Kao et al., 2014; Konig et al., 2010; Lippincott et al., 2001; Machín et al., 2016; Meitinger 

et al., 2010; Menssen et al., 2001; Miller et al., 2015; Palani et al., 2012; Pereira and Schiebel, 

2003; Quevedo et al., 2015; Raspelli et al., 2015; Roccuzzo et al., 2015; Stegmeier et al., 2002; 

Sanchez-Diaz, et al. 2012; Tzeng et al., 2011; Varela et al., 2010; Visintin et al., 1998). The cell-

cycle dependent release of ScCdc14 from the nucleus to the cytoplasm is controlled through 

oscillations of Cdk activity, largely driven by periodic synthesis and destruction of mitotic 

cyclins, and a negative feedback loop (Lu and Cross, 2010; Manzoni et al., 2010). Even brief and 

reversible inhibition of ScCdc14 can induce multiple gross chromosomal rearrangements and 

changes in ploidy (Quevedo et al., 2015). Additionally, ScCdc14 inhibits transcription of 

ribosomal DNA (rDNA) in anaphase, targets condensin to rDNA to accurately segregate rDNA 

and telomeric regions (D'Amours et al., 2004; Fox et al., 2017; Sullivan et al., 2004; Clemente-

Blanco et al., 2009; Clemente-Blanco et al., 2011; Matos-Perdomo and Machin, 2018). Recently, 

ScCdc14 has been implicated DNA damage repair and in autophagy induction (Eissler et al., 

2014; Kondo et al., 2018; Villoria et al., 2017).   

In contrast to S. cerevisiae, the Saccharomyces pombe orthologue, Cdc14-like 

phosphatase (Clp1; also known as Flp1) is not essential (Cueille et al., 2001; Trautmann et al., 

2001). Clp1 is released into the nucleolus at the G–M transition and subsequently localizes to 

the mitotic spindle and to kinetochores (Chen et al., 2006). While both ScCdc14 and Clp1 

antagonize Cdk1 activity, Clp1 regulates mitotic entry and cytokinesis but not mitotic exit 

(Cueille et al., 2001; Trautmann et al., 2001). Clp1 may ensure accurate chromosome 

segregation and regulate the formation of the septum during cytokinesis (Clifford et al., 2008; 

Cueille et al., 2001; Simanis, 2003; Trautmann et al., 2001; Trautmann et al., 2004). However, 
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Clp1 is not essential for cytokinesis or septation (Clifford et al., 2008; Cueille et al., 2001; 

Simanis, 2003; Trautmann et al., 2001). 

 

Studies in Phytophthora infestans suggests an ancestral function in flagella 

Interestingly, Cdc14 is rarely found in species lacking flagella (Ah-Fong and Judelson, 

2011). The primitive eukaryote, Phytophthora infestans, lacks a classical cell cycle. Instead, P. 

infestans grows by extending a filamentous coenocytic hyphae (Whittaker et al., 1991). The 

coenocytic hyphae is a multinucleate cell in which the nuclei divide asynchronously, without the 

accompanying cytokinesis (Whittaker et al., 1991). This growth continues until metabolic and 

environmental factors trigger sporulation (Marks, 1965; Maltese et al., 1995). PiCdc14 is only 

expressed during asexual sporulati on, its expression is essential (Ah-Fong and Judelson, 2003). 

PiCdc14 is not expressed in the vegetative hyphae, where most mitosis takes place (Ah-Fong 

and Judelson, 2003; Ah-Fong and Judelson, 2011). PiCdc14 is suggested to synchronize nuclear 

behavior during sporulation and maintain dormancy in spores until germination (Ah-Fong and 

Judelson, 2003). PiCdc14 is enriched at flagella-basal body complexes, the site from which 

flagella develop, suggesting an ancestral role of Cdc14 in the flagella of eukaryotes (Ah-Fong 

and Judelson, 2011). These studies suggest Cdc14 may have originated to control the formation 

and/or activity of flagella and acquired additional roles in other eukaryotes (e.g., the cell cycle).  
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Fungal Cdc14 plays a conserved role in the cell cycle  

Cdc14 is present in animals and fungi but is not found in plants (Li et al., 2015). In the 

fungus Beauveria bassiana, BbCdc14 phosphatase is localized to the nuclei and regulates 

cytokinesis, asexual development, thermotolerance, UV-resistance, and virulence (Wang et al., 

2013). In Fusarium graminearum, FgCdc14 is required for cell division, nuclear division, 

cytokinesis, septum formation, conidiation, ascosporogenesis, and virulence (Li et al., 2015). In 

Magnaporthe oryzae, a typical foliar pathogen, MoCdc14 plays an essential role in nuclear 

distribution, pathogenesis, and septum formation during conidiogenesis and appressorium, 

critical steps in the infection cycle (Li et al. 2018). In Aspergillus flavus, a common agricultural 

pest, AflCdc14 is localized to the cytoplasm and vesicles during coidial germination and mycelial 

development stages and is essential for septum formation, sclerotia generation, conidium 

morphology, osmotic sensitivity, aflatoxin production, and virulence (Yang et al., 2018). These 

studies suggest cdc14 has a conserved role in the cell cycle between fungi and yeast.  

 

Cdc14 in Caenorhabditis elegans regulates formation of vulval progenitor cells 

 While relatively little is known about Cdc14 in vertebrates, it is highly conserved 

amongst all metazoan. Work on Caenorhabditis elegans (CeCdc14) suggest localization is 

regulated by nucleocytoplasmic shuttling to the spindle midzone in anaphase, midbody in 

telophase, cytoplasm in interphase cells, on centrosomes, and spindle microtubules (Gruneberg 

et al., 2002; Roy et al., 2011; Saito et al., 2004). In post-mitotic cells, CeCdc14 localizes to the 
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nucleus and the nucleolus (Saito et al., 2004). RNA interference experiments suggest CeCdc14 

plays a role in cytokinesis, with depletion leading to multi-nucleated cells and embryonic 

lethality (Gruneberg et al., 2002). A second study was unable to replicate these results, and 

found that animals were viable and did not exhibit observable mitotic or cytokinetic defects 

(Saito et al., 2004). Instead, Saito et al., and later Roy et al., observed defects in the duplication 

of vulval progenitor cells (Roy et al., 2010; Saito et al., 2004). It has been suggested that high 

concentrations of small interfering RNA may have resulted in off target effect in the initial study 

by Gruneberg (Kipreos, 2004; Saito et al., 2004).  

 

Xenopus laevis Cdc14A is required in the abscission step of cytokinesis 

Two Cdc14 isoforms, XCdc14A and XCdc14B, exist in Xenopus laevis (Kaiser et al., 2004; 

Krasinska et al., 2007). XCdc14A has been suggested to localize to the midbody during 

cytokinesis and the centrosome during interphase (Krasinska et al., 2007). While no studies 

have tested the role of XCdc14B, XCdc14A has been shown to be required in abscission, the 

final step of cytokinesis during the cell cycle (Krasinska et al., 2007). XCdc14A may also regulate 

the G1/S and G2/M transitions (Krasinska et al., 2007). Overexpression of XCdc14A is suggested 

to inhibit the recruitment of soluble N-ethylmaleimide-sensitive factor (NSF) attachment 

protein receptor (SNARE) and exocyst complexes to the midbody, but did not interfere with 

central spindle formation, re-localization of passenger proteins, or central spindlin complexes 

to the midbody (Krasinska et al., 2007). These data suggest a novel role for Cdc14 in vesicle 

trafficking during the abscission step of cytokinesis.  
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Danio rerio Cdc14 control cilia formation and left-right body asymmetry 

Danio rerio have two Cdc14 orthologues (zCdc14A1 and zCdc14B). Knockdown of either 

zCdc14A1 or zCdc14B inhibited ciliogenesis in Kupffer's vesicle (KV) and other ciliated tissues, 

independent of its cell cycle function (Clement et al., 2011; Clement et al., 2012). KV is a 

transient embryonic organ of asymmetry (Essner et al., 2005). The movement of cilia in KV 

establishes a directional flow of fluid, which directs left-right asymmetrical patterning in the 

early embryo (Essner et al., 2005). Consistent with inhibition of cilia in the KV, both zCdc14A1 

and zCdc14B knockdowns exhibit left-right asymmetry defects (Clement et al., 2011; Clement et 

al., 2012; Delmaghani et al., 2016; Imtiaz et al., 2017). In addition, embryos had ventrally curved 

bodies, hydrocephaly, kidney cysts, and the kinocilia length in inner-ear hair cells may be 

reduced (Clement et al., 2011; Clement et al., 2012; Delmaghani et al., 2016; Imtiaz et al., 

2017). These data suggest that zCdc14A1 and zCdc14B are both required and essential for the 

formation and function of cilia. Taken with the data in P. infestans, this suggests Cdc14 has 

retained its ancestral role in ciliogenesis vertebrates. 

 

Cdc14 controls DNA damage repair in Gallus gallus 

Two orthologs, cCdc14A and cCdc14B have been identified in Gallus gallus cells 

(Mocciaro et al., 2010). cCdc14A localizes to the centrosome in interphase, while cCdc14B 

shows nuclear localization similar to human orthologs (Mocciaro et al., 2010; Mailand et al., 

2002). In vitro knockouts of cCdc14A and cCdc14B are viable, but exhibit impaired DNA damage 
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repair (Mocciaro et al., 2010). This finding is consistent with data in human cell lines and 

suggests a novel role for Cdc14 in vertebrate DNA damage repair (Mocciaro et al., 2010). 

 

Mus musculus Cdc14 controls fertility and auditory function 

Work on Mus musculus cell lines suggest the two orthologues (mCdc14a and mCdc14b) 

play a redundant role in DNA damage repair (Lin et al., 2015). In vivo homozygous recessive 

mutations of mCdc14A result in significant levels of perinatal lethality (Imtiaz et al., 2018). 

However, in surviving animals, mCdc14a mutations have been found to cause progressive, 

moderate-to-profound deafness and male infertility (Imtiaz et al., 2018; Delmaghani et al., 

2016). This recapitulates the phenotypes identified in humans homozygous for mutations in 

Cdc14A (Imtiaz et al., 2018; Delmaghani et al., 2016).  

In the kinocilia of the inner ear, endogenous mCdc14A was found to localize to the basal 

bodies and as puncta concentrated towards the tips of stereocilia (Imtiaz et al., 2018). When 

taken with the data in zebrafish and P. infestans, this suggests a role for mCdc14 in the cilia of 

M. musculus. Interestingly, the auditory hair and seminiferous tubules of mCdc14a mutants 

form normally, but then degenerate (Imtiaz et al., 2018). Furthermore, mutation of mCdc14 

resulted in a loss of spermatogenic cells and mature sperm, as well abnormal sperm. These data 

suggest that mCdc14 plays a role in maintaining the auditory hair and spermatogenic cells, 

possible through cilia maintenance or function.  

 



13 

 

Homo sapiens Cdc14 regulates auditory function and male fertility 

Most mammals have two Cdc14 homologues (Cdc14A and Cdc14B) (Lin et al., 2015). 

However, hominoids have a third (Cdc14C) due to a gene retro-duplication event, whose 

expression is specific to the brain and testis (Rosso et al., 2008). Functional studies in S. pombe 

show that both hCdc14A and hCdc14B rescue Clp1-deficiency, and hCdc14B can rescue ScCdc14 

deficiency, suggesting conserved function (Vazquez-Novelle et al., 2005). While hCdc14A or 

hCdc14B knockout cells do not exhibit obvious growth or mitotic defects, knockdown and 

overexpression studies have suggested several phenotypes (Berdougo et al., 2008; Mocciaro et 

al., 2010). The role of Cdc14c is unknown, but overexpression studies suggest it localization to 

the endoplasmic reticulum and microtubules (Rosso et al., 2008).  

Localized to the cytoplasm and on centrosomes in interphase, hCdc14A has been 

implicated in centrosome separation, chromosome segregation, and cytokinesis (Kaiser et al., 

2002; Mailand et al., 2002). Furthermore, hCdc14A has been found to regulate cell migration 

and cell adhesion in cancer cell lines (Chen et al., 2016; Chen et al., 2017). hCdc14B is 

predominantly nucleolar, though it may be localized to centrioles, long nuclear filaments, 

microtubules, the spindle midzone, and the midbody and may play a role in nuclear 

organization, mitotic-spindle assembly, centriole duplication, mitotic exit, regulation of the M-

to-G1 transition and/or in G2 DNA damage checkpoint activation (Bassermann et al., 2008; 

Berdougo et al., 2008; Cho et al., 2005; Dryden et al., 2003; Kaiser et al., 2002; Mailand et al., 

2002; Nalepa and Harper, 2004; Rodier et al., 2008; Rosso et al., 2008; Tanguay et al., 2010; Wu 

et al., 2008).  



14 

 

In 2016, Delmaghani et al. reported the first know mutation of hCdc14A in a large 

consanguineous Iranian family. Eleven affected individuals were presented with severe or 

profound congenital deafness resulting from an autosomal-recessive nonsense mutation of 

Cdc14. A subsequent screen of individuals with severe deafness identified an additional 

nonsense mutation. In 2018, Imtiaz et al. identified families with an additional four novel 

truncating and three missense alleles associated with progressive, moderate-to-profound 

deafness. Deaf males in five of these families were infertile, while deaf females were fertile. 

This data agrees with mutations in mCdc14A, which exhibit deafness and male infertility (Imtiaz 

et al., 2018). 

 

Drosophila melanogaster Cdc14 controls sperm competitiveness, chemosensation, 

mechanosensation, metabolism, and resistance to starvation   

Drosophila melanogaster encode a single Cdc14 gene. The function of the Drosophila 

Cdc14 has not been previously reported. In the next chapter of I will demonstrate that the 

single Drosophila Cdc14 gene plays a role in sperm competitiveness, chemosensory reception, 

mechanosensory reception, fat body metabolism, and longevity during starvation conditions. 

These phenotypes are distinct from those identified in any other organism. Though, they 

suggest a conserved function in ciliated structures, similar to that seen in Phytophthora 

infestans. Furthermore, they suggest a conserved function in sperm that may have implications 

in the study of mutations of human Cdc14A. 
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Cdc14 is a highly conserved gene with a wide array of functions 

Cdc14 has been implicated in many cellular processes, including mitotic entry, 

cytokinesis, chromosome segregation, DNA damage repair, and ciliogenesis (Table 2-1). While 

Cdc14 is only known to be essential in S. cerevisiae, all metazoans and fungi have at least a 

single ortholog. In H. sapiens and M. musculus Cdc14 is important for male fertility and auditory 

function. Previous work in D. rerio, P. infestans, and M. musculus has suggested that the 

observed phenotypes in humans may be due to a conserved role of Cdc14 in cilia.  

While Cdc14 is highly conserved, its function is poorly understood. Data in H. sapiens, D. 

rerio, P. infestans, and M. musculus models suggests a role in cilia that may have been 

conserved throughtout evolution. However, Cdc14 has not been implicated in ciliation of C. 

elegans, X. laevis, G. gallus, B. bassiana, F. graminearum, M. oryzae, or A. flavus, suggesting 

that this could be an atavism (an ancestral trait lost through evolution that reappears). As I will 

show in the next chapter, Cdc14 plays a role in the ciliated cells of D. melanogaster. This 

suggests that Cdc14 is not atavistic, but may play a role in the cilia of C. elegans, X. laevis, G. 

gallus that has not yet been identified.  

In B. bassiana, F. graminearum, M. oryzae, or A. flavus, S. cerevisiae, S. pombe, C. 

elegans, X. laevis, D. rerio, M. musculus, and H. sapiens Cdc14 plays a role in the cell cycle. 

However, the role varies between organisms. For example, in X. laevis Cdc14 only plays a role in 

abscission, while in S. pombe cdc14 controls earlier events, such as chromosome segregation. 

This suggests that Cdc14 may have gained or lost roles in the cell cycle throughtout evolution. 

This is further supported by the fact that Cdc14 is essential in S. cerevisiae, but not in any other 
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organism studied so far. It is possible that Cdc14 has become redundant with additional 

phosphatases, as phosphatases are considered to be promiscuous enzymes. Furthermore, 

studies have suggested the activity of Cdc14 is controlled by temporal and spatial expression. It 

is possible that Cdc14 has evolved new functions in the cell cycle dependant upon when and 

where it is expressed. Therefore, Cdc14 likely works on many substrates that may vary between 

organisms. Moreover, multiple Cdc14 orthologues may work redundantly, confounding studies 

of Cdc14’s function and evolutionary conservation.  

The use of D. melanogaster to study Cdc14 is important for several reasons. First, it is 

the closet model system to H. sapien evolutionarily that has a single Cdc14 orthologue. This 

removes the possibility of redundancy confounding the results. D. melanogaster has only two 

ciliated cell types (Sensilla and sperm) and a large number of tools (transgenics, stains, cell 

lines, mutants, etc.) exist to study cilia and the cell cycle. The speed with which Cdc14 can be 

investigated and the lack of redundancy make D. melanogaster ideal for studies of molecular 

function in the sperm and cell cycle, which can be followed up by investigation in the M. 

musculus and H. sapiens.
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  Proposed Function(s) 

Saccharomyces 
cerevisiae 

(budding yeast) 

 

  Mitotic exit 

 Cytokinesis 

 Spindle elongation and stabilization 

 Resetting of replication origins 

 Antagonism of Cdk phosphorylation 

 Septum formation 

 rDNA transcription and segregate 

 Segregation of telomeric regions 

 DNA damage repair 

 Autophagy  

Saccharomyces 
pombe 

(fission yeast) 

  Cytokinesis 

 Chromosome segregation 

 Septum formation 

Phytophthora 
infestans 

  Formation and/or activity of flagella 
 
 

Caenorhabditis 
elegans 

  Cytokinesis 

 Vulval progenitor cells proliferation 

Xenopus laevis   Abscission during cytokinesis 

Danio rerio 
(zebrafish) 

  Ciliogenesis 

 Establishing Left-right body asymmetry 

Gallus gallus 
(Chicken) 

  DNA damage repair 

Mus musculus 
(mouse) 

  DNA damage repair 

 Auditory hair cell maintenance 

 Male fertility 

Homo sapien 
(Human) 

  Centrosome separation 

 Chromosome segregation 

 Cytokinesis 

 Nuclear organization 

 Mitotic-spindle assembly 

 Centriole duplication 

 Mitotic exit 

 DNA damage repair 

 Auditory hair cell maintenance 

 Male infertility 

1Table 2-1: Overview of possible known functions of Cdc14 in metazoa. 

23Table 2-1: Overview of possible known functions of Cdc14 metazoa 
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Chapter 3: 

Characterization of a cdc14 null allele in Drosophila melanogaster 

The work described herein this chapter has been published: 

Leif R. Neitzel, Matthew R. Broadus, Nailing Zhang, Leah Sawyer, Heather A. Wallace, Julie A. 

Merkle, Jeanne N. Jodoin, Poojitha Sitaram, Emily E. Crispi, William Rork, Laura A. Lee, Duojia 

Pan, Kathleen L. Gould, Andrea Page-McCaw, Ethan Lee. (2018) Biology Open 

doi: 10.1242/bio.035394  

 

Abstract 

Cdc14 is an evolutionarily conserved serine/threoninephosphatase. Originally identified in S. cerevisiae 

as a cell cycle regulator, its role in other eukaryotic organisms remains unclear. In Drosophila 

melanogaster, Cdc14 is encoded by a single gene, thus facilitating its study. We found that Cdc14 

expression is highest in the testis of adult flies and that cdc14 null flies are viable. cdc14 null female and 

male flies do not display altered fertility. cdc14 null males, however, exhibit decreased sperm 

competitiveness. Previous studies have shown that Cdc14 plays a role in ciliogenesis during zebrafish 

development. In Drosophila, sensory neurons are ciliated. We found that the Drosophila cdc14 null 

mutants have defects in chemosensation and mechanosensation as indicated by decreased avoidance of 

repellant substances and decreased response to touch. In addition, we show that cdc14 null mutants 

have defects in lipid metabolism and resistance to starvation. These studies highlight the diversity of 

Cdc14 function in eukaryotes despite its structural conservation. 
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Introduction 

Cdc14 phosphatases are a well conserved family of proline-directed serine/threonine 

phosphatases (Mocciaro et al., 2010). Initially identified in Saccharomyces cerevisiae as an 

essential cell cycle protein (Stegmeier and Amon, 2004), Cdc14 functions to antagonize cyclin-

dependent kinase (CDK)-mediated phosphorylation events (Machin et al., 2016; Mocciaro et al., 

2010; Queralt and Uhlmann, 2008; Stegmeier and Amon, 2004). Despite its conservation, Cdc14 

orthologs are not essential for cell division in all organisms, although they play important roles 

in an array of biological processes, including chromosome segregation (Clemente-Blanco et al., 

2011; Machin et al., 2016; Mocciaro et al., 2010; Stegmeier and Amon, 2004), cytokinesis 

(Clifford et al., 2008), centrosome duplication (Mocciaro et al., 2010; Rüthnick and Schiebel, 

2016), mitotic exit (Wolfe and Gould, 2004), transcription (Clemente-Blanco et al., 2009, 2011; 

Guillamot et al., 2011; Papadopoulou et al., 2010), the DNA damage response (Mocciaro et al., 

2010), and ciliogenesis (Clément et al., 2011, 2012). Although they have been much studied, a 

comprehensive understanding of Cdc14 phosphatases in higher eukaryotes in particular is still 

lacking. 

A thorough dissection of the role(s) of Cdc14 phosphatases in metazoans is complicated 

by the existence of multiple Cdc14 paralogs in vertebrates (Table 3-1) (Clément et al., 2011; 

Kaiser et al., 2004; Krasinska et al., 2007; Li et al., 2000; Mocciaro et al., 2010). For example, 

human Cdc14 phosphatases are encoded by three different genes, CDC14A, CDC14B, and 

CDC14C (Clément et al., 2011; Kaiser et al., 2004; Krasinska et al., 2007; Li et al., 2000; Mocciaro 

et al., 2010). Knockout studies of individual human CDC14 genes failed to demonstrate growth 
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or mitotic defects, possibly reflecting functional redundancy between the paralogs (Berdougo 

et al., 2008; Mocciaro et al., 2010). However, it is still unclear whether the cellular functions of 

Cdc14 paralogs are fully redundant or simply overlapping. It is clear that they have distinct 

intracellular locations with CDC14A at centrosomes and CDC14B in the nucleolus of interphase 

cells (Clément et al., 2011; Kaiser et al., 2004; Krasinska et al., 2007; Li et al., 2000; Mocciaro et 

al., 2010), and they have been assigned some distinct functions. While CDC14A has been 

implicated in cytokinesis, transcriptional repression, and DNA damage repair, CDC14B is 

implicated in G1-phase length, centriole duplication, spindle stability, zygotic genome 

activation, DNA damage repair and checkpoint response (Buffone et al., 2014; Cho et al., 2005; 

Clemente-Blanco et al., 2011; Rodier et al., 2008; Wu et al., 2008). The biological role of CDC14C 

is currently unknown (Rosso et al., 2008). 

Like yeast, the roundworm, Caenorhabditis elegans, has only one identified Cdc14 

orthologue. The lack of multiple paralogs makes the roundworm an attractive organism to gain 

a comprehensive understanding of Cdc14 phosphatase function in a higher eukaryote. 

However, in C. elegans, Cdc14 functions in a manner unrelated to that in any other organism 

reported to date – to promote cellular quiescence of specific precursor cells (Cueille et al., 

2001; Saito et al., 2004). 

The common fruit fly, Drosophila melanogaster also has a single gene that encodes 

Cdc14 (Dmel\cdc14), the role of which has not yet been reported (Fisher et al., 2012). Herein, 

we demonstrate that the Drosophila cdc14 gene plays a role in sperm competitiveness, 

chemosensory reception, mechanosensory reception, fat body metabolism, and longevity 
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during starvation conditions. This array of phenotypes associated with loss of cdc14 function is 

once again distinct from those identified in any other organism, thereby highlighting a 

remarkable functional versatility for such a conserved protein. 
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4Table 3-1: Representative metazoan Cdc14 orthologs identified across phyla. 

 

Figure 25Table 3-1. Representative metazoan Cdc14 orthologs identified across phyla.
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Materials and methods 

Generation of cdc14 null by homologous recombination 

For recombination, the homologous arms for cdc14 were cloned into the pW25 vector. 

The left homologous arm was generated using the forward primer CG7134-NotI (5′-

AGCAGCGGCCGCTACATCGCGGTTCGTGTCACCG-3′ and the reverse primer CG7134-ACC65I 5′-

TACCGGTACCCAGGAGCACGGGAGACTTCGAC-3′). The right homologous arm was generated 

using the forward primer CG7134-AscI (5′-AGCAggcgcgccATTTTGGCCAGTTCGGGGAGCAG-3′) 

and the reverse primer CG7134-BsiWI (5′-TACCCGTACGTCTCCACCAATTTGTAGGTGGG-3′). The 

construct covers a 9035-bp region of chromosome 2L where the left arm ends 13 bp upstream 

of the ATG and the right arm starts immediately after the coiled-coil domain encoded by cdc14. 

This construct was used to excise the 5′-UTR and exons 1 through 6 of cdc14-RA and cdc14-RD 

and the 5′-UTR, exons 1 through 5, and 3′-UTR of cdc14-RB, cdc14-RC, and cdc14-RE 

(2L:7802415 to 7810697) and replace it with the white+ cDNA via ends-out-homologous 

recombination (Gong and Golic, 2003; Maggert et al., 2008). 

Knockout lines were verified by PCR of r2d2 and cdc14 using the forward 5′-

TTGATAGAGCGCTCTCTCGT-3′ and reverse 5′-CGGATGGATGGAAGTATGTA-3′ primers for r2d2 

(Liu et al., 2006) and the forward 5′-CATCGCTGTATTTCCACCCAC-3′ and reverse 5′-

AAGGCATCACTCGCGATCC-3′ primers for cdc14. For PCR and sequencing of the boundaries of 

the cdc14 mutation, the forward 5′-CGAAGTCTCCCGTGCTCCTG-3′ and reverse 5′-

CGACGAAGCGCCTCTATTTA-3′ primers were used for the left recombination boundary and the 
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forward 5′-TCCGGTTGTTTTCGTGCTCA-3′ and reverse 5′-CTCCCCGAACTGGCCAAAAT-3′ primers 

were used for the right recombination boundary. 

 

DNA constructs 

cDNA clone GH01148 encoding cdc14-B was obtained from the Drosophila Gene 

Collection (Stapleton et al., 2002). UASp-cdc14-myc was created by subcloning the amplified 

coding sequence from GH01148 into a modified version of UASp that confers a C-terminal Myc 

tag (Rørth, 1998). 

 

Drosophila stocks 

Stocks were maintained at 25°C using standard techniques (Greenspan, 2004). The y1 

w1118, w1118, mei-41RT1 (FlyBase ID: FBal0046106), and red-eyed control [y w; FLAG-Mcm4 

(BAC#1 attP40): from the Nordman lab, Vanderbilt University] lines were used as controls. The 

UASp-cdc14-myc transgenic line was generated by P-element mediated insertion via embryo 

injection in the y w background using standard methods (Rubin and Spradling, 1982). 

Overexpression of UASp-cdc14-myc was driven by crossing with nanos-Gal4 (FlyBase ID: 

FBst0032563) or tubP-Gal4 (FlyBase ID: FBtp0002651) flies. The UASp-cdc14-myc, cdc14Δ1 line 

was established by recombination using standard methods. The cdc14Δ1; nanos-gal4 line was 

established by performing standard genetic crosses. cdc14Δ1 null larvae with maternally 
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contributed cdc14 (cdc14Δ1-Maternal) were obtained by crossing cdc14Δ1/CyO females to cdc14Δ1 

homozygous males. All transgenic lines were isogenic. 

The cdc14 gene is located on chromosome 2L:7,801,668 to 7,810,703 (FlyBase ID: 

FBgn0031952, FlyBase build: FB2018_02) and has five alternative transcripts, the longest of 

which encodes a 1052 amino acid protein (Fig. 3-1B) (Gramates et al., 2017). The cdc14 gene is 

flanked by the housekeeping gene r2d2 (2L:7,800,147 to 7,802,098). 

 

Quantitative PCR 

cDNA was generated from adult carcasses, late third instar larvae, and excised gonads. 

Samples were homogenized in 1 ml RNA Stat-60 and cleaned up by chloroform extraction. 

cDNA was prepared using the High Capacity cDNA Reverse Transcription Kit (Applied 

Biosystems, Foster City, USA) with the supplied random primers. qPCR was performed using the 

GoTaq® qPCR Master Mix (Promega, Madison, USA) on a CFX96 qPCR machine from Bio-Rad. 

cDNA was prepared in triplicate using samples from separate crosses, and qPCR was performed 

using three technical replicates. The forward 5′-GAGATGCAGGAAGACCGATTAT-3′ and reverse 

5′-CTCATCGACGCTGAAGTAGTG-3′ primers were used to assess relative cdc14 mRNA levels, 

which were normalized to Dmel\Rp49 expression levels using the 5′-

GAGATAGAGGCCCTTGGAAATG-3′ forward and 5′-CAGATCACCCACAGTCGAATC-3′ reverse 

primer. 
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Immunoblotting 

Embryo lysates for immunoblotting were generated as previously described (Hainline et 

al., 2014). For late third instar larvae, pools of ten were collected and homogenized in 200 μl of 

running buffer (Fig. 3-1F, Fig. 3-3B,C), and protein equivalent to one-half of a larva (10 μl) was 

used. All samples were run on ExpressPlus™ PAGE gels 4–20% from GenScript. Membranes 

were probed with mouse anti-Myc (9E10, 1:100; Santa Cruz Biotechnology, catalog #sc-40) and 

mouse anti-alpha tubulin (DM1α, 1:2500; Sigma-Aldrich, catalog #T6199) primary antibodies 

and anti-mouse horseradish peroxidase (1:5000) secondary antibody followed by visualization 

of signal on a LI-COR C-DiGit® Blot Scanner using SuperSignal™ West Femto Maximum 

Sensitivity Substrate or HyGLO™ Quick Spray. 

 

Assessment of female fertility 

Males were allowed to mate with virgin females for 3 or 7 days within chambers on 

grape juice plates (3% agar, 25% grape juice, 0.3% sucrose). Individual females were then 

transferred to a standard culture vial and allowed to lay eggs for 24 h followed by assessment 

of the number of eggs per vial. The average number of eggs per female was determined by 

counting the total number of eggs collected and dividing by the number of females that laid 

eggs. 
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Progeny survival assay 

Males were allowed to mate with virgin females for 3 days within chambers on grape 

juice plates (3% agar, 25% grape juice, 0.3% sucrose). Groups of ten females were then 

transferred to a single standard culture vial and allowed to lay eggs for 24 h followed by the 

removal of adults and determination of the number of eggs collected per vial. Eggs were 

allowed to develop through larval stages to adulthood, and the number of adults alive at 3 days 

post-eclosion was assessed. The percentage of eggs that survived to 3-day-old adults was 

determined by dividing the number of 3-day-old adults by the number of eggs laid. 

 

Assessment of progeny sex 

Mendelian inheritance assays were performed by mating equal numbers of 3-day-old 

males and virgin females under standard conditions. Parental flies were removed 9 days after 

setting up the cross. Adult progeny were collected daily and counted from day 10 to day 20. 

 

Male fertility assay 

Fertility assays were performed by mating equal numbers of 0–5- or 6–11-day-old males 

(control or cdc14 nulls) with control virgin females under standard conditions. Parental flies 

were removed 9 days after setting up the cross. Adult progeny were collected and counted 

daily from day 10 to day 20. 
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Sperm competition assay 

Sperm competition was performed based on a modification of a previously described 

assay (Yeh et al., 2013). Virgin males and females were collected and aged for 3 days on 

standard food supplemented with extra yeast paste. Single mating pairs were transferred to 

new vials and allowed to mate for 24 h. The first male was then removed, and a second 3-day-

old virgin male was added to the vial and allowed to mate for 24 h. The female was then 

transferred to a fresh standard culture vial and allowed to lay eggs at 25°C for 9 days, at which 

point the female was removed. Eclosed adult progeny were collected and counted daily over 

the next 10 days and eye color was assessed. The experiments were blinded to the genotypes 

of the red-eyed males used in these experiments. 

 

Assessment of spermatids and mature sperm 

Testes were isolated from 1–3-day-old males as previously described (Zamore and Ma, 

2011). Testes were snipped and squashed as previously described (Sitaram et al., 2014). 

Spermatids and mature sperm were observed using bright field microscopy. 

 

Immunostaining 

Testes were collected from 1–3-day-old males as previously described (Zamore and Ma, 

2011). Testes were snipped at level 2 and immunostained as previously described (Sitaram et 
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al., 2014). Anti-Myc (9E10, 1:100; Santa Cruz Biotechnology, catalog #sc-40) and anti-tubulin 

(DM1α, 1:200; Sigma-Aldrich, catalog #T6199) primary antibodies were used in combination 

with goat anti-mouse Cy2 secondary (1:400; Invitrogen, catalog #A-11004). 

Localization of Myc-tagged Cdc14 protein in 0–2 embryos laid by females carrying the 

UASp-cdc14-myc and nanos-Gal4 transgenes was assessed by immunofluorescence using 

standard conditions. Anti-Myc (9E10, 1:100; Santa Cruz Biotechnology, catalog #sc-40) and rat 

anti-alpha tubulin (1:200; Accurate Chemical & Scientific, Westbury, USA, catalog #MCA77G) 

primary antibodies were used in combination with goat anti-mouse Cy2 (1:400; Invitrogen, 

catalog #A-11004) and goat anti-rat Cy3 (1:400; Abcam, catalog #ab6953) secondary antibodies. 

 

Microscopy 

Bright field images were obtained using a Stemi 2000-CS microscope (Zeiss, 

Oberkochen, Germany) with an Olympus DP72 camera. Fluorescent images were obtained 

using a Nikon Eclipse 80i microscope with a Cool SNAP ES camera (Photometrics, Tucson, USA). 

Images were analyzed in Fiji or Photoshop. 

 

Egg aspect ratio 

Adults were placed in egg-laying chambers over a grape juice plate (3% agar, 25% grape 

juice, 0.3% sucrose) and allowed to lay for 1 h. Plates were collected, imaged, and assessed by a 
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blinded experimenter. The measuring tool in Fiji was used to determine the ratio of the 

anteroposterior to sagittal axes of imaged 0–1 h embryos. 

 

Larval path-length 

Analysis of larval path-length was based on a modification of a previously described 

assay (Anreiter et al., 2016). Early third instar larvae were washed in PBS and placed on a 1% 

agarose plate. Larvae were allowed to move freely for 1 min. Plates were imaged, and the 

length of the path taken was assessed in Fiji as previously described (Anreiter et al., 2016). 

 

Body wall contraction assay 

Determination of body wall contraction was based on a modification of a previously 

described assay (Nichols et al., 2012). Early third instar larvae were washed in PBS and placed 

on a 1% agarose plate. Larvae were observed for 1 min under a dissection microscope, and the 

number of peristalsis contractions was scored. A single contraction was defined as a full 

anterior to posterior movement. 
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Adult climbing assay 

Analysis of adult climbing was based on a modification of a previously described assay 

(Crowther et al., 2005). Up to 30 animals at 7–10 days post eclosion were placed at the bottom 

of a 3 inch vial. A second vial was placed on top of the first vial, and flies were allowed to climb 

for 20 s. The vials were then separated, and the number of flies in the top vial were counted. 

The percentage of flies climbing was determined by dividing the number of animals in the top 

vial by the total number of animals in both vials. 

 

DNA damage assays 

Third instar larvae were collected, washed in PBS, and left untreated or exposed to 40 

Gy of ultraviolet radiation using a UV Stratalinker 1800 from Stratagene. Larvae were incubated 

at room temperature and dissected for wing or eye discs as previously described (Purves and 

Brachmann, 2007). Discs were stained with terminal deoxynucleotidyl transferase dUTP nick 

end labeling (TUNEL) or anti-phospho-Histone H3 (pH3) as previously described (Brodsky et al., 

2000; Sarkissian et al., 2014). TUNEL- and pH3-stained samples were assessed by a blinded 

experimenter using Fiji. TUNEL-stained samples were assessed by measuring the fluorescence 

of the entire sample. pH3-stained samples were assessed by counting the number of stained 

cells in each sample. 
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Mechanosensation assay 

Touch insensitivity of larvae was assessed using a previously described assay (see Fig. 3-

9) (Kernan et al., 1994). A human eyelash is affixed to the end of a dowel rod with tape to make 

an eyelash brush. Larvae were washed with PBS, placed on a 1% agarose plate, tested four 

times by a blinded experimenter, and assigned a scored between 0 to 4. Scores were added 

together to determine the final score (0–16). 

 

Larval yeast feeding assay 

Test plates and yeast paste were prepared using blue or red food coloring as previously 

described (Wu et al., 2005). Early third instar larvae were washed in copious amounts of PBS, 

placed on the yeast paste, and allowed to feed or roam freely for 30 min. Wu et al. (2005) 

found that larvae feed in a bimodal fashion, either feeding persistently with substantial 

coloration of the gut or roaming across the plate without feeding. Larvae were scored by a 

blinded experimenter as feeding (>50% of the midgut full of colored yeast paste) or non-feeding 

(≤10% of gut filled with colored yeast past). 

 

Larval quinine preference assay 

The quinine chemosensory assay was performed as previously described with minor 

alterations (Apostolopoulou et al., 2014). Plates were prepared by filling a 60 mm petri dish 
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with 5 ml of autoclaved 0.5% agarose (minus or plus 7.5 mM sucrose) and allowed to solidify. 

Agarose was then removed from one-half of the plate and replaced by 2.5 ml of media (cooled 

to 50°C) containing quinine (minus or plus 7.5 mM sucrose). Plates were allowed to cool to 

room temperature and then stored in the dark at 4°C. Early third instar larvae were collected, 

washed in PBS, and placed near the center of the plate. Larvae were placed perpendicular to 

the boundary between the quinine-containing and quinine-free halves of the plate with the 

anterior end of each larva facing the quinine-containing half of the plate. Larvae were left 

undisturbed for 5 min and then scored by a blinded experimenter for location in either the 

quinine-containing or quinine-free side of the plate. Preference for quinine was determined as 

follows as previously described (Apostolopoulou et al., 2014): Preference=[(Larvae on 

quinine)−(Larvae on agarose)]/Total number of larvae. Preferences can range from −1 to 1, with 

negative values indicating avoidance of quinine and positive values indicating no avoidance of 

quinine. 

 

Chemosensation test of adults 

A modified version of the previously described two-way choice behavioral assay was 

used (Shim et al., 2015). Virgin 3-day-old adult flies were starved for 18 h and then placed in the 

dark with a 96-well plate containing 1 mM sucrose plus brilliant blue FCF dye (blue; 0.125 

mg/ml) or 1 mM sucrose+0.8% quinine plus sulforhodamine B dye (red; 0.2 mg/ml) in 

alternating wells. Feeding was allowed to proceed for 90 min, flies frozen, and carcasses 
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analyzed for the presence of ingested dye. The experiment was then repeated with the dyes 

reversed. 

 

Phototaxis assay 

Response of larvae to photostimulation was assessed as previously described with the 

following modifications (Lilly and Carlson, 1990). One-half of the plate contained no added food 

coloring, and the other half contained 1 ml of an equal-parts mixture of red, green, and blue 

food coloring added to 100 ml of 0.5% agarose to produce an opaque black-colored agarose. 

Larvae were placed on the light box and allowed to move freely for 5 min prior to assessment of 

their location by a blinded experimenter. 

 

Fat body staining 

Staining for fat bodies was performed using Oil Red O as previously described (Gutierrez 

et al., 2007). Nile Red experiments were performed using the same protocol except for the dye 

substitution. Nile red stock solution (1 mg/ml) was prepared as previously described and used 

at a 1:100 dilution (Greenspan et al., 1985). Nile Red was visualized at an excitation wavelength 

of 480 nm and emission wavelength of >530 nm. Oil Red O sample images were analyzed in 

ImageJ by a blinded experimenter. The width of a lipid droplet was measured at its widest point 

and binned into large (>160 μm), medium (125-160 μm) or small (<125 μm) droplets. 
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Assessment of starvation resistance 

Adipose cells of the larval fat body degenerate and are replaced by adult adipose cells 

by 3 days post-eclosion (Butterworth et al., 1965). To test adult resistance to starvation, virgin 

female adults were collected and incubated at 25°C for 3 days. Animals were then anesthetized 

with CO2, washed in PBS, and separated into vials with a PBS-soaked cotton ball (20 flies per 

vial). Flies were maintained at room temperature and assessed for mortality every 3 h. 

 

Statistics 

All statistical analyses were performed in R v3.1.0. Chi-square analyses were performed 

using Yates and corrected for continuity. Fisher's exact test, one-way ANOVA, and t-test (two 

tailed, equal variance) were used as indicated in figure legends. Post hoc analysis of ANOVA was 

performed with Tukey HSD. Post hoc analysis of Chi-square and Fisher's exact tests used the 

Bonferroni correction when applicable. The following critical P values were used for all analyses 

prior to correction: 0.05, 0.01, and 0.001. 
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Results 

cdc14 expression is highest in the testis 

Tissue expression data from the FlyAtlas indicate differential expression of cdc14 with a 

sevenfold higher level of cdc14 mRNA in the testis compared to the next highest expressing 

organ, the brain. To verify organ-specific levels of expression, we performed quantitative-PCR 

of whole adult carcasses, ovaries, and testes. Consistent with FlyAtlas, we found testis-specific 

expression of cdc14 to be approximately eleven times higher than whole male carcass 

expression (Fig. 3-1A).  

 

Generation of cdc14 knockout lines in D. melanogaster 

Homologous recombination was used to generate a cdc14 null allele, designated 

cdc14Δ1, in a y w line by replacing a portion of the cdc14 gene (spanning from the 5′-UTR to just 

downstream of exon 6) with the white+ gene (Fig. 3-1B). We then generated a stable 

homozygous knockout line (hereafter referred to as cdc14 null) with confirmation of knockout 

by genomic PCR (Fig. 3-1C). The housekeeping gene, r2d2, adjacent to cdc14 served as a control 

(Fig. 3-1C). Additionally, while cdc14 mRNA was detected in wild-type flies by quantitative PCR 

(Fig. 3-1D,E), there was no detectable cdc14 mRNA in the cdc14 null flies (Fig. 3-1E). Further 

confirmation of the knockout was performed by sequencing the boundaries of the cdc14 gene 

mutation (Fig. 3-1F).
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Figure 3 Figure 3-1. High expression of cdc14 in the testes and generation of Drosophila cdc14 null mutants by homologous recombination. 
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Figure 3-1: High expression of cdc14 in the testes and generation of Drosophila cdc14 null mutants by 

homologous recombination. (A) Relative expression of endogenous cdc14 in adult flies as determined by 

RT-PCR. The highest level of expression is in the testes. cdc14 expression was normalized to Rp49. cDNA 

was generated from adult carcasses (N≥50) or excised gonads (N≥200, N=3 independent biological 

replicates with N=3 technical replicates). (B) Structure of the Drosophila cdc14 and its five alternative 

transcripts. Black boxes are exons, white boxes are UTRs, and lines are introns. Ends-out homologous 

recombination of cdc14 was used to replace cdc14 with the white+ gene. Asterisk (*) indicates the 371 bp 

(2L:7,807,273 to 7,87,543) region of cdc14 used for PCR depicted in (C). A region (2 kb; not shown) of the 

overlapping housekeeping gene, r2d2, was used as a positive PCR control. Control r2d2 PCR product is 2 

kb. r2d2 is upstream of cdc14 (PCR region not depicted). White+ gene is not to scale. (C) A cdc14 null line 

was generated in a y w background and verified by PCR amplification of genomic DNA. The control lines, 

y w and w1118, and the adjacent housekeeping gene, r2d2, were used as positive controls. The cdc14 Δ1 

null allele was used for all subsequent experiments and for generation of the rescue line. Gel is 

representative result from N=3 replicates. (D) Final products from the RT-qPCR reaction of y w third instar 

larvae run on a 1% agarose DNA gel. Only a single product was amplified, suggesting high specificity of the 

primers used in (E). (E) Fold changes of cdc14 mRNA normalized to r2d2 mRNA. The level of expression is 

normalized to the y w control. No cdc14 expression was detectable in the cdc14 null line, but r2d2 

expression was equivalent to that of the y w control line. cDNA was generated from late third instar larvae 

(N≥30, N=3 independent biological replicates with N=3 technical replicates). (F) Nucleotide sequence of 

the boundaries of the cdc14 null mutation. Two of the restriction endonuclease sites (ACC65I and AscI) 

used for cloning the two homologous arms of cdc14 into the pW25 vector for recombination are shown. 

(G) Anti-Myc immunoblot of 0-2 hr old embryos demonstrates expression of UASp-cdc14-myc using the 

nanos-Gal4 driver.  
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Knockout of cdc14 is well tolerated 

cdc14 null flies are viable and reach adulthood. Female cdc14 nulls crossed to male 

cdc14 nulls lay eggs at the same rate as the y w control line, regardless of the age of the 

females (Fig. 3-2A,B). The average number of eggs produced per laying female is not 

significantly different (Fig. 3-2A,C). The progeny of female cdc14 nulls crossed to male cdc14 

nulls are viable. An equivalent proportion of eggs developed into 3-day-old adults when 

compared to the control line (Fig. 3-2D,E,F,G). Finally, no difference in the ratio of male to 

female progeny was observed (Fig. 3-3C). Our data suggests that Cdc14 is not an essential gene 

in Drosophila. 

 

Overexpression of Cdc14-Myc 

To determine whether overexpression of Cdc14 could provide insight into its function, 

we generated an inducible cMyc-tagged Cdc14 expression line (UASp-cdc14-myc) and verified 

expression of Cdc14-Myc by immunoblot analysis; this transgenic line was used for 

overexpression and rescue experiments (Fig. 3-1G; Fig. 3-3A,B). Nanos is active in germline 

formation, oocyte maturation, and early embryogenesis (Forbes and Lehmann, 1998; Kobayashi 

et al., 1996; Wang and Lehmann, 1991), making a nanos (nos) driver appropriate to rescue 

cdc14 loss, especially in the germ line. We found that introduction of nos>cdc14-myc in a y w 

background resulted in a twofold increase in cdc14 mRNA levels compared to the y w control 

line at the late third instar stage of larval development and very closely approximated wild-type 
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levels of expression in a cdc14 null background (Fig. 3-1E). Immunoblotting confirmed 

expression of Cdc14-Myc in nos>cdc14-myc in third instar larvae (Fig. 3-3A,B). All rescue 

experiments described herein were performed using the cdc14 null line with nos>cdc14-myc 

expression (‘rescue line’). 

 

cdc14 knockdown does not affect the ratio of male-to-female progeny 

The relatively high expression of cdc14 in the Drosophila testis compared with other 

tissues raised the possibility that knockout or overexpression may specifically affect the health 

of males. However, no significant differences between the ratios of male-to-female offspring 

were observed (Fig. 3-3C,D). This finding indicates that neither the insertion/expression of 

UASp-cdc14-myc nor the loss of cdc14 affect the viability of male offspring. 
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Figure 4 Figure 3-2. cdc14 is not required for female fertility or animal development. 
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Figure 3-2: cdc14 is not required for female fertility or animal development. (A) Three or seven days old 

females were placed in individual egg laying chambers and allowed to lay eggs for 24 h. (B,C) No significant 

differences in the percentage of females laying eggs (B) or the number of embryos laid per female (C) 

were observed. Only females that laid eggs were included in the analysis in (C). Results were aggregated 

from females (N≥53) in N≥3 repetitions in (A), (B), and (C). (D) Ten females per vial were allowed to lay for 

24 h. Females were then removed, and the number of eggs in each vial were counted and compared 

between vials (E) and by the total number of females (F). No differences in the number of eggs per vial (E) 

or eggs per female (F) were observed. (G) Eggs were allowed to hatch and larvae grown to adulthood. No 

differences in the number of eggs that survived to three days old adult animals were observed. Eggs 

(N≥200) were assessed from N=5 vials from N=3 repetitions in (E), (F), and (G). In (B), (C), (E), (F), and (G) 

both parental lines were cdc14 nulls (cdc14Δ1/cdc14Δ1), and the cdc14 nulls were compared to their genetic 

background line (y w). Results shown in (B), (C), (E), (F), and (G) were analyzed by Chi-squared test. 
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Myc protein expression. 

Figure 5 Figure 3-3. cdc14 does not affect the ratio of male-to-female offspring, and nos-gal4 > UASp-cdc14-myc results in Cdc14-Myc protein 
expression. 
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Figure 3-3: cdc14 does not affect the ratio of male-to-female offspring, and nos-gal4 > UASp-cdc14-myc 

results in Cdc14-Myc protein expression. (A) Immunoblot analysis of Cdc14-Myc levels in third instar 

larvae expressing UASp-cdc14-myc under the control of nanos-Gal4 (nos-Gal4) in a y w background. (B) 

Immunoblot analysis of Cdc14-Myc levels in third instar larvae expressing UASp-cdc14-myc under the 

control of nos-Gal4 in a cdc14 null background. (A) and (B) are representative gels of N=3 replicates. 

Tubulin was used as loading control. (C) The ratio of male to female offspring for lines used in this paper. 

Comparisons of different parental genotypes show no differences in the ratios of male to female offspring. 

Results were aggregated from offspring (N≥261) in N≥3 replicates. (D) Male offspring from the cross in (C) 

mated to a y w control female. Comparisons of male offspring from the different parental genotypes show 

no differences in the ratios of male to female offspring. Results were aggregated from offspring (N≥121) 

in N≥3 replicates. 
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Cdc14 is not required for Drosophila spermatogenesis 

To test the fertility of cdc14 null flies, we crossed male cdc14 nulls to control females 

and assessed the number of offspring. We observed no significant differences in the number of 

progeny produced by cdc14 null versus control males at either 0–5 or 6–11 days of age (Fig. 3-

4A). These data suggest that cdc14 loss does not affect male fertility. 

Given that cdc14 expression is highest in Drosophila testes relative to other tissues and 

that Cdc14A and Cdc14B are involved in ciliogenesis in zebrafish (Clément et al., 2011, 2012), 

we tested whether Cdc14 is involved in Drosophila spermatogenesis. Primary cilia first form in 

apolar spermatocytes and persist through the early spermatid stage, disassembling only 

partially at the end of spermatogenesis when the centriole at the cilium forms the base of the 

flagella axoneme (Riparbelli et al., 2012). These primary cilia are therefore thought to be 

precursors of the spermatid flagellum, although their role in spermatogenesis is unclear 

(Riparbelli et al., 2012). The majority of cells in the testis are ciliated; however, the function of 

the cilia during the meiotic prophase is unknown. 

We initially examined the testis as a whole for potential gross morphological defects. 

Examination of bright-field images revealed no observable morphological differences between 

cdc14 null and control testes (Fig. 3-4B). Immunostaining of testes for alpha-tubulin showed no 

notable differences in sperm morphology or number during spermatogenesis (Fig. 3-4C). 

Additionally, using nos>cdc14-myc animals, we observed localization of Cdc14-Myc protein 

primarily to the head of mature sperm bundles in the testes (Fig. 3-4D). Analysis of spermatids 

and mature sperm revealed no observable differences between cdc14 nulls and controls (Fig. 3-
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4E,F). Thus, we conclude that cdc14 is not essential for formation of mature sperm in 

Drosophila. 
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Figure 6 Figure 3-4. Cdc14-Myc localizes to the sperm bundle heads, but loss of cdc14 does not affect 
male fertility or spermatid/sperm number or result in overt morphological changes of the testis. 
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Figure 3-4: Cdc14-Myc localizes to the sperm bundle heads, but loss of cdc14 does not affect male 

fertility or spermatid/sperm number or result in overt morphological changes of the testis. (A) 

Comparison of the number of progeny from a single control female crossed to 0-5 or 6-11 days old cdc14 

null versus control males. Results were analyzed by T-test (two tailed, equal variance; ρ>0.05). N.S. = not 

significant. Animals (N≥782) from N=15 crosses were assessed in (A). (B) and (C) Testes mutant for cdc14 

appear to exhibit normal spermatogenesis and cell divisions. (B) Bright-field images of control and cdc14 

null testes showed no consistent or significant gross morphological differences between groups. Three 

separate cross sections from different animals are shown. Left panels display early 2-16 cell stage 

spermatogonial cysts. The smaller cells are part of 2-4 cell cysts, whereas the larger cells are part of 8-16 

cell cysts. Middle panels display round onion-stage spermatids. The right panels show early onion stage 

elongating spermatids that will form mature sperm. (C) Testes stained for tubulin (green) and DNA (blue, 

DAPI) showed no overt differences between cdc14 null and control flies. Panels show a mixture of primary 

(yellow arrowheads) and secondary (red arrowheads) spermatocytes. The latter are shown undergoing 

and completing the second meiotic division. White arrowhead marks clearly observed early onion stage 

spermatids in the cdc14 null testes. (D) Sperm bundles from control and nos-Gal4 > cdc14-myc male flies 

show localization of Cdc14-Myc to the head of the sperm bundle. Red is Myc and blue (DAPI) is DNA. 

Magnification, 100x. (B-D) are representative figures from N≥20 testes from N≥6 replicates. Scale bars, 10 

μm. Testes from y w and cdc14 null males were assessed for number of spermatids in the spermatogenic 

cyst (E) and number of mature sperm per bundle (F). No significant differences were observed in the 

number of spermatids (N=3 cysts from N=3 males in (E)) or sperm (N=3 mature sperm bundles from N=3 

males in (F)). Results shown in (E) and (F) were analyzed by Chi-squared test. 
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Loss of cdc14 does not affect Drosophila oogenesis or embryogenesis 

Previous studies indicated that Drosophila cdc14 is maternally contributed with diffuse 

localization in early larvae (Fisher et al., 2012; Keil, 1997). We performed immunolocalization 

studies using the UASp-cdc14-myc transgenic line under the control of a maternal nos-Gal4 

driver. Consistent with the in situ studies, we found that the cMyc-tagged Cdc14 protein is 

diffusely localized around mitotic nuclei in the early embryo (Fig. 3-5A). 

We tested the effects of Cdc14 on viability and early development. We found that male 

and female cdc14 null flies are fertile and the offspring of cdc14 null parents are viable (Figs 3-

2B,G, 3-4A). We found no significant effects of Cdc14 loss on the embryo's aspect ratio 

(length:width) (Fig. 3-5B). Thus, we conclude that Cdc14 does not play an essential role in early 

oogenesis or embryogenesis of Drosophila. 

 

Cdc14 is not required for cell cycle checkpoint activation or DNA damage repair 

Cdc14 phosphatases are reported to play a role in DNA damage repair and the 

checkpoint response in human cells (Mocciaro et al., 2010). We observed no increase in single 

or double strand DNA breaks in response to ionizing radiation as determined by the amount of 

TUNEL staining in wing discs from cdc14 null third instar null larvae (Fig. 3-5C). To determine 

whether Drosophila Cdc14 is involved in DNA checkpoint regulation, we assessed the mitotic 

index of eye discs from irradiated larvae of cdc14 null animals by immunostaining for the 

mitosis specific marker phospho-histone H3 (pH3). Eye discs from cdc14 null flies showed a 



50 

 

reduction in pH3 similar to that of control flies following irradiation (Fig. 3-5D), suggesting 

normal activation of a DNA damage checkpoint. As positive control, discs from homozygous 

animals that are null for an allele of the checkpoint gene, mei-41RT, showed no reduction in 

proliferation. These results suggest that cdc14 is not required for mitotic checkpoint activation 

or DNA damage repair in Drosophila. 

 



51 

 

 

 Figure 7 Figure 3-5. Cdc14-Myc is diffusely localized in the embryo and is not required for embryogenesis, apoptosis, or DNA 
damage repair. 
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Figure 3-5: Cdc14-Myc is diffusely localized in the embryo and is not required for embryogenesis, 

apoptosis, or DNA damage repair. (A) Precellularized 0-2 h embryos showed diffuse localization of Cdc14-

Myc that had been expressed under the control of nanos-Gal4. Tubulin is red and Myc is green. 

Magnification, 40x. Scale bar, 20 µm. Embryos (N≥75) from N=2 replicates. (B) The ratio of the length to 

width of 1 hr post fertilization embryos showed no difference between control and cdc14 null embryos. 

Results were analyzed by t-test (two tailed, equal variance). Eggs (N≥61) were aggregated from N≥3 

replicates were assessed. (C) TUNEL-stained wing discs showed no difference between control and cdc14 

null third instar larvae upon exposure to ionizing radiation (40 Gray). Scale bars, 50 μm. Images were 

assessed in Fiji by measuring fluorescence of the entire sample. Treatments were normalized to the y w 0 

h control. 0, 1, and 3 h time points were compared to each other as well as control to cdc14 null at each 

time point. Results were analyzed by t-test (two-tailed, equal variance with Bonferroni correction) (Wing 

discs (N≥7) from N≥3 replicates). (D) Images of eye discs from third instar larvae stained with anti-

phospho-Histone H3 to mark cells in mitosis. No changes in the mitotic index were observed between the 

cdc14 null and control line upon irradiation. As a control, the mei-41RT1 eye discs (defective in DNA damage 

repair) continued to undergo mitosis. Scale bars, 50 μm. Comparisons were made between 0 and 40 Gray 

treatments between genotypes. Results were analyzed by t-test (two-tailed, equal variance with 

Bonferroni correction). Experiments were performed using N≥25 eye discs in N≥3 replicates. *ρ<0.008, 

**ρ<0.002, ***ρ<0.0002. 
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Sperm competiveness is decreased in cdc14 null flies 

The fertility experiments performed above reflect reproduction in an optimized and 

controlled laboratory environment. In the wild, Drosophila males compete with each other by 

promoting removal or inactivation of the previous male's sperm (Price et al., 1999). Therefore, 

we performed a sperm competition assay to assess ‘sperm fitness’. By sequentially mating a 

white-eyed male and red-eyed male to a white-eyed female, competitiveness was determined 

by counting the number of red-eyed (heterozygous for red pigment genes) or white-eyed 

offspring. The cdc14 null, rescue, and overexpression lines are all homozygous for a gene that 

produces red pigment in the eye. The y w line has white eyes, as it is homozygous for a loss of 

function allele of the white gene and does not produce red pigment. 

When mated to a white-eyed female, the percentage of offspring produced by the 

cdc14 null was significantly less than that of the control groups, regardless of whether the 

cdc14 null male was the first or second male to mate (Figs. 3-6, 3-7B). This result suggests that, 

in spite of the lack of notable morphological differences between cdc14 null and control sperm, 

cdc14 null sperm are less efficient than wild-type sperm in conferring reproductive 

competitiveness.  

It is possible that seminal fluid proteins could induce changes in female behavior and 

physiology, such as sexual receptivity, ovulation, and egg-laying rates, and these changes could 

confound a sperm competition assay (Avila et al., 2011). We found that the cdc14 stock had a 

normal egg-laying rate (Fig. 3-2B,C,E,F). The proportion of cdc14 null males that mated at least 
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once in the sperm competition assay was comparable to controls (Fig. 3-7A). However, we 

cannot rule out that cdc14 nulls mated fewer times than controls within the 24 h period. 

The seminal fluid protein, sex peptide (SP), is transferred with the sperm to the female 

reproductive tract, where it is bound to the tail of the sperm and plays a role in sperm storage 

(Avila et al., 2010; Avila and Wolfner, 2009; Peng et al., 2005; Rogers et al., 2009). SP null males 

have been reported to give rise to more progeny compared to controls when mated first in 

specific competition assays (Avila et al., 2010). In contrast, we found that cdc14 null males gave 

rise to fewer progeny compared to controls when they were mated first (Fig. 3-6; Fig. 3-7B). 

Thus, it is possible that Cdc14 may function to inhibit SP release or the association of SP with 

the ciliary tail of the sperm. 
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 Figure 8 Figure 3-6. cdc14 null males exhibit decreased sperm competition. 
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Figure 3-6: cdc14 null males exhibit decreased sperm competition. (Top) An example of a sperm 

competition assay in which a single y w virgin female (white-eyed) is mated to a single male (white-eyed) 

for 24 h. The male is then removed and the female is mated to a second male with red-eyes for 24 h. The 

female is then transferred to a fresh vial and allowed to lay eggs. The female is removed, and offspring 

are allowed to develop and assessed for eye color (red or white). The assay is repeated using a red-eyed 

male first and then a white-eyed male. (Bottom) A control experiment was performed using white-eyed y 

w males for both the first and second males. A second control experiment was performed using red-eyed 

cdc14 null males for both the first and second males. The cdc14 null males are less competitive compared 

to control males regardless of whether they are the first or second male to mate. Results for a single 

representative replicates (N≥15 vials per cross) are shown. Additional data can be found in Fig. 3-7B. Data 

were analyzed using a Chi-squared test with Bonferroni correction. Six pairwise comparisons were made. 

Red-eyed control males were compared to the cdc14 null, rescue, or overexpression males; cdc14 null 

males were compared to rescue or overexpression male; and rescue males were compared to 

overexpression males. * ρ<0.009 and *** ρ<0.0002. 
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 Figure 9 Figure 3-7. cdc14 null males mate overnight at the same rate as controls. 
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Figure 3-7: cdc14 null males mate overnight at the same rate as controls. (A) Vials from all sperm 

competition assays (see Figure 3-6) were assessed for progeny from each male. No significant differences 

were observed in the number of mating males of each genotype. Vials in which no progeny were observed 

for either the first or second male were excluded from all analyses of sperm competition. Data were 

analyzed by Chi-squared test with Bonferroni correction. (B) Eye color of offspring from all replicates of 

the sperm competition assay. The proportion of offspring from cdc14 null males was significantly lower 

than the control (red). This decrease was rescued by expression of nos > myc-cdc14. Data were analyzed 

by Chi-squared test with Bonferroni correction. Control (red) was compared to the cdc14 null, rescue, and 

overexpression. The cdc14 null was compared to the rescue. * ρ<0.02, ** ρ<0.003, *** ρ<0.0003. In (A) 

and (B), N≥48 vials aggregated in N≥3 experiments. 
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Loss of cdc14 does not affect Drosophila path-length, coordination, or locomotion 

The decrease in sperm competitiveness may be the result of coordination or locomotion 

defects inhibiting mating behaviors. Drosophila are negatively geotactic, and the adult climbing 

assay is a motor assay that takes coordination into account (Ali et al., 2011; Nichols, 2015; 

Nichols et al., 2012). When coordination is disrupted, flies should climb slower and/or fewer 

flies should rapidly climb the chamber walls (Nichols, 2015). We found that the climbing 

behavior of cdc14 nulls was not significantly different than that of control y w control (Fig. 3-

8A). Furthermore, path-length (distance traveled by a larva on yeast within a defined period) 

and the number of body wall contractions, both measures of locomotion (Anreiter et al., 2016; 

Nichols et al., 2012), did not significantly differ between cdc14 null and control larvae (Fig. 3-

8B,C). These results suggest that Cdc14 does not play a role in path-length, coordination, or 

locomotion in Drosophila. 
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 Figure 10 Figure 3-8. cdc14 nulls do not show impaired path-length or locomotion. 
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Figure 3-8: cdc14 nulls do not show impaired path-length or locomotion. (A) In the adult climbing assay 

(left), flies were allowed to climb for 20 seconds, followed by assessment of the number of flies in the top 

vial (“climbing” flies). The number of climbing adults was not significantly different between the control 

and cdc14 null line. Results were aggregated from N>150 flies in N=3 replicates. (B) Third instar larvae 

were allowed to move freely for 1 min on an agarose plate (left). The larval path was traced and measured 

in Fiji. The average path-length traveled per larva per minute was not significantly different between the 

control and cdc14 null line. (C) Larvae were observed under a brightfield microscope, and the number of 

full contractile waves (left) were counted for 1 min. No difference was observed between the control and 

cdc14 null line. N=30 larvae were tested in (B) and (C). (A), (B), and (C) were analyzed by t-test (two tailed, 

equal variance; ρ>0.05). 
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Drosophila cdc14 null larvae have decreased mechanosensation 

In Drosophila, spermatozoa and sensory neurons are the only ciliated cells (Ma and 

Jarman, 2011). Type I sensory neurons (sensilla) have modified cilia that act as a site for sensory 

reception and transduction (Field and Matheson, 1998; Keil, 1997; Laurençon et al., 2007; Lee 

et al., 2008; Ma and Jarman, 2011; Riparbelli et al., 2012). In accordance with a role in zebrafish 

ciliogenesis (Clément et al., 2011, 2012), we tested whether cdc14 null sensory neurons have 

decreased function compared to that of control flies. Mechanosensation and chemosensation 

are the two primary functions of Type I sensory neurons (Brody, 1999). To test the functionality 

of the mechanosensory neurons, we used a touch insensitivity assay in third instar larvae 

(Fig. 3-9). Control larvae demonstrated a normal distribution of touch response scores (Fig. 3-

10A). In contrast, cdc14 larvae showed a broad distribution of touch response scores and a 

decreased average score, suggesting a distinct loss of touch sensitivity (Fig. 3-10A,B). The loss of 

touch sensitivity in cdc14 null larvae was partially rescued by maternally contributed cdc14 

(cdc14Δ1-Maternal; Fig. 3-10B). These data suggest a role for cdc14 in the function and/or 

formation of ciliated Type I sensory neurons controlling mechanosensation. 
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Figure 3-9: Larval touch sensitivity assay. Modified from (Kernan et al., 1994). Figure 11 Figure 3-9. Larval 

touch sensitivity assay
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Figure 12 Figure 3-10. cdc14 null larvae exhibit decreased sensitivity to mechanical stimuli. 
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Figure 3-10: cdc14 null larvae exhibit decreased sensitivity to mechanical stimuli. (A) Distribution of 

touch response scores (see Figure 3-9). cdc14Δ1 null larvae with maternally contributed cdc14 (cdc14Δ1-

Maternal) exhibited an approximately normal distribution of scores relative to control with a peak at 9, 

whereas the cdc14 null larvae exhibited a flat distribution. The mean score for cdc14 null larvae was 

significantly lower than controls (ρ<0.001) and cdc14Δ1-Maternal (ρ<0.001). Data sets were analyzed by one-

way ANOVA with Tukey HSD post hoc analysis. Red vertical line delineates the mean touch response score 

for control. (B) Mean touch response scores with standard deviation for control, cdc14 null, and cdc14Δ1-

Maternal larvae. Results were aggregated from N≥50 larvae in N≥5 repetitions. 
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Gustation in Drosophila larvae is modulated by cdc14 

Drosophila gustatory neurons are also Type I sensory neurons. Drosophila larvae have 

more than 81 external chemosensory gustatory neurons (including 37 neurons in the head) 

(Stewart et al., 2015). In order to test the functionality of the chemosensory neurons, we 

assessed the ability of larvae to detect and avoid the bitter substance, quinine (Wu et al., 2005). 

Larvae were placed for 5 min on a nutritious yeast paste containing food coloring, and the 

number of larvae with dyed food in >50% of their intestines were scored as feeding (Fig. 3-11A). 

In the absence of quinine, three times fewer cdc14 null larvae had fed compared to control 

larvae (Fig. 3-11A). In the presence of quinine, only 5% of control larvae had fed, whereas the 

percentage of fed cdc14 null larvae remained unchanged at 15–17% (Fig. 3-11A). These findings 

indicate that loss of cdc14 results in both a loss of chemosensation and reduced but 

indiscriminate feeding. 

A second test was used to verify the changes in gustatory sensation and to test the 

ability of the animals to discriminate between attractive (sucrose) and repellant (quinine) 

substances (Fig. 3-11B,C,D). In the absence or presence of sucrose across an entire plate, cdc14 

null larvae demonstrated a significant decrease in aversion to quinine when compared to 

controls (Fig. 3-11B,D). Furthermore, this discrimination against quinine returned to nearly 

wild-type levels in cdc14Δ1-Maternal larvae. When given the choice between sugar and quinine, no 

statistically significant differences were found between the cdc14 null larvae and controls 

(Fig. 3-11C). No differences between the sexes were observed under these testing conditions. 
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In contrast to larvae, no difference in quinine avoidance was observed between cdc14 null and 

control adults (Fig. 3-12A). Our results suggest that cdc14 null larvae have the capacity to 

identify certain attractive substances (sucrose), but not repellant substances (quinine), possibly 

due to a defect in the functionality of the gustatory sensilla. 

 

Photoreception is unaffected in the cdc14 null larvae 

To test if the mechanosensory and chemosensory behaviors in cdc14 null larvae were 

specific to ciliary function (rather than non-ciliary-mediated functions such as mobility), we 

tested photoreception, which is not mediated by ciliated neurons. Drosophila are negatively 

phototactic (Lilly and Carlson, 1990). Late third instar larvae were exposed to light with a choice 

between opaque-black and clear agarose backgrounds. We observed no differences between 

the cdc14 null, control, and rescue larvae (Fig. 3-12B). These results suggest the observed 

defects in cdc14 null animals are specific to ciliated cell types (e.g. Type I sensory neurons and 

sperm). 
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 Figure 13 Figure 3-11. cdc null larvae show decreased but indiscriminate feeding and loss of 
chemosensory responses. 
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Figure 3-11: cdc14 null larvae show decreased but indiscriminate feeding and loss of chemosensory 

responses. (A) Diagram of yeast feeding assay (left). cdc14 null larvae fed at the same rate in the absence 

or presence of quinine in contrast to controls (right). Furthermore, in the absence of quinine, cdc14 null 

larvae fed at a significantly lower rate than control larvae (***). Data were aggregated from N≥40 larvae 

in N≥3 repetitions. Data was analyzed by Chi-squared test with Bonferroni correction; ** ρ<0.004, *** 

ρ<0.0004. All possible comparisons were made. (B), (C), and (D) Diagrams of quinine preference assays 

used are shown to the left. (B) cdc14 null larvae showed reduced avoidance of quinine. (C) No difference 

was observed between cdc14 null and control larvae when sucrose was present in one-half of the plate 

and quinine present in the other half. (D) cdc14 null larvae did not avoid quinine in the presence of 

sucrose. Results were aggregated from N≥51 larvae in N≥15 replicates and analyzed by Chi-squared test 

with Bonferroni correction in (B), (C), and (D). Control larvae were compared to cdc14 null and cdc14Δ1-

Maternal. cdc14 null larvae were also compared to cdc14Δ1-Maternal. ** ρ<0.004, *** ρ<0.0004, N.S. = not 

significant. 
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 Figure 14 Figure 3-12. Adult chemosensation and larval phototaxis is unaffected by loss of cdc14. 
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Figure 3-12: Adult chemosensation and larval phototaxis is unaffected by loss of cdc14. (A) Adult flies 

(three days old) were starved for 18 h, transferred to the dark, and given the choice between regular 

versus quinine-laced food. Flies were allowed to feed for 90 minutes, frozen, and assessed for feeding. No 

difference in the rate of feeding or preference for quinine was observed in adult flies. N≥423 animals from 

N=6 replicates were tested. (B) Diagram of light sensitivity assay (top). Light sensitivity was not 

significantly different between any groups. Results were aggregated from N≥100 larvae in N=3 repetitions. 

Results shown in (A) and (B) were analyzed by Chi-squared test with Bonferroni correction. 
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cdc14 confers resistance to starvation and modulation of lipid metabolism 

In a Drosophila genome-wide RNAi screen for genes involved in adiposity, cdc14 was 

previously identified as a potential regulator of triglyceride metabolism (Pospisilik et al., 2010). 

Drosophila store energy in the form of triglycerides and glycogen; growth, reproduction, and 

normal energy expenditure under extended non-feeding periods (e.g. starvation) are 

dependent upon proper lipid metabolism (Arrese and Soulages, 2010). Alterations in fat 

metabolism manifest as changes in the size of the fat body or the abundance of lipid droplets 

(Figueroa-Clarevega and Bilder, 2015). 

We dissected and analyzed the larval fat body, the major triglyceride storage organ 

(Figueroa-Clarevega and Bilder, 2015; Gutierrez et al., 2007). Staining with Oil Red O revealed 

large and abnormally shaped fat bodies in the cdc14 null larvae in contrast to the controls (Fig. 

3-13A,B). Staining with Nile Red showed a similar effect (Fig. 3-13C). 

Previous studies have demonstrated that female flies are more resistant to starvation 

and have a higher lipid content than males (Huey et al., 2004; Jang et al., 2014). Thus, defects in 

triglyceride regulation may affect the resistance of the animals to nutrient deprivation. We 

found that control females have a slightly longer lifespan (>4.25 h) compared to cdc14 null 

females under starvation conditions (Fig. 3-13D). The decrease in lifespan under starvation 

conditions and alterations in lipid droplet morphology observed in cdc14 null flies suggest that 

Cdc14 may play a role in the regulation of metabolism in Drosophila. 
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 Figure 15 Figure 3-13. cdc14 is required for normal lipid metabolism and survival during starvation 
conditions 
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Figure 3-13: cdc14 is required for normal lipid metabolism and survival during starvation conditions. (A) 

Oil Red O stained anterior fat bodies from segments T3 and A1 of late third instar larvae. Lipid droplets in 

fat bodies of cdc14 null larvae were larger and more irregular in shape compared to controls. A regular 

shape droplet is outlined by a dotted white line in the control, and an irregular droplet is outlined in the 

null. Scale bar, 50 µm. N≥5 pelts were assessed. (B) Quantification of Oil Red O stained fat body cross-

sections. cdc14 null larvae lipid droplets were significantly larger than that of control larvae. Droplets from 

pelts were measured across their widest point; see asterisk (*) in (A). Droplets >2 standard deviations 

larger (≥160 μm) than the average droplet were classified as large. Samples were scored blind. N≥60 

droplets were assessed from N≥5 pelts per genotype. Fisher’s exact test was used to determine 

significance. ***ρ<0.001. (C) Larval fat bodies from the inner surface of the cuticle of abdominal segment 

A2-A4 stained with Nile Red. Large and irregularly shaped lipid droplets were observed in cdc14 null 

larvae. Scale bar, 50 µm. N≥5 pelts were assessed per genotype. (D) Resistance to starvation of cdc14 null 

and control adult females. Box and whisker plot shows that control animals lived modestly longer (> 4.25 

h) than the cdc14 null adult. Results were aggregated from N≥347 animals in N≥15 experiments using a t-

test (two tailed, equal variance). *** ρ<.001. 
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Discussion 

In the current study, we used ends-out homologous recombination to knock out the 

single Drosophila cdc14 gene (Fisher et al., 2012; Gong and Golic, 2003). We have found that 

Drosophila Cdc14 confers several competitive advantages. Despite the fact that cdc14 null 

males are fertile, they have a decreased capacity to compete with other males for mating. Loss 

of larval gustatory chemosensation and mechanosensation results in reduced and 

indiscriminate feeding behaviors, presumably leading to inadvertent feeding on a toxic food 

source. Our findings suggest that in times of food scarcity, cdc14 nulls have a shorter lifespan 

than wild-type flies, possibly due to altered lipid metabolism and/or feeding behaviors. This 

constellation of defects associated with loss of cdc14 in Drosophila may provide an explanation 

for its conservation in metazoans. 

To our knowledge, the present study is the first characterization of a Drosophila cdc14 

null mutation. Similar to S. pombe and C. elegans, D. melanogaster cdc14 is not an essential 

gene. Flies lacking cdc14 are viable, and they do not display phenotypes that have been 

observed in other organisms (Mocciaro and Schiebel, 2010). For example, we were unable to 

demonstrate that cdc14 participates in the DNA damage repair response, and loss of cdc14 did 

not alter growth or lead to any obvious perturbations in mitosis or more generally in cell 

proliferation. Specifically, we did not observe any centrosomal or mitotic spindle defects or any 

defects in chromosome segregation or cytokinesis (data not shown). 
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We did not detect morphological differences in sperm formation between cdc14 null 

and wild-type males. However, we show that sperm competiveness is decreased in cdc14 null 

flies, suggesting an effect on sperm ciliary function (Brody, 1999). These findings merit further 

detailed molecular study of the role of cdc14 in sperm ciliary function.
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Chapter 4: 

The role of Glycosylation in Metazoan development 

At least 1% of all proteins encoded in the human genome are glycosylated or modify 

glycosylated proteins (Ohtsubo and Marth, 2006). Greater than 50% of all human proteins will 

undergo glycosylation during their lifetime (Apweiler, 1999). The addition of carbohydrate 

moieties can control localization, maturation, secretion, activity, and stability of proteins (Varki 

and Chrispeels, 1999). There are five classes of glycosylation: N-linked, O-linked, C-linked, P-

linked (phosphoglycans), and G-linked (glypiation) (Chauhan et al., 2013). In this chapter I will 

primarily discuss the two most common classes of glycosylation, N-linked and O-linked, with a 

focus on N-linked. I will also discuss glycosylation in signaling pathways, and specifically 

highlight the role of N-glycosylation in Wnt signaling. Finally, I will discuss disorders of 

glycosylation in humans and their treatments. 

 

N-linked glycosylation 

In N-linked glycosylation, a lipid-linked oligosaccharide (LLO) attached by a diphosphate 

linkage to a dolichol lipid is transferred onto a protein (Fig. 4-1) (Varelas et al., 2014). The LLO 

consists of two N-acetyl-D-glucosamine moieties (GlcNAc), three glucose moieties (Glc3), and 

nine mannose moieties added in a branched chain pattern (Varelas et al., 2014). The LLO forms 

on the cytoplasmic face of the endoplasmic reticulum (ER) membrane and is subsequently 
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flipped into the ER lumen by the flippase RFT1 (Varelas et al., 2014). The LLO is then transferred 

to asparagine residues within the consensus sequence Asn-X-Thr/Ser of proteins trafficked 

through the ER (Aebi, 2013). The LLO is further modified by enzymes as the protein matures in 

the ER and Golgi (Varelas, et al. 2014).  As N-glycosylated proteins are found in the ER, they are 

commonly secreted or membrane bound, but may also be ER-resident proteins (Gupta and 

Brunak, 2002; Heine et al., 2004). 
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 Figure 16 Figure 4-1. Simplified scheme of the N-glycosylation pathway. 

 

 

 

 

 



80 

 

Figure 4-1: Simplified scheme of the N-glycosylation pathway. N-Glycosylation is initiated by GPT, 

encoded by the DPAGT1 gene. GPT catalyzes the transfer of GlcNAc from UDP-GlcNAc to dolichol-

phosphate to produce dolichol-PP-GlcNAc, which is the first step in the synthesis of the LLO precursor. 

ALG13/ALG14, ALG1, ALG2, and ALG11 add carbohydrate moieties to produces the LLO depicted. The 

flippase RFT1 flips the dolichol-LLO structure into the ER lumen. ALG3, ALG9, ALG12, ALG6, ALG8, and 

ALG10 further modify the LLO in the ER to produce a mature LLO. Subsequently, the LLO is transferred co-

translationally to newly synthesized polypeptides by the OST complex. After initial processing steps in the 

ER, glycoproteins will transit to the Golgi, where N-glycans are further modified to produce mature N-

glycoproteins. ALG; asparagine-linked glycosylation. DPAGT1; Dolichyl-Phosphate N-Acetylglucosamine 

phosphotransferase 1. Asn; Asparagine. 
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O-linked glycosylation 

In the simplest form of O-linked glycosylation a single GlcNAc moiety is transferred onto 

a serine or threonine residue (Brockhausen et al., 2009). However, eight ‘core’ structures exist 

that may be modified into longer much more complex chains (Fig. 4-2) (Brockhausen et al., 

2009). Core 1 is the most common form of O-linked glycosylation (Brockhausen et al., 2009). 

Cores 5-8 are rare with highly restricted expression (Brockhausen et al., 2009). O-linked 

glycosylation in the ER and/or Golgi is common among proteoglycans, a major component of 

the extracellular matrix (Brockhausen et al., 2009). The addition of a single GlcNAc moiety to a 

serine or threonine residue can occur in the cytoplasm and nucleus, where it will not be 

modified into a carbohydrate oligomer (Brockhausen et al., 2009). Rather, this single GlcNAc 

moiety is a transient protein modification similar to phosphorylation or ubiquitination, such as 

transient inactivation of β-catenin by O-glycosylation (Ha et al., 2014; Sayat, 2008).   

 

 

 

 

 

 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Sayat%20R%5BAuthor%5D&cauthor=true&cauthor_uid=18586027
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 Figure 17 Figure 4-2. The basics of O-glycosylation of proteins. 
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Figure 4-2: The basics of O-glycosylation of proteins. (A) The simplest form of O-Glycosylation is a single 

N-acetylgalactosamine moiety attached to a protein. (B) The eight identified core structures of O-

Glycosylation. The glycosidic bonds of the sugar moieties is shown next to the bonds. Core 1 is the most 

commonly observed form of O-glycosylation. Cores 5-8 are rarely observed. Each core may be further 

modified.  
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Glycosylation in development 

Multiple studies have analyzed developmental phenotypes resulting from loss-of-

function of components of the glycosylation pathway and demonstrated that their loss of 

function are associated with changes in specific cell signaling pathways (Haltiwanger and Lowe, 

2004). In Drosophila mutation of β1,3-N-acetylglucosaminyl-transferase in the O-Linked 

glycosylation of fucose results in defects of Notch through inhibition of O-fucosylated Notch 

ligands (Moloney et al., 2000). In mice FGF signaling is specifically inhibited by mutation of UDP-

glucose dehydrogenase, which leads to loss of all extracellular matrix GAGs (Garcia-Garcia and 

Anderson, 2003). In human cell lines and oral cancers the glycosyltransferase dolichol-P-

dependent N-acetylglucosamine-1-phosphate-transferase (DPAGT1) has been shown to work in 

a positive feedback loop through N-glycosylation with the canonical Wnt/β-catenin as well as 

non-canonical Wnt signaling (Fig. 4-3) (Varelas et al., 2014; Vargas et al., 2016).  

Mutations in genes of glycosylation are not limited to loss-of-function, but a number of 

pathologic mutations in humans create ectopic glycosylation sites leading to disease. In 2005, 

Vogt et al. identified a missense mutation in IFNGR2 which created a novel N-glycosylation site 

in the IFNγR2 chain and abolished the cellular response to IFNγ (Vogt et al., 2005). Patients with 

this mutation lose resistance to illness caused by moderately virulent mycobacterial species 

(Vogt et al., 2005; Vogt et al., 2008). The identification of diseases caused by mutations in 

human glycosylation genes continues to increase each year (Fig. 4-4) (Cylwik et al., 2013; Ng 

and Freeze, 2018; Jaeken and Péanne, 2017).  



85 

 

Figure 18 Figure 4-3. The role of DPAGT1 in Wnt signaling. 
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Figure 4-3: The role of DPAGT1 in Wnt signaling. DPAGT1 is transcriptional target of canonical Wnt 

signaling. DPAGT1 expression increases N-glycosylation of proteins. Higher expression of DPAGT1 leads to 

a subsequent increase in protein N-glycosylation, including Wnt ligands and the LRP5/6 receptor. Thus, 

activation of canonical Wnt signaling leads to a positive feedback loop with DPAGT1 and N-glycosylation. 

In addition, increased N-glycosylation of Collagen Triple Helix Repeat Containing 1, a component of the 

noncanonical Wnt pathway, leads to an increase of noncanonical Wnt signaling.  
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 Figure 19 Figure 4-4: Discovery of Glycosylation Disorders 
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Figure 4-4: Discovery of glycosylation disorders (Copied from Ng and Freeze, 2018). The distribution of 

glycosylation-related disorders by the year they were identified. They are grouped according to the 

glycosylation pathway which they affect and while most fall within a clear specific pathway, there are 

those that can affect multiple glycosylation disorders. This describes disorders identified up to the end of 

2017.  
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Congenital Disorders of Glycosylation and N-glycosylation 

Disorders affecting glycosylation are classified as Congenital Disorders of Glycosylation 

(CDGs) (Fig. 4-5) (Ng and Freeze, 2018). Forty-two different mutations in N-linked glycosylation 

or multiple glycosylation pathways including N-linked glycosylation have been identified alone 

(Table 4-1) (Sparks and Krasnewich, 2017). Type 1 CDGs affect synthesis or transfer of the LLO 

onto the asparagine residue, while type 2 CDGs affect processing of the LLO in the ER and Golgi 

(Blau et al., 2014; Eklund and Freeze, 2006).  

One would expect that mutations in similar pathways would lead to similar phenotypic 

outcomes. For example, in O-glycosylation, mutation of any one of the twelve genes involved in 

alpha-dystroglycan lead to muscular dystrophy (Endo, 2015). As mutations in any of the fourteen 

enzymes involved in LLO synthesis lead to incomplete N-glycosylation of nascent proteins, they 

would be expected to present with similar phenotypes. However, this is not the case. For 

example, defects in UDP-GlcNAc synthesis (e.g. as in GFPT1-CDG), addition of the first GlcNAc to 

the LLO (DPAGT1-CDG), or addition of the second GlcNAc to the LLO (ALG14-CDG) lead to 

myasthenic syndrome (Cossins et al., 2013; Senderek et al., 2011; Wu et al., 2003). However, 

defects in addition of the fourth and fifth mannoses LLO (ALG11-CDG) or flipping of the LLO into 

the lumen of the ER (RFT1-CDG) cause sensorineural hearing loss, a rare CDG phenotype (Regal 

et al., 2014; Rind et al., 2010; Vleugels et al., 2009). Once in the ER lumen, mutations in the 

addition of the last four mannoses (ALG3-CDG, ALG9-CDG and ALG12-CDG), result in skeletal 

phenotypes not observed in other CDGs; specifically mesomelic brachymelia, round pelvis, 

shortened sacrosciatic notch and ovoid ischia, hypomineralization of the skull, cervical vertebral 
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bodies, pubic rami and a thick occipital bone (Tham et al., 2016). Lastly, defects in the addition 

of the first (ALG6-CDG) and second (ALG8-CDG) Glc to the LLO lead to brachydactyly (Höck et al., 

2015; Morava et al., 2016). While the first identified and most common CDG (PMM2-CDG) 

exhibits the opposite phenotype of long and slender fingers and toes (Ferreira et al., 2018; Jaeken 

et al., 1980; Matthijs et al., 1997; Van Schaftingen and Jaeken, 1995). 

As this clustering of phenotypes occurs prior to the transfer of the LLO to the protein, 

hypoglycosylation cannot be the sole cause of the phenotypes. It is possible that accumulated 

LLOs or modified LLOs could be toxic (Ferreira et al., 2018). However, it is also possible that 

both hypoglycosylation and misglycosylation with truncated LLOs contribute to pathogenesis, 

as truncated LLOs can indeed be transferred to nascent proteins with decreased efficiency 

(Krasnewich et al., 1995; Panneerselvam and Freeze, 1996; Vleugels et al., 2009). 
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Figure 4-5: Diagram detailing known molecular and metabolic defects associated with CDGs (Copied 

from Freeze et al., 2006). 

 

 Figure 20 Figure 4-5:  Diagram Detailing known Molecular and Metabolic Defects Associated with CDGs 
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Table 4-1: Diseases of N-linked glycosylation identified in humans. MOI: Mode of inheritance. XL: X-

linked. AR: Autosomal recessive. 678Table 4-1: Diseases of N-linked glycosylation identified in humans 

N-linked Glycosylation 
  # of Cases Reported  Gene 
PMM2-CDG (CDG-Ia)  700  PMM2 
MPI-CDG (CDG-Ib)  20  MPI 
ALG6-CDG (CDG-Ic)  89  ALG6 
ALG3-CDG (CDG-Id)  11  ALG3 
DPM1-CDG (CDG-Ie)  9  DPM1 
MPDU1-CDG (CDG-If)  5  MPDU1 
ALG12-CDG (CDG-Ig)  7  ALG12 
ALG8-CDG (CDG-Ih)  5  ALG8 
ALG2-CDG (CDG-Ii)  ≤2  ALG2 
DPAGT1-CDG (CDG-Ij)  5  DPAGT1 
ALG1-CDG (CDG-Ik)  57  ALG1 (HMT-1) 
ALG9-CDG (CDG-IL)  ≤2  ALG9 
DOLK-CDG (CDG-Im)  ≤2  DOLK (DK1) 
RFT1-CDG (CDG-In)  6  RFT1 
DPM3-CDG (CDG-Io)  ≤2  DPM3 
ALG11-CDG (CDG-Ip)  4  ALG11 
SRD5A3-CDG (CDG-Iq)  15  SRD5A3 
DDOST-CDG (CDG-Ir)  1  DDOST 
MAGT1-CDG  4  MAGT1 
TUSC3-CDG  12  TUSC3 
ALG13-CDG  1  ALG13 
PGM1-CDG  2  PGM1 
MGAT2-CDG (CDG-IIa)  4  MGAT2 
STT3A-CDG, STT3B-CDG  2  STT3A, STT3B 
SSR4-CDG  <2  SSR4 
MOGS-CDG (CDG-IIb)  ≤2  MOGS (GCS1) 
SLC35C1-CDG (CDG-IIc)  ≤2  SLC35C1 
B4GALT1-CDG (CDG-IId)  ≤2  B4GALT1 
SLC35A2-CDG  <2  SLC35A2 
GMPPA-CDG  <2  GMPPA 

Multiple-Pathway Disorders 
COG7-CDG (CDG-IIe)  ≤2  COG7 
SLC35A1-CDG (CDG-IIf)  ≤2  SLC35A1 
COG1-CDG (CDG-IIg)  ≤2  COG1 
COG2-CDG  1  COG2 
COG8-CDG (CDG-IIh)  ≤2  COG8 
COG5-CDG (CDG-IIi)  7  COG5 
COG4-CDG (CDG-IIj)  ≤2  COG4 
TMEM165-CDG (CDG-IIk)  5  TMEM165 
COG6-CDG (CDG-IIL)  17  COG6 
DPM2-CDG  <2  DPM2 
DHDDS-CDG  <2  DHDDS 
MAN1B1-CDG  <2  MAN1B1 
PGM3-CDG  8  PGM3 
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Complex glycosylation and non-glycosylation pathways lead to CDGs 

Defects in any one of six of the eight subunits of the conserved oligomeric Golgi (COG) 

demonstrate that mutations in proteins not specifically or exclusively involved in glycosylation 

can result in CDGs (Foulquier, 2009; Lübbehusen et al., 2010; Morava et al., 2007; Ng et al., 

2007; Paesald-Burda et al., 2009; Reynders et al., 2009; Wu et al., 2004; Zeevaert et al., 2009). 

Furthermore, congenital dyserythropoietic anemia type II, a type of genetic anemia, is caused 

by a defect in the SEC23B gene (SEC23B-CDG), which codes for a secretory COPII coat 

component (Denecke and Marquardt, 2009; Bianchi et al., 2009; Schwarz et al., 2009).  

Four mutations in glycosylphos-phatidylinositol (GPI) anchor glycosylation, such as in the 

second mannosyltransferase (PIGV-CDG), have been identified (Jaeken, 2011; Krawitz et al., 

2010). Furthermore, a number of patients have presented with defects in both N- and O-linked 

glycosylation (Jaeken and Matthijs, 2007). For example, defects in the a2 subunit of the 

vacuolar H+-ATPase (V-ATPase), a multi-subunit, ATP-dependent proton pump located in cell 

and organelle membranes and implicated in Wnt signaling, results in a combined defect in N- 

and O-glycosylation (Bryan Ray, 2010; Guillard et al., 2009; Kornak et al., 2008; Morava et al., 

2005; Morava et al., 2008; Van Maldergem et al., 2008).  

 

Treatment of CDGs 

As some CDGs are metabolic enzymes, supplementation with the downstream product 

of the enzyme should ameliorate the loss-of-function phenotypes.  However, because these 



94 

 

disorders are often quite rare and difficult to diagnose, this therapeutic strategy has rarely been 

attempted.  Therefore, effective treatment is only available for two CDGs: MPI-CDG (oral 

mannose) and CAD-CDG (oral uridine) (Koch et al., 2017; Niehues et al., 1998). Partial 

treatments are available for CDGs that can present as a congenital myasthenic syndrome 

(DPAGT1-CDG, ALG2-CDG, ALG14-CDG, GFPT1-CDG and GMPPB-CDG; cholinesterase inhibitors), 

as well as for PIGM-CDG (oral butyrate controls seizures), SLC35C1-CDG (oral fucose controls 

infections), DOLK-CDG (heart transplantation), PGM1-CDG (galactose), SLC35A2-CDG and 

SLC39A8-CDG (galactose), PGM3-CDG (haematopoietic stem cell transplantation) (Dörre et al., 

2015; Marquardt et al., 1999; Morava, 2014; Park et al., 2015; Stray-Pedersen et al., 2014). 

Supplementation with sialic acid may stabilize muscle strength in GNE-CDG (Argov et al., 2016).  

As CDGs are rare and difficult to treat in humans, animal models are needed to further 

develop and test treatments. Certain CDGs, such as PMI have been knocked-out in mice, 

however the null mutation often causes embryonic lethality making it a poor model system 

(DeRossi et al., 2006).  Rather than generating a null mutations, hypomorphic or antimorphic 

alleles could be used to interrogate the molecular cause of the diseases and potential 

treatments. Furthermore, partial loss-of-function can more analyzed more quickly in other 

vertebrate organisms such as Xenopus or zebrafish using Morpholino oligonucleotides. 
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The UDP-GlcNAc salvage pathway recycles GlcNAc from degraded glycoproteins 

Glycoproteins are commonly endocytosed and degraded in the lysosome (Freeze et al., 

2015). The transport or diffusion of free GlcNAc moieties from the lysosomal lumen to the 

cytosol is poorly understood. However, in the cytosol N-Acetylglucosamine Kinase (NAGK), the 

first enzyme of the UDP-GlcNAc salvage pathway converts GlcNAc into GlcNAc-6-P (Bergeret al., 

2002). GlcNAc-6-P is then converted into GlcNAc-1-P by Phosphoglucomutase 3 (PGM3) 

(Bergeret al., 2002).  Finally, UDP-N-Acetylglucosamine Pyrophosphorylase 1 (UAP1) converts 

GlcNAc-1-P into UDP-GlcNAc (Bergeret al., 2002). Once GlcNAc has been salvaged but 

conversion in UDP-GlcNAc, it can be used by DPAGT1 mediated N-linked glycosylation (Bergeret 

al., 2002; Freeze et al., 2015). 

Lysosomal degradation of glycoproteins is an important step in glycosylation, as nearly 

half of all amino sugars from endocytosed glycans are reused for glycoprotein synthesis (Freeze 

et al., 2015). Approximately 80% of GlcNAc salvaged from degraded glycoproteins is converted 

into Uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) (Freeze et al., 2015). At least 30% 

of this “salvaged” UDP-GlcNAc is used to synthesize secreted glycoproteins (Freeze et al., 2015). 

Therefore, salvage of GlcNAc from degraded N-glycosylated proteins is important for the 

availability of UDP-GlcNAc and DPAGT1 one function.  
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Glycosylation is essential for proper metazoan development 

 Glycosylation is an essential post-translational modification regulating more than half of 

the proteome. Cell signaling pathways, such as Fgf and Wnt, are regulated by glycosylation of 

component proteins (e.g. ligands and receptors). Of the five classes of glycosylation, N-linked 

and O-linked glycosylation are the most common. Both gain-of-function and loss-of-function 

mutations lead to congenital disorders of glycosylation (CDG), through alterations of protein 

glycosylation states. However, only two loss-of-function CDGs can be effectively treated, 

through supplementation with the downstream carbohydrate.  

To date, forty-two mutations in proteins involved in N-linked glycosylation have been 

identified. In chapter 6, I will discuss three enzymes involved in the salvage of UDP-GlcNAc from 

glycosylated proteins, the first enzyme in N-linked glycosylation, and how they work to regulate 

the glycosylation state of Wnt signaling pathway components. Two of these enzymes (PGM3 

and DPAGT1) are known to result in CDGs. Our results suggest supplementation with the final 

carbohydrate of the pathway (UDP-GlcNAc) may be an effective treatment for these CDGs.  
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Chapter 5:  

Wnt signaling and implications of glycosylation 

The canonical Wnt/β-catenin pathway 

Wnt signaling plays an essential role in cell fate, proliferation, polarity, and cell death 

during embryonic development. Canonical Wnt signaling uses the essential downstream 

transcriptional effector, β-catenin, to facilitate alterations in transcriptional targets. When the 

pathway is not active, β-catenin is continually synthesized and destroyed by the β-catenin 

destruction complex in a futile cycle. Activation of the pathway inhibits the formation of the 

destruction complex and stabilizes β-catenin. β-catenin can then enter the nucleus to modulate 

transcription (Fig. 5-1). 

  Extracellularly secreted Wnts bind to members of the Frizzled (Fz) family of 

transmembrane receptors (Bhanot et al., 1996; Hsieh et al., 1999). The Wnt-Fz complex binds 

the functionally redundant co-receptors: low-density lipoprotein receptor-related protein 5 

(LRP5) or 6 (LRP6) (Pinson et al., 2000; Tamai et al., 2000; Wehrli et al., 2000). This interaction 

induces production of phosphatidylinositol (4,5)-bispho-sphate (PIP2), which induces 

oligomerization and clustering of LRP5/6 (Pan et al., 2008). Dishevelled (Dsh) is then recruited 

to the receptor complex where it binds to Fz and activates PI4KIIa and PIP5KI to promote 

further synthesis of PIP2 (Pan et al., 2008; Rothbacher et al., 2000; Semenov and Snyder, 1997; 

Tauriello et al., 2012; Wong et al., 2000; Wong et al., 2003; Yanagawa et al., 1995). However, 
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Dsh alone is sufficient to activate β-catenin signaling, independently of the Wnt-receptor 

complex (Salic et al., 2000; Wehrli et al., 2000).  

The Wnt-Fz-LRP5/6 complex recruits Axin to LRP5/6, resulting in further recruitment of 

Glycogen Synthase Kinase 3 (GSK3) and Casein Kinase (CK1) to phosphorylate LRP5/6 (Baig-

Lewis et al., 2007; Davidson et al., 2005; Zeng et al., 2005). Phosphorylation of LRP5/6 promotes 

recruitment of cytoplasmic Axin-bound GSK3 complexes to the cell surface in a positive 

feedback loop promoting further the phosphorylation of additional LRP5/6 (Baig-Lewis et al., 

2007; Mao et al., 2001; Zeng et al., 2008). Axin is the limiting component of the destruction 

complex. The recruitment of Axin to the membrane inhibits the formation of the destruction 

complex and stabilizes β-catenin (in a mechanism that has yet to be defined) (Saito-Diaz et al., 

2013). Cytoplasmic β-catenin accumulates in the cytosol and nucleus, where it associates with 

the TCF/LEF family of DNA-bound transcription factors to mediate transcription of target genes 

(Behrens et al., 1996; Goentoro and Kirschner, 2009; Molenaar et al., 1996; Saito-Diaz et al., 

2013). 
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 Figure 21 Figure 5-1: The current model of canonical Wnt/β-catenin signaling 
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Figure 5-1: The current model of canonical Wnt/β-catenin signaling (Copied here from Saito-Diaz et al., 

2013). (Left panel) In the absence of Wnt, cytoplasmic β-catenin forms a complex with APC, Axin, GSK3, 

and CK1α. β-Catenin is phosphorylated by CK1α and subsequently phosphorylated by GSK3. The 

phosphorylated form of β-catenin is recognized by the E3 ubiquitin ligase SCFβ-TRCP, which targets β-catenin 

for proteasomal degradation. In the absence of nuclear β-catenin, Wnt target genes are repressed. APC, 

adenomatous polyposis coli; GSK3, glycogen synthase kinase 3; CK1α, casein kinase 1 alpha. (Right panel) 

In the presence of Wnt ligand, a receptor complex forms between Fz, LRP5/6, and Wnt. The recruitment 

of Dsh by Fz leads to LRP5/6 phosphorylation by CK1α and GSK3 followed by recruitment of Axin to LRP5/6. 

The latter disrupts Axin-mediated phosphorylation/degradation of β-catenin, leading to accumulation of 

β-catenin in the cytoplasm and its translocation to the nucleus, where it acts as a transcriptional co-

activator with TCF to activate Wnt-responsive target genes. Fz, Frizzled; Dsh, Dishevelled; TCF, T-cell 

factor. Copied here from Saito-Diaz et al. 2013. 
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The non-canonical Wnt pathway 

Non-transcriptional Wnt pathways are known as noncanonical Wnt signaling, and 

include planar cell polarity, convergent extension, Wnt-Ca2+, and Wnt-atypical protein kinase C 

pathways (Amerongen, 2012; Kikuchi et al., 2009; Lai et al., 2009; Semenov et al., 2007; Simons 

and Mlodzik, 2008; Thrasivoulou et al., 2013). Noncanonical Wnt signalling is initiated by Wnt 

or Fz and is independent of the β-catenin transcriptional element (Semenov et al., 2007). Unlike 

canonical Wnt/β-catenin signaling, the mechanisms underlying activation of noncanonical Wnt 

pathways are poorly understood. Noncanonical activity of Wnt3a, Wnt4, Wnt5a, and Wnt11 

have been identified and may use Dvl, axin, and GSK3 to activate LRP6 and other co-receptor in 

addition to Fz (Angers and Moon, 2009; Green et al., 2008; Grumolato et al., 2010; Kumawat 

and Gosens, 2016; Lai et al., 2009; Qian et al., 2007; Wang et al., 2006; Yamamoto et al., 2008).  

 

Wnt signaling and N-glycosylation 

All of the secreted Wnt ligands are N-linked glycosylated (Saito-Diaz et al., 2013). 

However, the role(s) of glycosylation in Wnt are not well conserved, as the number and position 

of glycosylation sites within the Wnt family differ (Tang et al., 2012). In Wnt1, N-glycosylation 

has been suggested to be dispensable for autocrine and paracrine signaling (Doubravska et al., 

2011; Mason et al., 1992). In the Drosophila the Wnt orthologue, Wingless, is secreted and 

retains activity when Glycosylation-deficient (Tang et al., 2012). However, studies by the Kikuchi 

lab found that N-glycosylation of Wnt3a and Wnt5a precedes lipid modification and is 
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important for Wnt secretion, but not for Wnt activity (Komekado et al., 2007; Kurayoshi et al., 

2007; Takada et al., 2006; Tanaka et al., 2002; Willert et al., 2003). The exit of LRP5/6 from the 

ER is dependent on N-linked glycosylation for maturation and membrane localization (Jung et 

al., 2011; Kahn et al., 2007). Furthermore, binding of the Wnt antagonist Dkk1 Is Regulated by 

N-glycosylation of LRP6 (Matoba et al., 2017). Shisa has been suggested to retain Fz protein in 

the ER, by binding immature Fz8 which has not been fully glycosylated (Yamamoto et al., 2005). 

Therefore, the role of glycosylation in Wnt remains unclear. In addition to glycosylation of Wnt, 

LRP5/6 and Fz, β-catenin is stabilized by the addition of an O-linked GlcNAc (O-GlcNAcylation) 

(Ha et al., 2014; Olivier-Van Stichelen et al., 2014). 

 

NAGK and N-glycosylation modulate Wnt signaling possibly through LRP6 

In the next chapter of this work we will show that Wnt signaling is regulated by the UDP-

GlcNc glycosylation salvage pathway in Xenopus laevis and zebrafish. Overexpression of key 

components of the salvage pathway (particularly, NAGK) promotes Wnt signaling, and, 

conversely, downregulating NAGK inhibits Wnt signaling. qRT-PCR analysis of ectodermal 

explants suggest that the effect of the salvage pathway on the Wnt pathway is at the level of 

Wnt receptor activation.  Finally, we show that both the canonical and the noncanonical Wnt 

pathways are affected by the UDP-GlcNc salvage pathway.
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Chapter 6:  

N-acetyl-D-glucosamine kinase controls Wnt signaling in the early 

embryo 

The work described herein is a completed but unpublished manuscript by: 

Leif R. Neitzel, Christopher S. Cselenyi, Cheyanne Q. Youngblood, Alya Zouaoui, and Ethan Lee 

 

Abstract 

The UDP-GlcNAc glycosylation salvage pathway is responsible for nearly 80% of the UDP-GlcNAc pool 

required for glycosylation. In a novel screen for human kinases that regulate early Xenopus laevis 

development, we identified N-acetyl-D-glucosamine kinase (NAGK), a key enzyme in the UDP-GlcNAc 

salvage pathway, as a regulator of vertebrate anteroposterior pattering. Overexpression of NAGK 

posteriorized and knockdown anteriorized Xenopus embryos. Inhibition of the UDP-GlcNAc glycosylation 

salvage pathway enzymes, PGM3 and UAP1, as well as the DPAGT1, the first enzyme in N-linked 

glycosylation, anteriorized Xenopus embryos. Conversely, overexpression of PGM3, UAP1, or DPAGT1 

posteriorized Xenopus embryos. The sugars of the UDP-GlcNAc glycosylation salvage pathway (GlcNAc, 

GlcNAc-6-P, GlcNAc-1-P, and UDP-GlcNAc) were sufficient to posteriorize Xenopus embryos. Inhibition of 

NAGK in Danio rerio resulted in cyclopia. Overexpression of NAGK, PGM3, UAP1, DPAGT1, GlcNAc, 

GlcNAc-6-P, GlcNAc-1-P, or UDP-GlcNAc inhibited eye formation in D. rerio. The observed phenotypes in 

Xenopus and D. rerio are consistent with Wnt phenotypes. qRT-PCR of target genes demonstrates that 

the salvage pathway affected Wnt signaling, but not Notch, Shh, BMP, or Fgf. Moreover, studies of 

ectodermal explants indicate that alterations of the salvage pathway effect the Wnt pathway at the level 

of the receptor and/or ligand. These results demonstrate that altering the N-glycosylation pathway 

specifically regulates the Wnt signaling pathway.  



104 

 

Introduction 

At least 1% of all proteins encoded in the human genome are involved in or modify 

glycosylated proteins, and >50% of all proteins will undergo glycosylation during their lifetime 

(Apweiler, 1999; Ohtsubo and Marth, 2006). N-acetyl-D-glucosamine (GlcNAc) moieties are key 

monomers of N-/O-glycans, glycolipids, glycosaminoglycans and the glycosyl 

phosphatidylinositol anchor of membrane bound glycoproteins (Esko and Lindahl, 2001; 

Hakomori, 2000; Hwa, 2001; Kornfeld and Kornfeld, 1976; Schachter, 2000; Van den Steen et 

al., 1998). Approximately 80% of GlcNAc salvaged from degraded glycoproteins is converted 

into Uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) (Freeze et al., 2015). At least 30% 

of this “salvaged” UDP-GlcNAc is used to synthesize secreted glycoproteins (Freeze et al., 2015).  

It has been estimated that nearly half of all amino sugars from endocytosed glycans are reused 

for glycoprotein synthesis in cells (Freeze et al., 2015).  

N-acetylglucosamine kinase (NAGK; GlcNAc kinase, E.C. 2.7.1.59) is a member of the 

sugar kinase/heat shock protein70/actin superfamily (Berger et al., 2002). NAGK is a key 

enzyme in both the production of UDP-GlcNAc and N-linked glycosylation. NAGK converts 

GlcNAc into GlcNAc 6-phosphate (GlcNAc-6-P), the first step in the UDP-GlcNAc salvage 

pathway. 

In the current study, we show that enzymes and sugar products of the UDP-GlcNAc 

glycosylation salvage pathway play a critical role in selectively regulating Wnt signaling in 

Xenopus and zebrafish embryos. qRT-PCR analysis of target genes suggest that the effects of the 
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salvage pathway is specific for the Wnt pathway and not Notch, Shh, BMP, or Fgf. We show that 

control of Wnt signaling by the salvage pathway is likely via its effect at the level of the Wnt 

receptors.  These data identify the UDP-GlcNAc salvage pathway as a conserved and selective 

regulator of Wnt signaling in early development.  
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Materials and methods 

Kinase screen 

We obtained 232 cDNAs from the Harvard Institute of Proteomics (HIP) FLEXGene 

human kinase cDNA collection (pDNR-dual complete set). Primers designed to facilitate in vitro 

transcription were used to generate PCR constructs. First, a fragment of the pCS2 Poly(A) 

sequence was first obtained using: 5’ 

GACCATTCGTTTGGCGCGCGGGCCTGAGATCCAGACATGATAAGATAC 3’ and 5’ 

GAATTAAAAAACCTCCCACACCTCCCCCTGAACCTG 3’. The human kinase was amplified with an 3’ 

oligonucleotide sequence designed to overlap with the 5’ oligonucleotide sequence of the CS2 

Poly(A) fragment, using  5’ GGCCCGCGCGCCAAACGAATGGTC 3’ and 5’ 

CCAAGCCTTCTAATACGACTCACTATAGGGAGACAGTGAGCGAGGAAGCGGCCGC 3’. Both 

constructs were stitched together in a third PCR reaction to produce a single fragment with a 5’ 

human kinase and a 3’ poly(A) tail. RNA was then generated using the MEGAscript T7 

Transcription Kit from Ambion (Catalog number: AM1333). Pools of 8 human kinases mRNAs 

were injected equatorially in the dorsal blastomere four-cell stage Xenopus laevis embryos. 

Pools were assed for perturbation of development. Single mRNAs were injected from pools that 

perturbation of development to identify the causal kinase (Fig. 6-1). Screen efficiency was 

verified with injection of GFP constructs (Fig. 6-2).
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 Figure 22 Figure 6-1: Genome-scale human kinase screen identification of NAGK in Xenopus embryos 
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Figure 6-1: Genome-scale human kinase screen identification of NAGK in Xenopus embryos. Diagram of 

the human kinase screen. (A) Human cDNAS in pDNR-dual were amplified by primers designed to 

introduce a T7 promoter to the 5’ end of the amplicon and a 3’ primer with an introduced overlap to the 

5’ of the CS2 poly(A) fragment. (B) The poly(A) sequence from pCS2 amplified by PCR with an introduced 

5’ fragment to overlap with the 3’ of the construct from (A). (C) The amplicons from (A) and (B) were then 

stitched together in a third PCR to constitute a 5’ T7-human kinase-poly(A) tail 3’ sequence. mRNA was 

then synthesized in vitro. (D) Pools of eight mRNAs were injected into the marginal zone of the dorsal 

blastomeres of four-cell stage Xenopus laevis embryos. Kinases from pools with identified phenotypes 

were then injected individually to identify specific kinases.  (E) Overexpression of NAGK protein (n=5/40), 

BLK mRNA (n=5/31), and HCK mRNA (n=4/27) resulted in posteriorization of Xenopus embryos. 

Posteriorized embryos were not observed in the WT controls (n=0/47). Embryos were injected in each 

blastomere with 20 pg MBP-tagged human NAGK, 0.1 ng of BLK mRNA, or 0.17 ng of HCK mRNA, in a 

volume of 2.5 nl. Numbers were aggregated from n≥3 replicates. V; vegetal pole. A, animal pole. Ve, 

ventral. D, dorsal. 
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 Figure 23 Figure 6-2: A GFP control for the screen shows robust expression of the kinase constructs in Xenopus. 
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Figure 6-2: A GFP control for the screen shows robust expression of the kinase constructs in Xenopus. 

(A) An uninjected control embryo (n=0/46). Xenopus embryos were injected mRNA and in vtiro 

transcribed with (B) GSK3β control amplified from pDNR-Dual with an introduced 5’ T7 promotor and 3’ 

poly(A) tail (n=0/21), (C) A GFP control was amplified from a pCS2-GFP construct (n=23/23), (D) GFP 

amplified from pDNR-Dual with an introduced 5’ T7 promotor (n=20/22). (E) GFP amplified from pDNR-

Dual with an introduced 5’ T7 promotor and 3’ poly(A) tail (n=29/35). (F) The product from (E) cleaned up 

on with a PCR Purification Kit before in vitro translation (n=36/36). No fluorescence was observed (A), (B) 

or (D). In (C) a small number of GFP positive cells are observed (green). The product from (E) and (F) show 

robust GFP expression. (A) - (F) Each dorsal blastomere was injected or co-injected with 1 ng of mRNA in 

a volume of 2.5 nl. Embryos are aggregate from n≥3 biological replicates for (A) – (F). 
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DNA constructs, mRNA and protein  

Identified kinases, were sub-cloned into pCS2, and the pCS2 constructs were used for all 

further experiments. A kinase-dead NAGK mutant was created by inducing a threonine to 

methionine at nucleotide 128 (NAGKT128M) using site directed mutagenesis. cDNA encoding full-

length human PGM3 (Catalog Number: OHS1770-202324198), human UAP1 (Catalog Number: 

OHS1770-202321404), human DPAGT1 (Catalog Number: OHS1770-202315445), and mouse 

NGYL1 (Catalog Number: MMM1013-202769864) were obtained from Open Biosystems and 

subcloned into pCS2. Drosophila CG6218 was obtained from the Drosophila Genomics Resource 

Center (Stock number: 6497) and subcloned into pCS2. Xenopus Wnt8, Xenopus Wnt8-human 

frizzled 5 fusion (Fz), VSV-G-LRP6 (LRP6), and Xenopus Dishevelled (DSH) in pCS2 were used for 

co-injection experiments. mRNA was generated from the pCS2 constructs using the mMESSAGE 

mMACHINE SP6 transcription kit (Catalog number:  AM1340) from Invitrogen. NAGK was 

subcloned into pMAL and used to generate recombinant MBP-tagged human protein as 

previously described (Saito-Diaz, Benchabane et al. 2018). 

 

Sugars and Morpholinos 

3-O-methyl-GlcNAc (CAS Number: 94825-74-8) and UDP-GlcNAc (CAS Number: 91183-

98-1) were obtained from Cayman Chemical Company. GlcNAc-6-P was obtained from 

Carbosynth (CAS Number: 102029-88-9). GlcNAc (CAS Number: 7512-17-6) and GlcNac-1-P (CAS 

Number: 31281-59-1) were obtained from Sigma-Aldrich. Morpholinos were designed using J-
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Strain 9.2 and acquired from Gene Tools, LLC. The MO sequences were NAGK 5’ 

CCCCCATACACAGCAGCCATCTC 3’, PGM3 5’ ATTCAGCACTGCTTCCATCTTCATC 3’, UAP1 5’ 

TGACGAACAACTGCCACATCCATAC 3’, and DPAGT1 5’ CCGGCATGTTTGCCAATAGTTTACG 3’. 

Sugars and Morpholinos were re-suspended in pure water. 

 

Animals care 

All animals in this study (Xenopus, zebrafish, and Drosophila) were treated in accordance 

with Vanderbilt's Institutional Animal Care and Use Committee.  

 

Xenopus embryo injections 

Fresh Xenopus laevis testis were excised, suspended in 1ml 1x Modified Barth’s saline 

(MBS) with 50ul FBS, and crushed with a disposable pestle. Embryos were collected in 1x MBS, 

excess MBS was removed and 200 ul of the crushed testis mixture added. Embryos were 

immediately flooded with 0.1x MBS. After approximately 30 mins fertilized embryos were 

dejellied for 5 mins with 2% (w/v) L-cysteine (pH 8.0). Embryos were washed 12 times with 0.1x 

MBS and transferred to 4% Ficoll in 1x Marc's Modified Ringer's (MMR). Embryos were injected 

equatorially in both dorsal blastomeres at developmental stage 3 (4-cells) and grown at room 

temperate for two days (Stage 35) before phenotyping. Embryos were fixed overnight in 

MEMFA (1 ml of 10X MEM salts, 1 ml 37% formaldehyde, and 8 ml Milli-Q water). Washed and 
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stored in PBS at 4°C until imaged. Here we report only phenotypes observed in n≥3 biological 

repeats. One male and three females were used per biological repeat. Xenopus were grown at a 

density of 50 or less embryos per 100 x 20 mm petri dish with excess 1x MMR. 

  

Embryo soaking 

Xenopus embryos were fertilized and dejellied as described above. At stage 3, embryos 

were transferred to 2.5% (w/v) GlcNAc or Tunicamycin suspended in 1X MMR. Embryos were 

grown at room temperate for two days (Stage 35) before phenotyping. Embryos were fixed as 

described above. Here we report only phenotypes observed in n≥3 biological repeats. One male 

and three females were used per biological repeat. Embryos were grown at a density of 10 or 

less embryos per 60 X 15 mm petri dish. 

 

Zebrafish embryo injections 

Wild-type (AB) zygotes (1 cell) were injected in the single cell. Embryos were raised in 

egg water (0.03% Instant Ocean) + 0.01mg/L methylene blue at 28.5°C and a density of 50 or 

less embryos per 100 x 20 mm petri dish. Dead embryos were removed and fresh egg water 

added daily. Embryos were phenotyped at 5 days post fertilization. Embryos were fixed 

overnight in 4% Paraformaldehyde in PBS overnight. Washed and stored in PBS at 4°C until 

imaged. Here we report only phenotypes observed in n≥3 biological repeats. Embryos with 
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sever and non-specific edema were excluded from analysis. Embryos from n≥3 male/females 

pairs were collected per biological repeat.  

 

Generation of cDNA and quantitative-PCR 

Whole RNA was collected from whole embryos at stage 10.5, 13, or 16 or animal caps 

from stage 10.5 embryos. Samples were homogenized in 1 ml RNA Stat-60 (Amsbio) with a 

disposable pestle and cleaned up using chloroform extraction. The High Capacity cDNA Reverse 

Transcription Kit (Applied Biosystems) was used to produce cDNA using the supplied random 

primers. qPCR was ran using the GoTaq® qPCR Master Mix (Promega) on a CFX96 qPCR machine 

(Bio-rad). qPCR were run in biological and technical triplicate. mRNA levels were normalized to 

the house keeping gene Ornithine decarboxylase (odc). Fold change was calculated using 2-ΔΔct 

as described in (Rao et al., 2013). 

odc was amplified with the forward 5’ GTCAATGATGGAGTGTATGGATC 3’ and reverse 5’ 

TCCATTCCGCTCTCCTGAGCAC 3’ primers (Swain et al., 2005). hes1 was amplified with the 

forward 5’ AAAGTCCTCCAAGCCCATC 3’ and reverse 5’ CCGGGAGCTATCTTTCTTGAG 3’ primers. 

dusp6 was amplified with the forward 5’ GTGACACCAAACTTGCCTAATC 3’ and reverse 5’ 

CGGGCTTCATCTATAAACGAGAT 3’ primers. tbxt was amplified with the forward 5’-

GGATCGTTATCACCTCTG-3’ and reverse 5’-GTGTAGTCTGTAGCAGCA-3’ primers (Batut et al., 

2005). ptch1 was amplified with the forward 5’-GGACAAGAATCGCAGAGCTG-3’ and reverse 5’-

GGATGCTCAGGGAACCTTAC-3’ primers (Jin et al., 2016). chordin was amplified with the forward 



115 

 

5’-AACTGCCAGGACTGGATGGT-3’ and reverse 5’-GGCAGGATTTAGAGTTGCTTC-3’ primers (Sun 

et al., 2015).  Xnr3 was amplified with the forward 5’-CTTCTGCACTAGATTCTG-3’ and reverse 5’-

CAGCTTCTGGCCAAGACT-3’ primers (Miyazaki et al., 2012). Only a single product was amplified 

by each primer pair (Fig. 6-3).  

 

Microscopy  

Bright field images were obtained using a Stemi 2000-CS microscope (Zeiss, Oberkochen, 

Germany) with an Olympus DP72 camera. Fluorescent images were obtained using a Nikon 

Eclipse 80i microscope with a Cool SNAP ES camera (Photometrics, Tucson, USA). Images were 

analyzed in Fiji or Photoshop. 
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 Figure 24 Figure 6-3: The qRT-PCR primers sets amplify a single product 
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Figure 6-3: The qRT-PCR primers sets amplify a single product. Final products from qRT-PCR run on a 2% 

Agarose gel. Products are from whole WT embryos. Size of the products are indicated (base pairs; bp). 

Ornithine decarboxylase 1; odc. Patched 1; ptch1. Dual specificity phosphatase 6; dusp6. Hes family bHLH 

transcription factor 1; hes1. T-box transcription factor T; tbxt. Nodal homolog 3, gene 1; Xnr3. Chordin, 

gene 1; chordin. n≥3 gels were run for each from different biological repeats. 
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Statistics  

All statistical analyses were performed in R v3.1.0. Fisher’s exact test and multiple T-test 

(two tailed, equal variance) were used as indicated in figure legends. Post hoc analysis of 

Fisher’s exact test and multiple T-test tests were by Bonferroni correction. The following critical 

ρ values were used for all analyses: 0.05, 0.01, and 0.001. Sample sizes (n) are indicated as n= 

number of samples with the observed phenotype / total number of samples.
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Results 

Genome-scale human kinase screen identifies NAGK as a regulator of axiation in Xenopus  

In an overexpression screen to identify novel kinases that regulate vertebrate 

development, an arrayed library of cDNAs encoding 230 human kinases was subjected to a 

series of PCR reactions that resulted in the addition a T7 promoter and an SV40 polyadenylation 

signal from the pCS2+ plasmid in the 5’ and 3’ region of the open reading frame, respectively 

(Turner and Weintraub, 1994) (Fig. 6-1A,B). Reactions products were then purified and 

subjected to in vitro transcription to generate capped mRNAs for injection into Xenopus laevis 

embryos (Fig. 6-1C,D). The addition of the SV40 polyadenylation signal from the pCS2+ plasmid 

was critical for robust expression of injected mRNAs into Xenopus embryos (Fig. 6-2). Although 

we found that unpurified in vitro transcribed mRNAs expressed in embryos when injected, 

purified mRNAs yielded more consistent results.  

For screening, 29 pools of 8 mRNAs encoding human kinases were injected into the 

dorsal blastomeres of four-cell stage Xenopus embryos (Fig. 6-1D). Embryos were then analyzed 

for developmental defects post-neurula stage. Pools of mRNAs that perturbed development 

were then injected individually to identify the relevant kinase giving rise to the developmental 

phenotype. From the screen, five kinases were identified that perturbed early development in 

addition to casein kinase 1 epsilon and delta, both known regulators of Wnt signaling (Gao et 

al., 2002; Hino et al., 2003; Peters et al., 1999; Sakanaka et al., 1999; Swiatek et al., 2004).  Of 

the five kinases not previously characterized as a regulator of early vertebrate development, N-
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Acetyl-D-glucosamine Kinase, (NAGK), had the strongest and most penetrant phenotype and we 

proceeded with its further characterization. 

 

NAGK overexpression posteriorizes Xenopus embryos and NAGK inhibition anteriorizes 

Xenopus embryos 

Injection of NAGK mRNA or recombinant NAGK protein results in posteriorized Xenopus 

embryos with reduced anterior trunk and head structures (Fig. 6-1E, 6-4A, appendix-1). 

Injection with mRNA of the Drosophila melanogaster orthologue to NAGK, Dmel\CG6218 

(CG6218), phenocopied NAGK mRNA (Fig. 6-4A, 6-5A). Conversely, knocking down NAGK by 

injection of a NAGK Morpholino Oligonucleotide (MO) results in anteriorized embryos (Fig. 6-

4B, appendix-1). Previous studies with a related kinase, glucokinase, indicated that a mutation 

in the ATP binding region (T228M) resulted in a kinase dead protein that acted in a dominant-

negative fashion (Mahalingam et al., 1999).  Based on these studies, we generated a 

corresponding mutation (T128M) in NAGK, and injected mRNA into Xenopus embryos (Berger 

et al., 2002). Consistent with the NAGK MO injections, expression of the putative kinase dead 

mutant of NAGK (NAGKT128M) results in anteriorized embryos (Fig. 6-4B, 6-5A). Similarly, 

injection of a small molecule competitive inhibitor of NAGK, 3-O-methyl N-acetylglucosamine 

(3-O-Me-GlcNAc), that mimics the substrate of NAGK (Zeitler et al., 1992; Miwa et al., 1994; 

Blume et al., 2008), also results in anteriorization of embryos (Fig. 6-4B, 6-5A). Finally, both 

NAGK MO and 3-O-Me-GlcNAc were able to suppress the posteriorized embryo phenotype of 



121 

 

injected NAGK mRNA (Fig. 6-4C). These data provide strong evidence for the role of NAGK in 

primary axis formation in Xenopus embryos.
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Figure 25 Figure 6-4: NAGK overexpression posteriorizes Xenopus embryos, conversely NAGK inhibition anteriorizes Xenopus 
embryos 
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Figure 6-4: NAGK overexpression posteriorizes Xenopus embryos, conversely NAGK inhibition 

anteriorizes Xenopus embryos. (A) (Left) Injection of NAGK mRNA (n=5/33), MBP-tagged NAGK protein 

(n=5/40), or CG6218 mRNA (n=7/67) posteriorizes Xenopus embryos. (Right) Example of an embryo 

posteriorized by injection of NAGK mRNA. (B) (Left) Injection of NAGK MO (n=10/30), NAGKT128M 

(n=23/74), or 3-O-Me-GlcNAc (n=31/125) anteriorizes Xenopus embryos. (Right) Example of an embryo 

anteriorized by injection of NAGK MO. (C) Posteriorization of embryos by NAGK mRNA (n=15/32) was 

rescued by co-injection of NAGK MO (n=7/41) or 3-O-Me-GlcNAc (n=5/30). WT embryos did not display 

the observed phenotypes in (A) (n=0/86), (B) (n=0/42) or (C) (n=0/33). (A) - (C) was aggregated from n≥3 

replicates. (A) - (C) Each dorsal blastomere was injected or co-injected with 1.5 ng of mRNA, 1 pg MO, or 

20 pg protein, in a volume of 2.5 nl. (A) - (C) Significance was calculated using Fisher’s exact test and 

Bonferroni correction. (A) and (B) Treatments were compared to the WT; **ρ<0.00334, ***ρ<0.000334. 

(C) Co-injections were compared to the mRNA control; *ρ< 0.0253. 
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 Figure 26 Figure 6-5: Examples of Xenopus phenotypes 
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Figure 6-5: Examples of Xenopus phenotypes. (A) Example of a CG6218 mRNA posteriorized embryo, and 

NAGKT128M mRNA and 3-Ome-GlcNAc anteriorized animals (C) Examples of animals posteriorized by 

injection of mRNAs of the UDP-GlcNAc salvage pathway. (D) Examples of animals anteriorized by injection 

of MOs against the enzymes of the UDP-GlcNAc salvage pathway. (E) Examples of animals posteriorized 

by injection of the sugars of the UDP-GlcNAc salvage pathway.  (F) Examples of animals posteriorized by 

DPAGT1 mRNA injection and anteriorized by DPAGT1 MO injection. (G) Example of an anteriorized embryo 

injected with NGLY1. 
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Posteriorization of Xenopus embryos by NAGK occurs via its role in glycosylation  

 NAGK is the first enzyme in the salvage pathway that converts free, cytoplasmic N-

acetylglucosamine (GlcNAc) generated from degradative cellular pathways into UDP-N-

acetylglucosamine (UDP-GlcNAc), which is then transferred onto oligosaccharides that are 

incorporated into glycosylated proteins and glycosaminoglycans (Hinderlich et al., 2000) (Fig. 6-

6A,B).  Structural studies performed with NAGK suggests that it is unlikely to exhibit kinase 

activity towards protein substrates (Berger et al., 2002). We set out to test whether the effects 

of altering NAGK expression or activity on primary axis formation were due to the effect of 

NAGK on glycosylation in the early Xenopus embryos. We found that soaking embryos in N-

acetyl-D-glucosamine, the first substrate in the hexosamine biosynthesis pathway which 

produces N-acetylglucosamine-6-P (GlcNAc-6-P), posteriorizes Xenopus embryos (Fig. 6-7A,C). 

This suggests NAGK promotes posteriorization of Xenopus embryos through its canonical 

function in the UDP-GlcNAc salvage pathway. 
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 Figure 27 Figure 6-6: Diagram of the UDP-GlcNAc salvage pathway and DPAGT1. 
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Figure 6-6: Diagram of the UDP-GlcNAc salvage pathway and DPAGT1. (A) Glycosylated proteins are 

digested and free GlcNAc are released and transported to the cytosol. (B) The UDP-GlcNAc salvage 

pathway converts the free pool of cytosolic GlcNAc into UDP-GlcNAc. (C) Free UDP-GlcNAc is attached to 

dolichol phosphate in the cytosol. GlcNAc; N-acetyl-D-glucosamine. GlcNAc-1-P; N-acetyl-D-glucosamine-

1-Phosphate. GlcNAc-1-P; N-acetyl-D-glucosamine-6-Phosphate. UDP-GlcNAc; Uridine diphosphate N-

acetyl-D-glucosamine. NAGK; N-acetylglucosamine kinase. PGM3; N-Acetylglucosamine-Phosphate 

Mutase. UAP1; UDP-N-Acetylglucosamine Pyrophosphorylase 1. DPAGT1; Dolichyl-Phosphate N-

Acetylglucosaminephosphotransferase 1.  
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Figure 28 Figure 6-7: Soaking Xenopus embryos in GlcNAc results in posteriorization, while soaking embryos in Tunicamycin results in anteriorization
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Figure 6-7: Soaking Xenopus embryos in GlcNAc results in posteriorization, while soaking embryos in 

Tunicamycin results in anteriorization. (A) Soaking Xenopus embryos in 2.5% (w/v) GlcNAc resulted in 

posteriorization (n=35/35). Posteriorization was not observed in the WT controls (n=0/40). (B) Conversely, 

soaking Xenopus embryos in 2.5% (w/v) Tunicamycin resulted in anteriorization (n=9/60). Anteriorization 

was not observed in the WT controls (n=0/76). (C) Examples of GlcNAc and Tunicamycin soaked animals. 

(A) and (B) where aggregated from n≥4 replicates. Significance was calculated using Fisher’s exact test and 

Bonferroni correction. Treatments where compared to the WT; ***ρ<.001. 
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Overexpression of UDP-GlcNAc salvage pathway posteriorizes Xenopus embryos; conversely, 

inhibition of the pathway and N-glycosylation anteriorizes embryos 

NAGK phosphorylates GlcNAc to GlcNAc-6-P, which is converted to GlcNAc-1-P PGM3 

(Fig. 6-6B) (Berger et al., 2002).  GlcNAc-1-P is utilized by UAP1 to synthesize UDP-GlcNAc (Fig. 

6-6B) (Berger et al., 2002). To test whether the other UDP-GlcNAc salvage enzymes, similar to 

NAGK, perturbed Xenopus axis formation, we injected PGM3 and UAP1 mRNA. Both mRNAs 

posteriorized the animals similarly to NAGK mRNA injection (Fig. 6-5B, 6-8A). Conversely, 

injection of PGM3 and UAP1 MO anteriorized embryos similar to NAGK MO injection (Fig. 6-5C, 

6-8B). Furthermore, the observed phenotypes were suppressed by co-injecting mRNAs with 

UDP-GlcNAc salvage pathway MOs (Fig. 6-9A,B,C). These data suggest that that the enzymes 

involved in the UDP-GlcNAc salvage pathway play a role in anterior-posterior patterning of the 

early Xenopus embryo. 

 To determine whether the products of the UDP-GlcNAc salvage pathway affected 

axiation, we injected GlcNAc, GlcNAc-6P, GlcNAc-1-P, and UDP-GlcNAc into Xenopus embryos. 

We found that they resulted in posteriorized embryos similar to what we observed with 

injection of the mRNAs encoding the UDP-GlcNAc salvage enzymes (Fig. 6-8C). Furthermore, we 

found that the knockdown and inhibition phenotypes of NAGK MO, PGM3 MO, UAP1 MO, 

NAGKT128M, and 3-O-Me-GlcNAc could be suppressed by co-injecting the downstream sugars 

(Fig. 6-10A,B,C,D). Conversely, the phenotype of injected UDP-GlcNAc salvage pathway sugars 

could be suppressed by injecting MOs encoding the downstream enzyme in the pathway (Fig. 6-
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11A,B,C,D,E). These data provide strong evidence that axiation in Xenopus embryos is sensitive 

to perturbations in the UDP-GlcNAc salvage pathway.  
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 Figure 29 Figure 6-8: Inhibition of NAGK, PGM3, UAP1, DPAGT1, or overexpression of NGLY1 anteriorize Xenopus embryos; 
conversely, overexpression of UDP-GlcNAc pathway enzymes, sugars, and DPAGT1 posteriorize embryos. 
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Figure 6-8: Inhibition of NAGK, PGM3, UAP1, DPAGT1, or overexpression of NGLY1 anteriorize Xenopus 

embryos; conversely, overexpression of UDP-GlcNAc pathway enzymes, sugars, and DPAGT1 

posteriorize embryos. (A) Injection of enzymes from the UDP-GlcNAc salvage pathway of glycosylation. 

NAGK mRNA (n=7/45), PGM3 mRNA (n=6/83), UAP1 mRNA (n=19/49), and DPAGT1 mRNA (n=20/32) 

posteriorizes Xenopus embryos. (B) Injection with MOs directed against the enzymes of the UDP-GlcNAc 

salvage pathway. NAGK MO (n=16/44), PGM3 MO (n=30/80), UAP1 MO (n=27/54), and DPAGT1 MO 

(n=20/65) result in anteriorization. (C) Injection of the sugars from the UDP-GlcNAc salvage pathway. 

GlcNAc (n=9/38), GlcNAc-6-P (n=7/37), GlcNAc-1-P (n=15/46), and UDP-GlcNAc (n=5/30) result in 

posteriorization. (D) Injection of NGLY1 mRNA (n=6/46) anteriorized Xenopus embryos. WT embryos did 

not display the observed phenotypes in (A) (n=0/132), (B) (n=0/120), (C) (n=0/40), or (D) (n=0/99). (A) - 

(D) was aggregated from n≥3 replicates. (A) - (D) Each dorsal blastomere was injected or co-injected with 

1.5 ng of mRNA, 1 pg MO, or 125 pMols sugar, in a volume of 2.5 nl. (A) - (D) Significance was calculated 

using Fisher’s exact test and Bonferroni correction. (A) - (C) Treatments were compared to the WT; *ρ< 

0.0127, **ρ<0.00250, ***ρ<0.000250. (D) Treatment was compared to the WT; **ρ< 0.01. 
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 Figure 30 Figure 6-9: Inhibition of the endogenous UDP-GlcNAc salvage pathway enzymes rescues the overexpression of 
pathway enzymes. 
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Figure 6-9: Inhibition of the endogenous UDP-GlcNAc salvage pathway enzymes rescues the 

overexpression of pathway enzymes. (A) Overexpression of NAGK mRNA results in posteriorization 

(n=32/80). Co-injection with NAGK MO (n=6/42), PGM3 MO (n=1/53), UAP1 MO (n=1/46), or DPAGT1 MO 

(n=9/94) rescues the posteriorization phenotype. (B) Overexpression of PGM3 mRNA results in 

posteriorization (n=15/40). Co-injection with NAGK MO (n=5/49), PGM3 MO (n=3/50), UAP1 MO (n=1/47), 

or DPAGT1 MO (n=6/49) rescues the posteriorization phenotype. (C) Overexpression of UAP1 mRNA 

results in posteriorization (n=24/49). Co-injection with NAGK MO (n=5/31), PGM3 MO (n=4/33), UAP1 MO 

(n=5/47), or DPAGT1 MO (n=5/50) rescues the posteriorization phenotype. (D) Overexpression of DPAGT1 

mRNA results in posteriorization (n=26/65). Co-injection with NAGK MO (n=4/30), PGM3 MO (n=4/34), 

UAP1 MO (n=4/42), or DPAGT1 MO (n=5/45) rescues the posteriorization phenotype. WT embryos did not 

display the observed phenotypes in (A) (n=0/39), (B) (n=0/33), (C) (n=0/66), or (D) (n=0/52). (A) - (D) was 

aggregated from n≥3 replicates. (A) - (D) Each dorsal blastomere was injected or co-injected with 1.5 ng 

of mRNA or 1 pg MO, in a volume of 2.5 nl. (A) - (D) Significance was calculated using Fisher’s exact test 

and Bonferroni correction. (A) - (D) Co-injections were compared to the mRNA control; *ρ< 0.0127, **ρ< 

0.00251, ***ρ< 0.000251. 
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Figure 31 
Figure 6-11: Co-injection of downstream UDP-GlcNAc salvage pathway sugars rescues the inhibition of the pathway enzymes.  
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Figure 6-10: Co-injection of downstream UDP-GlcNAc salvage pathway sugars rescues the inhibition of 

the pathway enzymes. (A) Inhibition of the pathway with NAGKT128M mRNA anteriorized the embryos 

(n=16/46). Co-injection with GlcNAc-6-P (n=3/34), GlcNAc-1-P (n=2/36), or UDP-GlcNAc (n=4/39) rescued 

the anteriorization phenotype. (B) Inhibition of the pathway with 3-O-Me-GlcNAc anteriorized the 

embryos (n=27/50). Co-injection with GlcNAc-6-P (n=1/60), GlcNAc-1-P (n=4/59), or UDP-GlcNAc (n=6/75) 

rescued the anteriorization phenotype. (C) Inhibition of the pathway with NAGK MO anteriorized the 

embryos (n=41/108). Co-injection with GlcNAc-6-P (n=4/32), GlcNAc-1-P (n=6/41), or UDP-GlcNAc 

(n=2/32) rescued the anteriorization phenotype. (D) Inhibition of the pathway with PGM3 MO 

anteriorized the embryos (n=42/69). Co-injection with GlcNAc-1-P (n=12/56) or UDP-GlcNAc (n=7/37) 

rescued the anteriorization phenotype. (E) Inhibition of the pathway with UAP1 MO anteriorized the 

embryos (n=19/42). Co-injection with UDP-GlcNAc (n=7/32) rescued the anteriorization phenotype. WT 

embryos did not display the observed phenotypes in (A) (n=0/36), (B) (n=0/30), (C) (n=0/61), (D) (n=0/46), 

or (E) (n=0/50). (A) - (E) was aggregated from n≥3 replicates. (A) - (E) Each dorsal blastomere was injected 

or co-injected with 1.5 ng of mRNA, 1 pg MO, or 125 pMols sugar, in a volume of 2.5 nl. (A) - (E) Significance 

was calculated using Fisher’s exact test and Bonferroni correction. (A) - (C) Co-injections were compared 

to the control; *ρ< 0.0170, **ρ< 0.00334, ***ρ< 0.000334. (D) Co-injections were compared to the MO 

control; *ρ< 0.0253. (E) Co-injections were compared to the MO control; *ρ< 0.05. 
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9Figure 6-12 : Co -injection of downstream MO rescues overe xpressi on of the UD P-GlcNA c salvage pathway sugars. 

Figure 32 Figure 6-12: Co-injection of downstream MO rescues overexpression of the UDP-GlcNAc salvage pathway sugars. 
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Figure 6-11: Co-injection of downstream MO rescues overexpression of the UDP-GlcNAc salvage 

pathway sugars. (A) Overexpression with GlcNAc posteriorizes the embryos (n=13/47). Co-injection with 

NAGKT128M mRNA (n=3/42) or 3-O-Me-GlcNAc (n=1/29) rescued the posteriorization phenotype. (B) 

Overexpression with GlcNAc posteriorizes the embryos (n=37/146). Co-injection with NAGK MO (n=1/30), 

PGM3 MO (n=1/44), UAP1 MO (n=1/44), or DPAGT1 MO (n=1/34) rescued the posteriorization phenotype. 

(C) Overexpression with GlcNAc-6-P posteriorizes the embryos (n=8/31). Co-injection with PGM3 MO 

(n=3/52), UAP1 MO (n=1/47), or DPAGT1 MO (n=1/48) rescued the posteriorization phenotype. (D) 

Overexpression with GlcNAc-1-P posteriorizes the embryos (n=17/80). Co-injection with UAP1 MO 

(n=1/48) or DPAGT1 MO (n=2/44) rescued the posteriorization phenotype. (E) Overexpression with UDP-

GlcNAc posteriorizes the embryos (n=19/56). Co-injection with DPAGT1 MO (n=4/31) rescued the 

posteriorization phenotype. WT embryos did not display the observed phenotypes in (A) (n=0/30), (B) 

(n=0/34), (C) (n=0/48), (D) (n=0/30), or (E) (n=0/31). (A) - (E) was aggregated from n≥3 replicates. (A) - (E) 

Each dorsal blastomere was injected or co-injected with 1.5 ng of mRNA, 1 pg MO, or 125 pMols sugar, in 

a volume of 2.5 nl. (A) - (E) Significance was calculated using Fisher’s exact test and Bonferroni correction. 

(A) and (D) Co-injections were compared to the sugar control; *ρ< 0.0253, **ρ< 0.00501.  (B) Co-injections 

were compared to the sugar control; *ρ< 0.0127, **ρ< 0.00251. (C) Co-injections were compared to the 

sugar control; *ρ< 0.0170, ***ρ< 0.00334. (E) Co-injections were compared to the sugar control; *ρ< 0.05. 
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Inhibition of DPAGT1 or overexpression of NGYL1 anteriorizes Xenopus embryos, while 

DPAGT1 overexpression posteriorizes embryos.     

To determine whether the salvage pathway acts on anteroposterior patterning via 

effects on N-linked glycosylation, we tested whether perturbation of DPAGT1, the rate-limiting 

enzyme in the N-linked glycosylation pathway, perturbed primary body axis formation.  DPAGT1 

transfers the first sugar (GlcNAc) onto dolichol in the endoplasmic reticulum to initiate the 

synthesis of N-linked glycoproteins (Lehrman et al., 1988).  We found that, similar to what we 

observed with salvage pathway components, injection of DPAGT1 mRNA posteriorized 

embryos, whereas DPAGT1 MO strongly anteriorized embryos (Fig. 6-5E, 6-8A,B). Consistent 

with our DPAGT1 MO result, we found that soaking embryos in tunicamycin, a UDP-GlcNAc 

analog and potent inhibitor of DPAGT1 similarly anteriorizes Xenopus embryos (Fig. 6-7B,C) 

(Heifetz et al., 1979; Lehrman et al., 1988). Posteriorization with DPAGT1 mRNA could be 

rescued with co-injection of UDP-GlcNAc salvage way MOs (Fig. 6-9D). Finally, we found that 

injection of N-glycanase 1 (NGLY1) mRNA, which removes asparagine-linked glycans 

from glycoproteins in the cytosol (and, thus opposing the activity of DPAGT1), anteriorized 

embryos (Fig. 6-5F, 6-8D). These results provide strong evidence that the UDP-GlcNAc salvage 

pathway promotes posteriorization through upregulation of protein N-glycosylation. Similarly, 

inhibition of the UDP-GlcNAc salvage pathway downregulates protein N-glycosylation, resulting 

in anteriorization.  
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Axis duplications from overexpression of UDP-GlcNAc salvage pathway enzymes, DPAGT1, 

and GlcNAc-1-P suggests Wnt specificity 

 The observed antero-posterior patterning defects are consistent with Wnt 

misexpression post the midblastula transition. Prior to the mid-blastula transition, 

overexpression of Wnt signaling components can lead to an axis duplication (McMahon and 

Moon, 1989). A small but significant and repeatable number of full and partial axis duplications 

were observed when CG6218, NAGK, PGM3, UAP1, or DPAGT1 mRNA were injected in Xenopus 

embryos (Fig. 6-12A,B, appendix-2). Furthermore, injection of GlcNAc, GlcNAc-6-P, GlcNAc-1P, 

and UDP-GlcNAc lead to axis duplications (Fig. 6-12C). However, only GlcNAc-1-P was 

consistently repeatable and statistically significant. This data suggests that the observed 

Xenopus phenotypes are from misexpression of Wnt in the early embryo.  
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 Figure 33 Figure 6-13: Over expression of UDP-GlcNAc salvage pathway components promotes axis duplication in Xenopus. 
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Figure 6-12: Over expression of UDP-GlcNAc salvage pathway components promotes axis duplication in 

Xenopus. (A) Examples of full and partial axis duplications. Black arrows indicate individual body axes. (B) 

When injected with mRNA axis duplications were observed in the CG6218 (n=3/67), NAGK (n=4/197), 

PGM3 (n=4/167), UAP1 (n=6/142), and DPAGT1 (n=4/147) treated embryos, but not in the WT controls 

(n=0/441). Axis duplications were found in n≥3 replicate experiments. (C) Embryos injected with GlcNAc 

(n=1/231), GlcNac-6-P (n=1/68), GlcNAc-1-P (n=4/76), and UDP-GlcNAc (n=1/61) all exhibited axis 

duplications. No axis duplications were observed in the controls (n=0/213). Only GlcNAc-1-P was 

statistically significant. GlcNAc-1-P axis duplications were identified in n=4 experiments. (B) Injections 

were compared to the WT control; *ρ< 0.0102, ***ρ< 0.00020. (C) Injections were compared to the WT 

control; *ρ< 0.0127.  



145 

 

NAGK expression in zebrafish results in a Wnt like phenotype 

To provide further evidence for the role of the UDP-GlcNAc salvage pathway in 

regulating Wnt signaling, and to determine whether its effects on antero-posterior patterning is 

conserved, we tested the effects of perturbing the UDP-GlcNAc salvage pathway in zebrafish. 

Wnt signaling has been shown to pattern the anterior-posterior neuraxis in zebrafish (Chan et 

al., 2009; Hikasa and Sokol, 2013). Eyes do not form in embryos upon ectopic activation of the 

Wnt/β-catenin pathway, and zebrafish with activating Wnt/β-catenin pathway mutations in 

axin (masterblind) and tcf7l1 (headless) give rise to embryos with defects in anterior structures 

(Cavodeassi et al., 2005; Erter et al., 2001; Heisenberg et al., 2001; Kim et al., 2000; Lekven et 

al., 2001; Momoi et al., 2003; van de Water et al., 2001). Inhibition of noncanonical Wnts such 

as wnt4 and wnt11 in zebrafish are characterized by midline defects of the head such as by 

cyclopia (Heisenberg et al., 2000; Matsui et al., 2005; Thorpe and Moon, 2004; Ungar et al., 

1995). Consistent with activation of Wnt signaling, we found that injection of mRNAs encoding 

CG6218, NAGK, PGM3, UAP1, and DPAGT1 gave rise to eyeless embryos (Fig. 6-13A,B, 

appendix-3). Injection of sugars of the salvage pathway (GlcNAc, GlcNAc-6P, GlcNAc-1-P, and 

UDP-GlcNAc) also inhibited eye formation in zebrafish embryos (Fig. 6-13C). Conversely, 

injection of NAGKT128M or 3-O-Me-GlcNAc gave rise to cycloptic embryos (Fig. 6-14A). The 

cycloptic phenotype of NAGKT128M injected embryos could be rescued by co-injection with 

GlcNAc, GlcNAc-6P, GlcNAc-1-P, or UDP-GlcNAc (Fig. 6-14B). Injection of Ngly1 also gave rise to 

cycloptic embryos, similar to inhibition of nagk (Fig. 6-14C). These results suggest that the 

effects of perturbing the UDP-GlcNAc salvage pathway in embryonic development are 
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conserved in Xenopus and zebrafish, and the observed phenotypes are due to altered Wnt 

signaling. 
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 Figure 34 Figure 6-10: Overexpression of glycosylation salvage pathway enzymes, sugars and DPAGT1 inhibit eye formation 
in Zebrafish.   
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Figure 6-13: Overexpression of glycosylation salvage pathway enzymes, sugars and DPAGT1 inhibit eye 

formation in zebrafish. (A) (Left) Injection of CG6218 mRNA (n=4/129) and NAGK mRNA (n=5/31) inhibited 

the formation of the Zebrafish eye. (Right) Examples of eye formation in animals injected with NAGK 

mRNA at 5 days post fertilization. Phenotypes ranged from reduced eye size to one or both eyes missing. 

Reduced eyes were defined as less than half the size of a WT eye. (B) Injection of NAGK mRNA (n=11/82), 

PGM3 mRNA (n=9/69), UAP1 mRNA (n=9/45), or DPAGT1 mRNA (n=4/32) inhibited eye formation as in 

(A). (C) Injection of GlcNAc (n=14/64), GlcNAc-6-P (n=6/74), GlcNAc-1-P (n=18/97), or UDP-GlcNAc 

(n=9/32) inhibited eye formation like (A) and (B). WT embryos did not display the observed phenotypes 

in (A) (n=0/208), (B) (n=0/78), or (C) (n=0/92). (A) - (C) was aggregated from n≥3 replicates. (A) - (C) The 

single cell of a zygote was injected with 0.5 ng of mRNA or 25 pMols sugar, in a volume of 1 nl. (A) - (C) 

Significance was calculated using Fisher’s exact test and Bonferroni correction. (A) Treatments were 

compared to the WT; *ρ< 0.0253, **ρ<0.00501. (B) and (C) Treatments were compared to the WT; *ρ< 

0.0127, **ρ<0.00251, *** ρ<0.000251. 

 



149 

 

 

 Figure 35 Figure 6-14: Inhibition of NAGK and N-glycosylation in Zebrafish caused cyclocephaly.   

 



150 

 

Figure 6-14: Inhibition of NAGK and N-glycosylation in zebrafish caused cyclocephaly.  (A) (Left) Injection 

of NAGKT128M mRNA (n=20/89) and 3-O-Me-GlcNAc (n=3/97) resulted in cycloptic zebrafish. (Right) 

Examples of cyclopia from NAGKT128M mRNA injected zebrafish embryos at 5 days post fertilization. 

Animals were defined as cycloptic if they were Classes III-V (according to Marlow et al. 1998). (B) Injection 

of NAGKT128M mRNA (n=25/113) caused cyclopia. This cyclopia was partially rescued by co-injection with 

GlcNAc (n=1/33), GlcNAc-6-P (n=2/46), GlcNAc-1-P (n=1/38), or UDP-GlcNAc (n=1/34). (C) Injection of 

Ngly1 mRNA (n=3/115) caused cyclopia as in (A). WT embryos did not display the observed phenotypes in 

(A) (n=0/250), (B) (n=0/42), or (C) (n=0/300). (A) - (C) was aggregated from n≥3 replicates. (A) - (C) The 

single cell of a zygote was injected or co-injected with 0.5 µg of mRNA or 25 pMols sugar, in a volume of 

1 nl. (A) - (C) Significance was calculated using Fisher’s exact test and Bonferroni correction. (A) 

Treatments were compared to the WT; *ρ< 0.0253. (B) Co-injections were compared to the mRNA control; 

*ρ< 0.0127. (C) Treatment was compared to the WT; *ρ<.05.  
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NAGK expression in zebrafish results in a convergent extension phenotype 

Eye formation and cyclopia are reliable and specific phenotypes in the early formation 

of zebrafish that suggest Wnt signaling. Inhibition of noncanonical Wnts such as Wnt5b 

(pipetail) and Wnt11 (silberblick) in zebrafish are characterized by defects of convergent 

extension (Goudevenou et al., 2011; Heisenberg et al., 2000; Rauch et al., 1997; Stoick-Cooper 

et al., 2007; Xing et al., 2018). Convergent extension malformations were observed both 

concurrently with and independently of eye malformations. Injection of NAGK mRNA, PGM3 

mRNA, UAP1 mRNA, DPAGT1 mRNA, GlcNAc, GlcNAc-6-P, GlcNAc-1-P, UDP-GlcNAc, NAGKT128M 

mRNA, 3-O-Me-GlcNAc, and NGLY1 mRNA caused convergent extension defects (Fig. 6-

15A,B,C,D, appendix-4). Inhibition of NAGK with NAGKT128M mRNA, 3-O-Me-GlcNAc, and NGLY1 

mRNA was significantly more severe than over expression of the UDP-GlcNAc salvage pathway 

sugars and enzymes (Fig. 6-15A). These results suggest the UDP-GlcNAc salvage pathway 

regulates convergent extension through noncanonical Wnt signaling in the early embryo.  
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 Figure 36 Figure 6-15: Inhibition and overexpression of NAGK, UDP-GlcNAc salvage pathway components, DPAGT1, and 
Ngyl1 result in a short anterior-posterior body axis.   
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Figure 6-15: Inhibition and overexpression of NAGK, UDP-GlcNAc salvage pathway components, 

DPAGT1, and NGYL1 result in a short anterior-posterior body axis. (A) (left) Topdown and (Right) side 

view of inhibition of NAGK (3-O-Me-GlcNAc) and overexpression of NAGK (NAGK mRNA) exhibiting defects 

in convergent extension. (B) Injection of NAGKT128M mRNA (n=24/151), 3-O-me-GlcNAc (n=7/124), or Ngly1 

mRNA (n=21/119) results in defects of convergent extension defects. Defects were not observed in WT 

controls (n=0/273). (C) Injection of NAGK mRNA (n=23/128), PGM3 mRNA (n=14/120), UAP1 mRNA 

(n=9/40), or DPAGT1 mRNA (n=5/65) results in defects of convergent extension. Convergent extension 

defects were not observed in WT controls (n=0/102). (D) Injection of GlcNAc (n=4/30), GlcNAc-6-P 

(n=5/39), GlcNAc-1-P (n=4/32), UDP-GlcNAc (n=4/32) results in defects of convergent extension as in (C). 

Convergent extension defects were not observed in WT controls (n=0/129). (B) - (D) was aggregated from 

n≥3 replicates. (B) - (D) The single cell of a zygote was injected with 0.5 ng of mRNA or 25 pMols sugar, in 

a volume of 1 nl. (B) - (D) Significance was calculated using Fisher’s exact test and Bonferroni correction. 

(B) Treatments were compared to the WT; ***ρ<0.00033. (C) and (D) Treatments were compared to the 

WT; *ρ< 0.0127, **ρ<0.00251, *** ρ<0.000251. 
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qRT-PCR of early Xenopus embryos suggests NAGK is Wnt specific 

Our phenotypic data in Xenopus and zebrafish suggests Wnt specificity of NAGK in the 

early embryo. To verify this observation, we tested five key signaling pathways; Fgf, Hedgehog, 

Wnt, BMP, and Notch, known to control early embryonic patterning. These signaling pathways 

are expressed at different times, in different regions of the embryo, to eliciting diverse cellular 

responses. Various components of all of these signaling pathways are glycosylated and may 

therefore be perturbed by changes in the UDP-GlcNac salvage pathway and DPAGT1. To test 

this we preformed qRT-PCR on a reporter gene for each pathway. Overexpression and 

knockdown of the UDP-GlcNac salvage pathway and DPAGT1 did not show significant changes 

in expression of the Fgf (dual specificity phosphatase 6; dusp6), TGFβ (T-box transcription factor 

T; tbxt), Notch (hes family bHLH transcription factor 1; hes1), or Shh (patched 1; ptch1) (Fig. 6-

16) (Gu et al., 2012; Kofron et al., 2008: Mir et al., 1997; Moriishi et al., 2005; Nishimoto and 

Nishida, 2007; Zheng et al., 2017). When injected with NAGK, PGM3, UAP1, or DPAGT1 mRNA, 

the expression of the Wnt reporter genes, nodal homolog 3, gene 1 (Xnr3) and chordin, gene 1 

(chordin), were significantly increased (Fig. 6-16). Conversely, injection with 3-O-Me-GlcNAc, 

NAGKT128M  mRNA, or NAGK, PGM3, UAP1, or DPAGT1 MO reduced Xnr3 and chordin expression 

(Fig. 6-16). These results suggest that the effects of the UDP-GlcNAc salvage pathway in early 

embryonic development are specific to Wnt signaling. 
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Figure 37 Figure 6-16: qRT-PCR suggest the UDP-GlcNAc salvage pathway and DPAGT1 specifically control the Wnt signaling pathway in the 
early Xenopus embryo. 
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Figure 6-16: qRT-PCR suggest the UDP-GlcNAc salvage pathway and DPAGT1 specifically control the Wnt 

signaling pathway in the early Xenopus embryo. Data from qRT-PCR on whole embryos. (Left) Knockdown 

or inhibition of the UDP-GlcNAc salvage pathway and DPAGT1. (Middle) Overexpression of the UDP-

GlcNAc salvage pathway enzymes and DPAGT1. (Right) Overexpression of the UDP-GlcNAc salvage 

pathway sugars. Xnr3 and chordin, are reporter gene for Wnts. In stage 10.5 embryos knockdown and 

inhibition of the UDP-GlcNAc salvage pathway and DPAGT1 inhibited Xnr3 and chordin expression. 

Conversely, overexpression of the UDP-GlcNAc salvage pathway enzymes and sugars, as well as DPAGT1, 

increased the expression of Xnr3 and chordin in whole embryos. In stage 10.5 embryos, expression of 

dusp6, a reporter gene for FGF, is unaffected by knockdown, inhibition, or overexpression of the UDP-

GlcNAc salvage pathway and DPAGT1. In stage 10.5 embryos, expression of tbxt, a reporter gene for BMP, 

is unaffected by knockdown, inhibition, or overexpression of the UDP-GlcNAc salvage pathway and 

DPAGT1. In stage 13 embryos, expression of hes1, a reporter gene for Notch, is unaffected by knockdown, 

inhibition, or overexpression of the UDP-GlcNAc salvage pathway and DPAGT1. In stage 16 embryos, 

expression of ptch1, a reporter gene for SHH, is unaffected by knockdown, inhibition, or overexpression 

of the UDP-GlcNAc salvage pathway and DPAGT1. Data shown are representative of n≥3 biological 

replicates using n=3 technical replicates. Each replicate was a pool of n=5 whole embryos. Both cells of a 

stage 2 (2-cell) embryo was injected or co-injected with 2.5 ng of mRNA, 2.5 pg MO, or 125 pMols sugar, 

in a volume of 2.5 nl.  Expression was normalized to the house keeping gene, ODC. Graphs are fold change 

calculated using the 2-ΔΔCt method. Significance was calculated using T-test with equal variance and 

Bonferroni correction on the ΔCt values. (Left) Inhibition of the UDP-GlcNAc salvage pathway were 

compared to the WT control. (Middle) and (Right) overexpression of UDP-GlcNAc salvage pathway 

enzymes and sugars were compared to the WT control. No significant values were found. For Inhibition 

(left); *ρ<0.0085, **ρ< 0.00167, *** ρ<0.000167. For overexpressions (middle and right); *ρ<0.01274146, 

**ρ< 0.00250943, ***ρ< 0.000250943. 
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NAGK regulates Wnt signaling in Xenopus ectodermal explants likely via cell surface receptors 

 Wnt signaling is not detectable in the early animal cap (undifferentiated ectodermal 

explants) of Xenopus embryos, making it a clean system for testing the expression of Wnt 

components with members of the salvage pathway. We therefore co-injected mRNAs of Wnt8, 

a Wnt8-Fz5 fusion, LRP6, and Dsh with UDP-GlcNAc salvage pathway and DPAGT1 mRNAs and 

MOs. Human and rat Frizzled 5 are unable to activate Wnt signaling in Xenopus embryos (He et 

al., 1997; Holmen et al., 2002; Wodarz and Nusse, 1998). Wnt8-Fz5 is Xenopus XWnt8 fused to 

human Frizzled 5, which has been shown to interact with LRP6 to activate the canonical Wnt/β-

catenin pathway (Holmen et al., 2002). Injection of Wnt8, Wnt8-Fz5, LRP6, or Dsh by 

themselves are sufficient to activate the Wnt pathway in animal caps (Fig. 6-17A,B,C,D, 6-18 

A,B,C,D). 

Co-injection of Wnt8, Wnt8-Fz5, or LRP6 mRNA with NAGK, PGM3, UAP1, or DPAGT1 

mRNA resulted in higher expression of Wnt target genes, Xnr3 and chordin (Fig. 6-17A,B,C, 6-

18A,B,C). Conversely, lower expression of both Xnr3 and chordin were observed when Wnt8, 

Wnt8-Fz5, or LRP6 mRNA was co-injected with NAGK, PGM3, UAP1, or DPAGT1 MOs (Fig. 6-

17A,B,C, 6-18A,B,C). Co-injection of Dsh mRNA with NAGK, PGM3, UAP1, or DPAGT1 mRNA did 

not alter the expression of Xnr3 or chordin in the animal cap (Fig. 6-17D, 6-18D). Similarly, co-

injection of Dsh mRNA with NAGK, PGM3, UAP1, or DPAGT1 MO did not alter the expression of 

Xnr3 or chordin in the animal cap (Fig. 6-17D, 6-18D). These data suggest that the UDP-GlcNAc 

salvage pathway controls Wnt signaling is at the level of the receptor or ligand in the early 

embryo.  
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5 animal caps suggests the  

Figure 38 Figure 6-17: Expression of Xnr3 in Stage 10.5 animal caps suggests the UDP-GlcNAC salvage pathway works at the 
level of the ligand and/or receptor. 
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Figure 6-17: Expression of Xnr3 in Stage 10.5 animal caps suggests the UDP-GlcNAc salvage pathway 

works at the level of the ligand and/or receptor. (A) (left) activation of the Wnt pathway by Xenopus 

wnt8 is inhibited by co-injection with MOs against the salvage pathway enzymes. (Right) Conversely, co-

injection with mRNA encoding the pathway enzymes enhanced the expression of Xnr3. Both Fz (B) and 

LRP6 (C) were inhibited by co-injection with MOs and enhanced by mRNAs, as in (A). (D) Activation of the 

Wnt pathway by DSH was unaffected by inhibition (left) or overexpression (right) of the salvage pathway 

enzymes. (A) - (D) Data shown are representative of n≥3 biological replicates using n=3 technical 

replicates. Each replicate was a pool of n=5 animal caps. Each dorsal blastomere was injected or co-

injected with 1 ng of mRNA or 1 pg MO, in a volume of 2.5 nl. Expression was normalized to the house 

keeping gene, odc. Xnr3 was not detected in the WT animal caps. odc was detected in the WT animals 

caps. Graphs are fold change calculated using the 2-ΔΔCt method. Significance was calculated using T-tests 

with equal variance and Bonferroni correction on the ΔCt values. Each co-injection was compared to the 

control mRNA. *ρ< 0.0127, **ρ<0.00251, ***ρ<0.000251. 
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 Figure 39 Figure 6-18: Expression of chordin in Stage 10.5 animal caps suggests the salvage pathway works at the level of the ligand and/or receptor.  
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Figure 6-18: Expression of chordin in Stage 10.5 animal caps suggests the salvage pathway works at the 

level of the ligand and/or receptor. (A) (left) activation of the Wnt pathway by Xenopus wnt8 is inhibited 

by co-injection with MOs against the salvage pathway enzymes. (Right) Conversely, co-injection with 

mRNA encoding the pathway enzymes enhanced the expression of chordin. Both Fz (B) and LRP6 (C) were 

inhibited by co-injection with MOs and enhanced by mRNAs, as in (A). (D) Activation of the Wnt pathway 

by DSH was unaffected by inhibition (left) or overexpression (right) of the salvage pathway enzymes. (A) - 

(D) Data shown are representative of n≥3 biological replicates using n=3 technical replicates. Each 

replicate was a pool of n=5 animal caps. Each dorsal blastomere was injected or co-injected with 1 ng of 

mRNA or 1 pg MO, in a volume of 2.5 nl. Expression was normalized to the house keeping gene, odc. 

chordin was not detected in the WT animal caps. odc was detected in the WT animals caps. Graphs are 

fold change calculated using the 2-ΔΔCt method. Significance was calculated using T-tests with equal 

variance and Bonferroni correction on the ΔCt values. Each co-injection was compared to the mRNA 

control. *ρ< 0.0127, **ρ<0.00251, ***ρ<0.000251. 
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Discussion 

In this study, we show that NAGK regulates anterior-posterior patterning in early 

Xenopus embryos. In zebrafish, NAGK inhibits formation of the eye, while loss of NAGK results 

in cyclopia, suggesting effects in both canonical and noncanonical Wnt. These data are 

phenocopied by the UDP-GlcNAc salvage pathway enzymes and sugars, and DPAGT1. Data from 

overexpression of NGYL1 suggests the observed phenotypes are the result of changes in N-

glycosylation. Finally, our qRT-PCR data suggests the observed phenotypes are due to alteration 

in the Wnt signaling pathway at the level of the receptor and/or ligand.  

Partial loss-of-function proteins regulating glycosylation leads to a group of human 

diseases termed Congenital Disorders of Glycosylation (CDGs) (Freeze, 2006; Haltiwanger and 

Lowe, 2004; Jaeken and van den Heuvel, 2014). In addition to its well-characterized role as a 

rate-limiting enzyme in N-glycosylation, DPAGT1 is mutated in CDG Type 1j (DPAGT1-CDG) (Wu 

et al., 2003).  DPAGT1 has been suggested to regulate both cononical and noncanonical Wnt 

signaling through regulation of N-linked glycosylation (Liu et al., 2013; Varelas et al., 2014). 

Consistant with the literature, mutations in Wnt signaling pathway components have been 

shown to cause clinodactyly (Ockeloen et al., 2016; Saal et al., 2015), intellectual disability 

(Snijders et al., 2015), microcephaly (Buchman et al., 2011) and micrognathia (White et al., 

2018), the four most common DPAGT1-CDG phenotypes, observed in over 80% of patients 

(Ganetzky et al., 2015; Wu et al., 2003). Recently, mutations in PGM3 (PGM3-CDG) have been 

identified that suggest alterations in the free pool of UDP-GlcNAc and its utilization in 

glycosylation may result in CDGs (Pacheco-Cuellar et al., 2017; Stray-Pedersen et al., 2014). 
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Patients with PGM3-CDG presented with neutropenia, B and T lymphopenia, bone marrow 

failure, skeletal dysplasis short stature, brachydactyly, cognitive impairment, phenotypes that 

have each been linked to inhibition of the Wnt signaling pathway (Akbarzadeh et al., 2008; 

Calaminus et al., 2010; Hiramoto et al., 2013; Malhotra and Yang, 2014; Pacheco-Cuellar et al., 

2017; Ranheim et al., 2005; Snijders Blok et al., 2015; Stray-Pedersen et al., 2014; Wong et al. 

2015).  

 As the specific developmental and molecular perturbations that link deficits in N-

glycosylation and CDG disease symptoms have not been identified, the DPAGT1 and PGM3 (as 

well as NAGK and UAP1) loss-of-function phenotypes that we have identified in Xenopus and 

zebrafish embryos may provide a model system to study the molecular pathogenesis of CDGs. 

Furthermore, two CDGs, MPI-CDG and CAD-CDG, are treatable by oral supplementation with 

mannose or uridine, respectively (Harms et al., 2007; Jaeken and van den Heuvel, 2014; Jaeken 

and Péanne, 2017; Koch et al., 2017). Several other CDGs are partially treatable with oral 

butyrate, oral fucose, or galactose (Jaeken and Péanne, 2017; Witters et al., 2017). Our data 

suggests that these diseases may be due, in part, to alterations in Wnt signaling during 

development and that supplementation with UDP-GlcNAc salvage pathway sugars may benefit 

patients with PGM3-CDG and DPAGT1-CDG 

 UAP1 and PGM3 are significantly up-regulated in clinical prostate carcinomas, 

controlling cancer cell viability and androgen control (Itkonen et al., 2015, Munkley et al., 

2016). High expression of UAP1 in prostate cancer cell lines greatly increased UDP-GlcNAc, and 

conversely, inhibition significantly decreased UDP-GlcNAc levels (Itkonen et al., 2015). 
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Inhibition of PGM3 in mice and human triple negative breast cancer cells greatly reduced UDP-

GlcNAc levels (Greig et al., 2007, Ricciardiello et al., 2018). PGM3 inhibition resulting in cell 

proliferation and survival of cancer (Ricciardiello et al., 2018). DPAGT1 overexpression is linked 

to oral squamous cell carcinoma through Wnt activation (Jamal et al., 2012; Nita-Lazar et al., 

2009). These and our current data suggest that the UDP-GlcNAc salvage pathways’ effect on the 

free pool of UDP-GlcNAc may play a role in cancer via the Wnt pathway.  

 Our data suggests that NAGK, PGM3, UAP1, and DPAGT1 promotes Wnt signaling 

through N-glycosylation of proteins. Overexpression of each gene posteriorized Xenopus 

embryos and resulted in reduced or missing eyes in zebrafish. Conversely, inhibition of NAGK, 

PGM3, UAP1, and DPAGT1 anteriorized Xenopus embryos. This suggests that the pathway, and 

not any individual enzyme, is important for the observed phenotypes. However, only PGM3 and 

DPAGT1 have been linked to CDGs. There is a possibility that changes in NAGK and UAP1 are 

more potent and perhaps lethal, however our data does not support this. Alternatively, only 8 

cases of PGM3-CDG and 5 of DPAGT1-CDG are known. Therefore, it is possible that NAGK and 

UAP1 mutations are merely so rare that they have not yet been identified (Table 4-1).  

 Furthermore, PGM3-CDG and DPAGT1-CDG express with different constellations of 

phenotypes, suggesting effects on different pathways. It is possible that the effects we have 

observed are limited to the early embryo, but the phenotypes observed in these CDGs are due 

to continuous changes in the UDP-GlcNAc salvage pathway. However, soaking Xenopus 

embryos in GlcNAc for two days did not result in additional phenotypes (Fig. 6-7). Therefore, 

this is unlikely to be the case. The UDP-GlcNAc salvage pathway feeds into additional pathways 
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besides N-glycosylation, such as hyaluronan biosynthesis (Vigetti et al., 2014). It is therefore 

possible that the PGM3-CDG phenotypes are due to effects on additional pathways not affected 

by DPAGT1-CDG. However, PGM3 should also exhibit the same phenotypes as DPAGT1-CDG. 

This disparity warrants further study to elucidate why PGM3 and DPAGT1 are the same in 

Xenopus and zebrafish but not in humans.  

Our data suggests NAGK, PGM3, UAP1, and DPAGT1 specifically promotes Wnt signaling 

in the early embryo through N-glycosylation. However, only a single reporter gene and time 

point was used to test the Fgf, Shh, Notch, and BMP pathways. It is possible that these specific 

genes were unaffected in the early embryo. It is also possible that additional pathways are 

affected later in development. Additional testing with different time points and/or reporters 

may further elucidate the role(s) of NAGK, PGM3, UAP1, and DPAGT1 in development. 
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Chapter 7: 

Future directions 

In this work we have discussed two distinct pathways that show the significant impact 

that kinase and phosphatase have on biological systems. We have shown that the loss the 

phosphatase Cdc14 leads to multiple phenotypic effects, all of which can be explored in depth 

in further works. Similarly, the Kinase NAGK is shown to control Wnt singnaling through N-

glycosylation of its ligand and/or receptors. Below we will discuss possible future studies that 

can further elucidate the role and mechanism of thses enzymes.  
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Cdc14 

Feeding behavior, fat body metabolism, and longevity 

Our data suggest that feeding behavior of cdc14 null animals was decreased, but 

indiscriminate (Fig. 11A). Staining of larval fat bodies suggested cdc14 null had both irregular 

and larger lipid droplets, suggesting a defect in metabolism (Fig. 13A,B,C). In addition, the y w 

control flies live modestly longer (> 4.25 h) than cdc14 null animals (Fig. 13D). This constellation 

of phenotypes has not been reported in any other animal model system. However, in 2018 

Kondo et al. found evidence that CDC14 provoked macroautophagy under starvation conditions 

and when overexpressed in S. cerevisiae, suggesting these phenotypes may be a conserved 

function of Cdc14. Furthermore, these phenotypes and macroautophagy have implications in 

human diseases such as obesity.  

Under normal feeding conditions, enterocytes absorb lipids digested from dietary food 

in Drosophila (Warnakula et al., 2011). Lipids are then packaged into lipoprotein particles and 

are transported to the fat body (Warnakula et al., 2011). Loss of these enterocytes in cdc14 

nulls may be apparent and could suggest impairment of lipid absorption (Song et al., 2014). It is 

also possible that the reduction in feeding behavior may alter lipid droplet formation through 

alterations in fat consumption. The UASp-cdc14-myc, cdc14Δ1 line could be crossed to a cdc14 

nulls with a fat body specific promoter such as larval serum protein-2 gene (lsp-2) (Aguila et al., 

2007; Benes et al., 1990). Alternatively, fat body-specific RNA interference could be used to 

inhibit cdc14 expression (Musselman et al., 2013). The progeny should not exhibit reduced 
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feeding behavior. Therefore, if the lipid droplet formation is still affected, it would suggest that 

feeding behavior is independent of the metabolism defects.  

Continued lipid droplet malformation could suggest a defect in taste reception (Figs. 

11A,B and 12A). The UASp-cdc14-myc, cdc14Δ1 line could be crossed to a cdc14 nulls with a cilia 

specific promoter such as hemingway (hmw). If rescue of cdc14 expression in ciliated cells 

rescues the fat body phenotype it would suggest that fat body and possibly starvation 

resistance phenotypes are due to defects in feeding. Two-way choice assays using mediums 

containing different proportions and varieties of proteins, sugars, salts, and fat could be used to 

discriminate between changes in specific gustatory receptor activity, such as the Gr family of 

sugar receptors (Miyamoto et al., 2013). Further investigation in humans may elucidate Cdc14 

role in taste and food consumption in disease, such as hypogeusia (reduced ability to taste), 

ageusia (loss of the ability to taste), or obesity. 

During metamorphosis, lipid metabolism accounts for >80% of fuel consumption, 

therefore the larvae may be retaining lipids erroneously in preparation for pupation (Merkey et 

al., 2011). Macroautophagy in the fat bodies of cdc14 nulls may be impaired leading to 

retention of lipids. The cdc14 nulls could be crossed to nulls of SREBP, a lipogenesis inducing 

gene, to test for rescue of lipogenesis and abnormal lipid retention (Song et al., 2014). Work in 

yeast suggests cdc14 dephosphorylates Atg13 in the TORC1 pathway to induce 

macroautophagy in yeast. Therefore, genetic and biochemical studies in Drosophila could 

identify a new functions of Cdc14. Conservation of this function would suggest a role for Cdc14 

in higher organism such as human that may influence diseases such as obesity.  
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Chemosensory reception, mechanosensory reception, sperm competitiveness, and cilia 

formation 

In zebrafish, knockdown of Cdc14 impaired ciliation, while studies in P. infestans suggest 

cdc14 is enriched at flagella-basal body complexes and may play a role I the formation or 

function of flagella (Ah-Fong and Judelson, 2011; Clement et al., 2011; Clement et al., 2012). As 

basal bodies are found in all ciliated cells and Drosophila have only two ciliated cell types 

(sperm and sensilla), Drosophila is an attractive model to better understand the biology of this 

organelle (Jana et al., 2016). We found that mechanosensation (Fig. 3-10A,B) and 

chemosensation (Figs. 3-11A,B,C,D and 3-12A) were both impaired in cdc14 nulls. However, 

photoreception (Fig. 3-12B) was unaffected in cdc14 nulls. As Drosophila spermatozoa and Type 

I sensory neurons (mechanosensory and chemosensory neurons) are ciliated, but photosensory 

neurons are not, our data suggests the function of cdc14 is specific to cilia. To test this idea, we 

have stained the chordotonal organs, stretch receptor organs that used ciliated neurons for 

reception. We found the organs to be disorganized and smaller, with a decrease in the number 

and length of ciliated cells. However, the changes were small (~4%) with high standard 

deviations (Fig. 7-1). Numerous stains, counter stains, and transgenic lines that specifically mark 

cilia in Drosophila can be used to verify these results and study the specific molecular nature of 

the defect (Jana et al., 2016; Vieillard et al., 2015). For example, staining for the extracellular 

protein, spacemaker, and α-HRP labelling will aid in validating our results (Cook et al., 2008). 

Tagging-cdc14 with GFP or other marker, may demonstrate specific association with the basal 

body and/or additional structures. Using an inducible promotor, such as the hsp-70 heat shock 
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promoter, to express cdc14-myc in post eclosion cdc14 null adults, could help distinguish 

between roles in ciliogenesis and cilia function.  

Mutations in CDC14A in human have been liked to progressive and moderate-to-

profound deafness and male infertile (Imtiaz et al., 2018). Mutation in mice recapitulate the 

human phenotypes, while exhibiting degeneration of seminiferous tubules and 

spermatogenesis defects resulting in abnormal sperm motility, morphology, and sperm count 

(Song et al., 2014). In our studies, we found that sperm competitiveness was impaired in cdc14 

null flies (Figs. 3-6B and 3-7B). Our data suggests this is not due to a failure to mate (Figs. 3-

2B,C,E,F,G, 4A, and 3-7A), locomotion defects (Fig. 3-8A,B,C), testis malformations or reductions 

in sperm numbers (Figs. 3-4B,C,D,E,F). Our data suggests that cdc14 is important in the function 

of Drosophila sperm, similar to Humans and mice. Importantly, Drosophila have a single copy of 

Cdc14 knockout of which does not result in degradation of the testis as it does in the mouse, 

making it ideal for further study of Cdc14’s role in spermatogenesis.  
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 Figure 40 Figure 7-1: The chordotonal organ of cdc14 null larvae shows morphological changes in size, number, and length of scolopidia 
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Figure 7-1: The chordotonal organ of cdc14 null larvae shows morphological changes in size, number, 

and length of scolopidia. (A) Representative SIM images of the chordotonal organ (ChO) from control and 

cdc14 null larvae. Scale bar, 5 m. (B) The length across the connective tissue of the chordotonal organ 

was decreased (8.0%) in cdc14 null larvae. (C) A decrease in length (4.0%) of the outer segment (a proxy 

for cilia length, measured from the tip of the dendritic cap to the top of the cap) was observed in cdc14 

null larvae. (D) The distribution of neuronal dendrites numbers per ChO showed a greater number of 

cdc14 null mutant larvae with decreased dendrites per organ. (E) The distribution of cap numbers per ChO 

showed a greater number of cdc14 null mutant larvae with decreased caps per organ. (C) through (F) were 

analyzed by T-test (two tailed, unequal variance). Chordotonal organs were imaged by Structured 

Illumination Microscopy (SIM) on a Nikon SIM with a 100X SR Apo TIRF lens and Andor DU-897 EMCCD 

camera, using 3D SIM mode. 3D reconstructions were performed within the Nikon software at the time 

of image capture. Reconstructed images were blinded and imported to Fiji, where “max projection” was 

used to create a 2D image of the Z-stack for analysis. N=30 ChOs from 15 pelts were assessed. N≥131 

outer dendritic segments and N≥127 caps were measured. 

 

 

 

 

 



173 

 

NAGK 

The salvage pathway, DPAGT1 and CDGs 

 We found that alterations in NAGK expression were phenocopied by PGM3, UAP1, and 

DPAGT1 in both Xenopus and zebrafish (Fig 6-4, 6-5, 6-8, 6-10, 6-14). This suggests a common 

downstream effect on N-glycosylation of proteins. This was further supported by expression of 

NGYL1, which cleaves N-glycans in the cytosol (Fig. 6-4, 6-8, 6-14) However, in the literature, 

only PGM3 and DPAGT1 have been linked to a congenital disorders of glycosylation (CDG) 

(Stray-Pedersen et al., 2014; Wu et al., 2003). As CDGs are often very rare, many with two or 

less know patients, it is very likely that NAGK and UAP1 cause a CDG that has not been 

identified (Sparks and Krasnewich, 2017). However, it is possible that mutations in either gene 

are not tolerated in humans. Further testing with techniques such as whole genome sequencing 

will be able to identify patients with mutations in NAGK or UAP1.  

 There are no effective treatments for PGM3-CDG or DPAGT1-CDG. However, our data 

supports the idea that inhibition of a UDP-GlcNAc salvage pathway enzyme can be rescued by 

supplementation with the downstream sugars, similar to the effective treatment of MPI-CDG 

and CAD-CDG (Koch et al., 2017; Niehues et al., 1998). For PGM3-CDG, supplementation with 

GlcNAc-1-P or UDP-GlcNAc may prove effective. GlcNAc is non-toxic and well tolerated, it is 

possible that the other sugars of the UDP-GlcNAc salvage pathway are well tolerated as well 

(Levin et al., 1961; Liu et al., 2008). Human patients could be supplemented with the UDP-

GlcNAc sugars and assed for alleviation of phenotypes. For example, in the PGM3-CDG, part of 
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the mutant phenotype is susceptibility to infection. Therefore, A GlcNac-1-P supplement could 

be tested by comparing rate of infection pre and post supplementation.  

 Finally, our data suggests the UDP-GlcNAc salvage pathway and DPAGT1 regulate Wnt 

signaling in the early embryo. This is consistent with literature, which suggests DPAGT1 is in a 

positive feedback loop with Wnt (Fig. 6-16, 6-17, 6-18, 6-19). Inhibition of the enzymes NAGK, 

PGM3, UAP1, and DPAGT1 all inhibited Wnt activity in animal cap experiments. This suggest 

that the use of a Wnt agonist may relive the phenotype of patents with PGM3-CDG or DPAGT1-

CDG. Creating a transgenic animals, with a knockout or conditional knockout (such as Cre-Lox) 

of these enzymes would allow for the testing of Wnt agonists in the survival and alleviation of 

mutant phenotypes.   

 

The salvage pathway, DPAGT1 and cancer 

 Overexpression of UAP1, PGM3, and DPAGT1 have all been linked to cancer (Greig et al., 

2007; Itkonen et al., 2015; Jamal et al., 2012 Munkley et al., 2016; Nita-Lazar et al., 2009; 

Ricciardiello et al., 2018). This suggests that PGM3, UAP1, and DPAGT1, could all be potential 

chemotherapy targets. Furthermore, our data suggest that the UDP-GlcNAc salvage pathways’ 

effect on the free pool of UDP-GlcNAc may be the contributing factor in these cancers. 

Therefore, NAGK could also be a viable chemotherapy target. In vitro and In vivo studies could 

provide valuable data on the potential role of these enzymes in tumorigenesis and their viability 

as drug targets.  
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Final thought on kinases and phosphatase 

 In this work, I have shown that proper phosphorylation is important in N-glycosylation, 

Wnt signaling, anterior-posterior patterning, eye formation, ciliogenesis, chemosensation, 

mechanosensation, metabolism, and more. This wide array of phenotypes highlights the 

importance of both kinases and phosphatases. Precise control of these enzymes is essential for 

development and misregulation results in disease. It is important that the findings be expanded 

upon to further elucidate the functions of both Cdc14 and NAGK and their roles in human 

health and disease.   
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Figure 41 Figure appendix-1: Examples of post-midblastula transition Wnt signaling phenotypes in the early Xenopus laevis 
embryo 
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Figure appendix-1: Examples of post-midblastula transition Wnt signaling phenotypes in the early 

Xenopus laevis embryo (Edited from Kiecker and Niehrs 2013). (Middle) a wildtype embryo at 

approximately stage 34-35. (Top) Inhibition of the Wnt/β-catenin pathway (-Wnt) post the midblastula 

transition anteriorizes Xenopus embryos. (Bottom) Activation of the Wnt/β-catenin pathway (+Wnt) post 

the midblastula transition posteriorizes Xenopus embryos. Post the midblastula transition Wnt represses 

anterior structures, suppressing head formation. Wnt also promotes posterior development (tail and 

trunk) after the midblastula transition. Posteriorization results in the loss or reduction of the cement 

gland. Conversely, anteriorization results in an enlarged or expanded cement gland. * indicates the 

cement gland.  
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Figure 42 Figure appendix-2: Examples of pre-midblastula transition Wnt signaling phenotypes in the early Xenopus laevis embryo
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Figure appendix-2: Examples of pre-midblastula transition Wnt signaling phenotypes in the early 

Xenopus laevis embryo (Edited from Peters et al. 1999). Pre-midblastula transition ectopic activation of 

Wnt in the Ventral blastomeres of a 2 or 4 cell embryo results in a full axis duplication. Embryos are 

approximately stage 34-35. 
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 Figure 43 Figure appendix-3: Examples of Wnt signaling phenotypes in the early Danio rerio embryo  

 

 

 



216 

 

Figure appendix-3: Examples of Wnt signaling phenotypes in the early Danio rerio embryo. (Top) 

examples of Wnt overexpression inhibiting eye formation in the early Danio rerio embryo from the 

literature. (Top left) examples of LiCl treated embryos from D'CostaIain and Shepherd (2009). LiCl activates 

Wnt signaling by inhibiting GSK3. Images are of 48 hours post fertilization embryos. (Top right) embryos 

injected with dominant negative GSK3β from Van de Water et al. (2001). Images are of 24 hours post 

fertilization embryos. (Bottom) examples of non-canonical Wnts resulting in cyclopia in the early Danio 

rerio embryo from the literature. Embryos were injected with Morpholinos to knockdown Wnt11 

expression and imaged at 48 hours post fertilization. Images are from Thorpe and Moon (2004). 
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Figure 44 Figure appendix-4: Examples of Wnt mediated posteriorization of Danio rerio embryos 
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Figure appendix-4: Examples of Wnt mediated posteriorization of Danio rerio embryos. (Left) 

Overexpression of Wnt in the early Danio rerio embryo can result in convergent extension defects. 

Embryos are injected with Wnt8 and imaged at 36 hours post fertilization. Images are from Kategaya, et 

al. (2009). (Middle) inhibition of Wnt in the early Danio rerio embryo can also result in convergent 

extension defects. Images are of 26 hours post fertilization embryos. Images are from dkk injected 

embryos from Ro and Dawid (2011). (Right) Inhibition of non-canonical Wnt can result in convergent 

extension defects. Images are 1 day post fertilization embryos. Images are from Young et al. (2014).  
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The Small Molecule IMR-1 Inhibits the Notch Transcriptional 

Activation Complex to Suppress Tumorigenesis 

Astudillo L, Da Silva TG, Wang Z, Han X, Jin K, VanWye J, Zhu X, Weaver K, Oashi T, Lopes PE, 

Orton D, Neitzel LR, Lee E, Landgraf R, Robbins DJ, MacKerell AD Jr, Capobianco AJ. 

Cancer Res 2016 76(12):3593-603 
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Supplementary Figure Legends 

Supplementary Figure 1.  Primary screen of CADD-derived compounds. A. Histogram displaying values 

of selected compounds expressed as % Positive Control. The red line indicates the 50% activity mark. The 

shaded area highlights compounds exhibiting more than 97% inhibition and the orange highlighted bar 

indicates 1-134. B. NTC assay on compounds derived from the 1-134 similarity searching. Data are 

expressed in raw values as counts/sec. The orange highlighted bar indicates IMR-1 (1-134-83). C. NTC 

counter-screen to demonstrate specificity. Black shaded bars indicate probe for Maml1, grey shaded bars 

indicate probe for Notch1, and white bars indicate probe for CSL using specific antibodies for Maml1, 

Notch1 and CSL, respectively. Orange shaded bar indicates IMR-1 probed for Maml1.  

 

Supplemetary Figure 2. IMR-1 inhibits tumor growth. Graph of OE19 xenograft tumor volumes (in mm3) 

over time (days) in mice treated with vehicle (DMSO) or IMR-1 (15 mg/kg) administered daily via i.p. 

injection. Treatment was initiated on day 2 following transplantation of cells and continued until day 28. 

Data is displayed as average tumor volume (n = 5) per group and standard error of the mean. 

 

Supplementary Figure 3. IMR-1 treatment does not induce weight loss in treated mice. Graph of mice 

weight determined during treatment with vehicle (DMSO), IMR-1 (15 mg/kg) or DAPT (15 mg/kg), 

administered daily via i.p. injection over the course of 24 days, in two patient-derived xenograft tumors: 

EAC29 (left panel) and EAC47 (right panel). Data is displayed as averages (EAC29, n = 5, EAC47 n = 6) and 

standard error of the mean. 
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Supplementary methods 

Compound IMR-1 (1-134-83, ethyl{2-methoxy-4[(Z)-(4-oxo-2-thioxo-1,3-thiazolidin-5-

ylidene)methyl]phenoxy}acetate, CID:1246061) was synthesized and characterized by Xcess 

Biosciences (San Diego, CA, USA). The purity of IMR-1 is > 95% and its NMR spectra is identical 

to previously published data (see PubChem CID:1246061). 

Colony formation assay. Cells were plated into a 6-well plate at a density of 2000 cells/cm2. 

Drug treatment commenced 24 h post-seeding. Media and compounds were changed every 48 

h thereafter. After 168 h cells were fixed with ice cold methanol, stained with crystal violet, de-

stained with water, and allowed to dry at room temperature. 

Chromatin immunoprecipitation (ChIP) analysis. ChIP analysis was performed as previously 

described (1). Cells (8×106 OE33 cells or 10×106 786-0 cells) were plated onto a 15 cm tissue 

culture dish a day prior to treatment. Cells were then treated for 24 h with DAPT (5 µM), IMR-1 

(25 µM), or DMSO vehicle (control). Following treatment, cells were cross-linked for 10 mins 

with 1% formaldehyde. The reaction was then stopped by adding 0.125 M glycine. Cells were 

collected in SDS lysis buffer (50 mM Tris-HCl (pH 8.0), 1% SDS, 10 mM EDTA) and sonicated to 

yield chromatin fragments of approximately 300 to 800 bp (8 mins at high level for OE33 cells; 5 

mins at medium level for 786-0 cells in BioruptorTM UCD-200 sonicator). Lysates were divided 

into equal parts and immunoprecipitated with either α-Notch1 (Bethyl Laboratories, 

Montgomery, TX; A301-894A) or α-Maml1 (Cell Signaling, 12166s) antibody. Protein:DNA 

immunoprecipitates  were then reverse cross-linked at 65 °C in 200 mM NaCl for 4 h, followed 

by incubation with RNase A and proteinase K. DNA was then purified using a PCR purification kit 
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(Qiagen, Gaithersburg, MD, USA). Immunoprecipitated DNA was then detected by Syber green 

qPCR using HES1 specific oligonucleotide primers (forward: 5’CGTGTCTCCTCCTCCCATT3’; 

reverse: 5’GGGGGATTCCGCTGTTAT3’). 

Mouse xenograft studies.  Six-week-old male and female NOD-SCID gamma (NSG) mice were 

purchased from Jackson Laboratories (USA) and CD-1 Nude mice were purchased from Charles 

River Laboratories (USA). Animal experiments were approved by the University of Miami 

Institutional Animal Care and Use Committee (protocol 13-128, approval date 10 July 2015). For 

the cell line-based xenograft assay, 5×106 OE19 cells in 200 μL serum-free culture medium were 

injected subcutaneously per mouse(2). The mice in the treatment group were injected (i.p.) 

with 15 mg/kg IMR-1 daily and the mice in control group were injected with the same volume 

of vehicle (DMSO). Body weight and tumor growth were measured every 4 days for 28 days. 

Tumor volume = (S×S×L)/2, where S and L are the short and long dimensions, respectively. PDX 

cancer models were established as previously described in NSG mice(2). When the tumors 

reached 200 mm3, the mice were randomly split into two uniform groups for treatment. IMR-1 

(15 mg/kg) and vehicle were administered daily by i.p. injection for 24 days. Tumor growth was 

monitored every 4 days. The xenograft tumors were harvested and weighed and samples were 

analyzed.  

Pharmacokinetics. A group of 18 male C57BL/6 mice (8-12 weeks old) were divided into two 

groups as group 1 (i.v.: 2 mg/kg) and group 2 (i.p.: 100 mg/kg). Animals in group 1 were 

administered through intravenous (i.v.) route with IMR-1 solution formulation in 5% NMP, 5% 

Solutol-HS 15 and 90% Normal saline at 2 mg/kg dose. Animals in group 2 were administered 
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through intraperitoneal (i.p.) route with IMR-1 solution formulation in 7.5% NMP, 5% Solutol, 

40% PEG-400, and 47.5% Normal Saline at 100 mg/kg dose. Blood samples (approximately 60 

µL) were collected from retro orbital plexus under light isoflurane anesthesia such that the 

samples were obtained at pre-dose (0.08, 0.25, 0.5, 1, 2, 4, 8 and 24 h) for both i.v. and i.p. 

treatments. The blood samples were collected from set of three mice at each time point in 

labeled microcentrifuge tube containing K2EDTA as anticoagulant. Plasma was separated from 

blood immediately by centrifugation at 4000 rpm for 10 min at 4 ºC and stored below -70 ºC 

until bioanalysis. All samples were processed for analysis by protein precipitation using 

acetonitrile and analyzed for IMR-1 and its acid metabolite IMR-1A with fit for purpose LC-

MS/MS method. Pharmacokinetic parameters were calculated using the non-compartmental 

analysis module of Phoenix WinNonlin (Version 6.3). Maximum concentrations (Cmax) and time 

to reach the maximum concentration (Tmax) were the observed values. The areas under the 

concentration time curve (AUClast and AUCinf) were calculated by linear trapezoidal rule. The 

terminal elimination rate constant, ke, was determined by regression analysis of the linear 

terminal portion of the Log plasma concentration-time curve. The terminal half-life (T1/2) was 

estimated as 0.693/ke; CLi.v. = Dose/AUCinf; Vss=MRT CLi.v, where MRT represents the mean 

residence time.  

Zebrafish methodology. Zebrafish embryos were cultured as previously described(3). Briefly, 

on three separate days, multiple clutches of embryos from two or more breeding pairs of the 

AB wild type line were combined and incubated at 28.5 ºC for 8 h in E3 medium with 0.1% (w/v) 

methylene blue. The embryos were then placed into fresh E3 medium with 0.1% (w/v) 

methylene blue containing DMSO, 40 μM IMR-1, or no treatment. As a positive control, zygotes 
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were injected with 100 pg of human Notch1 intracellular domain mRNA mixed with 0.05% 

phenol red using the MPPI-2 injection system from ASI. At 13 h post-fertilization, samples were 

collected and scored for the presence of discrete somite boarders on a Zeiss stemi 2000-CS 

scope. Data were analyzed using fisher's exact test in R3.1.0. Immunofluoresence was used to 

visualize the phenotype. Embryos were permeabilized with 10 μg/ml Proteinase K for 1 min and 

stained with EphA4 (Tyr-602) phospho-specific rabbit polyclonal antibody (1:100) from ECM 

Biosciences for two days at 4 ºC as previously described(4). Embryos were then stained with 

alexa-488 anti-rabbit antibody at 1:200 overnight. Samples were visualized on a Nikon eclipse 

80I and imaged with a Photometrics Cool Snap ES.  

Computational methods. Simulation was initiated with the 3D structures of human Notch1 

taken from the transcription complex consisting of the ANK domain of human Notch1, 

transcription factor CSL, cognate DNA, and coactivator MAML1 (PDB ID 2F8X) retrieved from 

the Protein Data Bank(5,6). Missing residues were restored by the program MODELLER(7). The 

program Reduce(8) was used to add hydrogen atoms and optimize the orientations of the 

sidechain OH, SH, NH3
+, -S-CH3, and amide moieties, as well as the imidazole rings of the 

histidines. To obtain multiple conformations of the putative binding sites in the NOTCH1 

interface with CSL suitable for database screening, MD simulation was performed with the 

programs CHARMM(9) and NAMD(10). Calculations used the CHARMM 22 all-atom protein 

force field(11) including the CMAP backbone energy correction(12). Preparation for the MD 

simulation involved overlaying the structure of human NOTCH1 with 96 Å pre-equilibrated 

cubic box of TIP3P water containing 150 mM NaCl(13). Solvent molecules with non-hydrogen 

atoms within 2.8 Å of protein non-hydrogen atoms were deleted. The solvent was initially 
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minimized with the protein restrained followed by minimization of the entire system. The MD 

simulation initially involved heating to 298K at a rate of 10K/ps and equilibration in the NPT 

ensemble (1 atm, 298K) for 100ps(14). The production MD simulation was performed in the 

NPT (1 atm, 298K) ensemble for 25ns with time frames from trajectory saved every 5 ps for 

analysis. Simulations were performed with a 2 fs integration time step using the SHAKE 

algorithm(15) to constrain covalent bonds to hydrogens. Electrostatic forces were calculated 

with the particle mesh Ewald method(16) using a real space cutoff of 12 Å with a kappa value of 

0.4 Å-1 and a 4th order spline interpolation. Van der Waals (vdW) forces were truncated with a 

cutoff distance of 12 Å with smoothing performed using a force switching function(17) starting 

at 10 Å.  

Preparation of conformationally diverse structures to identify putative binding pockets used 

for docking. To identify unique conformations for the identification of putative binding pockets 

used for docking, conformations from the 25ns MD simulation of human Notch1 were 

subjected to Cartesian clustering based on the root-mean-square differences (RMSD)(18). 

RMSDs were based on all non-hydrogen atoms in the interfacial residues that are located within 

3.5 Å from CSL in CSL-Notch-MAML-DNA transcription complex crystal structure. RMSD based 

clustering using the neural network-based ART-2 algorithm(19,20) showed the presence of 9 

distinct clusters for human Notch1 MD simulation with RMSD radii of 2.1 Å. Representative 

conformations were selected from each cluster. These conformations as well as the X-ray 

crystallographic structures of human Notch1 taken from the transcription complex were used 

to identify putative binding pockets used for subsequent database screening. Of these, the four 

conformations with the highest binding response scores were used for the primary screens with 
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all the conformations in which the putative binding pocket was present used for the secondary 

screen. 

Identification of putative binding sites. Putative binding sites were identified using the binding 

response method(21). To prepare the structures for binding pocket identification and docking, 

atomic partial charges based on the AMBER 99 force field were assigned using the program 

Molecular Operating Environment (MOE) (Chemical Computing Group Inc.). All database 

screens were performed with an in-house modified MPI version of DOCK4(22) using flexible 

ligand docking based on the anchored search method(23). The solvent accessible surface(24) 

was calculated with the program DMS(25) using surface density of 2.76 vertex points per Å2 and 

a probe radius of 1.4 Å.  Sphere sets, required for initial placement of ligands for targeting 

binding sites, were obtained with the program SPHGEN within the DOCK package. 

In silico database screening. A virtual database of more than 1.5 million low-molecular weight 

commercially available compounds was used for the virtual screening. The database has been 

created in the MacKerell laboratory by converting files obtained from the vendors in the 2D SDF 

format to the 3D MOL2 format through a procedure that included addition of hydrogen, 

assignment of protonation state, geometry optimization with MMFF94 force field(26,27) using 

the programs MOE, and assignment of atomic partial charges based on CM2 charge model at 

the semi-empirical quantum chemical AM1 level using the program AMSOL(28,29). The 

compounds that were screened had 10 or fewer rotatable bonds and between 10 and 40 heavy 

atoms. The four most structurally diverse conformations from the MD simulations and 

clustering analysis were used for the primary docking.  During docking the protein structures 
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were fixed with ligand flexibility treated using the anchored search method(23). In this 

approach each compound was divided into a collection of non-overlapping rigid segments 

connected though rotatable bonds. Segments with more than five heavy atoms were 

considered as anchors, each of which was individually docked into the binding site in 200 

orientations and then minimized. The remainder of the each molecule was constructed around 

the anchors in a stepwise fashion by connecting other segments through rotatable bonds. At 

each step, the dihedral of the rotatable bond connecting previously constructed to new 

segments was sampled in increments of 10° and then the lowest energy conformation was 

chosen. During primary docking, each rotatable bond was minimized as it was created without 

re-minimizing the other bonds. Selected conformations were eliminated based on energetic 

criteria, ensuring conformational diversity and energetically favorable conformations(30,31). 

Energy minimization was performed after building the entire molecule, with the ligand 

orientation with the most favorable interaction energy for all the protein conformations 

selected for each molecule. The GRID method(32) implemented in the DOCK package was used 

to approximate the ligand-protein interaction energies during ligand placement as a sum of 

electrostatics and vdW attractive components. The GRID box dimensions were 37.3 Å ×39.4Å 

×38.4 Å, centered on the sphere set to ensure that docked molecules were within the grid. 

     Scoring of compounds from the primary docking was performed using the vdW attractive 

interaction energy (IE) to evaluate the shape complementarity between ligands and the protein 

binding site. Due to the contribution of the molecular size to the energy score, compound 

selection favors higher molecular weight compounds(33). To avoid this size bias, the vdW 
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attractive IE was normalized based on the number of non-hydrogen atoms N raised to a power 

x, as shown in equation 1 (33). 

  (Eq. 1) 

Normalization based on vdW attractive IE was performed with x = m/12, where m ranges from 

0 to 12. The selected value of x for each screen was that corresponding to a median MW of the 

selected compounds closest to 300 Daltons to correct for molecular weight (MW) bias in 

docking(33).Compound ranking was performed using the most favorable IE for each compound 

from the four protein conformations used in the database screening. 

The top 50,000 compounds obtained from the primary database screen were subjected 

to a more rigorous and computationally demanding docking procedure, referred to as 

secondary docking. The procedure described for primary docking was followed with the 

additional step of simultaneous energy minimization of all rotatable bonds that connect anchor 

fragments during the stepwise building of the molecule. More receptor flexibility was taken 

into account by using 7 of the 9 representative conformations of human Notch1 obtained from 

the MD simulations along with the crystal structure. Each compound was docked individually to 

each conformation, from which one with the most favorable total interaction energy was 

chosen as the energy score of the compound. The total ligand-receptor IE was then normalized 

as described above. The top 1000 compounds were selected from the secondary searches. 

   

IEnorm =
IE

N x
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Final selection of compounds for experimental assay involved maximizing chemical and 

structural diversity of the compounds as well as considering their physicochemical properties 

with respect to bioavailability. Top 1,000 compounds identified in secondary database 

screening were subjected to chemical and structural clustering. The Jarvis-Patrick algorithm(34) 

implemented in MOE was used to identify the dissimilar clusters of compounds using BIT-

packed version of MACCS structural key (BIT-MACCS) fingerprints with the Tanimoto coefficient 

(TC) as similarity index(35). First, the BIT-MACCS fingerprint was calculated and assigned to 

each of the top 1,000 compounds. Then the pairwise similarity matrix A(i,j) was constructed 

between compounds i and j for all top 1,000 compounds using binary TC scores TCb(i,j) that are 

metrics to evaluate similarity score between two compounds as described in equation 2, where 

a is the number of features in compound i, b is the number of features in compounds j, and c is 

the number of common features in compounds i and j(36).   

  (Eq. 2) 

Pairwise similarity matrix A(i,j) was converted into binary matrix B(i,j), where each TCb(i,j) was 

replaced by either 0 or 1 that represents similarity score below or above the user selected 

similarity threshold value (S). Each of two compounds i and j in top 1,000 molecules were 

compared as two row vectors B(i) and B(j), from which molecules above the predefined overlap 

threshold (T) were grouped into the same clusters. The values of S and T were adjusted to 

generate a reasonable number (~300 clusters) and size (3-10 compounds per cluster) of the 

clusters as done in our previous studies(37,38), with clusters containing more than 20 

   

TCb (i, j) =
c

a+ b- c
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compounds subjected to an additional step of clustering using higher similarity and overlap 

thresholds. Compounds for experimental assay were then manually selected from the clusters, 

with priority given to those compounds with drug-like properties with respect to bioavailability 

criteria. Bioavailability was based on Lipinski’s rule of 5 (39), as defined as compounds with MW 

≤ 500, logP(o/w) ≤ 5 , the number of hydrogen bond donors ≤ 5, and the number of hydrogen 

bond acceptors ≤ 10. It should be noted that a significant number of clusters only contained a 

single compound and only a small number of those compounds were selected for biological 

assays. A search resulted in 202 compounds selected for experimental testing in this study. A 

selected number of compounds were then purchased from ChemBridge (San Diego, CA) and 

dissolved in dimethyl sulfoxide (DMSO) at a stock concentration of 25 mM. The purity of 

compounds shown to have biological activity was verified by mass spectrometry.  

Lead validation and SAR development via chemical similarity searching(40). The 2D structural 

fingerprint (BIT-MACCS) was calculated for active parent compound by the program MOE, and 

was used to quantify chemical similarity to other molecules using TC as similarity metrics. A 

virtual 2D database containing over 5.5 million low-molecular weight commercially available 

compounds was used for the chemical similarity search. The TC was adjusted to limit the search 

to 100 compounds. 
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