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CHAPTER I

Introduction

A BRIEF HISTORY OF GENOMICS

Since the discovery of DNA as the carrier of genetic information in 1944 by Oswald Avery, Colin 

MacLeod, and Maclyn McCarty in bacterial transformation1 and the subsequent characterization

of its double helical structure in 1953 by Rosalind Franklin, James Watson, and Francis Crick2, 

biologists have striven to understand the information encoded within this molecule. The 

elucidation of the “first sequence” by Fred Sanger3 in 1955 sparked a revolution in the nascent 

field of genomics.  Previous to this discovery, many biologists believed proteins to be an “ill-

defined amorphous mixture”4, with no definite structure.  However, Sanger demonstrated that in 

fact proteins were composed of discrete amino acids in sequence, and three years later, Francis

Crick proposed the Central Dogma of Molecular Biology5, formalizing the hypothesis that DNA 

gave rise to RNA, which in turn gave rise to protein.  Following this theory, researchers raced to 

develop a method of sequencing the other macromolecules.  In 1965, Robert Holley published 

the first nucleic acid sequence6 along with a description of the structure of ribonucleic acid7, and 

Nirenberg and Leder described the RNA triplet code8.  These discoveries culminated in the 

determination of the first nucleotide sequence for a gene in 1972 by Walter Fiers9.

The invention of the first generation of DNA sequencing techniques in 1975-77, Sanger 

sequencing via chain termination10, and Maxam-Gilbert sequencing via chemical modification11, 

ushered in a new era of genomics.  These technologies allowed for the accurate determination 

of sequences hundreds of bases long, and led to the publication of the first complete genome of

the bacteriophage φX174 in 1977X174 in 197712.  In 1981, researchers published the sequence of the human

mitochondrial genome13.  The proposal of construction of a human genetic map using DNA 

polymorphisms in 198013,14 and its application in 1983 to determine the locus responsible for 
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Huntington’s Disease15 would set sights on the assembly of the nuclear genome and its potential

impacts on human health and disease.  While at the time, the thought of sequencing a genome 

of 3 billion base pairs seemed an impossible dream, the possibility remained at the forefront of 

genomic research.

The next major advances in genomics came about with the application of computational 

techniques to sequencing.  The first step came in 1986 with an improvement to the Sanger 

method using fluorescent dyes16 eventually leading to the development of the first automated 

DNA sequencer by Applied Biosystems and its use demonstrated 198717.  This new technology 

made the idea of Whole Genome Sequencing (WGS) a reality, and in 1990 the US Department 

of Energy and the National Institute of Health announced the launch of the Human Genome 

Project.  The development of shotgun sequencing18 and paired end sequencing19 provided new 

techniques that facilitated the assembly of the genomes of the first free-living organism 

Haemophilus influenzae in 199520 and the first eukaryote Saccharomyces cerevisiae in 199621.  

These achievements were followed by the first metazoan genomes, the nematode 

Caenorhabditis elegans in 199822 and the fruit fly Drosophila melanogaster in 200023.  The tools 

created during the assembly and annotation of these “model organisms” paved the way for the 

completion of Human Genome Project in 200124.

The development of high-throughput sequencing technologies, such as 454 

Sequencing25 and Illumina Dye Sequencing26, heralded the beginning of a new era of genomics.

The commercial availability of these techniques in the mid 2000s has greatly reduced the cost of

sequencing, enabling a new class of genomic analyses, such as RNA-Seq27.  In the modern age

of sequencing, it has become possible to complete massive sequencing projects on an 

unprecedented scale.  The 1000 Genomes Project has assembled a deep catalog of human 

variation, recording the sequences of 2504 individuals across 26 populations in its Phase 3 

dataset28, and the Encyclopedia of DNA Elements (ENCODE) has annotated functional 
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elements using 1640 datasets in 147 cell types in its Phase 2 release29.  As of today, there are 

23,460 completed genomes available on NCBI30 and over 77 million human polymorphisms 

recorded in dbSNP31.

Figure 1. Sequences in GenBank since its inception to present day.

Genomic Databases

The realization that the structure and organization of the components and processes of the cell 

were defined by discrete and measurable units of information spurred the investigation of these 

topics with a newfound level of precision4.  As the number of known sequences began to grow in

size, efforts32,33 to compile a definitive sequence database culminated in the foundation of the 

GenBank nucleic acid sequence database34.   Since its inception, this sequence database has 

grown exponentially with each release (Figure 1).  The availability of sequence data spurred a 

profound leap in the study of molecular evolution with the proposal of the molecular clock35, the 
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formulation of the neutral theory of evolution36, and the development of new methods of 

estimating population structure37, adaptive evolution38,39, sequence similarity search40–42, and 

Genome Wide Association Studies43.

The explosion of the amount of genomic sequence data, annotations, and analytical 

results has necessitated the development of systems to allow researchers to manage and query

this massive amount of information.  One of the earliest efforts to create a repository of genomic

data was the Atlas of Protein Sequence and Structure first published in 1965 by Margaret 

Dayhoff33, managed mostly by hand and expert curation.  In 1979, Walter Goad established the 

Los Alamos Sequence Library32 which eventually evolved to become GenBank in 1982.  This 

database grew rapidly, doubling in size approximately every 18 months44.  Outside the US, the 

European Nucleotide Archive45 and the DNA Data Bank of Japan46 serve as centralized 

repositories for sequence data.

The generation of non-sequence data, including functional annotations, expression data,

and evolutionary analyses necessitated the development of repositories for these datasets.  

These specialized databases were adequate for those wishing to investigate these topics 

individually, but a growing desire to perform integrative analyses spurred the development of 

meta-databases.  In 1991, the National Center for Biotechnology Information (NCBI) Entrez47 

was released with capability of searching across the many databases of NCBI simultaneously.  

Model organism databases, such as the Saccharomyces Genome Database48, Flybase49, and 

the Mouse Genome Database50, were created to serve their respective research communities 

with a focus on collecting the annotations and analyses most relevant to their investigative 

audience.  These databases are able to provide sophisticated tools and datasets tailored for 

their research focus, and more recently the field has seen the development of even more 

specialized resources for specific diseases, such as The Cancer Genome Atlas51.  In 2018, 

Nucleic Acids Research Molecular Biology Database Collection counts 1737 entries in its annual
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database issue52.

GEneSTATION

In Chapters 2 and 3, I describe my work on GEneSTATION, a human pregnancy research 

database (NAR Molecular Biology Database Collection entry number 1881)53.  This project was 

developed with the aim to investigate the genetic basis of preterm birth (PTB).  Defined as birth 

before 37 weeks gestation, PTB is a complex, multifactorial syndrome whose onset is triggered 

via the sub-clinical dysregulation of the Common Pathway of Partruition54: myometrial 

contractility, cervical dilatation, and rupture of the chorioamniotic membranes.  While many 

mammals experience early birth55, it is theorized that in humans birth timing has had greater 

selective constraints due to pleiotropic effects from changes of the shape of the pelvic inlet 

during the evolution of bipedalism and increasing head-size along the human lineage.  These 

effects are thought to impose a cephalopelvic constraint on fetal development known as the 

Obstetric Dilemma56,57.  In 2016, babies born to non-Hispanic black mothers were 39.8% more 

likely to be born preterm--an effect that may be socio-economic or due to differences in genetic 

background58.

In order to capture the complex possible etiologies of PTB, I compiled a diverse set of 

pregnancy specific functional and evolutionary data, and I created an interactive web 

encyclopedia with the ability to perform advanced searches and queries.  Version 1.0 of the 

database was gene focused, and I was able to utilize the Generic Model Organism Database 

(GMOD) project’s Chado ontological schema59.  In Version 2.0 of the database, I expanded the 

focus to include sequence variation data, enhancers, and other non-coding elements of the 

genome.  This expanded the size of the datasets by several orders of magnitude, and 

eventually I needed to transition to an entirely novel ElasticSearch database solution.
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THE GENOMIC SEARCH ENGINE

In Chapter 4, I discuss my work in designing the ElasticSearch database and the associated 

tools I developed for the GEneSTATION encyclopedia.  The Genome Feature Object 

specification is an ElasticSearch schema I created for the storage of genomic data in a generic 

and extensible manner.  The use of this new database technology was necessitated by failure of

a traditional relational database structure to deliver acceptable performance when operating 

over millions of genomic elements during the development of GEneSTATION 2.0.  Because the 

original 1.0 version of the database implemented the GMOD Project’s Chado schema, I needed 

the database to continue to support the same data and queries as this advanced schema.  By 

using the Chado schema as a guide, I was able to ensure that the Genome Feature Object 

could represent complex biological data and support similar ontological queries.

The Genome Feature Object provides a consistent interface for computational tools to 

query and analyze biological data in a non-relational database.  In order to facilitate the usage 

of this specification, I created the Genestation Command Line Interface (CLI) which is able to 

load GFF, FASTA, VCF, and generic tab delimited data into ElasticSearch following this 

specification.  In addition, the Genestation CLI is able to perform queries and operations in 

ElasticSearch and integrate into data pipelines for further analysis.

SynTHy and GeneViewer

In Chapter 6 and 7, I detail two web based tools designed to query and interact with Genome 

Feature Objects.  The Synthesis and Test of Hypotheses (SynTHy) is an advanced search 

builder which interactively visualizes the distribution of data values and the overlap of datasets.  

GeneViewer is a genome browser that is able to dynamically filter and plot genomic elements by

various data values.  Because a database project could utilize both a traditional relational 
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database and a non-relational data store of Genome Feature Objects, these tools could be used

to provide any genome database with high performance search and visualization of genomic 

data while still reaping the benefits of a relational database structure.
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ABSTRACT

Mammalian gestation and pregnancy are fast evolving processes that involve the interaction of 

the fetal, maternal and paternal genomes. Version 1.0 of the GEneSTATION database 

(http://genestation.org) integrates diverse types of omics data across mammals to advance 

understanding of the genetic basis of gestation and pregnancy-associated phenotypes and to 

accelerate the translation of discoveries from model organisms to humans. GEneSTATION is 

built using tools from the Generic Model Organism Database project, including the biology-

aware database CHADO, new tools for rapid data integration, and algorithms that streamline 

synthesis and user access. GEneSTATION contains curated life history information on 

pregnancy and reproduction from 23 high-quality mammalian genomes. For every human gene, 

GEneSTATION contains diverse evolutionary (e.g. gene age, population genetic and molecular 

evolutionary statistics), organismal (e.g. tissue-specific gene and protein expression, differential 

gene expression, disease phenotype), and molecular data types (e.g. Gene Ontology 

Annotation, protein interactions), as well as links to many general (e.g. Entrez, PubMed) and 

pregnancy disease-specific (e.g. PTBgene, dbPTB) databases. By facilitating the synthesis of 

diverse functional and evolutionary data in pregnancy-associated tissues and phenotypes and 

enabling their quick, intuitive, accurate and customized meta-analysis, GEneSTATION provides 

a novel platform for comprehensive investigation of the function and evolution of mammalian 

pregnancy.

INTRODUCTION

Placental mammals, which originated 160 million years ago, uniformly share a conserved set of 

reproductive traits related to embryonic development within a uterus and nutrient provisioning 

through a chorioallantoic placenta1. Paradoxically, this conservation of reproductive mode and 

function during mammalian evolution is starkly juxtaposed with the evolution of the placenta, 
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one of the most variable of all mammalian organs2,3. At present, there is no comprehensive 

explanation for the diversity of evolutionary tempos and modes exhibited by the processes 

associated with mammalian gestation and pregnancy. The consequences are important not only

for our understanding of mammalian pregnancy4, but also for major features of human evolution,

such as the encephalization and bipedalism5, and how natural selection has acted on and 

shaped human biology6,7. And clinically, complications of pregnancy in humans are a major 

cause of infant mortality around the world8; for example, complications stemming from birth 

before term (pre-term birth or PTB), defined in humans as birth before 37 completed weeks of 

gestation9, are the leading cause of death in newborns and in children under the age of five10,11.

Several funding agencies have recognized both the seriousness of pregnancy 

associated medical problems and the persistence of many unanswered questions about the 

process. Consequently, they are currently increasing their investments in the study of the 

biology and pathologies of pregnancy, which will lead to the generation of large amounts of 

diverse types of data in the next few years. Two notable examples are the NIH-sponsored 

Human Placenta Project12, aimed to ‘understand the role of the placenta in health and disease’, 

and the March of Dimes-sponsored Prematurity Research Centers 

(http://prematurityresearch.org/), ‘dedicated to solving the mysteries of premature birth’. 

Because PTB has a significant genetic component13,14, there is general consensus that 

emerging molecular and genomic resources provide new opportunities to not only make 

fundamental advances in our understanding of the evolution and function of mammalian 

pregnancy4,15–20, but to also make breakthroughs in treating its diseases8,21–24.

At present, however, such advances are limited by the fact that such data and resources

are dispersed either in many different journals’ supplements or across several different 

databases, making synthesis of available information slow and costly, and hampering powerful 

system approaches that involve overlaying diverse data types and analyses in the treatment of 
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disease25,26. To facilitate this synthesis, we have developed GEneSTATION 

(http://genestation.org), a database that integrates diverse types of -omics data across 

mammals to advance understanding of the genetic basis of pregnancy-associated phenotypes 

and to accelerate the translation of discoveries from model organisms to humans. The 

database's name, GEneSTATION, is a compound word created by blending together ‘gene’ and 

‘gestation’; it can be read as ‘gestation’ if the reader considers only the capitalized letters, or as 

‘gene station’ if the reader considers all letters, and is intended to highlight the fact that this 

database is focused on synthesizing information on genes related to gestation.

GEneSTATION provides the data and tools to easily explore pregnancy from three 

complementary perspectives, evolutionary, organismal, and molecular, at three levels of 

synthesis. At the first level, individual gene pages integrate the evolutionary, organismal, and 

molecular perspectives in three easily accessible tabs, providing a comprehensive picture of the

breadth of the data available for a single gene and introducing researchers to analyses and data

that they have not previously considered. At the second level, individual analysis pages provide 

access to genome-wide information from a single perspective, such as natural selection in the 

human lineage, differential expression in complications of pregnancy, or protein-protein 

interactions among genes known to be involved in pregnancy. At the final level of synthesis, the 

Gene Set Analysis tool and the novel ‘SynTHy’ (Synthesis and Testing of Hypotheses) tool 

enable researchers to synthesize on-the-fly the many types of information available through the 

development and evaluation of testable hypotheses.
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DATA SOURCES AND DATA ORGANIZATION

Organism life history data

GEneSTATION contains information on pregnancy- and reproduction-associated characteristics 

for every mammal genome present in the database: human (Homo sapiens), elephant 

(Loxodonta africana), chimpanzee (Pan troglodytes), cow (Bos taurus), macaque (Macaca 

fascicularis), cat (Felis catus), dog (Canis lupus), goat (Capra hircus), guinea pig (Cavia 

porcellus), horse (Equus caballus), mouse (Mus musculus), gibbon (Nomascus leucogenys), rat

(Rattus norvegicus), baboon (Papio anubis), vole (Microtus ochrogaster), rabbit (Oryctolagus 

cuniculus), rhesus monkey (Macaca mulatta), sheep (Ovis aries), orangutan (Pongo abelii), 

gorilla (Gorilla gorilla), marmoset (Callithrix jacchus), wild boar (Sus scrofa), and platypus 

(Ornithorhynchus anatinus). Specifically, life history characteristics including mean gestation 

length, neonate development, placental structure and shape, litter size, interbirth interval, adult 

body mass, maximum longevity and the timing of neonatal brain growth, an interesting 

characteristic relevant to potential complications of early parturition27, are provided for each 

species (for data sources see Materials and Methods).

Gene-specific data

In addition to the life history data for the 23 mammals, every gene in each mammalian genome 

has a page on GEneSTATION that depicts the available evolutionary, organismal and molecular 

knowledge for that gene, with data from each category reported in a separate tab (Figure 1). 

The juxtaposition of diverse data is designed to guide users toward a more comprehensive 

understanding of genes of interest and facilitate serendipitous construction of novel hypotheses.

For example, a GEneSTATION user may look up a gene of interest with enriched expression in 

the placenta and quickly discover that this gene additionally: (i) is often differentially expressed 

in studies on preeclampsia, a complication of pregnancy characterized by high blood pressure 
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(both of these data types are reported in the ORGANISMAL tab), (ii) originated coincidentally 

with the placental mammals (reported in the EVOLUTIONARY tab) and (iii) interacts with known

pregnancy related genes (reported in the MOLECULAR tab). Collectively, these associations 

would suggest that the gene would be a good candidate for further exploration.

The EVOLUTIONARY category contains a variety of population and evolutionary data on

human genes, and in some instances (e.g. ancient selection, orthology) on genes from diverse 

mammals (see Materials and Methods). These include the strength of recent selection 

(measured by FST) and ancient selection (measured by dN/dS), a gene's estimated date and 

lineage of origin, the SNPs from every human gene, and mammalian orthology relationships.

The data in the ORGANISMAL category include the Online Mendelian Information in 

Man (OMIM) phenotypes for each human gene, if available, RNA and protein expression across

many tissues from Protein Atlas, including several pregnancy related tissues, as well as all 

differentially expressed genes from 106 genome-wide comparisons from pregnancy studies 

across gestational tissues (including placenta, cervix, myometrium, decidua, chorion, amnion) 

and pathologies (including preeclampsia, intrauterine growth restriction, chorioamnionitis and 

spontaneous preterm birth) (see Materials and Methods).

The data in the MOLECULAR category include the gene annotation28 information for 

human and seven other mammalian genomes, and the protein interactions, through STRING29, 

for proteins from humans and 15 other species.

In addition to the data sets in the three categories listed above, GEneSTATION displays 

RefSeq summaries for genes as well as gene-specific links to a wide variety of general 

databases, e.g. Entrez Gene, PubMed, UniProt, TreeFam30–33, where available. In addition, 

GEneSTATION contains links to two pregnancy disease-specific databases, dbPTB 

(http://ptbdb.cs.brown.edu/dbPTBv1.php) and PTBgene (http://ric.einstein.yu.edu/ptbgene/). 

Both databases are focused on human PTB; dbPTB contains the output from a computational 
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mining of the literature as well as of the KEGG and dbSNP databases to identify studies, 

pathways and variants associated with candidate disease-risk genes34, whereas PTBgene 

represents the summary of the fewer than 100 genes that show genetic association with 

preterm birth34,35.

DATA PRESENTATION

A number of general purpose or species-centric databases, e.g., Genecards, SGD, WormBase 

and FlyBASE36–39, provide access to diverse data sets on individual genes. By design, such 

databases aim to present the breadth of all available data for a given gene (e.g. 

http://www.genecards.org/cgi-bin/carddisp.pl?gene=BRCA1), which means that pages of genes 

that have been extensively studied can become either cumbersome to navigate or saturated 

with large amounts of different types of data, potentially obscuring the biological interpretation of

relationships among the various resources proffered. For ease of access, each major category 

on the gene page, e.g. evolutionary, is presented on a separate tab that is divided into 

subsections, e.g. Evolution in Mammals. These subsections are intended to expand and include

additional related types of data in future versions of GEneSTATION.

Aided by its focus on a specific biological process, GEneSTATION was developed using 

state-of-the-art web frameworks to provide a clean visual layout that is easy to interpret and 

efficient to navigate efficiently (Figures 1–3). For faster access to the data, GEneSTATION is 

designed to be highly responsive to users and focuses on providing low latency interaction and 

feedback. We have implemented multiple custom-made visualizations to allow users to quickly 

grasp the various types of available data and analyses, both for individual genes and across the

genome, such as creating interactive summary figures that chart the distributions of the 

underlying data or studies. For example, the gene expression page (Figure 2) shows the 

number of studies available by keyword (e.g. ‘myometrium’ or ‘spontaneous preterm birth’), 
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providing instantaneous and meaningful filters of the data, while simultaneously highlighting 

deficiencies in the number of publicly available data sets and identifying opportunities for meta-

analyses, as recently described by Eidem et al.40.

Custom-made visualizations are a key design feature of GEneSTATION pages. 

Examples include a density plot of each analysis in the SynTHy tool (Figure 3), which allows 

users to quickly select an appropriate cutoff based on the distribution of the values 

(http://www.genestation.org/SynTHy); the distribution of gene ages plot 

(http://www.genestation.org/analysis/gene/age), and the distribution of available pregnancy 

related expression studies by keyword plot 

(http://www.genestation.org/analysis/gene/expression). To support these custom visualizations, 

additional html/css/js libraries were included (see Materials and Methods).’
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Figure 1. Screenshot of a typical GEneSTATION gene page. Each gene page includes a 

summary from RefSeq and data organized into three tabs, EVOLUTIONARY, ORGANISMAL 

and MOLECULAR. In this figure, the ORGANISMAL tab for the CRH gene is open and the 

Protein Expression by Tissue section is expanded. In this example, the table is filtered by the 
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search term ‘placenta’ and displays the expression levels of CRH protein by the two cell types

annotated in this tissue. Links at the bottom of the page provide easy access to other relevant

databases. The search bar, which provides instant search, is prominently visible on all pages. 

Additional analyses, information about GEneSTATION, forms to upload data, and frequently 

asked questions are accessible by clicking the triple line button on the top right.
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Figure 2. Screen shot of the Gene Expression Studies page.  Each analysis page 

provides a summary figure to help users understand the scope of the data. The Gene 

Expression Studies page displays the most frequent keywords associated with available 

studies. The size of each segment in the pie chart is proportional to the number of studies with

the keyword. In this case, the user has clicked on the placenta segment of the pie chart, which

automatically filters the table for studies involving the placenta. In addition, the user has typed 

‘preterm’ and ‘normal’ into the search box, which filters studies based on whether their 
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experimental and control condition descriptions contain these keywords. Each entry in the 

table provides a link to a page with additional details of the study, the tissue or cell line of the 

experiment, the test and control conditions, and relevant keywords. The page with study 

details also includes all genes reported in the study along with expression fold-change and 

significance.

22



Figure 3. Screen shot of the results of a complex query using the SynTHy tool. The 

SynTHy tool allows users to form and evaluate hypotheses rapidly, with instant visual 
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feedback guiding exploration. In this example, the user has created a rule group to include 

genes with significant gene expression differences in studies matching ‘spontaneous’ where 

the tissue is ‘placenta’. This rule group is visually represented by the blue circle in the Venn 

diagram. The user has also added a rule to include only genes that arose <160 million years 

ago (MYA), which is represented in the diagram by a green circle. The distribution of ages is 

presented to allow users to estimate how many genes are being filtered out. A slider is 

available to quickly select a cutoff. The final rule selects for genes near SNPs that have very 

strong differentiation between East Asian populations and European populations (FST ≥ 0.4), 

which is represented by the orange circle. The distribution to the right of the rule provides 

users with an estimate of how many genes are being removed by the filter. Users can interact 

with the Venn diagram to see the number of genes (47 in this example) in each segment 

along with the search query to find those genes (the black text box). Selecting segments in 

the Venn diagram, which are scaled to approximate the number of genes, or clicking the 

search button (in blue, bottom left) will take users to a search page where the genes matching

the criteria are listed. The Gene Set Analysis button (in green, bottom left) submits the list of 

genes matching the intersection of all the rules to the Gene Set Analysis tool to find 

enrichment for any data stored in GEneSTATION. The Download button (in orange, bottom 

left) provides users with the selected list of genes and their associated data in JSON format. A

screencast tutorial for SynTHy is available in the FAQ page and can be reached from the 

SynTHy Tutorial link below the search button and from the information icon.
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SYNTHESIS AND ANALYSIS

The promise of GEneSTATION is that the rapid exploration of its diverse data types will allow 

users to generate a synthetic view of the genetic networks underlying pregnancy and its 

pathologies. Users with lists of genes obtained from experimental results, e.g. differential 

expression using RNA-seq, but short of fully developed hypotheses, can submit lists of 

candidate genes for enrichment analysis (http://www.genestation.org/analysis/gene/set) across 

the various data types (e.g. gene age, tissue expression, differential expression and methylation

in disease, GO annotation, protein interactions) and examine statistically significant associations

(see Materials and Methods). It has long been recognized that such interactive data exploration 

phases such as GEneSTATION provides are not only important in the analysis of complex data 

sets, but also in the formation of new hypotheses41.

Alternatively, users may visit GEneSTATION with a specific hypothesis about genes 

involved in a particular process or pathology, or develop one while browsing through the gene 

pages. With GEneSTATION, finding candidate genes that test a hypothesis has been rendered 

intuitive and quick by the development of SynTHy (after Synthesize and Test Hypotheses; http://

www.genestation.org/SynTHy), a novel tool that goes far beyond typical search tools by 

visualizing the distribution of the underlying data, giving immediate visual feedback and showing

how the various components of a hypothesis impact the resulting list of genes. Rapid 

exploration of multiple variations on a hypothesis facilitates the development of an integrated 

view of the genetic relationships underlying the many different data types. For example, a user 

could ask whether genes with SNPs that have very different frequencies (high FST) in 

populations with high preterm birth rates versus populations with lower preterm birth rates42 are 

also preferentially expressed in the placenta or arose in the mammalian ancestor. Any gene list 

results generated using SynTHy can be easily transferred to the gene set analysis tool for 

further refinement and exploration. SynTHy thus allows users to ‘find the question’ as readily as 
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to find the answers41. SynTHy is not intended to fully replace careful statistical analysis using 

original data but rather to synthesize disparate but high-quality data and analyses and facilitate 

rapid exploration.

DATA ACCESS

To facilitate specifically tailored statistical analyses, GEneSTATION makes all data available for 

easy download in JSON format using the download button on the bottom left of each gene 

page, analysis page and SynTHy result page.

SUMMARY AND FUTURE PERSPECTIVES

Understanding the complex functional landscape of pregnancy, how abnormalities of pregnancy 

arise, or how the biological mechanisms of gestation evolve and translate between species can 

be greatly augmented by the integration and synthesis of multiple types of experimental data, 

genomic data, and evolutionary analyses. Importantly, such genome-scale data sets are 

becoming more frequent and current funding priorities will only accelerate this trend. 

Consequently, populating GEneSTATION with additional high-quality evolutionary, organismal 

and molecular data sets is an active and ongoing process, with transcriptomic, proteomic, and 

imaging data being a high priority. In parallel, we are developing algorithms that will point users 

interested in a particular gene to other genes or biological processes with similar functional or 

evolutionary characteristics. Furthermore, GEneSTATION's integration of evolutionary and 

experimental data will support the development of algorithms that evaluate the likelihood that 

those specific biological systems or medical interventions that work in a model organism such 

as mouse or macaque will also work in human pregnancy.

In summary, GEneSTATION facilitates integrative analyses that draw from many types of

data, providing a novel platform and paradigm for comprehensive understanding of pregnancy 
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across mammals. It is our hope that GEneSTATION's synthesis becomes a catalyst for the 

identification and evaluation of candidate genes by biologists interested in the function and 

evolution of mammalian pregnancy, as well as its complications. More generally, 

GEneSTATION's synthetic focus on a specific biological process has the potential to become a 

model for databases aimed at synthesizing the diverse types of biology's ‘big data’ for a wide 

variety of biological processes.

MATERIALS AND METHODS

Publically available data on GEneSTATION

Publically available data that did not need reanalysis or normalization (e.g. gene age, dN/dS, 

Protein Atlas) were added to GEneSTATION without modification. Details about these data are 

listed in the online methods page along with links to the original data source. In addition, the 

methods page describes in more detail data sets that may be difficult to interpret for non-

specialists or that has potential caveats for interpretation. Small information icons on each 

analysis page or in the relevant subsection of gene pages provide links to both the methods 

page and the original data.

Sources of organism life history data

Mean gestation length and standard deviations were taken from primary accounts in the 

research literature focused on reproductive characteristics of each individual species. Neonate 

development state was either recorded directly from the literature or inferred using average litter

size as a proxy43. For all species, placental type and shape were taken from Hradecký and 

Mossman 19871. For non-primates, adult body mass was taken from the PanTHERIA database, 

as well as average litter sizes, interbirth intervals and maximum longevity for many species44. 

For primates, body mass data specifically reflect adult female body mass44,45. Finally, data on 
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the timing of brain growth across mammals were taken from46.

Variant reanalysis

To provide consistent genome wide analyses of human genetic variation, variant call format 

(VCF) files, with coordinates lifted to genome build GRCh38, were downloaded from the 1000 

Genomes Project FTP site (ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/), representing variants 

for all 2504 unrelated individuals in the 1000 Genome Project Phase 3 cohort47. Variants were 

filtered to exclude non-SNP variants, fixed sites, and sites with uncalled or unphased 

genotypes. Variants were validated against dbSNP build 14448 using the ValidateVariants tool in 

Genome Analysis Toolkit49. VCFtools50 was used to calculate pairwise FST statistics51.

Microarray reanalysis

We reanalyzed all microarray datasets that were downloaded from NCBI's Gene Expression 

Omnibus (GEO)52 using the R package GEOquery. Ambiguous probes that map to multiple 

genes were discarded. For multiple probes mapping to a single gene, the probe with median 

significance value was reported. Pairwise differential expression statistics were computed using 

the eBayes algorithm in the limma package.

Database design

The data for GEneSTATION is stored in PostgreSQL, a highly reliable and durable open source 

database. For consistent integration of multiple types of data, we use a highly normalized and 

non-redundant biology focused schema, Chado53, which is collaboratively developed by the 

Generic Model Organism Project54. We have written extensions to this schema so that 

GEneSTATION can handle the large numbers of genomes and diverse associated data 

(currently 3.4Tb) already loaded as well as those to be added in the future.
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GEneSTATION's large datasets have required the development of high-performance 

custom tools for data loading, which are built using C++ with libpq, and allow loading of 

genome-wide datasets in seconds and SNP datasets (e.g. 1000 genomes) in minutes. Python 

with SQLAlchemy provides a flexible pipeline for loading the highly varied data sources in 

GEneSTATION, annotations, database cross-references, and controlled vocabularies. 

GEneSTATION loads both standard data formats, e.g. GFF, FSTA, OBO, and generic formats 

using JSON files for metadata and tab-delimited files for the data, which facilitates integration of 

diverse analysis pipelines.

GEneSTATION also uses Elasticsearch, a distributed, in-memory search engine for full-

text search and as a store for precalculated, denormalized SQL queries that are computationally

intensive. Elasticsearch allows GEneSTATION to respond to advanced queries from users, 

including boolean and full-text, with lower latency and higher throughput than is possible with 

PostgreSQL alone.

Web interface

The web interface to the GEneSTATION database is delivered by a high performance custom 

server written in Go, a new language developed at Google to power their web services. The 

server handles querying both PostgreSQL (using sqlx) and Elasticsearch (using elastic), parsing

user input, and performing custom analyses on-the-fly (e.g., analysis of user submitted gene 

sets). The server provides an NCBI-like query language to query the Elasticsearch search 

engine and provides uniform access to all GEneSTATION data via a REST interface. The server

caches most pages, reducing latency to much less than a second in most cases.

The foundation of the user interface is Bootstrap, an integrated library of html elements, 

css, and javascript, which allows consistent visual layouts even on mobile devices and provides 

tools for rich user interaction, e.g. tabs, tooltips, popovers, while supporting users on both 
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handheld devices (e.g. iPads and iPhones) and older browsers. Additional functionality was 

achieved with specialized html/css/js libraries, which include: autocompeter.js for immediate 

search results feedback and autocomplete; multiple libraries, selectize.js, autosize.js, d3.js, 

venn.js, and react.js where used to build the SynThy tool; multiple libraries, jquery.js, 

jquery.form.js, responsive-bootstrap-toolkit.js, jquery-highlighttextarea.js, jquery-hoverIntent.js 

and rPage.js, were used for simpler JavaScript development and richer user interaction.

Visualization

Data in charts and graphs are presented using highcharts.js, data in table formats are displayed

with jquery.dataTables.js and the interactive organisms page uses jquery.mixitup.js.

Gene set analysis

P-values for gene set analyses are calculated using the cumulative hypergeometric distribution 

(similar to Fisher's Exact Test). The background is adjusted for each set to match the number of 

genes reported in each data set, either analysis or annotation.
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CHAPTER III

GEneSTATION 2.0: the integrative encyclopedia of evolutionary and functional
data of human coding and non-coding elements for the study of pregnancy-

associated diseases

ABSTRACT

GEneSTATION (http://genestation.org) is an integrative resource of diverse evolutionary and 

functional genomic data for studying the evolution of pregnancy-associated tissues and 

phenotypes.  The version 2.0 update has expanded the focus of the project to include 

evolutionary and functional data associated with non-coding elements, including enhancers and 

transposons.  In order to support exploration of these topics, the underlying database has been 

overhauled from a SQL based schema to a  ElasticSearch engine.  This change has enabled 

the development of new and upgraded analysis and visualization tools for the encyclopedia that 

support the exploration of these additional datasets and the synthesis and test of new 

hypotheses.

INTRODUCTION

While viviparous reproduction has evolved multiple times within vertebrates, the evolution of 

mammalian pregnancy and parturition is uniquely characterized by early recognition, invasive 

placentation, and the evolution of the decidual stromal cell1.  These changes have been 

associated with the rewiring of gene regulatory networks via ancient transposable elements2.  

The evolutionary mechanisms behind these processes are crucial to the understanding of 

human pregnancy3.  Reproduction and parturition in humans is theorized to have evolved 

alongside recent developments along the human lineage, such as bipedalism and 

encephalization4, and study of these topics has the potential to contribute to a greater 

understanding of our evolutionary history.
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Pregnancy complications are one of the major unsolved human health problems today, 

with preterm-birth (PTB) remaining a leading cause of infant mortality5.  Surviving infants are at 

greater risk for a multitude of long term health problems6, and current treatments for PTB show 

little efficacy7.  Until very recently, there were no robust genetic associations with increased risk 

for PTB8–10, despite strong evidence of heritability demonstrated by epidemiological studies11–14.  

The difficulties with understanding the genomic underpinnings of PTB are believed to be due to 

its nature as a complex, multifactorial syndrome caused by subclinical dysregulation of any one 

of several potential pregnancy processes during the interaction of the maternal and fetal 

genomes in a diversity of tissues and environmental conditions5.

The challenges unique to the study of pregnancy and PTB motivated the design and 

development of GEneSTATION 1.0, released in 201615.  The first release of the database 

boasted organism life history data16–20 for 23 mammals and a page for every gene in these 

genomes.  The database integrated several genome wide datasets at three levels of synthesis: 

evolutionary, organismal, and molecular.  Evolutionary metrics included gene level metrics of 

recent21 and ancient selection22,23, estimates of gene age24, mammalian orthologs and gene 

family membership25.  Organismal data included Online Mendelian Information in Man 

phenotypes26, RNA and protein expression from Protein Atlas27, and 106 pregnancy related 

gene expression studies from the Gene Expression Omnibus28.  In addition, the first version of 

the Synthesis and Test of Hypotheses (SynTHy) tool facilitated integrative analysis of gene-

associated data.

The past two years have marked major developments in our understanding of the 

genomics of PTB.  In 2017 Zhang et al. associated four loci with gestational duration and 

spontaneous preterm birth29, and in 2018 Tan et al. associated three genomic regions with 

epigenetic changes in the adult genomes of twins born preterm30.  These findings, along with 

our knowledge of the evolutionary history of human pregnancy, have highlighted the importance 
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of understanding the role played by non-coding regulatory elements and human genetic 

variation in pregnancy phenotypes.

GEneSTATION 2.0 marks an expansion in focus far beyond the gene-ome, with the 

inclusion of enhancer associations, repetitive element annotations, epigenetic data, and a 

greatly expanded library of evolutionary and functional analyses of sequence variation data.  

Furthermore, the integrative Synthesis and Test of Hypotheses (SynTHy) tool (Chapter V), has 

been updated to support these new genomic features and upgraded to natively perform 

statistical analyses in real time.  To help explore the vast collection of additional data, we have 

developed the new GeneViewer tool (Chapter VI), a holistic genome browser that visualizes 

how the distribution of functional and evolutionary metrics in regions compare to the genomic 

background, as well as provide insights into the properties of non-coding elements within the 

context of the genomic region and background.

DATA SOURCES AND ORGANIZATION

Non-coding regulatory elements

GEneSTATION 2.0 has added FANTOM531 enhancer annotations, tissue/cell-type specific 

enhancer differential expression, and enhancer-TSS associations.  In addition, repetitive 

element annotations from the Dfam repetitive element database32 have been added to dataset.

Human Sequence Variation Data

The sequence variation data in GEneSTATION has been upgraded since the 1.0 release.  In 

addition to statistics on recent selection33 (Fst) and ancient selection (Dn/Ds), the encyclopedia 

now has statistics on nucleotide diversity (π) and tests of Hardy-Weinberg Equilibrium ) and tests of Hardy-Weinberg Equilibrium 

calculated from 1000 Genomes Project Phase 3 data34.  In addition to these evolutionary 

metrics, we have incorporated functional association data from the GWAS Catalog35, PheWas 
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Catalog36, and significant eQTLs from the GTEx Project37.

DATA PRESENTATION

Starting from the 1.0 release of GEneSTATION, the encyclopedia has taken a measured 

approach to data presentation.  While comprehensive JSON dumps of the underlying data are 

available from each genomic feature, the presentation of excessive amounts of data can quickly

become overwhelming for user.  Following this philosophy, the browsable pages focus on 

presenting the data that would be most relevant to a hypothesis generation.  The redesigned 

gene page (Figure 1) shows how the GeneViewer tool is used to summarize the regulatory 

landscape of a gene.  Because most sequence variations will be functionally and evolutionarily 

neutral, by default the tool only displays variants that have demonstrated function from either 

the GWAS Catalog, PheWas Catalog, or GTEx project data.  This allows an investigator to gain 

a holistic understanding of where the known functionally relevant variation exists on the gene.
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Figure 1. The updated 2.0 gene page featuring the GeneViewer.  This new tool visualizes the 

genomic neighborhood of the gene and its associated regulatory elements: Blue - CDS; Green - mRNA;

Purple - Enhancer; Red - sequence variant.  Intergenic and intronic regions without regulatory elements

are compressed to facilitate visualization of functional regions of the genome.  By default, only variants 

that have functional associations are drawn on the genomic map and the histogram.  The histogram 

shows the genomic background distribution of global nucleotide diversity (pi.all) of all variants in the 

genome (light grey) and display region (dark grey).  Individual variants may be explored in the list below

the GeneViewer.
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Figure 2. The updated SynTHy tool.  In this example, the tool visualizes the intersection of the set of 

sequence variants with fixation index (Fst) greater than 0.1 in the African superpopulation and the 

European superpopulation.  SynTHy automatically performs a Chi-squared Test of Independence for 

these two sets.  The genomic background distribution of each measure is displayed in the rule filters at 

the bottom, illustrating the extreme skew towards 0 of this metric.
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SYNTHESIS AND ANALYSIS

The Synthesis and Test of Hypotheses (SynTHy) tool was introduced in the 1.0 release of the 

encyclopedia.  It facilitated the building of advanced search queries in an explorative manner by 

visualizing the genomic background distribution of numeric data fields and provided real-time 

visualization of the sets and intersections defined by compound queries in the form of a Venn 

diagram.  In the 2.0 release, this tool has been updated to be able to perform search and 

analysis on the non-coding genomic elements in the database.  In addition, the tool can perform

additional statistical tests on the sets defined by the Venn diagram, such as chi-squared tests of 

independence and t-tests of dependent variables (Figure 2).

SUMMARY

Recent advances in the understanding of the evolution and regulation of human pregnancy 

underline the need for the consideration of genes within the context of their regulatory 

environment.  The inclusion of non-coding elements in GEneSTATION 2.0 facilitates the 

exploration and investigation of a new dimension of genomic data, and the addition of functional

and evolutionary sequence variation data allows researchers to perform novel synthetic 

analyses. 

MATERIALS AND METHODS

Database Design

To facilitate the storage of non-coding data, we redesigned the backend database to utilize 

ElasticSearch, a JSON document store and search engine.  The adoption of this new 

technology necessitated the design of a novel schema (Chapter IV) that could support the 

genomic data represented by the generic, ontological structure of the Generic Model Organism 

Database project’s Chado schema39, which had previously been utilized for GEneSTATION 1.0
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Non-coding genetic elements and associations

Enhancer-TSS associations, differential tissue and cell-type enhancer expression were 

downloaded from FANTOM531 SlideShare (http://enhancer.binf.ku.dk/presets/).  Non-redundant 

repetitive element annotations were downloaded from Dfam database of repetitive DNA 

families32, version 2.0 data release 

(http://www.dfam.org/web_download/Release/Dfam_2.0/hg38_dfam.nrph.hits.gz).  The genomic

elements described by these data were loaded into ElasticSearch using the tools in the 

Genestation Search Engine Toolkit (Chapter IV).

Sequence Variation Data

Sequence variation data was compiled from the 1000 Genomes Project Phase 3 dataset34 and 

dbSNP build 151.  Evolutionary metrics were calculated from the 1000 Genomes data using . 

VCFtools38.  Functional associations were downloaded from the GWAS Catalog v1.0 and 

PheWAS catalog v1.0 releases.  Single tissue cis-eQTL data was downloaded from the GTEx 

Project version 7 data (https://gtexportal.org/home/datasets).  These variants and their 

associations were loaded into ElasticSearch using the tools in the Genestation Search Engine 

Toolkit (Chapter IV).
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CHAPTER IV

The Genomic Search Engine

ABSTRACT

The increase in the size of biological datasets has necessitated the adoption of new database 

technologies designed to address the challenges of “big data”.  Previous published designs for 

biological databases have depended on relational database structures that perform poorly when

handling datasets with millions of samples (eg. sequence variation data).  This has necessitated

the design and development of a novel data schema to handle genomic data in non-relational 

databases.  The database schema and associated tools, collectively called the Genestation 

Search Engine Toolkit, provide a complete solution for managing a biological database in the 

ElasticSearch JSON document store and search engine.

INTRODUCTION

Database Management Systems

The first generation of database technologies arose with the development of disk based data 

storage systems which enabled non-sequential access to data in a manner not possible with 

earlier tape storage systems1.  These “navigational databases” were the first database 

management systems and include the network model database, the Integrated Data Store (IDS)

developed at General Electric1,2, and the hierarchical model database, the IBM Information 

Management System.

Navigational database systems provided a standardized method of storing information; 

however, they required the programmer to manually explore the links within the stored data and 

most notably lacked the ability to efficiently search data fields.  To address these issues, Edgar 

Codd proposed the “relational database”, a method of normalizing data and splitting it into 

tables that could be searched independently and reconstituted via relational algebra and tuple 
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relational calculus3.  These concepts enabled the development of a new language for querying 

the database.  Whereas previous procedural languages required the programmer to manually 

explore the structure of the database, this new declarative language would allow a programmer 

to simply specify the desired output from the database system and the task of searching and 

fetching this information would be handled by the machine.  This concept would be most 

famously implemented by the Structured Query Language (SQL) developed by Chamberlin and 

Boyce at IBM4.

Biological Databases

With the growing availability of sequence data following the elucidation of Fred Sanger’s “first 

sequence” in 1955, multiple independent research groups realized the need for a method of 

organizing this new information.  The first genomic databases began their development as 

private projects: Margaret Dayhoff’s Atlas of Protein Sequence and Structure5 and Walter 

Goad’s Los Alamos Sequence Library, implemented on the FRAMIS relational database 

management system6.  The Los Alamos Sequence Library would go on to become the Genbank

nucleic acid sequence database in 19827.

The sequencing of “model organisms” during the 1990s would lead to the creation and 

spread of model organism databases, of which the first was the Flybase Drosophila database in 

19978.  In the coming years, more such projects were completed including the Saccharomyces 

Genome Database9, the WormBase Nematode Genome Database10, and the Mouse Genome 

Database11.  These four model organism database projects collaborated with the aim to provide 

a common set of tools that could be utilized by all model organism databases.  This 

collaboration grew to include many model organism projects and resulted the creation of several

projects and associated tools, including the Gene Ontology12, a controlled vocabulary of core 

biological functions for genes, the Sequence Ontology13, a controlled vocabulary for genome 
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annotations, and the Generic Model Organism Database (GMOD) Chado schema14, a generic 

ontological schema to describe biological data in SQL.

Today, there are thousands of genomic databases, with the Nucleic Acids Research 

Molecular Biology Database Collection counting 1737 entries in its 2018 database issue15, 

including databases focused on sequence data, structural data, variation data, and projects 

focused on specific diseases, organisms, and cells.  The National Center for Biotechnology 

Information (NCBI) Entrez system supports search over 39 databases of biological data16.

On the Need for Biological Analytical Processing Systems

Recent advances in the ability to assay non-coding and regulatory elements of the genome in a 

high-throughput fashion have greatly expanded the scale and scope of genomic data available 

in the literature.  As the volume of biological information increases, the cost of reconstituting 

data that has been split up into a relational database structure (“joining”) increases with 

proportionally the size of the data and the number of joins.  Traditional relational database 

schemas, such as the GMOD project’s Chado schema, do an excellent job at describing data in 

a manner that is compact and consistent.  However, due to the highly normalized structure of 

the data, complex queries can become prohibitively costly to execute.

During the development of GEneSTATION 2.0 (Chapter III), I experienced difficulty with 

delivering satisfactory query performance using the Chado schema as we moved from querying 

genic data to non-coding data, such as SNPs.  The increase in scope from thousands to millions

of data points placed a growing burden on the SQL database.  It became apparent that while a 

relational database was an excellent online transaction processing system it was imperative to 

create an efficient online analytical processing system to support web-based user interaction.  

This recent expansion of data has affected other large scale projects, including dbSNP, which 

announced their intention to deprecate their SQL database solution within the 2018 year (https://
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ncbiinsights.ncbi.nlm.nih.gov/2017/07/07/dbsnp-redesign-supports-future-data-expansion/).  In a

2016 evaluation of relational and non-relation datastores for the storage of biological data, 

Schulz et al. found that relational databases performed worse than noSQL solutions, and that 

the differences between the solutions grew wider with increasing data size17.  

The challenges that come with the need to store large datasets, such as sequence 

variation data, are an ongoing field of research in computer science today.  Often called the 

problem of “big data”, the unprecedented size of modern datasets are overwhelming traditional 

database designs.  The reasons for this are manifold, but can be mainly attributed to the cost of 

reconstituting a document once it has been split into a relational structure.  Furthermore, it is 

difficult for a relational database to take full advantage of recent advances in parallel 

computation.  This has encouraged the development of new non-relational databases, such as 

ElasticSearch18, Google’s BigTable19, and Amazon’s SimpleDB20, to handle datasets at this 

larger scale.

In this paper, I present a framework for storing genomic data in ElasticSearch, an open-

source JSON document store and search engine with proven performance in large scale 

commercial applications.  In addition, I provide tools to assist bioinformaticians in managing and

interfacing with this new database solution.  The database schema and associated tools are 

collectively called the Genestation Search Engine Toolkit.

A Search Framework for Genomic Data

The success of the Generic Model Organism Database Project’s Chado schema 

demonstrates the value of establishing a standardized database schema.  The creation of a 

common data framework has fostered the development of a rich ecosystem of tools.  This tookit 

seeks to extend this ecosystem by providing a analytical search engine framework for web 

based applications and tools.  A Chado database is not necessary to use the Genestation 
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Search Engine Toolkit, and it has been designed to supplement existing model organism 

databases with a scalable search solution in a schema agnostic manner.

The toolkit has been designed to mirror the original design principles behind the Chado 

schema to provide a solution that is generic, extensible, and available as open source.  

Furthermore, it aims to provide a common platform that can be utilized by an individual 

researcher with a few data files to a large database project encompassing an array of genomes.

It accomplishes this by enforcing a shared concept of genomic features and locations while 

allowing each analysis to customize and define its own data structures.

METHODS

Genestation uses ElasticSearch for storage and search.  It includes a python command line 

interface (CLI) to help interact with the ElasticSearch instance and create data analysis 

workflows.  It also provides a javascript library for web-based tools and interaction.  The python 

and javascript libraries are available via the Python Package Index and the Node Package 

Management system respectively.  Source code for these packages are available on GitHub at 

www.github.com/genestation.

DESIGN

Genomic data is loaded via the Genestation CLI, which supports loading data from GFF, 

FASTA, VCF, JSON, and TSJV (tab-separated JSON values), via a Genomic Data Descriptor 

(GDD) file (see Appendix 3).  Once the data is loaded into Elasticsearch, the CLI provides 

utilities for analysis and maintenance of the database.  For a complete reference of the 

functionality of the CLI, see Appendix 2.

The CLI stores data in ElasticSearch as JSON documents.  These documents are 

collected as indexes that may be queried independently or as a group.  Fields in these 
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documents have distinct types (https://www.elastic.co/guide/en/elasticsearch/reference/current/

mapping-types.html) which ElasticSearch requires to remain consistent within a single index 

whether they are defined with an explicit mapping or dynamically mapped during document 

upload.  Notably, ElasticSearch does not distinguish between a singular data type and an array 

of that type.

Indexes

The Genestation data model recognizes 3 primary index types.  The first is the Genome Index.  

This index always has the name ‘genome’ and contains Genome Objects, which describe the 

organism and genome version.  The genus, species, subspecies (if any), and genome version 

are used to construct a genome identifier.  This identifier takes the form 

genome_species.version or genome_species_subspecies.version, where all alphabetic 

characters are converted to lowercase and periods and spaces are converted to underscores 

(eg. ‘homo_sapiens.grch38_p12’ and ‘canis_lupus_familiaris.3_1’).  Each genome 

identifier should refer to a unique genome within a genestation instance.  The genome identifier 

is used to organize the other indexes in the database.

Genomic features are indexed into Feature Indexes.  These are named in the form 

feature.genome_identifier.feature_type, where feature_type is a Sequence Ontology 

term  (eg. ‘feature.homo_sapiens.grch38_p12.sequence_variant’ and 

‘feature.canis_lupus_familiaris.3_1.gene’).  By prefixing all feature indexes with the 

constant string “feature.”, these indexes are namespaced under this identifier and allows 

ElasticSearch to perform multi-index queries on all Feature Indexes simultaneously.

The final core index is the Meta Index, which stores general purpose index-level statistics 

and metadata.   This index can be generated for any ElasticSearch index by the Genestation 

CLI and is named in the form meta.index_name (eg. 
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‘meta.feature.homo_sapiens.grch38_p12.sequence_variant’ and 

‘meta.feature.canis_lupus_familiaris.3_1.gene’).  These indexes store Field Objects, 

which describe fields in the associated index and can be used to store descriptive information 

about the index.  The Genestation CLI should be used to (re)generates a Meta Index after 

loading new genomic data into a Feature Index (See Appendix 2).  See Appendix 1 for a more 

complete description of the Genome Index, Feature Indexes, and Meta Indexes.

Genomic Data

Genomic features in Genestation are represented as Genome Feature Objects which are typed 

by Sequence Ontology terms.  These objects describe the location (if any) of the feature and 

any analysis data (eg. expression level, odds-ratio) associated with that feature.  In addition, 

these objects describe any ontological associations (eg. Gene Ontology function) and 

associations with other features.  The Genome Feature Object structure is recursive and 

supports nested objects to represent features described in the General Feature Format (GFF).

Genome Feature Objects are stored in Feature Indexes (ie. an ElasticSearch index).  

Each index contains features of one single Sequence Ontology type (and any nested children) 

from a single genome.  These feature indexes are grouped together into a genome and 

referenced by a Genome Object contained in the Genome Index.  The Genome Index contains 

references to all the genomes that are available in the Genestation instance.  For a complete 

description of the Genome Feature Object format, see Appendix 1.  A high level summary of 

these object follows.

Locations: Genomic locations in Genestation use the BED format “0-start half-open” coordinate

system (roughly analogous to Chado’s interbase coordinate system) where locations are ranges

with inclusive starts and exclusive ends.  For example, a feature comprising the first four bases 
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of a region would have the location start = 0 and end = 4.  Locations are represented with 

the locrange ElasticSearch type, with in the form {“gte”: start, “lt”: end}.  Discontiguous

locations are represented with locrange arrays, and require no special treatment in 

ElasticSearch.  This convention should be followed whether describing the primary location of a 

feature or describing secondary alignment or coordinates (eg. in sequence alignments and 

Hidden Markov Models).  Complex locations including strand and phase information are 

discussed in further detail in Appendix 1.

Analysis Data: Analysis data is stored dynamically within the Genome Feature Object.  Data 

integrity may be explicitly defined with an index level mapping; however, this is not strictly 

necessary as ElasticSearch automatically checks for type consistency within a field across each

index.  Analysis fields may be given detailed descriptions in an associated Meta Index (see 

Appendix 1).

The hierarchical nature of the JSON syntax allows each analysis to adopt its own data 

structure.  This affords great flexibility to the search engine, but it requires the adoption of idioms

to enforce consistent representations and allow code reuse.  What follows are idioms that have 

been used in GEneSTATION to represent annotations and analysis results.

Publication Provenance: Publications may be described with a `pub` field.  This may be 

present in the top level data object to represent feature discovery, or be nested as a subfield of 

an annotation to represent provenance of an association.  If the `pub` field is of type string, it 

should be a complete citation in the MEDLINE/PubMed Citation Format 

(https://www.nlm.nih.gov/bsd/policy/cit_format.html).  Alternatively, this field may be of type long,

in which case it is interpreted as the PMID of the publication.
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Ontology Association and Database Cross References: Ontological associations and 

database cross references must follow the format described by the GFF3 specification 

(https://github.com/The-Sequence-Ontology/Specifications/blob/master/gff3.md).  These follow 

the format “DBTAG:ID” and are stored using the ElasticSearch keyword type.  Hierarchical 

ontological queries (ie. is_a assertions) are supported using ElasticSearch’s synonym token 

filter (https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-synonym-

tokenfilter.html), which computes the ontological transitive closure of each vocabulary term at 

index time.

Numerical Data: Analyses that generate numerical data should use an appropriate numeric 

datatype (https://www.elastic.co/guide/en/elasticsearch/reference/current/number.html).  Unlike 

the Chado schema, analysis results may label their output types explicitly (eg. `fpkm` instead of 

`normscore`) and including additional outputs (eg. standard deviation) does not require 

extension of the base schema.  The meaning of each numerical field may be determined for 

each analysis, and additional context (eg. human readable descriptions, default sort order) may 

be stored in the “description” field of FIeld Objects in a Meta Index.

PERFORMANCE

The performance of querying genomic data in ElasticSearch (v5.6.5) using Genome Feature 

Objects was compared with the storage in PostgreSQL (v9.6.2) using the GMOD Chado 

schema.  These tests were done with the datasets served by the current GEneSTATION build, 

using a prewarmed cache over 10 runs.
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Table 1. Time to count the features on human chromosome 2 in seconds

SQL ElasticSearch

Genes 49.018 0.016

SNPs 50.101 0.020

These results show how query times may improve in real-world scenarios with the usage

of noSQL database technologies.  In each case, the unwarmed query took significantly more 

time, around 200 seconds for SQL and around 150 milliseconds for ElasticSearch. 

The very similar runtime for the gene and SNP query in SQL can largely be explained by

the underlying structure of the Chado schema, which combines all genomic feature types into 

one table.  This forces the database to filter through records of all types in order to search for 

any given feature.  In the Genome Feature Object model, each feature type is partitioned into its

own index, which ensures that there are no performance penalties with increasing feature 

diversity in the database.

The large difference in magnitude in the runtime of the two systems is also a side effect 

of the performance penalty of data normalization in the SQL database.  In the Chado schema, it 

is necessary to perform two additional search operations to determine whether a gene is located

on a chromosome, while in the Genome Feature Object model this information can be accessed

directly (Figure 1).
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A. B.

Figure 1. Feature location data models in relation and non-relational databases.  A) The relational

data model.  Each box represents an entry in the feature table, while lines represent locational 

relationships.  This model is space efficient and updating the chromosome name is efficient.  However, 

determining the location of a gene requires 2 joins.  First, the gene is joined to the feature location, and 

then the location is joined to the chromosome.  B) The non-relational data model.  Each gene is a 

document with the full location information.  Data is duplicated and this model is space inefficient and is

costly to update.  However, the location of the gene is able to be queried directly without any joins.

CONCLUSIONS

The progressive enhancements of computational technology and the growing needs of 

bioinformaticians have gradually shifted the focus and needs of genomic tools.  Early database 

systems prioritised the optimal utilization of storage space, and thus relational databases were 

designed to achieve extreme data compaction through data normalization.

As technology has progressed, the cost of both processors and storage solutions have 

massively plummeted.  In addition, advancements in network computing have created new 

paradigms for parallel computing.  This has allowed new database technologies (often 

collectively referred to as noSQL) to take advantage of this increase in performance to develop 

more distributed systems that undertake aggressive replication that sacrifices traditional data 
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normalization techniques to allow for arbitrarily wide horizontal scaling (ie. distributed computing

systems).  The advantages of these systems is the ability to handle increasing prodigious data 

sets while maintaining quick response times via massive parallelization.

While these systems have been heavily utilized within the commercial space, there has 

yet to be a standard for genomics and bioinformatics investigators to take advantage of these 

new tools.  It is my hope that this new standard fosters the development of new tools for the 

investigation of biological questions, as well as ushering in a new wave of technological 

advancement.
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CHAPTER V

SynTHy: Synthesis and Testing of Hypotheses

BACKGROUND

Genomic databases are tasked with organizing and presenting biological data to users in an 

interactive and intuitive manner.  The diverse array of annotations and analyses that are 

compiled in an integrative database may span a variety of evolutionary and functional data 

types.  To help investigators understand and leverage the information contained within these 

databases, it is important to provide a powerful and responsive search interface.

Traditionally this need is addressed with interactive query builders.  These tools are 

useful because they teach users the kind of data that is available, allowing them to search in an 

exploratory manner.  However, in general these tools do not provide users with an 

understanding of the nature of fields available in the database.  This is important because often 

the distributions of these data values may be deviate from assumptions maintained by the 

investigator, for example normality.  In addition, these tools often do not provide feedback on 

how compound queries perform in concert to sample information from the database.

SynTHy aims to augment the basic query builder with dynamic interactive visualizations 

that show the distribution of each data field while the user is searching.  This allows 

investigators to maintain an intuitive understanding of the overall database during query 

construction.  In addition, SynTHy provides a responsive Venn Diagram that reflects how 

complex searches sample from the database.  This allows users to understand how different 

components of a multi-part query overlap in real-time.  Together, these visualizations improve a 

researcher’s understanding of the underlying data in order to gain greater insights and generate

new hypotheses.
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Figure 1. The SynTHy user interface.  The index selector at the top indicates the organism and type 

of genomic feature currently being searched: sequence variants in the human genome.  The interactive 

Venn diagram shows the relative size of each dataset: Blue, the set of variants with fixation index > 0.1 

in the African superpopulation; Orange, the set of variants with fixation index > 0.1 in the European 

superpopulation.  The analysis panel in the upper right reports statistical data about the sets, currently 

performing a Chi-square test of independence.  The rule filters at the bottom are used to construct the 

data sets visualize the distribution of each data field, in this case showing the extreme skew of both 

datasets towards 0.   Data taken from the 1000 Genomes project Phase 3 data1.
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IMPLEMENTATION

The Synthesis and Test of Hypotheses (SynTHy) tool uses the Genestation Search Engine 

Toolkit (Chapter IV)  to store genomic data and generate statistical data.  Statistical analyses 

are performed using ElasticSearch aggregations and the jStat JavaScript statistical library.  The 

tool leverages this data to generate dynamic visualizations of genomic data and an advanced 

query builder using HTML and Javascript.  As a web-based tool, it may be used in a standalone 

manner or within the context of an existing genomic encyclopedia as a database search widget. 

Source code is available at https://github.com/genestation/synthy.

RESULTS AND DISCUSSION

Many examples of search tools exist in model organism databases, such as the query builders 

in the Flybase Drosophila genome database2 and the Saccharomyces Genome Database3, and 

bioinformatics institutes, such as the National Center for Biotechnology Information’s Entrez 

Gene4.  All of these tools support interactive query construction and integrative search.

SynTHy is more than just an advanced query builder.  It provides real-time, interactive 

visualizations of statistical information about each data field, including detailed histograms of 

numeric data fields and autocomplete suggestions for textual search fields, facilitating 

exploration of the data while in the process of formulating a search.  In addition, as a query is 

constructed, a Venn diagram displays how each component of the search input and their 

subsets overlap within the database.  The responsive diagrams help investigators gain an 

intuitive understanding of the properties of the data and their relationships to each other (Figure 

1).  With better knowledge of the underlying information, a user is able to synthesize new 

hypotheses and receive instant feedback from the database.

In addition to these dynamic visualizations, SynTHy is able to perform statistical tests 

using the rules defined by the query builder.  Supported statistical tests include the chi-squared 
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test of independence between two sets5, t-test of means of a dependent variable of two sets6, 

Mann-Whitney U test of a dependent variable of two sets7, paired t-test of means for two 

dependent variables of one set8, Wilcoxon signed-rank test of two dependent variables of one 

set9, and Analysis of Variance of a dependent variable of K sets5.  With access to tools to assess

the significance of the trends in the data, an investigator is able test integrative hypotheses 

about the relationships between different analyses in the database.

Extensibility

The behavior of SynTHy may be extended via JavaScript callbacks passed into the web widget. 

These callbacks can provide sets of genomic features and their data values to external scripts.  

This enables SynTHy to serve as an advanced search engine and query builder for an existing 

genomic database, as well as an entry to other data analysis and visualization tools.

CONCLUSION

Investigators can utilize the data visualization and analysis tools provided by SynTHy to 

synthesize and test hypotheses about the annotations and analyses contained within genomic 

databases.  This tool facilitates gaining a holistic understanding of the data types associated 

with genomic features while enabling rigorous statistical analysis of queries in an interactive 

manner.  Existing genome databases may utilize the extension functionality to use SynTHy as a 

search engine and query builder, while other tools can use SynTHy as the front-end of their own

analysis and visualization tools.
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CHAPTER VI

GeneViewer: Integrative visualisation of the holistic gene

BACKGROUND

Since the advent of genomics, there has been an increasing availability of both genic and non-

genic data, such as sequence variants, promoters, and enhancers.  These additional genetic 

elements are important for the understanding the full regulatory context of a gene, so it is 

important to develop visualizations that enable researchers to gain greater insights into the 

function of a gene and its associated regulatory elements.

Traditional genome browsers take a comprehensive approach to rendering genomic 

elements.  These tools are powerful because they allow users to see every element in the 

genome, but can be difficult to use due to how quickly their displays can overwhelm users with 

information.  In addition, these tools often lack high level analyses and visualizations that allow 

an investigator to explore the genome in terms of regions, as opposed to single elements at a 

time.

GeneViewer aims to solve this problem by prioritizing genomic features according to 

their relevance.  This allows a researcher to focus their attention on elements that are most 

interesting to their concerns and gain insights about these features in their genomic context.  In 

addition, GeneViewer calculates summary statistics for data fields and shows how regions of 

the genome deviate from the genomic background.  This allows for a better understanding of 

these regions and how they vary across the genome.

IMPLEMENTATION

GeneViewer uses the Genestation Search Engine Toolkit (Chapter IV) to store genomic data 

and generate statistical data.  Statistical analyses are performed using ElasticSearch 
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aggregations (https://www.elastic.co/guide/en/elasticsearch/reference/current/search-

aggregations.html) and the jStat JavaScript statistical library (http://jstat.github.io}.  The tool 

leverages this data to generate dynamic visualizations of genomic data using HTML and 

Javascript.  As a web-based tool, it may be used in a standalone manner or within the context of

an existing genomic encyclopedia as a gene figure widget.  Source code is available at 

https://github.com/genestation/gene-viewer.

Figure 1. GeneViewer showing the WNT4 locus.  Blue: CDS, Green: mRNA, Purple: Enhancer; Red:

Sequence variant.  Intronic and non-enhancer intergenic regions are compressed.  Only sequence 

variants with functional associations are drawn in red.  The histogram in the bottom left shows the 

distribution of global nucleotide diversity for all variants in across the whole genome (light grey) and the 

display region (dark grey), with red lines corresponding to the location of variants with functional 

associations.  Data taken from 1000 Genomes project Phase 3 data1, dbSNP build 1512, GWAS 

catalog3, and PheWAS catalog4.

RESULTS AND DISCUSSION

Several genome browsers have been developed to visualize genomic elements and data, 

including the Ensembl genome browser5, the UCSC genome browser6, the NCBI Genome Data 

Viewer7, Gbrowse8, and Jbrowse9.  These tools support the display and alignment of genomic 

elements.

GeneViewer does not aim to be a genome browser in the traditional sense that 

exhaustively displays every genomic element true to scale.  Rather, it aims to display gene 

models, associated regulatory elements, and the overall landscape of sequence variation in a 

holistic manner by compressing intergenic and intronic regions to make it easier to see 

transitions between coding and non-coding regions.  By default, GeneViewer only shows 
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sequence variants that have been associated with a functional outcome (Figure 1).

GeneViewer calculates the distribution of analytical values, such as nucleotide diversity 

and fixation index, for the genomic background.  Users can select regions of the diagram to see 

how the distribution of values for that region compares against the background.  Variants are 

plotted on this distribution so that investigators can track how a single variant behaves over 

multiple metrics (Figure 2).

Figure 2. Examining human SNP rs56318008.  In this example the nucleotide diversity of the SNP is 

shown in multiple contexts.  The histogram shows the region highlighted at the top as the local 

background (dark grey) and the genomic background (light grey).  The selected SNP shows much 

lower nucleotide diversity in the African superpopulation compared to the global background and the 

European and East Asian superpopulations.  Data taken from 1000 Genomes project Phase 3 data1 

and Zhang 201710.

CONCLUSIONS

GeneViewer provides a way for researchers to gain a holistic understanding of genes and other 

genomic elements within the context of their regulatory environment.  By rendering only the 

most informative lines of evidence, users are able to explore the data intuitively.  GeneViewer 
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generates visualizations of the genome that are similar to traditional gene model diagrams and 

provides the ability to investigate how functional and evolutionary statistics of different regions 

compare to the genomic background.
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CHAPTER VII

Conclusion

Genes and their regulation form the basis of the functions, processes, and structure of all life.  

Since their initial characterization as discrete units of heredity by Gregor Mendel1 in 1866 and 

rediscovery of his laws in in the early 1900s, their importance in the determination of the fates of

biological organisms has been recognized by geneticists.  The physical organization of genes 

on chromosomes was first described by Thomas Morgan and Alfred Sturtevant2 in 1915.  The 

discovery of DNA as the purveyor of genetic information in 19443 and the subsequent 

characterization of its double helical structure in 19534, enabled a new level of understanding of 

these heritable units.  The development of DNA sequencing5–8, the discovery of the ribosome9 

and RNA polymerase10 and splicing11,12 and proposal of the Central Dogma of Molecular Biology 

in 195813 began to paint a rich model for the way genes direct cellular and organismal activities. 

This model would continue to develop with the discovery transcriptional regulation via promoter 

regions14 and enhancer elements15–17.

This physical understanding of the organization of genes in the genome enabled the 

mapping of the locus of the Huntington’s disease to the human chromosome 4 in 198318.  This 

discovery would be followed by the identification of the cystic fibrosis gene in 198919.  The 

elucidation of these loci has enabled a greater understanding of the mechanisms and 

pathophysiology of these diseases.  In more recent times, the important biological questions 

have shifted to more complex disorders.  In a National Institutes of Health bulletin released in 

2009 (https://grants.nih.gov/grants/funding/challenge_award/high_priority_topics.pdf) detailing 

the highest priority challenge topics, the agency placed a focus on topics such as aging, mental 

health, and preterm birth.  These diseases are complex, multifactorial syndromes that involve a 

wide array of processes and genetic loci, and they require the development of a sophisticated 
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understanding of a diverse set of functional and evolutionary analyses.

In Chapters 2 and 3, I described my work on one the development of an online 

integrative encyclopedia for the study of pregnancy and preterm birth, GEneSTATION.  This 

database collected a diverse set of functional and evolutionary data associated with genes 

(v1.0) and regulatory elements (v2.0).  In addition, it provides tools to perform synthetic 

analyses of genes and sequence variants in an interactive fashion.  Available at 

http://www.genestation.org/, this database serves as a rich resource for the study of the function

and evolution of human pregnancy and preterm birth.

In Chapter 4, I detailed the design of the Genestation Search Engine Toolkit, a novel 

schema for the storage of genomic data in ElasticSearch, a JSON document store and search 

engine.  The development of this framework and the associated tools were motivated by the 

need to handle the ever increasing size of biological datasets that overwhelmed previous 

biological database technologies.  Inspired by the design of the Generic Model Organism 

Database project’s Chado schema20, I followed a similar philosophy to describe a generic 

ontologically structured database.  The framework and tools I have created have the potential to

be applied to a wide variety of biological data and problems, and I believe that the Genestation 

Search Engine Toolkit will serve as an important resource for future genomic databases.

In Chapters 5, I describe the Synthesis and Test of Hypotheses (SynTHy) tool.  SynTHy 

uses the Genestation Search Engine Toolkit to provide an interactive search interface written in 

HTML5 and JavaScript that serves as an advanced query builder that provides instant statistical

feedback.  With potential to be easily extended via callbacks, SynTHy can be used by existing 

genome databases to add a sophisticated search interface or used standalone to visualize the 

data in a database using the Genestation framework.

In Chapter 6, I describe the integrative holistic gene visualizer, GeneViewer.  Using the 

Genestation Search Engine Toolkit, GeneViewer depicts genes and their associated regulatory 
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elements in a style similar to gene model diagrams and selectively displays sequence variants 

with evidence of functional implications.  In addition, the tool visualizes the distributions of 

quantitative metrics, such as nucleotide diversity, within regions and how they compare to the 

genomic background.

The tools that I have created during the course of my dissertation research have only 

just begun to unlock new modes of exploration of the rich ecosystem of genomic data that has 

developed since the sequencing of the first genome in 1977.  By enabling investigators to more 

readily explore and access the information contained within these resources, my technologies 

will facilitate more rapid discovery and dissemination of their knowledge.  I have designed these 

works to be generic and extensible, with the ability to be utilized by other researchers for their 

own projects.

Future investigators should focus on expanding the functional and evolutionary data 

types collected by genomic encyclopedias, such as GEneSTATION.  While my own work has 

collected a diverse set of genomic data, many analyses remain unintegrated, such as ChIP-seq 

data, 3D and 4D genome structural data, and many many more.  The design of the Genome 

Feature Object used in the Genestation Search Engine Toolkit is generic and extensible, but the

work of designing these extensions will be an important task for future users of the schema.  As 

new biological assays and analyses are discovered, it will be important to develop of new 

analysis and visualization tools to explore and process this data.  By publishing this work and 

open sourcing the software behind this project, I hope to provide a foundation for future 

investigators that will grow beyond the scope of my own work into a resource for the scientific 

community that facilitates a greater understanding of the mechanisms and processes of life.
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APPENDIX 1

Genome Feature Object: Representing Genomic Features in JSON document
stores

1 Introduction

The Genome Feature Object is a method of representing genomic features in JSON document 

stores, such as ElasticSearch.  The goal of this schema is to be able to represent diverse 

biological data in an extensible manner that is conducive to search and visualization.  This 

specification is designed to integrate the information in Variant Call Format (VCF), Gene 

Feature Format (GFF), and Tab-separated JSON Values (TSJV) files into a single JSON 

document for each genomic feature.

2 Mapping

A Genome Feature Object is mapped in ElasticSearch as follows:

{
“dynamic” : false,
“properties” : {

“genome” : {“type” : “keyword”},
“ftype” : {“type” : “keyword”},
“name” : {“type” : “keyword”},
“dbxref” : {“type” : “keyword”},
“region” : {“type” : “keyword”},
“locrange” : {“type” : “long_range”},
“start” : {“type”: “long”},
“end” : {“type”: “long”},
“loc” : {

“nested”: “true”,
“properties” : {

“start” : {“type”: “long”},
“end” : {“type”: “long”},
“strand” : {“type” : “byte”},
“phase” : {“type” : “byte”}

}
},
“child” : {GenomeFeatureObject},
“association” : {GenomeFeatureObject},
“data” : {“dynamic” : true},
extensions...

}
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}

The top level of the document is defined as “dynamic” : false, which disallows dynamic 

mapping of unknown fields.  The “data” property is defined as being explicitly dynamic, as this 

field is meant to generically integrate diverse data.  Note that dynamically mapped fields in 

ElasticSearch are still checked for consistency within that field (ie. attempting to store a string in 

a field that was dynamically mapped as an integer field will raise a mapping exception).

2.1 genome

Required.  The genome identifier the genomic feature.  While this can be inferred by parsing the

index it is included in the document to enable searching.

2.2 ftype

Required.  The feature type(s) of the genomic feature, which must be a Sequence Ontology 

term.  Used by visualization tools to determine draw styles.  The top level “ftype” of each 

document in a single ElasticSearch index should be the same (ie. one index for genes, another 

for sequence_variations).

2.3 name

Required.  The name(s) of the genomic feature (eg. gene name or rs number).  If “name” is an 

array, the first name is the primary identifier and the rest are considered aliases.  The primary 

identifier is used as the “_id” of the document in the ElasticSearch index and must be unique 

within that index.

2.4 dbxref

Optional.  The dbxref(s) associated with this feature (eg. “GeneID:7124”, 
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“Ensembl:ENSG00000232810”).  This field must follow the GFF3 specification for ontology 

associations and database cross references described here: https://github.com/The-

Sequence-Ontology/Specifications/blob/master/gff3.md

2.5 region

Required.  The identifier for the contig or chromosome on which this feature is located (eg. “1”, 

“2”, “X”, “Y”).  It is important to be consistent when locating features to use the same srcfeature 

identifiers.  For example, it is not recommended to use both “NC_000001.11” and “1” to refer to 

human chromosome 1 within a single ElasticSearch cluster.  It is recommended to use 

chromosome names when possible, as opposed to accessions.

2.6 locrange

Required.  The start and end of the feature in the genome using the “0-start half open” 

coordinate system (eg. the first base has start=0, end=1).  Locrange is automatically generated 

by tools as a long_range type from “start” and “end” as a range object {“gte”: start, 

“lt”: end}, or a range object array.

2.7 loc

Optional.  GFF style location entries, represented as an array of objects with start, end, strand, 

and phase.  Note that this still uses the “0-start half open” coordinate system (eg. the first base 

has start=0, end=1).

2.8 child

Any children of the feature, represented as Genome Feature Objects.  Should only be used to 
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represent true parent-child relationships (eg. transcripts of genes).  Do not use this field to 

represent associations (eg. SNPs or enhancers to genes).  Avoid deep nesting of children (eg. 

parent-child structures more than 3 levels deep) and keep the structure of child objects 

consistent within a single index.  If there are children, there should be a fixed level of recursion 

which should be explicitly reflected in the mapping for the index.  If it will be common to perform 

complex searches using the children, these features should be replicated into their own feature 

index.

2.9 parent

Any parents of this feature.  This should be usually only be structured as a Genome Feature 

Object with only “genome”, “ftype”, and “name”.  Should only be used to represent true parent-

child relationships.  Commonly utilized when creating a redundant search index for children 

when they will be the targets of search queries (eg. an index for transcripts).

2.10 association

Any associations this feature has to other features.  At minimum, this should be structured as a 

Genome Feature Object with at least “genome”, “ftype”, and “name”.  The “data” subfield may 

be used to quantify the confidence/strength of the association.

2.11 data

Any data values associated with the feature.  Each subfield is considered to be completely 

independent and may define its own data structure. Genome Annotation Table (GAT) files may 

include mapping directives that are included to describe the data structure of the generated 

JSON documents.  The data object should be consistent across all documents in one 

ElasticSearch index (allowing for null values and missing fields).
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See the documentation for genestation.py for how these objects are generated (Appendix 2).

2.12 Extension: variant

Sequence variants from a VCF file store allelic data in “variant”.

{
...
“variant” : {

“nested” : true,
“properties” : {

“base” : {“type” : “text”},
“is_ref” : {“type” : “boolean”},
“data” : {“dynamic” : true}

}
}

}

2.12.1 variant

Any variants that this feature represents.  This is a nested document with the following fields:

2.12.1.1 base

Required.  The base(s) of this variant.

2.12.1.2 is_ref

A flag that indicates whether this variant matches the reference sequence.

2.12.1.3 data

Similar to the document level data object, this object integrates diverse allele specific data.
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3 Indexing

3.1 Genome Index

The Genome Index contains descriptions for every genome available within the ElasticSearch 

cluster.  This index is always called ‘genome’ and is the entry point for tools that interact with 

GeneStation.  Genomes are described via Genome Objects that have the following structure.

{
“dynamic” : false,
“properties” : {

“genus” : {“type” : “keyword”},
“species” : {“type” : “keyword”},
“subspecies” : {“type” : “keyword”},
“version” : {“type” : “keyword”},
“common_name” : {“type” : “keyword”},
“dbxref” : {“type” : “keyword”},
“data” : {“dynamic” : true}

}
}

Each genome described in the index is uniquely identified by the genus, species, subspecies 

(nullable), and version.  This takes the form genus_species.version or 

genus_species_subspecies.version.  All alphabetic characters are converted to lowercase, 

with spaces and periods (eg. in version numbers) replaced with underscores.  For example, the 

human genome release GRCh38.p12 would have the prefix “homo_sapiens.grch38_p12”, 

and the domesticated dog genome release 3.1 would have the prefix 

“canis_lupis_familiaris.3_1”.  The genome identifier is used to organize the other indexes

in the database.

3.1.1 genus

Required.  The genus of the sequenced organism.
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3.1.2 species

Required.  The species of the sequenced organism.

3.1.3 subspecies

Optional.  The subspecies identifier of the sequenced organism, if any.

3.1.4 name

Optional.  The common name(s) of this organism.  If “name” is an array, the first name is the 

primary name and the rest are considered aliases.

3.1.5 dbxref

Optional.  The dbxref(s) associated with this organism or genome following the format described

in the GFF3 specification (eg. “RefSeq:GCF_000001405.38”, “taxon:9606”).

3.2 Feature Index

Feature Indexes are named in the form feature.genome_identifier.feature_type, where 

feature_type is a Sequence Ontology term.  For example, an index for human genes might have

the identifier feature.homo_sapiens.grch38_p12.gene.  This hierarchical prefixing structure 

namespaces all feature indexes and allows for use of the ElasticSearch MultiIndex API (https://

www.elastic.co/guide/en/elasticsearch/reference/current/multi-index.html) to query all 

features (regardless of type) of a specific genome.

A single feature index contains Genome Feature Objects of a single type and its children.  The 

children should only be represented within the child field and should be redundantly indexed in 
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their own index if they will be the targets of search queries (eg. A database supporting searches 

on mRNAs and genes).

3.3 Meta Index

Meta Indexes store general purpose index-level statistics and metadata.  This index can be 

generated for any ElasticSearch index by the Genestation CLI and is named in the form 

meta.index_name. For example, a Meta Index for human genes might have the identifier 

meta.feature.homo_sapiens.grch38_p12.gene.  These indexes store Field Meta Objects which 

describe fields in the associated index and have the following structure:

{
"field": {"type": "keyword"},
"description": {"type": "text"},
"type": {"type": "keyword"},
"stats": {FieldStatsMetaObject},

}

Note that most of these fields will be automatically generated by the Genestation CLI and the 

only manually populated field is the “description” text field.  The Meta Index is generally used

to precalculate genome wide statistics on Feature Indexes, but may be used to describe any 

index in ElasticSearch.

3.3.1 field

Automatically generated.  The dot-notated name of the field profiled by the Field Meta Object.

3.3.2 description

Optional.  A human readable description of the field being profiled.

3.3.3 type

Automatically generated.  The field data type as mapped in ElasticSearch
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3.3.4 stats

Automatically generated.  This field is only calculated for numeric field data types.  The Field 
Stats Meta Object has the following structure:

}
"count": {"type": "long"},
"min": {"type": "double"},
"max": {"type": "double"},
"sum": {"type": "double"},
"sum_of_squares": {"type": "double"},
"variance": {"type": "double"},
"std_deviation": {"type": "double"},
"std_deviation_bounds": {

"properties": {
"upper": {"type": "double"},
"lower": {"type": "double"},

}
},
"percentiles": {

"properties": {
"1.0": {"type": "double"},
"5.0": {"type": "double"},
"25.0": {"type": "double"},
"50.0": {"type": "double"},
"75.0": {"type": "double"},
"95.0": {"type": "double"},
"99.0": {"type": "double"},

}
},
"histogram": {

"properties": {
"key": {"type": "keyword"},
"from": {"type": "double"},
"to": {"type": "double"},
"doc_count": {"type": "long"},

}
}

}

The ElasticSearch Extended Stats aggregation 

(https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations-metrics-

extendedstats-aggregation.html) is used to populate the following fields:

● count

● min

● max

● sum

● sum_of_squares

● variance

● std_deviation
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● std_deviation_bounds

The ElasticSearch Percentiles aggregation 

(https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations-metrics-

percentile-aggregation.html) is used to calculate the value of the percentiles field.

The ElasticSearch Histogram aggregation 

(https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations-bucket-

histogram-aggregation.html) is used to calate the value of the histogram field.  By default, this 

will use 100 equally sized buckets over the range of the field value with unbounded first and last

buckets.

3.4 Custom Indexes

If it is necessary to create custom indexes, for example a tool or script, these indexes should be 

created with an explicit namespace prefix.  This will ensure that any created indexes will not 

interfere will other tools.
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APPENDIX 2

Genestation Command Line Interface

1 Synopsis

genestation [--version] [--host HOST] COMMAND ARGS

1.1 --host HOST

Set the hostname of the ElasticSearch node.  Defaults to localhost:9200

2 Commands

2.1 init

genestation init

Initialize a Genestation instance.  Creates the Genome Index, loads index templates for Feature

Indexes and Meta Indexes, and loads search templates for creating Meta Indexes.

2.2 load

genestation load descriptor [...descriptor]

Load genomic data referenced in the descriptor files.  The format of these files is described in 

Appendix 3.

2.3 genome

genestation genome [show identifier]

Without any arguments, list all genomes

2.3.1 genome show

Show information about the specified genome, the associated Feature Indexes, and the number

of documents they contain

2.4 index

genestation index [[show|make-meta] index]

Without any arguments, list all indexes and the number of documents they contain
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2.4.1 index show

Show ElasticSearch metadata about the index

2.4.2 index make-meta

Create or update the Meta Index associated with the index

2.5 get

genestation get index id

Get the document in the specified index with matching id

2.6 search

genestation search index query

Search the specified index using the query in ElasticSearch QueryString Syntax 

(https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-query-string-

query.html#query-string-syntax)
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APPENDIX 3

Genomic Data Descriptor JSON
A configuration file for loading genomic data into ElasticSearch

INTRODUCTION

The Genomic Data Descriptor JSON (GDD JSON) is a JSON file that describes and references 

genomic data files for the Genestation Command Line Interface (CLI).  GDD files should have 

the file type suffix *.gdd.json.  A GDD file may contain one GDD object, or a list of GDD 

objects which contain the keys described below.  Genomic data for a given genome may be 

contained in any number of files and loaded separately.  For example, one might have a GDD 

for a GFF containing genic data and another GDD for a VCF containing SNPs and other 

polymorphisms.

To understand how the Genestation CLI stores genomic data in ElasticSearch, see the 

documentation for the Genome Feature Object in Appendix 1.

GENOMIC METADATA KEYS

These keys are used to construct the genome identifier.  This identifier takes the form 

genome_species.version or genome_species_subspecies.version, where all alphabetic 

characters are converted to lowercase and periods and spaces are converted to underscores 

(eg. ‘homo_sapiens.grch38_p12’ and ‘canis_lupus_familiaris.3_1’).  Each genome 

identifier should refer to a unique genome within a genestation instance.

● genus: The taxonomic genus of the organism (eg. Homo in Homo sapiens).

● species: The taxonomic species of the organism (eg. sapiens in Homo sapiens).

● subspecies: OPTIONAL.  The taxonomic subspecies classification of the organism, if 

any (eg. familiaris in Canis lupus familiaris).

● version: The genome assembly version string (eg. GRch38.p12).

GENOMIC DATA KEYS

These keys describe various data formats that can be handled by the Genestation CLI.  The 

following data keys are all optional, but may contain required subkeys if present.  If none of 

these keys are present, the only result from loading the GDD will be the creation of the Genome

Meta Object in the Genome Index.
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It is important for chromosomal identifiers to be consistent across all genomic data files for a 

given genome in order to ensure that location based queries perform correctly.  The Genestation

CLI is capable of performing simple transformations to aid in the integration of diverse data 

sources, but it is recommended that complex transformations be performed in external data 

pipelines.

gff

A string or object.  If it is a string, a relative file reference relative to a GFF file with genomic 

feature data.  Multiple GFF files may be specified as a string array or object array.  If this is an 

object, it has the following subkeys:

● file: A string or string array of file references to GFF file(s) relative to the GDD JSON.

● ftype: OPTIONAL. The genomic feature type(s) to load from the GFF file(s).  Must be a 

Sequence Ontology term.  Defaults to ‘gene’.  This feature will be loaded into 

ElasticSearch.  Its children will be nested inside the ‘child’ field.

● seqid_alias: OPTIONAL. An object of strings to strings which maps SEQIDs in the GFF 

to another alias.  Useful for converting chromosomal accessions to names (eg. 

NC_000001.11 to 1 in the human genome).

● alias_attr: OPTIONAL. The attribute key that should be used to populate the ‘alias’ 

field for this feature.  Defaults to ‘Alias’.

● dbxref_attr: OPTIONAL. The attribute key that should be used to populate the 

‘dbxref’ field for this feature.  Defaults to ‘Dbxref’.

● data_attr: OPTIONAL.  An object of strings to strings which maps attribute keys to dot-

notated field names in the ‘data’ field.  An attribute key must be present in this object to

be loaded into the ‘data’ field.

fasta

A string or object.  If it is a string, a relative file reference to a FASTA file with genomic sequence

data.  Multiple FASTA files may be specified as a string array.  If this is an object, it has the 

following subkeys:

● file: A string or string array of file references to FASTA file(s) relative to the GDD JSON.

● ftype: The sequence feature type.  Must be a Sequence Ontology term.

● defline_part: OPTIONAL. An integer which specifies a portion of the defline to use as 
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the unique name of the feature after splitting on ‘|’ (pipe), zero indexed.  Useful for 

extracting accessions from deflines with extra information.  If this option is missing the 

entire defline is used.

● defline_alias: OPTIONAL. An object of strings to strings which maps deflines in the 

FASTA to another alias.  If a defline_part has been specified, only the specified part will 

be used in this mapping process.  Useful for converting chromosomal accessions to 

names (eg. NC_000001.11 to 1 in the human genome).

vcf

A string or object.  If it is a string, a relative file reference to a VCF file with genomic feature 

data.  Multiple VCF files may be specified as a string array.  If this is an object, it has the 

following subkeys:

● file: A string or string array of file references to VCF file(s) relative to the GDD JSON.

● chrom_alias: OPTIONAL. An object of strings to strings which maps CHROM identifiers 

in the VCF to another alias.  Useful for converting chromosomal accessions to names 

(eg. NC_000001.11 to 1 in the human genome).  It is important for chromosomal 

identifiers to be consistent across all genomic data files in the GDD.

● info_key_alias: OPTIONAL. An object of strings to strings which maps INFO keys in the

VCF to another alias.  Useful for renaming and nesting data in the INFO column into a 

form more suitable for ElasticSearch (eg. nesting all FST calculations within an fst.* key).

tsjv

A string or object.  If it is a string, a relative file reference to a TSJV file with genomic feature 

data.  Multiple TSJV files may be specified as a string array.  If this is an object, it has the 

following subkeys:

● file: A string or string array of file references to TSJV file(s) relative to the GDD JSON.

● ftype: OPTIONAL. The sequence feature type of the features named in feature_col.  

Must be a Sequence Ontology term.  Defaults to ‘gene’.

● feature_col: OPTIONAL. String. The column name which contains the feature name.  

Defaults to ‘feature’.

● start_col: OPTIONAL. String. The column name which contains the feature start.  

Defaults to null (no location data in file).

● end_col: OPTIONAL. String. The column name which contains the feature end.  
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Defaults to null (no location data in file).

● region_col: OPTIONAL. String. The column name which contains the feature region.  

Defaults to null (no location data in file).

● data_cols: OPTIONAL. String array.  The columns which contain feature data.  Defaults 

to null (no data will be loaded).

● data_mapping: OPTIONAL. Object.  ElasticSearch mapping for the data columns.  May 

be a partial mapping.  Defaults to null (no data will be loaded).

● association_cols: OPTIONAL. String array.  The columns which contain the associated 

feature names.  Defaults to ‘association’.

● association_data_cols: OPTIONAL. String array.  The columns which contain feature 

association data.  Defaults to null (no association data will be loaded).

● association_data_mapping: OPTIONAL. Object.  ElasticSearch mapping for the 

association data columns.  May be a partial mapping.  Defaults to null (no data will be 

loaded).

● association_genome: OPTIONAL. String.  The genome identifier of the associated 

genomic feature.  Defaults to the current genome.

● association_genome_col: OPTIONAL. String.  The column which contains the genome

identifier of the associated genomic feature.  Overrides association_genome.  Defaults 

to null.

● association_ftype: OPTIONAL. String.  The feature type of the associated genomic 

feature.  Defaults to ‘gene’.

● association_ftype_col: OPTIONAL. String.  The column which contains the feature 

type of the associated genomic feature.  Overrides association_ftype.  Defaults to 

null.
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