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1. Introduction

A social welfare function is a mapping from a set of profiles of individual preference
orderings to the set of social orderings on a universal set of alternatives. Arrow’s
(1963) Theorem shows that it is impossible for a social welfare function to satisfy In-
dependence of Irrelevant Alternatives (the social ranking of a pair of alternatives only
depends on the individual rankings of these alternatives), Weak Pareto (if everyone
strictly prefers one alternative to a second, then so does society), and Nondictatorship
(nobody’s strict preferences are always respected) if the domain of preference profiles
is unrestricted and there are at least three alternatives being ranked.

Building on the work of Kalai, Muller, and Satterthwaite (1979), a number of
articles have investigated the consistency of Arrow’s axioms when natural economic or
political restrictions are placed on the universal set of alternatives and on the domain
of preference profiles. Le Breton and Weymark (1996, 2001) and Le Breton (1997)
provide introductions to this literature. The general conclusions to emerge from this
line of research are that when the set of alternatives is multidimensional, unless the
domain is exceedingly small, either Arrow’s axioms are inconsistent or there is an
individual who is dictatorial over most pairs of alternatives.1 Thus, simply modifying
the domain of the social welfare function does not seem to be a promising way to
escape from Arrow’s dilemma when the set of alternatives is multidimensional.

Arrow’s Theorem can also be formulated in terms of a social choice correspon-
dence. In this case, the objective is to choose a set of socially optimal alternatives
from a feasible subset of the alternatives called an agenda. More precisely, a social
choice correspondence specifies a nonempty subset of the agenda for each admissible
preference profile and each admissible agenda. In its choice-theoretic formulation,
Arrow’s Theorem shows that Arrow’s Choice Axiom (the choice-theoretic analogue of
Arrow’s assumption that social preferences are orderings), Independence of Infeasible
Alternatives (the social choice only depends on the preferences for feasible alterna-
tives), and the choice correspondence versions of Weak Pareto (only weakly Pareto
optimal alternatives are chosen) and Nondictatorship (the chosen alternatives are not
always a subset of one individual’s best feasible alternatives) are inconsistent if the
preference domain is unrestricted and the agenda domain includes all the two and
three element subsets of the universal set.

The requirement that some of the agendas are finite is unnatural in many eco-
nomic problems. For example, an agenda could be an Edgeworth box in an exchange
economy or, alternatively, all of the allocations that are feasible for a production
economy with given production technologies and resource endowment. By varying
the technologies and/or the endowment, new agendas are obtained. The literature
on Arrovian social choice correspondences on restricted domains is surveyed in Le
Breton (1997) and Le Breton and Weymark (2001).

In this article, we establish two possibility theorems for social choice correspon-
dences on restricted domains. In our theorems, the set of alternatives is the non-

1For a one-dimensional set of alternatives, the majority rule social welfare function satisfies Ar-
row’s axioms on the domain of single-peaked preferences if there are are an odd number of individuals.
See Black (1948) for a discussion of majority rule with single-peaked preferences.
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negative orthant of a Euclidean space of dimension at least two. We assume that
the agenda domain only contains compact sets with nonempty interiors, as in the
economic examples given above. It is also natural to suppose that the agenda is a
nonfinite compact set when a legislature is simultaneously determining the values of a
number of issues, such as the budgets of different bureaus. For the preference domain,
we consider two alternative domains of analytic preference profiles. A preference is
analytic if it can be represented by an analytic utility function; i.e., by a function that
can be expanded locally at each point in its domain as a Taylor series. Polynomials
are examples of analytic functions.

In our first possibility theorem, the preference domain contains only Euclidean
spatial preferences. With a Euclidean spatial preference, there is an ideal point and
the further an alternative is from this alternative (as measured by Euclidean dis-
tance), the worse it is. Spatial preferences are commonly used in political models of
elections and legislatures.2 A Euclidean spatial preference is analytic because it can
be represented by a quadratic utility function.

In our second possibility theorem, the preference domain consists solely of prefer-
ences that are monotone and that can be represented by an analytic utility function
with no critical points. Further restrictions on preferences such as convexity are
permitted. A possible motivation for considering monotone analytic preferences is
provided by the fact that many of the functional forms used for utility functions in
economic models, such as Cobb-Douglas and CES, are analytic, at least on the pos-
itive orthant.3 Furthermore, as Kannai (1974) shows, the set of monotone, convex,
and analytic preference orderings is dense in the set of continuous, monotone, convex
preference orderings. Thus, our preference domain is a ‘topologically large’ subset of
the standard domain of economic preferences.

For these two preference domains, we demonstrate that if the agenda domain is re-
stricted as described above, then it is possible to satisfy all four of the choice-theoretic
versions of Arrow’s axioms with Weak Pareto strengthened to Strong Pareto (only
strongly Pareto optimal alternatives are chosen) and Nondictatorship strengthened to
Anonymity (the social choice is invariant to a permutation of the individuals’ prefer-
ences). As a preliminary step in proving these theorems, we show that Independence
of Infeasible Alternatives is vacuous with our domain assumptions. In order to prove
this result for the case of the monotone analytic preference domain, we develop an
ordinal version of the Analytic Continuation Principle for monotone analytic prefer-
ences with no critical points. The Analytic Continuation Principle says that if two
analytic functions defined on an open connected set coincide on an open subset, then
they must be identical.

Border (1984) has shown that no social welfare function can satisfy Arrow’s ax-
ioms if the domain is the set of Euclidean spatial preference profiles when the set
of alternatives is a multidimensional Euclidean space.4 However, in spatial models,

2For introductions to spatial models, see Enelow and Hinich (1984) and Ordeshook (1986).
3Our possibility theorem for monotone analytic functions is valid if the preferences are analytic

on the positive orthant and can be continuously extended to the boundary of the orthant.
4Alternative proofs of Border’s Theorem may be found in Le Breton and Weymark (1996) and

Redekop (1993b). Redekop’s version of Border’s Theorem does not require the domain to include
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it is natural to suppose that each component of an alternative is nonnegative. Bor-
der’s proof of his theorem does not apply when the set of alternatives is restricted in
this way. We, therefore, establish a version of Border’s impossibility theorem for the
domain of all Euclidean spatial preferences when the set of alternatives is the nonneg-
ative orthant of a multidimensional Euclidean space. We also show that for this set
of alternatives, no social welfare function can satisfy Arrow’s axioms if the domain is
the set of profiles of strictly monotone, strictly convex, analytic preferences with no
critical points. These results show the importance for our possibility theorems of be-
ing able to restrict the agenda domain. For either of the two preference domains used
in our social welfare function impossibility theorems, a social choice correspondence
possibility theorem is obtained with our restriction on the agenda domain.

There are relatively few articles in the Arrovian social choice literature that con-
sider restricting the agenda domain to include only agendas that can be interpreted
as being sets of feasible allocations for an economy. Of particular relevance here are
the articles by Bailey (1979) and Donaldson and Weymark (1988). Bailey assumes
that an agenda is the set of feasible allocations in an exchange economy. With this
kind of agenda domain, Arrow’s Choice Axiom is vacuous, which permits the satis-
faction of all of the Arrow choice-theoretic axioms.5 Donaldson and Weymark assume
that the universal set of alternatives is the nonnegative orthant in some Euclidean
space and interpret alternatives as being vectors of public and/or private goods.
They show that the Arrow axioms are consistent when preferences satisfy standard
economic assumptions and the agenda domain contains only compact and compre-
hensive sets of alternatives with nonempty interiors.6 Unfortunately, the social choice
correspondence Donaldson and Weymark use to establish their theorem exhibits some
dictatorial features. Our possibility theorem for monotone analytic preferences shows
that all vestiges of dictatorship can be avoided if preferences are also assumed to be
analytic.

There has been less use of social choice correspondences in political models. Gib-
bard, Hylland, and Weymark (1987) show that Arrow’s choice-theoretic axioms are
consistent if preferences are unrestricted when every agenda is finite and contains the
status quo. This agenda domain restriction is satisfied by many rules for consider-
ing motions in legislatures. Duggan (1996) supposes that the set of alternatives is
a convex subset of a multidimensional Euclidean space, the agenda domain consists
of all compact convex subsets of this set, and the preference domain is the set of all
profiles of continuous, strictly convex preferences with an ideal point. Duggan proves
that with these domain assumptions, the choice-theoretic versions of Arrow’s axioms
are inconsistent. Our possibility theorem for Euclidean spatial preferences therefore
shows that Duggan’s impossibility result depends on having non-Euclidean spatial
preferences in his preference domain and on having feasible sets with no interiors in
his agenda domain.

In Section 2, we introduce the social choice framework and formally define the

all profiles of Euclidean spatial preferences.
5See Donaldson and Weymark (1988) for a more detailed discussion of Bailey’s contribution.

Arrow’s Choice Axiom is not vacuous in production economies.
6Comprehensiveness corresponds to the economic assumption of free disposal.
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axioms used in our theorems. In Sections 3 and 4, respectively, we present our
impossibility and possibility theorems for Euclidean spatial preferences. In Section 5,
we establish our impossibility theorem for strictly monotone, strictly convex, analytic
preferences. In Section 6, we prove our ordinal version of the Analytic Continuation
Principle. In Section 7, we establish our possibility theorem for monotone analytic
preferences. Some concluding remarks are presented in Section 8.

2. The framework and axioms

The universal set of alternatives is X. An ordering R of X is a complete, reflexive,
and transitive binary relation on X. R is interpreted to be a weak preference relation.
Corresponding to R, strict preference P and indifference I are defined in the usual
way: (a) xPy iff xRy and ¬(yRx) and (b) xIy iff xRy and yRx. The set of all
orderings of X is R.

There is a finite set of individuals N := {1, . . . , n} with n ≥ 2. Each individual
has an ordering Ri ∈ R. A preference profile R := (R1, . . . , Rn) is an n-tuple of
weak preference relations, one for each person. Profiles are a priori restricted to be
in D ⊆ Rn, the set of admissible profiles. D is called the preference domain. If
D = Rn, the preference domain is unrestricted. Two profiles R1,R2 ∈ Rn coincide
on a nonempty set A ⊆ X if for all i ∈ N and all x, y ∈ A, xR1

i y iff xR2
i y.

A social welfare function F :D → R is a mapping that assigns a social ordering
of the alternatives in X to each admissible profile. For profiles R,R1,R2 ∈ D, we
simplify the notation by letting R, R1, and R2 denote F (R), F (R1), and F (R2),
respectively.

Individual d ∈ N is a dictator for the social welfare function F if for all R ∈ D
and all x, y ∈ X, xPy if xPdy.

Arrow’s (1963) Theorem shows that when the preference domain is unrestricted
and the cardinality of X is at least three, no social welfare function can satisfy the
following three axioms.

Independence of Irrelevant Alternatives. For all R1,R2 ∈ D and all x, y ∈ X, if R1

and R2 coincide on {x, y}, then R1 and R2 coincide on {x, y}.

Weak Pareto. For all R ∈ D and all x, y ∈ X, if xPiy for all i ∈ N , then xPy.

Nondictatorship. No individual is a dictator.

An agenda is a nonempty subset of X. An agenda is a potential feasible set. The
set of admissible agendas, the agenda domain, is A.

A social choice correspondence C:A × D → X is a mapping that assigns a
nonempty subset of the agenda to each admissible agenda and admissible profile.
That is, for all A ∈ A and all R ∈ D, ∅ 
= C(A,R) ⊆ A. The set C(A,R) is called
the choice set.

For a nonempty set A ⊆ X and an ordering R ∈ R, the set of best alternatives in
A according to R is

B(A,R) := {x ∈ A | xRy for all y ∈ A}.
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A social welfare function F rationalizes the social choice correspondence C if for
all A ∈ A and all R ∈ D, C(A,R) = B(A,F (R)). In other words, for each admissible
agenda A and admissible profile R, the choice set consists of the best elements in A
according to the social preference relation R associated with the profile R.

Our independence condition for social choice correspondences requires the choice
set to be independent of preferences over alternatives not in the agenda.

Independence of Infeasible Alternatives. For all A ∈ A and all R1,R2 ∈ D, if R1 and
R2 coincide on A, then C(A,R1) = C(A,R2).

For all A ∈ A and all R ∈ D, the set of strongly Pareto optimal alternatives is

P(A,R) = {x ∈ A |
 ∃y ∈ A such that yRix for all i ∈ N and

yPjx for some j ∈ N}.

The Strong Pareto axiom requires the social choice correspondence to only choose
strongly Pareto optimal alternatives.

Strong Pareto. For all A ∈ A and all R ∈ D, C(A,R) ⊆ P(A,R).

This axiom is a strengthening of the choice-theoretic analogue to Arrow’s Weak Pareto
axiom, which merely requires each choice set to be contained in the set of weakly
Pareto optimal alternatives (the set of feasible alternatives for which there is no other
feasible alternative that everyone strictly prefers).

Anonymity is the requirement that the social choice correspondence treats indi-
viduals symmetrically, in the following sense.

Anonymity. For all A ∈ A and all R1,R2 ∈ D, if R1 is a permutation of R2, then
C(A,R1) = C(A,R2).

This definition of Anonymity is vacuous if there are private goods and selfish pref-
erences. We informally consider a private goods version of Anonymity in Section
7.

An individual d ∈ N is a dictator for the social choice correspondence C if
C(A,R) ⊆ B(A,Rd) for all A ∈ A and all R ∈ D. If there are no private goods,
Anonymity is more demanding than requiring there to be no dictator, provided that
the preference domain is not too degenerate.

The definition of a social welfare function incorporates the social rationality con-
dition that all social rankings of the alternatives are orderings. The analogue of this
requirement for a social choice correspondence is Arrow’s Choice Axiom. See Arrow
(1959).

Arrow’s Choice Axiom. For all A1, A2 ∈ A and all R ∈ D, if A1 ⊂ A2 and C(A2,R)∩
A1 
= ∅, then C(A1,R) = C(A2,R) ∩ A1.

Hansson (1968) has shown that if A is closed under finite unions, then Arrow’s Choice
Axiom is equivalent to requiring the social choice correspondence to be rationalizable
by a social welfare function.
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In its choice-theoretic formulation, Arrow’s Theorem assumes that the preference
domain is unrestricted and the agenda domain includes all of the subsets of alterna-
tives that contain two or three alternatives. Provided that there are at least three
alternatives, this version of Arrow’s Theorem shows that there is no social choice
correspondence that satisfies Independence of Infeasible Alternatives, Arrow’s Choice
Axiom, and the choice-theoretic versions of the Weak Pareto and Nondictatorship ax-
ioms.7 A fortiori, there is no social choice correspondence that satisfies Independence
of Infeasible Alternatives, Arrow’s Choice Axiom, Strong Pareto, and Anonymity
either.

3. An impossibility theorem for Euclidean spatial preferences

Border’s (1984) social welfare function impossibility theorem for Euclidean spatial
preferences supposes that the set of alternatives X is IRm with m ≥ 2. However, in
spatial models, it is natural to suppose that that the set of alternatives is IRm

+ , not
all of IRm.8 In this section, we establish a version of Border’s impossibility theorem
when the set of alternatives is restricted in this way.

A preference ordering R on X ⊆ IRm is a Euclidean spatial preference if for some
b ∈ X, xRy iff ‖x − b‖ ≤ ‖y − b‖, where ‖ · ‖ denotes the Euclidean norm. The
indifference surfaces of a Euclidean spatial preference are the intersections with X of
spheres (circles in two dimensions) centered at an ideal or bliss point b. Note that
we have required the bliss point to be in X. A profile R ∈ Rn is a Euclidean spatial
profile if Ri is a Euclidean spatial preference for all i ∈ N . Let S be the set of all
Euclidean spatial preferences.

We assume that the set of alternatives is X = IRm
+ with m ≥ 2. X can be in-

terpreted as being an issue space with each component indicating the quantity or
magnitude of some issue. For example, one component might be the government’s
expenditure on education. In spatial models of elections, a voter has a spatial pref-
erence on this issue space and votes for the candidate whose platform (a point in the
issue space) is closest to his or her ideal point. In spatial models of legislatures, the
preferences of the legislators (which in turn might depend on voters’ preferences) are
used to choose between alternatives in the issue space.

Border’s Theorem shows that when X = IRm and m ≥ 2, no social welfare func-
tion with preference domain Sn can satisfy Arrow’s three axioms. Our impossibility
theorem shows that the same conclusion holds when the set of alternatives is IRm

+ .

Theorem 1. If X = IRm
+ with m ≥ 2, there does not exist a social welfare func-

tion with preference domain Sn that satisfies Independence of Irrelevant Alternatives,
Weak Pareto, and Nondictatorship.

Our proof of Theorem 1 makes use of a theorem about saturating preference
domains due to Kalai, Muller, and Satterthwaite (1979). The preference domain D

7See Donaldson and Weymark (1988) for a formal statment of this theorem.
8IRm

+ and IRm
++ are the nonnegative and positive orthants, respectively, of the m-dimensional

Euclidean space IRm.
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is common if there exists a set of preferences E ⊆ R such that D = En. Suppose that
D is a common preference domain with individual preference domain E . For a set
A ⊆ X, let E|A and R|A be the restrictions of E and R, respectively, to A. A pair
of alternatives x, y ∈ X is a trivial pair if the cardinality of E|{x,y} is one; i.e., in E ,
there is only one way x and y are ranked. A pair of alternatives x, y ∈ X is nontrivial
if it is not a trivial pair. The set {x, y, z} ⊆ X is a free triple if E|{x,y,z} = R|{x,y,z};
i.e., if the individual preference domain is unrestricted on {x, y, z}. Two pairs of
alternatives A and B contained in X are connected if there exists a finite sequence
C1, . . . , Cr of pairs contained in X such that C1 = A, Cr = B, and Ci ∪Ci+1 is a free
triple for all i = 1, . . . , r−1. A common preference domain D is saturating if (i) there
exists at least two nontrivial pairs and (ii) any two nontrivial pairs are connected.
The Kalai-Muller-Satterthwaite Theorem says that no social welfare function defined
on a common saturating preference domain can satisfy Independence of Irrelevant
Alternatives, Weak Pareto, and Nondictatorship.9

With the individual preference domain S, every pair of alternatives is nontrivial.
Hence, to establish Theorem 1, it is sufficient to show that any two pairs of alternatives
can be connected to each other.10

Proof of Theorem 1. The proof proceeds in a series of steps. The various constructions
used in the proof are illustrated in Figure 1.

Step 1. We first show that for any distinct x, y ∈ IRm
+ , there exists a z ∈ IRm

++ such
that ‖x− z‖ = ‖y− z‖. If (x+ y)/2 ∈ IRm

++, simply set z = (x+ y)/2. Otherwise, let
L(x, y) be the line segment joining x and y and H(x, y) be the (m− 1)-dimensional
hyperplane orthogonal to L(x, y) through (x + y)/2. If H(x, y) does not intersect
IRm

++, then for some i, wi = 0 for all w ∈ H(x, y). Because (x + y)/2 ∈ H(x, y),
L(x, y) is othogonal to H(x, y), and neither x nor y is in H(x, y), it follows that
xi = −yi 
= 0, contradicting the assumption that x and y are both in IRm

+ . Hence,
H(x, y) intersects IRm

++. By letting z be any point in this intersection, we complete
the proof of Step 1.

Step 2. Suppose that w, x, and y are distinct points in IRm
+ . It follows from

Lemma 2 in Campbell (1993) that if there exists a z ∈ IRm
++ such that ‖w − z‖ =

‖x− z‖ = ‖y − z‖, then {w, x, y} is a free triple.
Step 3. Consider any distinct x1, x2 ∈ IRm

+ . By Step 1, there exists an x ∈ IRm
++

and an εx > 0 such that x1 and x2 lie on a sphere of radius εx centered at x. Let Cx

be the restriction to IRm
+ of this sphere. The ray from the origin through x intersects

Cx either once or twice. In the first case, let a be this point of intersection and, in
the second case, let a be the point of intersection farthest from the origin.

Next, consider any distinct y1, y2 ∈ IRm
+ . By the preceding argument, y1 and y2 lie

on a sphere centered at y. Let Cy be the restriction to IRm
+ of this sphere and b be the

point farthest from the origin in Cy on the ray through y. In this and the following
two steps, we consider the case in which x and y are not proportional to each other.

9In this theorem, X can be any set.
10Le Breton and Weymark (1996) use the Kalai-Muller-Satterthwaite Theorem to prove the origi-

nal version of Border’s Theorem, but their proof does not apply when the alternatives are restricted
to being in IRm

+ .
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We now construct a sphere A1 centered at a. There is a critical value εa > 0 such
that any sphere of radius less than εa centered at a is entirely contained in IRm

++.
By choosing the radius of A1 to be less than Min{εx, εa}, we have |Cx ∩ A1| ≥ 2.
Further, we can choose the radius of A1 so that it is less than ‖(a− b)/2‖ and so that
Cx ∩ A1 ∩ (x1 ∪ x2) = ∅.

Similarly, we can construct a sphere A2 centered at b with the following three
properties: (i) the radius of A2 is less than ‖(a − b)/2‖, (ii) |Cy ∩ A2| ≥ 2, and (iii)
Cy ∩ A2 ∩ (y1 ∪ y2) = ∅.

Let s1 and s2 be distinct points in Cx ∩ A1 and s7 and s8 be distinct points in
Cy ∩ A2.

Step 4. Let L(a, b) be the line segment joining a and b. Let ā be the point of
intersection of A1 and L(a, b) and b̄ be the point of intersection of A2 and L(a, b).
Because the radii of A1 and A2 are both less than ‖(a − b)/2‖, a sphere centered at
c = (ā + b̄)/2 with radius ‖(ā − b̄)/2‖ is tangent to A1 at ā and tangent to A2 at b̄.
By increasing this radius slightly, we can construct a sphere A3 centered at c with
the following four properties: (i) |A1 ∩ A3| ≥ 2, (ii) A1 ∩ A3 ∩ (s1 ∪ s2) = ∅, (iii)
|A2 ∩ A3| ≥ 2, and (iv) A2 ∩ A3 ∩ (s7 ∪ s8) = ∅.

Let s3 and s4 be distinct points in A1 ∩ A3 and s5 and s6 be distinct points in
A2 ∩ A3.

Step 5. Because x1, x2, s1, s2 ∈ Cx, by Step 2, {x1, x2, s1} and {x2, s1, s2} are
free triples. Similarly, because s1, s2, s3, s4 ∈ A1, {s1, s2, s3} and {s2, s3, s4} are free
triples. Because s3, s4, s5, s6 ∈ A3, {s3, s4, s5} and {s4, s5, s6} are free triples. Because
s5, s6, s7, s8 ∈ A2, {s5, s6, s7} and {s6, s7, s8} are free triples. Because s7, s8, y1, y2 ∈
Cy, {s7, s8, y1} and {s8, y1, y2} are free triples. We have thus shown that the pair
{x1, x2} is connected to the pair {y1, y2} when x and y are not proportional to each
other.

Step 6. Now suppose that x and y are proportional. Consider any point w ∈ IRm
++

that is not proportional to x and y. Let w1 and w2 be distinct points in IRm
+ equidistant

from w. By Step 5, {x1, x2} is connected to {w1, w2} and {w1, w2} is connected to
{y1, y2}. Hence, {x1, x2} is connected to {y1, y2} even if x and y are proportional to
each other.

Step 7. We have shown that any pair of alternatives is connected to any other
pair of alternatives. Hence, the domain is saturating, and so by the Kalai-Muller-
Satterthwaite (1979) Theorem, Arrow’s three axioms are inconsistent.

4. A possibility theorem for Euclidean spatial preferences

In this section, we present a social choice correspondence possibility theorem for
Euclidean spatial preferences. We escape from Arrow’s choice-theoretic impossibility
by restricting our preference domain to include only Euclidean spatial preferences
and by restricting our agenda domain to contain only compact sets with nonempty
interiors. As in the previous section, we suppose that X = IRm

+ with m ≥ 2.
Our possibility theorem holds for any domain of Euclidean spatial preferences, not

just the set of all Euclidean spatial profiles. We do not require the preference domain
to be common.
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Euclidean Spatial Preference Domain. D ⊆ Sn.

We also restrict the set of potential agendas. We require each agenda to have an
interior, and thus rule out the possibility of an agenda consisting solely of a discrete
set of points. We also require each agenda to be compact. These assumptions are
satisfied, for example, in the legislative interpretation of the spatial model if the
agenda is determined by a limited legislative budget. Note that we do not require
agendas to be connected.

Full-Dimensional Compact Agenda Domain. For all A ∈ A, A is compact and has a
nonempty interior.

Because our possibility theorem holds for any Euclidean spatial preference domain
and any full-dimensional compact agenda domain, it is possible to place further re-
strictions on these domains. For example, we could also assume that all agendas are
comprehensive and convex.

Lemma 1 demonstrates that Independence of Infeasible Alternatives is vacuous
in the presence of our two domain restrictions. This lemma plays a key role in our
possibility theorem.

Lemma 1. If X = IRm
+ with m ≥ 2 and the social choice correspondence C is de-

fined on a Euclidean spatial preference domain and a full-dimensional compact agenda
domain, then C satisfies Independence of Infeasible Alternatives.11

Proof. First, note that with a Euclidean spatial preference ordering R, it is possible
to determine the ideal point b from knowledge of any segment of an indifference
surface when m ≥ 2.12 Simply take two points on the indifference surface and see
where the lines perpendicular to the indifference surface at these points intersect. In
other words, the complete preference ordering R can be uniquely determined from a
segment of an indifference surface. Thus, if R1 and R2 coincide on A ∈ A, because A
has a nonempty interior, R1 and R2 must coincide on all of X. Hence, Independence
of Infeasible Alternatives is trivially satisfied.

Theorem 2 demonstrates that our four axioms for social choice correspondences are
consistent on a Euclidean spatial preference domain when there is a full-dimensional
compact agenda domain and the set of alternatives is at least two dimensional.

Theorem 2. If X = IRm
+ with m ≥ 2, on any Euclidean spatial preference domain

and any full-dimensional compact agenda domain, there exist social choice correspon-
dences that satisfy Independence of Infeasible Alternatives, Strong Pareto, Anonymity,
and Arrow’s Choice Axiom.

11This lemma is also valid without the assumption that agendas are compact.
12In one dimension, if the preference ordering is only known for a segment on one side of the ideal

point, it is not possible to determine the location of the ideal point. A one-dimensional Euclidean
spatial preference ordering is a special kind of single-peaked preference.
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Proof. For each Euclidean spatial preference R in S, choose a continuous utility
function UR to represent R.13 This representation is fixed throughout the proof.
Let W : IRn → IR be any continuous symmetric function, increasing in each of its
arguments. Using W , we construct a social welfare function F by setting, for all
R ∈ D and all x, y ∈ X,

xF (R)y iff W [UR1(x), . . . , URn(x)] ≥ W [UR1(y), . . . , URn(y)].

Because W and URi , i ∈ N , are continuous functions, F (R) is a continuous ordering.
We use F to define a social choice correspondence C:A×D → X that satisfies all of
the axioms of the theorem. For all (A,R) ∈ A × D, let C(A,R) = B(A,F (R)). In
words, C(A,R) is the set of best alternatives in A according to the social preference
ordering corresponding to the profile R. Because A is compact and F (R) is a con-
tinuous ordering, C is well-defined for all (A,R) ∈ A × D. By Lemma 1, C satisfies
Independence of Infeasible Alternatives. Because W is increasing in its arguments,
C satisfies Strong Pareto. Because for each Euclidean spatial preference R there is
a fixed utility representation UR and because W is symmetric in its arguments, C
satisfies Anonymity. Because C is rationalized by the social welfare function F , it
satisfies Arrow’s Choice Axiom.

A Bergson-Samuelson social welfare function is a real-valued function defined on
n-tuples of utilities. The function W used in the proof of Theorem 2 is a Bergson-
Samuelson social welfare function. Thus, we are using a welfare function of the kind
found in traditional welfare economics to generate our social choice correspondence.

Welfarism requires the social desirability of an alternative to be determined solely
on the basis of the individual utilities obtained with it.14 Because the social choice cor-
respondence C used to establish Theorem 2 is constructed from a Bergson-Samuelson
social welfare function, it is welfarist. Example 1 shows how to construct a non-
welfarist social choice correspondence satisfying the assumptions of Theorem 2.

Example 1.15 Let C be a social choice correspondence constructed as in the proof
of Theorem 2. We simply assume that C is not a function, rather than placing
restrictions on the domains that ensure that this is the case. A new social choice
correspondence C1:A × D → X is constructed by selecting the alternatives with
the largest first components in each choice set of C. Formally, for all A ∈ A and
all R ∈ D, C1(A,R) = {x ∈ C(A,R) | x1 ≥ y1 for all y ∈ C(A,R)}. Because
C is generated by a social welfare function with continuous social preferences and
because each agenda is compact, C(A,R) is compact. Hence, C1 is well-defined. C1

clearly satisfies Independence of Infeasible Alternatives (by Lemma 1), Strong Pareto
(because it is a subcorrespondence of C), and Anonymity (because the tie-breaking
rule is anonymous). For a fixed profile R, C1 is rationalized by a lexicographic

13A function U :X → IR is a utility function representing the preference ordering R ∈ R if for all
x, y ∈ X, U(x) ≥ U(y) iff xRy.

14For discussions of welfarism, see Bossert and Weymark (1996), d’Aspremont (1985), and Sen
(1979).

15We are indebted to Yves Sprumont for this example.
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ordering—alternatives are first ranked according to F (R) and then by the magnitudes
of their first components. Thus, C1 also satisfies Arrow’s Choice Axiom.

Our possibility theorem for social choice correspondences is in sharp contrast to
our spatial impossibility theorem for social welfare functions. The social welfare func-
tion F used in the proof of Theorem 2 rationalizes the social choice correpondence
C we constructed. It follows from Theorem 1 that if the preference domain is Sn,
F cannot satisfy all three of Arrow’s axioms. F satisfies Nondictatorship (because it
treats individuals symmetrically) and Weak Pareto, so it does not satisfy Indepen-
dence of Irrelevant Alternatives. If all the binary agendas were in the agenda domain,
it would not be possible to rationalize a social choice correspondence satisfying In-
dependence of Infeasible Alternatives by a social welfare function unless the social
welfare function satisfies Independence of Irrelevant Alternatives.

5. An impossibility theorem for monotone analytic preferences

Classical economic preferences are continuous, monotone, and convex. Redekop
(1993a) has shown that in order for a social welfare function defined on a domain
of profiles of classical economic preferences to satisfy Arrow’s axioms when the set
of alternatives is the nonnegative orthant of a multidimensional Euclidean space, the
domain must be a topologically negligible subset of the classical economic domain. In
this section, we use Redekop’s results to show that Arrow’s axioms are inconsistent on
the domain of profiles of strictly monotone, strictly convex, analytic preferences with
no critical points. As in our spatial model, we assume that X = IRm

+ with m ≥ 2.
Alternatives in X can be interpreted as being vectors of public goods.

A preference ordering R on a subset K of IRm
+ is monotone if xPy for all x, y ∈ K

such that x� y and it is strictly monotone if xPy for all distinct x, y ∈ K such that
x ≥ y. A real-valued function f defined on a subset K of IRm is monotone (strictly
monotone) if f(x) > f(y) for all distinct x, y ∈ K such that x � y (x ≥ y). Any
utility function representing a (strictly) monotone preference ordering is (strictly)
monotone.

A preference ordering R on a convex subset K of IRm
+ is convex if for all x ∈ K,

{y ∈ K | yRx} is a convex set and it is strictly convex if for all x ∈ K, {y ∈ K | yRx}
is a strictly convex set relative to K.

A real-valued function f defined on an open subset K of IRm is analytic if for each
x ∈ K, there exists a Taylor’s series in powers of y − x whose sum is equal to the
value of f at each point y in some neighbourhood of x.16 A real-valued function f
defined on a subset K of IRm is analytic if for all x ∈ K, there exists an open subset
V of IRm and an analytic function g:V → IR such that g|K∩V = f |K∩V . Analytic
functions are infinitely continuously differentiable. A preference ordering R on a set
K in IRm

+ is analytic if it can be represented by an analytic utility function.
A differentiable real-valued function f on a convex setK in IRm has a critical point

at a ∈ K if the gradient of f vanishes at a. A preference ordering R on a convex

16For a more formal definition of an analytic function on an open subset of IRm, see Dieudonné
(1969, p. 203).
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set K in IRm
+ has no critical points if there exists a differentiable utility function f

representing R that has no critical points.
Let Mc denote the set of all strictly monotone, strictly convex, analytic preferences

with no critical points. We now show that with the preference domain Mn
c , no social

welfare function can satisfy Arrow’s three axioms.

Theorem 3. If X = IRm
+ with m ≥ 2, there does not exist a social welfare function

with preference domain Mn
c that satisfies Independence of Irrelevant Alternatives,

Weak Pareto, and Nondictatorship.

Proof. Let D = En be a common preference domain and P be the set of all continu-
ous, strictly monotone, strictly convex preferences on X. E is a near-open subset of
P if there exists an open set of preferences O ⊆ P such that Ē = Ō. In this defini-
tion, open and closed sets are defined using the Kannai (1970) topology on P .17 In
particular, E is a near-open subset of P if E is a dense subset of P .18 Redekop (1993a,
Theorem 3.1) shows that Independence of Irrelevant Alternatives, Weak Pareto, and
Nondictatorship are inconsistent if E is a near-open subset of P .

Kannai (1974) has shown that the set of monotone, convex, analytic preferences
on IRm

+ is dense in the set of continuous, monotone, convex preference orderings on
IRm

+ . He does this by showing that for any continuous, monotone, convex preference
ordering on IRm

+ , there exists a sequence of analytic, monotone, concave utility func-
tions that converge to a utility function representing the given preference ordering.
We adapt Kannai’s argument to show that Mc is dense in P . Let R be an arbi-
trary preference in P . Applying Kannai’s argument, there exists a sequence 〈Uk〉 of
analytic, monotone, concave utility functions that converge to a utility function U
representing R. Let V : IRm

+ → IR be a strictly monotone, strictly concave, analytic
function with no critical points. Then, for all k, V k = Uk + 1

k
V is a strictly monotone,

strictly concave, analytic function with no critical points. The limit of the sequence
〈V k〉 is U . For all k, V k represents a preference in Mc. Hence, we have shown that
Mc is dense in P . It then follows from Redekop’s Theorem that Arrow’s axioms are
inconsistent on the preference domain Mn

c .

In a private goods economy, an individual is selfish if he or she only cares about
his or her own consumption. Because the domain of individual preferences Mc only
includes strictly monotone preferences, Theorem 3 does not apply when there are
private goods and individuals are selfish. Suppose m = m̄n where m̄ is the number of
private goods and X = Y n where Y ⊆ IRm̄. An allocation is then a vector (x1, . . . , xn)
where xi ∈ Y is person i’s private consumption vector. By adapting an example in
Blau (1957), Border (1983) has shown that Arrow’s three axioms are consistent if
Y = IRm̄

+ and the preference domain consists of all profiles of selfish preferences
that are continuous and strictly monotone when restricted to Y . With the further

17See Redekop (1993c) for a definition of the Kannai topology. Redekop shows that on the domain
of all continuous monotone preferences, the Kannai topology coincides with the topology of closed
convergence and with Redekop’s questionnaire topology.

18A set A is dense in B if B ⊆ Ā.
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assumption that preferences are convex, Border (1984) and Maskin (1976) have shown
that Arrow’s axioms are inconsistent on the subset of alternatives IRm̄n

++ when m̄ ≥ 2.
In other words, on this preference domain, any social welfare function satisfying
Independence of Irrelevant Alternatives and Weak Pareto must be dictatorial on the
set of all allocations in which everyone has a positive consumption of each good.19

Redekop (1993a) has shown that these results also hold for any domain of selfish
preferences in which, restricted to Y , the domain of individual preferences is near-open
as a subset of the set of all continuous, strictly monotone, strictly convex preferences
on Y . Using Redekop’s theorems, it is straightforward to adapt the proof of Theorem
3 to show that these private goods possibility and impossibility theorems are also valid
for selfish individuals whose individual preference domain restricted to Y is Mc.

6. An Ordinal Analytic Continuation Principle

To help establish our possibility theorem for monotone analytic preferences, we need
to develop an ordinal version of the Analytic Continuation Principle. A statement of
the standard Analytic Continuation Principle is given in Theorem 4.

Theorem 4. [Dieudonné (1969, p. 208; 1971, p. 157)] Let f 1 and f 2 be two real-
valued analytic functions defined on an open connected subset X of IRm. If there
is a nonempty open subset K of X such that f 1(x) = f 2(x) for all x ∈ K, then
f 1(x) = f 2(x) for every x ∈ X.

Informally, this principle says that if two analytic functions defined on an open
connected set coincide on an open subset, then they must be identical. In other words,
there is a unique analytic extension of an analytic function defined on an open set to
an open connected superset.

Two real-valued functions f 1 and f 2 defined on a set S ⊆ IRm are ordinally
equivalent if there exists an increasing real-valued function g defined on f 1(S) such
that f 2(x) = g(f 1(x)) for every x ∈ S. A natural question is: If f 1 and f 2 are two
analytic functions defined on an open connected set X and if f 1 and f 2 are ordinally
equivalent on an open subset K of X, must f 1 and f 2 also be ordinally equivalent on
X? Unfortunately, the answer to this question is no, as the following simple example
demonstrates.

Example 2. Let X = IR and K = (0, 1). The functions f 1 and f 2 are defined by
setting f 1(x) = x and f 2(x) = x2 for all x ∈ IR. Because both of these functions
are polynomials, they are analytic. Both f 1 and f 2 are increasing on K, and so are
ordinally equivalent on this set. However, they are not ordinally equivalent on X.

By requiring the functions in Theorem 4 to be monotone with no critical points, we
obtain an ordinal version of the Analytical Continuation Principle when X = IRm

++.
This result is stated as Theorem 5.

19In fact, Arrow’s axioms are inconsistent on the set of alternatives in which everyone consumes
a positive amount of at least one good. See Le Breton and Weymark (1996, 2001) for detailed
discussions of the consistency of Arrow’s axioms in private goods economies.
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Theorem 5. Let f 1 and f 2 be two real-valued, monotone, analytic functions with no
critical points defined on IRm

++. If there is a nonempty open subset K of IRm
++ such

that f 1 and f 2 are ordinally equivalent on K, then f 1 and f 2 are ordinally equivalent
on IRm

++.

Proof. For all x ∈ IRm
++, let

g1(x) =
∇f 1(x)

‖∇f 1(x)‖
and

g2(x) =
∇f 2(x)

‖∇f 2(x)‖ .

Because f 1 and f 2 have nonvanishing gradients, the vector-valued functions g1 and
g2 are well-defined. The functions g1 and g2 are the normalized gradient functions
for the functions f 1 and f 2. Analycity is preserved by partial differentiation and by
the operations used to normalize the gradient functions [see Dieudonné (1969, pp.
203–205; 1971, pp. 154–159)], so the functions g1 and g2 are analytic (in each of their
components) on IRm

++. Because f 1 and f 2 are ordinally equivalent on K, it follows
that g1 and g2 coincide on K. Applying Theorem 4 component by component to g1

and g2, we can then conclude that g1(x) = g2(x) for all x ∈ IRm
++. It then follows from

Debreu’s (1972, p. 606) theorem on monotone C∞ functions, as corrected in Debreu
(1976), that f 1 is ordinally equivalent to f 2 on X.20

Theorem 5 can be interpreted as being a theorem about analytic, monotone,
ordinal utility functions with no critical points defined on the set of consumption
bundles with positive components. In this interpretation, the theorem says that if
one knows the functional form of a utility function on an open subset of the positive
orthant, then there is a unique (up to a monotone transform) extension of the utility
function to all of IRm

++.
When m = 1, Theorem 5 can be strengthened by only requiring f 1 and f 2 to be

monotone increasing or monotone decreasing; it is not necessary to assume that they
are analytic or even differentiable. Obviously, if a function is known to be monotone
increasing or monotone decreasing, which of these cases prevails can be determined
from knowledge of the function on any open interval. However, because the class of
admissible functions is so restricted in the one-dimensional case, this one-dimensional
result is fairly trivial.

7. A possibility theorem for monotone analytic preferences

In this section, we use the ordinal version of the Analytic Continuation Principle
presented in the previous section to develop a social choice correspondence possi-
bility theorem for monotone analytic preferences with no critical points. As in our

20Debreu’s theorem essentially says that if one has a monotone C∞ function with no critical point
defined on the positive orthant, then the function is completely characterized, up to a monotonic
transform, by its normalized gradient function. To apply Debreu’s result, g1 and g2 must satisfy
the usual integrability conditions [(2) in Debreu (1972)]. Because we have derived the normalized
gradient functions g1 and g2 from the functions f1 and f2, this condition is satisfied.
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impossibility theorem for monotone analytic preferences, we suppose that the set of
alternatives is IRm

+ .
Let M denote the set of all monotone analytic preferences with no critical points.

We assume that the preference domain is a subset of Mn.

Monotone Analytic Preference Domain. D ⊆ Mn.

We do not require D to consist of all profiles of monotone analytic preferences with
no critical points. Consequently, it is possible to require that the admissible profiles
satisfy further regularity conditions in addition to monotonicity and analycity. For
example, the preference domain could be the domain Mn

c used in Theorem 3, in which
case all preferences are strictly monotone and strictly convex. We do not require the
preference domain to be common.

As in our possibility theorem for Euclidean spatial preferences, we assume that the
social choice correspondence has a full-dimensional compact agenda domain. With
monotone preferences, in general, Pareto optimality and nonemptiness of the choice
set are incompatible if the agenda is not compact. Further restrictions can be placed
on the agenda domain. For example, agendas could be restricted to be also com-
prehensive and convex. Such agendas can be interpreted as being the set of feasible
allocations of public goods obtainable with convex production technologies from a
given endowment of initial resources.

In Section 4, we showed that Independence of Infeasible Alternatives is vacuous
for a Euclidean spatial preference domain and a full-dimensional compact agenda
domain. The same result holds for a monotone analytic preference domain and a
full-dimensional compact agenda domain.

Lemma 2. If X = IRm
+ with m ≥ 2 and the social choice correspondence C is defined

on a monotone analytic preference domain and a full-dimensional compact agenda
domain, then C satisfies Independence of Infeasible Alternatives.

Proof. Suppose that R1 and R2 coincide on A ∈ A. Because these profiles are
monotone and analytic with no critical points, for all i ∈ N and for j = 1, 2, Rj

i

can be represented by a monotone analytic utility function with no critical point, U j
i .

Because A has a nonempty interior, there exists an open subset K of A. Because R1

and R2 coincide on A, for all i ∈ N , U1
i is ordinally equivalent to U2

i on K. Thus, by
Theorem 5, for all i ∈ N , U1

i is ordinally equivalent to U2
i on IRm

++. Hence, R1 and
R2 coincide on IRm

++. Continuity of preferences, which is implied by analycity, then
implies that R1 and R2 coincide on IRm

+ . Consequently, Independence of Infeasible
Alternatives is trivially satisfied.

Theorem 6 is our possibility theorem for social choice correspondences defined
on a monotone analytic preference domain and a full-dimensional compact agenda
domain when the set of alternatives is the nonnegative orthant of a multidimensional
Euclidean space.
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Theorem 6. If X = IRm
+ with m ≥ 2, on any monotone analytic preference domain

and any full-dimensional compact agenda domain, there exist social choice correspon-
dences that satisfy Independence of Infeasible Alternatives, Strong Pareto, Anonymity,
and Arrow’s Choice Axiom.

Proof. The proof exactly parallels the proof of Theorem 2 with monotone analytic
preferences that have no critical points used instead of spatial preferences and the
reference to Lemma 1 replaced by an appeal to Lemma 2.

Donaldson and Weymark (1988) assume that X = IRm
+ , the preference domain

consists of all profiles of continuous preference orderings, and the agenda domain
consists of all compact, comprehensive sets that have a nonempty interior.21 They
show that the four Arrow choice-theoretic axioms are consistent with these domain
restrictions. The example they use to establish their theorem is not anonymous and
it is an open question whether Anonymity can be satisfied on their domains. Their
set of alternatives is the same as ours and their agenda domain is a full-dimensional
compact agenda domain. Theorem 6 shows that Anonymity can also be satisfied
if their preference domain is further restricted to include only profiles of monotone
analytic preferences with no critical points.

With private goods and selfish individuals, Anonymity is vacuous because it is not
possible to swap preferences between two individuals if they are selfish. By defining
individual preferences directly on private consumption, a strengthened anonymity
axiom that is more appropriate for private goods can be formulated by requiring that
if individual preferences on own consumption are permuted among selfish individuals,
then the choice on any agenda is unaffected. Note that if these preferences on own
consumption are monotone, the induced preferences on the set of alternativesX is also
monotone, so the arguments that use monotonicity in this and the preceding section
also apply to selfish individuals. As a consequence, a version of Theorem 6 using the
strengthened form of Anonymity holds for private goods and selfish individuals if the
set of admissible preferences for own consumption of each individual is a subset of
M.

8. Concluding Remarks

In our possibility theorem for monotone analytic preferences, each preference has
no critical point. In our possibility theorem for Euclidean spatial preferences, each
preference has one critical point. We conjecture that our two possibility theorems are
special cases of a more general possibility theorem for preference domains that include
only profiles of analytic preferences that have at most one critical point. The basis
for our conjecture is our belief that the result of Debreu (1972) used to establish our
ordinal version of the Analytic Continuation Principle can be generalized. Specifically,
we conjecture that an analytic function with at most one critical point defined on
IRm

++ is completely characterized (up to a monotone transformation) by its gradient

21Their theorem also holds with additional restrictions on the admissible profiles and on the
admissible agendas.
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function on an open subset of IRm
++ when m ≥ 2. As an example in Wagneur (1979)

illustrates, an analytic function need not be characterized by its gradient function on
an open subset of IRm

++ if there are two or more critical points.
Our theorems, and those of Donaldson and Weymark (1988) and Gibbard, Hyl-

land, and Weymark (1987), demonstrate that it makes a great deal of difference when
working with restricted domains whether one is dealing with a social welfare function
or a social choice correspondence. Preference domains that result in an impossibility
theorem using a social welfare function may well yield a possibility theorem using a
social choice correspondence when combined with an appropriate agenda domain. It
is standard practice for general equilibrium theorists and welfare economists to place
a priori restrictions on both preferences and the set of feasible alternatives. For ex-
ample, assumptions are often made on production technologies and on endowments
to ensure that the set of feasible alternatives is compact, comprehensive, and convex.
Our results suggest that pursuing a similar strategy in social choice theory may be
quite promising, sometimes yielding possibility theorems instead of impossibilities.22
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