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Abstract 
 

When data contain errors, parameters of interest typically are not identified without 
imposing strong assumptions. However, in many cases, bounds on these parameters can be 
constructed under relatively weak assumptions. This paper addresses under what conditions 
variables in addition to the one of interest, covariate data, tighten these bounds and how to 
optimally incorporate that information. In particular, covariate data are unable to sharpen 
inference without imposing some exogenous knowledge about the distribution of errors 
conditional on the covariates. For example, knowing that the probability of erroneous data is 
either orthogonal to a covariate or monotonically increasing in a covariate is typically sufficient 
to sharpen inference. The identification region for the distribution of the variable of interest is 
constructed and used to develop bounds both on probabilities and on parameters of this 
distribution that respect stochastic dominance. For the case of bounding parameters that respect 
stochastic dominance, the necessary and sufficient conditions for covariate data to sharpen 
inference are derived. 
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1. Introduction 

Suppose the marginal distribution of y1, or a function of that distribution, is the object of interest. 

However, instead of observing y1, one observes a random variable y whose value can be that of 

either y1 or another random variable y0, whose distribution is unknown. Horowitz and Manski 

(1995, hereafter HM) analyzed what could be learned about the parameter of interest from 

observations on y when an upper bound on the probability of data error is known. This paper 

extends that research by characterizing when and in what manner the presence of covariate data, 

x, enables sharper inferences about y1. 

Specifically, suppose that each member of a population is characterized by a triple 

( ), ,y z x , where z is a binary variable for the presence of erroneous data. Our first result is that 

covariate data are unable to sharpen inference without imposing some exogenous knowledge (or 

assumptions) about the distribution of errors conditional on the covariates. In other words, the 

mere presence of covariate data, regardless of its relationship to y and z, is insufficient to 

improve inference. 

Although this result may be seen as discouraging, it highlights the additional assumption 

in the present work which enables sharper inference on the parameter of interest. In particular, 

some knowledge of the distribution of errors as a function of the covariates must be known. We 

stress that only some knowledge is necessary; the actual distribution of errors conditional on the 

covariates may remain unknown. For example, knowing that the probability of erroneous data is 

either orthogonal to a covariate or monotonically increasing in a covariate is typically sufficient 

to sharpen inference. Whether or not a particular assumption imposes sufficient restrictions on 

the relationship between the covariates and the occurrence of errors to improve inference is a 

function of the distributions of y1 conditional on x. Although we characterize this function, since 



 2 

these conditional distributions are unknown, the value of covariate data in any given application 

remains an empirical question. 

Dominitz and Sherman (1999) consider a special case of this problem, utilizing the Love 

Canal data considered by Lambert and Tierney (1997). These data consist of measurements of the 

concentrations of pollutants in the water, which are contaminated because the testing procedures 

occasionally measure the level of a compound other than the pollutant of interest. However, each 

observation is subjected to a validation test. If it passes the test, then the researcher knows the 

observation is drawn from the population of interest. However, failure to pass the test does not 

guarantee that the observation is spurious. The authors point out that throwing out unverified 

observations induces an upward bias in the estimates of mean concentrations since lower 

concentrations are harder to verify. In this case, the result of the verification test corresponds to 

the covariate x and is correlated with the probability of having erroneous data (as well as the 

level of contamination). Dominitz and Sherman derive sharp bounds on the level of pollutants 

based on this additional information. 

In another example, Hotz, Mullin and Sanders (1997) use miscarriages as an instrumental 

variable for teenage births. However, they note that not all miscarriages are random; some are 

behaviorally induced by activities such as smoking and drinking. First, they bound the fraction of 

non-random miscarriages. Then, they use the techniques of HM to construct bounds of the effects 

of teenage childbearing. The applied example at the end of this paper takes these data and 

conditions on smoking and drinking behavior. Unlike the verification test used with the Love 

Canal data, neither smoking nor drinking guarantee a particular outcome, but the odds of 

observing a non-random miscarriage increases when a woman engages in these activities. This 

additional information turns out to be sufficient to tighten the bounds by 50 percent. 
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Cross and Manski (2001) consider a similar problem to the one addressed here. They are 

concerned with making inference about the long regression { },E y x z  when the data only 

identify the short conditional distributions ( )P y x  and ( )P z x . As part of their work, Cross and 

Manski characterize the identification region of the family of conditional distributions of y given 

x and a particular value of z, treating the remaining values of z as erroneous data. They 

demonstrate that the Total Law of Probability restricts the identification region to a bounded 

convex set whose extreme points are the expectations of J-vectors of stacked distributions. 

Interpreting z as an indicator variable for erroneous data and switching the object of 

interest to ( )P y z , Cross and Manski analyzes the identical problem as this paper. Given the 

assumption that ( )P z x  is known, for each element in the identification region we could 

aggregate the conditional distributions derived by Cross and Manski across the covariates x to 

attain the distribution of y conditional solely on z. In fact, this solution is a special case of our 

results and a useful baseline for demonstrating our contributions. 

The major contribution of this paper is to relax the assumption that ( )P z x  is known. 

Without this assumption, the identification region for the family of conditional distributions of y 

given x and z expands. We construct the expanded identification region and demonstrate how to 

recover the identification region for the distribution of y1, the distribution of y conditional on 

error-free data. Then, we use this identification region for the distribution of y1 to develop 

bounds both on probabilities and on parameters of this distribution that respect stochastic 

dominance. Finally, we establish that the presence of a binding constraint beyond the Total Law 

of Probability on the distribution of error-ridden data conditional on the covariates is a necessary 

condition to sharpen inference, but it is not a sufficient condition. For the case of bounding 

parameters that respect stochastic dominance, we derive the sufficient conditions. 
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We illustrate key results of our analysis with numerical examples and conclude with an 

applied example, which demonstrates the ability of covariate data to substantial sharpen 

inference. All proofs are in the Appendix. 

2. Basic Identification Analysis 

2.1 Statement of the Problem 

Suppose the marginal distribution of y1 is the object of interest. However, instead of observing y1, 

one observes a random variable y whose value can be that of either y1 or another random variable 

y0, whose distribution is unknown. Since interest focuses on the distribution of y1, realizations of 

y corresponding to y0 are erroneous. Let z be an indicator variable for the presence of erroneous 

data ( 1z =  when the realization of y is erroneous and zero otherwise). Then, ( )0 11y y z y z≡ − + . 

Finally, let π  be the probability of observing erroneous data. 

HM addressed the problem of what can be learned about the distribution of y1 and 

parameters ( )1Pτ  (where ( )τ ⋅  maps Ψ, the space of probability distributions, into ℜ ), given 

observations on y and an upper bound on π. We extend that research to quantify the value of 

covariate data that is correlated with y and/or z. Specifically, let X be a set of covariates with d 

distinct values;1 let ( ),Y Ω  be a measurable space; let ( ) { }0 1, , , 0,1y y z x Y Y X∈ × × ×  be a 

random quadruplet distributed P; and let a random sample be drawn from P. 

Denote the space of all probability distributions on ( ),Y Ω  by Ψ. Let ( )k kQ Q y x≡  

represent the conditional distribution of y given xk and ( )k kp P x≡  denote the marginal 

distribution of the covariates. Both of these functions are identified by the observable data. Let 

( )1k kP z xπ ≡ =  represent the probability of observing erroneous data conditional on the 

covariates. Then, ( ) ( ) ( )1 1 Pr 0k k k kw p x zπ π≡ − − = =  is the marginal distribution of the 

                                                           
1 Although it is not theoretically necessary for X to have a finite number of distinct values, it will be treated in this 
manner in empirical applications. In order to avoid additional notation, the discrete case is assumed from the start. 
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covariates given error-free data. Let ( )i iP P y≡  denote the marginal distribution of yi and 

( )ij iP P y z j≡ =  be the conditional distribution of yi conditional on the event z j=  for 0,1i =  

and 0,1j = . Finally, let ( ),ijk i kP P y z j x≡ =  represent the distribution of yi conditional on the 

event z and the covariates xk. 

The inferential problem is that the sampling process does not identify P1, but only kQ . 

These distributions may be decomposed as 

( )1 11 10
1

1
d

k k k k k
k

P p P Pπ π
=

= − +  ∑  (2.1) 

and 

( ) 11 001k k k k kQ P Pπ π= − + . (2.2) 

In robust estimation, the unknown P1 is held fixed and the family of conditional distributions, 

{ }kQ , is allowed to range over all possible distributions consistent with (2.1) and (2.2). In 

identification analysis, these conditional distributions are held fixed since they are identified by 

the data and P1 is allowed to range over all possible distributions consistent with (2.1) and (2.2). 

The objective is to set bounds on the unknown quantity ( )1Pτ . 

2.2 The Contaminated and Corrupted Sampling Models 

A frequently imposed assumption is that the occurrence of data errors is independent of the 

sample realizations from the population of interest, i.e. 

1 11P P= . (2.3) 

When this assumption holds, the data are labeled contaminated and inferences about P11 are 

equivalent to inferences about P1. When this assumption fails to hold, the data are called 

corrupted. 
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For the sake of brevity, we focus on the contaminated case. The changes to the 

propositions in HM for the case of corrupted data closely parallel those that are covered for 

contaminated data and are available from the authors upon request. 

2.3 Implications of an Upper Bound on the Error Probability 

Assume that an upper bound, λ, on the probability of observing erroneous data is either known or 

can be consistently estimated. Furthermore, assume that this upper bound is non-trivial, i.e. 

1π λ≤ < . The Total Law of Probability requires 

1

d

k k
k

pπ π
=

= ∑ , (2.4) 

so 

1

d

k k
k

pλ π
=

≥ ∑ . (2.5) 

Define Θ as the set of all d-dimensional vectors, ( )1, , dπ π≡� � , that satisfy both equation (2.5) 

with equality and any other known constraints on the conditional probability of observing 

erroneous data. For example, if x is known to be orthogonal to z, then i jπ π=  for all i and j. We 

assume throughout the discussion that any additional restrictions on Θ leave it a compact set.2 

We are now prepared to generalize HM’s first proposition.  

PROPOSITION 1: A. Let the set Θ be known, then 

( ) ( )11 11 11 11 11
1

Y Y : Y ,
d

k k k k k
k

P w P P π
=

 ∈ Θ ≡ ∩ ∈ ∈Θ 
 
∑ �  (2.6) 

where ( ) ( ) ( ){ }11 00 001 ,k k k k k k kQΨ π Ψ πψ π ψ Ψ≡ ∩ − − ∈ . This restriction on P11 is sharp. 

B. Let 1 2Θ ⊂ Θ , then ( ) ( )11 1 11 2Ψ ΨΘ ⊂ Θ . 

                                                           
2 This assumption guarantees the existence of minimum and maximum values. Relaxing the assumption requires the 
notation to switch from min and max to inf and sup. 
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For a given conditional level of erroneous data, kπ , HM demonstrates that ( )11k kΨ π  places sharp 

restrictions on the conditional distribution of P11k. Proposition 1 states that sharp restriction on 

P11 can be attained in a two-step process. First, for a fixed distribution of the erroneous data 

across the covariates, compute the set of all possible combinations of the conditional 

distributions where each conditional distribution is feasible ( ( )11 11k k kP Ψ π∈ ) and is given a 

weight proportional to the probability of observing its associated covariates. Second, take the 

union of these sets across all feasible distributions of the erroneous data. 

When the decomposition of erroneous error across the covariates is known, Θ reduces to 

a single point and the second step above is no longer necessary. In essence, this case reduces the 

restrictions on P11 to a conditional distribution by conditional distribution application of the HM 

results. 

A corollary of Proposition 1 is that the Total Law of Probability alone places insufficient 

constraints on the set Θ to provide additional information about P11. In other words, the mere 

presence of covariate data does not provide additional information in the absence of knowledge 

about how the erroneous data is distributed across the covariates. 

COROLLARY 1.1: The Total Law of Probability places insufficient constraints on the conditional 
distribution of erroneous data with respect to the covariates to sharpen the restrictions on P11 
relative to the absence of covariate data. 

2.4 Sharp Bounds on Probabilities 

We now develop the implications of Proposition 1 for the identification of probabilities. 

Specifically, Corollary 1.2 states sharp bounds on ( )11P A  for all measurable sets A. 

COROLLARY 1.2: Let it be known that ∈ Θ�  and A ∈Ω . Then 

( ) ( )
( )( ) ( ){ }

( ) ( ){ }
1

11 11

1

min max 0, 1 ,

Y ;

max min 1 ,1

d

k k k k
k

d

k k k
k

w Q A

P A A

w Q A

π π

π

∈Θ =

∈Θ =

 − − 
 ∈ Θ ≡
 −  

∑

∑

�

�

. (2.7) 
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These bounds on ( )11P A  are sharp. 

The bounds given by (2.7) are uninformative if and only if there exists a �  such that 

( )1 k k kQ Aπ π− ≤ ≤  (2.8) 

for each k. This condition is stronger than what is necessary in the absence of covariates. In 

particular, the necessary and sufficient condition for the bounds to be trivial in the absence of 

covariate data may be expressed as 

( ) ( )
1 1 1

1 1
d d d

k k k k k k
k k k

p w Q A pλ π π λ
= = =

− = − ≤ ≤ =∑ ∑ ∑ . (2.9) 

Equation (2.9) requires the weighted average conditional probability of the event A to fall 

between the weighted average level of error-free and erroneous data. If equation (2.8) is satisfied 

for all possible values of the covariate data then equation (2.9) must be satisfied. The converse is 

not true, so equation (2.8) is a stronger condition. In other words, covariate data can only reduce 

the range of events for which the data are uninformative. 

An implication of Corollary 1.2 is that covariate data not only weakly reduces the range 

of events over which the data are uninformative, but also weakly tightens the bounds on the 

probability of all other events. Proposition 2 formalizes the conditions under which this weak 

improvement in the bounds becomes strict. 

PROPOSITION 2: Let it be known that ∈ Θ�  and A ∈Ω . Let LΠ  be the set of all ∈ Θ�  that 

minimize the lower bound on ( )11P A . Then, covariate data strictly increases the lower bound on 

( )11P A  if and only if L∃ ∈Π�  such that (i) ( )k kQ A π>  for at least one k and (ii) ( )k kQ A π<  for 

at least one other k. 
Similarly, let UΠ  be the set of all ∈ Θ�  that maximize the upper bound on ( )11P A . Then, 

covariate data strictly decreases the upper bound on ( )11P A if and only if U∃ ∈Π�  such that  (i) 

( ) 1k kQ A π> −  for at least one k and (ii) ( ) 1k kQ A π< −  for at least one other k. 

The first requirement ensures that the lower (upper) bound on the probability is non-trivial. The 

second requirement, conditional on the first, ensures that the bounds using covariates data are 
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tighter. To see why the second requirement is sufficient, consider the lower bound. When the 

lower bound is non-trivial in the absence of covariate data, it is constructed by assuming that all 

of the erroneous data is in the set A. However, when covariate data is used, the second 

requirement guarantees that for at least one covariate some (at a minimum, the fraction 

( )k kQ Aπ − ) of the erroneous data is not in the set A. This ability to exclude erroneous data from 

the set A is what raises the lower bound on ( )11P A . 

The following example illustrates both Corollary 2.1 and Proposition 2. 

EXAMPLE 1: Let each observed conditional distribution be normal with mean x and variance one. 
Let 0.1λ = , z be independent of x and x be a binary variable taking the values plus and minus 
one with equal probability. Letting Φ denote the cumulative standard normal distribution, 
applying equation (2.7) yields that the cumulative distribution function (CDF) of y1 is bounded 
below by 

( ) ( )1 0.1 1 0.11
max 0, max 0,

2 0.9 0.9

t t Φ + − Φ − −   
+    

     
 

and above by 

( ) ( )1 11
min 1, min 1,

2 0.9 0.9

t t Φ + Φ −   
+    

     
. 

Figure 1 plots the observed distribution of y, as well as the lower and upper bounds on [ ]11 ,P t−∞  

both utilizing the covariate data and ignoring the covariate data. Notice that the bounds using the 
covariate information weakly sharpen inference in all regions of the CDF. In particular, in both 
tails of the distribution and in the middle of the distribution there is no change in the bounds 
when covariate data is utilized. In the tails, the first requirement of Proposition 2 is not satisfied 
(the bounds remain uninformative). In the middle of the distribution, the second requirement is 
not met (all of the erroneous data can be assigned to the set of interest for each covariate). 

3. Identification When Y Is the Real Line 

In this section, we restrict Y to the extended real line and Ω to Lebesgue measurable sets. We 

also introduce some additional notation. First, let ( )kr γ  equal the γ-quantile of kQ  for ( ]0,1γ ∈ . 

Second, it is useful to characterize the distribution function of Y conditional on X that is 
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stochastically dominated by all other feasible conditional distributions. To attain this distribution, 

place all of the erroneous data as far out as possible in the right-hand tail of the observed 

distribution. This approach yields 

[ ] [ ] ( ) ( )
( )

if 1, 1
,

if 11

k kk k
k

k k

t rQ t
L t

t r

ππ
π

< − −∞ −−∞ ≡ 
≥ −

. (3.1) 

Similarly, to attain the conditional distribution of Y that stochastically dominates all other 

feasible distribution, place all of the erroneous data as far out as possible in the left-hand tail. 

This allocation produces 

[ ] [ ]( ) ( )
( )
( )

0 if 
,

, 1 if 

k k

k
k k k k k

t r
U t

Q t t r

π
π π π

<−∞ ≡  −∞ − − ≥
. (3.2) 

Note that both of these distributions are function of kπ , the conditional rate of erroneous data. 

3.1 Sharp Bounds on Quantiles 

For ( ]0,1α ∈ , the α-quantile of P11 is ( ) [ ]{ }11 11inf : ,q t P tα α≡ −∞ ≥ . Proposition 2 gives sharp 

bounds on all quantiles of P11. 

PROPOSITION 3: Let Y be the extended real line and Ω be the Lebesgue measurable sets. Let it be 
known that ∈ Θ� . Then 

( ) ( ) ( )11 ,L Uq q qα α α∈     (3.3) 

where 

( ) [ ]
1

min inf : ,
d

L k k
k

q q w L qα α
∈Θ =

 = −∞ ≥ 
 

∑
�

 (3.4) 

and 

( ) [ ]
1

max sup : , 0
d

U k k
k

q q w U qα ε α ε
∈Θ =

 = −∞ − < ∀ > 
 

∑
�

. (3.5) 

These bounds on ( )11q α  are sharp. 
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For a fixed Θ, ( )Lq α  and ( )Uq α  are increasing functions of α. So, the bounds on the 

quantile shift to the right as α increases. Also, for a fixed α, the bounds on any quantile are 

weakly expanding in both directions as the set Θ expands. However, as long as Θ can rule out the 

entire sample being erroneous, the bounds on all quantiles remain informative. 

The following example illustrates Proposition 3: 

EXAMPLE 2: Let each observed conditional distribution be normal with mean x and variance one. 
Let 0.1λ = , z be independent of x and x be a binary variable taking the values plus and minus 
one with equal probability. Figure 2 plots the observed quantile function, as well as the upper and 
lower bounds on the quantile function for the population of interest both utilizing the covariate 
data and ignoring the covariate data. 

As in Example 1, covariate data fails to tighten the bounds in the middle of the 
distribution. Since the quantile function is the inverse of the CDF, this result was predictable 
given the results in Example 1 (or Proposition 2). However, unlike Example 1, covariate data 
tightens the bounds on the quantile function in the tails. This change follows from the fact that 
the quantile function remains informative in the tails. 

3.2 Sharp Bounds on Parameters that Respect Stochastic Dominance 

If F and G are distributions on the extended real line Y, F stochastically dominates G if 

[ ] [ ], ,F t G t−∞ ≤ −∞  for all t Y∈ . A parameter ( )τ ⋅  respects stochastic dominance if 

( ) ( )F Gτ τ≥  whenever F stochastically dominates G. Common examples includes quantiles and 

means of monotone functions of random variables. Proposition 3 provides sharp bounds on 

parameters that respect stochastic dominance. 

PROPOSITION 4: Let Y be the extended real line and Ω be the Lebesgue measurable sets. Let it be 
known that ∈ Θ� . Let :τ Ψ → ℜ  respect stochastic dominance. Then 

( )11
1 1

min , max
d d

k k k k
k k

P w L w Uτ τ τ
∈Θ ∈Θ= =

    ∈         
∑ ∑

� �

. (3.6) 

These bounds on ( )11Pτ  are sharp. 

When the distribution of the erroneous data across the covariates is known (Θ is a 

singleton), the bounds on ( )11Pτ  are the weighted average of the bounds derived in HM for each 

of the conditional distribution. On the other hand, when the distribution of the erroneous data by 
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covariates is uncertain, the Total Law of Probability creates a negative relationship between the 

bounds for the separate covariates. Consider the lower bound. If kπ  increases to kπ′ , then kL  

stochastically dominates kL′ , which implies that ( ) ( )k kL Lτ τ ′≥ , i.e. the lower bound weakly 

decreases. However, whenever the amount of erroneous data attributed to one covariate increase, 

the Total Law of Probability guarantees that the amount of erroneous data attributable to at least 

one other covariate must decrease. So, the lower bound for another covariate will weakly 

increase. 

To determine when Θ places sufficient constraints on �  for the covariate data to tighten 

the bounds, consider the problem in the absence of covariate data. In the absence of covariate 

data, labeling all the data above the (1-λ)-quantile of the Q distribution erroneous attains the 

lower bound. Similarly, claiming all the data below the λ-quantile of the Q distribution is 

erroneous attains the upper bound. Let Lkη  be the proportion of kQ  that falls below the λ-

quantile of the Q distribution. Similarly, let Ukη  be the proportion of kQ  that falls above the (1-

λ)-quantile of the Q distribution. Proposition 5 shows that if ( )1L L Ldη η≡� �  and U�  are both 

elements of Θ, then the covariates provide no additional restrictions on ( )11Pτ . 

PROPOSITION 5: Let Y be the extended real line and Ω be the Lebesgue measurable sets. Let it 
be known that ∈ Θ� . Let :τ Ψ → ℜ  respect stochastic dominance. If L ∈Θ� , then the 

covariates and the maintained assumptions about the set Θ fail to increase the lower bound on 

( )11Pτ . Similarly, if U ∈Θ� , then the covariates and the maintained assumptions about the set 

Θ fail to decrease the upper bound on ( )11Pτ . These conditions become necessary if 

( ) ( )F Gτ τ>  whenever F stochastically dominates G and y is a continuous random variable. 

In essence, covariate data tighten the bounds whenever assigning the erroneous data to the 

most extreme realizations in either tail of the observed distribution is inconsistent with the 

restrictions on the distribution of erroneous data across the covariates. Proposition 5 formalizes 

when such inconsistencies occur. However, although such a proposition can be stated, whether or 

not ,L U ∈Θ� �  remains an empirical question. 
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The following example illustrates Proposition 4: 

EXAMPLE 3: Let each observed conditional distribution be normal with mean x and variance one. 
Let 0.1λ = , z be independent of x and x be a binary variable taking the values plus and minus 
one with equal probability. The tenth and ninetieth percentiles of Q are ±1.85, respectively. So, 
ignoring covariate data 

( ) ( ) { } ( ) ( )1.85

1 1.85

1 1 1 1
1 1 1 1

2 0.9 2 0.9
u u u du E y u u u duφ φ φ φ

∞

−∞ −

   + + − ≤ ≤ + + −            ∫ ∫ . 

Therefore, { }10.448 0.448E y− ≤ ≤ . 

For each conditional distribution, the tenth and ninetieth percentiles of xQ  are ±1.282 

standard deviations from the mean, respectively. Thus, Proposition 4 yields 

( ) ( ) { }

( ) ( )

0.282 2.282

1

2.282 0.282

1 1
1 1

2 0.9

1 1
1 1

2 0.9

u u du u u du E y

u u du u u du

φ φ

φ φ

−∞ −∞

∞ ∞

−

   + + − ≤     
   ≤ + + −     

∫ ∫

∫ ∫
. 

Therefore, { }10.329 0.329E y− ≤ ≤ , which represents a 27 percent tightening of the bounds. 

4. An Application to Teenage Childbearing 

To illustrate estimation of the bounds, we consider data on maternal outcomes for teenage 

mothers. Hotz, Mullin and Sanders (1997) used these same data from the NLSY and the results 

in HM to construct bounds of the effects of teenage childbearing on future earnings. The basic 

idea of their work was to treat women who miscarried as teenagers as a control group for those 

who gave birth. However, not all miscarriages are random; some are behaviorally induced by 

activities such as smoking and drinking. Furthermore, some miscarriages occur to women 

intending to have an abortion. In other words, the researcher observes a population of women 

intending to have a birth who experience random miscarriages contaminated both with women 

who experience non-random miscarriages and with women intending to have abortions. The goal 

of this section is to determine how much tighter the bounds on future earning become when 

covariate data is incorporated into the analysis. 
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Hotz, Mullin and Sanders estimate an upper bound on the probability of erroneous data 

based on the relative frequency of births to abortions in the population and the probability of 

smoking and/or drinking during pregnancy.3 Based on their techniques, the contamination in the 

miscarriage population does not exceed 24 percent for black women and 27 percent for non-

black women.4 The first row of Table 1 presents the bounds on the effect of teenage births on 

women’s annual labor market earnings at age 27. As seen in the table, the width of the bounds 

for both racial groups is between $4,000 and $5,000. 

The second row of Table 1 displays the bounds of the same variable after conditioning on 

smoking and drinking behavior.5 An upper bound on the level of contamination for each cell is 

estimated under the identical assumptions used in the unconditional bounds (no additional 

assumptions have been invoked). Utilizing these covariate data reduces the width of the bounds 

by approximately 50 percent. 

The third and final row of Table 1 shows the bounds conditional on the quartile of a 

woman’s AFQT (Armed Forces Qualifying Test) score. Hotz, Mullin and Sanders presented 

bounds conditional on this variable under the strong assumption that quartile of AFQT is 

orthogonal to erroneous data. Although not shown here, the data can reject that assumption 

(although this rejection does not affect the qualitative nature of their findings). Maintaining the 

same assumptions as above, the correct upper bound on contamination for each quartile was 

constructed and used in the estimation of these bounds. As evidenced in the table, incorporating 

                                                           
3 The estimates presented here differ slightly from those in Hotz, Mullin and Sanders (1997). The primary cause for 
the difference is that all observations with missing data in any of the covariates utilized (smoking, drinking or 
AFQT) have been dropped in the current analysis. Additionally, the estimates presented here employ none of the 
kernel-smoothing techniques implemented by Hotz, Mullin and Sanders to estimate means when conditioning on 
quartile of AFQT. 
4 Black women are more likely to smoke or drink, but less likely to have an abortion than non-black women. 
5 The conditional bounds are based on the behavior in the miscarriage sample, but the weights for aggregating the 

conditional distributions, { }kw , are estimated by the covariate distribution in the sample of teenage mothers. 
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AFQT tightens the bounds, but by less than smoking and drinking status. Additionally, the 

impact differs substantially by racial group. The width of the bounds reduces 36 percent for non-

black women, but only 10 percent for black women. 

5. Conclusion 

Identifying bounds on parameters of interest under relative weak and, hence, more plausible, sets 

of assumptions has the potential to clarify numerous outstanding questions in economics and the 

social sciences in general. For example, bounding the returns to schooling or the benefits of 

prenatal care under relatively weak assumptions that most researchers would find believable 

could help focus policy debates and the allocation of government resources. The current paper 

has shown how incorporating covariate data into the construction of those bounds has the 

potential to increase their precision. 

Although the focus of the paper has been identification, more work is needed on 

estimation. Empirical work will encounter the “curse of dimensionality.” The estimation of the 

conditional distributions is similar to non-parametric estimation, since each unique combination 

of covariate values is treated in isolation. Therefore, the necessary sample size for meaningful 

estimation grows rapidly with the number of covariates considered. Kernel smoothing methods 

can be used to address this problem, but when samples sizes are “small,” the bounds conditional 

on covariates are no longer guaranteed to fall within the bounds ignoring the covariate data. 

Additionally, it is unclear how to optimally smooth across cells when the degree of 

contamination in neighboring cells differs. 
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Appendix 

PROOF OF PROPOSITION 1: 
A. Start with the case in which Θ  is a singleton, so �  is known. HM Proposition 1 shows 
that ( )11k kπΨ  places sharp restrictions on 11kP  for a fixed value of kπ . Hence, the feasible 

values of 11P  are given by equation (2.6), ( )11Ψ � . When Θ  is not a singleton, 

( ) ( )11 11 11P
∈Θ

∈ Ψ = Ψ Θ
�

�� . 

B. If 1 2Θ ⊂ Θ , then ( ) ( ) ( ) ( )
1 2

11 1 11 11 11 2∈Θ ∈Θ
Ψ Θ ≡ Ψ ⊂ Ψ ≡ Ψ Θ

� �

� �� � . 

(Restricting the set Θ  to be the boundary of the set of all vectors that satisfy equation (2.5) 
and the exogenous restrictions on the distribution of the erroneous data (i.e. requiring equation 
(2.5) to hold with equality in the definition of the set Θ ) does not affect the set ( )11Ψ Θ . HM 

Proposition 1 (C) demonstrates that ( ) ( )11 11k k k kπ π′Ψ ⊂ Ψ  for all k kπ π′< . Therefore, any point 

on the interior generates a set of distributions that are a subset of the set of distributions 
generated by a boundary point.) 

PROOF OF COROLLARY 1.1: 

HM Proposition 1 shows ( ) ( ) ( ){ }11 00 001 ,Qπ πψ π ψΨ ≡ Ψ ∩ − − ∈ Ψ  places sharp restrictions 

on 11P  in the absence of covariate data, so ( ) ( )11 11 πΨ Θ ⊆ Ψ . Furthermore, for each 

( )11 11P π∈ Ψ  there exists a 00ψ  such that ( ) ( )00 1Q πψ π− − ∈ Ψ . By the Total Law of 

Probability d∃ ∈ ℜ�  such that 0 k kpγ π≤ ≤ , 
1

1
d

k
k

γ
=

=∑  and 00 00
1

d

k k
k

ψ γ ψ
=

= ∑ . Let * d∈ ℜ�  be a 

vector whose kth component is k k kpπ πγ= . Therefore, ( )*
11 11P ∈ Ψ � . Since 

( )
1 1

d d

k k k k k
k k

p p pπ πγ π
= =

= =∑ ∑ , * ∈Θ�  and ( ) ( )*
11 11Ψ ⊂ Ψ Θ� . Thus, ( ) ( )11 11πΨ ⊆ Ψ Θ . 

Hence, ( ) ( )11 11πΨ = Ψ Θ . 

PROOF OF COROLLARY 1.2: 
Start with the case in which Θ  is a singleton, so �  is known. HM Corollary 1.2 demonstrates 

that ( ) ( ) [ ] ( )( ) ( ) ( ) ( )11 11 , 0,1 1 , 1k k k k k k k kP A A Q A Q Aπ π π π ∈ Ψ ≡ ∩ − − −  . Thus, ( )11P A  is 

the weighted sum of the lower and upper bounds on the conditional distributions as given in 
equation (2.7). When Θ  is not a singleton, it immediately follows that the bounds are given by 
the union of the bounds over all possible ∈ Θ� . 

PROOF OF PROPOSITION 2: 
HM Corollary 1.2 demonstrates that the bounds in the absence of covariate data are 

( ) ( ) [ ] ( )( ) ( ) ( ) ( )11 11 , 0,1 1 , 1P A A Q A Q Aπ π π π ∈ Ψ ≡ ∩ − − −  . Suppose L∃ ∈Π�  such that 

( )
1 1k kQ A π>  and ( )

2 2k kQ A π< . Let ′ =� �  except that ( )
1 1 2 2k k k kQ Aπ π π′  = + −   and 
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( )
2 2k kQ Aπ′ = . Then, the lower bound associated with ′�  is smaller than the lower bound 

associated with � . Since �  and ′�  are both feasible in the absence of covariate data, the lower 
bound without covariate data is no greater than the minimum of these two. Thus, these conditions 
are sufficient for covariate data to increase the lower bound. 

Suppose ( )k kQ A π<  for all k. Then, the lower bound is zero and the covariate data fails to 

increase the lower bound. Instead, suppose ( )k kQ A π>  for all k. Then, the lower bound is 

( )( ) ( )
1

1
d

k k k k
k

w Q A π π
=

− −∑ . Substitute in ( ) ( )1 1k k kw p π π≡ − −  and simplify to get 

( ) ( )( ) ( )( ) ( )1

1

1 1
d

k k k
k

p Q A Q Aπ π π π−

=
− − = − −∑ . Again, the covariate data fails to decrease the 

lower bound. Thus, these conditions are necessary for covariate data to increase the lower bound. 
The same arguments can be applied to the upper bound. 

PROOF OF PROPOSITION 3: 
Since the quantile function respects stochastic dominance, this result is an application of 
Proposition 4. 

PROOF OF PROPOSITION 4: 
Start with the case in which Θ  is a singleton, so �  is known. In the proof of HM Proposition 4, 

they demonstrate that ( )11k k kL π∈ Ψ . Thus, by construction, ( )11
1

d

k k
k

w L
=

∈ Ψ∑ � ; hence, 

1

d

k k
k

w Lτ
=

 
 
 
∑  is a feasible value for ( )11Pτ . Furthermore, HM establish that kL  is stochastically 

dominated by every member of ( )11k kπΨ . Therefore, 
1

d

k k
k

w L
=

∑  is stochastically dominated by 

every member of ( )11Ψ � , which implies that 
1

d

k k
k

w Lτ
=

 
 
 
∑  is the smallest feasible value of 

( )11Pτ  for this fixed value of � . When Θ  is not a singleton, take the minimum lower bound 

over all possible ∈ Θ� . 
An analogous argument establishes the sharpness of the upper bound. 

PROOF OF PROPOSITION 5: 
HM Proposition 4 guarantees that the lower bound without covariate data is no greater than the 
lower bound with covariate data. If L ∈Θ� , then the lower bound with covariate data no greater 
than the lower bound without covariate data. Thus, the two lower bounds must be equal. 

Similarly, HM Proposition 4 guarantees that the upper bound without covariate data is no 
smaller than the upper bound with covariate data. If U ∈Θ� , then the upper bound with covariate 

data no smaller than the upper bound without covariate data. Thus, the two upper bounds must be 
equal. 
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To establish necessity in the last statement of the proposition, note that ( )
1

d

k k L
k

w Lτ η
=

 
 
 
∑  is 

equal to the lower bound in the absence of covariate data. If y is a continuous random variable, 

then ( )
1

d

k k L
k

w L η
=

∑  is the only member of ( )11 πΨ  stochastically dominated by all members of 

( )11 πΨ . Therefore, if L ∉Θ� , then 11P  must stochastically dominate ( )
1

d

k k L
k

w L η
=

∑ . Thus, 

( ) ( )11
1

d

k k L
k

P w Lτ τ η
=

 >  
 
∑  because ( ) ( )F Gτ τ>  whenever F stochastically dominates G. 

Similarly, ( )
1

d

k k U
k

w Uτ η
=

 
 
 
∑  is equal to the upper bound in the absence of covariate data. If y 

is a continuous random variable, then ( )
1

d

k k U
k

w U η
=

∑  is the only member of ( )11 πΨ  stochastically 

dominated by all members of ( )11 πΨ . Therefore, if U ∉Θ� , then ( )
1

d

k k U
k

w U η
=

∑  must 

stochastically dominate 11P . Thus, ( ) ( )11
1

d

k k U
k

P w Uτ τ η
=

 <  
 
∑  because ( ) ( )F Gτ τ>  whenever F 

stochastically dominates G. 
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Figure I - Bounds on Probabilities

0.00

0.50

1.00

-4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0

t

P
ro

ba
bi

lit
y HM Upper Bound

Covariate Upper Bound

Observed CDF

Covariate Lower Bound

HM Lower Bound

 

Figure 2 - Quantiles
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Table 1 
Bounds on the Effects of Teenage Births on Women's Annual Labor Market Earnings at Age 27 

Construction of Bounds Conditional on No Covariates, Smoking and Drinking, or AFQT 
        

  Black Women   Non-Black Women 

Covariates 
Lower
Bound

Upper 
Bound 

Percent 
Improvement   

Lower 
Bound 

Upper
Bound

Percent 
Improvement 

         
None - Baseline -1260 3200   641 5411 
         
Smoking and Drinking -477 1705 0.51  1623 3981 0.51 
         
AFQT -927 3087 0.10   1509 4547 0.36 
 
 


