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Abstract

The paper argues that multiple equilibria-whether non-stationary or
stationary- are a generic property of dynamic rational expectations mod-
els. In light of this, this paper proposes a selection criterion for choosing
between these multiple equilibria in an important class of dynamic ratio-
nal expectations models. The criterion is based on the idea that agents
can be assumed to coordinate their beliefs around the limit of a finite-
horizon equilibrium. For three examples examined, all of which can have
multiple stationary, i.e., non-explosive, rational expectations equilibria,
there is, among the multiple equilibria of an infinite-horizon model, only
one that is the limit of a finite-horizon model.

1 Introduction

Multiple equilibria in dynamic rational expectations models are both problem-
atic and endemic. When multiple equilibria in these models exist, completion
of the model as an equilibrium model requires some specification about how
people coordinate their beliefs . If not, people may differ in their expectations,
and not all of them can be right. Hence, any equilibrium that arises will not
necessarily be consistent with rational expectations by all agents.

Within the dynamic rational expectations class of models, multiple equilibria
appear in many forms and are a possibility in a wide variety of models. Some
models have a continuum of equilibria, such as in Taylor (1977), Farmer (1993),
or Karp (1996a), while others have a finite number, such as in McCafferty and
Driskill (1980). Some models are stochastic, while others are deterministic.
Some have ad hoc elements, while others derive behavioral relationships from



an explicit optimization problem. Some have no strategic interactions among
agents, while others are explicitly game-theoretic.

Researchers have adopted a variety of perspectives in response to this fea-
ture of multiple equilibria in dynamic rational expectations models. Some
researchers have viewed the potential existence of multiple equilibria as a reflec-
tion of reality and a possible explanation of phenomena ranging from speculative
booms to the Great Depression.! Many other researchers, though, have viewed
multiple equilibria as an undesirable feature of these models. Consequently,
they have made various attempts to modify models so as to eliminate the pos-
sibility of multiple equilibria. To this end, some add features such as imperfect
capital markets (Shell and Stiglitz, 1967), heterogeneity (Herrandorf, Valentinyi,
and Waldmann, 2000) or exogenous stochastic variability (Frankel and Pauzner
2000) to a basic model in an attempt to eliminate the possibility of multiple
equilibria in a particular setting. Others have suggested that some equilibria
are more "natural” than others and satisfy some ad hoc criterion such as having
a minimum variance solution (Taylor, 1997) or having a ”minimum state space
representation” (McCallum (1983)2.

Another literature considers whether some form of learning or recursive up-
dating of expectations converges on a particular equilibrium, or whether only
one of several equilibria is “robust” in the sense that if expectations are ”wrong”,
recursive updating of these expectations converges to the rational expectation.?

In this paper we build on an observation of Karp (1996a) and propose a
different selection criterion. Karp’s rational expectations model of a durable-
goods monopolist has an infinite number of equilibria. Karp noted this was a
natural state of events in the absence of a "natural” boundary condition.* He
also noted that Driskill (1997) had shown that for a special linear case of his
model, only one solution to the infinite-horizon model was the limit of the as-
sociated finite-horizon model as the horizon approached infinity. Following on
these results, we propose that in the presence of multiple equilibria, one should
think of the most "natural” equilibrium as the limit of the backward-induction
equilibrium of a finite-horizon model as the horizon tends to infinity. This
selection criterion has several desirable attributes. First, because finite-horizon
models that have behavioral relationships derived from optimizing behavior gen-
erally have a natural boundary condition that is grounded in economic theory,
then equilibria that are the limit of such solutions share this feature. Thus, this

1See Hahn (1966) for an early example in which existence of both a non-stationary and
stationary solution was viewed as a potential explanation of speculative booms. This approach
is also found in Blanchard (1979), in which short-lived probabalistic bubbles are a result of
existence of two solutions. See Bryant (1981, 1983) for an example in which existence of both
a degenerate and non-degenerate solution is viewed as a potential explanation of ”good times”
and ”bad times.” See Howitt and McAfee (1988) and Diamond (1982) for examples in which
non-degenerate multiple equilibria are viewed as potential explanations of ”good times” and
"bad times.”

2See Turnovsky (1995) for an overview of these issues.

3See, for example, Evans (1986, 1989), and Guesnerie (2002). Again, Turnovsky (1995)
has an overview of these issues.

4Karp also cites Tatsuo and Mino (1990), who ascribed multiple equilibria in a variant of
Fershtman and Kamien’s model of dynamic duopoly to the infinite time horizon.



selection criterion is not subject to the critiques made of such as hoc criteria as
the minimum variance or minimal state-space representation criteria. Second,
because finite-horizon models provide people (and economists) with much of
their intuition about the workings of dynamic models, solutions to such models
seem a natural "focal point” about which agents can be assumed to coordi-
nate their ”belief functions”®. For example, even in infinite-horizon models,
finite-horizon ideas seem important in how economists formulate such things as
no-ponzi-game restrictions on infinite-horizon budget constraints.® Finally, this
criterion applies both to deterministic and to stochastic models, both to models
with a finite and with an infinite number of equilibria, and both to models where
the type of multiple equilibria are bubbles and where they are non-explosive.
In a broad sense, what we suggest here is that in order to eliminate multiple
potential solutions all of these models need one more boundary condition. We
propose a particular one, based on the solution to a finite-horizon model.

The idea that infinite-horizon dynamic rational expectations models always
are short one boundary condition is quite general. A heuristic way of thinking
about the idea of rational expectations is to consider a model in which the
equilibrium value of some endogenous variable, perhaps price, for example, is
determined at some time ¢ by the equilibrium condition that supply equals
demand. For example, in a simple Cagan model of inflation with an exogenous,
fixed nominal money supply, the conditional equilibrium price level at some
time t is determined by the equilibrium of supply and demand of real money
balances. Denoting the nominal money supply at time ¢ by M; and the price
level by P, this equilibrium condition would be expressed as

M
B L(-)

where L(-) denotes the demand for real balances. The modifier ”conditional”
is used to emphasize that this price is really only one of many endogenous price
variables: there is one for each time period, and the equilibrium values for these
prices in general can not be solved independently of one another. In particular,
for many models, either supply or demand depends behaviorally on the current-
period expectation of next-period’s equilibrium value. In the Cagan model,
for instance, demand for today’s real money balances depends not only on the
current price level but also on today’s expectation of next-period’s price level:

P~ P,

L() = L(=—5—)

5Karp (1996b) made a similar argument about the desireability of using Markov strategies
in a dynamic game specification. See Farmer (1993) and Matheny (1999) for a discussion and
definition of belief functions. Such functions seem closely related to the learning updating rules
used by Evans (1986) in his concept of expectational stability and to the common knowledge
assumption used by Guesnerie (2002).

6 A no-ponzi-game restriction does not allow an infinitely-lived agent to borrow more that
the present value of his or her lifetime resources, i.e., does not allow chain-letter schemes. See
Shell (1971) for a discussion of the arbitrariness of such a restriction in an infinite-horizon
model.



The rational expectations assumption is that agents ”know the model.” Hence,
a natural way to model how agents form their expectations of next-period’s
price is to assume they know that next-period’s price will be that price that
equilibrates next-period demand and supply.

Of course, next-period’s demand in turn depends on the subsequent-period
price, which depends on the price after that, and so on for as far into the future
as the model permits. In an infinite-horizon model, this means that there is
always one more price to be determined-the next-period price- than there are
equilibrium conditions. That is, for any arbitrary number of periods n, there
are n equations-the equilibrium condition that demand equals supply-but n + 1
endogenous variables-the n prices plus the (n + 1)** expected price.

This problem is reminiscent of the parable recounted by Shell (1971) of the
hotelier with a hotel with an infinite number of rooms. A traveler approached
and asked for a room. The hotelier responded that he was all booked up, but
could still make room for him. He would simply move the guest in room #1 to
room #2, the guest in room #2 to room #3, and so forth.

The equilibrium price at some initial time is analogous to the traveler. In an
infinite-horizon model, room can be made for a variety of possible equilibrium
values of this first price by changing all subsequent prices in an appropriate
fashion.

Seen in this light, multiple equilibria in dynamic rational expectations mod-
els are a fundamental feature of infinite-horizon models. For such models, any
selection criteria for choosing among the multiple equilibria must in some way
provide an additional condition that makes the model determined.

In the remainder of the paper, we illustrate use of the criteria espoused here
in three examples. All three examples share a common feature in that the
solutions to all three are characterized by a fundamental second-order dynamic
equation. These dynamic equations all arise in part from an equilibrium condi-
tion much like that discussed for the Cagan example: at any moment in time,
the value of the equilibrating variable at that moment depends upon the future
adjacent-moment’s value of that equilibrating variable.

They also share the feature that they permit the possibility of multiple stable
equilibria. While the proposed criterion applies to selection between both stable
and unstable equilibria, the case of multiple stable equilibria has always been
viewed as more problematic.”

They all differ, though, in ways that illustrate both the scope of the proposed
selection criterion and the common unifying element that makes it appropriate.
The first example is the classic Muth (1961) model of inventory speculation as
amended by McCafferty and Driskill (1980). We choose this model for several
reasons. First, this model readily permits existence of two stable equilibria, and

7 As noted earlier, people differ in their views about the importance of multiple equilibria.
For ”"bubble” solutions in particular, though, these differences tend to be more pronounced.
In fact, Muth (1961) recognized that his original inventory speculation model had a ”bubble”
solution, but he dismissed this as uninteresting. In contrast, people who saw Hahn present
his 1996 paper report that he claimed that existence of this same fundamental feature of his
model to be "the last nail in the coffin of capitalism.”



thus distinguishes it from models like the Cagan model where only one equilibria
is stable. Second, it has behavioral relationships grounded in optimizing behav-
ior. Hence, the finite-horizon version of this model has a boundary condition
that arises naturally out of economic theory. Third, it is stochastic, which the
other two examples are not. In addition, there are no strategic elements in it,
distinguishing it from the work on the durable goods monopoly of Karp (1996a)
and Driskill (1997). Finally, it has been used by Evans (1989) in his work on
expectational stability, and thus allows an explicit comparison with this other
proposed selection criterion.

The second example is a dynamic duopoly model related to both Fershtman
and Kamien (1987, 1990) and Driskill and McCafferty (2001). This model
posits Nash-Cournot duopolists who compete in a market in which demand de-
pends on both current and cumulated consumption. These duopolists attempt
to maximize the present discounted value of profits. Hence, by construction,
any stable, non-explosive equilibria satisfy transversality conditions, and the
Obstfeld and Rogoff (1986) procedure of eliminating equilibria that do not sat-
isfy transversality conditions is not relevant. For some parameter values, two
stable Perfect Markov Equilibria exist for the infinite-horizon model. Only one
of these equilibria, though, is the limit of the associated finite-horizon game.

The third example is a two-sector overlapping-generations model in which
an individual’s productivity in one sector depends on the total number of people
at work in that sector. Such a model is similar to those used by Matsuyama
(1991) and Krugman (1991) in their attempts to describe the process of in-
dustrialization.®. In the model used in this paper, newborn members of each
generation make an irreversible choice to work either in a constant-returns sector
or a sector in which returns increase with the size of the sector. The decision
of which sector to choose thus depends on a newborn’s expectations of what
members of future generations will choose. Again, for some parameter values
of an infinite-horizon model, multiple equilibria occur, only one of which can
possibly be the limit of the associated finite-horizon model. One feature that
is interesting about this model is that the overlapping-generations feature cou-
pled with a constant probability of death for members of the economy make
it impossible to eliminate ”explosive” solutions, i.e., solutions associated with
positive roots to characteristic equations, via appeal to transversality conditions
or unreasonableness of such a solution. This result also sheds some light on the
”expectations versus history” debate addressed by this literature.”

The other interesting feature of this model is that some parameter values
lead to cyclical equilibrium paths. We use such equilibria to clarify those
conditions under which the selection criterion proposed here does not select a
unique equilibrium. For the constant-amplitude cycles that arise from this
specification of the model, there is not a unique limit of a finite-horizon model.

8 Another multiple-equilibria OLG model with a similar flavor is Howitt and McAfee (1992).
Lucas (2002) also has a two-sector model based on a specification of scale economies used by
Eaton and Eckstein (1997).

9See Krugman (1991) and Matsuyama (1991).



2 The Muth Model
2.1 The Infinite-Horizon Model

Consider Muth’s classic rational expectations model of inventory speculation
(Muth 1961). The model consists of flow demand and supply functions, a
speculative demand function for stocks, a market-clearing equation, the rational
expectations assumption, and an initial condition:

Cy = —Ppy B >0; (Flow Demand) (2.1)

P, = vEi1pt+u; v > 0; (Flow Supply) (2.2)

I; = a[Epi+1 —pi); (Inventory Speculation) (3.3)

I — L1 = P —Cy (Market Equilibrium) (2.4)

I_ given; (Initial Condition) (2.5)

where t = 0,1,2,... P, represents production in the i** period, C; represents

consumption in the i*" period, p; represents market price, Fy_ ; is the conditional
mathematical expectation operator, and u; is a zero-mean, serially-uncorrelated
random variable with finite variance o2. All variables are measured as devia-
tions from equilibrium values.

Muth derives (2.3) from maximization of expected utility of profits, and

shows that

~

K
11
where K is a non- negative parameter that is a measure of risk aversion and
O't21 is the conditional variance of next period’s price forecast. As shown in
McCafferty and Driskill (1980), the equilibrium price path for all ¢ is described
by the following first-order stochastic difference equation, which we denote as

the equilibrium price function
Ut

=A\pt—1—5———F7——; t=0,1,2, ... 2.7
bt Di—1 31a(l—N (2.7)

where A and « satisfy the following two equations:

~

S+ = (r+ox (28)
- % (2.9)

For this model, there exist two real solutions to (2.8) if and only if

B4y

> 4K, K =
By

(2.10)

:qw| =)



Throughout the remainder of this paper, we assume this restriction is satisfied.
Denote the smaller root of (2.8) as A1 and the larger root as As. As shown in
McCafferty and Driskill (1980),

0< A1 < Ao (2.11)

Denote by p; + the equilibrium price associated with the equilibrium price func-
tion (2.8) when A = \;,i =1,2.. That is,

Ut

W —0,1,2,.. 9.12
G (=) (212)

pie = (Ni)(Pi—1) —

where a; = (("{ff);g
When 0 < A1 < 1 and Ay > 1, the equilibrium price function associated
with Ao is non-stationary. Existence of such explosive solutions is a well-known
feature of many rational expectations models, and is frequently referred to as
a ”"bubble” solution. As noted in the introduction, many researchers have
simply ignored this possible solution as uninteresting because of the implied
non-boundedness of the price process, while others have viewed this as a possible
explanation of the real-world phenomena of price bubbles More problematic,
though, has been the case emphasized by McCafferty and Driskill in which
0 < A1 < X2 < 1.1% In such a case, ad hoc selection criteria such as suggested
by Taylor (1977) and McCallum (1983) and arguments such as put forth by

Obstfeld and Rogoff (1986) and Roberts (1998) fail to work..!!

2.2 The Finite-Horizon Model

Consider now a finite-horizon version of this model, where ¢t = 0,1,2,...,T.
The only difference in the structural model associated with this finite-horizon
assumption is that utility-maximization by inventory speculators implies that
Ir = 0. This condition serves as a second boundary condition, and permits a
solution by backwards induction. Let p; denote the equilibrium price for this
finite-horizon model. The changes in the solution to the infinite-horizon model
generated by imposition of this new boundary condition are characterized by
the following proposition:

Proposition 1 The equilibrium price path for the above finite-horizon Muth
inventory speculation model is described by the following first-order stochastic
difference equation:

Pr—k = A\r— (ks 1)PT— (k1) + TT—RUT—k, kK =0,1,2,..,T; (2.13)

10An example given by Evans (1989) of parameter values for which this occurs is: 8 =
1,v=.4,K = 2.5. In this case, A1 = .1, A2 = .66.

1 Obstfeld and Rogoff (1986) showed that some bubbles may be ruled out by transversality
conditions associated with fully-specified intertemporal optimizing models. Recently, Roberts
(1998) has shown that risk-aversion rules out the possibility of rational probabilistic bubbles
such as studied in Blanchard(1979) because in this case the rational expectations solution
becomes process-inconsistent in the sense of Flood and Garber (1980). This result strengthens
interest in the case studied below, where there are multiple stationary equilibria.



where A\p_y, , mr— , and ap—_g obey the following recursive relationships:

ar_ (e[l = A ] = YAy 1)

_ = N = 1 2 .o T' .1
/\T (k+1) B‘i‘aT—k[l _/\T—k] ) k 3Ly ey Ly (2 4)
-1
_r = s k=1,2,..,T; 2.15
(e B R Py (215)
K
ar—k = (K){B+ar_g-n[l = Ar—g-n]}: K = 2 k=1,2,.(216)

and where the following boundary conditions apply:

!

Ap, = 4Tt 2.17
o B+v+ara (217)
ar_; = KpG% (2.18)
-1
mr = —. 2.19
3 (2.19)
Proof. First consider the equilibrium condition (2.4) at t = T
YEr_1pr +ur + Bpr = —ar—_1[Er—1Dr — Pr—1]- (P.1.1)

This can be solved for pr as a function of pr_1, Er_1pr, and ur. Hence, the
period-(T" — 1) expectation of period-T price can be found as:

ar_1

9Tl 5 P.1.2
Brytar (P-12)

Er_1pr =
Substituting this expectation back into the equilibrium condition (P.1.1) yields
the following equilibrium price function for pr :

aT_q -1
— Tl ar=— P.1.3
B+vy+ar B (F-1.3)

Knowing this price function, the period-T forecast variance can be computed as

DT = Ar—1DT—1 + TrUT; AT—1 =

=2 (P.1.4)
OT,I = _’u.' P14
32
Now, using this in the definition of ap_; yields
ar_1 = KB* = K(nr)*% (P.1.5)

(P.1.2) and (P.1.5) establish the boundary conditions (2.17) and (2.18).

Knowing the equilibrium price function pr, the equilibrium price function
for pr_ican be constructed by the same steps as used in construction of the
equilibrium price function pr. Backward induction then shows that for any
k=2,3,...T, the equilibrium price function will have the form:

ar—k[l = Ar—i] — 'Y)\Tf(k:+1)ﬁ B ur—y
B+ ar—k(l —Ar_g) T+ T 4 ar—i(1 —Ar—k)
(P.1.6)

PT—k =



where

ar_ (k1) [1 = Ar— (k1)) — VAT (k41)
B+ ar—i[l —Ar_]
-1
Tr—p = P.1.8
Y S (S vy (P18)
To establish the third recursive relationship (2.16), note that the one-period-
ahead forecast variance at T — k is

)\T—(k-&-l) (P.1.7)

Er_i[(pr— -1y — Br—1Pr—-1))*]- (P.1.9)
Substituting (2.13) into (P.1.9), we have

(Pr—(o=1) = Br—iPr—e-1))? = [Fr—(h—1) ur—(k—1)]- (P.1.10)

Hence,

O—%—(k—l),l = Ui[WT—(k—l)]Q; (P.1.11)

Substituting this into (2.8) yields

~

K

—_— P.1.12
03[”T—(k—1)]2 ( )

ar—j =
Substitution of (2.15) for m7_(,_1) into this yields (2.16).
QED m
We can now state the following turnpike proposition:

Proposition 2 Assume parameter values are such that two real roots exist as
solutions to equation (2.8). For anyt > 0 and any arbitrarily small e > 0, there
exists a horizon-length T > t sufficiently large such that for a given sequence

{ue}, | D —p1g [<e.

Proof. What we need to establish is that lim_g) oo Ar—r = A1. To this
end, note that (2.14) and (2.16) form a coupled difference-equation system in
{Ar—p,ar—}. Let T—k=%k T—(k+1)=k+1, and so on, for notational
ease. Furthermore, define x; = ai(1 — Ag). Using this definition, rearrange
(2.14) as:

Th+1

A =1 P.2.1
1 = (P:2.1)
Hence,
B+v+ 2k — Tt
1-A = P.2.2
k+1 B+~ +n ( )
(2.16) can be written as
api1 = KB +a]? (P.2.3)



By a rearrangement of the the definition of =, we have:

Tp41

Q1 = T \enr (P.2.4)
So,
Tpt1 2
T K[B + x) (P.2.5)
Combine (P.2.2) and (P.2.5) to yield:
K ) 2
Lh+1 = K[fijk"]L E?;j;_ffn)k = ¢(x) (P.2.6)
The properties of ¢ are:
_ KB+
$(0) = KF 510 0; (P.2.7)
: K2(B+a)t +2(8+2)(B+y+2)°
¢ {K(B+ )2+ 3+~ +z}? >0 (P-2.8)
lim ¢ = +oo (P.2.9)

where the subscript on x is suppressed. Given the definition of z, if two real
roots A1 and Ay exist, then there must be two real critical values that solve
(P.2.6). That is, ¢(xy) intersects the locus xp41 = xx at two points, say z1
and x2, 0 < x1 < z3. Because ¢(0) > 0 and ¢ is monotonically increasing in
z, ¢(x1) > wp for 1) < 71, and ¢’ < 1 at x; = z;. Now, the value of xp_; is
computed from the boundary conditions on Ar_; and ap_1, and is

KB*(B+7)

KF (P.2.10)

IT-1 =

which is equal to ¢(0). Now, ¢(x) is upward-sloping, so it must be that ¢(0) <
x1, because ¢(x) = x at 1. Hence, 24—1 < z1. Because ¢(z) is monotonically
increasing, and because xp_o = ¢(xp—_1), it must be that zp_1 < xp_o < 7.
Now z7_3 = ¢(xr_2) < x1. Again, by monotonicity of ¢, xr_3 < zp_4 < 7.
Because ¢ is continuous and monotonic, it must be that x7_r < zp_rq1) <
x1,k =1,2,3,...,T, and limy_,o | 21 — 27—k |= 0. Hence, limy_oc 1 = 1.
Because the steady-state value of x and steady-state value of A are monotonically
related by the following relationship:

T

A= ————— P.2.11
B+vy+z ( )
it must be that im_p) oo Ar—x = A\1.Q.E.D. B

In the above proof, the ¢(zy) and xr11 = xj relationships form a phase

diagram. In the following figure, we construct such a phase diagram, with

10



ZTr4+1 on vertical axis and zj; on horizontal. The parameter values used are:
8 =.1,7v=.4,K =25 The intersections of the two curves occur at {x =
.0052,.947}. Note that if the starting value for ¢(z) were not tied down by the
terminal condition, one might be fooled into thinking that the larger root of x

could be reached if only the starting value ¢(x) were greater than the value of
the lower intersection of ¢(z) = .

(2.5)(14x)%(.5+=)

25(11z) 2+ 5tz > ¥
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Figure 1
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Note that this selection criteria eliminates the larger root whether or not it
is stable, i.e., whether or not A2 2 1. Both the speculative bubble solutions
and the more problematic case of multiple stable solutions are handled by this
approach.

2.3 The Learning Approach

In the only other explicit analysis of the Muth model, Evans (1986, 1989) classi-
fied the two solutions to the infinite-horizon Muth model according to whether
or not they were what he called ”e-stable”, the "e¢” a mnemonic for ”expec-
tational.” His concept of e-stability asked whether or not agents who start
with incorrect expectations (of a particular sort) but update expectations (in
meta-time) according to a learning-like rule eventually converge to the correct
rational expectations solution. This approach, like the finite-horizon model
here, gives rise to recursive relationships between the parameters of the price
function, albeit in meta-time. Also as with the selection criterion developed
here, the equilibrium selected on the basis of e-stability was the equilibrium
associated with the smaller of the two roots to the fundamental infinite-horizon
characteristic equation.!'?

While it is interesting that both of these selection criteria pick the same
solution, some differences between the approaches should also be noted. The
criteria proposed here could perhaps be called an equilibrium approach: at every
moment, all agents are assumed rational and knowledgeable. The e-stability
criteria is based on adjustment from a diseqilibrium starting point, with agents
engaging in "reasonable” mental updating rules.

3 Dynamic Duopoly with Time-Dependent De-
mand

In this section, we analyze a model related to Fershtman and Kamien (1987)
and Driskill and McCafferty (2001). Fershtman and Kamien studied duopolistic
competition in a homogeneous good under the assumption that the good’s ” cur-
rent desirability is an exponentially weighted function of accumulated past con-
sumption.”!? Such utility functions, first introduced by Ryder and Heal (1973),
posit that instantaneous utility is a function of both current flow consumption,
denoted here by u, and the exponentially-weighted sum of past consumption of
the good, denoted here by z. Driskill and McCafferty (2001) studied monopoly
and oligopoly supply of such an ’experience” good using the specific functional
form of the utility function introduced by Becker and Murphy (1988). Our
purpose here is to illustrate that a particular variant of such an infinite-horizon
dynamic game can yield multiple stable equilibria. That is, the dynamic path

2Evans (1989) also showed that real-time least-squares learning corresponds to e-stability
convergence.
B Fershtman and Kamien (1987), p. 1151.
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of z approaches a finite steady-state value along either of the permissible equi-
librium paths. We then show that only one of these equilibria is the limit of
the associated finite-horizon game as the horizon goes to infinity.

3.1 The Infinite-Horizon Model
3.1.1 Consumer Behavior

Assume a continuum of identical agents distributed over the unit interval. For
notational convenience, consumer subscripts are omitted. For each individual,
”consumption capital” is given as

T=t
2(t) :/ u(r)e >t dr, (3.1)
or, in differential form, as

Z=u—sz (3.2)

where s is a positive constant. Following Becker and Murphy (1988) and Driskill
and McCafferty(2001), we assume a quadratic instantaneous utility function
that is also quasilinear with respect to a non-experience good.

v(t) = apu — %uQ +éz+x (3.3)

where z is the non-experience good'*.  For our purposes, we assume that
ap >0, a>0,and 6 § 0. '3, An individual’s budget constraint is given by

R=z+pu (3.4)

where the price.of x is normalized to one and p is the price of the experience
good. In the infinite-horizon model, consumers choose u to maximize the
present discounted value of instantaneous utility:

u

maxV:/ v(t)e "dt (3.5)
0

subject to (3.2) and (3.4). First-order conditions for this problem are
oL

20 = ag—ou+o6z—p+A=0 (3.6.1)
_aazL = A—rA=—8u*+\s (3.6.1i)
lim \(T)e™™" = 0. (3.6.iii)

T—o00

M Becker and Murphy (1988) and Driskill and McCafferty (2001) used a slightly more general
utility function. Because our purpose is to illustrate a particular possibiblity, the simpler
version is suitable.

15§ > 0 corresponds to what Becker and Murphy (1988) denote as the addictive case.
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where L is the current-value Hamiltonian, A is the current-value costate vari-
able and the asterisk on v denotes an optimal value. Consumers have perfect
foresight and know that the equilibrium values of u are a linear function of the
state, 2 :

u(t) = o +72(t) (3.7)

where 7, and y are as-yet-to-be-determined parameters. Integrating (3.7) from ¢
to 0o and substituting the resulting expression into (3.6.ii) yields the consumers’
decision rule. This rule is the instantaneous demand curve that constrains firms
at any moment in time:

p(t) = xo — au+ xz (3.8)
where
_ XYt (r+s)ag =By .
Xo = E (3.9.)
A 3
X = m =¢(v) (3.9.ii)

and A= 6(r + 2s).

Equation (3.8) describes a demand curve that is downward-sloping at any
moment but that shifts as z changes. Whether it shifts in or out for an increase
in z depends on the sign of x, which is in equilibrium a function of all the
structural parameters of the model.

Equations (3.8) are a pair of relationships between (x,7) and (xg,7). Firm
behavior will provide another pair of relationships between these pairs of vari-
ables. These four relationships will then determine the equilibrium values of
(x,7) and (xg,7o) as functions of structural parameters.

3.1.2 Firm Behavior
Firms are assumed to have the linear cost function
C(u;) = cui3i=1,2; ¢ > 0. (3.10)

where u; > 0 is the ith firm’s rate of production. FEach firm attempts to
maximize

Ji— / e p(uilt) — cus(t)]dt; i = 1,2. (3.11)
0

subject to (3.2) and (3.8). Firms are assumed to pick strategies from a Markov
strategy space:
Definition: The Markov strategy space for firm i is the set

Si = {ui(z,t) | ui(z,t) is continuous and dif ferentiable for all (z,t) and u;(z,t) > 0.}
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These strategies describe decision rules that are a function of the state, z,
and time, t. The first-order conditions for the i** firm is thus

P+Ui§5*0+)\ = p—au;—c+X=0 (3.12.i)
A o= Ai[r+s—ZW] (3.12.i)
iz OF
ou;i(z,t
—Xu; + ozz —Ja(z ) :
J#i
Jim N(Te™™ =0 (3.12.ii)

Assume the firms’ strategies are symmetric and a linear function of z :
wi(z,t) = mg 4+ mz(t);mg € Rym € R. (3.13)

With this assumption, time-differentiating (3.12.i), substituting this result into
(3.12.ii) and substituting (3.12.i) into this expression for A; does in fact yield
a linear relationship between w; and z. This is the firm’s strategy. Aggre-
gating this strategy over both firms yields a linear relationship between u and
z. Equating coefficients between this relationship and (3.7) yields the promised
second pair of relationships between (x,~) and (g, 7o) :

Say(r +2s) — 2av?

X = s =¢(y); (3.4

1 3 1 ..
~{r+s-37He—x0) = wlsalr+s—57t+3+ay (B14i)

Once the value of v that simultaneously solves (3.9.ii) and (3.14.i) is found,
it can be used to solve recursively all other endogenous variables in the model,
in particular v, and x. Knowledge of the values of these endogenous parame-
ters allows one to describe the equilibrium strategies of the two firms and the
equilibrium decision rule of the consumers. Note that, because z = u — sz,
asymptotic stability of the model would require that v < s.

Equating (3.9.ii) to (3.13.i) yields the following quadratic equation in :

~

3 A
2_Z 2 A=0, A= —. 1
0% 4(r+ s)y+ 0, 5 (3.15)

For the roots to this equation to be real, we need the following restriction on
the parameters of the model:

9 2
A< a(r + 2s) (3.16)

We assume throughout that (3.16) is satisfied. Denote the smaller root of
(3.15) as v, and the larger as 7,. If A <0, v, <0and v, >s. If A> 0, two
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possibilities emerge. First, if 0 < A < %rs + %7“52, then 0 < 7, < 5 < 75.10
On the other hand, if 2rs + 4rs*> < A < Z(r + 2s)? and 2s > 3r, then

0<y <7y <s. Forexample,ifs:Z,Tzl,andA:%,then’yl:%

and v, = 31 ’

Because most of the literature has viewed as less problematic the case of
multiple equilibria where only one of the equilibria is stable, our primary interest
is in situations in which multiple stable equilibria exist, that is, in situations in
which parameter values are such that 0 < v; < v, < s. Note, though, that
our results apply to the case where one stable and one unstable equilibria exist,
that is, for the case where parameters are such that v; < s <,

We are now prepared to describe and characterize the equilibrium of the

above game.

3.1.3 The Markov Nash Equilibrium
Definition: A Markov Nash equilibrium for the above game is:

1. A decision rule u* = h(p, z,t) that satisfies the consumer’s dynamic opti-
mization problem Vz,t;

2. A pair of Markov strategies {uf, u5} € S1 x Sy such that for every possible
initial condition {zg,%0}:

Ji(uf,u;) > Jj(ui,u;)

for every u; € S;, 1,5 =1,2;1 # j;
3. A market-clearing condition that requires Vz, ¢,
u* =uj + uj

Note that the market-clearing condition implies that there exists an equi-
librium price function p = H(z,t), implicitly defined by equating h(p, z,t) to

;u;‘(z,t).

Proposition 3 Assume (3.16) is satisfied. Let uy . denote the Pt firm’s equi-
librium strategy in the K" equilibrium, uy, denote the consumers’ equilibrium
decision rule in the K" equilibrium, and D). denote the equilibrium price in the
kP equilibrium. There exist two symmetric Markov equilibria for the preceding
game, each described by the following equilibrium firm strategies and consumers’
decision rules:

Y0.1 7 .

u, = ==+ —=z:1=12;
3,1 2 + 2 ) y <y
. 70,2 V5 .

U, = =4+ =z1=1,2
7,2 2 + 2 ; ) 4y
PI = Xoa — QUi +X1%;

P> = Xog2 — QU3+ X22

16Note that %'rs + %7'52 < %(7‘ +25)2.
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where

D=

)

3(r+42s) — ((r +2s)* —44)

2
1
. 3(r+42s) + (35 (r + 25)* — 44)®
Y2 = B) ;
* * 2
v = %avk(r +2s) —2a (%) =12
r+ 25—
and g 5, and Xg j, solve
~{r+s—5rde—xon) = vwalgeHr+s -5+ 5o
. Yo + (r + $)ao — By
XO,k = r—+s )
ko= 1,2

Proof. Substitution of the consumers’ decision rule and the firm strategies
into the consumers and firms first-order conditions, respectively, give rise to
equations (3.9) and (3.14), respectively. m

We now move on to the finite-horizon version of this model and show that
only the infinite-horizon equilibrium associated with the smaller value of v* i.e., 77,
is the limit of the associated finite-horizon equilibrium.

3.2 The Finite-Horizon game.

Assume a horizon of length 7. The first-order conditions for the consumer
differ from those in the infinite-horizon case only in that, in the finite-horizon
case, A(T') = 0. This means that at T consumers act myopically and choose
consumption so as to equate price to instantaneous marginal utility:

p(T) = ag — au(T) + 62(T) (3.17)

The other difference between the finite and infinite-horizon game is that
the equilibrium output function in the finite-horizon game has time-varying
parameters:

w(t) = 7o (t) +7(8)z(1). (3.18)

Following the same steps as in the infinite-horizon case, the consumer’s first-
order conditions can be manipulated to yield the following instantaneous de-
mand curve:

p(t) = xo(t) — au(t) + x(t)=(1) (3.19)

where the constraints on x,(t), x(¢), vo(t), and ¥(t) obey the following differ-
ential equations:

X = x(r+25-7)-4 (3.20.1)
Xo = Xo(r+s)—Bo— (r+s)ao—vx (3.20.ii)
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Note that (317) and (3.19) together imply the following terminal conditions on

{xo(T), x(T)} :

YT = ao (3.21.1)
X(T) = 6§ (3.21.i)

Turning to firm behavior, the only difference between the first-order conditions
for firms in the finite-horizon and infinite-horizon case is that, in the finite-
horizon case, A\;(T) = 0. This means that at T, firms act as one-shot profit
maximizers and choose output such that instantaneous marginal revenue equals
instantaneous marginal cost. The other key difference is that firm strategies
have time-varying parameters:

w; =mo(t) + m(t)z(t), i =1,2. (3.22)

Repeated time-differentiation and substitution of the first-order conditions along
with use of the equilibrium price and output functions yields the following differ-
ential equations that must be obeyed by the parameters {x(t), x(¢), 7o (), y()} :

7 +7(r+2s)(3) - A

yoo= T (3.23.1)
Yo = Xgé)iv (3.23.ii)
L 20l(3) (r+25 — (59)) + (507) = (3¢7) = (r 4+ 5) (a0 —©)]

()

Equations (3.20) and (3.23) constitute a system of differential equations in
the four parameters x,(t), x(t), vo(t), and vy(¢). The system can be solved
recursively starting with (3.23.1), which only involves 7, and then moving to
(3.20.i), and thence to (3.20.ii) and (3.23.ii). By construction,the critical val-
ues of these parameters are the values of the parameters from the autonomous
infinite-horizon problem. Terminal conditions are derived from the first-order
conditions at T"

5
T) = ; 3.24.
") = o (3:21)
(@ = 2=9 (3.24.i1)

3
(30)
We can now state the following proposition:

Proposition 4 Assume (3.16) is satisfied. Let Z,u, and p denote the equi-
librium stock of consumption capital, equilibrium industry output (and con-
sumption), and equilibrium price, respectively, in the finite-horizon game. For
any zo9, t > 0 and any arbitrarily small € > 0, there exists a horizon length
T > t sufficiently large such that |Z(t) — z1(t)| < e,|u(t) —ui(t)| < e, and
3(t) —pi(t)] < <.
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Proof. We need to show that the parameters x,(t), x(t), vo(t), and v(t)
spend more and more time “close” to the critical values xg4, X7, 751, and
vi. Because of the recursive nature of the problem, it will suffice to show that
v(t) — v as T — oo. Consider (3.23.i)). Denote the r.h.s. as 6(y). The
relevant properties of @ are:

2A
, 27+ 3(r+2s)
0 = — g
2
0" = ;—;1<0;
—(3)
ory = —laal o,
2
—46 3
HI(W(T)) = §+Z(T+28)>0.

That is, 6(7y) is a concave function with a value of zero at v} and 3. Further-
more,because 0(y(T')) < 0 and &' (y(T)), it must be that v(T) < ~;. Hence,
vt € (0,7),4 <0. Hence, as T — o0,y(t) = ;. =

The above relationship between 0(v(T')), 6(7), and + is illustrated in Figure
2:

—222+2x -5

0.1

0.2 0.493MMag 6 0.8 1

-0.1

thet@. 2]

-0.3]

-0.4

Figure 2

As in the Muth model example, here the limit of the finite horizon equi-
librium is the infinite-horizon equilibrium associated with the smaller root of
the fundamental characteristic equation. Also as in the Muth example, the
selection criteria rules out both stable and unstable solutions Unlike the Muth
example, though, the key interactions in the model involve strategic behavior.
In additional contrast to the Muth model, the lack of any stochastic features
means that criteria such as McCallum’s minimum variance condition are simply
inapplicable here.
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4 Overlapping Generations Example

In this section we consider a model similar to those developed by Krugman
(1991) and Matsuyama (1991). Both were interested in the problem of indus-
trialization in an environment where an agglomeration externality existed in
the manufacturing sector but not in the traditional agricultural sector. Both
made explicit the forecasting and investment decision made by individuals when
deciding in which sector to work. Krugman’s model posited a positive linear
relationship between the size of the manufacturing sector and the marginal prod-
uct of a worker in that sector. Adjustment costs kept everyone from moving
at once from one sector to another. Multiple equilibria existed in part because
having everyone in either sector could be rational.

Matsuyama’s model employed an overlapping-generations framework in which
heterogeneous individuals must make an irrevocable choice at birth in which sec-
tor to work. In contrast to Krugman, he focused on a nonlinear agglomeration
externality. Like Krugman, he found that multiple equilibria were possible.

The model we use here borrows heterogeneity and the overlapping-generations
framework from Matsuyama and the linear agglomeration externality from Krug-
man. We first focus on parameter values of the model that allow us to focus
on multiple equilibria that arise directly from the self-fulfilling nature of ratio-
nal expectations. What we find is that only one of these equilibria are the
limit of the associated finite-horizon model. We then look at parameter values
that generate multiple equilibria more directly related to the types studied by
Krugman and Matsuyama. What we show is that the finite-horizon selection
criterion doesn’t select one equilibrium precisely because there is not a unique
finite-horizon limit.

4.1 The model.

Consider a small open economy that produces a traditional agrarian good and a
manufactured good, both of which are sold at constant world prices normalized
to one. At every moment a generation of size p is born. Each member faces a
constant probability of death equal to p. At the moment of birth, individuals
must make an irrevocable choice of whether to work in the traditional agrarian
sector and receive a constant flow income R,, or to work in the manufacturing
sector and receive a flow income R, that depends on the total number of workers
in the manufacturing sector. Let u denote the size of the group of members of
a generation that choose the manufacturing sector and z denote the size of the
total group of people in the manufacturing sector. Members of each generation
are heterogeneous in their productivity in the manufacturing sector. Perfect
annuity markets exist, there are no bequest motives, and everyone can borrow
and lend at the fixed world interest rate r, which is also each individual’s rate
of time preference.
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4.1.1 The Infinite-Horizon Model.

First consider the infinite-horizon version of this model. Our goal here is to
demonstrate that for some parameter values and initial conditions, there exist at
least two equilibria. One of these has an interior steady state, that is, a steady
state in which both sectors of the economy operate. In the other equilibrium,
the steady state has all members of the economy working in the manufacturing
sector.

A member of generation x, i.e., someone born at time ¢ = x, maximizes
expected utility:

t=o0
max/ e P (e)e )t (4.1)
¢ t=x

subject to his or her budget constraint:
w=(r+pw+R, —c¢,i=am (4.2)

where r is the constant rate of interest at which people can borrow and lend, w
is non-human wealth and c; is consumption. The optimal program requires con-
sumption to be constant. Hence, the present discounted value of this constant
rate of consumption equals the present discounted value of lifetime resources.
If one stays in the agrarian sector, the present discounted value of lifetime re-
sources is

t=o00 R
/ Rpe~(rolt—o)gp — ¢ (4.3)
t=x T+ P

where, as noted, R, is a positive constant.
If one opts for the manufacturing sector, the present discounted value of
lifetime resources is

t=00
/ Ry (2)e”r+A)t=2) gy (4.4)
t

=x

Because consumption is constant, each member of generation = chooses in which
sector to locate based on which choice gives him or her the highest present value
of lifetime resources. Assume

Ry(2) = Ry + Az(t), Ac RY (4.5)

where A is a positive constant and, for each individual, ﬁm is a positive constant.
Assume, though, that individuals in any generation are heterogeneous in terms
of R, and that the distribution of R,, over members of a generation is uniform
with highest value R,,, and lowest value R,,. Without loss of generality, think of
the members of any generation as being sequenced in order of decreasing values
of R,,. The relationship between R, for the last member of a generation that
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locates in the manufacturing sector and the size of the group of members of a

generation that locate in the manufacturing sector is thus

B — B, (4.6)
p

For any generation z, an (interior) equilibrium distribution of its members across

the agrarian and manufacturing sectors is determined by equality of lifetime re-

sources in either the agrarian or manufacturing sector for the marginal member:

Ry = Ry —Qu, @

t=o00
/ (R + Az(t)]e” =) gt = Ao (4.7)
t=x T+ P

Using (4.6) and rearranging yields
t=00
u(r) =R+ A / 2(t)erTPE=2) gy, (4.9)
t=x

where for notational convenience we have made the following definitions of new
variables

RERm_Ra;aE @ .4 é

- T (4.9)

The forecasting problem faced by members of generation x is thus determination
of the occupational choices of all future generations. Putting (4.9) in differential
form by taking the derivative with respect to x, we have:

uw=(r+pu— Az — R(r +p) (4.10)

The dynamics of manufacturing sector growth are governed by new additions
to the sector and by deaths of members of the sector. Hence,

Z=u—pz (4.11)

Equations (4.10) and (4.11) thus determine the evolution of v and z through
time. The solution to this coupled system is given by:

u = T+ (p+01)Bare®t + (p+ 03)Byoel?t; (4.12.1)
z = Z+ Bpe®tt + Boyef?t, (4.12.i1)

where Bs; and By are constants and

- %; (4.13.1)
7 = %; (4.13.ii)
6, = % {r P AA—plr p)]} (4.13.i)
0 = s{rtVE A o) (4iv)
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Because our goal is to investigate models in which there may be two equi-
libria, we first assume:

A< p(r+p) (4.14)

This insures that #; and 6 are real and that @ and Z are both positive. Note
that, with this assumption

01 < 0; 05 > 0. (415)

Two solutions. The determination of the B;;’s requires boundary conditions.
One boundary condition inherent in the structure of the model is an initial
value of z, say zp, the stock of workers in the manufacturing sector at some
initial time ty. A second "natural” boundary condition is not obvious, though.
One possibility that might occur to some people would be a requirement that
lim 2(t) = 2.!7 In this case, Bas = 0. Denote the complete solution under this

t—o0

boundary condition by labeling u and z in this case as u; and z;. The solution
is

up = T+ (p+01)(20 — 2" (4.16.1)
21 = Z+ (20— 7). (4.16.i1)

This is clearly a solution: it satisfies (4.9) for any arbitrary feasible value zg.
The question is whether there are other solutions.

Consider the following possibility of another equilibrium. Could there be a
value of z, say z, such that if at time 7 the economy were to find itself with Z, then
every member of every generation from 7 onward would find it optimal to join
the manufacturing sector? If this were to be the case, then for ¢t > 7, u(t) = p
and 2 = p— pz. Hence, under this scenario, we can solve for z(t) by substituting
p =u into (4.11). The solution is:

2(t) =1 — eV 4 2(1)ePY ) 7 <t (4.17)

If, at 7, it is optimal for all members of generation 7 to join the manufacturing
sector, then (4.9) must be satisfied with equality for u(7) = p and for z(¢) given
by (4.17):

t=00
PR+ A / [o(r)e=(H20(=T) 4 (= (0)(t=7) _ = +20)0-D)] gt (4.18)
t

=T

Solving for z(7) yields

~_(p—R)(r+2p) p
z= Vi s (4.19)

1I"McCallum (1999,p. 621) calls this the "popular ’saddle path’ or ’stability’criterion.” In
this model, though, the stable arm of the saddle path is clearly not the only ’stable’ solution,
where stability is referring to non-explosiveness.
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Now, for this to be a sensible value, we need 0 < z < 1. Substituting (4.19)
into these inequalities and rearranging gives the following parameter restrictions
necessary for this to be the case:

(p— R)(r +2p) A _r(r+p
Tt t2ptp e

+2R+2p (4.20)

Note that the right-hand-side of (4.20) is satisfied whenever A < p(r + p), the
assumption made earlier in (4.14).

Let us denote the equilibrium values of u and z in this equilibrium as us and
z9. We can summarize the above findings in the following proposition:

Proposition 5 Assume % < rﬁp < p. Let Z be given by (4.19). If

the initial condition z(T) > Z is satisfied, an equilibrium for the above model for
allt > 7 is:

uz (t) = p;
25(t) 14 (2(1) — 1)e=Pt=7);
t > T

Note that, in this equilibrium, tlim z9(t) = 1. In the steady state, all of the
—00

population is in manufacturing.

Existence of this equilibrium requires that the economy start at time 7 with
a sufficiently large stock of people in the manufacturing sector. One could
think of this as being created by Stalinesque forced resettlements of an agrarian
population into the manufacturing sector, or by the offering of subsidies over a
sufficient length of time to induce enough people to move to the manufacturing
sector so that at some time 7, z(7) = Z.

An example. Consider the following parameter values:

1 3 1 1
A:—' = - = - = - 4.21
27 p 47 R 87 ’r. 4 ( )
With these values, we have:
_ 1 _ 3 . 46
=5 =55 2= (4.22)

Hence, if zp > %, then both of the above equilibria exist. The diagram of the

phase plane for this system is shown in Figure 3, in which the @ = 0 locus is
displayed as a dotted line and the z = 0 locus is displayed as a thicker solid line.
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4.1.2 The finite-horizon model

Now consider the finite-horizon version of the above model. Assume a horizon
of length T'. The key difference introduced by this assumption of a finite horizon
is that the occupational choice of members of generation 1" involves no forecast
of future generations’ behavior. This provides the second boundary condition
to go with the condition that z(0) = zo.

First consider the forecast of the occupational choice made by members of
generation 7. For a given z(T'), the size of the group of generation T that choose
the manufacturing sector is found by equating the instantaneous earnings of the
marginal worker in the manufacturing sector to the instantaneous earnings of
the agrarian sector:

uw(T)=R+ (7’ n p)z(T). (4.23)

Now, from (4.12),
U(T) = u-+ (,0 + 01)321691T + (p + 92)322602T; (4241)
2(T) = Z+ BorehT + Byye®T (4.24.i)

Substitution of (4.24) into (4.23) produces one equation that relates Ba; and
Bss. The other relationship between Bs; and Bso comes from the initial con-
dition that z(0) = z5. Solving these two equations yields:

Z-T+ R)e 2T + (20— 2)(p+ 02 — L)

By = te. (4.25.i)
(p+ 01 — 25)e@ =0T — (p+ 05 — 1)
BQQ = (Zo — E) — Bgl. (42511)

We can now state and prove the following turnpike theorem:

Proposition 6 In the finite-horizon model, let u(t) denote the equilibrium val-
ues of the size of generation t that chooses manufacturing and let Z(t) denote
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the size of the manufacturing sector att . For any zg, t > 0 and any arbitrar-
ily small € > 0, there exists a horizon length T > t sufficiently large such that
1Z(t) — z1(t)| <e, and |u(t) —ui(t)] <e.

Proof. Because 02 > 0 and 0; < 0, limp_,o Bo1 = (20 —Z). This is turn
implies that limp_,, Bos = 0. Hence,

Jim i) = T (o4 01)(20 — 2
Tlim 2(t) = Z+ (20 —72)eM.

QED. m

4.1.3 Discussion

The above turnpike result implies that, whether or not the economy ever achieves
a size of the manufacturing sector equal to z, the only equilibrium that is the
limit of the equilibrium of the finite-horizon model is {u1(t), 21(¢)}, the equi-
librium in which, for any feasible initial value of z(0), v and z approach their
critical values {@,Zz} along the saddlepath. There is a sense of ”perfectness”
to this equilibrium that is not shared by the other: a disturbance to the stock
of workers in the manufacturing sector, perhaps caused by some unanticipated
exogenous shock or by non-optimal behavior by a measurable sequence of gen-
erations, does not change the solution.

In terms of the debate about history versus expectations, the above result
tells us that if people do coordinate their belief structures around the finite-
horizon model, then affecting history with policies designed to get the economy
to a position with a critical size of the manufacturing sector, namely z, would
not lead to the equilibrium in which all generations thereafter had all members
choosing manufacturing. Expectations based on backward induction from the
last generation’s optimal choice always leads to the equilibrium described by

{ur(t), 22.(8)}-

4.1.4 A cyclical equilibrium.

In the above example, the limit of the finite-horizon model converged to a unique
equilibrium. There are parameter values for this model, though, for which this
is not the case. This example illustrates that for some model specifications,
there may not be a unique limit to the associated finite-horizon model, and the
coordination-of-beliefs problem remains.

Assume now that R < 0 and A > (p — R)(r + p). This case corresponds
closely to the model studied by Krugman (1991) in that, as in his model, one
equilibrium is clearly: everyone in the manufacturing sector (v = p,z = 1),
and another is everyone in the traditional sector (v = 0,z = 0). Furthermore,
another equilibrium is {@, Z} where these values are given in (4.13.1) and (4.13.ii).
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In this case, the roots to the characteristic equation are imaginary, and the
solutions to the model are now given by:

z(t) = Z+ e[k coswt + kysinwt];
u(t) = T+ e"[(kww+ pka)sinwt + (pk1 — kaw) cos witl;
o = [A-plr+p)}

where k1 and ks are constants to be determined from boundary conditions.
Again, the initial condition that arises naturally from the economics of the
problem is an exogenous specification of z(0) = zg. This gives us k1 = zp —
Z. The second boundary condition, though, is simply that the last generation
behave optimally, and choose w(T) = R + ﬁz(T). Unfortunately, in this
case of cyclical equilibrium paths, the %iinmkg(T) is not necessarily unique. To

illustrate this point most easily, consider the case of r = 0 and zg = Z. In
this case, u and z oscillate with constant amplitude. ~While any particular
choice of T' does provide the necessary second boundary condition that provides
a complete solution, this solution does not approach a unique limit as 7" — oo:
because of the constant amplitude of the solutions, as T takes on different values
over a segment of time equal to 27 radians, an infinite number of solutions are
generated, and each of these solutions is then replicated at time intervals for T'
equal to 27 radians.

5 Summary and Conclusion.

Note some of the similarities between all three of the above examples. As noted
in the introduction, all are characterized by a fundamental second-order dynamic
equation. These equations all arise in part from an equilibrium condition at any
moment in time for which the value of the equilibrating variable at that moment
depends upon the future adjacent-moment’s value of that equilibrating variable.
In the Muth model, for example, this variable is price. In the overlapping-
generations model, it is the size of generation that chooses the manufacturing
sector. At any time ¢, we can think of price as equilibrating demand and supply
at that moment. This equilibrium price, though, depends upon the expectation
of next-period’s price. The rational expectations assumption can be thought
of as an assumption that people assume that next-period’s price is determined
as that price for which equilibrium in that period is satisfied. Of course, that
next-period equilibrium price depends on the following-period price, and so on
for as far into the future as the model permits. In an infinite-horizon model,
this means that there is always one more price to be determined-the next-period
price- than there are equilibrium conditions.

A similarity between the first two models is that whether or not the largest
characteristic root of the fundamental second-order dynamic equation is stable
or explosive depends on parameter values. The finite-horizon selection criterion,
though, always picked the smaller root. This highlights that the existence of
bubble solutions is a manifestation of the generic property of dynamic rational
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expectations models that, in an infinite-horizon model, there is always one more
equation than there is unknowns.

Seen in this light, multiple equilibria in dynamic rational expectations mod-
els are a fundamental feature of infinite-horizon models. For such models, any
selection criteria for choosing among the multiple equilibria must in some way
provide an additional condition that makes the model determined.

It is useful to compare and contrast the finite-horizon selection criterion
with learning approaches. Learning approaches provide the needed additional
boundary condition by positing an initial disequilibrium value for some param-
eter in the model and then positing an updating rule. One similarity between
the two approaches is that they both select the same equilibrium in the Muth
model, the model for which an explicit comparison can be made. Another
similarity is that they both have, in the language of game theory, an element of
"perfectness” as providing the "refinement”. The specifics, though, are differ-
ent. In the learning approach, this ”perfectness” is associated with ”trembles”
by atomistic agents about what are the parameters or the values of the rational
expectations solution.'® In the finite-horizon approach, the ”perfectness” arises
directly because the finite horizon leads to construction of a backward-induction
solution.

The key difference between the two approaches is that the criterion espoused
in this paper is built upon components more familiar to economists than ideas
about how people learn. The learning approach, though, surely has great
intuitive appeal to many economists as an accurate description of how the world
works.

Finally, we should emphasize that the observation that all dynamic rational
expectations are short one boundary condition does not imply that once such a
boundary condition is supplied, all dynamic rational expectations models have
a unique solution. For the examples studied here (except the one case that gen-
erated a cyclical constant-amplitude solution), this is the case. These examples
were chosen, though, to highlight the possibility that some of these models have
a unique solution when subject to this selection criterion. Other models, such
as Howitt and McAfee (1992), in which imposition of a learning refinement did
not eliminate multiple equilibria, may have multiple equilibria that arise for
different reasons.
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