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Exploiting Future Settlements:
A Signaling Model of Most-Favored-Nation Clauses in Settlement Bargaining

Andrew F. Daughety
Jennifer F. Reinganum

ABSTRACT

“Most-favored-nation” (hereafter, MFN) clauses have been used in analyses of international
trade, durable goods monopoly pricing, and franchise contracting to address a repeat player’s time-
inconsistency problem.  Recent work by Spier (forthcoming and 2002) has extended this perspective
to the settlements of litigation by (for example) one defendant with a collection of plaintiffs.

We examine a different motivation for the use of MFNs in settlement bargaining.  We argue
that a non-repeat player can use an MFN to extend her reach into subsequent bargaining games.
That is, an early-bargaining plaintiff can use an MFN to modify the subsequent bargaining game
between the defendant and a later-bargaining plaintiff in a manner that improves the early plaintiff’s
payoff.  Moreover, we will identify two routes through which this improvement is achieved.  The
obvious route is that, if the MFN is triggered by the later settlement, the early plaintiff receives an
additional payment.  The less obvious route is that the early plaintiff’s incentives for information-
revelation can be enhanced by the potential for a future payment, so that the defendant can resort
to trial on a less-frequent basis.  Using a signaling model, we find that the repeat player (the
defendant) is indifferent about the MFN, while the later plaintiff is always worse off when an MFN
constrains her settlement bargaining with the defendant.  Although MFNs can never provide a Pareto
improvement in this model, we demonstrate that plausible circumstances exist under which total
surplus is increased by an MFN.



1  In the context of bankruptcy, the creditors are the plaintiffs; see Sage and Bennett (2001).
Antitrust actions involving the airlines (see In re Domestic Air Transportation Antitrust Litigation,
148 F.R.D. 297) and manufacturers (see, for example, In re Corrugated Container Antitrust
Litigation, 753 F.2d 137 and Cintech Industrial Coatings, 85 F.3d 1198) have involved settlements
with MFN clauses.  Recently a U.S. District Court gave preliminary approval to a proposed
settlement in a Title VII racial discrimination suit against Coca-Cola (see Civil Action No. 1:98-CV-
3679-RWS in 133 F. Supp. 2d 1364).  Spier (forthcoming, and 2002) discusses examples drawn
from antitrust (see In re Chicken Antitrust, 560 F. Supp. 943 and In re Vitamins Antitrust, 342 U.S.
App. D.C. 26), copyright infringement (the recent settlements in the MP3.com case) and the
settlements by Mississippi, Florida and Texas in the tobacco cases (see 
http://www.library.ucsf.edu/tobacco/litigation/).

1.  Introduction

“Most-favored-nation” (hereafter, MFN) clauses have been used in a variety of contexts.

In the context of international trade, a country might grant MFN status to another country, thereby

promising to trade with that country on terms no worse than those enjoyed by any of the granting

country’s other trading partners.  In the industrial organization context, a durable-goods monopolist

might promise its buyers (or a franchisor might promise its franchisees) that, subsequent to

concluding the instant deal, no other buyer (or franchisee) will obtain more favorable terms, unless

those terms are retroactively extended to the previous buyers (or franchisees).  In the context of

settlement of litigation, which will be our primary interest, MFNs promise early-settling plaintiffs

that later-settling plaintiffs will not obtain more favorable terms, unless those terms are retroactively

extended to the early settlers.  Such clauses have been employed in settlements associated with

(among others)  copyright infringement, bankruptcy proceedings, allegations of price-fixing and of

racial discrimination, and claims by the states for restitution.1

An interesting proposed explanation for the use of MFN clauses is based on the recognition

that these situations involve a repeat player who interacts with a collection of one-shot players over

time.  In this case, the repeat player can suffer from a problem of time inconsistency.  The durable-

goods monopolist, having sold some units at a relatively high price to those buyers with relatively
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high willingness-to-pay, is tempted to cut the price in the next period in order to sell to buyers with

a somewhat lower willingness-to-pay (Coase, 1972, and Bulow, 1982).  A franchisor, having

concluded a contract with one franchisee, is tempted to offer more favorable terms to another

franchisor whose market will overlap somewhat with that of the first franchisee.  This encroachment

explains the need to offer more favorable terms (see, for example, McAfee and Schwartz, 1994). 

A defendant, having concluded a settlement with relatively low-damaged plaintiffs, is tempted to

offer a higher settlement to the remaining plaintiffs who (having rejected the first offer) can be

inferred to have relatively high damages (Spier, forthcoming).  In all of these cases, rational

anticipation of more-favorable terms in the future interferes with the repeat player’s ability to

conclude the early deals at his preferred terms.

In several recent papers, scholars have carefully demonstrated how the use of MFN clauses

can solve the repeat player’s time inconsistency problem.  In the international trade context, Choi

(1995) argues that an importing country has a time inconsistency problem of the following sort.

Without an MFN, optimal import tariffs chosen after firms in exporting countries have chosen their

technologies will be discriminatory (adverse to the low-cost firm); this undermines the incentives

for exporters to choose low-cost technologies, which in turn increases the imported good’s price.

An MFN allows the importing country to commit to non-discriminatory tariffs, leading to more

efficient technological choice and therefore a lower price for the imported good.  Butz (1990)  shows

that incorporating an MFN clause into the sale of a durable good allows a durable-goods monopolist

to commit to the (one-shot) monopoly output; that is, to the output it would optimally choose if it

could commit to a one-time choice of output.  While this is clearly good from the perspective of the
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2  Levy (2000) shows that an MFN can reduce signaling distortions in a monopoly market
for a new product.  In his model a high quality goods producer can employ an MFN as a second
source (that is, besides the price) of information for consumers.

3  Marx and Shaffer point out that an MFN can raise total surplus in the event that only a
single franchisee would operate in the absence of this provision.

durable-goods monopolist,2 it reduces both consumers’ surplus and total surplus.  Marx and Shaffer

(2001) examine non-discrimination clauses in intermediate-goods markets, with a special emphasis

on franchisor-franchisee relationships.  They find that an MFN enables the franchisor to offer a

sequence of contracts which yields the same outcome as if the franchisor were able to commit to a

single (observable) contract.  The resulting prevailing contract terms maximize the joint surplus of

the franchisor and its franchisees, thus internalizing the encroachment externalities that would result

in lower final goods prices absent a commitment mechanism.  Again, this is good from the

perspective of the franchisor and its franchisees but, to the extent that the firm has market power in

the provision of final goods (and assuming that both franchisees would operate in the absence of an

MFN),3 this raises the equilibrium price in the final goods market and reduces both consumers’ and

total surplus.

In a pair of companion papers, Spier (forthcoming, and 2002) demonstrates that a defendant

being sued simultaneously by multiple plaintiffs can use an MFN clause to commit to a single take-

it-or-leave it offer, much like in the context of a durable-goods monopolist.  However, she finds that

the implications for welfare are quite different in the settlement context.  Like the durable-goods

monopolist, the defendant always gains through the use of an MFN.  However, Spier also identifies

conditions under which:  the MFN results in a Pareto improvement (that is, plaintiffs also gain or,

in any event, do not lose) when an MFN is implemented; plaintiffs lose, but total surplus is still
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increased by an MFN; and  total surplus is reduced (and hence plaintiffs lose more than the

defendant gains) by an MFN.

We examine a different motivation for the use of MFNs in settlement bargaining.  We argue

that a non-repeat player can use an MFN to extend her reach into subsequent bargaining games.

That is, an early-bargaining plaintiff can use an MFN to modify the subsequent bargaining game

between the defendant and a later-bargaining plaintiff in a manner that improves the early plaintiff’s

payoff.  Moreover, we will identify two routes through which this improvement is achieved.  The

obvious route is that, if the MFN is triggered by the later settlement, the early plaintiff receives an

additional payment.  The less obvious route is that the early plaintiff’s incentives for information-

revelation can be enhanced by the potential for a future payment, so that the defendant can resort

to trial on a less-frequent basis.  Using a signaling model, we find that the repeat player (the

defendant) is indifferent about the MFN, while the later plaintiff is always worse off when an MFN

constrains her settlement bargaining with the defendant.  Although MFNs can never provide a Pareto

improvement in this model, we demonstrate that plausible circumstances exist under which total

surplus is increased by an MFN.

The motivation for the use of MFNs that we focus on in this paper is similar to that addressed

in our recent work on the use of confidential settlements in sequential suits wherein two plaintiffs

sue the same defendant.  There we found that an early-bargaining plaintiff could use a confidential

settlement to extract surplus from a later-bargaining plaintiff, using the defendant as a conduit.

While the early plaintiff’s payoff was always higher (and the later plaintiff’s payoff was lower)

under confidentiality, in some circumstances (Daughety and Reinganum, forthcoming) the gains

were shared with the defendant, while in others (Daughety and Reinganum, 1999) the defendant,
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too, was worse off.  Again, although confidential settlements did not provide a Pareto improvement,

we identified circumstances under which total expected surplus was nevertheless increased (because

expected trial costs were decreased) by confidentiality.

Relationship to Previous Work on MFNs in Settlement Bargaining

Since the Spier (forthcoming, and 2002) papers are closest to the current paper, it is worth

spending some time comparing and contrasting them.  In Spier (forthcoming), there is a continuum

of injured plaintiffs facing a single defendant.  Each plaintiff’s level of damages is drawn

independently from a common distribution, and a plaintiff’s damages are her private information.

Settlement bargaining takes place over (at most) two periods, under the following extensive form.

In the first period, the uninformed defendant makes a single offer to all plaintiffs (thus, this is a

screening model).  Each plaintiff decides whether to accept or reject the offer; a plaintiff who

accepts receives the offered amount and is out of the game.  Any plaintiff who rejects the first-period

offer pays a “delay cost” (as does the defendant), and proceeds to the second period.  In the second

period, the defendant makes another offer to all remaining plaintiffs.  Each remaining plaintiff

decides whether to accept or reject the offer; a plaintiff who accepts receives the offered amount and

is out of the game, while any plaintiff who rejects the second-period offer goes to trial.  Note that

each plaintiff can choose to settle in either period.  This model is analyzed both with, and without,

an MFN, where an MFN specifies that if the defendant settles in period 2 for a higher amount than

the settlement in period 1, he must rebate the difference to those plaintiffs with whom he settled in

period 1.  Spier shows that an MFN implements the full-commitment solution (a single, take-it-or-

leave-it offer).  There are two margins of interest in this model.  One margin involves the overall

extent of settlement, while the other involves the timing of settlement.  The full-commitment (and



6

MFN) offer is accepted in the first period by all plaintiffs with damages below a critical level,

denoted x^ .  By contrast, without an MFN the defendant makes an increasing sequence of offers;

some plaintiffs settle in each of the two periods, and settlement occurs for all plaintiffs with damages

below a critical level denoted x~.

When all litigants can settle in either period, the use of the MFN eliminates delay costs that

arise in equilibrium without an MFN.  Spier shows that the MFN increases (leaves unchanged,

decreases) overall settlement if the density function is increasing (constant, decreasing) at x~.  An

MFN increases expected total trial costs only if the overall extent of settlement falls enough that

increased litigation costs offset saved delay costs.  Plaintiff welfare also pivots on this feature of the

density function:  plaintiffs are better off (the same, worse off) under an MFN if the density function

is increasing (constant, decreasing) at x~.  The defendant is better off with an MFN (since it

implements his full-commitment outcome), so an MFN provides a Pareto improvement if the density

function is non-decreasing at  x~.

This model and motivation seem to represent well situations wherein all plaintiffs are present

at the same time and negotiations proceed on a multilateral basis, and when strategic delay can be

expected to contribute substantially to private, and social, costs.  This can (but need not) occur when

there is some precipitating event that launches a collection of suits; for instance, a successful

government antitrust suit will be followed by a number of private suits for damages, and a

bankruptcy will trigger action by all the creditors.  In the vitamins case, the Department of Justice

obtained guilty pleas from several manufacturers, which then led to the filing of approximately 49

private law suits for damages within three months (see Schlosser, 2001, and In re Vitamins Antitrust,

342 U.S. App. D.C. 26).   In the  MP3.com copyright infringement case, MP3.com was sued
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(essentially simultaneously) by five major record labels for unauthorized distribution of music (see

Spier, forthcoming and 2002, for details).  The proposed class-action settlement of a Title VII racial

discrimination suit involving Coca-Cola cited earlier also seems to fit this model; an MFN is used

to encourage plaintiffs to opt-in to the class settlement rather than opt-out and settle/litigate on their

own.

However, an alternative extensive form, which envisions plaintiffs bargaining bilaterally

with the defendant, would seem to be a better representation of some cases.  For example, the

lawsuits by the states in the tobacco cases were filed over a four-year period as legislatures and

political decision-makers wrangled over whether and how to proceed.  Mississippi was the first state

to pursue a theory of restitution, claiming that the tobacco companies should pay past health-care

expenditures made by the state on behalf of smokers.  They filed their case in May, 1994, and

included an MFN provision in their settlement with the tobacco companies, which was concluded

in July, 1997.  Florida filed in February, 1995 and settled (with an MFN) in August, 1997; Texas

filed in March, 1996 and settled (with an MFN) in January, 1998.  All these MFNs were triggered

by the Minnesota settlement in May, 1998 (they had filed in August, 1994).  This was against a

backdrop of  industry-proposed federal legislation which died in the Senate in June, 1998 (see

Viscusi, 2002).  After the federal approach failed, the remaining forty-six states were included in

the Master Settlement Agreement (proposed in November, 1998) which is generally viewed as

providing less favorable conditions than Mississippi, Florida, Texas and Minnesota already enjoyed

(LaFrance, 2000).

In the case In re: Domestic Air Transportation Antitrust Litigation (148 F.R.D. 297), the

class of consumer-plaintiffs is the repeat player, and the airline-defendants are non-repeat players.
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4  As another example of (largely sequential) bilateral negotiations in an antitrust setting, we
briefly discuss the Cintech case cited earlier.  On March 12, 1992, a class of customer-plaintiffs sued
eight manufacturers of steel pails, alleging price-fixing.  One defendant settled immediately and
another filed for bankruptcy.  Defendant Central Can began settlement negotiations and settled
within three months, with an MFN clause, as did yet another defendant.  Following extensive
discovery, two more defendants settled in April, 1993, on terms similar to those of Central Can
(including an MFN clause).  On April 14, 1994, the Court granted summary judgment to defendant
Prospect, and on June 27, 1994, the Court approved plaintiff’s motion to dismiss their case against
Cleveland Steel (as they had decided there was insufficient evidence to proceed).  Central Can
immediately moved for enforcement of its MFN clause, arguing that the plaintiffs’ dismissal of their
suit against Cleveland Steel constituted settlement on more favorable terms, and thus Central Can
was entitled to a complete refund.  The District Court denied this motion, on the basis that this event
did not trigger the MFN; this was affirmed by the U.S. 6th Circuit Court of Appeals.

In June, 1990, a (would-be) class of consumer-plaintiffs filed suit against seven major airlines

(Northwest, TWA, American, Delta, United, USAir and Continental) and  the Airline Tariff

Publishing Company (ATPCO), alleging that these companies conspired, through the use of

ATPCO’s computerized fare system, to fix the prices of passenger air tickets.  Class certification

was sought by the plaintiffs and opposed by the defendants.  In May, 1991, prior to class

certification, Northwest settled with the pending class.  Included in its settlement was an MFN

clause, and an agreement to withdraw its objection to class certification.  TWA settled in June 1992

on “substantially the same terms (148 F.R.D. 297 at 310),” and the Court preliminarily approved

these settlements in September, 1991.  In June, 1992, American, Delta, United, USAir and ATPCO

reached a proposed settlement with the plaintiff class, and Continental followed a week later.  The

pattern of settlement suggests that, early in the litigation process, the plaintiff class and some

defendants were engaged in bilateral negotiations.4  Note that, in both the airline and Cintech (see

footnote 4) cases, the record indicates that it was the non-repeat player who demanded an MFN, not

the repeat player.  

In this paper, we examine sequential bilateral bargaining and we also assume that the
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informed plaintiffs make the demands; thus, our game involves a sequence of signaling subgames.

Furthermore, while Spier employs a continuum of plaintiffs (and thereby guarantees that some

fraction will accept the first offer), we focus on the case of two plaintiffs, so none, one or both may

end up at trial.  This modeling difference is driven by the desire to analyze different strategic

influences.  With a continuum of plaintiffs, delay is the strategic focus and inter-plaintiff interaction

is suppressed, while in our analysis, inter-plaintiff strategic considerations are highlighted and

consideration of strategic delay is suppressed.  In our first period, the early plaintiff makes a

settlement demand, possibly incorporating an MFN.  If the defendant rejects the demand, the case

goes to trial and the early plaintiff is out of the game; the second period commences without an

MFN potentially constraining bargaining.  On the other hand, if the defendant accepts the first

plaintiff’s demand and an MFN was included, then second-period bargaining will be (potentially)

constrained by the MFN.  In the second period the later plaintiff makes a settlement demand, which

the defendant either rejects or accepts.  If this demand is rejected, the later plaintiff and the

defendant go to trial and the game is over.  If this demand is accepted, then the later plaintiff

receives the amount she demanded.  Moreover, if this accepted demand exceeds that at which the

early plaintiff settled (and settlement included an MFN), then the early plaintiff receives a

supplementary payment equal to the difference in the settlement amounts.

Although Spier (2002) mostly considers a two-type version of the model developed in Spier

(forthcoming), with a greater emphasis on the legal issues and related scholarship, she briefly

considers therein a complete-information version of the sequential bargaining model in which
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5  Other papers using complete information models to examine sequential bargaining include
Cooper and Fries (1991) and Nielson and Winter (1994), who argue that a seller can use MFNs to
extract surplus from buyers.

plaintiffs make the demands.5  Despite the simplicity of this model, it does yield some of the features

of the asymmetric information version we consider below.  For instance, it identifies the way in

which the early-plaintiff’s settlement amount constrains (under an MFN) the feasible demands of

the later plaintiff, and it shows that some later cases that would otherwise have settled must go to

trial under an MFN.  However, because settlement in a complete information analysis occurs either

with probability one or with probability zero, the use of an MFN can only raise expected total trial

costs (all cases settle for sure without an MFN, but some can fail to settle with an MFN). 

Under asymmetric information, we obtain a much more nuanced picture of how an MFN

affects the likelihood of settlement in the early and later cases.  In particular, some later plaintiff

types are more likely to settle (in equilibrium), while others are less likely to do so, under an MFN.

We identify plausible circumstances under which the overall likelihood that the later case settles is

increased by an MFN.  Similarly, we find that (under these same circumstances) every early plaintiff

type is more likely to settle under an MFN.  In these circumstances, the prospect of a future payoff

weakens a plaintiff’s incentives to mimic a higher-damaged type, and thus the defendant need not

be as skeptical (i.e., he can reject a given demand with lower probability).  We also find that the

defendant’s welfare is the same with or without an MFN, while the later plaintiff’s welfare is lower

for those types who are constrained by an MFN.  Thus in the sequential signaling model, an MFN

will never provide a Pareto improvement but will, under plausible circumstances, reduce expected

total trial costs.
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Plan of the Paper

In Section 2, we briefly describe the two-stage game and provide the basic notation.  Section

3 considers the benchmark game when there is no MFN while Section 4 reconsiders this game when

an MFN has been incorporated into the first-stage settlement.  Section 5 then addresses welfare

considerations and conditions under which an MFN would be included in a settlement.  Section 6

contrasts our results with those of Spier and uses this comparison to discuss issues relevant to

judicial review of settlement agreements with MFN clauses.  An Appendix provides proofs of the

propositions and relevant properties of our model; some derivations are included in the main text

so as to facilitate exposition.

2.  Model Structure

A defendant, D, faces a sequence of plaintiffs, P1 and P2.  As in Spier (forthcoming, and

2002), Pi’s expected damages that would arise from a trial are denoted xi, and they follow a density

f(C) which is everywhere positive on its support; we assume a compact support for the density:  x

0 [x, xG].  There are no costs of negotiation, but D incurs a court cost, kD, if there is a trial (for each

trial), and each Pi incurs a court cost, kP, if she goes to trial against D; for convenience, let K / kP

+ kD.  Moreover we assume x - kP > 0, so that it is credible for Pi to threaten to take D to trial.  Each

Pi’s level of expected damages is private information for that plaintiff, and we assume that (from the

perspective of the other plaintiff and D) x1 and x2 are independent and identically distributed random

variables.

The game is comprised of two stages and the sequence of actions is as follows.  In stage one,

P1 makes a demand S1, which D then accepts or rejects.  If D accepts the demand, he pays P1 the
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6  These properties are direct extensions of those proven in Reinganum and Wilde (1986).
Notice that monotonicity of the probability of rejection implies its continuity since, if there were a
jump (which would be upward), that type making the demand just above the jump could make an
infinitesimal reduction in demand and enjoy a non-infinitesimal decrease in the probability of
rejection.  However, an upward jump can (and sometimes does) occur for S > SG, since there is no
type which would thereby be induced to defect.

amount S1, while if he rejects the demand D and P1 go to trial, P1 is awarded x1 (i.e., this is revealed

at trial), D pays this amount and each litigant then pays their respective court costs.  Stage 2 repeats

the preceding scenario, but now with plaintiff P2 making demand S2 of D.  Should S2 exceed S1, and

should D accept S2, then D pays S2 to P2 and pays S2 - S1 to P1 (if and only if there is an MFN clause

in any settlement between D and P1); if D rejects P2's demand and goes to trial, then x2 is revealed

at trial, D pays x2 to P2 and nothing more to P1, and then P2 and D pay their respective court costs.

If S2 < S1, and D accepts S2, then D pays S2 to P2 and nothing more to P1 (even if there was an MFN

clause in a previous agreement between P1 and D).  Finally, the plaintiffs are “time inflexible” in that

they cannot adjust the timing of their negotiation with D by either delaying or moving early.

Although each of the bargaining subgames examined in the next two sections differs in some

respects, their equilibria have similar attributes.  Equilibrium behavior for a plaintiff will involve

a settlement demand function that maps the interval of types, [x, xG], into an interval of settlement

demands, [S, SG], with higher types making higher demands.  Equilibrium behavior for the defendant

will involve a probability of rejection function which is continuous on [S, SG], begins at zero and is

strictly increasing up to (at most) one, whereafter it remains constant at one.6  We will rely on these

properties to motivate the derivation of the equilibrium strategies.
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7  Thus, D’s payoff consists of his expected costs, which are non-negative.

3.  Equilibrium Analysis of the Two-Stage Signaling Game When There is No MFN Clause

Since the levels of expected damages for the plaintiffs, x1 and x2, are independent and

identically distributed random variables from the perspective of D and the other plaintiff, the two-

stage game is simply the concatenation of two independent, one-stage signaling games as discussed

in Reinganum and Wilde (1986).  For completeness, we provide the necessary detail of such a one-

stage game between P and D, where P is privately informed about his expected level of damages x

0 [x, xG], it is common knowledge that D’s prior on these damages is a density f(C), which is

everywhere positive on [x, xG], and court costs are as described in Section 2.  We use a subscript ‘0’

to indicate the analysis and solution when there is no MFN, and subscripts ‘1’ and ‘2’ in later

sections when the analysis involves an MFN, as this requires distinguishing the two subgames.

D observes P’s demand S and forms beliefs, b0(S), about P’s type.  Since D wants to

minimize his expected cost, he is willing to accept P’s demand S if and only if S < b0(S) + kD, where

the right-hand-side is what D anticipates he would pay if there were a trial against P.7  Let r0(S)

denote D’s probability of rejecting a demand of S.  Then P's expected payoff from making such a

demand, denoted BP
0(S), is:

BP
0(S) = (1 - r0(S))S + r0(S)(x - kP),

and P chooses S so as to maximize her expected payoff.  Let S0*(x) denote the equilibrium revealing

settlement demand made by a P of type x, and let r0*(S) be the equilibrium rejection function for D.

Then S0*(x) and r0*(S) should satisfy the following conditions:

 a)  S0*(x) = x + kD;

 b)  1 - r0*(S) - (S - x + kP) r0*N(S)  = 0;
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8  For the technical afficionados, this equilibrium (and the other equilibria discussed in this
paper) is the unique Perfect Bayesian equilibrium surviving the D1 refinement of Cho and Kreps
(1987).

 c)  r0*(S0*(x)) = 0.

Condition (a) provides the revealing demand that a P should make, which makes D indifferent

between trial and settlement.  In a revealing equilibrium, D’s beliefs should be correct:  b0*(S0*(x))

= x, for all x; hence, from the demand made by P, D can infer which type of P would make that

demand (that is, b0*(S) = S - kD).  Condition (b) says that S0* should maximize P’s expected payoff,

accounting for D’s equilibrium rejection function r0*(S), while condition (c) provides the boundary

requirement that D should not reject the lowest rational demand any P would make (that is, x + kD,

which is the minimum D would pay were he to go to trial against any type of P).

Upon substitution of x = S - kD from condition (a) into condition (b), we obtain the following

differential equation, 

1 - r0*(S) - Kr0*N(S)  = 0, (1)

whose solution, employing condition (c), is straightforward.  This leads to the following proposition

which summarizes the equilibrium strategies for D and P, as well as D’s equilibrium beliefs, in the

one-stage game (see the Appendix for the proof).8

Proposition 1.  Let S = x + kD and SG = xG + kD.  For the single-stage signaling game between

P and D, the following strategies (r0*(S), S0*(x)) and beliefs b0*(S) provide the unique

revealing equilibrium.

: 1 S > SG,
(i) r0*(S)   = ; 1 - exp{- (S - S)/K}  S 0 [S, SG],< 0 S < S.
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(ii) S0*(x)  = x + kD, x 0 [x, xG].

: xG S > SG,
(iii) b0*(S)   = ; S - kD  S 0 [S, SG],< x S < S.

Thus, in the two-stage game without an MFN, P1 and D play the single-stage game

equilibrium strategies as specified above, and either D accepts the demand or D rejects it and P1 and

D go to trial; this is followed by P2 and D playing the  single-stage game equilibrium strategies as

specified above, and either D accepts the demand or D rejects it and P2 and D go to trial.  Let B^ 0
P(xi)

denote the equilibrium type-specific (reduced-form) payoff for plaintiff i; for example, B^ 0
P(x1) /

BP
0(S0*(x1)) is the reduced-form payoff for P1.  Then B^ 0

P(xi) = S0*(xi) - Kr0*(S0*(xi)), i = 1, 2.

Similarly, the defendant’s reduced-form payoff is B^ 0
D(x1, x2) = S0*(x1) + S0*(x2) = x1 + x2 + 2kD.

Note, this is not to imply that D always settles, but that he pays xi + kD either in settlement or trial

against Pi. 

4.  Equilibrium Analysis of the Two-Stage Signaling Game When There is an MFN Clause

Analyzing the Signaling Game’s Second Stage

Now assume that bargaining proceeds as proposed in Section 2 above with the feature that

any settlement between P1 and D includes an MFN clause for future agreements between D and

other plaintiffs; we return to consider whether P1 and D would agree to include such a clause later

in Section 5.  Thus, P2's equilibrium demand, S2* may be influenced by the level of S1 (assuming

settlement in stage 1), as may the rejection probability that D uses when bargaining with P2.  Of

course, if P1 and D went to trial, then the bargaining game between P2 and D is completely

characterized by Proposition 1 above.
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Hence, assume that P1 and D settled at the amount S1 and that P2 demands S2.  Let b2(S2; S1)

be D’s belief about what type of P2 would make such a demand.  If S2 < S1,  then D’s (second-stage)

cost from accepting the demand S2 is simply S2; if S2 > S1, then D’s (second-stage) cost from

accepting the demand S2 is S2 + S2 - S1; if D rejects the demand, then since it is a dominant strategy

for P2 to proceed to trial, D’s anticipated (second-stage) cost is b2(S2; S1) + kD.  Thus, if S2 < S1, then

D is willing to accept S2 if S2 < b2(S2; S1) + kD while if S2 > S1, then D is willing to accept S2 if S2

< (b2(S2; S1) + kD + S1)/2.

As in Section 3 above, the second-stage first-mover (P2) can choose a demand that makes

D indifferent between his (second-stage) cost under settlement and his anticipated (second-stage)

cost from trial, inducing D to randomize between accepting  and rejecting the demand.  When x2 +

kD < S1, a revealing equilibrium would involve P2 making the demand S2 = x2 + kD, while if x2 + kD

> S1, a revealing equilibrium would involve P2 demanding S2 = (x2 + kD + S1)/2.  In each setting, D

is then forced to a point of indifference between accepting the demand or going to trial.

Let r2(S2; S1) be D’s probability of rejecting P2's demand, which means that P2's expected

payoff is:

BP
2(S2; S1) = (1 - r2(S2; S1))S2 + r2(S2; S1)(x2 - kP).

Let S2*(x2; S1) denote the equilibrium revealing settlement demand made by a P2 of type x2, when

P1 had previously settled with D at S1, and let r2*(S2; S1) be the equilibrium rejection function for

D, when P2 demands S2 and P1 had previously settled with D at S1.  Then S2*(x2; S1) has the two-part

form described above  and r2*(S2; S1) should satisfy the following first order condition for all S1:

 bN)  1 - r2*(S2; S1) - (S2 - x2 + kP) r2*N(S2; S1)  = 0.

This condition is parallel to our earlier condition (b).  When x2 + kD < S1 we invert the revealing
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demand for P2 and substitute x2 = S2 - kD into (bN) to obtain the differential equation:

1 - r2*(S2; S1) - Kr2*N(S2; S1)  = 0, (2)

which has the same structure as equation (1).  Since S2  < S1, the appropriate boundary condition is

r2*(S2*(x; S1); S1) = 0, which is parallel to our earlier condition (c).  This means that when S2  < S1,

r2*(S2; S1) = r0*(S2).

On the other hand, if x2 + kD > S1, then we invert the revealing demand for P2 and substitute

x2 = 2S2 - S1 - kD into (bN), yielding the following differential equation, which must again hold for

all possible S1.

1 - r2*(S2; S1) + (S2 - (S1 + K))r2*N(S2; S1)  = 0. (3)

Since r2*(S2; S1) is continuous at S2 = S1 (see the earlier footnote on continuity of the rejection

function), the appropriate boundary condition for this equation is that:

 r2*(S1; S1) = r0*(S1),

which again must hold for all S1.  As indicated earlier, for revelation we will need r2*N(S2; S1) > 0.

If r2*(S2; S1) is less than 1 then from equation (3) we see that S2*(x2; S1) must be less than S1 + K.

When P2's demand is in this range, then all types settle with positive probability.  On the other hand,

if  S2*(x2; S1) > S1 + K, then (3) can only be solved for a rejection function such that  r2*(S2; S1) =

1 and r2*N(S2; S1) = 0.  In this case, demands are being rejected for sure, which means that each type

goes to trial and gets their expected damages less kP.

Thus, there are three parts to the probability of rejection function.  When S2 < S1 the MFN

constraint is not binding and r2*(S2; S1) = r0*(S2).  When S1 < S2 < S1 + K, then r2*(S2; S1) = 1 - {[S1

+ K - S2]/K}exp{- (S1 -  S)/K}.  Note that this function is increasing and linear in S2, has a slope

equal to the slope of r0*(S2) at S2 = S1, and equals 1 if S2 = S1 + K.  Finally, if S2 > S1 + K, then
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9  The Proposition claims uniqueness.  As discussed in the Appendix, there is a trivial
multiplicity of revealing equilibrium demands that are rejected with probability one; the ones we
emphasize are the lowest such revealing demands, and are the natural extension of the demands that
enjoy a positive probability of acceptance.

r2*(S2; S1) = 1.

Proposition 2 summarizes the above discussion and also provides P2's equilibrium demands

as well as D’s beliefs (the proof is in the Appendix).9

Proposition 2.  Let S = x + kD and SG2(S1) = (xG + kD + S1)/2.  The following strategies

(r2*(S2; S1), S2*(x2; S1)) and beliefs b2*(S2; S1) provide the unique revealing equilibrium for

period 2.
    1 S2 > S1 + K

1 - {[S1 + K - S2]/K}exp{-(S1 -  S)/K} S2 0 [S1, S1 + K](i)  r2*(S2;S1)  =   9   1 - exp{- (S2 -  S)/K} S2 0 [S, S1]
 0 S2 < S.

(ii) S2*(x2;S1) =
(x2 + kD + S1)/2 x2 0 [S1 - kD,xG]

   9 x2 + kD x2 0 [x, S1 - kD]

    xG S2 > SG2(S1)
2S2 - kD - S1 S2 0 [S1, SG2(S1)](iii) b2*(S2;S1) =  9   S2 - kD S2 0 [S, S1]

 x S2 < S.

Note that if SG2(S1) >  S1 + K, then types making demands S2 > S1 + K reveal, but these demands are

rejected with probability 1.  As is discussed in the proof (see the Appendix), these types would have

to cut their demands below what they could get at trial in order to settle with positive probability,

which is irrational.  If, on the other hand, SG2(S1) <  S1 + K, then even xG’s revealing demand is less

than S1 + K, so that all types have a positive probability of settling.

These two circumstances are illustrated in Figure 1 below, with the left-hand-panel
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illustrating r2*(S2; S1) when SG2(S1) <  S1 + K and the right-hand-panel illustrating r2*(S2; S1) when

SG2(S1) >  S1 + K.  Note that both panels also illustrate the rejection function D would employ if there

were no MFN in use (i.e.,  r0*(S2)).

Figure 2 below illustrates the revealing equilibrium demand function for P2.  There is a kink

at S1; higher demands are the simple average of the non-MFN-constrained demand (x2 + kD) and the

demand made by P1.  This is how P1's demand constrains P2's demand if x2 + kD >  S1.  As will be

demonstrated below, when we discuss the equilibrium for the first stage, the MFN will bind

whenever x1 < x2.  Note that, if there were no MFN, then there would be no kink at S1 and demands

would follow x2 + kD.

Analyzing the Signaling Game’s First Stage

First, let us consider D’s expected continuation value; that is, given any outcome in stage 1,

what D expects his stage-two cost will be.  We will show that the expected continuation value for
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10  Note that, while in principle D’s continuation value might be influenced by S1, we will
see that the continuation value is independent of S1, and thus we use the notation CVD(x2).
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D is simply E(x2) + kD; that is, P2's expected damages plus D’s court costs.  To see this, consider the

alternative ranges for P2's demands.  If  S2*(x2; S1) 0 [S, S1] then D’s continuation value if P2's type

is x2, denoted10 as CVD(x2), is (1 - r2*(S2*(x2; S1); S1))S2*(x2; S1) + r2*(S2*(x2; S1); S1)(x2 + kD).

Since P2's demand in this region is x2 + kD, then for these types, CVD(x2) = x2 + kD; in other words,

D is indifferent between settlement and trial for each such type.  If S2*(x2; S1) 0 [S1, S1 + K], then

D’s continuation value if P2's type is x2 is CVD(x2) = (1 - r2*(S2*(x2; S1); S1))(2S2*(x2; S1) - S1) +

r2*(S2*(x2; S1); S1)(x2 + kD) = x2 + kD, since S2*(x2; S1) = (x2 + kD + S1)/2.  Thus, once again, CVD(x2)

= x2 + kD, and D is indifferent between trial and settlement.  Finally, when S2*(x2; S1) > S1 + K, D

always rejects and goes to trial, so that CVD (x2) = x2 + kD again.  Therefore, D’s expected

continuation value, ECVD, is E(x2) + kD.  Note that this is the same expected continuation value for
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D as if there were no MFN in use, since the second stage in Section 3 also results in D being

indifferent between trial and settlement.  In other words, D is “fully extracted” with or without an

MFN in any agreement reached in the first stage (or, should D go to trial in the first stage).  This

means that D is willing to accept P1's demand of S1 if and only if S1 + ECVD < b1(S1) + kD + ECVD,

that is, if and only if S1 < b1(S1) + kD, where b1(S1) is D’s belief about what type of P1 would make

such a demand.

Let r1(S1) be D’s probability of rejecting P1's demand of S1.  Thus, P1's expected payoff from

such a demand, denoted BP
1(S1), is as follows:

BP
1(S1) = r1(S1)(x1 - kP) + (1 - r1(S1))(S1 + g(S1)),

where g(S1) is the expected payment by D to P1 under an MFN if D settles with P2 at an amount S2

> S1.  The first term above on the right reflects the possibility that D and P1 go to trial while the

second term on the right reflects the possibility that D and P1 settle, and that the settlement uses an

MFN.

In the revealing equilibrium for stage two described above, settlements by D which trigger

an MFN payment to P1 are made by types x2 in the set T(S1) / [S1 - kD, min{xG, S1 + K + kP}].  The

left-hand-end of this interval is straightforward to understand:  when S2*(x2; S1) = S1, then the type

making the demand S2*(x2; S1) = x2 + kD is (simply) the type x2 = S1 - kD.  If xG > S1 + K + kP, then xG

- kP > S1 + K, so that there is a type x~2(S1) < xG such that x~2(S1) - kP = S1 + K.  This type is making

a revealing demand that is just sufficiently large to make D reject it with probability one and for this

type (x~2(S1)) to be, herself, indifferent between settling and going to trial.  This means that  (x~2(S1)

+ kD + S1)/2 =  x~2(S1) - kP, or alternatively, S2*(x~2(S1); S1) = S1 + K.  Thus, if xG > S1 + K + kP, then

the MFN is triggered if D settles with types in the interval [S1 - kD, S1 + K + kP); D goes to trial with
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probability one (thereby not triggering the MFN) against types in the interval [S1 + K + kP, xG].  On

the other hand, if xG < S1 + K + kP, then D makes an MFN payment to P1 if D settles with types in the

interval [S1 - kD, xG].  Thus, T(S1) provides the set of types of P2 who will make demands that (if D

accepts) will generate an MFN-based payment to P1.

This payment is denoted above as g(S1):

g(S1) / IT(S1)[(x2 + kD - S1)/2][1 - r2*((x2 + kD + S1)/2; S1)]f(x2)dx2.

The term in the first pair of square brackets is simply the excess of the equilibrium demand over S1,

 S2*(x2; S1) - S1, for type x2, while the term in the second pair of square brackets is the equilibrium

probability that D will accept the demand S2*(x2; S1).  As is shown in the Appendix:  1) g(S1) > 0

for all S1 0 [S,SG), and g(SG) = 0; 2) 1 + gN(S1) > 0 for all S1 0 [S,SG]; and 3) gN(S1) < + 4 for all S1 0

[S,SG].

We use these properties below.  In particular, 1 + gN(S1) > 0 means that P1's payoff from

settling (S1 + g(S1)) is increasing in S1, providing the usual incentives for (essentially) all types of

P1 to be tempted to inflate their demands, making it necessary for D’s probability of rejection

function to be increasing in S1.  The conditions for a revealing equilibrium are analogous to those

in Section 3:

e)  S1*(x1) = x1 + kD;

f)  [1 - r1*(S1) - (S1 - x1 + kP) r1*N(S1)] + [(1 - r1*(S1))gN(S1) - r1*N(S1) g(S1)]  = 0;

g)   r1*(S) = 0.

Condition (e) reflects that, in a revealing equilibrium, D is indifferent between trial and settlement

(and thus randomizes with probability r1*), and therefore the revealing equilibrium demand, S1*(x1),

is x1 + kD.  Condition (g) provides the boundary requirement that D accepts the lowest possible
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revealing demand.

We can re-write condition (f) above by collecting terms and substituting x1 = S1 - kD (that is,

by requiring that the solution be revealing):

(1 - r1*(S1))(1 + gN(S1)) - r1*N(S1)(K + g(S1)) = 0. (4)

If 0 < r1*(S1) < 1 for all S1 0 [S,SG], then the previously asserted properties of g(S1) and gN(S1) imply

that r1*N(S1) > 0 for all S1 0 [S,SG].  Solving (4) yields the following probability of rejection function

for D (we delay considering specific forms of g(S1) and their effect on r1*(S1) until the next section):

r1*(S1) = 1 - exp{-I
[S, S1]

 (1 + gN(t))/(K + g(t)) dt}.

The boundedness of gN(t) guarantees that 0 < r1*(S1) < 1, as assumed above; in the Appendix, we

show that this probability of rejection function is a best response for D to P1's revealing equilibrium

demand.  Our equilibrium is summarized in Proposition 3 below (recall that SG and S were defined

in Proposition 1).

Proposition 3.  For the first-stage signaling game between P1 and D, the following strategies

(r1*(S1), S1*(x)) and beliefs b1*(S1) provide the unique revealing equilibrium when an MFN

is employed.

: 1 S1 > SG,
(i) r1*(S1)   = ; 1 - exp{-I

[S, S1]
 (1 + gN(t))/(K + g(t)) dt} S1 0 [S, SG],< 0 S1 < S.

(ii) S1*(x1)  = x1 + kD, x1 0 [x, xG].

: xG S1 > SG,
(iii) b1*(S1)  = ; S - kD  S1 0 [S, SG],< x S1 < S.
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11  Some of the results below hold off the equilibrium path as well as on it, but for ease of
exposition, the main text focuses on the equilibrium path.

12  Of course, if inequality (5) does not hold for some x1, that type of P1 would not use an
MFN; again, D would be indifferent to its employment.

5.  Payoffs and Welfare Considerations

Again, let a “^” on a function be the reduced-form (i.e., equilibrium type-specific) version

of the strategies and payoffs specified earlier.11  Thus, for example, r^0(x1) / r0*(S0*(x1)), r
^

1(x1) /

r1*(S1*(x1)), and g^(x1) / g(S1*(x1)).  The expression B^ 1
P(x1) is P1's reduced-form expected payoff

under an MFN and B^ 0
P(x1) is P1's reduced-form payoff with no MFN:

B^ 1
P(x1) = (1 - r^1(x1))(S1*(x1) + g^ (x1)) + r^1(x1)(x1 - kP),

while

B^ 0
P(x1) = (1 - r^0(x1))S0*(x1) + r^0(x1)(x1 - kP).

Since S0*(x1) = S1*(x1) = x1 + kD, then a P1 of type x1 prefers to include an MFN clause in the

settlement (about which inclusion D is indifferent) if and only if:

g^ (x1) > K(r^1(x1) -  r
^

0(x1))/(1 -  r^1(x1)). (5)

A sufficient condition that guarantees this is true for all types of P1 is that:

r^1(x1) <  r^0(x1) for all x1 0 (x,xG], (6)

with equality necessary at x1 = x (since under both rejection functions, a demand of x + kD is

accepted with certainty).  Thus all distributions f(C) such that inequality (6) holds guarantee that

inequality (5) holds and therefore guarantee that all types of P1 will employ an MFN in the

settlement demand, thereby inducing the equilibrium specified by Proposition 2 in Section 4 above.12

Note that if inequality (6) holds, it is immediate that P1's payoff is higher for two reasons.

First, g(S1) is non-negative, so this adds to P1's payoff.  Second, P1 makes the same demands with



25

or without an MFN, and D is more likely to accept these demands with an MFN:  the anticipated

rebate means that lower types of P1 are less tempted to mimic higher types and risk trial, so D does

not need to reject them at as high a rate (as would be required in the non-MFN case) in order to

maintain revelation.

While a full characterization of when r^1(x1) <  r^0(x1) for all x1 0 (x,xG] is not possible, the

following proposition provides a sufficient condition on F(C) for this to hold (see the Appendix).

Proposition 4.  If F(C) is the uniform distribution (i.e., f(x) = 1/(xG - x)), then r^1(x1) is always

below r^0(x1) for each type of P1 in  (x,xG].

Thus, for distributions sufficiently close to the uniform (but possibly with fN(C) either positive or

negative, or both), P1 always prefers an MFN.

On the other hand, P2 is never helped (and is sometimes harmed) by the presence of an MFN

in the settlement between P1 and D, independent of the distribution of damages.  To see this, observe

that when S2*(x2; S1*(x1)) 0 [S, S1*(x1)], then P2's equilibrium type-specific payoff under an MFN,

B^ 2
P(x2; x1) is precisely the same as the equilibrium type-specific payoff without an MFN, B^ 0

P(x2), as

both S2*(x2; S1*(x1)) and r^2(x2; x1) / r2*(x2 + kD; x1 + kD ) are the same over this interval as S0*(x2)

and r^0(x2), respectively.  Note also that S2*(x2; S1*(x1)) 0[S, S1*(x1) ] if and only if x2 0[x, x1].

However, when S2*(x2; S1) > S1*(x1), then if xG = min{xG, S1*(x1) + K + kP} =

min{xG, x1 + 2K}, meaning that xG < x1 + 2K, then rejection always occurs with probability less than

1 (except at xG = x1 + 2K) so that:

B^ 2
P(x2; x1) = (1 - r^2(x2; x1))S2*(x2; S1*(x1)) + r^2(x2; x1)(x2 - kP), for all x2 0 [x1, xG].

On the other hand, let S2*(x2; S1) > S1*(x1) and assume that xG > x1 + 2K.  Then, when x1 < x2 <

x~2(S1*(x1)) = x1 + 2K, the formula for B^ 2
P(x2; x1) given above still holds, while when x1 + 2K < x2 <
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xG, P2 and D go to trial with probability one and therefore B^ 2
P(x2; x1) = x2 - kP.  In this latter case it is

straightforward to see that B^ 2
P(x2; x1) < B^ 0

P*(x2), as without the MFN P2's demand (x2 + kD) is

sometimes accepted by D.  That this is also true in the “middle portion,” where x1 < x2 < min{xG,

x1 + 2K}, is less obvious, but is shown in the Appendix.  These results are summarized in the

following proposition.

Proposition 5.  P2's type-specific equilibrium payoff, B^ 2
P(x2; x1):

i) = B^ 0
P(x2) when x2 0 [x, x1];

ii) < B^ 0
P(x2) when x2 0 [x1, min{xG, x1 + 2K}];

iii) < B^ 0
P(x2) when x2 0 (min{xG, x1 + 2K}, xG] (if non-empty).

Therefore, there will be no general agreement among P1, P2 and D as to whether an MFN is

preferred:  the adoption of an MFN clause is not Pareto-superior for all types of litigants.  Moreover,

this also means that the expected payoff to P2 under an MFN (that is, taking the expectation of

B^ 2
P(x2; x1) with respect to x2) is strictly lower than the expected payoff to P2 without the MFN.

However, if we consider an alternative measure of welfare, expected trial costs, it is

surprising that an MFN can actually reduce expected trial costs both for D and for P2.  Proposition

6, which is proved in the Appendix, indicates that if F(C) is the uniform distribution, then the

expected trial costs generated by P2 and D are strictly lower (whenever x1 < xG) if there is an MFN

in a settlement between P1 and D than if there were no MFN.  Thus, for an open set of distributions

sufficiently close to the uniform, expected trial costs for P2 and D are lowered when an MFN is

employed.

Proposition 6.  Given a first-stage settlement with type x1 < xG, if F(C) is the uniform

distribution then the second-stage expected trial costs under an MFN, KIr^2(x2;x1)dF(x2), are
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strictly less than the second-stage expected trial costs without an MFN, KIr^0(x2)dF(x2),

where both integrals are over x2 0 [x, xG].

This is possible because an MFN creates both a direct and an indirect (equilibrium) effect on the

likelihood that a later plaintiff type’s demand is rejected.  When an MFN results in a higher

probability of rejection for a given demand made by a later plaintiff (the direct effect), it also

moderates the demand that later plaintiff types make (the indirect, or equilibrium, effect).  It is the

composition of these two effects that determines whether a later plaintiff type’s demand is more or

less likely to be rejected under an MFN.  For some later plaintiff types, these more moderate

demands are rejected less often, but for the highest types these more moderate demands are rejected

more often.  Under a uniform distribution, the expected probability of trial in the later suit declines.

We also know that when F(C) is the uniform distribution, r^1(x1) <  r^0(x1); that is, P1's expected trial

costs are also strictly lower with an MFN.  Thus, total expected trial costs (for all litigants) are lower

when an MFN is used.

What has happened here?  Without an MFN incomplete information results in an inefficiency

wherein trials sometimes occur.  In both suits, D is fully extracted, so any gains for P1 must come

out of any reduction in expected trial costs and any reduction in P2's take from bargaining.  The

presence of an MFN makes P2 moderate her demand if x2 > x1; this moderation means that low types

of P2 (those such that x2 < x1) are unaffected but high types (x2 > x1) are worse off.  P1 further

benefits “twice” from the MFN by getting an extra payment (g(S1*(x1)) if D settles with P2 and if

x2 > x1.  First, there is the direct payment, which occurs with positive probability.  Second, the

presence of this extra source of income for P1 also improves her credibility, thereby further reducing

the need for D to reject P1's demand in order to deter mimicry by low types of P1.  Since P2 is never
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13  Aghion and Bolton (1987) show that an incumbent seller can use stipulated damages in
a contract with a buyer to extract rent from an entering seller, thereby deterring some efficient entry.
Generally, their optimal contract requires stipulated damages to exceed actual harm due to a breach.
In American courts, stipulated damages in excess of actual harm are called a “penalty” and are
generally not enforced (Rea, 1998, and Cooter and Ulen, 2000).  The Aghion and Bolton argument
suggests one reason why courts should not enforce such penalties.  MFNs, on the other hand, are
now generally enforced (or their non-enforcement is because subsequent litigants are viewed by the
Court as bargaining under substantially dissimilar circumstances). 

better off with an MFN and, under  conditions discussed above, her expected trial costs are reduced,

the fact that D is fully extracted with or without an MFN means that there is a positive expected

transfer from P2 to P1 when an MFN has been employed.13  Thus, the inclusion of an MFN provision

in the agreement between P1 and D potentially allows P1 to exploit future agreements that D will

enter into with similarly situated (i.e., associated with the same distribution of damages) plaintiffs.

6.  Discussion and Conclusions

It is worth summarizing how these results compare with those of Spier (forthcoming, and

2002), and how these models may inform judicial decision-making with respect to MFN clauses.

Recall that, using a model in which an uninformed defendant negotiates simultaneously with a

continuum of plaintiffs (which emphasizes the potential for costly delay), Spier finds that an MFN:

(1) is always beneficial for the defendant; (2) can either hurt (or leave unaffected) or benefit (or

leave unaffected) the plaintiffs, meaning that an MFN does not simultaneously hurt some plaintiffs

and benefit others; and (3) can either raise or lower the overall extent of settlement, but all

settlement is shifted into the first period, thus saving delay costs.  As long as the saved delay costs

exceed any equilibrium increase in trial costs, an MFN saves on total expected delay and trial costs.

In particular, if damages are uniformly-distributed, then an MFN provides a Pareto improvement.
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The extent of trial is exactly the same, but there are no delay costs; all the savings in delay costs

accrue to the defendant, leaving the plaintiffs exactly as well off as without an MFN.

In contrast, when informed plaintiffs negotiate sequentially with the same defendant (which

emphasizes the early plaintiff’s ability to exploit future settlements), we find that an MFN:

(1) leaves the defendant unaffected; (2) always harms (or leaves unaffected) the later plaintiff, while

the early plaintiff is at least as well off for having this option (since the early plaintiff can elect not

to include an MFN in her settlement demand); and (3) the general effect of an MFN on the extent

of settlement is indeterminate.  Thus, an MFN can never provide a Pareto improvement in this

model.  However, if damages are uniformly-distributed, then an MFN reduces the overall likelihood

of trial (and thus expected trial costs) in both the early and later suits; moreover, every type of early

plaintiff would prefer to include an MFN in her settlement offer to the defendant.  Thus, an MFN

can be implemented by an early plaintiff in order to exploit a future settlement between the

defendant and a later plaintiff.  Despite this essentially redistributive motive, this use of an MFN can

reduce the expected social costs associated with trials.  

 As discussed above, an MFN can reduce the expected trial costs in the second suit because

of its moderating effect on demands made by P2 that exceed P1's demand.  With respect to an early

plaintiff, the prospect of a future rebate if the MFN is triggered makes this plaintiff less willing to

risk trial by inflating her demand, thus providing increased incentives for revelation.  As a

consequence, any given demand by this plaintiff can be rejected with a lower probability.

Interestingly, both bilateral and multilateral bargaining motivations for MFN can coexist in

the same general case; for instance, the tobacco case has both elements.  The early settlements,

involving Mississippi, Florida, and Texas, seem designed (by the settling states) to exploit possible
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future settlements.  Here the MFNs were triggered and each of these states did quite well, thanks to

Minnesota’s settlement.  Mississippi received a payment of $550 million on top of their original

settlement of $3.6 billion; Florida received a payment $1.8 billion on top of their original settlement

of $11.3 billion; and Texas received a payment $2.3 billion on top of their original settlement of

$15.3 billion (see Spier, forthcoming, and Viscusi, 2002, p. 37).  On the other hand, the Master

Settlement Agreement also includes an MFN, presumably to keep all the remaining states in that

agreement, thereby eliminating further delay.  Thus, MFN clauses were used both to exploit future

agreements and to bring about closure.

What guidance can these models provide for a judge who must decide whether to permit

and/or enforce an MFN?  If a judge’s primary concern is with reducing expected trial costs, then

both of these models suggest that MFNs are likely (though not guaranteed) to improve things, and

it may not be important to determine whether the circumstances of the case are more consistent with

one type of model or the other.  On the other hand, if equity is an important consideration, then a

judge should be especially skeptical of the proposed MFN if bargaining seems likely to be sequential

and the (early) plaintiff has substantial bargaining power.  This judicial choice also seems to turn

on the issue of bilateral versus multilateral agreements in contexts where there are likely to be

multiple litigants.  A judge who is certifying a bilateral settlement in circumstances wherein there

is likely to be further litigation by other parties needs to be convinced that overall social costs would

be sufficiently reduced by the use of an MFN to compensate for likely distributional inequities.

Alternatively, when all parties seem to be present, judges should expect that the question of

enforcing an MFN lies more with the benefits of inducing quick settlement.  Perhaps there really is

safety in numbers.
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Appendix

This Appendix contains the proofs of Propositions 1 - 6 and auxiliary results.  The proofs
of Propositions 1- 3 verify that the strategies and beliefs provided in the text constitute a revealing
equilibrium in their respective contexts.  The proofs of uniqueness can be constructed as in
Reinganum and Wilde (1986), and are omitted.

Proof of Proposition 1.  To verify that these strategies and beliefs provide a revealing equilibrium,
we  demonstrate that (1.A) r0*(S) is an optimal strategy for D, given the beliefs b0*(S); (1.B) S0*(x)
is an optimal strategy for P, given r0*(S); and (1.C) the beliefs are correct:  b0*(S0*(x)) = x for x 0
[x, xG].  

Proof of (1.A).  Given the beliefs b0*(S), upon observing the demand S 0 [S, SG], D expects to pay
b0*(S) + kD = S if he rejects the demand S and D expects to pay S if he accepts the demand S, so he
is indifferent.  Hence he is willing to randomize as specified by r0*(S).  A demand S > SG is believed
to have come from type xG so it is optimal for D to reject it (and pay xG + kD at trial) rather than to
accept it (and pay S > SG = xG + kD in settlement).  Finally, a demand S < S is believed to have come
from type x so it is optimal for D to accept it (and pay S < S = x + kD in settlement) rather than to
reject it (and pay x + kD at trial).

Proof of (1.B).  Given the strategy r0*(S), a P of type x demanding S anticipates a payoff of BP(S)
=  r0*(S)(x - kP) + (1 -  r0*(S))S.  First note that any strategy S < S is dominated by S = S since both
are accepted for sure.  Moreover, any strategy S > SG is dominated by S =  SG since the former
generates a payoff of x - kP for sure, while the latter generates a convex combination of SG > x - kP

and x - kP.  Thus, the optimal demand must belong to [S, SG].  Maximizing the expression  r0*(S)(x -
kP) + (1 -  r0*(S))S with respect to S yields the first-order condition:  -{[S - x + kP]/K}exp{- (S - S)/K
+ exp{- (S - S)/K = 0, which has the unique solution S0*(x) = x + kD.  To see that this is a local
maximum, note that the second-order condition for a maximum is {[S - x + kP - 2K]/K2}exp{- (S -
 S)/K < 0, which is satisfied at S0*(x) = x + kD.   If another maximum were to exist on the boundary
(that is, at S or SG), there would have to be a local minimum between it and S0*(x), but no other
interior stationary point exists, since S0*(x) is the unique interior solution to the first-order condition.
Thus S0*(x) provides the global maximum to P’s payoff.

Proof of (1.C).  Substitution yields b0*(S0*(x)) =  S0*(x) - kD = x + kD - kD = x for x 0 [x, xG]; thus
the beliefs are correct in equilibrium.  Moreover, the equilibrium strategies are robust to arbitrary
out-of-equilibrium beliefs.  QED

Proof of Proposition 2.  The strategy of proof is similar to that for Proposition 1.  To verify that these
strategies and beliefs provide a revealing equilibrium, we  demonstrate that (2.A) r2*(S2; S1) is an
optimal strategy for D, given the beliefs b2*(S2; S1); (2.B) S2*(x2; S1) is an optimal strategy for P2,
given r2*(S2; S1); and (2.C) the beliefs are correct:  b2*(S2*(x2; S1); S1) = x2 for x2 0 [x, xG].  

Proof of (2.A).  Recall that if D settles with P2 at S2 > S1, then D pays S2 to P2 and the amount S2 -
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S1 to P1, while if D settles with P2 at S2 < S1, then D simply pays S2 toP2.  Given the beliefs
b2*(S2; S1), upon observing a demand S2 0 [S, S1], D expects to pay b2*(S2; S1) + kD = S2 - kD + kD

= S2 if he rejects the demand S2 and D expects to pay S2 if he accepts the demand S2, so he is
indifferent.  Hence he is willing to randomize as specified by r2*(S2; S1).  Upon observing a demand
S2 0 [S1, SG2(S1)], D expects to pay b2*(S2; S1) + kD = 2S2  - kD - S1 + kD = 2S2 - S1 if he rejects the
demand S2 and D expects to pay 2S2 - S1 if he accepts the demand S2 (since he settles with P2 at S2
and rebates the difference S2 - S1 to P1).  Thus, D is indifferent, and hence is willing to randomize
as specified by r2*(S2; S1) for S2 0 [S1, S1 + K], and is willing to reject for S2 > S1 + K.  A demand
S2 > SG2(S1) is believed to have come from type xG so it is optimal for D to reject it (and pay xG + kD

at trial) rather than to accept it (and pay 2S2 - S1 > 2SG2(S1) - S1 = xG + kD in settlement).  Finally, a
demand S2 < S is believed to have come from type x so it is optimal for D to accept it (and pay S2
< S = x + kD in settlement) rather than to reject it (and pay x + kD at trial).

Proof of (2.B).  Given the strategy r2*(S2; S1), a P2 of type x2 demanding S2 anticipates a payoff of
B2

P(S2; S1) = r2*(S2; S1)(x2 - kP) + (1 -  r2*(S2; S1))S2.  This payoff function is everywhere continuous
in S2, though there are some points of non-differentiability where the function r2* makes transitions.
First note that any strategy S2 < S is dominated by S2 = S since both are accepted for sure.
Moreover, any strategy S2 > SG2(S1) is (at least weakly) dominated by S2 =  SG2(S1) since the former
generates a payoff of x2 - kP for sure, while the latter generates either x2 - kP for sure (if SG2(S1) > S1

+ K) or a convex combination of x2 - kP and SG2(S1) (if SG2(S1) < S1 + K, in which case SG2(S1) > x2 -
kP).  Thus, the optimal demand must belong to [S, SG2(S1)].  

In order to determine P2's optimal demand, we must find the best demand on each of the
branches of P2's payoff (corresponding to the three branches of r2*(S2; S1)) and choose between
them.  Notice that r2*(S2; S1) = r0*(S2) for S2 < S1.  Thus, type x2's best demand in [S, S1] is given by
S2* = x2 + kD, provided this does not exceed S1; otherwise type x2's best demand in [S, S1] is given
by S2* = S1.  Similarly, type x2's best (interior) demand in [S1, S1 + K] satisfies the first-order
condition {[S1 + K - S2]/K}exp{- (S1 -  S)/K} - {[S2 - x2 + kP]/K}exp{- (S1 -  S)/K} = 0, which has
the unique solution S2* = (x2 + kD + S1)/2.  To see that this is a maximum, note that the second-order
condition for a maximum is {-2/K}exp{- (S1 -  S)/K} < 0, which is clearly satisfied.  Thus, S2* =
(x + kD + S1)/2 is type x2's best demand in [S1, S1 + K] provided it is at least S1 and does not exceed
S1 + K; otherwise type x2's best demand in [S1, S1 + K] is either S2* = S1 or S2* = S1 + K.  Type x2
is indifferent among all demands that exceed S1 + K, as they are all rejected with certainty; thus, if
type x2's best demand in [S1, S1 + K] is S1 + K, then this type is actually indifferent among all
demands that will be rejected with certainty.

Consider P2 types with x2 0 [x, S1 - kD].  Type x2's best demand in [S, S1] is S2* = x2 + kD,
while type x2's best demand in [S1, S1 + K] is S1 since (i) the aforementioned “interior” solution is
not interior to the interval; that is, S2* = (x2 + kD + S1)/2 < S1, and (ii) the payoff associated with S2
= S1 + K is x2 - kP, while that associated with S2 = S1 is S1[exp{- (S1 -  S)/K}] + [1 - exp{- (S1 -
S)/K](x2 - kP) > x2 - kP for x2 0 [x, S1 - kD].  Thus, S2*(x2; S1) = x2 + kD for x2 0 [x, S1 - kD].  Now
consider P2 types with x2 0 [S1 - kD, xG].  Type x2's best demand in [S, S1] is S2* = S1 since the
“interior” solution is not interior to the interval (that is, S2* = x2 + kD > S1), while type x2's best
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demand in [S1, S1 + K] is S2* = min{(x2 + kD + S1)/2, S1 + K}.  Since P2's payoff is continuous, it
follows that  S2*(x2; S1) = min{(x2 + kD + S1)/2, S1 + K} for x2 0[S1 - kD, xG].  Let x~2(S1) / S1 + K +
kP.  This is the P2-type who is just indifferent between settling at the demand S2 = (x2 + kD + S1)/2
versus demanding S1 + K and going to trial (and receiving x2 - kP).  Thus, type x2's optimal demand
is uniquely defined by S2*(x2; S1) = (x2 + kD + S1)/2 for x2 0 [S1 - kD, x~2(S1)], and those types x2 0
(x~2(S1), xG] are indifferent among all demands that exceed S1 + K.  Thus, those types x2 0 (x~2(S1), xG]
are willing to demand according to the function S2*(x2; S1) = (x2 + kD + S1)/2, even though this
demand will result in rejection for sure (the nearest demand with a positive probability of acceptance
is S1 + K - ,, but this is worse than trial for x2 0 (x~2(S1), xG]).

Proof of (2.C).   For x2 0 [x, S1 - kD], substitution yields b2*(S2*(x2; S1)) =  S2*(x2; S1) - kD = x2 + kD -
kD = x2.  Similarly, for x2 0 [S1 - kD, xG], substitution yields b2*(S2*(x2; S1)) = 2S2*(x2; S1) - kD - S1
= 2(x2 + kD + S1)/2 - kD - S1  = x2. 

We say this equilibrium is “essentially” unique because types x2 0 (x~2(S1), xG] are indifferent among
demands that are rejected and hence could be assigned to a different revealing (i.e., monotonic)
demand function that involves demands that are rejected. QED
 
Proof of claims regarding the function g(S1).
Recall that T(S1) /[S1 - kD, min{xG, S1 + K + kP}].  This interval is non-degenerate as long as S1 <
SG =  xG + kD, while T(SG) = [xG, xG].

(1) To see that g(S1) > 0 for all S1 0 [S, SG) and g(SG) = 0, simply note that the integrand is a positive
number for all x2 0 intT(S1).  Since this interior is non-empty for S1 0 [S, SG) (and empty for S1 = SG),
the claimed results follow. 

(2) To see that 1 + gN(S1) > 0 for all S1 0 [S, SG], let h(S1; x2) / (x2 + kD - S1)(S1 + K + kP - x2)/4K,
and write g(S1) / Ih(S1; x2)exp{- (S1 - S)/K}f(x2)dx2, where the integral is taken over x2 0 T(S1).
The payment to P1 if settlement occurs at S1 is S1 + g(S1).  The derivative of this expression is 1 +
gN(S1).

gN(S1) = I[Mh(S1; x2)/MS1 - h(S1; x2)/K]exp{- (S1 - S)/K}f(x2)dx2, 

where the integral is taken over x2 0 T(S1).  The difference Mh(S1; x2)/MS1) - h(S1; x2)/K = (x2 + kD -
S1 - K)/2K - (x2 + kD - S1)(S1 + K + kP - x2)/4K2, which can be simplified to [(x2 + kD - S1)/2K]2 - .5.
Thus, 

1 + gN(S1) = 1 + I{[(x2 + kD - S1)/2K]2 - .5}exp{- (S1 - S)/K}f(x2)dx2

= 1 - .5F(T(S1))exp{- (S1 - S)/K} +  I[(x2 + kD - S1)/2K]2exp{- (S1 - S)/K}f(x2)dx2,

where F(T(S1)) is the measure of the set T(S1).  Since .5 is strictly less than 1 and F(T(S1)) and 
exp{- (S1 - S)/K} are less than or equal to 1, the product of these three numbers is less than one.  The
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remaining (integral) term is clearly non-negative.  Thus 1 + gN(S1) > 0 for all S1 0 [S, SG].

(3) To see that gN(S1) < + 4 for all S1 0 [S, SG], note that {[(x2 + kD - S1)/2K]2 - .5}exp{- (S1 - S)/K}
is bounded for all S1 0 [S, SG]; let B denote this bound.  Then gN(S1) < BF(T(S1)) < B. QED

Proof of Proposition 3.  The proof follows that of Proposition 1.  To verify that these strategies and
beliefs provide a revealing equilibrium, we  demonstrate that (3.A) r1*(S1) is an optimal strategy for
D, given the beliefs b1*(S1); (3.B) S1*(x1) is an optimal strategy for P1, given r1*(S1); and (3.C) the
beliefs are correct:  b1*(S1*(x1)) = x1 for x1 0 [x, xG].  

Proof of (3.A).  Given the beliefs b1*(S1), upon observing the demand S1 0 [S, SG], D expects to pay
b1*(S1) + kD + ECVD = S1 + ECVD if he rejects the demand S1 and D expects to pay S1 + ECVD if
he accepts the demand S1, so he is indifferent.  Hence he is willing to randomize as specified by
r1*(S1).  A demand S1 > SG is believed to have come from type xG so it is optimal for D to reject it (and
expect to pay xG + kD at trial + ECVD) rather than to accept it (and pay S1 > SG = xG + kD + ECVD in
settlement).  Finally, a demand S1 < S is believed to have come from type x so it is optimal for D to
accept it (and pay S1 + ECVD < S + ECVD = x + kD + ECVD in settlement) rather than to reject it (and
pay x + kD at trial plus ECVD).

Proof of (3.B).  Given the strategy r1*(S1), a P1 of type x1 demanding S1 anticipates a payoff of
BP

1(S1) =  r1*(S1)(x1 - kP) + (1 -  r1*(S1))(S1 + g(S1)).  Since d(S1 + g(S1))/dS1 = 1 + gN(S1) > 0, higher
demands yield higher overall payments if accepted.  Thus, any strategy S1 < S is dominated by S1

= S since both are accepted for sure.  Moreover, any strategy S1 > SG is dominated by S1 =  SG since
the former generates a payoff of x - kP for sure, while the latter generates a convex combination of
x - kP and SG + g(SG) > x - kP.  Thus, the optimal demand must belong to [S, SG].  Maximizing the
expression  r1*(S1)(x1 - kP) + (1 -  r1*(S1))(S1 + g(S1)) with respect to S1 yields the first-order
condition: 

- (S1 + g(S1) - x1 + kP)[(1 + gN(S1))/(K + g(S1)]exp{-I
[S, S1]

 (1 + gN(t))/(K + g(t)) dt} 

+ (1 + gN(S1))exp{-I
[S, S1]

 (1 + gN(t))/(K + g(t)) dt} = 0,

which has the unique solution S1*(x1) = x1 + kD.  To see that this is a local maximum, note that the
second-order condition for a maximum is satisfied:

- (S1 + g - x1 + kP)r1*O - 2r1*N(1 + gN) + (1 - r1*)gO< 0 at S1 = x1 + kD.

This inequality follows from the facts that:
 1 - r1* =  exp{-I

[S, S1]
 (1 + gN(t))/(K + g(t)) dt},

 
r1*N =   [((1 + gN)/(K + g)]exp{-I

[S, S1]
 (1 + gN(t))/(K + g(t)) dt},

and
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 r1*O = {d[(1 + gN)/(K + g)]/dS1 - [(1 + gN)/(K + g)]2}exp{-I
[S, S1]

 (1 + gN(t))/(K + g(t)) dt}.

Plugging these into the second-order condition above, evaluating the resulting expression at S1 = x1
+ kD, collecting terms and simplifying implies that the second-order condition for a maximum holds
at S1 = x1 + kD if and only if -(1 + gN)/(K + g) < 0, which has been shown to hold.

If another maximum were to exist on the boundary (that is, at S or SG), there would have to
be a local minimum between it and S1*(x1), but no other interior stationary point exists, since S1*(x1)
is the unique interior solution to the first-order condition.  Thus S1*(x1) provides the global
maximum to P’s payoff.

Proof of (3-C).  Substitution yields b1*(S1*(x1)) =  S1*(x1) - kD = x1 + kD - kD = x1 for x1 0 [x, xG];
thus the beliefs are correct in equilibrium.  Moreover, the equilibrium strategies are robust to
arbitrary out-of-equilibrium beliefs. QED

Proof of Proposition 4.  From the definitions of r^1(x1) and  r^0(x1), it is clear that r^1(x) =  r^0(x), and that
r^1(x1) <  r^0(x1) for all x1 0 (x, xG] if and only if

I
[x, x1]

 (1 + gN(S1*(x)))/(K + g(S1*(x)))dx < I
[x, x1]

 (1/K)dx  for all x1 0 (x, xG].

We claim that (1 + gN(S1*(x)))/(K + g(S1*(x))) < 1/K (or, equivalently, that gN(S1*(x)) < g(S1*(x))/K)
for all x 0 [x, xG) when F(C) is uniform, which implies that the inequality in the displayed equation
above holds for all x1 0 (x, xG].

Since gN(S1) = I[Mh(S1; x2)/MS1 - h(S1; x2)/K]exp{- (S1 - S)/K}f(x2)dx2, it follows that
gN(S1*(x)) < g(S1*(x))/K if and only if:

H(x) / I[Mh(S1*(x); x2)/MS1) - 2h(S1*(x); x2)/K]exp{- (x - x)/K}f(x2)dx2 < 0,

where the integral is taken over x2 0 T(S1*(x)) = [x, min{xG, x + 2K}].  Note that T(S1*(x)) is non-
degenerate whenever S1*(x) <  xG + kD; that is, whenever x < xG.  A sufficient condition for H(x) <
0 for all x 0 [x, xG)  is that F(x2) is the uniform distribution.  To see this, substitute f(x2) = 1/(xG - x),
integrate and simplify to obtain: 

H(x) = [exp{- (x - x)/K}/2K2(xG - x)]Y{Y2/3  - YK/2 - K2}, where Y / min{xG - x, 2K}.  

The term in square brackets is positive, as is Y itself, so H(x) < 0 so long as M(Y) / Y2/3  - YK/2 -
K2 < 0.  Since Y = min{xG - x, 2K} 0 (0, 2K] for x 0 [x, xG), if we can show that M(y) < 0 for all y
0 [0, 2K], the proof will be complete.  The function M(C) is convex on [0, 2K] with M(0) = -K2 <
0 and M(2K) = -2K2/3 < 0.  Since M(C) is convex, M(t×0 + (1 - t)×2K) < tM(0) + (1 - t)M(2K) < 0
for all t  0 [0, 1].  Therefore M(y) < 0 for all y 0 [0, 2K], and the claim is proved. QED

Proof of Proposition 5.  First note that, for any given x1, B
^

2
P(x2; x1) is a continuous function of x2.

(i)  When x2 0 [x, x1], P2's optimal demand is S2*(x2; S1*(x1)) = x2 + kD = S0*(x2) < S1*(x1), so the
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MFN does not bind, and r^2(x2; x1) = r^0(x2).  Thus, this part follows immediately by substitution.

(ii) When x2 0 (x1, min{xG, x1 + 2K}], P2's optimal demand is constrained by the MFN and S2*(x2;
S1*(x1)) = (x2 + x1 + 2kD)/2 and  r^2(x2; x1) = 1 - {[x1 + 2K - x2]/2K}exp{- (x1 - x)/K}.  After
substitution and simplification, B^ 2

P(x2; x1) = x2 - kP + [(x1 + 2K - x2)2/4K]exp{- (x1 - x)/K}, while
B^ 0

P(x2) = x2 - kP + Kexp{- (x2 - x)/K}.  Let z / x1 + 2K - x2.  For x2 0 (x1, min{xG, x1 + 2K}], z 0
[0, 2K).  Then B^ 2

P(x2; x1) < B^ 0
P(x2) for x2 0 (x1, min{xG, x1 + 2K}] if and only if m(z) / (ez/2K)2 -

exp{z/k} < 0 for all z 0 [0, 2K), which is true.  On the interval [0, 2K], m(z) starts out negative at
m(0) = - 1, and is decreasing and convex.  It reaches an interior minimum and is thereafter
increasing and, eventually, concave, reaching another stationary point, a maximum, at z = 2K,where
m(2K) = 0.  Thus, m(z) < 0 for all z 0 [0, 2K).  

(iii) Finally, consider x2 0 (min{xG, x1 + 2K}, xG].  For these values of x2, P2 goes to trial for sure since
r^2(x2; x1) = 1, and thus B^ 2

P(x2; x1) = x2 - kP.  On the other hand, B^ 0
P(x2) = x2 - kP + Kexp{- (x2 - x)/K}>

x2 - kP. QED

Proof of Proposition 6.  We argue that when F(C) is the uniform distribution, expected trial costs are
lower in both the first and second periods with an MFN.  We have already shown that a uniform
distribution for x1 is sufficient to guarantee that r^1(x1) <  r^0(x1) for all x1 0 (x, xG], while r^1(x) =  r^0(x).
Since expected trial costs in the first period are simply KE{r^1(x1)} with an MFN and  KE{r^0(x1)}
without an MFN (where the expectation is taken over x1), it is clear that first-period expected trial
costs are lower with an MFN.  

It is perhaps more surprising that expected trial costs in the second period are also lower with
an MFN when x2 is uniformly distributed.  Although any given demand S2 is rejected with a higher
probability when the MFN is binding, P2's demand is reduced when the MFN is binding.  The
composition of these two effects means that r^2(x2; x1) may be more, or less, than r^0(x2) for x2 0
[x1, xG].  These expressions are the same when the MFN does not bind; that is, when x2 0 [x, x1].  We
fix a value of x1 and argue that, if x2 is distributed uniformly, then the expected trial costs for the
second period are lower under an MFN.  Since this will be shown to be true for all values of x1
(except x1 = xG, in which case the MFN never binds for any x2), the ex ante expected trial costs for
the second period are lower under an MFN.

Recall that r^2(x2; x1) = 1 - {[x1 + 2K - x2]/2K}exp{- (x1 - x)/K} for x2 0 [x1, min{xG, x1 + 2K}],
while r^2(x2; x1) = 1 for x2 0 (min{xG,  x1 + 2K}, xG].  Without an MFN, r^0(x2) = 1 - exp{- (x2 - x)/K}
for all x2 0 [x1, xG].  Thus, multiplying by the cost per trial and taking the expectation over x2 0
[x1, xG] (where the probability of a trial differs with and without an MFN) yields:

ETC2(x1) - ETC0 = KI
[x1, xG]

 r^2(x2; x1)f(x2)dx2 -  KI[x1, xG]
 r^0(x2)f(x2)dx2 

    = KI
[x1, xG]

  exp{- (x2 - x)/K}f(x2)dx2 

- Kexp{- (x1 - x)/K}I
[x1, min{xG,  x1 + 2K}]  [(x1 + 2K - x2)/2K]f(x2)dx2.
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Clearly, ETC2(xG) - ETC0 = 0, since the domains of integration are then degenerate.  Thus, consider
values of x1 < xG in the remainder of the proof.  Substitute f(x2) = 1/( xG - x), integrate and simplify
to obtain: 

ETC2(x1) - ETC0 = [K/(xG - x)]exp{- (x1 - x)/K}

× [K(1 - exp{- (xG - x1)/K}) - (Z - x1)(x1 + 4K - Z)/4K],

where Z = min{xG, x1 + 2K}.  There are two cases to consider. 
 
Case 1.  Assume that x1 + 2K < xG, so Z = x1 + 2K.  Substituting and simplifying yields 

ETC2(x1) - ETC0 = [K/(xG - x)]exp{- (x1 - x)/K}[K(1 - exp{- (xG - x1)/K}) - K], 

which is clearly negative.  So ETC2(x1) - ETC0 < 0 for all x1 < xG - 2K.

Case 2.  Assume that x1 + 2K > xG, so Z =  xG.  Substituting and simplifying yields 

ETC2(x1) - ETC0 = [K/(xG - x)]exp{- (x1 - x)/K}

× [K(1 - exp{- (xG - x1)/K}) - (xG - x1)(x1 + 4K - xG)/4K].

Let v / xG - x1.  Then sgn {ETC2(x1) - ETC0} = sgn {[K(1 - exp{- v/K}) - v(4K - v)/4K]}.  Since x1
0 [xG - 2K, xG) implies that v 0 (0,2K], we need only verify that K(1 - exp{- v/K}) - v(4K - v)/4K <
0 for all v 0 (0,2K].  This inequality holds for the specified values of v.  Thus, ETC2(x1) - ETC0 <
0 for x1 0 [xG - 2K,xG), as claimed. QED
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