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Abstract

In this paper, we develop a general approach for constructing simple tests for the correct
density forecasts, or equivalently, for i.i.d. uniformity of appropriately transformed random
variables. It is based on nesting a series of i.i.d. uniform random variables into a class of copula-
based stationary Markov processes. As such, it can be used to test for i.i.d. uniformity against
alternative processes that exhibit a wide variety of marginal properties and temporal dependence
properties, including skewed and fat-tailed marginal distributions, asymmetric dependence, and
positive tail dependence. In addition, we develop tests for the dependence structure of the
forecasting model that are robust to possible misspecification of the marginal distribution.

∗We thank the editor and an anonymous referee for valuable comments.



1 Introduction

How to evaluate density forecasts of parametric dynamic models is very important for risk man-

agement in finance and insurance. Recently, a number of authors including Diebold, Gunther, and

Tay (1998), Diebold, Tay, and Wallis (1999), Diebold, Hahn, and Tay (1999), Clements and Smith

(2000), and Elerian, Chib, and Shephard (2001) have applied and extended Rosenblatt’s (1952)

transformation to evaluating density forecasts.1

Specifically, let {Yt}nt=1 denote a time series and Ωt represent the information set at time t (not
including Yt). Let Ft(·|Ωt) be the forecast of the distribution of Yt given the information Ωt. Diebold,
Gunther, and Tay (1998) and Bai (2003) show that the transformed variables Ut = Ft(Yt|Ωt),
t = 1, . . . , n, are i.i.d. uniform over (0,1) if and only if the forecasts {Ft(·|Ωt)} are correct. Based
on this result, Diebold, Gunther, and Tay (1998) propose to evaluate density forecasts by checking

the uniformity and serial independence of the Ut’s graphically via the histogram of {Ut} and the
correlograms of {(Ut − Ū)i}, where i = 1, 2, 3, 4 and Ū is the sample mean of the Ut’s. Via a

simulation study, they demonstrate that the proposed procedures reveal useful information about

possible deviations of the forecast model from the correct model. Bai (2003), among others, proposes

a consistent test for uniformity of the Ut’s based on the empirical distribution function under the

assumption that the Ut’s are i.i.d.. Hong and Li (2002) develop a joint test for uniformity and serial

independence by comparing a kernel estimate of the joint density function of Ut−j and Ut with the

uniform density on the unit square and report superior Monte Carlo performance of their test over

existing tests. Thompson (2002) provides theoretical justification for the graphical procedures used

in papers such as Diebold, Gunther, and Tay (1998) by describing a family of specification tests for

uniformity and serial independence based on the empirical distribution function and/or the sample

periodogram.

Berkowitz (2001) argues that consistent nonparametric tests typically require the availability

of large data sets to achieve accurate inference. Instead he advocates simple parametric tests.

Noting the potential difficulties in nesting the null hypothesis of i.i.d. uniformity in a more general

parametric class of models, Berkowitz (2001) first transforms Ut to Zt = Φ
−1(Ut) in which Φ(·) is

the standard normal distribution function, and then imposes a linear autoregressive (AR) structure

on the Zt’s. Under the linear AR structure for {Zt}, testing i.i.d. uniformity of the Ut’s and testing

serial independence of the Ut’s are equivalent to testing certain hypotheses on the specific values

of the parameters in the AR model, which can be carried out by likelihood ratio (LR) tests.

The main objective of this paper is to introduce a general approach for constructing parametric

tests for the correct density forecasts, or equivalently, for i.i.d. uniformity of {Ut}, that are valid
for a wide variety of alternative processes, such as those with skewed and fat-tailed marginal

1Rosenblatt’s (1952) transformation allows us to transform a multivariate random vector into a vector of i.i.d.
uniform scalar random variables. Recently, this transformation has also become popular in testing parametric time
series models. For instance, Bai (2003), Corradi and Swanson (2001), and Inoue (1999) have applied it to testing the
parametric specification of conditional distributions of dynamic models, while Hong and Li (2002) and Thompson
(2002) have applied it in testing diffusion models.
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distributions, asymmetric dependence, and positive tail dependence. It is based on nesting a series

of i.i.d. uniform random variables into a class of copula-based stationary Markov processes. In

addition, we develop tests for serial independence of {Ut} or the dependence structure of the
forecasting model that are robust to possible misspecification of the marginal distribution of Ut.

A copula is simply a multivariate probability distribution function with uniform marginals. The

importance of copulas in multivariate modeling is justified by the Sklar’s (1959) theorem. Loosely

speaking, it states that any given multivariate distribution can be expressed as the copula function

evaluated at its marginal distribution functions and any given copula function when evaluated

at any marginal distributions becomes a multivariate distribution. Hence the information in the

joint distribution is decomposed into those in the marginal distributions and that in the copula

function. Consequently a copula allows one to model the marginal distributions and the dependence

structure of a multivariate random variable separately. Moreover, the copula measure of dependence

is invariant to any increasing transformations. See Joe (1997) and Nelsen (1999) for detailed

discussions on the theory and examples of copulas.

Because of their flexibility in modeling the distribution of multivariate random variables, copulas

have gained popularity in the finance and insurance community over the last few years. We refer

readers to Embrechts, McNeil and Straumann (1999), and Patton (2001) for extensive lists of

references in the finance and insurance literatures. While most existing papers in the finance and

insurance literatures use copulas to model the contemporaneous dependence between two time

series, a number of papers have employed copulas to model temporal dependence of a time series:

Joe (1997) proposes a class of stationary first order Markov processes based on copulas; Darsow,

Nguyen, and Olsen (1992) provide a necessary and sufficient condition for a copula-based process

to be Markovian; Bouyé, Gaussel, and Salmon (2002) use copulas to model stationary nonlinear

autoregressive dependence of time series and apply the models to financial returns and transactions

based forex data; Gagliardini and Gourieroux (2002) suggest a class of proportional hazard duration

time series models and the corresponding copula functions; Chen and Fan (2002) establish the

temporal dependence properties of a class of copula-based stationary time series models and the

asymptotic properties of a semiparametric estimator of the copula function. The simulation results

in Chen and Fan (2002) reveal the richness of both the marginal and dependence patterns that can

be generated by copula-based time series models.

In this paper, we make use of the recent developments in copula-based time series modelling to

develop tools for evaluating density forecasts. In particular, we establish tests for correct density

forecasts, or i.i.d. uniformity of the Ut’s, against the alternative that {Ut} is a stationary copula-
based Markov process. Since a copula is itself a multivariate distribution with uniform marginals,

it provides a natural way to model the temporal dependence structure of the transformed variables

{Ut}. As we will show in the next section, the linear AR structure imposed on {Zt} in Berkowitz
(2001) implies that the process {Ut} is a copula-based Markov process with the Gaussian copula and
a specific parametric marginal distribution. It is well known that the dependence structure of time
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series characterized by the Gaussian copula is symmetric regardless of the marginal distribution.

As a result, the tests in Berkowitz (2001) do not have power against alternative processes of

{Ut} that exhibit asymmetric dependence. By choosing a non-Gaussian copula such as the Frank
copula, the Clayton copula, among many others, the tests developed in this paper have power

against processes exhibiting complicated nonlinear asymmetric dependence. On the other hand, by

choosing fat-tailed distributions such as the Student’s t distribution, our tests have power against

time series with extreme values. In addition, by leaving the marginal distribution unspecified, we

develop tests for the dependence structure of the forecasting model or the serial independence of

{Ut} that are robust to the choice of the marginal distribution of Ut. Another advantage of the

copula approach in our context is that copulas and hence copula-based measures of dependence

are invariant to strictly increasing transformations of random variables. This ensures that in cases

where Ut is an increasing transformation of the innovation of the forecast model, the dependence

structure of the innovations of the model is the same as that of {Ut} as modeled by copulas. This
information may then be used to update the forecast model in case it is being rejected.

The rest of this paper is organized as follows. In Section 2, we introduce the class of copula-based

stationary time series models for {Ut} that nest the null hypothesis of i.i.d. uniformity. Section 3
first develops tests for the null hypothesis of correct density forecasts or the i.i.d. uniformity of {Ut}
for the class of copula-based stationary time series models whose marginal distribution belongs to a

parametric family of distributions and then tests for the null hypothesis of the correct specification

of the dependence structure of the forecasting model or the serial independence of {Ut} for the
class of semiparametric models in which the marginal distribution is unspecified. The last section

concludes. In this paper, it is understood that the null hypothesis of correct density forecasts is

equivalent to that of i.i.d. uniformity of {Ut}, and the null hypothesis of the correct specification of
the dependence structure of the forecasting model is equivalent to that of the serial independence

of {Ut}.

2 The Class of Time Series Models for {Ut}
Let {Ut : t = 1, ..., n} be the transformed variables defined in the Introduction. Throughout the
rest of this paper, we will work with the following assumption:

Assumption 1: {Ut : t = 1, ..., n} is a sample of a stationary first-order Markov process
generated from (G∗(·), C(·, ·;α∗)), where G∗(·) is the true invariant distribution which is absolutely
continuous with respect to Lebesgue measure on real line; C(·, ·;α∗) is the true parametric copula for
(Ut−1, Ut) up to unknown value α

∗ and is absolutely continuous with respect to Lebesgue measure
on [0, 1]2.

Under Assumption 1, the null hypothesis of i.i.d. uniform Ut’s is equivalent to the joint

hypothesis that G∗(u) is the uniform distribution and C(v1, v2;α
∗) = v1v2 is the independence

copula. By choosing G∗(·) and C(·, ·;α∗) separately, one can design tests for i.i.d. uniformity
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of the Ut’s that have power against alternative processes that exhibit a variety of marginal and

dependence properties such as skewed, fat-tailed marginal distributions and nonlinear, asymmetric

dependence, among others.

The following example shows that the approach taken in Berkowitz (2001) is a special case of

our general copula approach in which the copula function is the Gaussian copula and the invariant

distribution G∗ takes a specific form.
Example 1: Let the copula C(·, ·;α∗) be the Gaussian copula:

C(v1, v2;α
∗) = Φα∗(Φ−1(v1),Φ−1(v2)),

where Φα∗(·, ·) is the distribution function of the bivariate normal distribution with means zero,
variances 1, and correlation coefficient α∗. Then the process {Φ−1(G∗(Ut))} is a Gaussian process
and hence

Φ−1(G∗(Ut)) = α∗Φ−1(G∗(Ut−1)) + �t, (2.1)

where �t ∼ N(0, 1− α∗2). If the marginal distribution G∗(·) is of the form:

G∗(u) = Φ(
Φ−1(u)− µ

σ/
√
1− α∗2

), (2.2)

then (2.1) reduces to the linear AR(1) model for {Zt = Φ
−1(Ut)} adopted in Berkowitz (2001):

Zt − µ = ρ(Zt−1 − µ) + ηt, where ηt is i.i.d. N(0, σ
2).

By allowing G∗(·) to be a different distribution than (2.2), one can design tests for i.i.d. unifor-
mity that have power against processes characterized by the Gaussian copula, but different marginal

distributions. Coupled with fat-tailed distributions such as the Student’s t distribution, time se-

ries models with the Gaussian copula can produce extremely large and small values. However no

clustering of such extremely large or small values occurs as the Gaussian copula does not have tail

dependence. Moreover, it is well known that the dependence structure of time series characterized

by the Gaussian copula is symmetric regardless of its marginal distribution. To develop tests that

have power against processes exhibiting complicated nonlinear asymmetric dependence and clusters

of large and/or small values, non-Gaussian copulas must be used. A wide variety of non-Gaussian

copulas is available, see Joe (1997) and Nelsen (1999) for properties of specific copulas. Chen and

Fan (2002) provide plots of time series generated from the Joe-Clayton copula coupled with normal

and student’s t distributions. These plots reveal the richness of both the marginal and temporal

dependence structure that can be generated by copula-based time series models.

The copula approach facilitates the incorporation of additional information into the model.

For example, suppose one tests the null hypothesis of i.i.d. uniformity sequentially by testing the

hypothesis of uniformity first and then that of serial independence. In cases where the uniformity

of Ut is not rejected, one may wish to take this into account when testing for serial independence.

This can be done easily by choosing an appropriate copula function as the joint distribution of Ut−1
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and Ut and then testing if the copula function is the independence copula. On the other hand, if

one wishes to test the serial independence first, tests that are robust to the choice of the marginal

distribution would be desirable. Consider, for example, the Gaussian copula model. Klaassen

and Wellner (2001) show that in the Gaussian copula model, |α∗| equals the maximum correlation

coefficient of Ut−1 and Ut. Hence Ut−1 and Ut are independent if and only if α
∗ = 0. Robust tests

for serial independence of {Ut} can thus be constructed from consistent estimators of α∗. Since
(2.1) implies

α∗ = corr(Φ−1(G∗(Ut−1)),Φ−1(G∗(Ut))), (2.3)

one gets α∗ = corr(Ut−1, Ut) if and only if G
∗(·) = Φ(·), which is impossible due to the [0, 1] support

of Ut. As a result, in the Gaussian copula model, the correlogram of {Ut} can never capture all the
dependence structure of {Ut}. Instead the correlogram of {Φ−1(G∗(Ut))} does.

One important property of copulas that makes them useful in evaluating density forecasts is

their invariance to strictly increasing transformations of random variables (see Theorem 2.4.3 in

Nelsen (1999). This may be useful in updating the forecast model in case it is being rejected, as

shown in the following example.

Example 2: Consider Vasicek’s (1977) model:

dYt = κ(β − Yt)dt+ σdWt, (2.4)

where {Wt} is the standard Brownian motion, β is the long run mean, and κ is the speed of mean

reversion to β. The conditional distribution of Yt given Ωt is N(β + (Yt−1 − β)e−κ, VE(1− e−2κ))
in which VE = σ2/(2κ). Hence

Ut = Φ(
Yt − [β + (Yt−1 − β)e−κ]p

VE(1− e−2κ)
). (2.5)

Let �t = Yt− [β+ (Yt−1− β)e−κ]. Since Φ(·) is a strictly increasing function, the copula associated
with the joint distribution of �t−1 and �t is the same as that associated with the joint distribution

of Ut−1 and Ut. The dependence structure of the process {�t} may then be incorporated into the
original model for {Yt}. For instance, if the copula of (Ut−1, Ut) is the Gaussian copula and the

marginal distribution of Ut is uniform, then the joint distribution of �t−1 and �t is

H(u1, u2) = C(Φ(
u1p

VE(1− e−2κ)
),

u2p
VE(1− e−2κ)

);α) = Φα(
u1p

VE(1− e−2κ)
,

u2p
VE(1− e−2κ)

).

The joint distribution of �t−1 and �t implies that {�t} is a linear AR(1) process which in turn implies
that the process {Yt} is a linear AR(2) process.

Diebold, Gunther, and Tay (1998) suggest that one should examine the correlograms of {(Ut −
Ū)}i for i = 1, 2, 3, 4; they will reveal dependence through the conditional mean, conditional vari-
ance, conditional skewness, or conditional kurtosis, see also Thompson (2002). One potential

drawback of the Pearson’s correlation coefficient is that it is not invariant to strictly increasing
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transformations. In the above example, this means that the serial correlation coefficient of {Ut}
is not the same as that of {�t}. Copula-based dependence measures such as Kendall’s tau and
Spearman’s rho, see Joe (1997) and Nelsen (1999) are known to be invariant to strictly increasing

transformations of random variables and hence may be used as well.

3 Evaluating Density Forecasts

In this section, we develop two classes of tests: one tests the null hypothesis of correct density

forecasts, or equivalently, of the i.i.d. uniformity of the Ut’s; the other tests the null of correct

specification of the dependence structure of the forecasting model, or the serial independence of

{Ut}, regardless of the specification of the marginal of Ut.

3.1 Tests for the Correct Density Forecasts

Let G(u) = G(u;β) be a parametric marginal distribution function such that there exist parameter

values β∗ and β0 satisfying G
∗(u) = G(u;β∗) and G(u;β0) = u for any u ∈ [0, 1]. In this case, the

true joint distribution of (Ut−1, Ut) is of a parametric form:

H∗(u1, u2) ≡ C(G(u1;β
∗), G(u2, β∗);α∗). (3.1)

Under the given parametric copula model for the dependence structure in {Ut}, independence
corresponds to α∗ = α0 for a specific value α0 (i.e. C(v1, v2;α0) = v1v2). For instance, if the copula

is Gaussian, then α0 = 0. Hence, the null hypothesis of i.i.d. uniformity of {Ut} is equivalent to
H0 : β∗ = β0, α

∗ = α0.

The log-likelihood function is given by

L(α, β) =
1

n

nX
t=1

log g(Ut;β) +
1

n

nX
t=2

log c(G(Ut−1;β), G(Ut;β);α), (3.2)

where g(u;β) is the density function of the marginal distribution G(u;β) and c(v1, v2;α) is the

density function of the copula C(v1, v2;α). Noting that α and β may have common elements such

as in Example 1, we let τ0 and τ∗ respectively be the vectors of the distinct elements of (α00, β00)0

and (α∗0 , β∗0)0. In addition, let τ̂ = argmaxτ L(α, β) denote the MLE of τ∗. Then any hypothesis
regarding the value of the parameter τ∗ can be tested by the LR test. In particular, the LR test for
τ∗ = τ0 is test for the correct density forecasts and it extends the one in Berkowitz (2001) in two

directions: First, the copula function is not necessarily Gaussian; Second, the marginal distribution

G∗ can be of any specific form as long as it includes the uniform distribution as a special case.

To implement the above tests, one needs to choose a class of parametric distributions G(u;β)

such that G(u, β0) = u for some β0. One important class of such distributions is given by

g(u;β) = C(β) exp{
kX
i=1

βiπi(u)}, 0 < u < 1,
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where k is a positive integer, β = (β1, . . . , βk)
0, and {πi(u)} is the set of orthonormal polynomials on

the uniform distribution (the normalized Legendre polynomials) and C(β) is a constant depending

on β, introduced to ensure that the probability density function integrates to one. Obviously,

g(u;β) = u when β = 0.

3.2 Robust Tests for the Dependence Structure of the Forecasting Model

When the marginal distribution G∗ is completely unknown, the true joint distribution of Ut−1
and Ut is of a semiparametric form: H

∗(u1, u2) = C(G∗(u1),G∗(u2);α∗). The null hypothesis of
correct specification of the dependence structure of the forecasting model, or equivalently the serial

independence of {Ut}, is equivalent to

H 0
0 : α

∗ = α0.

Tests for H 0
0 based on the semiparametric model are thus robust to the choice of the marginal

distribution G∗.
In this case, we estimate α∗ by a pseudo-MLE α̃ defined as

α̃ = argmaxαL̃(α), L̃(α) =
1

n

nX
t=2

log c(Gn(Ut−1), Gn(Ut);α), (3.3)

where Gn(·) is the rescaled empirical distribution function defined as

Gn(u) =
1

n+ 1

nX
t=1

I{Ut ≤ u}. (3.4)

The estimator α̃ is introduced in Genest, Ghoudi, and Rivest (1995) for the case where n i.i.d.

observations are available from a bivariate distribution. Chen and Fan (2002) establish conditions

under which α̃ is
√
n-consistent and asymptotically normally distributed for the class of copula-

based time series models specified in Assumption 1.

Let A ⊂ Rd be the parameter space and assume α∗ ∈ int(A). In addition, let l(v1, v2, α) =
log c(v1, v2, α), lα(v1, v2, α) ≡ ∂l(v1,v2,α)

∂α and lα,j(v1, v2;α) ≡ ∂2l(v1,v2;α)
∂vj∂α

for j = 1, 2. Assuming the

conditions in Chen and Fan (2002) are satisfied, the following corollary of their Proposition 3.3 will

be used to construct our tests.

Corollary 3.1 Under Assumption 1 and conditions for Proposition 3.3 in Chen and Fan (2002),

if H 0
0 holds, then

√
n(α̃ − α∗) → N(0, B−1), where B = E[lα(V1, V2, α

∗)l0α(V1, V2, α∗)] in which
Vt = G∗(Ut).

Proof: Proposition 3.3 in Chen and Fan (2002) states that
√
n(α̃− α∗)→ N(0, B−1ΣB−1) in

distribution, where Σ = limn→∞ V ar(
√
nA∗n) in which

A∗n ≡ 1

n− 1
nX
t=2

[lα(Vt−1, Vt, α∗) +W1(Vt−1) +W2(Vt)]
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W1(Vt−1) ≡
Z 1

0

Z 1

0
[I{Vt−1 ≤ v1}− v1]lα,1(v1, v2;α

∗)c(v1, v2;α∗)dv1dv2

W2(Vt) ≡
Z 1

0

Z 1

0
[I{Vt ≤ v2}− v2]lα,2(v1, v2;α

∗)c(v1, v2;α∗)dv1dv2.

Under Assumption 1, {Ut} is an independent process if and only if the true dependence parame-
ter α∗ is such that C(v1, v2;α∗) = v1v2 and hence c(v1, v2;α

∗) = 1. By making use of this, one can
easily verify that E[lα,1(v1, V2, α

∗)] = 0 which yields W1(Vt−1) = 0 = W2(Vt) under independence.

Hence under independence,

Σ = V ar{lα(V1, V2, α∗)}+ 2Cov{lα(V1, V2, α∗), lα(V2, V3, α∗)} = V ar{lα(V1, V2, α∗)},
where the first equality follows from the independence of the Vt’s and the second one follows from

the fact that under independence of the Vt’s, E[lα(V1, V2, α
∗)|Vi] = 0 for i = 1, 2.

2

This corollary extends the asymptotic efficiency result of the α0 estimate based on i.i.d. obser-

vations in Genest, Ghoudi, and Rivest (1995) to the case of time series observations {Ut−1, Ut}.
Assuming α0 lies in the interior of the parameter space, we will develop two asymptotic tests

for H 0
0: a pseudo Wald test and a pseudo LR test.

To construct the pseudo Wald test, we need to estimate the asymptotic variance of α̃ under

H 0
0. If the copula is Gaussian, then under H

0
0, α

∗ = α0 = 0. It follows from the Gaussian copula

example in Chen and Fan (2002) that under H 0
0,
√
nα̃ ∼ N(0, 1). Following Klaassen and Wellner

(2001), one can also show that the estimator α̃ is asymptotically equivalent to the normal scores

correlation coefficient, see (2.3). This suggests a simple consistent test for H 0
0 when the copula is

Gaussian: First form Ṽ ∗t = Φ−1(Gn(Ut)); Second, estimate α by the OLS estimator in the regression

of Ṽ ∗t−1 on Ṽ ∗t ; Finally reject H 0
0 at 5% significance level if the estimator falls outside of the interval

[−2n−1/2, 2n1/2].
For a specific non-Gaussian copula, it may be possible to obtain an explicit expression for the

asymptotic variance of α̃ by Corollary 3.1. However, noting that the asymptotic variance of α̃ does

not depend on the marginal distribution G∗, it can thus be estimated easily by simulation. More
specifically, recall under H 0

0, B = E[lα(V1, V2, α0)l
0
α(V1, V2, α0)], where V1 and V2 are independent

uniform random variables on the interval (0, 1). This suggests that one consistent estimator of B

under H 0
0 should be

B̂ =
2

N(N − 1)
X X

1≤i<j≤N
lα(Vi, Vj , α0)l

0
α(Vi, Vj , α0), (3.5)

where {Vi}Ni=1 is a large number (N) of i.i.d. uniform random variables on the interval (0, 1). In

summary,

Proposition 3.2 Let fW = (α̃−α0)
0B̂(α̃−α0) and conditions for Corollary 3.1 hold. Then under

H 0
0, n

fW → χ2[d] in distribution.
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Liang and Self (1996) show that in general the Pseudo-LR test does not follow an asymptotic

χ2 distribution due to the inefficiency of the pseudo-likelihood estimator. However, as shown in

Corollary 3.1, under H 0
0, the pseudo-likelihood estimator α̃ is asymptotically efficient. This in turn

verifies the following result.

Proposition 3.3 Let conditions for Corollary 3.1 hold. Then under H 0
0, 2n[L̃(α̃)− L̃(α0)]→ χ2[d]

in distribution.

4 Concluding Remarks

In this paper, we demonstrate that the copula approach to evaluating density forecasts provides

flexibility in designing tests that have power against a wide range of alternative processes. In addi-

tion it allows us to construct simple tests for the correct specification of the dependence structure

of the forecasting model that are robust to misspecification of the marginal distribution. Together

with the test in Bai (2003), such tests will be useful in detecting the failure of the forecasting model;

its dependence structure or the marginal distribution, when it is rejected.

This paper makes two simplifying assumptions: the forecast model is completely known, and

α0 (the value leads to the independence copula) is in the interior of the parameter space. These

are restrictive assumptions and are adopted in this paper in order not to complicate the exposition

of the main idea. We are currently working on relaxing these assumptions.
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[3] Bouyé, E. , N. Gaussel, and M. Salmon (2002), “Investigating Dynamic Dependence Using
Copulae,” Manuscript, Financial Econometrics Research Center.

[4] Chen, X. and Y. Fan (2002), “Semiparametric Estimation of Copula-Based Time Series Mod-
els,” Manuscript.

[5] Clements, M. P. and J. Smith (2000), “Evaluating the Forecast Densities of Linear and Non-
linear Models: Applications to Output Growth and Unemployment,” Journal of Forecasting
19, 255-276.

[6] Corradi, V. and N. R. Swanson (2001), “Bootstrap Specification Tests With Dependent Ob-
servations and Parameter Estimation Error,” Working paper.

[7] Darsow, W., B. Nguyen, and E. Olsen (1992), “Copulas and Markov Processes,” Illinois Jour-
nal of Mathematics 36, 600-642.

9



[8] Diebold, F. X. , T. Gunther, and A. S. Tay (1998), “Evaluating Density Forecasts, with
Applications to Financial Risk Management,” International Economic Review 39, 863-883.

[9] Diebold, F. X. , J. Hahn, and A. S. Tay (1999), “Multivariate Density Forecast Evaluation and
Calibration in Financial Rist Management: High-Frequency Returns on Foreign Exchange,”
Review of Economics and Statistics 81, 661-673

[10] Diebold, F. X. , A. S. Tay, and K. Wallis (1999), “Evaluating Density Forecasts of Inflation:
the Survey of Professional Forecasts”, in R. Engle and H. White (eds), Festschrift in Honor
of C.W.J. Granger, Oxford: Oxford University Press.

[11] Elerian, O. , S. Chib, and N. Shephard (2001), “Likelihood Inference for Discretely Observed
Non-linear Diffusions,” Econometrica 69, 959-993.

[12] Embrechts, P. , A. McNeil, and D. Straumann (1999), “Correlation and Dependence Properties
in Risk Management: Properties and Pitfalls,” in M. Dempster, ed., Risk Management: Value
at Risk and Beyond, Cambridge University Press.

[13] Gagliardini, P. and C. Gourieroux (2002): “Duration Time Series Models with Proportional
Hazard”, working paper, CREST and University of Toronto.

[14] Genest, C. , K. Ghoudi, and L.-P. Rivest, “A Semiparametric Estimation Procedure of De-
pendence Parameters in Multivariate Families of Distributions,” Biometrika 82 (3), 543-552.

[15] Hong, Y. and H. Li (2002), “Nonparametric Specification Testing for Continuous-Time Models
with Application to Spot Interest Rates,” Cornell University.

[16] Inoue, A. (1999), “A Conditional Goodness-of-fit Test for Time Series,” Working paper.

[17] Joe, H. (1997), Multivariate Models and Dependence Concepts, Chapman & Hall/CRC.

[18] Klaassen, C. and J. Wellner (2001), “Efficient Estimation in the Bivariate Normal Copula
Model: Normal Margins are Least-Favorable,” Bernoulli 3, 55-77.

[19] Liang, K.-Y. and S. G. Self (1996), “On the Asymptotic Behavior of the Pseudolikelihood
Ratio Test Statistic,” J. R. Statist. Soc. B 58, 785-796.

[20] Nelsen, R. B. (1999), An Introduction to Copulas, Springer.

[21] Patton, A. (2001), “Modeling Time-Varying Exchange Rate Dependence Using the Conditional
Copula,” Manuscript, UCSD.

[22] Rosenblatt, M. (1952), “Remarks on a Multivariate Transformation,” Annals of Mathematical
Statistics 23, 470-472.

[23] Sklar, A. (1959), “Fonctions de r’epartition ’a n dimensionset leurs marges,”Publ. Inst. Statis.
Univ. Paris 8, 229-231.

[24] Thompson, S. B. (2002), “Evaluating the Goodness of Fit of Conditional Distributions, with
an Application to Affine Term Structure Models,” Harvard University.

[25] Vasicek, O. (1977), “An Equilibrium Characterization of the Term Structure,” Journal of
Financial Economics 5, 177-188.

10


