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Abstract

This paper studies a class of dynamic games, called repeated games with asyn-
chronous moves, where not all players may revise their actions in every period. With
state-dependent backwards induction, we introduce the concept of e®ective minimax
in repeated games with asynchronous moves. A player's e®ective minimax value cru-
cially depends on the asynchronous move structure in the repeated game, but not
on the player's minimax or e®ective minimax value in the stage game. Any player's
equilibrium payo®s are bounded below by his e®ective minimax value. We establish

a folk theorem: when players are su±ciently patient, any feasible payo® vector where
every player receives more than his e®ective minimax value can be approximated by
a perfect equilibrium in the repeated game with asynchronous moves. This folk the-
orem integrates Fudenberg and Maskin's (1986) folk theorem for standard repeated
games, Laguno® and Matsui's (1997) anti-folk theorem for repeated pure coordination
game with asynchronous moves, and Wen's (2002) folk theorem for repeated sequential
games.
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1 Introduction

Players behave quite di®erently in a stage game and in its repeated game due to their di®erent

short-run and long-run objectives. When all players are su±ciently patient, repeated games

admit almost all \reasonable" outcomes in equilibrium. This type of result is known as

the folk theorem.1 One seminal paper in this area is Fudenberg and Maskin (1986). Under

certain conditions, Fudenberg andMaskin's folk theorem asserts that any feasible and strictly

individually rational payo® of a stage game can be supported by a perfect equilibrium in

the corresponding in¯nitely repeated game. Traditionally, Stage games are often modeled

in normal-form and it is often assumed that players revise their actions simultaneously

and synchronously in every period. Fudenberg and Tirole (1991) ¯rst raise the issues on

simultaneous moves and asynchronous moves, which have attracted a lot of attention in the

recent years. To the best of my knowledge, there are mainly two approaches to deal with

these two separate but related issues.

To analyze the issue on simultaneous moves, repeated extensive-form stage games are

studied by Rubinstein and Wolinsky (1995), and Sorin (1995). Sorin (1995) argues, if an

extensive-form stage game satis¯es the full dimensionality condition, Fudenberg andMaskin's

folk theorem is valid on the repeated game of the normal-form representation of the stage

game. Examples by Rubinstein and Wolinsky (1995), however, suggest a very di®erent

result when stage games do not satisfy the full-dimensionality condition. Wen (2002) studies

a class of repeated extensive-form stage games, known as repeated sequential games. By

extending the concept of e®ective minimax of Wen (1994) to sequential games, a folk theorem

is established for repeated sequential games. Takahashi (2002) further extends this concept

to all extensive games with almost perfect information, and shows that equilibrium payo®s

are bounded below by these e®ective minimax values.

Regarding the issue on synchronous moves, repeated games with asynchronous move are

1For surveys on repeated games, see Aumann (1981), Fudenberg and Tirole (1991), Benôit and Krishna
(1998).
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investigated, leaded by Laguno® and Matsui (1997) with the repeated pure coordination

game with alternating moves. This paper studies general repeated games with asynchronous

move where not all players may revise their actions in every period. With a state-dependent

backwards induction technique, we ¯rst introduce the concept of e®ective minimax in re-

peated games with asynchronous moves. A player's e®ective minimax value in a repeated

game crucially depends on the asynchronous move structure, but not on the players' stan-

dard or e®ective minimax value in the stage game. We then establish a folk theorem: when

players are su±ciently patient, any feasible payo® vector where every player receives more

than his e®ective minimax value in the repeated game can be approximated by a perfect equi-

librium in the repeated game. Our folk theorem integrates Fudenberg and Maskin's (1986)

folk theorem for standard repeated games, Laguno® and Matsui's (1997) anti-folk theorem

for repeated pure coordination game with asynchronous moves, and also Wen's (2002) folk

theorem for repeated sequential games.

The literature on repeated games with asynchronous moves is growing rapidly in the

last a few years. Laguno® and Matsui (1997) ¯rst show that in the in¯nitely repeated pure

coordination game, if two players alternate in revising their actions then the Pareto optimal

outcome will be the only perfect equilibrium outcome in the repeated game. Laguno® and

Matsui (2002) further demonstrate that this type of anti-folk theorem phenomenon is fairly

generic. The violation of the full dimensionality by the pure coordination game along cannot

explain their ¯ndings. The asynchronous move structure plays a very important role. Haller

and Laguno® (2000b) investigate Markov perfect equilibrium in this class of repeated games.

Yoon (2001) also studies asynchronously repeated games under the assumption that the

players who do not move in any given period have to play the same actions (including mixed

actions) from the past, and obtains the traditional folk theorem under certain conditions.

In our model, however, the player who do not move in any given period have to play the

realizations of their mixed strategies from the past. Repeated games with asynchronous

moves belong to stochastic games studied by Dutta (1995), Haller and Laguno® (2000a) and
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many others. Under the full dimensionality condition, Dutta (1995) proves a folk theorem

based on players' minimax values that are formulated from equilibrium strategies from the

entire stochastic game, which can be di±cult to ¯nd.

This research is initiated from some of the questions raised in studying repeated sequential

games. Some repeated games with asynchronous moves can be treated as repeated sequential

games. For example, consider a repeated game of the following battle of the sexes:

1 n 2 L R
U 2, 1 0, 0
D 0, 0 1, 2

This game has two pure Nash equilibria, (U;L) and (D;R), and one mixed Nash equilibrium

where every player receives his minimax value of 2=3. Now suppose that player 1 moves in

every period but player 2 moves only once in every other period. Let ± be players' common

discount factor per period. The game played over the two periods where player 1 moves

in both periods and player 2 moves only in the ¯rst period is a sequential game by Wen

(2002). Then this repeated game with asynchronous moves is a repeated sequential game

with discount factor ±2, where the sequential stage game depends on ±. In this two-period

sequential stage game, player 2 payo® in the second period can be forced to zero. Therefore,

player 2's minimax value in this two-period sequential game cannot be higher than 2/3, so

1/3 on average per period. On the other hand, player 1's payo® in the second period cannot

not be lower than 1. So player 1's minimax payo® must be strictly greater than 2/3 on

average per period. If player 2 moves only at 0, T , 2T and so on, player 2's payo®s can be

forced as low as 2=(3T ) on average, and player 1's payo®s cannot lower than his pure-strategy

minimax value of one.2

Wen (2002) demonstrates how e®ective minimax value in sequential games can be used to

explain Laguno® and Matsui's (1997) anti-folk theorem. But the results from Wen (2002) are

inadequate to deal with repeated games with asynchronous moves in general. Nevertheless,

using e®ective minimax value from sequential games to analyze some repeated games with

2By feasibility in this game, player 2's equilibrium cannot be lower than 1/2 as 1's payo®s are not less
than 1.
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asynchronous moves motivates the state-dependent backwards induction technique developed

here to derive e®ective minimax values in general repeated games with asynchronous moves.

The contribution of this research is to understand this class of dynamic games and integrate

a number of folk theorems for di®erent repeated game models.

The rest of this paper is organized as follows. Section 2 introduces the model and reviews

the concept of e®ective minimax in normal-form games. Section 3 presents two examples,

with and without the NEU condition respectively, to illustrate how to derive a player's

e®ective minimax value in repeated games with asynchronous moves. Based on the insight

from these two examples, Section 4 introduces the e®ective minimax value for every player,

and studies some of its properties. Section 5 presents a folk theorem for this class of repeated

games and Section 6 concludes the paper.

2 The Model

Consider a ¯nite n-player game in normal-form, G = fAi; ui(¢); i 2 Ig, where I is the set

of n players, Ai is the set of player i's pure actions, and ui(¢) : £j2IAj ! R is player i's

payo® function for all i 2 I . Denote A = £j2IAj and u(¢) ´ (u1(¢); : : : ; un(¢)). A player i's

mixed action is denoted as ¾i 2 §i, where §i is the set of player i's mixed actions. Let ui(¢)

also denote player i's expected payo® from a mixed action pro¯le. § = £j2I§j is the set of

mixed action pro l̄es. The normal-form game G is refereed as the stage game.

The set of feasible payo®s in G is the convex hull of u(A), denoted by F ½ Rn. 8 i 2 I,

a generic ¾ 2 § is decomposed as ¾ = (¾i; ¾¡i).3 Player i's standard mixed minimax value

in G is de¯ned as4

msi = min¾¡i
max
ai2Ai

ui(ai; ¾¡i): (1)

ms = (ms
1; : : : ;m

s
n) is refereed as the standard mixed minimax point in game G. Any

3A pure action pro¯le can be decomposed in the same way.
4It does not lose any generality to formulate player i's minimax value as in (1) where player i maximizes

his payo® with respect to his pure actions, rather than his mixed actions. Player i's pure minimax value is
formulated in a same way but the minimization is taken over the other players' pure actions.

5



payo® vector that strictly (weakly) dominates the standard mixed minimax point is strictly

(weakly) individually rational. The set of feasible and strictly individually rational payo®s in

game G is then F ¤ = F \fv 2 Rnj v >> mg.5 In the repeated game of G with discounting,

Fudenberg and Maskin's folk theorem asserts that if n = 2 or F ¤ has a dimension of n, every

payo® vector in F ¤ can be supported by a perfect equilibrium of the repeated game when

players are su±ciently patient.

In the repeated game of G with asynchronous moves, assume that not all players may

revise their actions in every period. In period t = 0, all players choose their actions. In

period t > 0, only a subset of players may revise their actions. Let It ½ I denote the set of

players who move in period t. Accordingly, players who are not in It cannot move in period t.

fItg1t=0 is refereed as the asynchronous move structure. Repeated games with asynchronous

moves includes Fudenberg and Maskin's (1986) model with It = I for all t ¸ 0, Laguno®

and Matsui's (1997) model with It = f1g for all odd t and It = f2g for all even t, and Wen's

(2002) model with It = IT+t for all t ¸ 0 and a ¯nite T .

Players may play mixed actions whenever they move. It is assumed that players observe

all past actions, including past mixed actions. Then a history at t consists of all the past

actions, denoted by ht = (¾
0;¾1; : : : ; ¾t¡1) such that ¾0 2 § and

¾si is a pure action in the support of ¾
s¡1
i if i 62 Is for 0 < s < t: (2)

Condition (2) is the consistency requirement under the asynchronous moves. It means that

the player who does not move in period s must play the same action as before. Without loss

of generality, a history in period t can be simpli¯ed as

ht = (¾I; ¾I1; ¾I2; : : : ; ¾It¡1 ); (3)

where ¾Is represents the actions of those in Is at s for 0 · s· t¡ 1. Histories are important

to identify the deviator and to coordinate punishment actions in the future. The set of

5v >> m means vi > mi for all i 2 I .
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histories in period t is denoted as Ht. H0 contains only the null history at the beginning of

the game.

A strategy pro l̄e speci¯es actions for those in It after any ht. Player i's strategies is

a function fi :
S
i2It Ht ! §i. Any strategy pro¯le f = (f1; f2; : : : ; fn) induces a unique

distribution on the set of outcome paths. A outcome path ¼ = (a0; a1; ¢ ¢ ¢ ; at; ¢ ¢ ¢) has to

satis¯es the consistency requirement as well imposed by asynchronous move structure, which

is ati = a
t¡1
i for all t and i 62 It. Players' average payo®s from outcome path ¼ are

u(¼) = (1¡ ±)
1X

t=0

±tu(at); (4)

where ± 2 (0; 1) is players' common discount factor per period. Players evaluate their

strategies based on their expected payo®s from induced outcome paths. The equilibrium

concept adopted in this paper is (subgame) perfect equilibrium, that constitutes a Nash

equilibrium in every subgame of the repeated game after any ¯nite history.

In this rest of this section, we review the concept of e®ective minimax value in normal-

form games introduced by Wen (1994). According to Abreu, Dutta and Smith (1994), players

i and j have equivalent utilities if 9 ®ij > 0 and some ¯ij such that

uj(¾) = ®ji ¢ui(¾) + j̄ i; 8 ¾ 2 §: (5)

8 i 2 I, let Ei be the set of players who have equivalent utilities to player i. From the

de¯nition, Ei = Ej if and only if i and j have equivalent utilities. Game G satis¯es the

Non-Equivalent Utility (NEU) condition if each Ei = fig is singleton. Without the NEU

condition, players in Ei do not want to minimize player i's payo® in minimaxing player i.

Accordingly, player i's e®ective minimax value from G is de¯ned as

me
i = min¾

·
max
j2Ei

max
aj

ui(¾)
¸
: (6)

me
i is the minimum of player i's payo® under the best unilateral deviation by those in Ei.

Under the NEU condition, me
i from (6) simply reduces to ms

i of (1) since Ei = fig. From
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any solution to (6), player i's payo® is less than me
i in general. However, under the best

unilateral deviation by those in Ei, player i's payo® is mei .

me = (me
1; ¢ ¢ ¢ ;me

n) is the e®ective minimax point in G. Generally, we have m
e ¸ ms.

Any payo® vector that strictly (weakly) dominates me is strictly (weakly) Equivalent Utility

Class (EUC) rational. Wen's (1994) folk theorem asserts that any feasible and strictly EUC

rational payo® vector can be supported by a perfect equilibrium of the repeated game of G

when ± is large enough, without any condition on the stage game G.

3 Two Examples

We now consider two examples to motivate the concept of e®ective minimax values in re-

peated games with asynchronous moves. The ¯rst example is the repeated battle of the sexes

game with alternating moves. The battle of the sexes game satis¯es the NEU condition. The

second example is the repeated pure coordination game with alternating moves studied by

Laguno® and Matsui (1997). The pure coordination game does not satisfy the NEU condi-

tion. These two examples illustrate how to calculate a player's lowest possible equilibrium

payo®, e®ective minimax value, in repeated games with asynchronous moves when stage

games satis¯es and does not satisfy the NEU condition, respectively.

3.1 The Battle of the Sexes

Reconsider the battle of the sexes (BOS) game given in the introduction. There are two

pure Nash equilibria, (U;L) and (D;R), and one mixed Nash equilibrium in which player

1 plays U with probability 2/3 and player 2 plays L with probability 1/3. Each player has

the same minimax value of 2/3 in the mixed Nash equilibrium. The BOS game satis¯es the

full dimensionality condition, hence satis¯es the NEU condition. Now suppose both players

move simultaneously at t = 0, player 1 moves at all odd t, and player 2 moves at all even t.

Accordingly, I0 = I , It = f1g for all odd t and It = f2g for all even t. This repeated game

satis¯es the FPI condition.
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As in Rubinstein's (1982) alternating-o®er bargaining game, this repeated BOS game is

structurally cyclic for every two periods, except at t = 0. With a state-dependent backwards

induction technique as in Shaked and Sutton (1984), we derive a player's lowest possible

perfect equilibrium payo® in this repeated BOS game with asynchronous moves.

Player 1's lowest possible equilibrium payo® at any odd t depends the initial state at t,

either L or R, which player 2's action at t¡1. So denote player 1's lowest possible equilibrium

payo®s as m1(L) and m1(R) respectively. Due to the two-period cyclic structure, player 1's

lowest possible equilibrium payo® in period t + 2 will be also m1(a2), depending on the

realization of player 2' action a2 2 fL; Rg at t + 1. Player 1's equilibrium payo®s from

a1 2 fU;Dg at t then cannot be less than

m1(a1jL) = (1¡ ±)u1(a1; L) + ± min
¾22§2

E¾2 [(1¡ ±)u1(a1; a2(¾2)) + ±m1(a2(¾2))] ; (7)

where E¾2 represents the expected value calculated from ¾2, and a2(¾2) is the realization of

¾2 which becomes the initial state at t+ 2. The ¯rst term of (7) is player 1's payo® during

period t, and the second term of (7) is player 1's lowest possible equilibrium payo® at t+1.

Player 1's payo®s in period with initial state L cannot be less than

m1(L) = max
¾12§1

E¾1m1(a1(¾1)jL); (8)

where E¾1 is the expected value calculated based on ¾1 and a1(¾2) is the realization of

¾1. Given players choose probability distributions over two alternatives in the optimization

problems of (7) and (8), these optimization problems simply become the optimal value from

the two alternatives. Substituting player 1's payo®s into (7) and (8), we have

m1(L) = max
½
m1(U jL); m1(DjL)

¾
; where (9)

m1(U jL) = (1 ¡ ±)2 + ±min
½
(1 ¡ ±)2 + ±m1(L); ±m1(R)

¾
(10)

m1(DjL) = ±min
½
±m1(L); (1¡ ±) + ±m1(R)

¾
; (11)

By the same argument, if the initial state at any odd t is R, we have

m1(R) = max
½
m1(U jR); m1(DjR)

¾
; where (12)

9



m1(U jR) = ±min
½
(1¡ ±)2 + ±m1(L); ±m1(R)

¾
; (13)

m1(DjR) = (1¡ ±) + ±min
½
±m1(L); (1 ¡ ±) + ±m1(R)

¾
: (14)

Solving equations (9)|(14), we have the following proposition:

Proposition 1 During the in¯nitely repeated BOS game with alternating moves, player's

perfect equilibrium payo®s at any odd t with initial state a2 2 fL;Rg are not less than

m1(a2), where

m1(L) =
(1 ¡ ±)(2 + ±2)

1¡ ±4 ; m1(R) =
(1 ¡ ±)(1 + 2±2)

1¡ ±4 : (15)

Proof: To solve equations (9)|(14), we need to consider the following three cases:

Case 1: Assume that ±m1(L) ¸ (1¡ ±) + ±m1(R).

Then 2(1¡ ±) + ±m1(L) ¸ ±m1(R). (10) (11), (13) and (14) become

m1(U jL) = 2(1 ¡ ±) + ±2m1(R); m1(U jR) = ±2m1(R);

m1(DjL) = (1¡ ±)± + ±2m1(R); m1(DjR) = (1 ¡ ±2) + ±2m1(R):

Note that m1(U jR) < m1(DjR) and m1(DjL) < m1(U jL) for all ± 2 (0; 1). (9) and (12)

yield m1(R) = 1 and m1(L) = 1 + (1 ¡ ±)2, which contradict the inequality for Case 1.

Therefore, Case 1 is impossible.

Case 2: Assume that 2(1¡ ±) + ±m1(L) · ±m1(R).

Then ±m1(L) · (1¡ ±) + ±m1(R). (10), (11), (13) and (14) become

m1(U jL) = 2(1¡ ±2) + ±2m1(L); m1(U jR) = 2(1 ¡ ±)± + ±2m1(L);

m1(DjL) = ±2m1(L); m1(DjR) = (1¡ ±) + ±2m1(L):

Note that m1(U jL) > m1(DjL) for all ± 2 (0; 1). (9) and (12) yield m1(L) = m1(R) = 2,

which contradict the inequality for Case 2. Therefore, Case 2 is also impossible.

Case 3: Assume that ±m1(L) · (1¡ ±) + ±m1(R) and 2(1¡ ±) + ±m1(L) ¸ ±m1(R).
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Then (10), (11), (13) and (14) become

m1(U jL) = 2(1¡ ±) + ±2m1(R); m1(U jR) = ±2m1(L);

m1(DjL) = ±2m1(R); m1(DjR) = (1¡ ±) + ±2m1(L):

With those four possible values, (9) and (12) yield

m1(L) = max
½
±2m1(L); (1¡ ±)2 + ±2m1(R)

¾
;

m1(R) = max
½
(1 ¡ ±) + ±2m1(L); ±

2m1(R)
¾
:

Then there are three sub cases to consider.

Case 3.1: Assume that ±2m1(L) ¸ (1¡ ±)2 + ±2m1(L).

Then (1 ¡ ±) + ±2m1(L) ¸ ±2m1(R). (9) yields m1(L) = 0 or 1. If m1(L) = 0 then

m1(R) < 0, which is impossible. If m1(L) = 1 then m1(R) = 1¡ ± + ±2. However, the set

values of m1(L) and m1(R) contradict the inequality for Case 3.1. Therefore, Case 3.1 is

impossible.

Case 3.2: Assume that (1 ¡ ±) + ±2m1(L) · ±2m1(R).

Then ±2m1(L) · (1 ¡ ±)2 + ±2m1(L). (13) yields m1(R) = 0 or 1. If m1(R) = 0 then

m1(L) = 2(1¡ ±), which contradicts the inequality that de¯nes case 3.2. If m1(R) = 1 then

m1(L) = 2(1 ¡ ±) + ±2, which also contradict the inequality for Case 3.2. Therefore, Case

3.2 is impossible.

Case 3.3: Assume that ±2m1(L) · (1¡ ±)2 + ±2m1(L) and (1 ¡ ±) + ±2m1(L) ¸ ±2m1(R).

Then (9) and (12) become

m1(L) = 2(1¡ ±) + ±2m1(R) and m1(R) = (1¡ ±) + ±2m1(L);

which give the values of m1(L) and m1(R) from (15) in Proposition 1. Q.E.D.

It is straightforward to see that m1(L) > m1(R) > 3=4 > 2=3 for all ± 2 (0; 1). Both

m1(L) and m1(R) are decreasing with respect to ± and have the same limit of 3=4 as ± goes

to 1. Player 1's equilibrium payo®s at any odd t are not less than 3=4, which is strictly

greater than 2=3, player 1's mixed minimax value in the BOS game.
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At the beginning of this repeated BOS game, player 1's equilibrium payo®s cannot be

lower than

m01 = min¯
max
®

·
¯[(1 ¡ ±)2®+ ±m1(L)] + (1¡ ¯)[(1 ¡ ±)(1 ¡ ®) + ±m1(R)]

¸
; (16)

where ® is the probability that player 1 plays U and ¯ is the probability that player 2 plays

L at t = 0. Substituting (15) into (16), we have

Proposition 2 At the beginning of the repeated BOS game with alternating moves, player

1's perfect equilibrium payo®s cannot be less than

m01 =
(1 ¡ ±)(2 + 4± + ±3 + 2±4)

3(1 ¡ ±4) : (17)

Player 1 plays U with probability 2/3 and player 2 plays L with probability 1/3 at t = 0.6

m0
1 from (17) is continuous and strictly greater than 2=3 for all ± 2 (0; 1). As ± goes to

1, m0
1 converges to 3=4 as well. This implies that player 1's equilibrium payo®s cannot be

less than 3=4 at t = 0 when two player are su±ciently patient. In order to force player 1's

payo® to be su±ciently close to 3/4, they play the mixed Nash equilibrium at t = 0, then

follow a 4-period cycle. For example, from the initial state L, player 1 plays U , then player

2 plays R, then player 1 plays D, and then player 2 plays L which leads the initial state L

again. Over this four-period cycle, player 1 receives 2 during the ¯rst period, 1 during the

third period, and 0 during the second and last periods. As ± goes to 1, player 1 receives 3/4

per period on average.

Next, we derive player 2's lowest possible equilibrium payo® at t = 0. By symmetry,

player 2's payo®s at t = 2 cannot be less than m2(U) =m1(R) or m2(D) = m1(L), depends

on player 1's action at t = 1. At t = 1, player 1 chooses either U or D to minimize player

2's continuation payo®. By backwards induction, player 2's payo®s at t = 1 cannot be less

6As matter of a fact, any of player 1's mixed action at t = 0 will yield the same value of m0
1 for given

player 2's mixed action. However, player 1's mixed action will a®ect player 2's optimal action at t = 0.
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than m0
2(L) or m

0
2(R) if player 2 plays L or R at t = 0 respectively, where

m0
2(L) =min

½
(1 ¡ ±)2 + ±m2(U); ±m2(D)

¾
= ±m2(D) =

±(1 ¡ ±)(2 + ±2)
1¡ ±4 ; (18)

m02(R) = min
½
±m2(U ); (1¡ ±) + ±m2(D)

¾
= ±m2(U) =

±(1 ¡ ±)(1 + 2±2)
1¡ ±4 : (19)

At the beginning of this repeated game, player 2's equilibrium payo®s cannot be less than

m0
2 = min® max

¯

·
¯[(1¡ ±)® + ±m0

2(L)] + (1¡ ¯)[(1¡ ±)(1¡ ®)2 + ±m0
2(R)]

¸
; (20)

where ® is the probability that player 1 chooses U and where ¯ is the probability that player

2 chooses L at t = 0. Substituting (18) and (19) into (20), we have

Proposition 3 At the beginning of the repeated BOS game with alternating moves, player

2's average perfect equilibrium payo®s cannot be less than

m0
2 =

(1¡ ±)(2 + ±2)(1 + 2±2)
3(1 ¡ ±4) : (21)

For player 2 to receive a payo® su±ciently close to m02, player 1 plays U with a probability

of (2 + ±2)=(3 + 3±2) at t = 0, then two player will follow another four-period cycle. Note

that m02 ! 3=4 as ± ! 1. Propositions 2 and 3 imply that any perfect equilibrium payo®

vector in the repeated game must weakly dominate (3=4; 3=4) as ± ! 1. Feasible and strictly

individually rational payo® vectors that do not dominate (3=4; 3=4) cannot be supported by

perfect equilibrium in the repeated game.

3.2 The Pure Coordination

Consider the following pure coordination (PC) game:

1 n 2 L R
U a, a b, b
D c, c d, d

where a >maxfb; c; dg. So (U;L) is one pure Nash equilibrium. Two players have equivalent

utilities and maxfb; c; dg is either player's e®ective minimax value. Laguno® and Matsui

(1997) study the in¯nitely repeated PC game with alternating moves where I0 = I , It = f1g
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for all odd t, and It = f2g for all even t, and show that the only perfect equilibrium outcome

in the repeated game is (a; a) in every period for all ± 2 (0; 1).

We consider this repeated game again to demonstrate how to derive a player's lowest

possible equilibrium payo® when the NEU condition is violated. We ¯nd that a player's

lowest possible equilibrium payo® is a when the initial state is either U or L (Theorem 1

of Laguno® and Matsui (1997)), or su±ciently close to a as ± ! 1 when the initial state is

either D or R (Theorem 2 of Laguno® and Matsui (1997)).

Since two players have equivalent utilities, player 2 now would maximize player 1's payo®.

This changes the optimization problems in (7). Corresponding to (9)|(14), for this repeated

PC game, we have

m1(L) = max
½
m1(U jL); m1(DjL)

¾
; and m1(R) = max

½
m1(U jR); m1(DjR)

¾
;

where

m1(U jL) = (1¡ ±)a+ ±max
½
(1 ¡ ±)a + ±m1(L); (1¡ ±)b+ ±m1(R)

¾
;

m1(DjL) = (1¡ ±)c+ ±max
½
(1¡ ±)c+ ±m1(L); (1¡ ±)d+ ±m1(R)

¾
;

m1(U jR) = (1¡ ±)b+ ±max
½
(1¡ ±)a+ ±m1(L); (1 ¡ ±)b+ ±m1(R)

¾
;

m1(DjR) = (1¡ ±)d+ ±max
½
(1 ¡ ±)c+ ±m1(L); (1 ¡ ±)d + ±m1(R)

¾
:

It is immediate that m1(L) = a. Given m1(L) = a, m1(R) ¸ m1(U jR) ¸ (1 ¡ ±)b + ±a. As

± ! 1, m1(R) ! a. At the beginning of the repeated game, player 1's equilibrium payo®s

will not be less than

m01 = max
a22fL;Rg

max
a12fU;Dg

[(1¡ ±)u1(a1; a2) + ±m1(a2)] = a:

Since two players has equivalent utilities, player 2's perfect equilibrium payo®s will not be

less than a either at t = 0. We now state these results as Proposition 4.

Proposition 4 In the repeated PC game with alternating moves, a player's equilibrium pay-

o® is a when the initial state is either U or L. As two players become su±ciently patient

14



enough, a player's equilibrium payo®s will be su±ciently close to a for any initial state. At

the beginning of the game, either player's equilibrium payo® is equal to a.

4 E®ective Minimax Values

The two examples from the previous section demonstrate that a player's lowest possible

equilibrium payo® in a repeated game crucially depends on the asynchronous move struc-

ture. We now derive a player's lowest possible equilibrium payo® in a repeated game with

asynchronous moves.

8 I 0 ½ I, let ¾I0 and aI0 be generic mixed and pure action pro l̄es by those in I 0 respec-

tively, and let ¾¡I 0 and a¡I0 be generic mixed and pure action pro¯les by those who are not

in I 0. Recall that the players in It move simultaneously at t. The actions by the other players

will be ¯xed at at¡It during period t. a
t
¡It is the initial state of the continuation game at t.

An initial state at t is a pure action pro l̄e by those who are not in It since all past mixed

actions have realized at t. If It = I , the initial state at t is denoted as ;. For any t ¸ 0 and

i 2 I, denote player i's lowest possible equilibrium payo® as mt
i(a¡It) at t where the initial

state is at¡It.

Given mt+1i (¢) for all possible initial state at t + 1, consider players' strategic behavior

during period t. Players in It move simultaneously as in a normal-form game. In any perfect

equilibrium, player i's payo® at t can be less than the sum of his payo® during period t and

his lowest possible equilibrium payo® at t+1. Based on the concept of e®ective minimax in

normal-form games, player i's equilibrium payo®s at t cannot be less than

mti(a¡It) =

min
¾It

(
max
j2Ei\It

max
aj2Aj

·
(1¡ ±)ui(¾It; a¡It) + ±E¾Itm

t+1
i (a0(¡It+1)\It; a¡(It+1[It))

¸)
; (22)

where E¾It represents the expected value calculated based on the probability distributions

induced by ¾It on the initial states at t + 1, and a
0
(¡It+1)\It represents the realization of ¾It

by those who do not move at t+1. Di®erent from e®ective minimax in a normal-form given
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by (6), the objective function in (22) is player i's continuation payo® at t. The players who

move at t minimizes player i's continuation payo®, under the best unilateral deviation by

any player who has equivalent utilities with player i and moves at t. The initial state at t+1

evolve as the players in It revise their actions. The actions by those who do not moves at t

and t+1 remain unchanged in the initial state at t+1. (22) also applies at the beginning of

repeated game where the initial state is ;. From the properties of e®ective minimax value

in normal-form games and (22), we have the following theorem:

Theorem 1 For any discount factor ± 2 (0; 1), when the initial state at t is a¡It, player i's

average equilibrium payo®s at t are not less than mti(a¡It), as de¯ned by (22).

mt
i(a

t
¡It) is called player i's e®ective minimax value, which depends on t, the initial state

at t and the discount factor ±. In standard repeated games with discounting where It = I for

all t ¸ 0, there is only one initial state ;. Player i's e®ective minimax value of (22) simply

reduces to his e®ective minimax value in G of (6).

If the repeated game has cyclic, i.e., It = It+T for all t ¸ 0 and a ¯nite T , then the

repeated game can be treated as a repeated sequential game of Wen (2002). The game from

the ¯rst T periods is treated as a stage sequential game, which depends on the discount

factor. The initial states at 0, T , 2T etc. are ;. In this case, m0
i (;) =mkT

i (;) for any integer

k. m0
i (;) of (22) is then player i's e®ective minimax value in the corresponding sequential

game, under proper adjustment of measurement.

If G satis¯es the NEU condition, mti(¢) from (22) cannot be higher than player i's pure

minimax value in G, regardless the asynchronous move structure in the repeated game.

The reason for this observation is, minimaxing player i with pure actions is always feasible.

However, mt
i(¢) could be either higher or lower than me

i , depending on the asynchronous

move structure. Recall the repeated BOS game where player 1 moves in every period and

player 2 moves only once for every T periods. Player 2's e®ective minimax value cannot be

more than 1=T which is much less than his mixed minimax value 2=3 in the BOS game. On

the other hand, player 1's e®ective minimax value cannot be less than (T ¡ 1)=T which is
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more than his mixed minimax value 2/3. If G does not satis¯es the NEU condition, mt
i(¢)

could be even higher than player i's pure minimax value in G, such as in the repeated PC

game with alternating moves.

It is generally di±cult to solve mt
i(¢) directly from (22). When the repeated game is

cyclic, even without t = 0, i.e., It = It+T for all t ¸ 1 and a ¯nite T , solving (22) analytically

is possible as demonstrated by our two examples. In this case, mt
i(¢) =mt+T

i (¢). Recursively

substitution of (22) will solve mt
i(¢). Although mt

i(¢) depends the t and initial state at t,

under the FPI condition, the limit of mt
i(¢) as ± ! 1, however, does not depend on t and

the initial state at t. The intuition is, under the FPI condition, it is always possible to witch

to the state which is the worst for player i in a ¯nite number periods. As ± ! 1, player i's

payo®s during those ¯nite transition periods becomes negligible. What matters is the limit

of player i's e®ective minimax value from this worst state in the future.

Lemma 1 Under the FPI condition, as ± ! 1, the limit of mt
i(¢) does not depend on t and

the initial state.

Proof: Under the FPI condition, 9 a ¯nite T such that every player revises his action at

least once between t and t + T for any t. Therefore, any state at t + T is reachable from

any state at t. Without loss of generality, let â¡It+T denote the \minimax" state at t+T for

players Ei in the sense that7

lim
±!1

mt+T
i (â¡It+T ) = min

a¡(It+T [Ei)
max

a¡It+T \Ei
lim
±!1

mt+Ti (a¡It+T ) ´ mi: (23)

First we show that the limit of mt
i(¢) is not less than mi from any state at t. Note that

(22) eventually leads to some states at t + T . As ± goes to 1, player i's payo® would not

be less than mi given that players in Ei choose their actions optimally. For ± < 1, dynamic

programming of (22) may lead to some states at t + T which could be worse than â¡It+T

for player i. In the limit as ± ! 1, the players in Ei would choose their actions optimally

7We did not explicitly write t + T in the limit. In fact, the limit does not depend on t + T .
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between t and t + T . Recursively applying (22) from t to t + T yields

mti(a¡It) = max
j2Ei\It

max
aj2Aj

·
(1¡ ±)ui(¾̂tIt(a¡It); a¡It)+

max
j2Ei\It+1

max
aj2Aj

·
(1¡ ±)±ui(¾̂t+1It+1 (a¡It+1(¾̂

t
It; a¡It)); (¾̂

t
It; a¡It))

+ ¢ ¢ ¢+ ±t+T¤E¾̂t¡It ¢ ¢ ¢E¾̂t+T¡It+T
mt+T
i (¢)

¸¸
; (24)

where aIt+1(¾̂
t
It; a¡It) represents the states at t+ 1 resulted from state a¡It at t and ¾̂

s
Is for

t · s · t + T . Note that the ¯rst T terms of (24) have a common factor (1 ¡ ±), which go

to 0 as ± ! 1. By (23) and (24), lim±!1mt
i(¢) ¸ mi.

On the other hand, â¡It+T is reachable from any state at t since every player revises his

action at least once from t to t+T , even when players in Ei revise their actions optimally in

term of the state at t+ T . For example, during these T periods, players always select their

actions in â¡It+T . However, choosing âTt+T by those who are not in Ei may do not minimize

player i's payo® under the best unilateral deviation by those in Ei. Therefore, we have

mt
i(a¡It) · max

j2Ei\It
max
aj2Aj

·
(1 ¡ ±)ui(âIt; a¡It)+

max
j2Ei\It+1

max
aj2Aj

·
(1 ¡ ±)±ui(âIt+1[It; a¡It+1[It)) + ¢ ¢ ¢+ ±t+Tmt+T

i (â¡It+T )
¸¸
: (25)

âIt+T denotes any action pro¯le for simplicity. As ± ! 1, the right hand side of (25) converges

to mi. Therefor lim±!1mti(a¡It) ·mt
i, which concludes the proof. Q.E.D.

Lemma 1 simpli¯es our folk theorem for repeated games with asynchronous moves in a

great deal. Players' e®ective minimax values roughly stay at the same in repeated game

with asynchronous moves under the FPI condition. Since there are only ¯nite possible asyn-

chronous move structures under FPI condition, there must be one ¯nite-period asynchronous

move structure that repeats itself in¯nitely many times. Such a ¯nite-period asynchronous

move structure determines players' e®ective minimax values in the limit.

Since our folk theorem addresses the limiting set of perfect equilibrium payo®s as ± !

1, what really matters is then the limits of players' e®ective minimax values. Let m =

(m1; ¢ ¢ ¢ ;mn) be the e®ective minimax point in the repeated game with asynchronous moves.
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Theorem 1 implies that any payo® vector that is strictly dominated by m cannot be an

equilibrium outcome when players are su±ciently patient. Therefore, m is a limiting lower

bound of perfect equilibrium payo®s in the repeated game. By convention, a payo® vector

is strictly (weakly) Equivalent Utility Class (EUC) rational if it strictly (weakly) dominates

m. Theorem 1 asserts that any perfect equilibrium payo® vector must at least weakly EUC

rational as ± ! 1.

Another issue in the folk theorem is the feasibility. Not every payo® vector in F is

attainable in a repeated game with asynchronous moves. For example, feasible payo® vector

(1.5, 1.5) can never be achieved in the repeated BOS game with alternating moves, since

switching form (2, 1) to (1, 2) must involve (0, 0) once as two players never revise their

actions at the same time. Nevertheless, vector (1.5, 1.5) can be approximated arbitrarily

closely when ± is su±ciently large. For example, players play (U;L) for T periods, then

either (U;R) or (D;L) depends on who moves in period T + 1, then (D;R) forever. The

average payo® vector from such an outcome path is then

(1¡ ±T )(2; 1) + ±T+1(1; 2) ! (1:5; 1:5);

as ± goes to one, while T depends on T so that ±T and ±T+1 converge to 1/2. Dutta (1995)

shows that for a general stochastic game, any feasible payo® vector can be approximated

arbitrarily closely when players are su±ciently patient. The same is true here since repeated

games with asynchronous are stochastic games by de¯nition.

5 The Folk Theorem

In this section, we establish the folk theorem for repeated games with asynchronous moves.

The folk asserts that any feasible and strictly EUC rational payo® vector in a repeated

game with asynchronous moves can be approximated by a perfect equilibrium when the

players are su±ciently patient. The statement of this folk theorem re°ects the fact that the

e®ective minimax point depends on the asynchronous move structure and a payo® vector can
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only be approximated. Given Theorem 1, our folk theorem characterizes almost all perfect

equilibrium payo®s when players are su±ciently patient. Payo® vectors that are covered by

this folk theorem are those that are weakly but not strictly EUC rational.

Theorem 2 (The Folk Theorem) Under the FPI condition, 8 v 2 F such that v >> m,

8 " > 0, 9 ± 2 (0; 1) such that for all ± > ±, the repeated game has a perfect equilibrium

where players' average payo® vector is within " of v.

Proof: The proof is constructive. For any feasible and strictly EUC rational payo® vector,

¯rst we provide a strategy pro¯le where players' average payo® vector is arbitrarily close to

this target payo® vector, then derive a set of su±cient conditions under which the strategy

pro l̄e is subgame perfect, and lastly prove that when the discount factor is large enough all

the su±cient conditions hold to ensure the subgame perfection of the strategy pro¯le.

For any v 2 F such that v >> m, there is a set n personalized punishment payo® vectors

(v1; v2; : : : ; vn), such that

8 i 2 I, vi is feasible and strictly EUC rational: vi 2 F and vi >> m;

8 i 2 I, player i strictly prefers v to vi: vi > vii;

for j =2 Ei, player i strictly prefers v j to vi: vji > vii.

Players with equivalent utilities share the same personalized punishment payo® vector. It

is easy to construct n personalized punishment vectors if G satis¯es the full dimensionality

condition. No matter whether players moves synchronously or not, (v; v1; ¢; vn) are de¯ned

in terms of payo®s from G. Therefore, ¯nding them does not pose any new challenge for

repeated games with asynchronous moves. 8 " > 0 and (v; v1; ¢ ¢ ¢ ; vn), de¯ne

"¤ = min

(
"; min

i2I

Ã
v ii ¡mi
3

!
; min
i2I

Ã
vi ¡ vii
3

!
; min
i 6=j

Ã
vji ¡ vii
3

!)
> 0: (26)

Suppose outcome paths (¼; ¼1; ¢ ¢ ¢ ; ¼n) approximate (v; v1; ¢ ¢ ¢ ; vn) as ± ! 1, respectively.

For "¤ > 0 by (26), 9 ±1 2 (0; 1) such that for all ± ¸ ±1, players' continuation payo®s from

¼ in any period are within "¤ of v, and players' continuation payo®s from ¼i in any period

game are within "¤ of vi.
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Let ½i(¢) be a path that solves mti(¢), depending on the initial state at t. As we argued,

player i's payo® from ½i(¢) is less than mti(¢) in general. Only under the best unilateral

deviation by those in Ei in every period, player i's payo® will be equal to mt
i(¢). By Lemma

1, 9 ±2 2 (0; 1) such thatmt
i(¢) is within "¤ of mi for all ± > ±2 at any t with any initial state.

De¯ne M = maxi;a2A jui(a)j, which is ¯nite by the assumptions on the stage game G. A

player will never receive more than M nor less than ¡M in any period.

Similar to a simple strategy pro¯le of Abreu (1988), we consider a strategy pro¯le de¯ned

by the target path ¼ and punishment paths for n players in any period. Player i's punishment

path at t contains three phases. The ¯rst phase is the e®ective minimax phase from ½i(¢),

the second phase is the transition phase and the third phase is the settling phase to path ¼i.

Player i's average payo® from such a punishment path is, at most,

(1¡ ±T )(mi + "¤) + (±T ¡ ±T+T 0 )M + ±T+T
0
(vii + "

¤); (27)

where phase 1 has T periods and phase 2 has T 0 periods. T depends on i, t and initial state

at t. Under the FPI condition, T 0 is ¯nite. Since player i's payo® from the ¯rst phase is less

than that form the later two phase, T is chosen large enough so that player i's payo® form

his punishment path is bounded from above by mi + "¤.

The strategy pro¯le begins with the target path ¼. If player i unilaterally deviates from

any on-going path (either the target path ¼ or the punishment path for any player), the strat-

egy pro¯le starts player i's punishment path for the corresponding period and initial state.

This means that if a player deviates during his own punishment path, his will punishment

again with his punishment path starting from the next period.

Now we provide a set of su±cient conditions for the strategy pro¯le described above

to be a perfect equilibrium of the repeated game. First of all, ± needs to be higher than

maxf±1; ±2g so that what we did so far are valid.

During the target path ¼, if player i 2 It deviates at t then his payo® will be no more

than M during period t. The strategy pro l̄e then switches player i's punishment path at

t+1 from which player i's payo® is not more than will not be higher than (27). If player does
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not deviate then his continuation payo® will not be less than vi ¡ "¤. A su±cient condition

for player i not to deviate from the target path ¼ is

(1 ¡ ±)M + ±
h
(1¡ ±T)(mi + "¤) + (±T ¡ ±T¤ )M + ±T+T

¤
(vii + ")

i
· vi ¡ "¤: (28)

During player j's punishment path for j 62 Ei, player i's unilateral deviation will trigger

player i's punishment path as before. Note player i's payo® during the current period after

deviation cannot be higher than M . So player i's average payo® from deviation cannot be

higher than

(1 ¡ ±)M + ±
h
(1¡ ±T )(mi + "

¤) + (±T ¡ ±T+T 0)M + ±T+T
0
(vii + "

¤)
i

(29)

If player i does not deviate in player j 's punishment path, his payo® will be at least

(1 ¡ ±T+T 0)(¡M ) + ±T+T 0(vji ¡ "¤): (30)

A su±cient condition for player i not to deviate in player j's punishment path is (29) · (30).

During player j's punishment path where j 2 Ei,8 player i's unilateral deviation will

trigger player i's punishment path. During the ¯rst phase, player i's payo® from his unilateral

deviation cannot be higher than mt
i(¢) from de¯nition. Player i's deviation however delays

the second and third phases where player i has higher payo®s. So any unilateral deviation

during the ¯rst phase is never bene¯cial to player i. If player i deviates at t in the second or

the third phase, his payo® will not be more than M during period t and (mi + ") at t+ 1.

Player i's payo® from such a deviation is, at most, (1¡ ±)M + ±(mi + "
¤). During the last

two phases, player i receives at least ¡M for T 0 periods, followed by vii ¡ "¤. Therefore, a

su±cient for player i not to deviate in the second and third phases is

(1 ¡ ±)M + ±(mi + "
¤) · (1 ¡ ±T 0)(¡M ) + ±T 0(vii ¡ "¤): (31)

Recall the de¯nition of "¤ in (26). As ± ! 1, the left hand side of (28) converges to vii+"
¤

which is strictly less than vi+ "¤. For j =2 Ei, the limit of (29) is v ii+ "¤, which is strictly less
8For j 2 Ei, player i and player j have the same punishment path at any t with any initial state.

22



than the limit of (30) vji¡"¤. Similarly, (31) holds as ± ! 1 frommi+"¤ < vii¡"¤. Therefore,

9 ± > maxf±1; ±2g such that for all ± ¸ ±, inequalities (28) and (31) hold, and (29) · (30).

In other words, all the su±cient conditions for the strategy pro l̄e to be a subgame perfect

equilibrium are satis¯ed for ± ¸ ±. The equilibrium payo® vector is calculated from ¼, which

is within " · "¤ of v for all ± ¸ ±. Q.E.D.

6 Concluding Remarks

This paper studies repeated games with asynchronous moves where players may not revise

their actions in every period. Repeated games with asynchronous moves integrate a num-

ber of repeated game models in the literature. Based on the idea that players who have

equivalent utilities should not minimize each other, the concept of e®ective minimax value is

introduced based on the repeated game. A player's e®ective minimax value turns out to be

the in¯mum of this player's equilibrium payo®s in the limit as the discount goes to one. It

crucially depends on players' asynchronous move structure in the repeated game, but does

not have obvious relationship with his e®ective or standard minimax value in the stage game.

Generally speaking, if a players revises his actions less frequent, his e®ective minimax value

will be lower. These results clarify some of the misunderstanding for this class of dynamic

games. A folk theorem is established for repeated games with asynchronous moves in this

paper. The e®ective minimax value formulated in this paper reduces its counterpart in re-

peated sequential games (Wen (2002)) and repeated game with synchronous moves (Wen

(1994)). Theorem 1 in this paper also implies the anti-folk theorem of Laguno® and Matsui

(1997) in repeated pure coordination game with alternating moves.
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