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1. Introduction

Univariate indices of income inequality provide an inadequate basis on which
to compare the inequality of well-being within and between populations.
Recognition of this fact has lead to an explosion of research recently on
multidimensional economic inequality, beginning with the seminal articles
by Kolm (1977) and Atkinson and Bourguignon (1982). These articles are
primarily concerned with developing dominance criteria for ranking multi-
variate distributions. When there are multiple attributes of well-being being
compared, one distribution may be more equal than a second if the former
exhibits less dispersion than the latter or if it reduces the positive dependence
between the individual distributions of the attributes. Kolm focused on the
first of these ways in which inequality may manifest itself, whereas Atkinson
and Bourguignon focused on the second.

Dominance criteria only provide partial orderings of the possible distribu-
tions of attributes. In contrast, an inequality index can be used to completely
order all distributions. In the normative approach to inequality measure-
ment, a social evaluation (or its representation, a social evaluation function)
is used to construct an inequality index. A social evaluation ranks alternative
distributions according to their social desirability. The use of a social evalua-
tion makes explicit the value judgements underlying an inequality index. For
univariate distributions, the normative approach was pioneered by Atkinson
(1970) and Kolm (1969), who introduced general procedures for constructing
an inequality index from a social evaluation. Multi-attribute extensions of
their methodologies have been proposed by Kolm (1977) and Tsui (1995).1

The purpose of this article is to provide an introduction to the normative
approach to the measurement of multidimensional inequality. While my focus
is on indices of inequality, rather than on dominance criteria, it is desirable
for an inequality index to be consistent with normatively-based dominance
criteria. As a consequence, it necessary to devote some attention to this
issue. However, it is beyond the scope of this article to provide a systematic
survey of the literature on multivariate dominance criteria.2

1Inequality is not the only social phenonmenon for which multivariate indices have
been developed. For example, the United Nations Human Development Index (see United
Nations Development Programme (1990)) aggregates indicators of longevity, education,
and command over resources into an overall measure of the standard of living.

2See Trannoy (2004) for a detailed discussion of multivariate dominance criteria. Some
of the issues in the measurement of multidimensional inequality that are not considered
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Here, as in much of the literature on the measurement of inequality, it
is assumed that the population is homogeneous in the sense that individuals
do not differ in welfare-relevant characteristics other than the attributes that
are the focus of the analysis. In a heterogeneous society, individuals may
differ for a number of reasons—they may belong to households of different
size, they may have different preferences, or, even if they have the same
preferences, they may have different cardinal utility functions because of
differences in their physical characteristics. In the past decade, considerable
progress has been made on extending the theory of inequality measurement
for homogeneous populations to the heterogeneous case. See, for example,
Blackorby, Bossert, and Donaldson (1999), Ebert (1995), Shorrocks (1995),
and Weymark (1999).

In Section 2, some of the notation used in this article is introduced. If
a social evaluation is to provide a satisfactory basis on which to construct
a normative inequality index, it should satisfy a number of basic properties.
These properties are considered in Section 3. Among these properties are
multi-attribute generalizations of the Pigou–Dalton transfer principle.

The procedure proposed by Atkinson (1970) and Kolm (1969) for con-
structing relative (i.e., scale invariant) univariate inequality indices and the
procedure proposed by Kolm (1969) for constructing absolute (i.e., transla-
tion invariant) univariate inequality indices are reviewed in Section 4. Multi-
attribute generalizations of these procedures are discussed in 5.

The normative approach has been used by Tsui (1995) to define multi-
attribute generalizations of the univariate Atkinson and Kolm–Pollak classes
of inequality indices and to axiomatically characterize their underlying social
evaluations. These indices are considered in Section 6.

The social evaluation functions used to construct Tsui’s indices have a
two-stage aggregation property. In the first stage, a utility function is used
to determine the distribution of utilities and then these utilities are summed.
Maasoumi (1986) has suggested constructing inequality indices directly using
a two-stage procedure in which a univariate inequality index is applied to the
distribution of utilities obtained in the first stage. Maasoumi’s proposal is
the subject of Section 7.

Section 8 discusses the multi-attribute generalized Gini indices introduced
by Gajdos and Weymark (2003). The social evaluation functions from which
these indices are derived also have a two-stage aggregation property, but,

here are discussed in the surveys by Maasoumi (1999) and Savaglio (2002).
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in contrast to Tsui (1995) and Maasoumi (1986), the order of aggregation
is reversed—first the distributions of each attribute are aggregated using
univariate generalized Gini social evaluation functions and then the values of
these functions are aggregated into an overall evaluation in a second stage.

Section 9 considers a dominance criterion proposed by Tsui (1999) that
takes account of the dependence between the individual distributions of the
attributes. Some further issues in the measurement of multidimensional in-
equality are briefly discussed in Section 10.

2. Preliminaries

There is a fixed set of individuals N = {1, . . . , n}, with n ≥ 2. The set
of attributes is Q = {1, . . . , q}. It is assumed that the quantity of each
of these attributes can be continuously varied. Examples of such attributes
include income, life expectancy, educational attainment, and health status.3

Attributes need not differ in kind. For example, the attributes could be
incomes in different time periods or in different states of the world. In the
latter case, we are measuring inequality under uncertainty.

A distribution of attributes among the population is an n× q real-valued
matrix. The ijth entry of a distribution matrix X is xij, individual i’s
quantity of the jth attribute. The ith row of X is denoted xi· and the jth
column is denoted x·j. If there is only one attribute, the distribution is
written as x rather than as X or x·1. Three sets of distribution matrices are
considered for the domain D of admissible distributions. The first, denoted
M1, is the set of all possible distribution matrices. The second, denoted M2,
is the set of all distribution matrices X for which both (a) xij ≥ 0 for all
i ∈ N and all j ∈ Q and (b) x·j ∈ R

n∗
+ := R

n
+ \{0n} for all j ∈ Q.4 The third,

denoted M3, is the set of all distribution matrices X for which xij > 0 for all
i ∈ N and all j ∈ Q. Note that for distribution matrices in M2 and M3, the
mean value of any attribute is positive. Except where otherwise specified, D
can be any one of these three domains in the rest of this article.

For any x ∈ R
n, µ(x) is the mean of x, x̃ is the permutation of x for which

3While, in principle, each of these attributes is subject to continuous variation, in prac-
tice, they may only take on a finite number of values. For example, qualitative measures
of health status employ discrete categories. For an analysis of inequality measurement for
categorical data, see Allison and Foster (2004).

4
R, R+, and R++ denote the set of real numbers, nonnegative real numbers, and

positive real numbers, respectively. 0n (resp. 1n) is an n-vector of zeros (resp. ones).
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x̃1 ≥ x̃2 ≥ · · · ≥ x̃n, and x̂ is the permutation of x for which x̂1 ≤ x̂2 ≤ · · · ≤
x̂n. For u, v ∈ R

n, u strictly generalized Lorenz dominates v if u �= v and for
all k ∈ N ,

∑k
i=1 ûi ≥

∑k
i=1 v̂i.

5 If
∑n

i=1 ûi =
∑n

i=1 v̂i in this definition, then u
strictly Lorenz dominates v.

3. Basic Properties for a Social Evaluation Relation

The inequality indices considered in this article are derived from explicit
social evaluations of the possible distribution matrices. A social evaluation
is a binary relation � on the set of distribution matrices D. The relation �
is interpreted as meaning “weakly socially preferred to”. The symmetric and
asymmetric factors of � are ∼ and �, respectively. A function W : D → R

that represents � is called a social evaluation function.
By defining � directly on D, the analysis is not limited to welfarist social

evaluations. Welfarism is the principle that the only feature of a distribution
that is socially relevant is the vector of utilities associated with this distri-
bution. Welfarist social objectives can be described using a social welfare
function. A social welfare function is a real-valued function defined on n-
tuples of utilities. If the utility functions are known, a social welfare function
can be used to construct a social evaluation function—for each distribution,
the value of the social evaluation function is the value assigned by the social
welfare function to the utilities obtained with this distribution. For example,
suppose that the social welfare function is utilitarian and, in keeping with the
assumption that the society is homogeneous, that everybody has the same
utility function. The corresponding social evaluation function then has the
form

W (X) =
n∑

i=1

U(xi·), ∀X ∈ D, (1)

where U : D → R is the common utility function, where D = R
q (resp. R

q
+,

R
q
++) if D = M1 (resp. M2, M3).

6 Lack of information about individual
utility functions limits the applicability of this approach. In contrast, it

5See Shorrocks (1983) for a detailed discussion of generalized Lorenz domination. In
the mathematics literature, generalized Lorenz domination is known as weak superma-
jorization. See Marshall and Olkin (1979, p. 10).

6This functional form is used by Atkinson (1970) in the unidimensional case and by
Atkinson and Bourguignon (1982) in the multidimensional case. However, Atkinson (1983,
p. 5) has said that “there is nothing inherently utilitarian in the formulation” given in (1).
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is possible to use a social evaluation even if nothing is known about the
individuals’ utility functions other than that they are increasing in their
arguments.

There are a number of basic properties that a social evaluation should sat-
isfy if it is to serve as a satisfactory basis from which to construct an inequal-
ity index. These properties are formulated as axioms. There are two types
of basic axioms: (a) axioms that are not concerned with the distributional
sensitivity of the social evaluation and (b) axioms that are multi-attribute
generalizations of the Pigou (1912)–Dalton (1920) transfer principle.

3.1. Non-Distributional Axioms

The first axiom requires � to be a complete preorder.

Ordering (ORD). The binary relation � is reflexive, complete, and tran-
sitive on D.

The second axiom requires � to be continuous; i.e., any strict ranking of
two distribution matrices is invariant to small perturbations in these matri-
ces. Continuity ensures that the analysis is not overly sensitive to errors in
measurement of the distributions.

Continuity (CONT). The sets {Y ∈ D | Y � X} and {Y ∈ D | X � Y }
are open for all X ∈ D.7

It is assumed that all of the attributes are desirable. Then, regardless
of the exact form of individual preferences, the Pareto principle requires
that increasing the quantity of any attribute for any individual is socially
desirable provided that nobody’s allocation of any attribute is decreased.
The following monotonicity axiom states this principle formally.

Monotonicity (MON). For all X, Y ∈ D, if X �= Y and xij ≥ yij for all
i ∈ N and all j ∈ Q, then X � Y .

If U is not interpreted as a utility function, then (1) simply amounts to saying that the
social evaluation function is symmetric and additively separable.

7A matrix in D can be thought of as a vector in R
nq. A subset of D is open if the

corresponding set of vectors is open in R
nq.
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Equal treatment of individuals is captured by an anonymity axiom. In a
homogeneous society, individuals are treated symmetrically if permuting the
individual distributions is a matter of social indifference.

Anonymity (ANON). For all n× n permutation matrices Π and all X ∈
D, X ∼ ΠX.

3.2. Multidimensional Transfer Principles

Distributional sensitivity of the social evaluation is obtained by requiring �
to satisfy some form of the Pigou (1912)–Dalton (1920) transfer principle.
The single attribute case is considered first. For concreteness, whenever there
is a single attribute, it is supposed that this attribute is income.

A Pigou–Dalton transfer is a transfer of income from a richer to a poorer
person that results in the initially poorer person ending up with less income
than the initially richer person starts with.8 Formally, if the initial incomes
are xi1 and xi2 with xi1 < xi2 and the size of the transfer is δ > 0, then
i1’s post-transfer income is yi1 = xi1 + δ < xi2 (and, hence, i2’s post-transfer
income is yi2 = xi2 − δ > xi1). A Pigou–Dalton transfer can be equivalently
expressed in terms of a strict T -transform. A strict T -transform is a linear
transform defined by an n× n matrix T of the form

T = λIn + (1 − λ)Πi1i2 (2)

for some λ ∈ (0, 1) and some i1, i2 ∈ N , where In is the n×n identity matrix
and Πi1i2 is the n × n permutation matrix that interchanges the i1 and i2
coordinates. Letting y = Tx, it is easy to verify that yi1 = λxi1 + (1− λ)xi2 ,
yi2 = (1 − λ)xi1 + λxi2 , and yk = xk for all k �∈ {i1, i2}.

If the distribution y is obtained from the distribution x by a sequence
of Pigou–Dalton transfers (possibly involving a number of different pairs of
individuals), then y Pigou–Dalton majorizes x. As is well-known (see Mar-
shall and Olkin (1979, Chapter 1) or Hardy, Littlewood, and Pólya (1934)),
(a) y Pigou–Dalton majorizes x if and only if (b) y strictly Lorenz dominates
x if and only (c) y = Bx for some n × n bistochastic matrix B that is not

8Note that in this formulation of a Pigou–Dalton transfer, the relative positions in the
income distributions of the two individuals are permitted to differ pre- and post-transfer.
It is sometimes assumed that the transfer does not reverse the rank order. In the presence
of Anonymity, this restriction is of no consequence.

6



a permutation matrix.9 The Pigou–Dalton transfer principle requires y to
be socially preferred to x if y Pigou–Dalton majorizes x. When q = 1, a
symmetric social evaluation function W satisfies this principle if and only if
W is strictly S-concave.10

There have been a number of different ways proposed for generalizing
the unidimensional Pigou–Dalton transfer principle so that it can be applied
when there are multiple attributes. See Kolm (1977), Marshall and Olkin
(1979, Chapter 15), and Savaglio (2002). Two of these multi-attribute Pigou–
Dalton transfer principles are considered here.

In the first of these principles, the definition of Pigou–Dalton majorization
is generalized by applying the same sequence of T -transforms to all attributes.

Definition. For all X, Y ∈ D for which X �= Y , Y uniformly Pigou–Dalton
majorizes X, denoted Y �PD X, if Y = PX, where P is the product of a
finite number of n× n strict T -transforms.

The corresponding multidimensional transfer principle is the Uniform
Pigou–Dalton Majorization Principle.

Uniform Pigou–Dalton Majorization Principle (UPM). For all X, Y ∈
D for which X �= Y , if Y �PD X, then Y � X.

As noted above, if there is only one attribute, a sequence of Pigou–Dalton
transfers can be equivalently expressed in terms of a bistochastic matrix. This
observation suggests using bistochastic matrices to define a multi-attribute
version of Pigou–Dalton majorization.

Definition. For all X, Y ∈ D for which X �= Y , Y uniformly majorizes X,
denoted Y �U X, if Y = BX for some n × n bistochastic matrix B that is
not a permutation matrix.11

9A nonnegative square matrix is bistochastic if all of its row and column sums are equal
to 1.

10A function f : D → R, where D ⊆ R
n, is S-concave if f(Bx) ≥ f(x) for all x ∈ D and

all n×n bistochastic matrices B and it is strictly S-concave if the inequality is strict when
B is not a permutation matrix. S-convexity and strict S-convexity are defined analogously
by reversing the inequality signs.

11The terminology used here is based on Tsui (1999). In the terminology of Marshall
and Olkin (1979), Y �PD X is equivalent to saying that X chain majorizes Y and Y �U X
is equivalent to saying that X majorizes Y .
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Note that the same bistochastic matrix is being used to smooth the dis-
tributions of each attibute. The corresponding multidimensional transfer
principle is the Uniform Majorization Principle.

Uniform Majorization Principle (UM). For all X, Y ∈ D for which
X �= Y , if Y �U X, then Y � X.

The product of strict T -transform matrices is a non-permutation bis-
tochastic matrix. If either q = 1 or n = 2, the converse is also true. How-
ever, if n ≥ 3 and q ≥ 2, there exist non-permutation bistochastic matrices
that are not products of strict T -transforms. See Marshall and Olkin (1979,
p. 431). As a consequence, except in the special cases noted above, UM is a
more restrictive assumption than UPM.

Kolm (1977) has shown that if a common increasing and strictly concave
utility function U is used to evaluate individuals’ allocations of attributes,
then for all X, Y ∈ D, the vector of utilities (U(y1), . . . , U(yn)) strictly gener-
alized Lorenz dominates the vector of utilities (U(x1), . . . , U(xn)) if Y �U X.
Hence, the ordering defined by the utilitarian social evaluation function (1)
satisfies UM if U is increasing and strictly concave.

If Y �PD X or if Y �U X, then Y exhibits less dispersion than X. Fur-
thermore, the mean value of each attribute is the same in both X and Y .
It is for these reasons that UPM and UM have so much appeal as ways of
incorporating inequality aversion into a social evaluation. However, in a so-
ciety in which individuals have different preferences, Fleurbaey and Trannoy
(2003) have shown that multi-attribute versions of the Pigou–Dalton transfer
principle can conflict with the Pareto principle. Thus, a welfarist would want
to limit the domain of applicability of multidimensional transfer principles
in heterogeneous societies.

4. Normative Univariate Inequality Indices

In the normative approach to inequality measurement, an inequality index is
constructed from a social evaluation ordering. This approach has its origins
in the articles by Atkinson (1970) and Kolm (1969) on univariate inequality
measurement. In this section, I review the procedures that were proposed
by Atkinson and Kolm for deriving univariate inequality indices from social
evaluation orderings.
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4.1. The Atkinson–Kolm–Sen Inequality Index

Suppose that q = 1 and that the social evaluation ordering is �. The equally-
distributed-equivalent income Ξ�(x) associated with a given univariate in-
come distribution x is the per capita income that, if distributed equally, is
indifferent to the actual income distribution according to �. Formally, Ξ�(x)
is defined implicitly by

(Ξ�(x) · 1n) ∼ x, ∀x ∈ D. (3)

ORD, CONT, and MON ensure that Ξ�(x) is well-defined. The equally-
distributed-equivalent income function is the mapping Ξ� : D → R that as-
signs the equally-distributed-equivalent income to each income distribution
in the domain. Ξ� is a particular representation of �.

Now suppose that that D ∈ {M2,M3} (so that the mean income is
always positive). The Atkinson–Kolm–Sen inequality index corresponding to
� is the function IAKS

� : D → R defined by

IAKS
� (x) = 1 − Ξ�(x)

µ(x)
, ∀x ∈ D. (4)

If � satisfies the Pigou–Dalton transfer principle, the value of this index is
bounded above by 1 and bounded below by 0 (and the lower bound is only
attained if incomes are equally distributed). This procedure for constructing
an inequality index was independently proposed by Atkinson (1970) and
Kolm (1969), and was later popularized by Sen (1973).12 This index has
a simple interpretation. IAKS

� (x) is the fraction of the total income that
could be destroyed if incomes are equalized and the resulting distribution is
indifferent to x according to �. Thus, the Atkinson–Kolm–Sen inequality
index is a measure of the waste due to inequality.

Given any univariate inequality index I : D → R, (4) can be used to
determine the underlying social evaluation that generates this index using
the Atkinson–Kolm–Sen methodology. This social evaluation is represented
by

Ξ�(x) = µ(x)[1 − I(x)], ∀x ∈ D. (5)

A univariate or multivariate inequality index I : D → R is normatively
significant if for all X, Y ∈ D for which µ(x·j) = µ(y·j) for all j ∈ Q,

12Atkinson (1970) assumed that the social evaluation function has the form given in (1).
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I(X) ≥ I(Y ) if and only if Y � X. By construction, an Atkinson–Kolm–Sen
inequality index is normatively significant.

An index is a relative index if it is invariant to a proportional scaling of
all its variables; i.e., if it is homogeneous of degree 0. From (4) it follows
that IAKS

� is a relative inequality index if and only if Ξ� is homogeneous of
degree 1, which is equivalent to requiring � to be homothetic.

4.2. The Kolm Inequality Index

As in the preceding subsection, suppose that q = 1 and that the social
evaluation ordering is �. Further suppose that D is any one of the three
domains defined in Section 2. Kolm (1969) has proposed an alternative
to IAKS

� for the measurement of univariate income inequality. The Kolm
inequality index corresponding to � is the function IK

� : D → R defined by

IK
� (x) = µ(x) − Ξ�(x), ∀x ∈ D. (6)

If � satisfies the Pigou–Dalton transfer principle, the value of this index
is always nonnegative and it is only equal to 0 if everyone has the same
income. IK

� (x) is the per capita income that could be destroyed if incomes
are equalized and the resulting distribution is indifferent to x according to
�. As is the case with IAKS

� , IK
� is normatively significant.

An index is an absolute index if it is invariant to an increase or decrease
of all of its variables by a common amount. Kolm intended for IK

� to be used
as a measure of absolute inequality, which implicitly places an invariance
restriction on � analogous to the homotheticity requirement for IAKS

� to be
a relative index. From (6), it can be seen that IK

� is an absolute inequality
index if and only if Ξ� is unit-translatable, which is equivalent to requiring
� to be translatable.13

If one subscribes to Kolm’s procedure, the equally-distributed-equivalent
income function underlying the univariate inequality index I : D → R is given
by

Ξ�(x) = µ(x) − I(x), ∀x ∈ D. (7)

13A function f : D → R, where D ⊆ R
n, is unit-translatable if f(x + λ1n) = f(x) + λ

for all x ∈ D and all λ ∈ R for which x + λ1n ∈ D. A binary relation on a subset of a
Euclidean space is translatable if it can be represented by a unit-translatable function.
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Comparing (5) and (7), we see that the social evaluation that provides the
normative foundation for an inequality index is indeterminate unless one has
adopted a particular procedure for deriving inequality indices from social
evaluations.14 For this reason, Foster (1994), among others, has criticized
the various proposals for constructing normative inequality indices.

Both the IAKS
� and IK

� indices are cardinal. Replacing I by an ordinally-
equivalent function, say by squaring I, in either (5) or (7) changes the un-
derlying social evaluation. While there has been some research on ordinal
inequality indices for univariate distributions (see Blackorby, Bossert, and
Donaldson (1999), Chakravarty (1990), and Dutta (2002)), this is an issue
that has not been considered in the multivariate literature.

5. Normative Multivariate Inequality Indices

In this section, I describe how the IAKS
� and IK

� indices have been generalized
for multivariate distributions by Kolm (1977) and Tsui (1995). Throughout
this discussion, it is assumed that � satisfes ORD, CONT, MON, ANON,
and UM.

5.1. The Multi-Attribute Kolm Inequality Index

In this subsection, it is supposed that D ∈ {M2,M3}. The Kolm (1977)
multi-attribute generalization of the Atkinson–Kolm–Sen inequality index
measures the inequality of a distribution matrix by the fraction of the ag-
gregate amount of each attribute that could be destroyed if every attribute
is equalized and the resulting distribution is indifferent to the original dis-
tribution according to �.15 To define this index formally, some preliminary
definitions are needed.

14While the two procedures described above are the most commonly-used for construct-
ing normative inequality indices, they do not exhaust the possibilities. For a discussion
of some other approaches, see Blackorby, Bossert, and Donaldson (1999), Chakravarty
(1990), and Dutta (2002).

15Bourguignon (1999) and List (1999) have proposed alternate multi-attribute gener-
alizations of the IAKS

� index. Bourguignon’s index is constructed by first computing the
ratio of the utilitarian sum in (1) to the utilitarian sum that would have been obtained if
eveyone had the mean value of each attribute and then subtracting this number from 1.
Bourguignon assumes that the utility function used to aggregate the individual allocations
is a CES function. List’s proposal is considered in Section 9.
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For all X ∈ D, let Xµ denote the distribution matrix in which, for all
j ∈ Q, the entries in the jth column are all set equal to µ(x·j). Define the
function ∆� : D → R by setting, for all X ∈ D, ∆�(X) equal to the scalar
that solves

∆�(X)Xµ ∼ X. (8)

By ORD, CONT, and MON, this function is well-defined.
The multi-attribute Kolm inequality index associated with � is the func-

tion IKM
� : D → R defined by setting

IKM
� (X) = 1 − ∆�(X), ∀X ∈ D. (9)

If q = 1, ∆�(x) = Ξ�(x)/µ(x) for all x ∈ D. Hence, for univariate distribu-
tions, IKM

� = IAKS
� .

∆� is not a representation of �. Nevertheless, for any X, Y ∈ D for
which Xµ = Yµ, MON implies that ∆�(X) ≥ ∆�(Y ) if and only if X � Y .
It then follows from (9) that IKM

� is normatively significant.
Consider an arbitrary inequality index I : D → R. While (9) can be

used to to solve for the ∆� function that generates I, ∆� does not provide
sufficient information to determine � when q > 1. The problem is that the
social ranking of X and Y is not known if Xµ �= Yµ and neither Xµ weakly
dominates Yµ (attribute by attribute) nor Yµ weakly dominates Xµ.

The value of IKM
� is clearly bounded above by 1. If X = Xµ, then

∆�(X) = 1 and IKM
� (X) = 0. Because Xµ = BX for the bistochastic

matrix B in which all entries are equal to 1/n, UM and MON imply that
IKM
� (X) > 0 when X �= Xµ.16 ANON implies that IKM

� treats individuals
symmetrically; i.e., IKM

� (X) is invariant to a permutation of the rows of X.
IKM
� is a relative index if and only if � is homothetic. For future reference,

this property of � is stated as a formal axiom.

16The same conclusion holds if UPM is substituted for UM because, as the following
argument demonstrates, when X �= Xµ, Xµ can be obtained from X by a finite sequence of
strict T -transforms. If attribute 1 is not equally distributed in X, then by Lemma 2.B.1 in
Marshall and Olkin (1979), there exists a finite sequence of strict T -transforms that, when
applied to X, results in a distribution matrix Y in which attribute 1 is equally distributed.
Note that if a T -transform is applied to Y , the distribution of attribute 1 is unchanged.
Hence, reasoning as above, if attribute 2 is not equally distributed in Y , by applying a
finite sequence of strict T -transforms to Y , it is possible to equalize the distributions of
both attributes 1 and 2. By applying the same argument to each attribute sequentially, it
follows that Xµ can be obtained from X by a finite sequence of strict T -transforms.
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Homotheticity (HOM). For all X, Y ∈ D and all λ > 0, X � Y if and
only if λX � λY .

For univariate distributions of income, one justification that has been
offered for this axiom is that the social evaluation should be invariant to the
units in which income is measured (dollars, euros, yen, etc.). In the multi-
attribute case, HOM implies that � is invariant to a common proportional
change in the units in which all goods are measured. If the various attributes
correspond to different kinds of goods, this line of reasoning suggests that
independent changes in the units in which different attributes are measured
should not affect the social evaluation ordering.

Strong Homotheticity (SHOM). For all X, Y ∈ D and all q×q diagonal
matrices Λ for which λjj > 0 for all j ∈ Q, X � Y if and only if XΛ � Y Λ.

SHOM was proposed by Tsui (1995). The appeal of this kind of scale
invariance assumption has been questioned by Bourguignon (1999, p. 479)
when applied to inequality measurement. He has argued that if, say, incomes
are doubled, then the contribution of other attributes to overall inequality
may well be affected. Even if one accepts SHOM when the atrributes are
different kinds of goods, as noted by Gajdos and Weymark (2003), this axiom
is not appropriate if some of the attributes are naturally measured in the same
units. For example, if the attributes are incomes in different states of the
world, their units of measurement cannot be varied independently. For some
goods, even stronger invariance properties may be appropriate. This would
be the case if an attribute is measured on an ordinal scale.17

5.2. The Multi-Attribute Tsui Inequality Index

In this subsection, it is supposed that D ∈ {M1,M2,M3}. Tsui (1995)
has provided a multi-attribute generalization of Kolm’s univariate inequality
index. Tsui’s index measures inequality by the amount of each attribute that
must be taken away from every individual in order to obtain an allocation
that is indifferent to the original allocation according to � if the distribution
of each attribute is equalized.

17HOM and SHOM (and TRA and STRA defined below) are formally equivalent to
invariance assumptions used in the literature on social choice with interpersonal utility
comparisons. See Bossert and Weymark (2004) and Gajdos and Weymark (2003).

13



The formal definition of this index uses the function Γ� : D → R defined
by setting, for all X ∈ D, Γ�(X) equal to the scalar that solves

(Xµ − Γ�(X)1) ∼ X, (10)

where 1 is a distribution matrix whose entries are all equal to 1. By ORD,
CONT, and MON, this function is well-defined.

The multi-attribute Tsui inequality index associated with � is the func-
tion ITM

� : D → R defined by setting

ITM
� (X) = Γ�(X), ∀X ∈ D. (11)

If q = 1, ITM
� = IK

� because Γ�(x) = µ(x) − Ξ�(x) for all x ∈ D. Using
reasoning similar to that used in the discussion of IKM

� , it is straightforward to
show that ITM

� is normatively significant, ITM
� (X) = 0 if X = Xµ, ITM

� (X) >
0 if X �= Xµ, and ITM

� (X) = ITM
� (ΠX) for any n × n permutation matrix

Π. Furthermore, given an arbitrary inequality index I : D → R, it is not
possible to determine the social evaluation � that generates I using Tsui’s
procedure.

ITM
� is an absolute index if and only if � is translatable.

Translatability (TRA). For all X, Y ∈ D and all λ ∈ R for which X+λ1 ∈
D and Y + λ1 ∈ D, X � Y if and only if X + λ1 � Y + λ1.

If TRA is satisfied, then � is invariant to a common change in the ori-
gins from which the quantities of the various attributes are measured. Tsui
(1995) has also considered a stronger version of this translatability axiom
that requires � be invariant to independent changes in these origins.

Strong Translatability (STRA). For all X, Y ∈ D and all q× q diagonal
matrices Λ for which X + 1Λ ∈ D and Y + 1Λ ∈ D, X � Y if and only if
X + 1Λ � Y + 1Λ.

As with SHOM, STRA would not be appropriate if there are attributes
that should be measured in the same units.
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6. Multidimensional Atkinson and Kolm–Pollak Indices

Starting with the work of Atkinson (1970) and Kolm (1969), the procedures
described in Section 4 have been used to derive new functional forms for uni-
variate inequality indices. Prominent among them are the Atkinson (1970)
class of relative inequality indices and the Kolm (1969, 1976)–Pollak (1971)
class of absolute inequality indices. In this section, I consider the multi-
attribute generalizations of these indices proposed by Tsui (1995).

6.1. Multidimensional Atkinson Indices

In this subsection, it is supposed that D = M3. With minor modifications,
the analysis also applies to the domain M2. Atkinson (1970) considered uni-
variate distributions and assumed that the social evaluation � is represented
by a symmetric and additively separable social evaluation function, as in (1).
Suppose that U is increasing and strictly concave. With these assumptions,
� is homothetic if and only if there is a scalar r < 1 such that for all xi > 0,

U(xi) =


a + b

xr
i

r
, if r < 1 and r �= 0;

a + b ln(xi), if r = 0 ,
(12)

for some a ∈ R and some b > 0. For the social evaluation function obtained
by substituting (12) into (1), the equally-distributed-equivalent income func-
tion is given by

ΞA
�(x) =




[
1
n

∑n
i=1 x

r
i

]1/r
, if r < 1 and r �= 0;∏n

i=1 x
1/n
i , if r = 0 ,

(13)

for all x ∈ D. ΞA
� is a mean of order r function for r < 1. The Atkinson–

Kolm–Sen relative inequality index corresponding to (13) is

IA
�(x) =




1 −
[

1
n

∑n
i=1

(
xi

µ(x)

)r]1/r
, if r < 1 and r �= 0;

1 − ∏n
i=1

(
xi

µ(x)

)1/n
, if r = 0 ,

(14)

for all x ∈ D. An index of the form given in (14) is an Atkinson index of
inequality.18

18The same class of indices was also characterized by Kolm (1969, Theorem 13).
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The multi-attribute generalization of this class of indices proposed by
Tsui (1995) was identified axiomatically. This axiomatization requires that
n ≥ 3. Tsui’s axioms are multi-attribute analogues of the axioms used by
Blackorby, Donaldson, and Auersperg (1981) to axiomatize the social evalu-
ation functions for the Atkinson class of indices. They include ORD, CONT,
MON, ANON, UM, and SHOM.19

Tsui’s final axiom is a separability assumption. For all X ∈ D and all
nonempty S ⊂ N , let XS denote the submatrix of X containing the dis-
tributions of attributes for individuals in S and let XSC

be the submatrix
containing the remaining rows of X. The individuals in S are individual
separable in � from their complement SC if the conditional ordering of the
subdistribution matrices for the individuals in S obtained by fixing the sub-
distribution matrix of the individuals in SC does not depend on the choice
of the latter submatrix.

Minimal Individual Separability (MIS). There exists a non-singleton
set of individuals S ⊂ N that is individual separable in � from SC.

ANON implies that if S is individual separable in � from SC, then any
set of individuals with the same cardinality is individual separable from its
complement. When n ≥ 3, combining ANON and MIS with ORD, CONT,
MON, and UM implies that there exists an increasing, strictly concave func-
tion U : D → R such that � can be represented by an additive social evalu-
ation function of the form given in (1). The function U is a utility function
that the social evaluator uses to aggregate any individual’s allocation of the
q attributes into a summary statistic. The function U need not coincide
with any individual’s actual utility function. Adding SHOM to the six ax-
ioms used to obtain the additive representation of the social evaluation order
places considerable structure on the aggregator function U , as the following
theorem due to Tsui (1995) demonstrates.

Theorem 1. Suppose that n ≥ 3. A social evaluation � on D = M3 satis-
fies ORD, CONT, MON, ANON, UM, MIS, and SHOM if and only if there
exists an increasing, strictly concave function U : R

q
++ → R such that � can

19Tsui formulated his axioms in terms of a social evaluation function, rather than in
terms of the underlying binary relation. Tsui assumed that the social welfare function is
strictly quasiconcave. However, this assumption can be replaced by the weaker assumption
UM in his theorems.
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be represented by an additive social evaluation function of the form given in
(1) where, for all xi > 0,

U(xi) = a + b
q∏

j=1

x
rj

j (15)

or

U(xi) = a +
q∑

j=1

sj ln(xj), (16)

where a ∈ R, sj > 0 for all j ∈ Q, and the parameters b and rj, j ∈ Q, are
chosen so that the function U in (15) is increasing and strictly concave.20

A function IAM
� : D → R is a member of the corresponding class of multi-

attribute Kolm relative inequality indices if for all X ∈ D,

IAM
� (X) = 1 −


 1

n

n∑
i=1

q∏
j=1

(
xij

µ(x·j)

)rj



1/
∑

j
rj

(17)

or

IAM
� (X) = 1 −

n∏
i=1


 q∏

j=1

(
xij

µ(x·j)

)sj/
∑

j
sj




1/n

, (18)

where the parameters satisfy the restrictions in Theorem 1. IAM
� is a multi-

attribute Atkinson inequality index. If q = 1, (17) and (18) are equivalent to
the formulae for the univariate Atkinson index given in (14).

6.2. Multidimensional Kolm–Pollak Indices

In this subsection, it is supposed that D = M1. With minor modifications,
the analysis also applies to the other two domains.

For the univariate case, assume as in Atkinson (1970) that the social
evaluation � is symmetric and additively separable. If the function U in (1)

20The parameter restrictions on b and the rj are quite complicated. See Tsui (1995) for
details.
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is increasing and strictly concave, then � is translatable if and only if there
is a scalar r > 0 such that for all xi ∈ R,

U(xi) = a + b

(
exp(−rxi)

−r

)
, (19)

for some a ∈ R and some b > 0. The equally-distributed-equivalent income
function for � is given by

ΞKP
� (x) = −1

r
ln

[
1

n

n∑
i=1

exp(−rxi)

]
, r > 0, (20)

for all x ∈ D. The Kolm absolute inequality index corresponding to (20) can
be written as

IKP
� (x) =

1

r
ln

[
1

n

n∑
i=1

exp(r(µ(x) − xi))

]
, r > 0, (21)

for all x ∈ D. An index of the form given in (21) is a Kolm–Pollak index of
inequality. This class of inequality indices was introduced by Kolm (1969)
(see also Kolm (1976)). In consumer theory, the functional form in (20) was
shown by Pollak (1971) to characterize the additive utility functions that
have linear Engel curves.

Given an ordering R on the positive othant of R
n, an ordering R∗ on

all of R
n can be defined by setting, for all u, v ∈ R

n, uR∗v if and only if
(exp(u1), . . . , exp(un))R(exp(v1), . . . , exp(vn)). The ordering R is homoth-
etic if and only if the ordering R∗ is translatable. This observation accounts
for why the equally-distributed income functions for the Kolm–Pollak in-
dices can be obtained from the equally-distributed income functions for the
Atkinson indices by an exponential change of variables.21

By substituting STRA for SHOM in the axioms of Theorem 1, Tsui (1995)
has characterized a class of multi-attribute Kolm–Pollak social evaluation
orderings.

Theorem 2. Suppose that n ≥ 3. A social evaluation � on D = M1 satis-
fies ORD, CONT, MON, ANON, UM, MIS, and STRA if and only if there

21In the Kolm–Pollak counterpart to the r = 0 case of the Atkinson index, U is concave,
but not strictly concave. Furthermore, the equally-distributed-equivalent income func-
tion is always equal to average income and inequality as measured by the Kolm index is
identically 0.
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exists an increasing, strictly concave function U : R
q → R such that � can

be represented by an additive social evaluation function of the form given in
(1) where, for all xi > 0,

U(xi) = a + b
q∏

j=1

exp(rjxj), (22)

where a ∈ R and the parameters b and rj, j ∈ Q, are chosen so that the
function U in (22) is increasing and strictly concave.

The functional form in (22) can be obtained from (15) by an exponential
change of variables. A function IKPM

� : D → R is a member of the corre-
sponding class of multi-attribute Tsui absolute inequality indices if for all
X ∈ D,

IKPM
� (X) =

1∑
j rj

ln


 1

n

n∑
i=1

exp


 q∑

j=1

rj(µ(x·j) − xij)





 , (23)

where the parameters satisfy the restrictions in Theorem 2. IKPM
� is a multi-

attribute Kolm–Pollak inequality index. This class of indices coincides with
the univariate Kolm–Pollak class when q = 1.

Note that Theorems 1 and 2 use the stronger forms, SHOM and STRA,
of the invariance axioms. The implications of using HOM and TRA instead
have not been determined.

7. Maasoumi’s Two-Stage Aggregation Procedure

The multi-attribute social evaluation functions considered in the preceding
section are defined using a two-stage aggregation procedure. In the first stage,
for each individual, a utility function is used to aggregate the individual’s
allocation of the q attributes into a summary measure of well-being. This
initial aggregation results in a unidimensional distribution of utilities. In the
second stage, the individual utilities are summed to provide the overall social
evaluation of a distribution matrix.

Maasoumi (1986) (see also Maasoumi (1999)) has suggested that a multi-
attribute inequality index should be constructed directly using a two-stage
procedure. Specifically, he proposed using a utility function in the first stage
to aggregate the individual allocations of the attributes into a vector of utili-
ties and then, in the second stage, using a univariate inequality index applied
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to this distribution to obtain a measure of the inequality in the distribution
matrix. He also proposed functional forms for these aggregators. For the
second-stage aggregator, he suggested using a member of the class of gener-
alized entropy inequality indices. This class of indices contains the Atkinson
class and all of the indices that are ordinally equivalent to some member of
the Atkinson class. Using information-theoretic considerations, Maasoumi
argued that the utility function should be a weighted mean of order r. The
multi-attribute Atkinson and Kolm–Pollak inequality indices are not two-
stage aggregators in the sense of Maasoumi, as is apparent from inspection
of their functional forms.

Dardanoni (1995) has shown that an inequality index constructed ac-
cording to Maasoumi’s proposal need not satisfy the inequality counterpart
of UM. His argument is based on the following example.

Let

X =


10 10 10
10 90 10
90 10 10


 and B =


1 0 0
0 0.5 0.5
0 0.5 0.5


 .

We then have

Y = BX =


10 10 10
50 50 10
50 50 10


 .

Because the distribution matrix Y is obtained by multiplying X by a non-
permutation bistochastic matrix, it seems reasonable to say that X ex-
hibits more inequality than Y . Indeed, this is the case for any normatively-
significant inequality index if the underlying social evaluation satisfies UM.

Now suppose that the inequality index is constructed using Maasoumi’s
two-stage procedure. Assume that the univariate inequality index I used
in the second stage is a strictly S-convex relative index. Also assume that
the utility function U used in the first stage is a symmetric, increasing,
concave function of its arguments. We then have U(x1·) = U(y1·) < U(x2·) =
U(x3·) ≤ U(y2·) = U(y3·). If the weak inequality is in fact an equality,
there has been no change in the distribution of the utilities, so I registers
no change in inequality. If the weak inequality is strict, then the situation
of the two individuals with the largest pre-transfer utilities is improved after
the transfers and, as can be seen by considering the pre- and post-transfer
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Lorenz curves for the utility distributions, I regards Y as exhibiting more
inequality than X. In either case, the ordering of X and Y differs from the
one described in the preceding paragraph.

The conclusion that Dardanoni (1995, p. 202) draws from this example
is that uniform majorization is “uninformative for evaluating the amount of
inequality in society.” This seems unwarranted. A more natural conclusion
would be to question the appropriateness of Maasoumi’s two-stage aggrega-
tion procedure for constructing multidimensional inequality indices.

8. Multidimensional Generalized Gini Indices

The most widely-used univariate index of relative inequality is the Gini in-
dex. The Gini social evaluation ordering is a member of the class of gener-
alized Gini social evaluations introduced by Weymark (1981). These social
evaluations are both homothetic and translatable. As a consequence, the
procedures described in Section 4 can be used to define a class of generalized
Gini relative inequality indices and a class of generalized Gini absolute in-
equality indices. In this section, the multi-attribute generalizations of these
indices recently introduced by Gajdos and Weymark (2003) are considered.

8.1. Multidimensional Generalized Gini Social Evaluations

Before turning to the multidimensional generalized Ginis, it is first necessary
to formally define the univariate generalized Ginis. A generalized Gini social
evaluation is a binary relation � on D whose equally-distributed-equivalent
income function ΞG

� : D → R has the form

ΞG
�(x) =

n∑
i=1

aix̃i, ∀x ∈ D, (24)

where 0 < a1 < a2 < · · · < an and
∑n

i=1 ai = 1.22 The Gini equally-
distributed-equivalent income function is the special case of (24) in which
ai = (2i − 1)/n2 for all i ∈ N . As noted above, a generalized Gini social
evaluation is both homothetic and translatable. The corresponding classes
of generalized Gini relative and absolute inequality indices are obtained by
substituting (24) into (4) and (6), respectively.

22Weymark (1981) merely requires that a1 ≤ a2 ≤ · · · ≤ an. If any of these weak
inequalities hold with equality, ΞG

� is S-concave, but not strictly S-concave.
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The multi-attribute versions of the generalized Gini social evaluations
introduced by Gajdos and Weymark (2003) were obtained by supplement-
ing multidimensional generalizations of the axioms Weymark (1981) used to
characterize the univariate generalized Ginis with a assumption that requires
the social evaluation to be separable with respect to attributes. Aside from
the separability assumption, the only one of these axioms that has not al-
ready been introduced is a comonotonic additivity axiom. In order to define
this axiom, some additional notation is required.

A distribution matrix X is nonincreasing comonotonic if x1j ≥ x2j ≥
· · · ≥ xnj for all j ∈ Q. In other words, person 1 has at least as much of
every attribute as person 2, person 2 has at least as much of every attribute as
person 3, etc. Let DD denote the set of nonincreasing comonotonic matrices
in D.

Weak Comonotonic Additivity (WCA). For all X, Y ∈ DD and all Z ∈
MD

1 for which there exists a j0 ∈ N such that (i) x·j = y·j for all j �= j0, (ii)
zij = 0 for all i ∈ N and all j �= j0, and (iii) X + Z ∈ DD and Y + Z ∈ DD,
X � Y if and only if X + Z � Y + Z.23

The distribution matrices X, Y , X + Z, and Y + Z in the definition of
WCA are all nonincreasing comonotonic and have identical distributions of all
the attributes except j0. Hence, the social ranking of these matrices coincides
with the ranking obtained with the conditional ordering of attribute j0. X+Z
and Y + Z are obtained from X and Y by adding a common distribution of
attribute j0 to both x·j0 and y·j0 . WCA requires the social ranking of two
comonotonic distribution matrices to be invariant to this kind of change. In
other words, in any conditional ordering of two distributions of an attribute,
the ordering only depends on the amounts by which the distributions differ.24

For all X ∈ D and all nonempty M ⊂ Q, let XM denote the submatrix
of X containing the distributions of the attributes in M and let XMC

be
the submatrix containing the other columns of X. The attributes in M
are attribute separable in � from their complement MC if the conditional
ordering of the subdistribution matrices for the attributes in M obtained by
fixing the subdistribution matrix of the attributes in MC is independent of
the choice of the latter submatrix. The separability axiom used by Gajdos
and Weymark (2003) is given by the following axiom.

23The definition of WCA given here differs slightly from the one given in Gajdos and
Weymark (2003). Theorems 3 and 4 below are valid with either definition of WCA.

24Gajdos and Weymark (2003) also considered a stronger version of this axiom.
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Strong Attribute Separability (SAS). For all nonempty M ⊂ Q, M is
attribute separable in � from MC.

Gajdos and Weymark (2003) have shown that if a social evaluation � on
D satisfies SAS and ANON, then the two multi-attribute transfer principles,
UPM and UM, place equivalent structure on �. They have also shown that
ORD, CONT, MON, and SAS imply that � has a two-stage aggregation
representation, but the order of aggregation differs from that used in the
multi-attribute Atkinson and Kolm–Pollak inequality indices. In the first
stage, the distributions of each attribute are aggregated, resulting in a q-
dimensional vector of scalars. In the second stage, the components of this
vector are aggregated to provide an overall evaluation of the distribution
matrix. If there are at least three attributes, this second-stage aggregator
is additively separable. If it is additionally assumed that � satisfies WCA,
then the first-stage aggregators must be generalized Gini equally-distributed-
equivalent income functions.

8.2. Multidimensional Generalized Gini Relative Inequality Indices

Now assume that D = M2. The following theorem, due to Gajdos and
Weymark (2003), characterizes the set of social evaluations that satisfy HOM
in addition to the axioms considered in the preceding paragraph.25

Theorem 3. If q ≥ 3, then the binary relation � on D = M2 satisfies
ORD, CONT, MON, ANON, UPM, SAS, WCA, and HOM if and only if
there exists an n× q matrix A of positive coefficients with a·j increasing and∑n

i=1 aij = 1 for all j ∈ Q, a positive vector γ ∈ R
q with

∑q
j=1 γj = 1, and

a scalar r such that � can be represented by a social evaluation function
WGMR

� : M2 → R for which

WGMR
� (X) =


 q∑

j=1

γj

(
n∑

i=1

aijx̃ij

)r



1
r

, ∀X ∈ M2, (25)

25Strictly speaking, in this and the following theorem, Gajdos and Weymark used a
variant of UM in which the conclusion that X � Y is weakened to X � Y . With this
weaker assumption, the weights a·j only need to be nondecreasing, rather than increasing.
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if r �= 0 and

WGMR
� (X) =

q∏
j=1

(
n∑

i=1

aijx̃ij

)γj

, ∀X ∈ M2, (26)

if r = 0.

Thus, the second-stage aggregator is a mean of order r function, where
r is unrestricted, if � is assumed to satisfy the axioms of Theorem 3. If
HOM is strengthened to SHOM, then only the r = 0 case is possible; i.e.,
the second-stage aggregator must be a Cobb–Douglas function.

A function IGMR
� : D → R is a member of the corresponding class of

multi-attribute Kolm relative inequality indices if

IGMR
� (X) = 1 −

[∑q
j=1 γj (

∑n
i=1 aijx̃ij)

r
] 1

r

[∑q
j=1 γjµ(x·j)r

] 1
r

, ∀X ∈ M2, (27)

when r �= 0 and

IGMR
� (X) = 1 −

∏q
j=1 (

∑n
i=1 aijx̃ij)

γj∏q
j=1 µ(x·j)γj

, ∀X ∈ M2, (28)

when r = 0. IGMR
� is a multi-attribute generalized Gini relative inequality

index.

8.3. Multidimensional Generalized Gini Absolute Inequality Indices

Now assume that D = M1. Using a simple exponential change of variables,
Gajdos and Weymark (2003) have established the counterpart of Theorem 3
for translatable social evaluations.

Theorem 4. If q ≥ 3, then the binary relation � on D = M1 satisfies
ORD, CONT, MON, ANON, UPM, SAS, WCA, and TRA if and only if
there exists an n× q matrix A of positive coefficients with a·j increasing and∑n

i=1 aij = 1 for all j ∈ Q, a positive vector γ ∈ R
q, and a scalar r such that

� can be represented by a social evaluation function WGMA
� : M1 → R for

which

WGMA
� (X) =

1

r
ln


 q∑

j=1

γj exp

(
r

n∑
i=1

aijx̃ij

)
 , ∀X ∈ M1, (29)
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if r �= 0 and

WGMA
� (X) =

q∑
j=1

γj

(
n∑

i=1

aijx̃ij

)
, ∀X ∈ M1, (30)

if r = 0.

The second-stage aggregators in Theorem 4 are Kolm–Pollak functions.
Note that, in contrast to (20), the parameter r can take on any value in R.
If TRA is strengthened to STRA, then r = 0, in which case the second-stage
aggregator is linear.

A function IGMA
� : D → R is a member of the corresponding class of

multi-attribute Tsui absolute inequality indices if

IGMA
� (X) =

1

r
ln

[ ∑q
j=1 γj exp (rµ(x·j))∑q

j=1 γj exp (r
∑n

i=1 aijx̃ij)

]
, ∀X ∈ M1, (31)

when r �= 0 and

IGMA
� =

q∑
j=1

γj

[
µ(x·j) −

n∑
i=1

aijx̃ij

]
, ∀X ∈ M1, (32)

when r = 0. IGMA
� is a multi-attribute generalized Gini absolute inequality

index.

9. Correlation Increasing Majorization

The two multi-attribute generalizations of the Pigou–Dalton transfer princi-
ple, UPM and UM, ensure that the social evaluation is inequality averse in
the sense that uniform mean-preserving decreases in the spreads of the dis-
tributions of the attributes are socially desirable. Atkinson and Bourguignon
(1982) have argued that a multi-attribute inequality index should also take
account of the statistical dependence between the attribute distributions.
Tsui (1999) has investigated one way in which an inequality index can be
be sensitive to the dependence properties of distribution matrices.26 Tsui’s
axiom requires the value of a multi-attribute inequality index to increase if
two individuals’ allocations are rearranged so that one of these individuals

26For an overview of different dependence concepts, see Joe (1997).
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receives at least as much of every attribute as the other and strictly more
of at least one attribute (and this was not the case before the rearrange-
ment).27 In this section, the corresponding principle for social evaluations is
considered.

For x, y ∈ R
q, x ∧ y = (min{x1, y1}, . . . ,min{xq, yq}) and x ∨ y =

(max{x1, y1}, . . . ,max{xq, yq}).

Definition. For all X, Y ∈ D, Y is obtained from X by a correlation-
increasing transfer if X �= Y , X is not a permutation of Y , and there exist
i1, i2 ∈ N such that (i) yi1· = xi1· ∧xi2·, (ii) yi2· = xi1· ∨xi2·, and (iii) yi· = xi·
for all i /∈ {i1, i2}.

Note that a correlation-increasing transfer preserves the mean of each
attribute.

Definition. For all X, Y ∈ D, Y is more correlated than X, denoted Y �C

X, if Y can be obtained from X by a finite sequence of correlation-increasing
transfers.28

The social evaluation version of Tsui’s dependence-sensitivity axiom re-
quires that if Y is more correlated than X, then X should be socially preferred
to Y .

Correlation Increasing Majorization (CIM). For all X, Y ∈ D, if Y �C

X, then X � Y .

Tsui (1999) has shown that CIM and UM (resp. UPM) are independent
principles. In other words, any pair of distribution matrices that can be
ordered by �C cannot be ordered by �U (resp. �PD) and vice versa.

A function f : D → R, where D ⊆ R
q, is L-superadditive if for all x, y ∈

D, f(x∧y)+f(x∨y) ≥ f(x)+f(y). If the inequality is strict when x∧y �= x
and x∧ y �= y, then f is strictly L-superadditive.29 L-subadditive and strictly

27Dardanoni (1995) has investigated a variant of this principle that requires Y to exhibit
at least as much inequality as X if Y is a comonotonic rearrangement of X.

28Tsui’s definition of �C permits the sequence of correlation-increasing transfers to be
supplemented with permutations of the individual allocations.

29See Marshall and Olkin (1979, Chapter 6) for a detailed discussion of L-superadditive
functions. Marshall and Olkin define f to be L-superadditive if for all distinct j1, j2 ∈ Q
and all x, y ∈ D for which xj = yj for all j �∈ {j1, j2}, f(x ∧ y) + f(x ∨ y) ≥ f(x) + f(y).
This definition is equivalent to the one in the text.
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L-subadditive functions are defined analogously by reversing the inequality
signs. If f is twice differentiable, then f is L-superadditive (resp. strictly
L-superadditive, L-subadditive, strictly L-subadditive) if and only if for all
distinct j1, j2 ∈ Q and all x ∈ D, ∂2f(x)/∂xj1∂xj2 ≥ 0 (resp. > 0, ≤ 0, < 0).

It follows from the definition of strict L-subadditivity that the utilitarian
social evaluation (1) satisfies CIM if U is strictly L-subadditive. Furthermore,
a straightforward extension of Proposition 4 in Tsui (1999) shows that, for all
X, Y ∈ D, the vector of utilities u = (U(x1·), . . . , U(xn·)) strictly generalized
Lorenz dominates the vector of utilities v = (U(y1·), . . . , U(yn·)) if Y �C X
and U is increasing and strictly L-subadditive.30

For the two-attribute case, the implications of correlation-increasing trans-
fers for the utilitarian social evaluation function have also been considered by
Atkinson and Bourguignon (1982).31 The two attributes are substitutes if the
utility function U is strictly L-subadditive and they are complements if it is
strictly L-superadditive. In contradiction to CIM, the value of a utilitarian
social evaluation function increases in response to a correlation-increasing
transfer when the two goods are complements. For this reason, Bourguignon
and Chakravarty (2003) criticized Tsui’s use of CIM, arguing that he has
implicitly assumed that all goods are substitutes.

The multi-attribute generalized Gini social evaluations do not satisfy
CIM. The reason is quite simple—the separability across attributes implied
by SAS is inconsistent with � being sensitive to the statistical dependence
of the individual attribute distributions. As Gajdos and Weymark (2003)
have shown, the inconsistency with CIM holds even if there is a single at-
tribute that is attribute separable in � from the other attributes if � satisfies
ANON.

There are, however, multi-attribute relative inequality indices that satisfy
the inequality versions of both UM and CIM. For the domain M3, Tsui
(1999) has axiomatized a class of such indices. They are multi-attribute
generalized entropy relative inequality indices. List (1999) has constructed
multidimensional generalizations of the Gini and Atkinson indices that also
satisfy both of these properties.32

List has also proposed a procedure for constructing multidimensional rel-

30If, in addition, U is symmetric and additive, then u strictly Lorenz dominates v.
31Bourguignon (1999) has considered the implications of correlation-increasing transfers

for the multi-attribute inequality indices proposed by Maasoumi (1986).
32These indices are not members of the families of multi-attribute generalized Gini and

Atkinson indices discussed Sections 6 and 8.
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ative inequality indices on M2 that are consistent with both of these in-
equality dominance principles. List’s construction bears some relationship
to the two-stage aggregation procedure proposed by Maasoumi (1986) that
is described in Section 7. For any X ∈ M2, X is first replaced by the distri-
bution matrix XC = XΛC, where ΛC is the q × q diagonal matrix in which
λjj = 1/µ(x·j) for all j ∈ Q. The mean value of each attribute in XC is
1. This step ensures that the resulting index is invariant to independent
changes in the units in which attributes are measured. Next, a common util-
ity function is used to aggregate each person’s allocation of the attributes
in XC. In order for the resulting index to satisfy both inequality dominance
principles, this utility function must satisfy a number of properties, such as
strict concavity. Finally, the resulting vector of utilities is aggregated using
a generalized-Lorenz-consistent univariant inequality index.

With the exception of List’s generalized Atkinson indices, none of the
inequality indices proposed by List (1999) and Tsui (1999) are provided with
a social-evaluation foundation. List’s generalized Atkinson indices are defined
using the function µe

� : M2 → R, where, for all X ∈ M2, µ
e
�(X) is the scalar

that solves

µe
�(X)1 ∼ XC. (33)

Using this function, a List multi-attribute relative inequality index ILM
� : M2 →

R is defined by setting

ILM
� (X) = 1 − µe

�(X), ∀X ∈ M2. (34)

List’s multidimensional Atkinson indices are defined using a specific func-
tional form for the function µe

�. ILM
� provides an alternative to Kolm’s

procedure for constructing multi-attribute relative inequality indices. At
present, nothing is known about the properties of ILM

� except when µe
� has

the particular functional form assumed by List.

10. Concluding Remarks

It is also natural to investigate the implications of requiring social evalu-
ations to satisfy multivariate versions of univariate transfer sensitivity, de-
composability, and population replication invariance axioms. The latter two
properties require social evaluations to be defined for different population
sizes. Tsui (1999) has employed decomposability and replication invariance
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axioms in his characterization of a class of multi-attribute generalized en-
tropy inequality indices. However, these indices were axiomatized directly,
rather than indirectly using a social evaluation. Moyes (1999) has formulated
multivariate transfer sensitivity axioms, but, to the best of my knowledge,
multivariate generalizations of univariate transfer sensitivity axioms have yet
to be used to help construct normative inequality indices.33

A number of functional forms for multivariate inequality indices have
been proposed that do not have explicit normative foundations. Examples
of such indices are List’s multivariate Gini indices (see List (1999)), Tsui’s
multivariate generalized entropy indices (see Tsui (1999)), and Koshevoy
and Mosler’s multivariate generalizations of the Gini index (see Koshevoy
and Mosler (1997)).

The framework employed here has also been used to analyze inequal-
ity under uncertainty. See Ben-Porath, Gilboa, and Schmeidler (1997) and
Gajdos and Maurin (2004). In this application, attributes are incomes in dif-
ferent states of the world. By working in this more structured environment,
it is possible to formulate axioms that are appropriate for this specific prob-
lem that may not be appropriate in other interpretations of the model. Of
particular note in this regard is that incomes in different states are measured
in the same units, a fact that is exploited in some of the axioms used by
Ben-Porath, Gilboa, and Schmeidler (1997) and Gajdos and Maurin (2004).

A related area of research is the measurement of multidimensional poverty.
See, for example, Bourguignon and Chakravarty (2003) and Tsui (2002).
Multidimensional poverty raises many of the same issues that have been ex-
plored in the multidimensional inequality literature. In addition, there are
issues that relate specifically to the concern with poverty. For example, there
is the basic issue of who should be counted as being poor—someone who is
poor in all dimensions or someone who falls below the poverty threshold in
any dimension?

Although much has already been learned about multidimensional norma-
tive inequality indices, much more remains to be discovered. Compared to
the theory of univariate inequality measurement, the analysis of multidimen-
sional inequality is in its infancy.

33For a discussion of transfer sensitivity for univariate distributions, see Shorrocks and
Foster (1987).

29



Acknowlegements

This article was prepared for the 2003 Summer School on Inequality and
Economic Integration organized by the International School of Economic Re-
search at the University of Siena. I am grateful to Andrea Brandolini, Satya
Chakravarty, Marc Fleurbaey, Thibault Gajdos, Christian List, Ernesto Sa-
vaglio, and the participants in the Summer School for their comments. I am
especially grateful to Claudio Zoli for the proof that appears in footnote 16.

References

Allison, R. A., Foster, J. E., 2004. Measuring health inequality using quali-
tative data. Journal of Health Economics, forthcoming.

Atkinson, A. B., 1970. On the measurement of inequality. Journal of Eco-
nomic Theory 2, 244–263.

Atkinson, A. B., 1983. Social Justice and Public Policy. MIT Press, Cam-
bridge, MA.

Atkinson, A. B., Bourguignon, F., 1982. The comparison of multi-
dimensioned distributions of economic status. Review of Economic Studies
49, 183–201.

Ben-Porath, E., Gilboa, I., Schmeidler, D., 1997. On the measurement of
inequality under uncertainty. Journal of Economic Theory 75, 194–204.

Blackorby, C., Bossert, W., Donaldson, D., 1999. Income inequality measure-
ment: The normative approach. In: Silber, J. (Ed.), Handbook of Income
Inequality Measurement. Kluwer Academic Publishers, Boston, pp. 133–
157.

Blackorby, C., Donaldson, D., Auersperg, M., 1981. A new procedure for
the measurement of inequality within and among population subgroups.
Canadian Journal of Economics 14, 665–685.

Bossert, W., Weymark, J. A., 2004. Utility in social choice. In: Barberà, S.,
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