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We present a dynamic model of club formation in a society of identical people. Coalitions con-

sisting of members of the same club can form for one period and coalition members can jointly

deviate. The dynamic process is described by a Markov chain defined by myopic optimization

on the part of coalitions. We define a Nash club equilibrium (NCE) as a strategy profile that

is immune to such coalitional deviations. For single—peaked preferences, we show that, if one

exists, the process will converge to a NCE profile with probability one. NCE is unique up to

a renaming of players and locations. Further, NCE corresponds to strong Nash equilibrium

in the club formation game. Finally, we deal with the case where NCE fails to exist due to a

nonbalancedness problem. When the population size is not an integer multiple of an optimal

club size, there may be ‘left over’ players who prevent the process from ‘settling down’. To treat

this case, we define the concept of k—remainder NCE, which requires that all but k players are

playing a Nash club equilibrium, where k is defined by the minimal number of left over players.

We show that the process converges to an ergodic NCE, that is, a set of states consisting only

of k—remainder NCE.
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1 Introduction

We provide a dynamic model of club formation within the framework of a local
public good economy. Each period, individuals choose one out of a finite set of
locations. In interpretation, those individuals selecting the same location form
a club in order to provide a local public good for themselves exclusively or to
commonly share a facility. We assume that the public good is financed by a poll
tax, or in other words, equal cost sharing on the part of the members of the
club. An individual’s utility depends on his consumption of a private good, the
public good, and on the size of the club; that is, we consider anonymous crowding
— people care about the number of members of their club, but not about their
identities, and there may be congestion. Examples are the choice of a leisure club,
hospital, or restaurant.

In the presence of congestion effects, an increase in the number of members of a
club has two opposing effects on the members’ utilities: On the one hand, the cost
shares are diminished; on the other hand, congestion may be exacerbated. Thus
there is a trade-off between cost sharing and crowding effects. Note, however,
as in the literature on local public good economies with anonymous crowding,
crowding effects are not necessarily negative. For instance, there might be positive
externalities in consumption, or fashion effects. Finally, crowding effects might
be both positive and negative over different ranges of the club size. In any of
these cases, an agent’s marginal utility from an increase in club size is increasing
up to a point, the ‘agent optimal’ club size, and then decreasing. Such models
now have a long history going back to Buchanan (1965).

We define a non—cooperative game where each player’s strategy set is the set of
all locations, or clubs (each club is identified with its location), and each player’s
payoff is a function of the number of players choosing the same strategy, i. e. lo-
cation, as himself. This model is a simple version of the local public good games
analyzed by, among others, Konishi, Le Breton and Weber (1997a, 1998). The
existence of pure strategy Nash equilibria of such local public good games has
been shown, for various specifications of the game, by several authors. While
Konishi et al. (1997a), and, for an even more general model including external
effects of group formation on non—members Hollard (2000), prove existence in
the general case, Holzman and Law—Yone (1997), Konishi et al. (1997b), and
Milchtaich (1996) are concerned with the special case of congestion games, where
each player’s payoff is non—increasing in the number of players choosing the same
strategy as himself. The latter two articles also provide conditions for the exis-
tence of strong Nash equilibria. Games with positive externalities are analyzed
in Konishi et al. (1997c).

The setup of our model is closely related to the model of Konishi, Le Breton and
Weber (1997a). They define a free mobility equilibrium of a local public goods
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economy as an assignment of players to clubs (locations, or jurisdictions) that
partitions the population and has the property that no individual can gain by
either moving to any other existing club, or creating his own club. The parti-
tion derived from the players’ strategy choices is thus stable against unilateral
deviations by individuals.

We extend this model in two ways. First, the players’ mobility is modelled ex-
plicitly: We provide a dynamic model where the club formation game is played
by myopically optimizing players, who can move between existing clubs (or if an
empty location is available, create their own) at each step in time. Second, we
take up an issue often addressed in the context of club formation, namely the
possibility of coordinated action on the part of a group of players. For instance,
if a club becomes too crowded, a subset of its members might decide to move to
another club or to jointly open a new club, even if every single individual would
not want to do that if he were on his own. To ensure stability against such co-
ordinated deviations, we analyze equilibria that are immune to joint deviations
by groups of players. Allowing for joint deviations by groups, the appropriate
equilibrium concept would be the strong Nash equilibrium. However, in many
cases strong equilibria may not exist, e.g. if the optimal club size is not an integer
divisor of the population size. In a recent article, Conley and Konishi (2002) re-
solve the problem of nonexistence due to left over players by analyzing migration
proof equilibria, which are stable only against credible deviations on the part of
a coalition. A coalitional deviation to another jurisdiction is credible if no out-
siders to the coalition will want to follow the deviators and, within the deviating
group, no player can gain by a further deviation. Conley and Konishi show that
the migration proof equilibrium exists for the class of games under consideration,
is unique, and asymptotically efficient in the sense that payoffs approach their
maximum as the number of players goes to infinity.

We pursue a different approach that emphasizes the mobility aspect, and is based
on the assumption of myopic optimization on the part of the players. We allow for
coalitional deviations only by groups of players within a club. That is, a subgroup
of the set of members of a club may form a coalition for one period, and deviate
jointly to some other strategy, e. g. join another club, move to an unoccupied
location, or distribute themselves across different locations or different existing
clubs. In the next period, new coalitions will be formed. In each period, each
coalition’s opportunity to move arises at random.

The model is also related to the literature on evolutionary learning models, e. g.
Ellison (1993), Kandori, Mailath, and Rob (1993), Young (1993), and many oth-
ers. The aim of these models was primarily to justify game theoretic solution
concepts on the grounds of bounded rationality. The concept of Nash equilib-
rium and its refinements have been criticized because they require to high a
degree of rationality on the part of the players. The evolutionary learning models
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disprove this criticism by showing that, in the long run, even boundedly rational
players can learn to play a Nash equilibrium. In these models, the players select
their strategies in each period by myopic optimization. The opportunity for any
one player to revise his strategy occurs at randomly chosen moments in time.
Further, the players ‘tremble’, i. e. they pick a new strategy with a small but pos-
itive probability. The dynamics of the system are described by a Markov chain
with the state space given by the set of all possible strategy configurations across
the population. The solution concept is the long run equilibrium introduced by
Kandori, Mailath, and Rob (1993). They analyze the stationary distribution of
the Markov chain when the probability of the players’ making mistakes goes to
zero.

The model presented here is similar in its dynamic setting. The players are
boundedly rational, they practise myopic optimization, and the dynamics is de-
scribed by a Markov chain. The difference is that, in our model, the players do
not tremble. Randomness is introduced by assuming that the players are ran-
domly selected to revise their strategies. The model adds to the literature on
evolutionary learning by offering a justification for the concept of strong Nash
equilibrium in the presence of bounded rationality: In our model, the decision
makers learn to play a strong Nash equilibrium, if one exists, or else they will
arrive at a strategy configuration that is, in a certain sense, close to equilibrium.

In contrast to other models on the endogenous formation of coalitions, our model
is truly dynamic: At each time step, a probability distribution determines the
state, i. e. the strategy vector, for the next period, where the transition proba-
bilities are derived from the myopic best—reply rules together with the random
opportunities of strategy revision.1 Also, the restrictions on joint deviations are
appealing; typically clubs are assumed to form so that individuals within the club
can interact with each other. Coordination of strategies is one form of interaction.
We call a vector of strategy choices that is immune to improving deviations by
coalitions contained in any club a Nash club equilibrium (NCE).

As suggested above, if the optimal coalition size, say s∗ — the club size that
maximizes per capita utility of the club membership — is not an integer divisor of
the population size then, provided that the population is larger than the optimal
club size, a Nash club equilibrium may fail to exist because some players will be
‘left over’. This problem often arises in the literature on club economies. Here, we
adopt an approach similar to that used in cooperative game theoretic approaches
and consider equilibrium outcomes that allow for left over players.2 For this
purpose, we introduce the concept of a k—remainder Nash club equilibrium. This

1This is in strong contrast to models of club formation where, once a group of players
has agreed upon forming a coalition, this group will drop out of the population and out of
negotiations, as in Ray and Vohra (1997), for example.

2See, for example, Kovalenkov and Wooders (2003) for nonemptiness of approximate cores
of economies with clubs, where an approximate core notion allows left over players.
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is a strategy profile with the following property: k players can be removed from
the population in such a way that the remaining n−k players are playing a Nash
club equilibrium (on the reduced strategy space), and k is the minimal number
of left over players. We demonstrate:

Existence of a k—remainder Nash club equilibrium, and

Convergence to an ergodic set of k—remainder Nash club equilibria.

The remainder of the paper is organized as follows. The next section presents
the formal framework of our model, i. e. the stage game. Section 3 describes
coalitional deviations and the myopic adaptation process on the part of the play-
ers. We define the equilibrium concept, Nash club equilibrium (NCE). Section 4
defines the finite Markov chain, while sections 5 and 6 deal with existence and
efficiency of NCE, respectively. Convergence of the Markov chain is analyzed
in section 7. Finally, we deal with the problem that NCE might not exist. We
introduce the concept of ergodic NCE in section 8 and prove convergence. The
last section concludes.

2 The Basic Model

We consider a finite set N = {1, . . . , n} of individuals, or players. Each player
can choose a location from a finite set3 G = {a, b, . . . ,m}. Individuals choosing
the same location form a club in order to provide a public good for themselves
exclusively, or to use a common facility and share costs equally. The cost of
the facility is exogenously given. Since there is no danger of confusion, we will
identify a club with the location at which it is formed, e. g. club a is the name of
the club formed at location a ∈ G.

A player’s strategy is his choice of a club. A strategy profile is thus a vector
g = (g1, . . . , gn) ∈ Gn, indicating a club (location) for each player. We consider
only pure strategies. Note that a strategy profile induces a partition of players
into clubs, a club structure.

Each person’s utility depends on the size of his club, the number of players
choosing the same club. Formally, this crowding effect is captured by a function
h : G×N → R, where h(a, s) is the (dis)utility to a member of club a when the
total number of members (himself included) is s.

3This assumption is needed for technical reasons. However, if |G| is large relative to the set
of players, it is not at all restrictive. Further, we are able to analyse the interesting case of |G|
being small, so our model is in fact richer than one with an unlimited set of locations.
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We design a non—cooperative game Γ = {N,G, (ui)i∈N} where N is the set of
players, G is the common strategy set – each player can choose any one of the
possible locations – and ui : G

n → R is player i’s payoff function.

For any given strategy profile g = (g1, . . . , gn), let na(g) denote the number of
players choosing strategy a ∈ G, and let c(s) denote the cost of providing the
optimal amount of public good for s club members. The payoff to player i playing
strategy gi = a in strategy profile g is then given by the indirect utility function4

(1) ui(g) = v(a)− c(na(g))

na(g)
+ h(a, na(g)),

where v(a) denotes his utility derived from the local public good. A Nash equi-
librium of Γ is a strategy profile g with the property that ui(g) ≥ ui(g−i, b) for
all i ∈ N and all b ∈ G , where (g−i, b) := (g1, . . . , gi−1, b, gi+1, . . . , gn), i. e.

− c(a)

na(g)
+ h(a, na(g)) ≥ − c(b)

nb(g) + 1
+ h(b, nb(g) + 1)

for all i ∈ N and for all b ∈ G, where a is the strategy adopted by player i in
strategy profile g.

Konishi, Le Breton and Weber (1997a) and Hollard (2000) show the existence of
a pure strategy Nash equilibrium for the game Γ.5

Proposition 1 (Konishi et al. (1997a)) The game Γ admits a Nash equilibrium
in pure strategies.

3 Coordination of Coalitions within Clubs

We now turn to coalitional deviations and Nash club equilibrium. In each period,
the strategy choices of that period induce a partition of the set of agents into
clubs. Given this partition, we assume that the only admissible coalitions consist
of players within the same club. These coalitions last for one period. A coalition
is thus a subset of the set of members of a club. Note that the set of admissible
coalitions may change from period to period. If a coalition is formed, its members
will jointly decide which location each of them will choose. That is, coalition

4To simplify notation, we drop the dependence of utility on the amount of the private good.
5The class of games considered in Konishi et al. (1997a) is not restricted to finite strategy

sets. Hollard (2000) allows for external effects on players outside the group.
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members may jointly deviate to another location, or the members may distribute
themselves across different locations. A coalition will form whenever it is in the
best interest of every single coalition member to do so. That is, each member
must strictly benefit from forming the coalition and, for each member, there must
be no other coalition (within the same club) that yields a higher payoff to that
player. Such coalitions will be called viable, which will be defined formally below.
In the next period, all coalitions dissolve, and new ones can be formed. Formally:

Given any strategy profile g, define the resulting partition of the player set by

N(g) = {Na(g) . . . , Nm(g)},
where Na(g) denotes the set of all players choosing location a under the strategy
profile g.

Definition 1 Given any strategy profile g, a coalition C is a nonempty subset
of a club induced by g, i. e. C ⊂ Na(g) for any Na(g) ∈ N(g).

3.1 Myopic Strategy Choice

For the remainder of the paper, we assume that all locations are identical. Thus
the utility of membership in a club depends only on the number of members of
the club. We can therefore express utility as a function of club size. Let a be the
location of player i in strategy profile g. Define

ui(g) ≡ u(na(g)).

That is, the payoff to a player i who is a member of club a under any strategy
profile g with na(g) = s will realize the payoff u(s).

Further we assume, as Conley and Konishi (2002) for example, that preferences
are single peaked. This implies that, from the point of view of an individual,
there exists an optimal club size, which may be any number between 1 (singleton
clubs) and n (a grand club). Denote this number by s∗.6

Finally, we use the term ‘potential coalition’ to refer to any subset of the total
player set. Given a club structure the only admissible coalitions are those that
are subsets of the membership of some club.

Assumption Preferences for clubs are single peaked over club sizes. That is, we
assume that there exists an integer s∗ ∈ {1, . . . , n} such that

6Alternatively, following Wooders (1978), we could assume that there is an interval of
optimal club sizes or, more generally, that there are at least two optimal club sizes and these
are relatively prime numbers. This would reduce the number of cases where NCE does not
exist.
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1. for any clubs a, b with na < nb ≤ s∗ we have u(na) < u(nb), and

2. for any clubs a, b with na > nb ≥ s∗ we have u(na) < u(nb).

We now turn to the dynamic adaptation process.7 Time is divided into discrete
periods t = 0, 1, 2, . . .. In the initial period t = 0, we start with an arbitrary
strategy profile g ∈ Gn.8 Each period, each player receives a payoff, determined
by the strategy choices of all players in that period. This payoff depends on the
club size.

In any period t, given any strategy profile g and the resulting club structure N(g),
the adaptation process consists of the following steps.

1. For every club a under the strategy profile g, members of a can form coali-
tions. Given any strategy profile g, a coalition C is called viable if (i) it
forms a subset of a given club, i.e. C ⊂ Na(g), C 6= ∅; (ii) there exists
a strategy profile y = (yC , g−C) such that ui(y) > ui(g) for all i ∈ C,
and (iii) for any i ∈ C, there is no other coalition C 0 3 i and strategy
x = (xC0 , g−C0) such that i gets a higher payoff in C 0 than in C, that is, a
payoff ui(x) > ui(y).

Note that there may be more than one viable coalition within each club
and viable coalitions may overlap. Also, viable coalitions may consist of
individual players.

2. In each period, one potential coalition (not necessarily admissible nor vi-
able)9 is picked at random and then gets the opportunity to revise its strat-
egy. 10

3. If any coalition gets the opportunity to revise, it will do so if and only if
the coalition is viable. A viable coalition, if picked, will revise its strategy

7Adaptive models have been applied, in a context formally similar to the one of this paper, to
both cooperative and non—cooperative games, see e. g. Dieckmann (1999) for non—cooperative
games, and e. g. Arnold and Schwalbe (2002) for cooperative games. Milchtaich and Winter
(2002) provide a different dynamic model of group formation where in each period, one player
and one group (or club) are randomly selected, and if the selected player prefers the selected
group to his present one, he will move. However, they do not consider the possibility of coalitions
being formed among the members of a given group.

8We will later see that the choice of the initial strategy profile is irrelevant with respect to
the results of the model.

9That is, each element of the set 2N\∅. Although not all of these potential coalitions are
possible under any given club structure, we take them all into account in order to correctly
define the dynamic process.
10This “inertia” can be justified by the assumption that strategy adjustments involve a nom-

inal cost, for example the cost of moving from one location to another.
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so that the coalition members will receive their highest possible payoffs
in the next period, i. e. they chose a best reply to the current strategy
configuration. If there is more than one best reply, the coalition randomizes,
placing strictly positive probability on each.

4. Coalitions that do not get the chance to move will stay put.

Note that we do not explicitly model the formation of viable coalitions within
clubs, nor procedures for arriving at joint strategy profiles.11 We assume that a
coalition forms if it is in the interest of all its members, i. e. if they can coordinate
their strategies in such a way that each member’s payoff will be increased.

Also note that in our model, the formation of both coalitions (for one period)
and clubs is always reversible: Clubs may form and dissolve again since at each
time step decision makers are free to choose their strategies.

We define a Nash club equilibrium as a strategy profile that is stable against
deviations by coalitions, that is, in a Nash club equilibrium, no viable coalition
exists.

Definition 2 A strategy profile g is a Nash club equilibrium (NCE) if there
exists no viable coalition. A NCE club structure is the partition of the population
induced by a NCE.

That is, a strategy profile g is a NCE if there is no club a ∈ G, no coalition
C ⊂ Na(g), and no strategy profile y = (yC , g−C) such that ui(y) > ui(g) for all
i ∈ C. In other words, there is no coalition that would want to deviate if it were
given the opportunity.

4 The Dynamics

The myopic best—reply rules together with the stochastic opportunities for strat-
egy revision on the part of coalitions define a Markov chain on the finite state
space Gn. A state of the system is a strategy profile, i.e. a strategy (choice of
location) for each player. Note that a state of the system induces a partition
of the set of players into clubs. The transition probabilities between states are
determined by the best—reply rules and the fact that each coalition’s opportunity
to revise its strategy arises at random.

11That is, we do not model a negotiation process like e. g. Ray and Vohra (1997). We simply
assume that, if it is advantageous, players coordinate their moves. The process by which they
arrive at their mutually beneficial strategies is not modelled.
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Observe that, once a NCE profile is reached, no player or coalition will switch
clubs. An NCE profile is thus an absorbing state of the process, i.e. a state
that cannot be left again once it has been entered. That is, once the process
has reached a NCE, it will ‘settle down’ in that state forever. Conversely, any
strategy profile that is not NCE cannot be an absorbing state, since at least one
viable coalition will exist and will gain by deviating when it gets the chance to
do so, which will happen with positive probability.

Observation A strategy profile is NCE if and only if it is an absorbing state of
the Markov process.

The above observation, however, does not ensure convergence of the process to
an absorbing state. Instead, the process may get trapped in a set of states, and
perpetually oscillate between these states. We will show that this is not the case.
First, however, we will deal with existence of NCE.

5 Existence of a Nash Club Equilibrium

The existence of NCE depends on the relationship between several parameters of
the model. These are the size of the population n, the optimal club size s∗, and
the number of locations |G|. First note that if s∗ ≥ n, there is a unique NCE
club structure, namely the grand coalition. This is unique up to a relabelling of
locations. In what follows, we focus on the case of s∗ < n. Three cases have to
be considered:

1. If |G| ≥ n/s∗ and n/s∗ is an integer, NCE exists. A NCE club structure
consists of n/s∗ clubs of size s∗.

2. If |G| > n/s∗ and n/s∗ is not an integer, a NCE might not exist.

Example Let n = 10, |G| = 5, s∗ = 3, and assume u(1) < u(4). In this
example, no NCE exists: If the players form three clubs of size 3, there
will be one left over player who can gain by joining any of the three clubs.
If there are two clubs of size 3 and one club of size 4, a coalition of any
three members of the latter can gain by jointly deviating to an unoccupied
location. (Note that if u(1) ≥ u(4), then a NCE does exist.)

3. If |G| < n/s∗, a NCE exists. In a NCE club structure, all players are
distributed as evenly as possible across all locations, and location size is
given by integers na(g∗) satisfying

na(g
∗) ∈

½¹
n

|G|
º
,

»
n

|G|
¼¾

,
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where bn/|G|c is the largest integer weakly smaller than n/|G| and dn/|G|e
is the smallest integer weakly larger than n/|G|. Note that if n/|G| is an
integer then bn/|G|c = dn/|G|e .

Example: Existence of NCE with ‘few locations’. Let n = 100, s∗ = 10,
|G| = 7. A NCE club structure consists of five clubs of size 14 and two
clubs of size 15. The optimal club size cannot be reached in NCE in this
example. The reason is that, even though any coalition of ten players would
prefer to jointly deviate to a new club, this is impossible because there are
no unoccupied locations. Clearly a member of a 15 person club cannot
benefit from moving to a 14 person club.

In case 2. above, NCE exists under the condition stated in the following propo-
sition.

Proposition 2 Existence of NCE for the case |G| > n
s∗ . Let n = rs∗ + c where

r and c are positive integers and c < s∗. Then a NCE exists if and only if
u(c) > u(s∗+1). Moreover, if u(c) > u(s∗+1) and g is a NCE, then the induced
club structure will have r clubs of size s∗ and 1 club of size c.

Proof. See appendix.

Note that, if a NCE exists, there are multiple NCE that differ only with respect to
the names of players and locations. That is, the club structure induced by NCE is
uniquely characterized by the number of clubs and the sizes of their memberships
as follows:

• If |G| ≥ n
s∗ and s∗ divides n, then all nonempty clubs are of size s∗.

• If |G| > n
s∗ but s

∗ does not divide n, i.e. n = rs∗ + c, 0 < c < s∗, and
u(c) > u(s∗ + 1), there are r clubs of size s∗ and one club of size c.

• If |G| < n
s∗ , players are distributed across clubs as evenly as possible, i.e.

each club is either of size bn/|G|c or of size dn/|G|e.

This gives rise to the following observation.

Observation If a NCE exists, it will be unique up to a relabelling of players and
locations.
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6 Efficiency of Nash Club Equilibrium

We will next show that, in our model, a NCE is a strong Nash equilibrium profile,
i.e. no group of players (not even from different clubs) could gain by jointly
deviating.

Formally, a strategy profile g is a strong Nash equilibrium if for every subset
S ⊂ N and all strategy profiles yS = {yi : i ∈ S} for the members S, there exists
at least one player i ∈ S such that

ui(yS, g−S) < ui(g).

It is obvious that every strong Nash equilibrium is a NCE. The converse is also
true, as stated in the following proposition.

Proposition 3 A Nash club equilibrium is a strong Nash equilibrium of the game
Γ.

Proof. See appendix.

We will now analyze the convergence properties of the Markov process.

7 Convergence to a Nash Club Equilibrium

We will now show that, if a NCE exists, the adaptation process will converge to
a NCE profile with probability one. We provide an algorithm describing a path
of moves of viable coalitions that terminates in a NCE.

There is one situation that is slightly more delicate; this is the case where the
NCE club size is s∗ (or s∗ and c for some c < s∗) and where u(c0) < u(s∗ + 1)
for some positive c0 greater than one. For simplicity, to discuss this case, suppose
that the NCE club size is unique and equals s∗ = 4. Now suppose that |G| = 5
and the size of the population n is eight (n = 8).(Convergence would be quicker
if there were fewer locations, subject still to the condition that |G| ≥ |N | /s∗).
Let us also suppose that u(2) < u(3) < u(s∗ + 1). It is clear that a person in a
club consisting of himself alone will prefer to move to a club with s∗+1 members
than to another club containing only one member. To illustrate the treatment of
this situation, we describe a path by a series of lists where the kth number in a
list represents the number of people in the kth club, k = a, ..., d.

12



Initial state: 4, 1, 1, 1, 1
5, 1, 1, 1, 0
2, 4, 1, 1, 0
2, 5, 1, 0, 0
4, 3, 1, 0, 0

final NCE state: 4, 4, 0, 0, 0

The subtlety is to first allow a viable coalition contained in one of the smallest
clubs to move to a location containing s∗ members and then to allow a viable
coalition contained in the club with s∗ + 1 members to move to the largest club
with fewer than s∗ members. To take account of situations such as that illustrated
by the penultimate state 4, 3, 1, 0, 0, during each ‘loop’ in the procedure, there is
a positive probability that some viable coalition moves to a location with fewer
than s∗ members.

The situation above is slightly different if we have u(2) < u(s∗ + 1) but u(3) >
u(s∗+1). In this case, the following list illustrates a path terminating in a NCE.

Initial state: 4, 1, 1, 1, 1
5, 1, 1, 1, 0
2, 4, 1, 1, 0
3, 4, 1, 0, 0

final NCE state: 4, 4, 0, 0, 0

Proposition 4 If the set of Nash club equilibria of the game Γ is nonempty, the
adaptation process will converge to a Nash club equilibrium profile with probability
one as time tends towards infinity, no matter where the process starts.

Proof. Suppose a NCE exists and let s∗∗ denote a club size induced by NCE.
Observe that if |G| ≥ n

s∗ then, in the case that s
∗ divides n, we have s∗∗ = s∗ and

otherwise s∗∗ ∈ {s∗, c} where n = rs∗ + c, r and c are positive integers, c < s∗,

and if |G| < n/s∗ then s∗∗ ∈
nj

n
|G|
k
,
l

n
|G|
mo
. We split the proof into three cases:

Case (A) G| ≥ n
s∗ and s∗ divides n.

Case (B) n = rs∗ + c, r and c are positive integers, c < s∗.

Case (C) |G| < n/s∗ and s∗∗ ∈
nj

n
|G|
k
,
l

n
|G|
mo

.

Starting from a state that is not NCE, we construct a path, i.e. a sequence of
states with positive transition probabilities, that terminates in a NCE. This shows
that any state that is not NCE must be transient, which implies that it cannot
be absorbing.
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Case (A). Consider a state g that is not NCE. Then there must be clubs of
nonoptimal size. There are two mutually exclusive possibilities: either (a) there
is a club a with na(g) > s∗ or (b) all clubs are of size s∗ or less, with some clubs
being strictly smaller than s∗. Our approach is to first give coalitions contained
in clubs with more than s∗ members an opportunity to move until there are no
clubs of size greater than s∗. We then consider viable coalitions smaller than s∗

and give all of them (one after the other) the opportunity to move, where their
movement will not result in coalitions of size greater than s∗. Finally, we deal
with the situation where the only viable coalitions are those whose optimal move
is to join a coalition with s∗ members. Here, as illustrated in the examples above,
we mix the movement of singletons to clubs of size s∗ with movements of viable
coalitions contained in clubs of size greater than s∗ to join smaller clubs until we
arrive at an equilibrium.

Step 1. Suppose there is a club a with na(g) > s∗. This implies that there
exists a location b with nb(g) < s∗ (including the case of nb = 0). Thus, any
coalition C ⊂ Na(g) with s∗ − nb(g) players is viable since nb(g) + |C| = s∗ and
s∗ maximizes per capita utility. Suppose one such coalition gets the chance to
move, which happens with positive probability. Let g0 denote the state after the
move of C. Note that

|{d ∈ G : ng0(d) = s∗}| > |{d ∈ G : ng(d) = s∗}| ,

i.e. the number of clubs of optimal size is increased. Repeat this argument until
all club sizes are equal to or smaller than s∗. If all clubs are now of size s∗ we are
done. Otherwise, we continue by next treating cases where no clubs are larger
than s∗ and some are smaller.

Let S∗(g1) denote the set of clubs of size s∗ in state g1 at the conclusion of Step
1.

Step 2. We first need to consider the possibility that S∗(g1) = ∅. For this case
let bS(g1) denote the set of clubs of maximal size, say bs. Observe that bS(g) 6= ∅
and, at this stage in our proof, bs < s∗. (Equality will hold only if S∗(g) 6= ∅.)
In this case, at least one viable coalition’s best move is to join a club of size bs so
as to form the largest possible club with no more than s∗ members. Suppose one
such viable coalition C gets the chance to move. The movement of C to a club inbS(g1) will induce a new strategy profile g2 with a (weakly) increased number of
empty locations and with an increase in the size of the membership of at least one
nonempty location. Repeating this argument as many times as possible will lead
to a situation where eventually there are clubs of size s∗ and it is not possible for
a new club of size s∗ to be formed by the movement of a viable coalition (with
fewer than s∗ members) to a new location. Let g3 denote the state at the end of
Step 2.
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Step 3. Suppose that there remain clubs containing fewer than s∗ members. There
are two possible cases:

(3.1) A viable coalition will move to a location with fewer than s∗ members
to create a club with h ≤ s∗ members. In this case it must hold that
u(h) ≥ u(s∗ + 1).

(3.2) A viable coalition is a singleton and, if given the chance, will move to a
club with s∗ members.

Step 3a. We next sequentially give all viable coalitions satisfying the conditions
of (3.1) the opportunity to move. Let g4 denote the resulting state. (If there are
no viable coalitions satisfying the conditions of (3.1) then g4 = g3). Note that in
the state g4, if there are any viable coalitions, they satisfy the conditions of (3.2).

Step 3b. Suppose in state g4 there are viable coalitions satisfying the conditions
of (3.2). (Note that for this to occur it must be the case that s∗ ≥ 3. Otherwise
this procedure would terminate after Step 3a.)

Let s1 denote the size of one of the smallest clubs in the state g4 and suppose
without loss of generality that na = s1. XXNote that in this case s1 < s∗ − 1.
(*) Let one member of Na move to a club with s∗ members, say to Nb. Now Nb

has s∗ + 1 members. Let g5 denote the resulting state.

Next, let Nc be the largest club with fewer than s∗ members in state g4. Then
there is a viable coalition C contained in Nb with |C| + nc = s∗. Give such a
coalition the opportunity to move. Note that this leaves the same number of clubs
of size s∗ as in g4 and with an increase in the size of at least one club containing
fewer then s∗ members.

Return to Step 3a. and repeat the procedure until na = 0. (Note that this is
possible since there is at least one club with s∗ members.) This brings us to
a state, say g5, with strictly more empty locations, at least one club with s∗

members, and an increase of at least 1 in the size of the smallest club. (**)

Return to Step 3a and repeat the this procedure until it is no longer possible. We
must then have reached a NCE.

Case B. Our procedure in this case is basically the same as for Case (A) except
that at some point the largest club smaller than s∗ will contain c members. Once
such a club exists do not give possible viable coalitions contained in one such club
an opportunity to move (except at the end of the procedure described for Case
A — but then there will no longer be any viable coalitions).
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Case C. Let S∗ denote the set of NCE club sizes and let s denote the maximal
club size in S∗ and let s denote the minimal club size in S∗ (that is, s = max{s :
s ∈ S∗} and similarly, s = min{s : s ∈ S∗}). Either s = s or s = s − 1. Note
that in Case C in any state g it must hold that the average number of members
of each club, say sAv, must lie between (or be equal to) s and s.

Suppose that g is not a NCE. Then, there must exist at least one club, say Na,
with na > s. Moreover, there must exist another club, say Nb, with nb < s.
Suppose, without any loss, that nb ≤ nc for all other clubs nc. Let C ⊂ Na be
a viable coalition which, if given the opportunity, will move to a location with
size nb. We give C the opportunity to move. It is then a best reply for C to
move to location a. Repeat this procedure until it is no longer possible to find a
viable coalition. This will happen only when all clubs are of size s or s; thus the
outcome of the procedure is a NCE. ¤

8 Ergodic Nash Club Equilibrium

Note that, if |G| ≤ n/s∗, under our assumptions a NCE always exists, where all
players are distributed evenly across all clubs. In this section, we focus on the
case |G| > n/s∗.

When the optimal club size is such that n/s∗ /∈ I, and |G| > n/s∗, a NCE might
fail to exist, as we demonstrated by an example in Section 5. Here is another
example more convenient for the current purposes.

Example.12 G = {a, b, . . . , f}, N = {1, 2, . . . , 5}, and ui(g) = 1 + φ(s) where

φ(s) =

½
0 for s = 1

2/s for s ≥ 2.

The table shows each club member’s payoff for each possible club size s:

s ui(·)
1 1
2 2
3 1.66
4 1.5
5 1.4

12This example is taken from Arnold and Schwalbe (2002).
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In this game the optimal club size is s∗ = 2. But at most two clubs of size 2 can
be formed. The left over player can then gain by joining any of these two clubs,
since this increases his payoff from 1 to 1.66. However, in a club of size 3, any two
players can gain by forming a coalition and deviating to an unoccupied location.
Thus, no NCE exists.

The nonexistence of a NCE is due to an indivisibility of optimally sized clubs or,
in other words, a ‘non-balancedness’ problem.13 We now define a notion of NCE
that takes this problem into account.

Definition 3 We define a strategy profile g as a k—remainder NCE if there exist
k players, k ≥ 0, such that, if these players are removed from the population, the
strategies of the remaining n−k players will form a NCE (on the reduced strategy
set Gn−k) where k = n− s∗bn/s∗c.

In the example above, the strategy profiles g0 = (a, a, b, b, c) and g00 = (a, a, a, b, b)
both form 1—remainder NCE: removing player 5 from g0 and player 3 from g00 yields
a NCE in both cases. In contrast, the profiles (a, a, a, a, b) and (a, b, c, d, d) are
not 1—remainder Nash club equilibria. Proposition 5 characterizes k—remainder
NCE for those cases where k > 0.

Proposition 5 Assume that |G| > n/s∗ and n = rs∗ + c for some positive
integers r and c < s∗. Also assume that u(c) < u(s∗ + 1). Then:
(i) Any strategy profile g with an induced partition of the set of players into r
clubs with no fewer than s∗ members and no more than s∗ + l members and with
the remaining clubs of size less than or equal to c is a k-remainder NCE for k = c.
(ii) Any strategy profile g with an induced partition of the set of players into fewer
than r clubs of size greater than or equal to s∗ is not a k-remainder equilibrium.

Proof. Let g be a strategy profile satisfying the conditions of part (i) of the
proposition. Since there are r clubs each containing at least s∗ members we can
remove players from these clubs so that there are only s∗ players remaining in
each of these clubs. Also, remove all players from the clubs of size less than
s∗. The number of players removed is equal to k and the strategy choices of the
remaining players constitute a NCE, since each nonempty club now contains s∗

players.

13The indivisibility problem is that the optimal club is indivisible. This would be solved if
there were constant per capita benefits to club formation — in which case clubs containing more
than one member would be redundant. An alternative approach, following Wooders (1978),
would be to allow a range of optimal club sizes containing two relatively prime integers, for
example, s∗ and s∗ + 1. Then, since any sufficiently large population size n can be written as
the sum of nonnegative integer multiples of s∗ and s∗ +1, for all sufficiently large populations,
an NCE would exist.
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The proof of part (ii) of the Proposition follows from the observation that it is
impossible to remove only c agents and have all nonempty clubs of size s∗ (so
that the outcome, restricted to the remaining agents, would be a NCE). ¤

Obviously, if preferences are single peaked, k—remainder NCE always exist. The
special case of k = 0 corresponds to the definition of NCE.

For k > 0, a k—remainder NCE is not an absorbing state since it is not a NCE,
i.e. there are coalitions that will switch locations when they get the opportunity
to adjust their strategies. In the example, for instance, in the strategy profile
g∗ = (a, a, b, b, c), player 5 would switch to either a or b, and in state g00 =
(a, a, a, b, b), a coalition of players 1 and 2 (or 1 and 3, or 2 and 3) would switch
to an unoccupied location. Our main result is to show that, in the long run, only
k—remainder NCE will be observed. To this end, we need the definition of an
ergodic set.

Definition 4 An ergodic set E ⊂ GN is a set of states such that, first, each state
in E can be reached from every other state in E in a finite number of steps, and
second, once the set E is reached, it cannot be left again, i. e. the probability of
the system’s going from some state g ∈ E to some other state g0 /∈ E is equal to
zero. Further, ergodic sets are minimal in the sense that there is no proper subset
of E satisfying the above conditions.

Note that an absorbing state is the same as a singleton ergodic set.

An ergodic NCE is then defined as follows.

Definition 5 Given any stage game Γ with optimal club size s∗, an ergodic Nash
club equilibrium is a set of states M ⊂ GN with the following properties:

1. For k = n− s∗bn/s∗c, every state g ∈M is a k—remainder NCE, and

2. M is an ergodic set.

Obviously, an ergodic NCE is a subset of the set of all k—remainder NCE. Also,
for the case of k = 0, each NCE is an ergodic NCE.

The following proposition establishes our convergence result for k > 0.

Proposition 6 The adaptation process will converge to an ergodic Nash club
equilibrium with probability one as time goes to infinity, no matter where the
process starts.
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This implies that, once the process has reached a k—remainder NCE, only k—
remainder NCE will be observed forever after.

Proof The first part of the proof (step 1) is analogous to the one of convergence
to NCE for the case n = rs∗ + l and l > 0.

The theory of finite Markov chains states that the process will reach an ergodic set
with probability one as time goes to infinity.14 Given this, the proof proceeds in
two steps. First, we show that, from every state that is not a k—remainder NCE,
there is a path terminating in a k—remainder NCE. Second, we show that once a
k—remainder NCE is reached, any state that can be reached from there will also
be a k—remainder NCE. The two steps together imply that any state that is not
a k—remainder NCE cannot be part of an ergodic set. This in turn implies that
any ergodic set contains only states that are k—remainder NCE, and the theory
of finite Markov chains ensures that this set will be reached with probability one
as time goes to infinity.

Step 1. The first step of the proof simply follows the procedure in our prior
convergence result. Eventually, a state will be reached where there are r clubs of
size s∗. Any such state is a k-remainer NCE with k = c.

Step 2. Suppose the process has reached a state g that is a k—remainder NCE.
Note that, in this state, any viable coalition is of size s∗ or less. Let n = rs∗+ k.
Then there are r clubs of size s ≥ s∗ and at most k clubs of sizes between one
and k.

(i) Consider a club a with na(g) > s∗. If there is a viable coalition C ⊂ Na(g),
since |G| > n/s∗ there must be another location b with nb(g) < s∗ and nb(g) +
|C| = s∗ (possibly nb(g) = 0). Suppose C moves to b. Call the resulting state g0.
Notice that g0 contains one club of size s∗ more than the original state g. Now let
us compare the number of leftover players before and after the move of C from a
to b.

Before the move, there were na(g)− s∗ players left over at a and, in total, nb(g)
players at b (since nb(g) < s∗). In addition, there may be other left over players
at other locations. Denote the number of those by m, m ≥ 0. Thus, the number
of left over players in state g is

na(g)− s∗ + nb(g) +m.

Let g0 denote the state after the move. In this state, club b will have s∗ members
so there will not be any left over players at location b. At club a, the number

14Kemeny/Snell (1976), Theorem 3.1.1 on page 43.
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of players left over will be na − |C|, where |C| = s∗ − nb. As a result, the total
number of left over players in state g0 is

na(g)− |C|+m = na(g)− (s∗ − nb(g)) +m,

which is exactly the same as in state g before the move. Since g is a k—remainder
NCE, it follows that g0 must also be a k—remainder NCE.

(ii) Now consider a club b with nb(g) < s∗. There are two possible cases. Either
a viable coalition can optimally move into a club containing no fewer than s∗

members or a viable coalition can optimally move into a club with fewer than s∗

members.In the first case, suppose some player j from a club b with nb(g) < s∗

forms a viable (singleton) coalition and gets the chance to move. The “best reply”
for j is to join the smallest of the clubs of size s∗ or more (this is not necessarily
unique). But this move does not affect the number of left over players: While the
number of left over players at b is reduced by one (player j), at the same time it
is increased by one at the club j has moved to. This means that, since the state
before the move is a k—remainder NCE, the state after the move will also be a
k—remainder NCE. In the second case, the both the club containing the viable
coalition and the club into which the viable coalition moved consists of left overs,
so the total number of left overs is unchanged. ¤
An ergodic NCE is a subset of the set of all k—remainder NCE. All states in an
ergodic NCE are characterized as follows.

Proposition 7 Let h ∈ Gn be element of an ergodic NCE. Then there is no club
a with na(h) > s∗ + dk/re.

Proof We show that any state that contains a club of size larger than s∗+ dk/re
will never be visited again once it has been left.

Start from a state g with na(g) > s∗+dk/re for some club a. According to step 1
above, there is a positive probability of the process reaching a state with r clubs
of size s∗ and one of size k. Call this state g0.

Now, if g were in the ergodic set, there would be a path from g0 to g. However,
this is not the case. In state g0, without loss of generality suppose the clubs
a1, a2, . . . , ar are of size s∗ and state ar+1 is of size k. Then, there are exactly k
viable coalitions, namely the singleton subsets of club ar+1. If all of these viable
coalitions get the chance to move one after the other, we will end up with the k
players evenly distributed across clubs a1, a2, . . . , ar (because for s > s∗ utility is
decreasing in club size). But then each club will have no more than s∗ + dk/re
members. At this stage, since |G| ≤ r + 1, there will be at least one unoccupied
location such that the only viable coalitions are of size s∗. But any move by any
such coalition will induce club sizes of s∗ or less. Thus, state g can never be
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reached again once it has been left. This contradicts g being part of an ergodic
set. ¤

Further characterizations of the ergodic NCE depend on the exact relationships
between s∗, k, and |G|.

9 Concluding Discussion

This paper provides a game theoretic model of club formation where player mo-
bility is explicitly modelled by a dynamic process. In each period, the members of
any given club may form coalitions, and then choose locations by a myopic best
reply rule. We define a Nash club equilibrium (NCE) by a strategy configuration
no coalition wants to deviate from. If a NCE exists, the club structure induced
by it is unique, and the state is efficient in the sense of strong Nash equilibrium.
Further, we show that our dynamic process defined by the myopic best—reply
rules on the part of the coalitions converges to a NCE when time tends towards
infinity.

To broaden our existence results in an intuitive way, we define an ergodic Nash
club equilibrium as a set of club profiles each of which constitutes a k—remainder
NCE, where all but k players are playing NCE, and k is the minimal number of
left over players. We show that an ergodic Nash club equilibrium exists and that,
as time tends towards infinity, the process will converge to an ergodic Nash club
equilibrium with probability one.

Our results are novel and interesting in several ways. First, there is an interest-
ing relationship between different equilibrium concepts. On the one hand, even
though strong Nash equilibrium takes into account deviations by all kinds of
coalitions, whereas we allow only for deviations by subsets of the set of members
of a club, our concept of NCE is shown to correspond to strong Nash equilibrium,
in the context of our model. On the other hand, a NCE (and therefore a strong
Nash equilibrium) may fail to exist. But, since non—existence is merely due to
problems of ‘numbers mismatching’, this problem can be solved by our notion of
a k—remainder Nash club equilibrium, which always exists.

Further, our equilibrium notions can be related to concepts of cooperative game
theory, as employed in the literature on coalition formation in hedonic games, e.g.
Bogomolnaia and Jackson (2002). Their concept of Nash stability corresponds to
a Nash equilibrium of our club formation game, i.e. a strategy profile (player par-
tition) that is immune to deviations by single players. Bogomolnaia and Jackson
prove existence of a Nash stable partition of the population for the case of hedonic
preferences, where a player’s utility depends only on the members of a club but
not on the location itself. The result on the existence of Nash equilibrium in the
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case of location dependent preferences can be seen as a corollary: If individuals
are identical, and their preferences depend only on the club size, then a Nash
equilibrium, and therefore a Nash stable partition, exists.

Moreover, the cooperative notion of a core stable partition corresponds to a strong
Nash equilibrium of our game: No group of players can gain by deviating. Since
our concept of NCE is weaker than that of a strong Nash equilibrium, the set
of strong Nash equilibria (and thus the set of core stable partitions) is a subset
of the set of NCE. Thus, we have the following relationship between cooperative
and non—cooperative concepts:

Strong Nash equilibrium (core stability) ⇒ NCE ⇒ Nash equilibrium (Nash
stability).

Second, our model is dynamic. In each period, new coalitions may form, and new
locations can be chosen. This reflects player mobility, or the agents’ “voting with
their feet”. Finally, even though players are myopic, equilibrium club profiles will
be reached in the long run. Thus, being myopic may “help” a population to reach
a desirable outcome.

It is easy to see that, if the number of locations is sufficiently large, then replicat-
ing both the player set and the set of locations will lead to a situation where the
percentage of left-over players becomes small. Were transfer payments allowed,
each agent in an optimal club could be charged a small fee (in the nature of un-
employment insurance) and the totality of these fees could compensate the left
over players, which would yield outcomes satisfying another notion of approxi-
mate stability. Similar ideas have appeared in game theory since Shubik (1971)
and been used in club theory since Pauly (1970) and Wooders (1980). We do not
pursue this further here.

We plan to continue the investigation in this paper in several directions. First, we
propose to introduce crowding types (that is, external effects of players on each
other, independent of their preferences), as in Conley and Wooders (2001) and
earlier papers. A particularly interesting extension may be to situations where
players choose their crowding types, their skills, or educational levels, as in Conley
and Wooders (2001).

Since our process of coalition formation is myopic, an interesting direction of
research would be to allow long term coalition formation, so that, for example,
two players who meet in a club may decide to commit themselves to act jointly
for several periods.
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Appendix

Proof of proposition 2 Suppose u(c) > u(s∗ + 1). Let g be any strategy profile with
the property that the induced club structure has r clubs of size s∗ and one of size
c. It is immediate that g is an NCE. For suppose not. No club of size s∗ contains
a viable coalition. So suppose C is a viable coalition contained in the club with c

members. The only interesting alternatives available to the members of C are to move
to an empty club, which cannot increase the payoffs of the members of C, or to move
to a club containing s∗ members. Then u(s∗ + |C|) is decreasing in |C|. It follows
from the definition of a viable coalition that C must contain only one member. Since
u(c) > u(s∗+1) the movement of the individual player constituting C to a club of size
s∗ would decrease his utility.
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Now suppose that u(c) < u(s∗+1). Observe that |G| ≥ n/s∗ and n/s∗ is not an integer
implies that |G| > n/s∗ (and also that |G| > r) since |G| is an integer. Let g be any
strategy profile with an induced club structure where at least one location contains
fewer than s∗ members. Suppose a is such a location. Now if all the other nonempty
clubs contain s∗ members, from our assumption that u(c) < u(s∗ + 1), Na(g) contains
a viable coalition and therefore g is not a NCE. If some other nonempty club contains
fewer than s∗ members, again Na(g) contains a viable coalition. Thus, if g is a NCE,
the only remaining possibility is that all clubs contain at least s∗ members. But then
at least one club contains more than s∗ members. Moreover, there exists at least one
location with no members so any club containing more than s∗ members contains a
viable coalition and g cannot be a NCE. ¤

Proof of proposition 3. We show that, if a strategy profile g is not a strong Nash
equilibrium, then it is not NCE. Suppose g is not a strong Nash equilibrium. Then, there
exists a coalition S ⊂ N and a strategy profile y = (yS, g−S) such that ui(y) > ui(g) for
all i ∈ S. Now let Sa denote the nonempty intersection of S with the membership of
some club a (clearly there exists such a club a). Since g is not a strong Nash equilibrium
we can select a so that |Sa| 6= s∗∗ where s∗∗ denotes a club size induced by NCE; if |Sa|
were equal to s∗∗ for all a ∈ G, then we would have a contradiction to the supposition
that there exists a strategy profile y = (yS, g−S) such that ui(y) > ui(g) for all i ∈ S.
Now observe that from our arguments in the preceding proof, it follows that there is
some improving strategy for some (possibly different) coalition S0, which implies that
g is not a NCE. ¤
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