
HOTELLING WAS RIGHT ABOUT SNOB/CONGESTION GOODS

(ASYMPTOTICALLY)

by

Christian Ahlin and Peter Ahlin

Working Paper No. 06-W21

October 2006

DEPARTMENT OF ECONOMICS
VANDERBILT UNIVERSITY

NASHVILLE, TN 37235

www.vanderbilt.edu/econ



Hotelling Was Right About Snob/Congestion Goods
(Asymptotically)

Christian Ahlin and Peter Ahlin

October 11, 2006

Abstract

We add congestion/snobbery to the Hotelling model of spatial competition. For any
firm locations on opposite sides of the midpoint, a pure strategy price equilibrium exists
and is unique if congestion costs are strong enough relative to transportation costs. The
maximum distance between firms in any pure strategy symmetric location equilibrium
declines toward zero as congestion costs increase relative to transportation costs. For
any non-zero minimum distance between firms, high enough congestion costs relative
to transportation costs guarantee that the unique pure strategy symmetric location
equilibrium involves minimum differentiation. In this sense Hotelling was right about
differentiation of snob/congestion goods.

1 Introduction

“Nobody goes there anymore; it’s too crowded.” — attributed to Yogi Berra

In the seminal Hotelling (1929) model of spatial competition,1 two firms compete to sell

homogeneous products. In stage one, they locate along a line segment; in stage two, they

set their prices. Consumers located along the line choose the best deal based on the posted

price and linear transportation costs.

Hotelling argued that, regardless of location, either firm would increase its profits by

moving closer to its competitor. This force for conformity was termed the “principle of

minimum differentiation” – the tendency of competing firms to make similar choices in

geographical or product-characteristic dimensions. D’Aspremont et al. (1979), however,

1See Gabszewicz and Thisse (1992) and Eiselt et al. (1993) for surveys of its extensive applications.
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critiqued this principle’s validity within the Hotelling model. They showed that no pure

strategy pricing equilibrium exists when the firms are sufficiently close together (but not

at the same location) – under symmetry, within the inner quartiles.2 Without knowing

equilibrium profits, there would be no guarantee that firms located in the inner quartiles

would want to move closer to each other.

Osborne and Pitchik (1987) essentially resolve the issue by proving existence of, and

characterizing, a mixed strategy price equilibrium when firms are close to each other.3 In

the pure strategy, symmetric location equilibrium they compute, both firms locate just inside

the inner quartiles, each 0.23 of the distance from the midpoint. Equilibrium differentiation

is substantial; evidently, the incentives to move closer together do not hold over much of the

region where Hotelling’s price equilibrium fails to exist.

We analyze a class of goods for which Hotelling’s principle of minimum differentiation has

greater validity:4 goods that exhibit congestion or snob appeal. In particular, consumers

are supposed to face an additional cost proportional to the number of other consumers

purchasing from the same retailer. One can think of these negative consumption externalities

as arising from congestion for underlying technological reasons – for example, queuing costs

at a restaurant or barber. One can also think of them as brand snobbery – disutility from

others consuming the exact same good.5

We find that the greater are congestion costs relative to transportation costs, the more

of Hotelling’s line contains a Hotelling-like pure strategy pricing equilibrium. The central

interval where the equilibrium does not exist shrinks as congestion costs grow in importance,

and in the limit vanishes. Thus, the Hotelling pricing equilibrium can be supported at any

2This non-existence is due to discontinuities in the profit function; the temptation exists for a store to
cut its price just enough to steal the entire mass of customers located on the other side of its competitor.

3Much of the literature, beginning with d’Aspremont et al. (1979) and furthered by Economides (1986),
replaces the linear transportation costs of Hotelling (1929) with convex transportation costs that restore the
existence of a pure strategy price equilibrium at any set of firm locations. Substantial, and even maximum,
differentiation typically characterizes the equilibrium outcome under these assumptions.

4The title borrows stylistically from Irmen and Thisse (1998), who examine an N -dimension version of
the model and find conditions under which minimum differentiation holds in all but one of the dimensions.

5The differentiation results we obtain do not generally hold if disutility is also experienced when others
consume nearby goods – we discuss this case in section 3.
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locations where the firms locate on opposite sides of the midpoint, given sufficiently high

congestion costs relative to transportation costs.

Congestion costs thus extend the portion of the line over which Hotelling logic applies.

That is, wherever the Hotelling pricing equilibrium exists, firms can increase profits by mov-

ing closer to each other. Given that it exists everywhere but in a central interval whose

width is shrinking toward zero as congestion costs grow in importance, the bound on differ-

entiation in a pure strategy, symmetric location equilibrium declines with congestion costs

and approaches zero.

Our last result adds to the model a positive minimum distance between firms, justifiable

because firms take up non-negligible space or because of patent or copyright restrictions.

Given this minimum distance, congestion costs that are sufficiently large relative to trans-

portation costs guarantee that the unique pure strategy, symmetric location equilibrium

involves minimum differentiation.

The following mechanism is behind these results. Congestion effects expand the location

pairs over which a pure strategy price equilibrium exists. They do this by reducing the num-

ber of customers that can be attracted by a price cut, making deviation from the equilibrium

less attractive. They thus extend the portion of the line over which the Hotelling logic holds,

that is, where firms gain from moving closer to each other.

Though firms locate close to each other when congestion costs are high, profits can also

be high, since equilibrium prices rise with the congestion cost. In a sense, (brand-)snob or

congestion effects reduce the need for firms to differentiate their products in order to be

guaranteed a substantial consumer base.

Externalities arising due to others’ consumption of the same product have long been

analyzed by economists. Leibenstein (1950) introduces and analyzes bandwagon/conformity

effects and snob effects. There are, however, few attempts to integrate spatial competi-

tion and negative consumption externalities into a common framework. Kohlberg (1983)

analyzes a setting in which firms compete on the basis of location only, and consumers
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minimize the sum of their travel time and their waiting time (transportation and conges-

tion costs). De Palma and Leruth (1989) add congestion effects to a price only setting of

Bertrand price competition and find that firms can earn positive profits. We know of only a

handful of studies that analyze price competition with congestion effects in a spatial model.

Ahlin (1997) analyzes the same model that we do, but does not address firm differentia-

tion, pricing equilibrium existence under asymmetric firm locations, or pricing equilibrium

uniqueness. Grilo et al. (2001) introduce consumption externalities (positive or negative)

into a Hotelling framework with quadratic transportation costs. They find that conformity

can enhance price competition while snobbery dampens it. Our analysis differs from theirs in

retaining Hotelling’s assumption of linear transportation costs and focusing on equilibrium

differentiation.6

This model suggests that similar restaurants, for example, may locate relatively close

to each other since they are prone to congestion.7 It is consistent with phenomena like

Greek Towns and Little Italys. Another potential application is fashion. Perhaps polo shirt

consumers are content to differentiate themselves via a tiny alligator or a horse knit onto

their shirt – the model predicts that the shirts themselves may be very similar. It would

also predict that if snobbery in high fashion is brand-snobbery, designers may differentiate

themselves only slightly. This would be consistent with fashion trends, in which all designers

recycle similar fashions (e.g. 70’s-era) simultaneously with relatively moderate twists, instead

of a case in which all decades and all styles were always on offer from one top designer or

another. Similarly, the model suggests an explanation for phenomena like a small number

of featured colors per year in auxiliary wedding apparel.

6In independent work, Di Cintio (2006) adds the Grilo et al. (2001) consumption externality specification
to the original Hotelling framework of linear transportation costs. He finds similar results to ours under
significantly weaker conditions, which we believe are not sufficient.

7This applies to Yogi Berra restaurants as opposed to Gary Becker (1991) restaurants, where congestion
effects dominate bandwagon effects: most likely all but a relatively small top tier.
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Figure 1: Firm a located at distance xa from left endpoint, firm b located at distance xb

from right endpoint.

2 Model and Results

The original Hotelling game has two stages. In the first stage, firms a and b simultaneously

choose locations along a unit line. In the second stage, the firms simultaneously choose

prices at which they will sell the homogeneous good, whose production cost is zero. A unit

measure of consumers with inelastic unit demand, distributed uniformly on the line, then

choose which firm to purchase from. They face a linear transportation cost and thus consider

the firms’ respective prices and locations. We will call an equilibrium in the second stage,

i.e. an equilibrium in prices at fixed locations, a pricing equilibrium. We will call a subgame

perfect equilibrium to the entire game a location equilibrium.

2.1 Pricing Equilibrium

Consider the second stage, and denote the distance of firms a and b from the left and right

endpoints, respectively, as xa and xb; see Figure 1. The cost to a consumer who buys from

firm j ∈ {a, b} includes the posted price, pj , and a linear transportation cost proportional to

τ > 0 and the distance to firm j. To Hotelling’s model we add a third cost due to congestion

or snob effects. Specifically, if qj is the quantity sold by store j, consumers experience an

additional cost equal to κqj , κ ≥ 0, when purchasing from store j.

The disutility to a consumer located at point x on [0, 1], if he buys from firm a, is

−U(x) = pa + τ |x − xa| + κqa; (1)
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and if he buys from firm B, is

−U(x) = pb + τ |1 − xb − x| + κqb. (2)

Define δ ≡ 1−xa −xb as the distance between the two firms. Equations 1 and 2 can be used

to derive firm a demand as a function of prices pa and pb:

qa =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if pa ≤ pI ≡ pb − τδ − κ | region I

pb−pa−τδ+κ
2κ

if pI ≤ pa ≤ pII ≡ pb − τδ − κ(1 − 2xb) | region II

pb−pa+τ(1+xa−xb)+κ
2(κ+τ)

if pII ≤ pa ≤ pIII ≡ pb + τδ + κ(1 − 2xa) | region III

pb−pa+τδ+κ
2κ

if pIII ≤ pa ≤ pIV ≡ pb + τδ + κ | region IV

0 if pIV ≤ pa | region V

(3)

In regions I and V, price differences between the two firms are enough to overcome the

transportation cost of traveling from one firm to the other (τδ) and the disutility from

consuming the same product as all other consumers (κ). Firm a or b captures the whole

market. In region III, there is a point between the two firms such that all customers to

the left (right) of this point prefer, and patronize, firm a (b). The novel cases are regions

II and IV. In region II, for example, all consumers to the left of firm b strictly prefer firm

a. Consumers to the right of firm b are indifferent between firms a and b, conditional on

a specific number of them patronizing each firm; any other number would raise congestion

effects at one site and make the other strictly preferable. Within this region, a lower pa

raises the amount of congestion that keeps these customers indifferent and leads to more

customers patronizing firm a.

With strictly positive congestion costs, the demand curve is continuous, unlike in the

original Hotelling model. Congestion limits demand swings that can be caused by arbitrarily

small price changes. This can be seen in Figure 2, which graphs firm a’s demand and profit

functions against its price for several values of κ/τ , with (κ + τ) fixed at one, pb = 1, and
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Figure 2: Firm a’s demand and profits as a function of its price pa, for various κ/τ ratios,
given κ + τ = 1, pb = 1, and xa = xb = 2/5. Parameter values and curve markings are the
same in both panels.

xa = xb = 2/5. The original model, κ/τ = 0, corresponds to the solid lines. Demand and

profits are discontinuous, as is well-known. For example, firm a can lower its price below its

competitor’s just enough to cover the cost of transportation between the two firms and win

the entire mass of consumers to the right of firm b. With congestion effects, however, demand

responses to price cuts are continuous and dampened. This can be seen in the dashed and

dash-dotted demand curves and profit functions of Figure 2, which correspond to κ/τ = 1/2

and κ/τ = 1, respectively.

Analysis of this pricing game reveals that, unlike in the original Hotelling model, a Nash

equilibrium in pure strategies exists for any values of xa, xb ∈ [0, 1/2). The key condition is

that congestion effects are large enough relative to transportation costs.

Proposition 1. Let xa, xb ∈ [0, 1/2). There exist functions B, C : [0, 1/2)2 → � such that

the following hold. If and only if

κ/τ ≥ B(xa, xb), (A1)
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the following Nash equilibrium exists:

p∗a = κ + τ + τ
(xa − xb)

3
p∗b = κ + τ + τ

(xb − xa)

3
. (4)

No other pure strategy Nash equilibrium exists. This equilibrium exists and is unique if

κ/τ ≥ C(xa, xb). (A2)

Proof. See Appendix.

The pure strategy equilibrium, when it exists, involves a point of indifference between the

two firms and strict preference for firm a (b) to the left (right) of this point. The equilibrium

prices are identical to Hotelling’s, except for the addition of κ. Higher congestion costs thus

dampen competition and allow firms to charge more in equilibrium, as others have found

(Grilo et al., 2001, for example).

In contrast to Hotelling’s model, a pure strategy equilibrium exists regardless of how

close to the midpoint the firms locate (xa and xb close to 1/2), as long as congestion costs

are sufficiently large relative to transportation costs. In the original Hotelling model, when

xa and xb are close to 1/2, the equilibrium does not exist because a small price reduction

can capture all the competitor’s customers. Congestion costs restore equilibrium by limiting

the willingness of a large number of consumers to switch firms and thus muting the demand

response to a lower price. This is apparent in the profit function graph of Figure 2; the

candidate equilibrium is at pa = 1, but only when κ/τ is high enough is it robust to a

downward deviation.

The exact bound functions B and C are in the appendix (equations 6 and 7, respectively).

These bounds increase the closer either firm gets to the other, and they approach infinity

as either firm approaches the midpoint. Thus, greater congestion costs support the pure

strategy pricing equilibrium over a larger set of locations. The locations for which this
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Figure 3: The pure strategy pricing equilibrium of Proposition 1 exists when (xa, xb) falls
below the lines drawn, for various values of κ/τ .

equilibrium exists are graphed for various values of κ/τ in Figure 3.8

Since the conditions involve κ/τ , what is important is that congestion costs are high rela-

tive to transportation costs, not necessarily high in absolute terms. Indeed, κ/τ can achieve

any positive value while the equilibrium price (κ + τ , under symmetric locations) is fixed.

This alleviates concerns that the assumption of inelastic consumer demand is restrictive for

high values of κ/τ .

The proof involves checking best responses for all possible pure strategy equilibria; only

one candidate emerges at which both firms are locally best-responding. Next, it involves

finding conditions for no profitable deviation to exist from this candidate equilibrium. As

in the Hotelling model, the only potentially profitable deviations are downward; however,

unlike in the original Hotelling model, a downward deviation that does not capture the

8Regardless of the relative importance of congestion costs, there is no pure strategy pricing equilibrium
when both firms locate on the same half of the line (including the midpoint). In these cases, there is no
stable set of prices with the point of indifference between firms, or if there is, higher congestion costs raise
the locationally disadvantaged firm’s deviation payoff at least as much as its equilibrium payoff.
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entire market may be the optimal deviation (see the dashed profit function in Figure 2).

The bound function B comes from directly comparing firms’ equilibrium profits with their

deviation profits to ensure the latter are not greater.

Condition A1 guaranteeing existence of the pure strategy equilibrium is as weak as possi-

ble. Condition A2 is stronger than condition A1 and guarantees existence and uniqueness of

the pure strategy equilibrium. That is, it rules out additional mixed strategy equilibria. The

proof (inspired by Osborne and Pitchik, 1987) uses dominance arguments to limit a firm’s

pricing support in any equilibrium to a single point. These arguments require quasi-concavity

of firm i’s profit function when pj < p∗j ; necessary and sufficient for this is condition A2.

Quasi-concavity is not necessary to guarantee existence; for example, the dash-dotted profit

function of Figure 2 has no profitable deviation from pa = p∗a = 1 though not quasi-concave.

Similarly, quasi-concavity may not be necessary for uniqueness. Nonetheless, the qualitative

result is the same under the stronger condition: any location pair xa, xb ∈ [0, 1/2) has as its

unique pricing equilibrium the Hotelling one as long as κ/τ is large enough.

2.2 Location Equilibrium

The pricing equilibrium results have implications for equilibrium firm locations. Specifically,

congestion costs extend the portion of the line over which the Hotelling equilibrium exists

and minimum differentiation logic applies.

Proposition 2. The distance between firms in a pure strategy, symmetric location equilib-

rium is less than

1

1 + 2κ
τ

.

Assume in addition that a pure strategy equilibrium is played in the pricing game if one

exists. Then the distance between firms in a pure strategy, symmetric location equilibrium is
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less than

1−κ
τ

2
if κ/τ ≤ 1/3

1 − 2κ
τ
(
√

1 + τ
κ
− 1) if κ/τ ≥ 1/3

.

Proof. The first expression is the inverse of condition A2 with symmetry imposed and

written in terms of distance. Thus, for any symmetric firm locations xa = xb = x with

distance apart strictly greater than the first expression, condition A2 holds with strict in-

equality. By Proposition 1, there is a unique pricing equilibrium for any firm locations in a

neighborhood of (x, x), with firm a profits given by expression 5 (in the Appendix). Note

from this expression that firm a would raise second-stage profits by locating closer to firm

b. Thus this cannot be a location equilibrium.

If the distance between symmetrically located firms is strictly greater than the second

expression, condition A1 holds with strict inequality. Thus there exists a pure strategy pric-

ing equilibrium that is unique among pure strategy equilibria. The assumption that pure

strategy equilibria are selected first along with the above logic rules out this outcome as a

location equilibrium.

Thus, the greater are congestion/snob effects relative to transportation costs, the closer

firms must be in any pure strategy, symmetric location equilibrium. Asymptotically, the

distance between them goes to zero.9 Proposition 2’s upper bounds on firm differentiation are

graphed against κ/τ in Figure 4. The case of κ/τ = 0 is already known: symmetric locations

more than 0.5 apart are ruled out (d’Aspremont et al., 1979) and the pure strategy symmetric

location equilibrium appears to involve the firms locating about 0.46 apart (Osborne and

Pitchik, 1987). Proposition 2 makes clear that as κ/τ increases, a smaller and smaller central

interval of the unit line remains in which any symmetric location equilibrium must exist;

thus maximum firm differentiation declines toward zero. The assumption that pure strategy

9Note that limx→∞ x(
√

1 + 1/x − 1) = 1/2.
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Figure 4: Upper bounds on differentiation in any symmetric location equilibrium are graphed
against κ/τ . The tighter, solid-line bound uses the assumption that pure strategy pricing
equilibria are selected if they exist; the dashed-line bound does not. Higher relative conges-
tion costs κ/τ reduce possible differentiation, in the limit to zero.

equilibria are selected in the pricing stage allows us to bound equilibrium differentiation more

tightly.10 However, even without this assumption, maximum firm differentiation declines

toward zero as congestion costs become more important.

Proposition 2 essentially provides a negative result, ruling out location equilibria every-

where but in a central interval of the line. It would be ideal provide a positive result, i.e.

to demonstrate the existence of a symmetric location equilibrium in the central interval not

ruled out by Proposition 2. Basic results can be applied to show existence of a mixed strategy

equilibrium in the second (pricing) stage within this interval.11 However, gaining a sufficient

handle on the pricing equilibrium payoffs to guide backward induction and guarantee a loca-

tion equilibrium has not been accomplished analytically even in the original Hotelling model.

Osborne and Pitchik (1987) make remarkable progress, but partially rely on computation.

10Most of the literature besides Osborne and Pitchik (1987) focuses on pure strategy equilibria.
11Theorem 1.3 of Fudenberg and Tirole (1991) can be used since the payoff functions are continuous.
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Their work gives optimism, however, that a location equilibrium within the central interval

does exist.

We do not solve this difficult problem here. Instead, we make a small additional mod-

ification to the model. Assume there is some exogenous minimum distance between firms,

δmin > 0. If Hotelling’s line is interpreted as physical distance, this positive minimum dif-

ferentiation can represent the impossibility of firms co-locating since firms take up space. If

the line is taken to represent characteristic space, this minimum differentiation can represent

copyright or patent restrictions. Given this assumption, we show the following.

Proposition 3. The unique pure strategy, symmetric location equilibrium involves minimum

differentation, that is the distance between firms equal to δmin, as long as

δmin ∈ (1/3, 1] and κ/τ ≥ 1−δmin

2δmin
, or

δmin ∈ (0, 1/3] and κ/τ ≥ (3−δmin)2

12δmin
.

Proof. See Appendix.

Thus, as long as there is some inability of firms to co-locate and provided congestion

costs are strong enough relative to transportation costs, the unique pure strategy, symmetric

location equilibrium involves minimum differentiation. In this sense, Hotelling was right –

the principle of minimum differentiation holds, at least for goods exhibiting snob appeal or

congestion, asymptotically.

The role of the assumed minimum differentiation is straightforward – it rules out loca-

tional deviations into the central interval where the pure strategy pricing equilibrium does

not exist. The condition on κ/τ when δmin > 1/3 is simply condition A2 modified for sym-

metry and expressed in terms of distance between firms. The condition on κ/τ for δmin ≤ 1/3

is stronger than condition A2. The reason is that when δmin ≤ 1/3, one firm can deviate

by leapfrogging the other and locating on the same side of the line. This would not seem

especially profitable; however, when both firms are on the same side of the line there is no

pure strategy pricing equilibrium so we cannot calculate deviation payoffs. Our strategy
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is to bound them, using dominance arguments to bound prices charged at such locations

and using the price bounds to bound deviation profits. Less restrictive bounds on κ/τ are

available under assumptions that a) pure strategy pricing equilibria are chosen if they exist

and/or that b) firms must locate on their own half of the line. However, the qualitative

flavor of the bounds does not change: they increase in δmin and approach infinity as δmin

approaches zero.

3 Discussion

It may seem paradoxical that the more pronounced is snobbery, the more similar the products

firms will end up marketing. Note, however, that our model is of brand-snobbery, in that

snobbery costs apply only to consumers frequenting the exact same firm. The minimum

differentiation results apply in this context.

In a different model of snobbery, however, consumers may experience disutility from

others consuming nearby products also. For example, let the snob disutility be proportional

to the number of customers of a product and to (one minus) the distance of that product

from a consumer’s chosen product. Then snobbery disutility for a customer of store i would

be κqi +κ(1− δ)qj , which equals κ(1− δ)+κδqi, since qa + qb = 1. That is, this model turns

out to be isomorphic to the one we analyzed with a modified congestion cost κ′ = κδ. Thus

Proposition 1 goes through with the bounds for κ/τ divided by δ = 1 − xa − xb. However,

Proposition 2 does not go through. This is because equilibrium second-stage profits are, for

firm a (see equation 5 in the appendix):

[
κ′ + τ

(
1 + xa−xb

3

)]2

2(κ′ + τ)
=

[
κ(1 − xa − xb) + τ

(
1 + xa−xb

3

)]2

2[κ(1 − xa − xb) + τ ]
.

This is decreasing in xa for κ/τ large, meaning firm a would prefer to move away from firm

b. Thus, not surprisingly a more continuous kind of snobbery would push toward maximum

rather than minimum differentiation.
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Nonetheless, congestion and brand snobbery as we model them ease competitive pressures

and push firms toward one another. The more important are these costs relative to trans-

portation costs, the closer minimum differentation comes to holding; in the limit, it comes

arbitrarily close. The simple addition of linear congestion costs gives Hotelling’s original

argument greater validity.

The model provides interesting testable implications. It suggests that differentiation be-

tween firms depends on the type of good being sold and its associated externalities. Variation

across goods in the degree of congestion or brand-snobbery should be related to variation in

product differentiation. Exploring this relationship empirically is left for future work.

15



References

[1] Peter Ahlin. Equilibrium existence in the symmetric Hotelling model with negative
network effects. Duke Journal of Economics, IX:1–28, Spring 1997.

[2] Gary S. Becker. A note on restaurant pricing and other examples of social influences
on price. Journal of Political Economy, 99(5):1109–1116, October 1991.

[3] Claude d’Aspremont, J. Jaskold Gabszewicz, and Jacques-Francois Thisse. On
Hotelling’s “Stability in Competition”. Econometrica, 47(5):1145–1150, 1979.

[4] Andre de Palma and Luc Leruth. Congestion and game in capacity: A duopoly analysis
in the presence of network externalities. Annales d’Economie et de Statistique, (15-
16):389–407, July-December 1989.

[5] Marco Di Cintio. On the Hotelling principle of minimum differentiation: Imitation and
crowd. University of Lecce Economics Working Paper 82/39, March 2, 2006.

[6] Nicholas Economides. Minimal and maximal differentiation in Hotelling’s duopoly. Eco-
nomics Letters, 21(1):67–71, 1986.

[7] H. A. Eiselt, Gilbert Laporte, and Jacques-Francois Thisse. Competitive location mod-
els: A framework and bibliography. Transportation Science, 27:44–54, 1993.

[8] Drew Fudenberg and Jean Tirole. Game Theory. MIT Press, Cambridge MA, 1991.

[9] J. Jaskold Gabszewicz and Jacques-Francois Thisse. Location. In R.J. Aumann and
S. Hart, editors, Handbook of Game Theory, volume 1. North-Holland, Amsterdam,
1992.

[10] Isabel Grilo, Oz Shy, and Jacques-Francois Thisse. Price competition when consumer be-
havior is characterized by conformity or vanity. Journal of Public Economics, 80(3):385–
408, June 2001.

[11] Harold Hotelling. Stability in competition. Economic Journal, 39:41–57, 1929.

[12] Andreas Irmen and Jacques-Francois Thisse. Competition in multi-characteristic spaces:
Hotelling was almost right. Journal of Economic Theory, 78(1):76–102, January 1998.

[13] Elon Kohlberg. Equilibrium store locations when consumers minimize travel time plus
waiting time. Economics Letters, 11(3):211–216, 1983.

[14] Harvey Leibenstein. Bandwagon, snob, and Veblen effects in the theory of consumers’
demand. Quarterly Journal of Economics, 64(2):183–207, May 1950.

[15] Martin J. Osborne and Carolyn Pitchik. Equilibrium in Hotelling’s model of spatial
competition. Econometrica, 55(4):911–922, July 1987.

16



A Proofs

Proof of Proposition 1. We first show the existence of B(xa, xb) such that κ/τ ≥ B(xa, xb)
is equivalent to (p∗a, p

∗
b) constituting a Nash equilibrium. Fix pb = p∗b . It can be verified that

p∗a is in the interior of region III (of equation 3) and is the best response to pb in this region.
It can also be shown that firm a profits are decreasing in price for pa ≥ pIII . Thus the only
potential profitable deviations are downward.

Some algebra verifies that iff κ/τ ≥ Mh ≡ (xa + 2xb)/[3(1 − 2xb)], firm a’s profits are
monotonically increasing up to pII ; this guarantees no profitable downward deviation. Iff
κ/τ ≤ Ml ≡ (xa + 2xb)/3, the best response below pII is pI . Deviation profits also equal
pI , since demand is one. Using the expressions for p∗a and p∗b , and demand from equation 3,
equilibrium profits can be written [

κ + τ
(
1 + xa−xb

3

)]2

2(κ + τ)
. (5)

Some algebra shows that deviation to pI does not strictly raise profits iff

κ/τ ≥ Kl ≡ xa + 2xb

3
− (1 − b) + 2

√
b

(
xa + 2xb

3

)
.

Iff Ml ≤ κ/τ ≤ Mh, the best response below pII is in the interior of region II: (pb−τδ−κ)/2,
with associated deviation profits of [

κ + τ
(

xa+2xb

3

)]2

2κ
.

This is not strictly higher than equilibrium profits iff

κ/τ ≥ Kh ≡
xb

(
2xa+xb

3

) − (1 − 2xb) + (1 − xb)
√(

2xa+xb

3

)2
+ 1 − 2xb

2(1 − 2xb)
.

Summarizing, firm a has no profitable deviation iff one of three sets of conditions holds:
Kl ≤ κ/τ ≤ Ml, max{Ml, Kh} ≤ κ/τ ≤ Mh, or κ/τ ≥ Mh. One can show that Ml, Kh ≤ Mh;
thus the latter two conditions are equivalent to max{Ml, Kh} ≤ κ/τ . Also, if xa ≤ (3 −
6xb − 5x2

b)/4xb, then both Kl and Kh are less than Ml, and the conditions are equivalent
to Kl ≤ κ/τ . If xa ≥ (3 − 6xb − 5x2

b)/4xb, then both Kl and Kh are greater than Ml, and
the conditions are equivalent to Kh ≤ κ/τ . Symmetric reasoning gives rise to symmetric
conditions for firm b to be best-responding. Condition A1 thus boils down to

κ/τ ≥

⎧⎪⎪⎨
⎪⎪⎩

xi+2xj

3
− (1 − xj) + 2

√
xj

(
xi+2xj

3

)
if xi ≤ 3−6xj−5x2

j

4xj

xj

“
2xi+xj

3

”
−(1−2xj)+(1−xj)

r“
2xi+xj

3

”2
+1−2xj

2(1−2xj)
if xi ≥ 3−6xj−5x2

j

4xj

(6)

for (i, j) = (a, b) and (i, j) = (b, a). This bound is finite for xa, xb ∈ [0, 1/2).
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Conversely, it is clear that if condition 6 is not met, firm a or b has a strictly profitable
deviation downward. Thus the existence of this equilibrium implies the stated conditions.

We next argue that there are no pure strategy equilibria beside the proposition’s. It is
clear that firm a pricing in region I cannot be an equilibrium; firm b could lower its price
to earn strictly positive, instead of zero, profits. Writing out best responses, it is clear that
firms a and b cannot be simultaneously best-responding when firm a is pricing in the interior
of region II (and thus firm b is pricing in the interior of its analogous region IV). One can also
show that if firm a is pricing on the boundary between regions II and III (pa = pII), firm a
can gain by raising its price or firm b can gain by lowering its price. It is also straightforward
to show that there are no mutual local best responses in the interior of region III besides
(p∗a, p

∗
b). Finally, symmetric arguments can be applied to rule out equilibria in which firm a

prices in IV or V (i.e. firm b prices in analogous regions I or II).
Finally, we argue that under a stronger condition than condition A1, namely condi-

tion A2:

κ/τ ≥ xi + 2xj

3(1 − 2xj)
(7)

for (i, j) = (a, b) and (i, j) = (b, a), the equilibrium exists and is unique.12 Existence is
clear from above (since this bound equals Mh). We also have established that there are no
other pure strategy equilibria. Consider a candidate mixed strategy equilibrium with pricing
supports [p

a
, pa] and [p

b
, pb].

We first show that pi ≤ p∗i , i = a, b. Note that p
i
≥ 0, since firm i can guarantee

zero profits. Define p∗i (pj) as the best response of firm i to price pj . Define p∗III(pj) as
the optimal price pi given pj using the region-III expression for demand: p∗III(pj) = [pj +
τ(1 + xi − xj) + κ]/2. Define p∗II(pj) and p∗IV (pj) similarly: p∗II(pj) = (pj − τδ + κ)/2 and
p∗IV (pj) = (pj + τδ + κ)/2. Simple algebra verifies that if pa ≤ p∗III(pb) and pb ≤ p∗III(pa),
then pi ≤ p∗i , i = a, b.

Assume not, e.g. that pa > p∗III(pb). Now the best response function for firm a follows
perhaps p∗IV (pb), then perhaps pIII(pb), then p∗III(pb); then it either jumps down to p∗II(pb)
and follows it until joining pI(pb) forever, or jumps down to pI(pb) and follows it forever. Thus
it is continuous and increasing everywhere except at the downward jump. Examination of the
best response function slopes and the profit functions makes clear that the best response to
pb is no greater than p∗III(pb), and that profits are declining in pa beyond p∗III(pb), provided
pI(pb) ≤ p∗III(pb), i.e. pb ≤ Zb ≡ 3κ + τ(3 − xa − 3xb). Thus, since p∗III(pj) is increasing,
the assumption that pb ≤ Zb guarantees that p∗III(pb) dominates all prices pi ∈ (p∗III(pb), pa]
for any firm-b price pb ∈ [p

b
, pb]. Further, it strictly dominates prices in [pb − ε, pb] for some

ε > 0, since under condition 7 p∗III(pb) < pIV (pb). This establishes that pa > p∗III(pb) is
a contradiction. Similar reasoning gives that pa ≤ Za ≡ 3κ + τ(3 − 3xa − xb) guarantees
pb ≤ p∗III(pa). Thus pi ≤ Zi, i = a, b, implies that pi ≤ p∗i , i = a, b.

Consider next pi > Zi, i = a, b. This implies that p∗i (pj) = pI(pj) > p∗III(pj), i = a, b.
This guarantees that p∗a(pb) < pa or p∗b(pa) < pb. First, assume p∗a(pb) < pa. For pb ≤ Zb,
the previous paragraph argues that the best response of a is no greater than p∗III(pb) and
that profits are declining in pa beyond p∗III(pb). For pb > Zb, the best response of a is pI(pb)
and one can show that profits are declining in pa beyond pI(pb). Since p∗III(pb) and pI(pb)

12This part of the proof follows some strategies similar to or inspired by Osborne and Pitchik (1987).
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are less than pI(pb), for pb ≤ pb, pI(pb) = p∗a(pb) dominates all prices pa ∈ (pI(pb), pa] for any
firm-b price pb ∈ [p

b
, pb]. Further, it strictly dominates prices in [pb − ε, pb] for some ε > 0,

since pI(pb) < pIV (pb). This establishes that pa > p∗a(pb) cannot occur; symmetric reasoning
gives that pb > p∗b(pa) cannot occur. Thus, pi > Zi for i = a, b is impossible.

Consider next pa ≤ Za and pb > Zb. By above reasoning, pa ≤ Za implies that pb ≤
p∗III(pa). But, condition A2 and pa ≤ Za ensure that p∗III(pa) ≤ Zb, so it cannot be that
pb ≤ p∗III(pa) and pb > Zb. Similarly, pb ≤ Zb and pa > Za can be ruled out. Thus, pi ≤ p∗i ,
i = a, b.

Given condition 7, pa ≤ p∗a, and pb ≤ p∗b , and for any pj ∈ [p
j
, pj], one can show that firm-i

profits are quasi-concave in pi and have a unique maximum p∗i (pj), which is continuously
and strictly increasing in pj . This allows us to establish that p

i
≥ p∗i (pj

) and pi ≤ p∗i (pj),

(i, j) = (a, b), (b, a). Assume not, e.g. that p∗i (pj) < pi. Then p∗i (pj) dominates all pi

in [p∗i (pj), pi] for all pj ∈ [p
j
, pj ], strictly so for pj in a neighborhood of pj. This is a

contradiction. Similarly, if p
i

< p∗i (pj
), then p∗i (pj

) dominates all pi in [p
i
, p∗i (pj

)] for all

pj ∈ [p
j
, pj ], strictly so for pj in a neighborhood of p

j
.

Note that p∗i (pj), for pj ∈ [0, p∗j ], is continuous and piecewise linear with slopes (where
they exist) equal to 1/2 or 1; this is because for pj ∈ [0, p∗j ], p∗i (pj) follows perhaps p∗IV (pj),
then perhaps pIII(pj), then p∗III(pj). Thus, for some λi, λj ∈ [1/2, 1], this fact gives rise to
the equalities in the following set of claims:

p∗i (pj) − p∗i (pj
) = λi(pj − p

j
) ≤ λi[p

∗
j(pi) − p∗j (pi

)] = λiλj(pi − p
i
) ≤ λiλj [p

∗
i (pj) − p∗i (pj

)].

The inequalities come from the previous paragraph’s result that p
i
≥ p∗i (pj

) and pi ≤ p∗i (pj).

There are two potential conclusions from this set of claims. One is that p
i
= pi, i = a, b, in

which case the proof is complete. If this is not true, then λi = 1, i = a, b; also, p
a

= p∗a(pb
)

and p
b
= p∗b(pa

) (also using the previous paragraph’s result). This contradicts the fact that
(p∗a, p

∗
b) is the unique pure strategy equilibrium.

Proof of Proposition 3. If δmin ∈ (1/3, 1], the condition κ/τ ≥ (1 − δmin)/(2δmin)
(which merely rewrites condition 7 in terms of distance and using symmetry) guarantees
that the Hotelling-like pricing equilibrium exists and is unique everywhere the firms may
symmetrically locate and at all possible deviations from permissible symmetric locations.
Thus, there is no pure strategy, symmetric location equilibrium where differentiation is not
minimal, since firms can increase profits by moving closer to each other (as argued in the
proof of Proposition 2); but being minimally differentiated is an equilibrium, since the only
possible deviation is away from the other firm and thus lowers profits.

If δmin ≤ 1/3, the condition on κ/τ is stronger than condition 7, so by the previous
paragraph’s arguments no pure strategy, symmetric location equilibrium exists that is not
minimally differentiated; and no deviation away from the other firm in the symmetric mini-
mum differentiation equilibrium can raise profits. However, a new kind of deviation from the
minimum differentiation equilibrium is possible when δmin ≤ 1/3: deviation to a location on
the other side of the rival firm. In this case, both firms are located on the same side of the
line’s midpoint, and no pure strategy pricing equilibrium exists. We thus cannot calculate
the deviation payoff. Our strategy here is to bound it.
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Consider the candidate, minimum differentiation equilibrium where xa = xb = (1 −
δmin)/2. Each firm’s profits equal (κ+ τ)/2. Consider a deviation by firm a to some location
xa ∈ [1−xb+δmin, 1], i.e. xa ∈ [1/2+3δmin/2, 1]. Competition at these locations is isomorphic
to competition when xa ∈ [0, 1/2−3δmin/2] and xb = (1+ δmin)/2, so we consider the latter.

First, one can show that if firms are randomizing over pricing supports [p
i
, pi], i = a, b,

then pi ≤ p∗i , i = a, b, where the p∗i are calculated using the deviation locations. This uses
the exact reasoning of the part of the proof of Proposition 1 that establishes the upper bound
of the pricing support; the only difference is that whenever condition 7 is used there, here
we substitute this proof’s condition on κ/τ (for δmin ≤ 1/3).

Next we let pb = p∗b . Since pb ≤ p∗b , and since firm a profits are increasing in firm b’s
price pb, for any price pa, this allows for an upper bound on firm a profits. One can show
that firm a profits are maximized the closer it is to firm b, regardless of pa; so, we set
xa = 1/2 − 3δmin/2. Finally, one can show that under the condition on κ/τ , firm a’s best
response to pb is in the interior of region II and leads to profits

(2κ + τ − τδ/3)2

8κ
.

This is no greater than equilibrium profits (κ + τ)/2 given the proof’s condition on κ/τ .
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